~--TotalView

TotalView User Guide

Version 2024.1
April, 2024

PERFORCE

WW. perfo rce.com

-~ TotalView

© 2024 Perforce Software, Inc. All rights reserved.

© 2007-2024 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
© 1998-2007 by Etnus LLC. All rights reserved.

© 1996-1998 by Dolphin Interconnect Solutions, Inc.

© 1993-1996 by BBN Systems and Technologies, a division of BBN Corporation.

Perforce and other identified trademarks are the property of Perforce Software, Inc., or one of its affiliates. Such trade-
marks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks are the prop-
erty of their respective holders. References to third-party trademarks do not imply endorsement or sponsorship of any
products or services by the trademark holder. Contact Perforce Software, Inc., for further details.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.

TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.

Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

ACKNOWLEDGMENTS

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft-
ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse
of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

TotalView by Perforce
http://totalview.io

https://rwkbp.makekb.com/

Part 1: AnIntroductionto TotalView................................... 1
Getting Started
Introducing TotalView 3
AnInitial Look atthe Interface 4
Customizingthelnterface. 4
Preferences 4
RESIZING . . . o 5
DraWETS . oo 5
Undocking and DoCKING . ..ot 5
ATourofthelnterface. 6
Central Area 6
To0IDarS. . oo 12
Processesand Threads View 12
Call Stack View and Local Variables View 14
Data ViaW o 15
LOOKUR VIEW . . o 15
Action Points, CLI, and LoggerViews 16
INPUL/OUIPUL VIEW . . . e e e 17
Help. o 18
Starting TotalView and Creating a Debugging Session. 21
Debugging Commandsot 23
DivingonProgram Elements 24

Creating and Managing Sessions

Setting up Debugging Sessions. 28
Loading Programs from the Session Editor 28
Startinga Debugging Session 29
Debuga Program 31
DebugaParallel Program 32
AtaCh tO ProCess . . . oo 35
Debuga CoreorReplay RecordingFile. 39
Load a Recent SESSION 4]
Editing a Previous Session 47
Loading Programs Usingthe CLI e 47
Optionsand Program Arguments 43
Debug OptioNS. . .o 43

Contents

Program Environment 44
Working Directoryo 44
Environment Variablesforthe Program L. 44

Standard Inputand Qutput. 45

Modifying Arguments inan Open Session. 46

Managing SESSIONS o 49
Starting a Sessionfromyour Shell. 53
Starting TotalView ona Scripto 54
Basic Debugging

Program Load and Navigation. 57

Loadthe Programto Debug 57
Initial Displayo 59

Program Navigation. 61

Steppingand Executing 62
SiImple StepPPRING . . oo 62
Setting and Running to a Breakpoint (ActionPoint) 65
Setand Control Breakpoints. 65
Run Your Program and Observethe CallStack 67
Examining Data.o 69

Viewing Variables inthe Local Variables View 69

Viewing Variablesinthe Data View. /1
Watching DataValuesUpdate 72

MoVving On .. 76

Program Navigation

Navigating from withinthe SourcePane......... 78

Highlighting a String and the Find Function............. 79

The Lookup Fileor FunctionView. 81

The Documents View 83
Part 2: Debugging ToolsandTasks................................... 84

Setting and Managing Action Points (Breakpoints)

About Action Points. 86

Breakpoints o 88

Setting Source-level Breakpoints 88
Sliding Breakpointso 90

Breakpointsata Specific Location. 91

Setting Machine-Level ActionPoints 92

Contents

Pending Breakpoints 93
Pending Breakpointsona Function 93
Pending BreakpointsonalineNumber. 94
Conflicting Breakpoints.o 95

Breakpointsat Execution. 95

Modifyinga Breakpoint. 95

Setting Breakpoints When Using the fork()/execve() Functions 97
Debugging Processes That Call the fork() Function. 97
Debugging Processes that Call the execve() Function 98
Example: Multi-process Breakpoint 98

Evalpoints .. o 100

Settingan Evalpoint. 101

CreatingaPending Evalpoint 103

Modifyingan Evalpoint o 105

Creating Conditional Breakpoints 105

Patching Programs. o 106
Branching Around Code. 107
AddingaFunctionCall 107
Correcting Codeo 108
Using Programming Language Constructs. 108

Watchpoints ... 110

CreatingWatchpoints 1M1
Displaying, Deleting, or Disabling Watchpoints 112

Modifying Watchpoints. 113

Watching Memory. . ..o 114

Triggering Watchpoints 15
Using Multiple Watchpoints o 115
Performance Impact of Copying PreviousDataValues 116

Using Watchpoint Expressions 116

Using Watchpoints on Different Architectures. i 17

Barrier Points 120

About Barrier Breakpoint States 120

Settinga Barrier Breakpoint. 121

Creatinga Satisfaction Set. 123

Hittinga Barrier Point. 124

Releasing Processes from BarrierPointso 125

Changing Settings and Disabling a BarrierPoint 125

Using Barrier Points o 125
Barrier Point lllustration 126

Controlling an Action Point'sWidth. 128

About an Action Point’s Width: Group, ProcessorThread. 128

Settingthe Action Point’'sWidth. 128

Action Point Width and Process/Thread State. oo 129

Contents

Managing and Divingon ActionPoints. 133
SOMtING ot 133
DIVING . oo 134
Deleting, Disabling, and Suppressing 134
Savingand Loading Action Points. 137

More on Action Points Usingthe CLI 139

Breakpoints . ..o 140
EValpOINtS. . o 140
Watchpoints. 141
Barrier POINts ... 143
Saving Action Pointstoa FileUsingthe CLI 144
Suppressing and Unsuppressing ActionPoints 145

Examining and Editing Data

Viewing DatainTotalView 146

ADOUt EXPressions. 147
Using CHa o 148

The Call Stack, Local Variables, and Registers Views 150
The Call Stack Viewo 150
The local Variables View 151
The Registers View. . ..o 154

EditorCastaRegister 155

Viewing Call Stack Data. 155

Viewing Datain Fortran 157
Viewing Modulesand TheirData 157
Common BIocks e 159
Fortran 90 User-Defined Types 159
Fortran 90 Deferred Shape Array Types oo 160
Fortran 90 Pointer Typeso 161
Fortran Parameters. 162

The Data Viewo 164

Adding Variablestothe DataView 164
Add to the Data View from the Local VariablesView 165
Move a Variable from the Source Viewtothe DataView. 166
Create a New Expression from withinthe DataView. 167

DivingonVariables 170

Working with Complex Variablesinthe DataView 171
Viewing Elements of Complex Variables 171
Divingon ComplexVariables 172

Editingan Expression 174
Dereferencinga Pointer. 174
ChangingtheValueofData 174
Castingto Another Type oo 175

Vi

Contents

DisplayiNg AITaysS . . .o 178
Viewing Individual Elementsinan Array of Structures 179
The DiveInAllCommand 179
Customizingthe DataView 184
The DataView Drawer. 185
The Array View 186
Adding Arraystothe Array View o 186
The Array View Toolbar 187
Array Statisticsand Visualization 187
Viewing Array Statistics 188
Visualizing Array Data 190
Configuring Arrays. . .. oo 195
SHCING ATAYS © ottt e e 196
Castingto Another Typeinthe Array View.o e 200
CH++ STLType Transformations 201
Supported C++ STLType Transformations 203
Struct TTF “$elide_" Members 204
lterator Type Transformations 205
TTFsand TotalView EXpressions 205
Type Transformations CLICommands 206
Controlling Type Transformations. 206
Querying Type Transformations 207
STLTTF Troubleshooting.o e 207
Usingthe CLIto ExamineData. 209
Changingthe DisplayofData o 209
Displaying Variables 209
The Processes and Threads View
Processesand Threads View Basics, 212
Customizethe Display 214
The Processes and Threads View in Relationto OtherViews 218
Displayinga Thread Name. 219
Thread Namesinthe Ul 219
Thread Properties 221
Thread Optionsondstatus 221
Processand Thread Attributes. 223

Debugging Python

OV IV W . . oo 226
Python Debugging Requirements 227
Python Version o 227

vii

Contents

Limitations and Extensions: 227
Starting a Python Debugging Session 229
Debugging Pythonand C/C++with TotalView 231
Transformingthe Stack 232
Viewing and Comparing Python and C/C++ Variables 234
Leveraging Other Debugging Technologies for Python Debugging 236
Supported Python Extension Technologies for Stack Transformations. 237
Using the Command Line Interface (CLI)
Accesstothe CLI 240
Introductiontothe CLI 242
Aboutthe CLland Tcl 243
Integrationofthe ClLlandthe Ul 243
Invoking CLICommandsot 244
Starting the CLIina TerminalWindow 245
Startup Example. ... 245
Starting Your Program 246
About CLIOUtpUL. . ..o 248
‘MOre ProCeSSING. . . .ot 249
Using Command Arguments. 250
Using Namespaces 251
Aboutthe CLIPrompt 252
Using Built-inand Group Aliases. 253
How Parallelism Affects Behavior 254
Types Of IDs . ..o 255
Controlling Program Execution Using CLI Commands 256
Advancing Program Execution 256
Using ACtion Points o 257
Examplesof Usingthe CLI ... 258
Setting the CLIEXECUTABLE_PATH Variable 258
Initializingan Array Slice 259
Printingan Array Slice o 260
Writingan Array VariabletoaFile 261
Automatically Setting Breakpoints 261

Reverse Connections

About Reverse ConnectionsSo 265

viii

Contents

Reverse Connection Environment Variables 267
TV_REVERSE_CONNECT_DIR 267
TV_CONNECT_OPTIONS e 267

Starting a Reverse Connect Session. 269
Listening for Reverse Connections 270
Reverse Connect Examples 271
CL EXamMPlE . o 271
MPIBatch Script Example 271
Troubleshooting Reverse Connections. 273

Stale Files inthe Reverse ConnectDirectory 273

Directory Permissions 273

USerID ISSUES . . .ot 273

Reverse Connect Directory EnvironmentVariable. 273

Preferences
About Preferences. 275
ActionPoints. 276
Display Settings 277
TOOIBar .. 279
Search Path ... 280
Parallel Configuration 283
Remote Connection Settings. 285
Part 3: Parallel Debugging.................. 286
About Parallel Debugging in TotalView
Parallel Program ExecutionModels 288
Viewing Processand Thread State 289
Controlling Program Execution. 290
TotalView Groupso 291
Synchronizing Execution with Barrier Points 292
Configuring TotalView for Parallel Debugging 293
Setting Up Parallel Sessions
Parallel Program Setupinthe Ul 296
Non-MPIProgram Setup 297
The SLURM Resource Manager. e 297
Cray XT/XE/XK/XC Applications 298

