
TotalView Cheat Sheet
1 Compiling Programs. Compile your pro-

grams using the –g option. For example:
gcc -g –o my_prog my_prog.c

2 Starting TotalView. Enter:
totalview my_prog –a arguments

Or, type totalview from the shell to open the
Sessions Manager to:
‰ Start a new program or parallel program
‰ Attach to a running process
‰ Open a core file
‰ Manage your debug sessions

3 Toolbar Buttons Defined

‰ Go: starts execution.
‰ Halt: stops execution, but you can restart

from where execution stopped.
‰ Kill: kills the executing program.
‰ Restart: does a Delete, then a Go.
‰ Next: executes all code on the current line;

program counter (PC) will be at the next
line.

‰ Step: executes line; if the line has a subrou-
tine, PC moves into it.

‰ Out: executes remainder of current routine; PC
is on the line that called this routine.

‰ Run To: After selecting a line (click on the
line, not the line number), press this button
to execute all instructions from the PC until
this line.

4 Setting a Breakpoint
‰ Line: click on a line number.
‰ Function: select Action Point > At Loca-

tion, and type a function name.
‰ Function: Use the View > Lookup Func-

tion command, then click the line number.
‰ Search: Use the Edit > Find command,

then click on the line number.

5 Attaching to Already Running Programs
‰ Select the File > Attach to a Running Pro-

gram command from the Root or Process
windows to launch the Sessions Manager, and
browse to the program.

‰ If you don’t see the program, use the ps com-
mand to find its PID (Program ID), and then
select the PID within the dialog box.

Always attach to a program’s main thread.

6 Stopping at a Line When a Variable Equals
(or Doesn’t Equal) a Value
a Set a breakpoint within the loop.
b. Right click on the breakpoint icon and select

Properties.
c. Select Evaluate in the dialog box.
d. Type a condition; for example:

if (my_variable == 0) $stop

7 Seeing Variable Values
‰ If it’s a local variable, it’ll be in the Stack

Frame Pane. For a local or global variable,
double-click it in the Source Pane to see the
value in a Variable Window, or hover your
cursor over it to see the value.

‰ If it is not a complex variable (that is, it is not
an array or a structure), right-click on the vari-
able and select Add to Expression List.

‰ For arrays and structures, double-click to see
all values in a Variable Window.

8 Chasing Pointer Values. If a variable’s type is
a pointer, double-click to see the value being
pointed to.

9 Seeing Many Variables at the Same Time.
You can send as many variables as you want to
the Expression List window. The values in this
window update every time your program stops
executing.
You can also send individual structure and
array elements to this window.

10 Seeing Just Some of an Array’s Elements.
The Slice area within the Variable Window lets
you tell TotalView which array elements it
should display. For example, typing (31:60) in
Fortran or [30:59] in C or C++ restricts the
display to just 30 elements.
Type a condition within the Filter area to restrict
the display to certain values. For example, typing

> 64000 restricts the display to array elements
with a value greater than 64,000.
You can combine slices and filters.

11 Graphing Arrays. Seeing array data visually
is an easy way to detect outliers and patterns.
Display the data graphically by selecting the
Tools > Visualize command within a Variable
Window.

12 Casting. You can change the way TotalView
interprets and displays variable data by editing
the Type field of a variable window.
For example, if you have a pointer to an array,
you’ll want to change the datatype from some-
thing like int * to int[100] * to see array or
pointer elements.

13 Changing Variable Values
‰ In the Expression List and Variable Windows,

click a value and edit it.
‰ In the Stack Frame Pane, double-click a bold-

face number, then edit it.

14 STL Variables. TotalView provides auto-
matic STL type transformations to more
clearly display STL data without the underly-
ing structure. This can be toggled in the pref-
erences as preferred.

15 Searching For Variables. Select View >
Lookup Variable from the Process Window.
The variable displays in a Variable Window.

16 Stopping Execution When a Variable’s
Value Changes. Use the Tools > Create
Watchpoint command.
If the Variable Window is displaying an array or
a structure, you’ll need to dive on an element so
that only one of the variable’s elements is dis-
played.

17 Seeing One Element in an Array of Struc-
tures as its own Array
a Select one element.
b. Right-click and select Dive in All.

The window now displays an array containing
just those elements.

18 Seeing a Variable’s Value in Multiple
Threads or Processes. From the Variable
Window menu, select:
‰ View > Show Across > Thread if the pro-

gram is multi-threaded, or

‰ View > Show Across > Process if the pro-
gram is multi-process.

In the Stack Frame or Source Pane, right-
click on the variable and select Across Pro-
cesses or Across Threads.

19 CLI Command Entry. Select the Tools >
Command Line command. You can now
type TotalView CLI commands within this
window. Type dhelp for help.

20 Debugging with fork() and execve() Pro-
grams. In most cases you must link your
program with the libdbfork library that we
provide. See the reference guide for more
information.

21 Debugging with ReplayEngine. Replay-
Engine is an add-on for reverse debugging
in Linux x86 and x86-64. Start it before a
debugging session either from:
‰ the Debug Options dialog in the

Sessions Manager, by selecting Enable
ReplayEngine.

‰ the Process Window, by selecting menu
option Debug > Enable ReplayEngine.

The ReplayEngine buttons on the toolbar
are as follows:

‰ Record: Starts ReplayEngine before or
after a process has started.

‰ GoBack: Runs backwards to the nearest
stop event.

‰ Prev: Moves execution in reverse, over
function calls; PC moves to previous line.

‰ UnStep: Moves execution in reverse,
through functions; PC moves into function
calls.

‰ Caller: PC returns to the point before the
function was called.

‰ Back To: When a line is selected, moves
execution in reverse to the most previous
execution of the line.

‰ Live: Execution and the PC are returned to
current live execution location.

‰ Save: Displays a dialog to save the current
recording session to a file to be loaded in at
a later time.

Copyright TotalView by Perforce©
Perforce Software, Inc. | https://totalview.io