Contents

Starting TotalView on Cray 298
Support for Cray Abnormal Termination Processing (ATP) 300
Special Requirements for Using ReplayEngine. o L. 300
Global Arrays Applications (ClassicUlOnly) 300
Shared Memory (SHMEM) Code 302
UPC Programs 303
Invoking TotalView 303
Viewing Shared Objects (ClassicUlOnly) i, 303
Displaying Pointer to Shared Variables (ClassicUlOnly) 305
CoArray Fortran (CAF) Programs. 307
Invoking TotalView 307
Viewing CAF Programs (Classic Ul Only). i 307
Using CLIwith CAF . o 308
MPIProgram Setup 310
MPICH Applications 310
Starting TotalViewonan MPICH Job 311
Attachingtoan MPICH Job 312
Using MPICH P4 procgroup Files. 313
MPICH2 Applicationso 314
Downloading and ConfiguringMPICHZ 314
Starting TotalView Debuggingonan MPICH2 Hydrajob. 315
Starting TotalView Debuggingonan MPICH2MPD Job. 315
Cray MPLAPPICatioNS . . . oo 316
IBM MPI Parallel Environment (PE) Applications. 316
Preparing to Debug a PE-Application 317
Starting TotalViewonaPEProgram 318
Setting Breakpoints oo 318
Starting Parallel Tasks 318
AttachingtoaPEJob 319
Open MPIApplications. 320
QSW RMS Applications. oo 320
Starting TotalViewonanRMS Jobo 320
AttachingtoanRMS Job 321
SGIMPIApplications. 321
Starting TotalViewonan SGIMPlJob 322
Attachingtoan SGIMPIJob 322
Using ReplayEngine with SGIMPL. 323
SUNMPI Applications. 323
AttachingtoaSunMPlJob .. .o 324
Troubleshooting MPIStartup oo 324
Using ReplayEngine with Infiniband MPIs 325
MPI Startup Customizations 327
Customizing Your Parallel Configuration 327

Example Parallel Configuration Definitions 328

Contents

Debugging OpenMP Applications

OpenMPandthe OMPD API. ... 334
OMPD ReqUIremMeENts.ot e e 334
OpenMP Setup and Configuration. 335
Enabling OpenMP Debugging.o 335
Enabling Stack Filtering o 335
Running Your Program 337
The Call Stack. 337
The OpenMP View 339
Hybrid Programming: Combining OpenMP withMPI......................... 344

Controlling fork, vfork, and execve Handling

The exec_handling and fork_handling Command Options and State Variables .. 347

ExecHandling 348
ForkHandlingo 348
EXamMplE . 348
Group, Process, and Thread Control
OVEIVIEW . . oo 350
Groupsin TotalView 352
WhatIsa Group? . ..o 352
Types of Groups Created by TotalView 353
How TotalView Creates Groups oot 353
Groups Created When a Program Calls fork()/exec() 354
Groups Created for MPI Programs 354
Groups Created for CUDA Programso 355
Executinga Single Share Groupot 356
Single Stepping While Focused ona Share Groupo 358
Arenasand P/T Sets 360
Arena Specifiersina P/T Set. 360
P/T Setand Arena ldentifier Syntax 360
Process and Thread Width SpecifiersinaP/TSet 361
Group Specifiersin P/T Sets 363
Identifyinga Group Usingaletter 363
Identifyinga Group UsingaNumber 364
IdentifyingaGroup UsingaName 364
Arena Specifier Examples 364
Naming Incomplete Arenas 364
Combining Arenaand Group Specifiers 365
Naming Lists with InconsistentWidths 367
Merging FocUSes 368
USING P/T Set Operators e e e e e e e e 368

Xi

Contents

Setting and Creating Custom Groups oot 370
Using the g Specifier: AnExtended Example 371
Changing the P/T Using the dfocus Command. 373
Stepping and Program Execution 375
Individual Execution Commands 376
Executingat Group Width 377
ExecutingatProcess Width. 378
Executingat Thread Width 378
Synchronizing Processesand Threadst 379
Holding and Releasing Processesand Threads 379
UsingRunToandduntil. 380
ClU Stepping Examples o 381
Execution Commands Using the “all” Arena Specifier 382

Scalability in HPC Computing Environments

Configuring TotalView for Scalability 385
Disable User-Thread Debugging 385
Tune Dynamic Library Load Processing 385

Filteringdlopen Events 385
Handlingdlopen EventsinParallel 386

MRN et .. 387
TotalView Infrastructure Models 387
Using MRNetwith TotalView e 389

GeneralUse . ..o 389

Using MRNet on Cray COmpuUters e 393

Part4: Accessing TotalViewRemotely 397
TotalView Remote Connections

About Remote Connections 399
Connecting Remotely From the TotalView Remote Client 399
Connecting Remotely From a TotalView Debugger Installation 401

ConfiguringaRemote Connection. 402

DebuggingonaRemote Connection 405

TotalView Remote Display

Remote Display Supported Platforms 408

Remote Display Components 409

Installingthe Client 410
Installing on LinUX 410
Installing on Microsoft Windows. 410
Installing onmacOS. 410

Xii

Contents

Client Session BasiCs 412
WorkingontheRemote Host 415
Advanced OptioNs 416
Naming Intermediate Hosts 418
Submitting a Job to a Batch Queuing System 419
Setting Up Your Systems and Security 421
Session Profile Management 422
Batch Scripts o 424
tv_PBS.csh Script ... 424
tv_Loadleveler.csh Script 425
Part 5: GPUDebugging.................. ... 426
Debugging CUDA Programs
NVIDIA CUDA DebuggingOverview 429
Installing the CUDA SDKTool Chain 429
Directive-Based Accelerator Programming languages. 430
CUDA Debugging Model and Unified Display. 431
The TotalView CUDA DebuggingModel. 431
Pending and Sliding Breakpoints 433
Unified Source View and BreakpointDisplayo 433
CUDA Debugging Tutorial 435
CompilingforDebugging 436
Compiling forFermi. ... o 436
CompilingforFermiandTesla 436
Compiling forKepler. 436
CompilingforPascal 436
CompilingforVolta 437
Starting a TotalView CUDA SESSIONo 437
Controlling EXecUtiono 438
Viewing GPU Threads o 438
Single-Stepping GPU Code 441
Haltinga Running Application 442
Displaying CUDA Program Elements 442
GPU Assembler Display.o 442
GPU Variableand Data Display.o 442
Managed Memory Variables. 443
About Managed Memory 444
How TotalView Displays Managed Variables 444
CUDABUIlt-InRuntime Variables. 445
TyRe Casting . .o 445

Xiii

Contents

PTX Registers 448
The GPU Status View . . . oot 449
The GPU Status View Focus Options 450
Configuringthe GPU Status View 452
Enabling CUDA Memory CheckerFeature 459
GPU Core DUmMp SUPPROIt . . .o 401
GPUEIOr Reportingo 461
CUDA Problemsand Limitations 464
Hangs or Initialization Failures 465
CUDA and ReplayEngine 466
Sample CUDA Program 467
Debugging AMD ROCm Programs
AMD ROCm Debugging Overview 472
Installingthe AMD Tool Chain e 472
AMD ROCm Debugging Model and Unified Display. 473
The TotalView AMD ROCm DebuggingModel. 473
Disabling Deferred GPU Image Loading 475
Pending and Sliding Breakpoints 475
Unified Source View and Breakpoint Display o 476
AMD ROCm Debugging Tutorial ... 478
Compiling for Debugging.o 478
Startinga TotalView ROCm Session 478
Controlling Executiono 479
Viewing GPU Threads o 480
Single-Stepping GPU Code o 482
Haltinga Running Application 483
Displaying ROCm Program Elements. 483
GPU Variableand DataDisplayo 483
ROCm Built-In Runtime Variables 486
GPUEIOr RepOMING . .ot 487
AMD ROCm Problems and Limitations. o .. 488
Hangs or Initialization Failures 489
AMD GPU Debuggingand ReplayEngine 490
Sample HIP Program. 491
Part 6: Memory Debugging 495

About TotalView Memory Debugging
Debugging MemoryinTotalView 497

Xiv

Contents

About Program Memory. 498
How TotalView Intercepts Memory Data 502
YourProgram'sData 504
The Data Section 504
The Stack ..o 504
The Heap oo 509
Finding Heap Allocation Problems. o 509
Finding Heap Deallocation Problems. 509
realloc() Problems 510
Memory Leaks 510
Running a Memory Debugging Session
Starting Memory Debuggingin TotalView 513
Memory Leak Detection 515
Usingthe Leak Report o 516
Updatingthe Leak Report o o 518
MPI Programs and Leak Reports o 518
Memory Heap Reports 521
Usingthe Heap Report o 522
Updatingthe Heap Report o 523
Corrupt Guard Block Reports 524
Memory EventReports 527
The Memory EventReport View 528
Memory Block Notification 531
Memory Debugging Options 533
Option: Painting Memory e 534
Enablingand Configuring Painting. 535
Example: Viewing Painted Memory 536
Option: HoardingMemory Blocks 536
Enabling and Configuring Hoarded Memory 538
Example: Hoarding Memory. 539
Option: Guarding Allocated Memory 539
Enabling and Configuring GuardBlocks 540
Example: Viewing a Guard Corruption EventReport 540
Dangling Pointer Problems ... 544
Dangling Pointers in the Local Variablesand DataViews. 544
Memory Scripting
display_specifiers Command-Line Option. 546
event_action Command-Line Option. 547
Other Command Line Options 548

XV

Contents

memscript Example. 549

Preparing Programs for Memory Debugging

Compiling Programs for Memory Debugging 551
Linking Your Applicationwiththe HIA 552
Usingenvtolnsertthe HIA. 555
Installing tvheap_mr.aon AIX 557
LIBPATHand Linkingo 557
Using TotalView in Selected Environments. 559
MPICH 559
B PE 559
Mac OS 560
Background 560
Callstosystem()onMac OS e 560
Setting the Environment Variable TV_MACOS_SYSTEM 560

LIUX .« e 561
dlopenand RTLD_DEEPBIND o 561

Part 7: Appendices 564
Appendix A More on Expressions................................... 565
Calling Functions: ProblemsandIssues. L. 566
Using Built-in Variablesand Statements, 567
Using TotalView Variables. 567
Using Built-In Statements. 568
Using Programming Language Elements, 570
Using Cand CHt o o 570
Using Fortrano 571
Fortran Statements. 571
Fortran INtrinsiCs. . .. oo 572
Appendix B Compiling for Debugging.............................. 574
Compiling with Debugging Symbols 575
Maintaining Debug Information Separate from an Executable 577
Controlling Separate Debug Files. 578
Searching forthe Debug Files. 579
Appendix C Platform-Specific Topics............................... 580
SWaP SPACE. . . 581

XVi

Contents

Shared Libraries 581
Changing Linkage Table Entries and LD_BIND_NOW 582
Linkingwiththe dbfork Library 583

LinuxorMac OS X . .. 583
Appendix D RESOUIrCeS.......... 584

Classic TotalView Documentation i, 585

CONVENtIONS o 586

Contacting Us . ..o 587

Appendix E Open Source Software Notice........................ 588

Compiling with Debugging Symbols 589

Maintaining Debug Information Separate from an Executable 591
Controlling Separate Debug Files. 592
Searching forthe DebugFiles. 593

Appendix F TotalView Glossary..................................... 594
IndexX. 601

XVil

ParTI An Introduction to

TotalView

m Getting Started on page 2

An introduction to the primary features and interface of TotalView.

m Creating and Managing Sessions on page 26
How to create a new session or load a previous session.
m Basic Debugging on page 56
A tutorial based on a shipped example that illustrates basic debugging tasks.

m Program Navigation on page 77

Finding, searching, and navigation

Getting Started

m Introducing TotalView on page 3
m AnInitial Look at the Interface on page 4

m Starting TotalView and Creating a Debugging Session on page 21

Getting Started

Introducing TotalView

TotalView features the next generation user interface of its debugger, supported on multiple platforms (See
TotalView Supported Platforms for specifics.)

TotalView's new user interface continues to incorporate new features and functionality from the classic version of
the Ul in each release. See the release notes for detail. All TotalView functionality is fully available through the
Command Line Interface (CLI) even if a feature has not yet been added to the new Ul.

NOTE: For overviews, tutorials, and whitepapers on using the various features of TotalView, see the
TotalView website.

TotalView incorporates ReplayEngine technology. With this feature engaged, you can go backwards in the debug-
ging session to find, for example, where an obviously incorrect variable value went wrong.

TotalView supports C++11 features for the GNU compiler, including support for lambdas, transformations for
smart pointers, auto types, R-Value references, range-based loops, strongly-typed enums, initializer lists, user
defined literals, and transformations for many of the containers such as array, forward_list, tuple and others.

Each new release will include additional functionality based on a priority list that you can help influence. Please
send email to tv-beta@perforce.com with your feedback and feature priorities.
Ul Preferences

For new TotalView users, this Ul is the default. To launch the classic Ul if necessary:

m To change the default:

Change the default Display preference under File > Preferences > Display, or

m To launch the classic Ul for a single instance of TotalView:

Add the - cl assi cUl switch after the t ot al vi ewcommand, for example:
total vi ew -cl assi cUl

For information on contacting Perforce, conventions used in the documentation, and documentation for the
Classic Ul, see Appendix D, Resources, on page 584.

Introducing TotalView 3

https://totalview.io/resources
mailto:tv-beta@perforce.com

Getting Started

An Initial Look at the Interface

Starting TotalView without arguments launches the main screen:

Figure 1, The Initial Interface

TotalView 2020X vl (Al ix

File Edt Group Process Thread ActionPoints Debug Window Help

i ReplayEngine

‘rocesses &T.. % |_ookup FileorF.. % |Joc:, ® J StartPage * | Call Stack * |

® @ @ | B E Y

What do you want to do today?

-
e 1 e s oT—
Debug a Program Debug a Parallel
a) Program e .
Attach To Process Load Core or

Replav Recording File

Action Points % |Replay Bookmarks * | IDaxa View * | CommandLine * | Input/Output * I-_
D Type Stop Laoc|}| Mame Type Thread ID I Local Variahles *

[Add Mew Expression] Mame Type

= |

i

Listening for Reverse Connections

Customizing the Interface
Preferences

The Settings toolbar [, when selected, displays the Preferences dialog. You can also select File | Preferences.
For detail, see Preferences on page 274.

An Initial Look at the Interface Customizing the Interface 4

Getting Started

Resizing

To resize windows, hover your cursor over any dark dividing line between sections to display a two-way arrow that
moves that boundary either up and down, or left and right.

Data View *
Ijn1 | MName

Drawers

Within certain views, you can display or hide a drawer, indicated by a dark gray banner that turns lighter gray at
cursor hover. Double-click to close the drawer so only the banner is displayed; double-click again to re-open it.
Click and drag the banner to move the banner up or down to resize the areas within the view.

Drawer Open Drawer Closed
@ m® @ ®

Do | == D@0 | ==

Select process or thread attributes to group by:

Control Group
+'| Share Group

Hostname

o

Undocking and Docking

All views can be undocked into a separate, floating window by clicking on the top banner, dragging it a short dis-
tance, and releasing the mouse button. To dock the view elsewhere, click again and drag it to another location,
wait for a blank area to display, then release the mouse button.

An Initial Look at the Interface Customizing the Interface

Getting Started

Figure 2, Docking a View in a New Location

Command Line

Linux x86_64 TotalView 8X.15.7-524

| |
— ==
To return a floating window to its default position, double-click on its banner or click the reattach icon @ in the

top-right corner next to the close (x) icon.

If you close the view, you can restore it using the Window | Views menu, or the context menu available by right-
clicking in the toolbar area.

A Tour of the Interface

Here we introduce the main views that make up the interface. If a view is not visible, restore it through the Prefer-
ences dialog, the Window | Views menu, or the context menu available by right-clicking in the toolbar area.

Central Area

When you first start up TotalView, the central area contains either just the Start Page, or the Start Page and a
Source view if you started TotalView with an executable name argument. This area is reserved for displaying the
Start Page, Source views and Assembler views of code, the Help view, and other debug status and data specific
views associated with your debugging session.

Central area views cannot be re-docked into the side or bottom secondary view areas, but they can be re-docked
within the central area to create their own optimal debugging layout, such as a side-by-side layout.

An Initial Look at the Interface A Tour of the Interface 6

Getting Started

Figure 3, Source View and Start Page in the central area

Start Page * | tx_fork_loop.oxx ® |
#endif
1093 {whoops)
{
1095 printf(t t . whoops, errno);
1096 exit(1l);
I
1098 thread ptids[total_threads++] = new_tid;
1099 printf f . (int){getpid(}). (Jnew_tid);
1101 forker (fork_count);
1102 }
main (argec, **argv)
1107 {
1108 fork_count = 8;
1109 args_ok = 1;
1110 arg _count = 1;
*arg;
pthread mutexattr t mattr;
1114 signal (SIGFPE, sig_fpe handler);
1115 signal (SIGHUP, ((*)(int))sig_hup_handler)
#ifndef linux
signal (SIGUSR1, | (*)10 J)sig_usrl_handler)
signal (SIGUSRZ, | (*)10 J)sig_usr2_handler)
#endif
#if defined (_ Lynx)
i |

The Source View

Viewing the Program Counter

= In normal debugging mode, the diamond cursor and yellow highlighting identify the Program
Counter (PQ), i.e. the code location of the debugger. Clicking another line result in a blue highlight,
indicating the target line if you use the Run To command. (There is no guarantee that the thread of
focus will arrive at that line, of course, if it hits a breakpoint first, or never executes the line.)
674 bar = *foo;
675 *foo = bar + 1;
I
(i:)
{
timeval timeout;
wait_a while (&timeout);
682 (verbose)
683 printf ("7 k i 0 }ipthread self(})):
m In Replay mode, orange highlighting replaces yellow to identify where ReplayEngine is within the

code. The red triangle shows the “Live” location, i.e., the last line executed. Once the PC hits the live
location, it shifts from replay mode back to record mode.

576 timeout-=ty sec = sleep time + get random time (vary sleep);
577 timeout-»tv_usec = sleep time usec;

] YIELD() :

579 errng = O;

580 result = select (0, 0, 0, 0, timeout);

An Initial Look at the Interface A Tour of the Interface

Getting Started

Source view actions

m Create breakpoints by clicking on bold line numbers in the gutter.

(i:)
{
timeval timeout;
wait_a while (&timeout);
682 (verbose)
683 printf (0 Jipthread self{}));

m See variable information by hovering over a variable name.

timeval timeout;
wait_a while i!g}imeout}:

682 (verbose)
683 printf timeout: (struct timeval) ¢ }(pthread self())}):
684 (use_mut)

{

m See function information by hovering over function names.

timeval timeout;
Wit a while (&timeout):

683 ile: Ox55 pushl %rbp wait_a_while(timeval*) ZAESSNNN

m Search for text strings with the Find function.

wait_a while (&timeout);
pthread rwlock unlock (&rwlock):

Find: | wait_a_while - || p Aa " 8 matches

If you highlight the function name and select “Navigate to File or Function” from the context menu, TotalView
finds and displays the source for the function, if the source is available. If there is more than one source loca-
tion, displays the function name as a search in the Lookup view.

Unified Source View Display

The Source view provides a unified view of source-line breakpoints across all image files containing the source file,
useful for programs in which the same source file or header file is compiled into multiple image files (e.g., execut-
able and shared library files) used by the process.

Line numbers appear bold where TotalView has identified executable code, i.e., source code lines where the com-
piler has generated one or more line number symbols in the debug information.

For example, consider debugging a program that launches CUDA code running on a Graphics Processing Unit
(GPU). When the host program is first loaded into TotalView, the CUDA threads have not yet launched, so the
debugger has no symbol table information yet. Figure 4 shows the Source view before and after a CUDA kernel
launch. Before the CUDA threads exist (the left pane), only line 134 has been identified as having executable
code.

An Initial Look at the Interface A Tour of the Interface 8

Getting Started

Figure 4, Unified Source view display

Before runtime At runtime

— v » 126 _syncthreads();
B . o)

S e - 130 Setélement(csub, fow; cal, 'r-:\-falue);
_3;-;n-§threéds();) o B _9'-.fncthr.’eaé|9ﬁ 1 .
__=syncthreads(); 133 __syncthreads();

134 —_— o P» 134 1}
Matrix tatic Matrix
cons_Matrix (int width_,; i height_) cons_Matrix (int width_, int height)

Once the program is running and the CUDA threads have started (the right pane), lines 126, 130, 132, 133, and
134 are bold, so now TotalView has been able to identify line number symbols at those locations.

RELATED TOPICS

Using the Source view to set action points Breakpoints on page 88
(breakpoints)

Source views and their relationship to data display The Processes and Threads View in Relation to Other
Views on page 218

The Assembler View

You can view not only your source code but the assembly code generated by the compiler. The assembly version
of your code reveals the machine instructions behind an operation so you can clearly see what your code is
doing.

To view assembly code, choose either the menu item Window > Show Assembler (Ctrl+A), or right-click any-
where in the Source view and select Show Assembler.

Mdow Help

w Start Page |
Close View Cirl+W |

_Ei-huw Assembler Ctri+A

-ay[ASIZE*

ASIZE*1f . ; .
W[ASIZE % MNavigate IDEIE or Function
ASIZE; i++) Add to Data View

i] - Add to New Data View

1 = 1; |
= J_ﬂ-c_:BlEtTlnl;+1,‘._|] Show Assembler N
J.a= §§iTi:lleArray[1 i Inclurde Raw Bytes -
ez, =itk Inchude Cf

< 4 j++
1 ST — Sad.

The Source View divides into two parts.

An Initial Look at the Interface A Tour of the Interface 9

Getting

Started

Figure 5, Default Assembler View

Start Page = | bi_arrays.cxx |

65

68
69
70

72
78
76
77
8@

82
a%

H
% for {1 = 8; 1 < ASIZE; 1++)
{J = 8; j < ASIZE; j++)

{

twoDarray[i][j] = simplearray[i];

2

for (1 = 8; 1 < ASIZE; i++) .
I {J:-;;JqASIZE+.=-?: J+)
(k = 87 k < ASIZE + 20 k++)

threeparray[1][J1[k] =

i-= ‘; 1 ; ASIZE; 1++)
j < ASIZE. j+t)
charhrray[l]IJ] = 'a'"¥ 1°-3;

("i = 8; 1 < ASIZE; i++)

i
chamrrayFkSIZEf'][1;] =
rhararrauvlacTrsE S 2509 Lo

i*1sp+j*1e+

4

K;

— ——
Assembler X |

51

63
65

63
63

DxUedeIZIIV:
Gx@848121b:
pxee401221
2x0e4812238
Ox0e481223:
Ox0e481231:
Bx0e481233;
Ox0e481236:
Ox0e481233
Gx08481237:
Ox0e401242
0x0e481245:
0x084812438:
Ox@848124b:
gx0e48124e;
0x06e481252
Bx08481255:
Ox08481259
Bx0848125cC
Ox08481263:
Ox08481267 :
Ox0848126b:
Bx0848126d:

AwARAST 3T -

TmpL F10, - %FOp)
jle main+axzc

movl 50, -4(%rop)

jmp main+gx164

mowvl %@, -8(%rbp)

jmp mailn+ex15a

movd -4(%rbp), #eax

CWE

mow -??z(gr?p,%rax,4],%ecx
maw -8(%rbp), %eax

mow s xd %rax,%rsi

mow -4(%Tbp), %eax

mow s xd Wrax, wrax

mow wrde, ®rax

shll 2, Hrax

addl r, rax

shll $2, Hrax

addl Wrsi,srax

mg;l §ecx, 2352E%rhp,ﬁrax,4}
: | 1

cmpl 15,-3(%rgpj

jle main+ax128

addl $1, 4(%rbE

cmnl 10 Afsr

The left pane contains the program’s source code and the right, the assembler version. The Assembler view pro-
vides three viewing options:

m The default view, to view only the absolute address location and machine instructions, as shown

n Figure 5.

m The raw bytes, to add a column with the actual values of the instruction parcels.

m The offset, to add a column with the hexadecimal offset from the start of the function.

The default Assembler view

The default Assembler view displays the absolute address and the machine instructions. In Figure 5, note line 62
where a breakpoint has been set; one line of source code equates to multiple machine instructions in the Assem-
bler view. If a function contains a nested function, the contents of the nested function are also included; in this

example, lines 63 and 65 represent a nested function within line 62.

Including raw bytes or offsets

To view bytes or offsets, use the context menu in the Assembler view by right-clicking in the view and selecting
either Include Raw Bytes or Include Offsets. You can also choose to view both raw bytes and offsets.

E FnsmnAna AT

An Initial Look at the Interface

0x0848121b: Jle
Pxe8481221: movl

maln+exzc
E0. -4(%rbob

0x08481271: qmpl $19,-4(%rﬂp]

), %Mecx

0x08481228: Navigate to File or Function
0x0848122a: :
63 Ox08481231: Add (o Data View
65 0x08481233:
OX0E481236+ Add to New Data View
Bx08481235: g
65 0x0848123f:
0X08481242% McmueRmnByms
0x08481249
DXDE401240 Ty NCiUdE Ofisets
0x0848124b: N 1
0x0848124¢e:
gxge491252: addl %rdx Hrax
0x08481255: shll %2, % ax
Ox0e491259: addl %r51 Hrax
0xX0848125c: mov %ecx, 2352g%rbp,%rax,4}
63 0x08481263: addl %1, -8(%rb E
63 0x08481267: cmpl $19,-B(%r 58}
oxpe48126b: jle main+exi2e
0x0848126d: addl $1, -4(%rbp)

A Tour of the Interface

Getting Started

m Including Raw Bytes

Include the raw bytes to display the actual value of the instruction parcels. Some architectures have variable
length instructions, so there is one byte per parcel.

(PR L bl ekt i Ju I!Ir.IJ.II'rE,KJ.CIH

B BxEDEe48068C: c?y 45 T8 90 00 09 0O mowvl 0, —E[%rhg
BxE8408683: 83 vd f8 13 cmpl 19 -B(%r
Bx00408607: 7T 36 jo maln+ax163

65 BOxEE4005099: gsb 45 fc mow -4(%rbp),%eax
Bx2e40060C: 48 08 cwid
OxEDe40860e: gb 94 85 10 fd Tf TF mow -752(%rbp, ¥rax

65 BxE8480645: g8b 45 T8 mow -8(%rbp), ¥eax
BxEe4086a5: 48 &3 fo movsxd Wrax,¥rsi
Bx084886ab: g8b 45 fc mow -4 (mrbp), ¥eax
BxE84006a8: 48 63 c8 movsxd %rax, ¥rox

Pt T actoity e e e Pl

= Including Offsets

Include offsets in the view to see the offset from the start of a function as a hexadecimal value. The function
symbolic name displays at the top of the Assembler view, like so:

0x00400600 <mai n>

Bx0E48056C

33 OxDE48056C #rbp
OxDe40056d %rsp, %rbop
BXEE480570 5oxba67a, %rsp
BxEE480577

%edi, Bxfff4b99c£%rbp}
s%rsi, axfff4booa(%rbp
$ax4BBDaB -24(%rbp)
$a,-4(%rbg)

pl

Bx0e40057d
36 Ox0e400584
51 Ox0e48858C

51 000400593 519, -4(%r
Bx084860597 mains+@x113

53 BxDe40050d -4{%rbp), ®eax
Bx0e486580
BX08486582 -4{%rbp), sedx

When including offsets, each line contains an extra line showing its offset from mai n.

Adding the offset helps identify the target of an instruction. For example, looking at the selected “jump”
instruction j | e at line 58 makes it easier to find the offset it references at line 59.

UXHEIPLIOL <+UXCE>D MOVSS HXMMY, | HCAX)

53 Ox@84811d5 <+3xca> movl 8, -B(%rbp)

58 ©x08481ldc <id jmp maln+Gx108
gx0g481lae| <+Bxgl>] mov -8{%rop), %2ax
gxge4ellel TROT) imull -41%rbp} HEAN
BxRE4811e5 <+exﬁa mo HEAX, BECK

(] Ex08481le? <+@udaz:
OxB848l1lea <+8@xdd>:
Ox084811ed <+Bxed>:
OxB84811T0 <+8xe3>:
Ex084811T3 <+Bxef>:
0xB84811T6 <+8xed>:
Ox084811T9 <+B@xec>:
Ox884811fc <+@xef>: addl
Ex884811FF <+8xT2>: addl
OxB8481282 <+8xT5>: mowv

58 OxB8481289 <+@xfc=: addl
58 0Ox8848128d <+8x108>: cmpl
Ox08481211 <+@x184>; Jle
51 ©Ox08401213 <+8x186>: addl
51 Ox08481217 <+8x1@a>: cmpl

mow -B{%rbpj,%eax
mowsxd %rax,%rsi
-4(%rbp), %eax
wrax, wrdx
srdx, %rax
Wrax, wrax
srdx, rax
%rax Hrax
%r51 Hrax
necx,-504[%rhp,%rax 4}
;] P

$19 :4[%r|p}

Setting breakpoints in the Assembler view

You can set breakpoints in either the Source view or the Assembler view.

RELATED TOPICS

Setting breakpoints in the Assembler view Setting Machine-Level Action Points

The Source View The Source View

An Initial Look at the Interface A Tour of the Interface 11

Getting Started

Toolbars

The Ul has the following toolbars:

Figure 6, TotalView Toolbars

i Graup (Contral) - ik * 4 |7 i ReplayEngine

NOTE: The ReplayEngine toolbar appears only on the supported platform Linux x86-64.

In the Settings (middle item), you can control which toolbars are displayed, and request that the toolbar items
include descriptive text:

i Group (Control) b Go [Halkt Kill '[P Restart (] Next A] Step [T Out »= RunTo m

i ' Replay Engine Record 4 GoBack [Prev [* Unstep T Caller =4 BackTo P Live & Save

Another set of toolbars to support CUDA debugging is available when a CUDA program is being run. While you
can display these at any time, they are responsive only when TotalView is debugging a CUDA program. See CUDA
Debugging Tutorial.

RELATED TOPICS

About the debugging commands Debugging Commands on page 23
About the ReplayEngine commands Replaying Your Program in the ReplayEngine User Guide
Controlling the scope of debugging commands Stepping and Program Execution on page 375

Processes and Threads View

Once a program is running, the Processes and Threads view displays information about all of the processes and
threads running in your program. The attributes list at the bottom lets you choose which information to display,
and in what order. By manipulating these attributes you can create various views into your program.

One line is bold, indicating the process and thread that currently has the focus. You can double-click on a differ-
ent line to change the focus to that process and thread. The thread of focus determines the data displayed in the
Call Stack and Data View.

An Initial Look at the Interface A Tour of the Interface 12

Getting Started

Figure 7, Processes and Threads View

Processes & Threads|

@@ 06 | =EE

Description #P #T ¥ | Members
¥ tx fork_loop... 4 4 pl, p5-7
* Breakpoint 4 4 pl, p5-7
F_clone 2 4 pl.1, p6.2, pl.3, p6.3
L1l 1 1 pl.1l
T3 = 7k pl3
62 1 1 p&.2
B3 - 7 K pb.3
¥ snore 4 g p5-7.1, pl.2, p5.2-3, p7.2-3
s o A 4 pl.2

Select process or thread attributes to group by:

Control Group
+| Share Group
Hostname
¥| Process State
Thread State

+| Function

.+ N o> 0 + |

RELATED TOPICS

Detailed information on this view The Processes and Threads View on page 211

The thread/process of focus and its effect on The Processes and Threads View in Relation to Other Views
the display of data on page 218

An Initial Look at the Interface A Tour of the Interface 13

Getting Started

Call Stack View and Local Variables View

The display in the Call Stack view depends on which thread has the focus. That thread is highlighted in bold in the
Processes and Threads view. You can double-click on a different line in the Processes and Threads view to change
the focus to another thread.

The Call Stack view shows the stack trace for the thread in focus, allowing you to trace back through the execu-
tion of the thread. If the left column shows a language, source code is available and clicking on that stack entry
displays the source code in a Source view at the location of the named function. if no language is shown, clicking
on the stack entry still displays a Source view, but it simply says “No Source Available”.

The Local Variables view displays variables associated with the selected frame.

Figure 8, Call Stack View with Local Variables View

Call Stack * |

share

forker

fark_wrapper

6668

main

- z

Local Variables ¥ |

Mame Type Value

¥ Arguments
> arg void * 0x00000000
¥ Block at Line 681

» timeout struct timewval (struct timewval)

* Block at Line 639

RELATED TOPICS

Detailed information on this view The Call Stack, Local Variables, and Registers Views on
page 150

An Initial Look at the Interface A Tour of the Interface 14

Getting Started

Data View

The Data View allows you to keep track of specific variables as you move around your program, and to manipulate
the data in those variables in a number of ways. You add variables to the Data View by selecting them in the Local
Variables view and either dragging them into the Data View, or right-clicking and selecting Add to Data View from
the context menu.

Once data is in the Data View, you can do a number of things:
m Dereference pointers to access the data they point to

m Recast data to see different views of it, such as recasting pointers to the first value in an array into
the actual array so you can see the contained values

m Changing data values to see the effect on the program, which you can also do in the Local Variables

View.
Figure 9, The Data View
@ ®
—
Data View|
Name Type Value Address
mattr pthread mutexattr_t (pthread_mut... Ox7fffB456dff0
_size $string[4] 0x7fffB456dff0
_ align int 0x00000000 ... Ox7ffB456dFT0

[Add New Expression]

RELATED TOPICS

Examining, manipulating, and editing data The Data View on page 164

Lookup View

If your program is large and complex, finding functions or files can be challenging. The Lookup view allows you to
search using any substring. Suppose you suspect a problem with the expr essi on function. In Figure 10, the
string “ex” returns a number of file and function names, including the expr essi on function. Clicking on the func-
tion name displays it in a Source view, with the desired function centered in the view.

An Initial Look at the Interface A Tour of the Interface 15

Getting Started

Figure 10, Lookup View

T T FEEETET———
Start Page #{({exprc % | readexpre ® | evalexpre »-‘) Call Stack % | Lookup File or Function
File or Function Name:
node_t *term ()
Q ex -
181 node_t *node = factor ();
182 while (nextchar == '** || nextchar == '/') { Matching Items: Found 7 matching results
1e3 node_class_t node_class = (node_class_t) readchar ();
104 node = new_node (node_class, node, factor ()); —
1088 return {node); readexpr
107 3}
] |expression)
readexpr.c
= evalexpr.c
node_t *expression ()
i emor
114 node_t *node = term ();
115 while (nextchar == "+' || nextchar == '-') { evaluate
116 node_class_t node_class = (node_class_t) readchar ();
117 node = new_node (node_class, node, term ());
119 return (node);
128
node_t *readexpr ()
127 node_t *node = @;
128 readchar ();
129 (nextchar 1= EOF) {
130 while (nextchar == '\n')
131 readchar ();
133 node = expression (); e
133 (nextchar != '"\n' &8 nextchar != ',' g8 nextchar i= EOF) it

Action Points, CLI, and Logger Views
The lower display area features a number of views.

Action Points View. This view lists all of the action points — breakpoints, evalpoints, and barrierpoints — in your
debugging session. You can add, delete, enable, and disable actions points in this view.

Command Line View. Although not yet fully supported in the Ul, the full power of the Classic TotalView debug-
ging engine is available through the Command Line Interface (CLI). You can enter those commands in this view.

Logger. This view makes it easy to see the log messages that TotalView issues.

Note that the Command Line and Logger views allow text selection, cutting, and pasting of their contents.

An Initial Look at the Interface A Tour of the Interface 16

Getting Started

Figure 11, Action Point, Command Line, and Logger Views

ey
Action Points |

@ ®

——
Command Ling

ie] Type Stopv File Line
hd 15 Process | tx_fork_loop.cxx 6B1
o 2 Process | tx_fork_loop.cxx 878

(=]
5

hit breakpoint 2 at line 878 in "snore or leave(void*

at line 878 in "snore or leave(void*
at line 878 in "snore_or_ leave(void*

()

B ®

Thread 3.2
Thread 2.3 has appeared
Thread 2.2 has appeared
Thread 2.2 hit breakpoint
Thread 4.2 hit breakpoint
Thread
Thread
Thread | e

Logger|

my_ptid = 140031593637696, pid=4995

4995; Created 140031585322752.

my_ptid = 140031593637696, pid=4995

4995: Created 140031576930048.

Pid 4995: Sleeping

Thread 140031593637696 [0x7f5ba5656740], pid 4995: entering Snore()
MNew thread starting ... arg=1, pid=4995, posix tid=140031585322752
Thread 140031585322752 [0x7f5bad4e68700], pid 4995: entering Snore()

RELATED TOPICS

Detailed information about the Action Points view Setting and Managing Action Points (Breakpoints) on page

85

More information about the Command Line view Access to the CLI on page 240

Input/Output View

The Input/Output view accepts user input and displays program output. This view is closed by default, but is
available if your program requires user input or you want to enter or view program output in the Ul, rather than
in the terminal. You can also switch between the Ul and the terminal; all input and output is reflected both in the

Ul and the terminal.

An Initial Look at the Interface

A Tour of the Interface 17

Getting Started

To open it, select Window > Views > Input/Output.

-. Help
v Start Page
Close View Ctri+W
News » v Call Stack
'aqe—!mq v Command Line
v Data View
\ v Lookup File or Function
v InputiQutput
What do you war , iocai variasies
i "~ Logger
- v Documents
[ree] v OpenMP
v Replay Bookmarks
Debig a Progy v Processes & Threads)
v Action Points
Reset Views

As

Input displays in green text, while output displays in blue text. Errors display in red.

Input/Output %

fiip
FLIP

Standard Input:

Help

One view that shows up in the main display area is the Help window. This can of course be displayed by selecting
various items on the Help menu, such as Contents.

Context-sensitive information about parts of the interface can be obtained by placing the cursor over the area
you are interested in and pressing F1. Information about that area appears in the Help window, or sometimes
help about a parent container shows up, which usually contains the information you are seeking.

An Initial Look at the Interface A Tour of the Interface

18

Getting Started

Figure 12, Obtaining Context-Sensitive Help

| ———
StartPage | Help ¥ |

& &« =) @ |doc/html/CodeD namics_Helpfindex html#context/TotalViewLH/ReplayEngineChapter

CodeDynamics User Guide : Chapten\8 ReplayEngine

chapter s ReplayEngine

ReplayEngine is embedded functionality on Linux x86 and x86-64 platforms that allows you go
to backwards in a debugging session. (Note that if you working on a platform that does not
support ReplayEngine, the ReplayEngine toolbar and ReplayEngine-related menu items do not
appear on the interface) To make best use of this functionality, it is important to understand
precisely how ReplayEngine works and the implied limitations. So the first main section in this
chapter describes the intermnals of this functionality.

For information focused on using ReplayEngine in a debugging session, see "Using
ReplayEngine".

ReplayEngine works hand in hand with CodeDynamics, so the descriptions in this chapter
assume you already have a good understanding of how the CodeDynamics product works.

How ReplayEngine Works

Play It Backwards

The hardest step in locating software bugs centers on working backward from a failure to the
error that caused it Conventional debugging techniques do not make it easy to find the cause
of an error as they allow you to control program execution only in the forward direction.

-

In Figure 12, F1 was pressed with the cursor over the ReplayEngine toolbar.

The information displayed for context sensitive help is from the full product documentation for TotalView. If you
move the Help into a separate window and increase its size, at some point navigation for the full product docu-

mentation appears.

An Initial Look at the Interface A Tour of the Interface

Getting Started

Figure 13, The Help Window with Full Product Documentation

Threads

The Processes and Threads
View

How the Processes and
Threads View Works

Controlling Processes and
Threads in a Running
Session

Summary of Process and
Thread Attributes

Setting and Managing Action
Points (Breakpoints)

Examining and Editing Data
Debugging Python

Using the Command Line
Interface (CLI)

Controlling fork, vfork, and
execve Handling

ReplayEngine

An Initial Look at the Interface

TotalView : TotalView User Guide : PART Il Debugging Tools and Tasks : ReplayEngine

ReplayEngine

How Re
Using ReplayEngine
Known Limitations and Issues

ReplayEngine is embedded functionality on Linux x86 and x86-64 platforms that allows you go to
backwards in a debugging session.

Note: If your platform does not support ReplayEngine, the ReplayEngine toolbar and ReplayEngine-
related menu items do not display.

To make best use of this functionality, see How ReplayEngine Works.
For information on using ReplayEngine in a debugging session, see Using ReplayEngine.

ReplayEngine complements TotalView, so this discussion assumes a working knowledge of how the
TotalvView product works.

A Tour of the Interface

20

Getting Started

Starting TotalView and Creating a Debugging

Session

Start TotalView in two primary ways: with no arguments to launch the Start Page, or with arguments to skip the

Start Page and open the Ul with the program loaded and ready to debug.

The Start Page

If you start TotalView without arguments, the Ul displays the Start Page, from which you can access the Sessions
Editor. This is the easiest way to load a program into TotalView. Once you configure a debugging session using the

Sessions Editor, the settings are saved under Recent Sessions so you can access them later.

Figure 14, Starting TotalView at the Start Page

Start Page ™

What do you want to do today? Recent Sessions viewan
BBty fork_loo ’
2 & i sy 8
[——] - & SRHLER SRS
Debug a Program Debug a Parallel é MPI-basic-mpi #
Program Last run an Jan 24, 2018

tx_blocks 1 #

s— - python_types

Attach To Process Load Core or Last run oh Jun 02, 2017
Replay Recording File

Tips and Tutorials

What's New

.‘ TowalView Video Series

New in NextGen TotalView for HPC 2017.3 november 2017 Fogue Wave is producing a
series of videos to help you learn
to efficiently use the features of
Tatalview in order to guickly find
faults and errors in your code.

New User Interface Improvements
There are several great enhancements to the new user
imterface that will make debugging your applications even
easier. If you have any feedback abourt the new user
interface, requests for new or missing features or any Eianls v sha i

From this page you can:
m Specify a program to debug — Debug a Program

m Specify a parallel program to debug — Debug a Parallel Program

Starting TotalView and Creating a Debugging Session A Tour of the Interface

21

Getting Started

m Start debugging a running program — Attach to Process

m Specify a core file to debug, or a ReplayEngine recording file to load — Load Core or Replay
Recording File

m Restart a previously defined session — tx_fork_loop

Loading a program directly into TotalView

Load a program into TotalView by entering:

totalview executable_name [argument argument ...]

where executable_name is the executable of the program you want to debug, followed by any arguments the
program takes. This opens the TotalView Ul with the program loaded and ready to debug.

Figure 15 shows the Source view for the program and the Processes and Threads view. These are just two of sev-
eral available views.

NOTE: To run a program in TotalView, compile it for debugging, usually with the -g command-line
option, depending on your compiler.

Starting TotalView and Creating a Debugging Session A Tour of the Interface 22

Getting Started

Figure 15, Starting TotalView with an Executable Name

Processes & Threads Start Page tx_fork_loop.cxx
e o | ==
1093 {whoops)
Description ~ HP {
1095 printf(, whoops, errno);
tx_fork_loop (S3) L 1096 exit{1);
}.
Nonexistent 1 1098 thread ptids[total threads++] = new tid;
1099 prinmtf { « 0 V{getpid()), | new tid);
1101 forker (fork count);
1102 }
main | arge, **argwv)
1107 |
1108 fork count = 8;
1109 args_ok = 1;
1110 arg count = 1;
*arg;
pthread mutexattr t mattr;
1114 signal (SIGFPE, sig fpe handler);
1115 signal (SIGHUP, | (*)} 1 })sig hup handler);
#ifndef linux
signal (SIGUSRL, | (*1(1)sig usrl handler);
signal (SIGUSR2, | (*)1 11sig usr2 handler);
#if defined (_ Lynx)
Defining, Editing, and Managing Sessions Creating and Managing Sessions on page 26

More on compiling programs for debugging Appendix B, Compiling for Debugging, on page 574

More on starting TotalView Starting a Session from your Shell on page 53

Debugging Commands

The table below summarizes the behavior of the debugging commands available in TotalView. The descriptions
assume that the command is being applied to a single thread, the thread with the focus. In fact, debugging com-
mands are much more flexible than this. They can apply to threads, processes, or groups, or some collection of
these. You select the different scopes for debugging commands from the menu on the left of the toolbar, or by
selecting the commands from the Thread, Process, and Group menus.

See Related Topics below for the location of discussions about these extended capabilities.

Starting TotalView and Creating a Debugging Session Debugging Commands 23

Getting Started

i Group (Control) Go |l Hakt Kill | Restart [Next A|Step [¥ Out »= RunTo

Command Description

Go Sets the thread to running until it reaches a stopping point. Often this will be a breakpoint
that you have set, but the thread could stop for other reasons.

Halt Stops the thread at its current execution point.
Kill Stops program execution. Existing breakpoints and other settings remain in effect.
Restart Stops program execution and restarts the program from the beginning. Existing break-

points and other settings remain in effect. This is the same as clicking Kill followed by Go.

Next Moves the thread to the next line of execution. If the line the thread was on includes one or
more function calls, TotalView does not step into these functions but just executes them
and returns.

Step Like Next, except that TotalView does step into any function calls, so the thread stops at the
first line of execution of the first function call.

Out If the thread is in a block of execution, runs the thread to the first line of execution beyond
that block.

Run To If there is a code line selected in one of the Source views, the thread will stop at this line,

assuming of course that it ever makes it there. This operates like a one-time, temporary
breakpoint.

RELATED TOPICS

Controlling the scope (width) of debugging commands Stepping and Program Execution on page 375

Controlling what happens when a thread reaches a Controlling an Action Point's Width on page 127
breakpoint (action point)

Seeing the debugging commands in action Stepping and Executing on page 62

Diving on Program Elements

Diving is integral to the TotalView Ul and provides a quick, intuitive, and effective way to get more information
about various program elements. Dive on an element either by just double-clicking on it or via a context menu,
depending on the element. For example:

Starting TotalView and Creating a Debugging Session Diving on Program Elements 24

Getting Started

m Dive on a thread or function in the Processes & Threads view, (by double clicking on it), and the
Source view switches its focus to that element.

m Navigate to a function in the Source pane to move its focus to that element.

m Dive on an expression or variable in the Data View to add it as a new expression in the Data View.
This is helpful for examining one segment of a data structure or element of an array of data. See
Diving on Variables on page 170.

Starting TotalView and Creating a Debugging Session Diving on Program Elements

25

There are two primary ways to load programs into TotalView for debugging: the Ul via the Start Page (Loading
Programs from the Session Editor) or with CLI commands (Loading Programs Using the CLI). Both support

all debugging session types.

There are also ways to start TotalView with arguments that set up a session when the program opens (Start-

ing a Session from your Shell).
Setting up Debugging Sessions
m Loading Programs from the Session Editor on page 28

m Starting a Debugging Session on page 29
m Debuga Program on page 31
m Debug a Parallel Program on page 32
m Attach to Process on page 35
m Debug a Core or Replay Recording File on page 39
m Load a Recent Session on page 41
m Editing a Previous Session on page 41

m Loading Programs Using the CLI on page 41

Additional Session Setup Options

m Program Environment on page 44

m Standard Input and Output on page 45
Managing Debug Sessions

m Managing Sessions on page 49

26

Creating and Managing Sessions

Starting TotalView with a Session Initiated

m Starting a Session from your Shell on page 53

27

Creating and Managing Sessions

Setting up Debugging Sessions

The easiest way to set up a new debugging session is to use the Session Editor, an easy-to-use interface for con-
figuring sessions and loading programs into TotalView. Alternatively, you can use the CLI.

m Loading Programs from the Session Editor on page 28

m Loading Programs Using the CLI on page 41

Loading Programs from the Session Editor

TotalView can debug programs on local and remote hosts, and programs accessed over networks and serial lines.
Use the Session Editor to configure a new debugging session or to access a previous session. Access the Session
Editor via either the Start Page or the File menu. The Start Page provides access to all types of debug sessions
(Starting a Debugging Session on page 29), while the File menu enables you to choose a specific debugging ses-
sion, such as loading local and remote programs, core files, and processes that are already running.

Figure 16, Choosing a Specific Debug Session from the File Menu

[eot Goup Process Thread ActionPoirts Del

Debug a Program... Cirki
Debug & Parallel Program... Ctri+Shift+f
Attach to a Program... Cirl T

Load a Core or Replay Recording File... CtriShift+L
v Listen for Reverse Connections
Marnage Sessions...

Save Fecording File..

Preferences...

Exit Crl+Q

Setting up Debugging Sessions Loading Programs from the Session Editor 28

Creating and Managing Sessions

Figure 17, Opening the Sessions Editor from the Window Menu

»

File Edit Group Process Thread Action Points Debug - t_ieip
7 = bstart Page B
S| o st Close View Ctri+W -

Views

i Group (Control)

Processes & Threads %

@@ 0 |=

If you are just starting TotalView, the Start Page automatically opens.

Starting a Debugging Session
Access the Start Page either directly from your shell by just entering

total vi ew
or by selecting Window > Start Page from within the Ul if TotalView is already running

Loading Programs from the Session Editor

Setting up Debugging Sessions

29

Creating and Managing Sessions

Figure 18, Start Page Opening View

Start Page * |b¢_anays.f.'xx] |

What do you want to do today?

Debug a Program Debug a Parallel

Program
A d

Load Core or

Atschiie Horess Replay Recording File

® Listen For Reverse Launch Remote Debugger
Connections I]
|of - i
Recent Sessions View Al

B ix arrays test

From this initial window, you can configure various types of debugging sessions:
m Debuga Program on page 31
m Attach to Process on page 35
m Debug a Parallel Program on page 32
m Debug a Core or Replay Recording File on page 39
m Load a Recent Session on page 41

You can also control whether TotalView listens for reverse connections. (Reverse Connections on page 264) or
launches a remote debugger (About Remote Connections on page 399).

Setting up Debugging Sessions Loading Programs from the Session Editor 30

Creating and Managing Sessions

Debug a Program

To configure a new debugging session, select Debug a Program to launch the Program Session dialog.

Figure 19, Program Session dialog

Session Editor x

BB program Session
Session Details Program Details
Session Name File Name
Enter or select a session name, &.0. myprog vl T |jf_‘.:--:. ram path and name, e.g. /homelsmit -

’ Arguments
Debug Options = -

[Enter any program arguments. Ex. -option foo |

Reverse Debugging

Enable reverse debugging with ReplayEngine

Python Debugging Program Environment

|| Enable call stack filtering for Python

Memory Debugging Working Directory
[] Enable memory debugging [Optional: Enter a working directory for the program.] BROWSE...
CUDA Debugging Environment variables for the program
Enable CUDA memory checking [Enter line-separated NAME=VALUE pairs]

Standard Input Redirection

Redirect standard input from file Standard Output/Error Redirection ~

[Enter input file path and name] BROWSE...

RESET | LOAD SESSION | CANCEL

1. Enter a session name in the Session Name text box.
Note that any previously entered sessions of the same type are available from the Session Name dropdown
box. See Editing a Previous Session on page 41.

2. Enter the name of your program in the File Name box or press Browse to browse to and select the file.
You can enter a full or relative path name. If you have previously entered programs here, they will appear in
a dropdown list.

If you enter a file name and the Ul cannot find it, it displays the path in red; however, TotalView searches for
it in the list of directories listed in your PATH environment variable.

CLI: dset EXECUTABLE_PATH

3. (Optional) Add any custom configurations or options:

Setting up Debugging Sessions Loading Programs from the Session Editor 31

Creating and Managing Sessions

m Program arguments: Enter any program arguments into the Arguments field.

Because you are loading the program from within TotalView, you need to enter the command-line
arguments that the program requires.

m Debug Options:
For detail, see Debug Options on page 43.

m Program Environment:
Working Directory on page 44.

Environment Variables for the Program on page 44.
m Standard Input and Output: See Standard Input and Output on page 45.

4. C(lick Load Session. The Load Session button is enabled once all required information is entered.

Debug a Parallel Program

TotalView supports the popular parallel execution models including MPI, OpenMP, SGI shared memory (shmem),
Global Arrays, UPC, CAF, fork/exec, and pthreads.

Starting an MPI Program

MPI programs use a starter program such as mpirun to start your program. You can start these MPI programs in
two ways:

m With the starter program under TotalView control. In this case, enter the name of the starter
program on the command line.

m Using the Ul, in which case the starter program is not under TotalView control. In this scenario,
enter program information into the Parallel Session Dialog from within the Session Editor.

Programs started using the Ul have some limitations: program launch does not use the information you set for
single-process and bulk server launching, and you cannot use the Attach Subset command.

Starting MPI programs using the Session Editor is described here. For examples using a starter program, see
Starting a Session from your Shell.

Setting up Debugging Sessions Loading Programs from the Session Editor 32

Creating and Managing Sessions

Parallel Session Dialog

From the Start Page, select Debug a Parallel Program to launch the Parallel Session dialog.

1. Session and Program Details

Figure 20, Parallel Session: Session and Program Details

Session Editor X

& Parallel Session

Session Details

Session Name

Program Details

File Name
| ngram path and name, e.d. fhomeismith rogranm | v Browse ...

Arguments

[

m

rier any program arguments. Ex. -option foo]

RESET | LDAD SESSION | CANCEL

Session Details: Enter a session name in the Session Name field.

NOTE: Any previously entered sessions of the same type are available from the Session
Name dropdown box. Once selected, you can change any session properties and
start your debug session. See Editing a Previous Session on page 41

Program Details

m File Name: Enter the name of your program or press Browse to browse to and select the file.
You can enter a full or relative path name. If you have previously entered programs here, they
will appear in a dropdown list.

Setting up Debugging Sessions Loading Programs from the Session Editor

33

Creating and Managing Sessions

If you enter a file name and the Ul cannot find it, it displays the path in red; however, TotalView
searches for it in the list of directories listed in your PATH environment variable. See Search Path on
page 280.

CLI: dset EXECUTABLE_PATH

m Arguments: Enter any arguments to be sent to your program.

Because you are loading the program from within the Ul, you need to enter the command-line argu-
ments that the program requires.

2. Parallel Details

Figure 21, Parallel Session: Parallel Details

Parallel Details

Parallel System
‘[Selec: your parallel system] -

Tasks: Nodes:

Additonal Starter Argumenis

m Parallel System: Select which parallel system profile TotalView should use when starting
your program. This profile can be one that TotalView provides, one created for your site, or
one that you create. (For information, see MPI Startup Customizations on page 327.)

m Tasks: Enter a number indicating how many tasks your program should create.

If your system has a default value and you want to use it, enter a value of O (zero).

If your system has no default value or you want to override the default, enter a value of 1 or greater.
m Nodes: (System-dependent) Enter a number indicating how many nodes your program

should use when running your program. (Not all systems use this value, so this field may not
be visible.)

m Additional Starter Arguments: If your program’s execution requires that you use argu-
ments to send information to the starter process such as mpirun or poe, enter them in this
field. (In contrast, if you need to use arguments to send information to your program, enter
those arguments in the Arguments field under Program Details.)

Setting up Debugging Sessions Loading Programs from the Session Editor 34

Creating and Managing Sessions

3. Debug Options: See Debug Options on page 43.

4. Program Environment: See Program Environment on page 44.

5. Standard Output/Error Redirection: See Standard Input and Output on page 45.
6. Standard Input Redirection: See Standard Input and Output on page 45.

7. Select the Load Session button to launch the debugger.

NOTE: Note that any errors in the parallel configuration will launch an error pop-up:

Parallel Sanity Check Failed X -

This might be because the parallel runtime files are not in your path,

\p The parallel configuration failed a basic sanity test.
:
or the selected parallel system ('Open MPI') does not match the one in your path.

‘Would you like to make changes to the parallel system?

@ ves || @ no

If you continue with the session, additional errors launch, and your session may not run correctly.

Once created, a session named my _f oo can be quickly launched later using the - | oad command line option, like

so:
total view - newui -1|oad_session ny_foo

RELATED TOPICS

Set up MPI debugging sessions for various environ- MPI Program Setup on page 310

ments and special use cases

Set up non-MPI parallel debugging sessions for applica- Non-MPI Program Setup on page 297
tions that use the parallel execution models that

TotalView supports

Create MPI startup profiles for environments that MPI Startup Customizations on page 327
TotalView doesn't define

Tips for debugging parallel applications Debugging Strategies for Parallel Applications” in the
Classic TotalView User Guide

Attach to Process

If a program you're testing is hung or looping (or misbehaving in some other way), you can attach to it while it is
running.

Setting up Debugging Sessions Loading Programs from the Session Editor 35

Creating and Managing Sessions

To open the Attach window, select Attach to Process on the Start Page.

A list of processes running on the local host displays in the Attach to running program(s) dialog.

Figure 22, Attach to a running program

ﬁ, Attach to Running Program(s)

Session Name

Processes
Host | 10.0.2.15 (local) Q [Search list] =y
I Program A | State | PID | PPID | Host | Path |
W gnome-terminal s 1914 1208 10.0.2.15 fusr/bin/
gnome-pty-helpe 5 1921 1914 10.0.2.15
¥ bash 5 1922 1914 10.0.2.15 fbin/
¥ rwcoreapp s 2128 1922 10.0.2.15 Jusritoolworks/codedynamics.2015X.10.15/linux-x86-... l
wr c 1309 1900 innaac P ==
PID Program

PID File Name
||E||i—:-= PID, if not in the list | |::--" path and name mefsmith, pr - .Browse,,_

Debug Options ~

Reverse Debugging

|| Enable reverse debugging with ReplayEngine

[amcn [canca

In the displayed list, processes to which TotalView can attach are displayed in black text, while those to which
TotalView has already attached or are not attachable for any reason are grayed out.
1. Enter a name for this session in the Session Name field.

Any previously entered sessions of the same type are available from the Session Name dropdown box. Once
selected, you can change any session properties and start your debug session. See Editing a Previous Ses-
sion on page 41.

2. Select the process under the Program column. For a single selected process, the PID and File Name fields
are auto-populated. Alternatively, use these fields to specifically identify a process to attach to.

To select multiple processes, hold down the Ctrl key and select them. (In this case, the PID and File Name
fields are not used.)

Setting up Debugging Sessions Loading Programs from the Session Editor 36

Creating and Managing Sessions

3. Press Attach.

CLI: dattach executable pid

While you must link programs that use fork() and execve()with the TotalView dbfork library so that TotalView can
automatically attach to them when your program creates them, programs that you attach to need not be linked

with this library.

RELATED TOPICS

The CLI dattach command dattach in the TotalView Reference Guide
The CLI ddetach command ddetach in the TotalView Reference Guide
Field Definitions

The Processes section displays these fields:

Program | State PID PPID Host Path
¥ gnome-terminal s 1914 1208 10.0.2.15 fusr/bin/
gnome-pty-helpe 5 1921 1914 10.0.2.15
¥ bash 5 1922 1914 10.0.2.15 fbin/
¥ rwcoreapp s 2128 1922 10.0.2.15 Jusritoolworks/codedynamics.2015X.10.15/linux-xB6-...

T c 1300 1ano annasIE frmelhin

m Program: The name of the executing program. Notice that TotalView indents some names. This
indentation indicates the parent/child relationship within the UNIX process hierarchy.

m State: A letter indicating the program'’s state, as follows:

Character and Meaning Definition

[(Idle) Process has been idle or sleeping for more than 20 seconds.

R (Running) Process is running or can run.

S (Sleeping) Process has been idle or sleeping for less than 20 seconds.

T (Stopped) Process is stopped.

Z (Zombie) Process is a “zombie”; that is, it is a child process that has termi-

nated and is waiting for its parent process to gather its status.

m Host: The name of the machine upon which the program is executing
m PID: The operating system program ID

m PPID: The parent program’s ID

Path: The program’s path on the local machine, that is, the machine where TotalView is running.

Setting up Debugging Sessions Loading Programs from the Session Editor

37

Creating and Managing Sessions

If you attach to multiple processes, TotalView places all of them into the same control group, enabling you to stop
and start them as a group.

Searching for Processes
Search for any process using the search box (|a, (search iist).

If found, the process displays in the Processes pane.

Processes
Host | 10.0.2.15 {local) Q x)
Program # State PID PPID Host Path

(rwcoreapp) 5 2128 1922 10.0.2.15 Jusritoclworks/codedynamics.2015X.10.15/linux-x86-64/bin/

In some cases, the name provided to TotalView by your operating system may not be the actual name of the pro-
gram. In this case, you will not be able to simply select the name. Instead, you should

m Determine what its actual name is by using a command such as Is in a shell window.
m Select the name as this will fill in much of the program’s name.
m Move to the File Name control, and type its actual name, then press Enter.

If you wish to attach to a multiprocess program, you can either select multiple processes here, or you can restart
the program under TotalView control so that the processes are automatically picked up as they are forked. In
most cases, this requires you to link your program with the dbfork library, as discussed in the section Linking
with the dbfork Library on page 583.

If the process you are attaching to is one member of a collection of related processes created with fork() calls,
TotalView asks if you want to also attach to all of its relatives. If you answer yes, TotalView attaches to all the pro-
cess's ancestors, descendants, and cousins.

NOTE: If some of the processes in the collection have called exec(), TotalView tries to determine the
new executable file for the process. If TotalView appears to read the wrong file, you should
start over, compile the program using the dbfork library, and start the program under
TotalView control.

Setting up Debugging Sessions Loading Programs from the Session Editor 38

Creating and Managing Sessions

Debug Options

NOTE: Debug options are platform-specific, so your system may or may not include the options dis-
cussed in this section.

In the Debug Options section, you can enable ReplayEngine. (See Reverse Debugging.)

Debug Options

Reverse Debugging

+| Enable reverse debugging with ReplayEngine

Debug a Core or Replay Recording File

To configure a core file or Replay Recording debug session, select Load Core or Replay Recording File from the
Start Page. The “Core or Replay Recording Session” dialog launches.

1. Enter a name for the session in the Session Name field.

2. Select the core or Replay recording file to debug.

Use the Browse button to search the file system for the file.
3. Select the related program in the File Name field under the Program Details section.

4. Click Load Session.

Setting up Debugging Sessions Loading Programs from the Session Editor 39

Creating and Managing Sessions

Figure 23, Open a Core File

X Session Editor

é Core or Replay Recording Session
Session Details

Session Name

Test core dumps -

Core or Replay Recording File

Core or Replay Recording File Name
fhome/marc/TotalView/tests/core.tx_create_simple_core_file b Browse..,

Program Details
File Name
| /home/marc/TotalView/tests/tx_create_simple_core_file te Browse...

If your operating system can create multi-threaded core files (and most can), TotalView can examine the thread in
which the problem occurred. It can also show you information about other threads in your program.

Similarly, TotalView can load previously saved replay recording session files to further debug applications.

When TotalView loads the core or replay recording session, it displays the core file/replay recording file, showing
the state of the program. The status ribbon at the bottom of the window displays either the signal that caused
the core dump, or “Recording File.” The yellow arrow and highlight in the Source Pane indicate the location of the
program counter (PC) when the process encountered the error.

If you start a process while you're examining a core file, TotalView stops using the core file and switches to this
new process.

RELATED TOPICS

The CLI dattach command's - c corefi | e- nanme | dattach in the TotalView Reference Guide
repl ayrecordi ngsessi onfil e option

Setting up Debugging Sessions Loading Programs from the Session Editor 40

Creating and Managing Sessions

Load a Recent Session

The Session Editor displays your most recent sessions on the Start Page so you can quickly continue a debugging
session where you left off.

Figure 24, Start a Previous Debugging Session

Recent Sessions

@ TestCore Simple /'

oy tst_corel

,ﬁ\ Test Core re

#h Attach Test2

Click on a session to immediately load your previous session into TotalView.

To edit a previous session before loading it, see Editing a Previous Session.

Editing a Previous Session

The Session Name field on each sessions window contains a dropdown that lists all previously created sessions
of this type.

Figure 25, Sessions Name dropdown of a Program Session window

Session Name

tw_fork_loop -~ | -

tx_fork_loop |

tx_blocks h

To edit a previous session, either select the previous session, or click the Pencil icon to open the Session Editor

populated with session data. You can edit any session data, including the Session Name to create an entirely new
session.

Loading Programs Using the CLI

When using the CLI, you can load programs in a number of ways. Here are a few examples.
Load a session
dsession -load session-name

Setting up Debugging Sessions Loading Programs Using the CLI 41

Creating and Managing Sessions

Loads the session directly into TotalView.
Start a new process

dload -e executable
Open a core file

dattach -c corefile -e executable

If TotalView is not yet running, you can also provide the core file as a startup argument, like so:

t ot al vi ewexecutabl ecorefile[options]
Open a replay recording session file
dattach -c replay-recording -e executable

If TotalView is not yet running, you can also provide the replay recording file as a startup argument, like so:

t ot al vi ewexecut abl erepl ay-recordi ng-file[options]
Attach to a program using its process ID
dattach executable pid

Load an MPI job using the POE configuration and the hf i | es starter argument. In this example, two pro-
cesses will be used across nodes.

dload -mpi POE -np 2 -nodes -starter_args "hfile=~/my_hosts"

RELATED TOPICS

CLI commands "CLI Commands" in the TotalView Reference Guide

Loading sessions from the command line Starting a Session from your Shell on page 53

Setting up Debugging Sessions Loading Programs Using the CLI 42

Creating and Managing Sessions

Options and Program Arguments

The Session Editor supports setting options and program arguments either when first setting up a session or
during a running session. These settings include:

m Debug Options
m Program Environment
m Standard input or output settings

See Modifying Arguments in an Open Session on page 46 for how to set options during an existing session.

Debug Options
Debug program options, including for parallel programs, include:

Reverse Debugging

Reverse debugging records all program state while the program is running, then allows you to roll back your pro-
gram to any point.

The reverse debugging check box is visible only on Linux-x86-64 platforms. If you do not have a license for
ReplayEngine, enabling the check box has no effect, and TotalView displays an error message when your program
begins executing. Selecting this check box tells TotalView that it should instrument your code so that you can
move back to previously executed lines.

See the ReplayEngine User Guide.

Python debugging

The Python language is easily extensible with C and C++ code. This enables Python applications to access legacy
algorithms, specialized hardware, and to perform highly specialized computing. TotalView supports debugging
Python extensions, shows a clean set of stack frames across the language barriers, and allows both Python and
C/C++ variables to be examined and compared.

Python debugging is supported only on Linux-x86-64 platforms.

See Starting a Python Debugging Session on page 229.

Memory debugging

Locate many of your program’'s memory problems, including leak detection, heap and event reports, and the abil-
ity to identify dangling pointers.

Options and Program Arguments Debug Options 43

Creating and Managing Sessions

See Starting Memory Debugging in TotalView on page 513.

CUDA debugging

Detect global memory addressing violations and misaligned global memory accesses by enabling the CUDA Mem-
ory Checker feature.

See Enabling CUDA Memory Checker Feature on page 459.

Program Environment

Control the program environment by changing the working directory or setting environment variables.

Working Directory

The working directory option specifies a working directory for executing your target program. If not provided, the
default is the directory from which you invoked TotalView.

This value can be entered into the Ul or on the command line when starting TotalView. It can then be modified
during a debug session using the Process > Modify Arguments menu.

Set or Modify the Working Directory in the Ul

To set or modify the working directory in the Session Editor, enter the full path in the Working Directory field:

Program Environment
Working Directory /

Infs.'hornes.'hoﬂse,'ne'.\r_\'.ra rking_dir BROWSE...

If the directory does not exist, “Directory not found locally” displays.

Set the Working Directory on the Command Line

When starting TotalView from a shell, set the working directory using the command line argument
-wor ki ng_di rectory, like so:

total view -working directory /tnp

Environment Variables for the Program

When loading the program from within TotalView, add any necessary environment variables into the Environ-
ment variables for the program field.

Options and Program Arguments Program Environment 44

Creating and Managing Sessions

Figure 26, Setting Environment Variables

Program Environment

Environment variables for the program

[Enter line-separated NAME=VALUE pairs]

Either separate each argument with a space, or place each one on a separate line. If an argument contains
spaces, enclose the entire argument in double-quotation marks.

At startup, TotalView reads in your environment variables to ensure that your program has access to them when
the program begins executing. Use this field to add additional environment variables or to override values of
existing variables.

TotalView does not display the variables that were passed to it when you started your debugging session. Instead,
this field displays only the variables you added using this command.

The format for specifying an environment variable is name=value. For example, the following definition creates
an environment variable named DISPLAY whose value is enterprise:0.0:
Dl SPLAY=ent erprise: 0.0

Standard Input and Output

Use the controls in the Standard Input Redirection and Standard Output/Error Redirection sections to alter
standard input, output, and error. In all cases, name the file to which TotalView will write or from which TotalView
will read information. Other controls append output to an existing file if one exists instead of overwriting it or
merge standard out and standard error to the same stream.

Options and Program Arguments Standard Input and Output 45

Creating and Managing Sessions

Figure 27, Debug Options for Standard Input

Standard Input Redirection

Redirect standard input from file

BIOWSC Standard Output/Error Redirection | =

@ Do not redirect standard output or error
Redirect standard output and error to the same file
[Enter outputferror file path and name | | | Browse... Append
Redirect standard output and /for error to separate files
Standard output file

[Enter output file path and name]| | Browse... Append

Standard error file

[Enter error file path and name] Browse... Append

Modifying Arguments in an Open Session

All arguments or options that can be set while first configuring a session (see Options and Program Arguments)
and can also be modified once the session has started.

NOTE: You can modify arguments in existing sessions only when debugging a program. You cannot
modify arguments for existing sessions in which you have attached to a running process or are
debugging a core or replay recording file.

Modify arguments in an existing session using either the Ul or when loading a program from the command line,
i.e. when entering totalview <program_name> into your shell. (See Starting a Session from your Shell on
page 53.)

To modify arguments in the Ul:

1. From within a debugging session, choose the Process menu, and then Modify Arguments. Alternatively,
click the Modify Arguments () icon on the toolbar or press the shortcut key A.

Options and Program Arguments Modifying Arguments in an Open Session 46

Creating and Managing Sessions

Figure 28, Modify Arguments drop-down

tx_blocks_1/tx_blocks - Process 1, No current thread - TotalView 20z

{ Group (Contaol) i ReplayEngine

@ @ @ Pun T

Detach
Share Group I

G
H .
N -
St s
rocesses &T.. X i Eze » |t><_hlocks.c>cx X |
Outt Q
R
E

it mySub (1int& x)

Previous At+Shift+h L x o= ox*2;
_blocks [53) 1 Unstep Alt+Shift+S return x;
1 Ccaler Alt+Shife+0
Back To Alt+Shift+FR int main{int argc, char** argv)
Go Back Al+Shift+5 :
toig

LI'\-'. : — Alt+Shift+L k= a;

struchData mysStrucaArray[10];
tomvarravliinl:

The Session Editor launches.

Figure 29, Modifying Arguments in the Session Editor

x Session Editor

B prggram Session

Session Details Program Details

Session Name File Name

tx_blocks s - |_TVPDA git/debugger/srcitestsibld/gec_4.6_64/t_blocks Browse...
a R
Ar <

Debug Options 55

Reverse Debugging

Enable reverse debugging with ReplayEngine

Program Environment
Standard Input Redirection ;
= Environment variables for the program &

Redirect standard input from file H Enter line-separated NAME=VALUE pai

Enter input file path and name Browse...

Standard Output/Error Redirection ~

2. Enter any modified arguments or options in either
m Reverse Debugging: Toggle this on or off.

m Arguments: Change any arguments to your program

Options and Program Arguments Modifying Arguments in an Open Session

Creating and Managing Sessions

m Environment variables: Enter or edit variables.

m Standard input: Enter or edit any input files.

NOTE: When modifying arguments within an open session, you cannot change the File
Name or the Session Name, both of which are disabled.

3. Click Apply on Restart.

RESET APPLY ON RESTART CANCEL

Modified arguments have no effect until you restart your program, selecting either Go, Kill or Restart.

Options and Program Arguments Modifying Arguments in an Open Session

48

Creating and Managing Sessions

Managing Sessions

TotalView saves the settings for each of your previously-entered debugging sessions, available in the Manage
Debugging Sessions window of the Sessions Manager. Here, you can edit, duplicate or delete sessions as well as
start a session and create new sessions.

You can also edit and create new sessions from any Sessions Window. See Editing a Previous Session on
page 41.

Access the Manage Sessions window, either from the Start Page by clicking View All to see all your sessions, or
from File > Manage Sessions.

Figure 30, Accessing Manage Sessions from the Start Page

What do you want to do today?

-,
Load Core or
Replay Recording File

Recent Sessions

Figure 31, Accessing Manage Sessions from the File Menu

Debug a Program Attach To Process

B8 edt Group Process Thead ActionPorts Bo

Save Fecarding File..

Debug a Program... Cirk-h
Debug a Parallel Program... CtrH-Shift+P
Attach to a Program. .. Ctrk+T

I Load a Core or Eepluﬁec:mﬂing File... Cir+Shift+L

! Manage Sessinns...*__
I e

Preferences...

Exit crkQ

The Manage Sessions window launches listing all the sessions you have created.

Managing Sessions Modifying Arguments in an Open Session 49

Creating and Managing Sessions

Figure 32, The Manage Sessions window

Manage Sessions

2.0 /7 x |Q

Sessions | Program

W Attach
tx_hello_sleep tx_hello_sleep
designer designer
default

" Program
Wave wave
tx_fork_loop_bad tx_fork_loop
t¢_blocks tx_blocks

fork_loop_aix. TVD.breakpoints fork_loop_aix. TVD.breakpoint:

W Core or Replay Recording

Test Core

Tod e Cieerlo

tst core2

O s P P

Use the Manage Sessions window to:

m Display data about a session by selecting the session.

Manage Sessions

B. M /s x

Q Session Name: tx_hello_sleep

Type: Attach

Sessions | Program Program: t<_hello_sleep
Path: /nfs/ntk-nfs2/home/kduthie/tests/
W Attach Host: fedora20-x8664. totalviewtech. com
" Selected Host: (local)
it _hello_sleep i t<_hello_sleep Last Run Time: 05/03/15 08:51:25 am
designer designer
default

m Search for a session by entering a keyword in the search field.

- /S %X Q fori x|
=ions ' Program Path
Program

tx_fork_loop_bad tx_fork_loop fhorne/shoo

fork_loop_aix. TVD.breakpoints fork_loop_aix. TVD.breakpoints /nfs/san0/ju:

Managing Sessions Modifying Arguments in an Open Session

50

Creating and Managing Sessions

m Rename a session by double-clicking on it and entering a new name.

Sessions Program
“ Program
Wave Ex| wave_extended

m Load a session by clicking Load Session, which immediately opens that session in TotalView.
;.M o/ ox Q Session Name: tx_blocks
Type: Program
Sessions Prograri Program: t«_blocks
Path: /home/shoose/ftests
Wave wave Selected Host: (local)
Last Run Time: 04/16/15 08:18:04 am
tx_fork _loop_bad
‘tx blocks w tx bloc
o
fork_loop_aix. TVD.breakpoints fork
W Core or Replay Recording
- (oo || o
|

Edit, delete and duplicate sessionsusing either the context-menu accessed by right-clicking on a
session or the icons in the top toolbar:

Wawve

Load Session

Copy
fork_loop Edit

o el =

W Attach Delete

Managing Sessions Modifying Arguments in an Open Session

51

Creating and Managing Sessions

Table 1: Manage Sessions Icons
- Creates a new debugging session, opening a drop-down menu for selecting:
m (Create a new Program Session
m Setup an Attach Session

m (Create a session to load a Core or Replay Recording File

Ch Duplicates a session, naming it "<Session Name>Copy". You can rename and then edit this
session.

e Edits a session, launching the appropriate window to change the session's configuration,
either Program Session, Parallel Session, Attach to running programs, or Core or Replay
Recording Session.

x

Deletes a session.

Managing Sessions Modifying Arguments in an Open Session

52

Creating and Managing Sessions

Starting a Session from your Shell

There are a number of ways to start TotalView so a session is created and ready to begin when the debugger
opens.

NOTE: If you need features currently not supported in the TotalView Ul (see Introducing TotalView on
page 3), you can launch Classic TotalView by invoking t ot al vi ewwith the flag - cl assi cui .
For example: t ot al vi ew - cl assi cui

Debugging a Program
t ot al vi ewexecut abl e

Starts TotalView and loads the executable program.

Debugging a Parallel Program
total view-args npirun -np 4 ./npi_program

Starts TotalView and loads a four-process MPI program.

Debugging a Core File
total vi ewexecut abl e corefile

Starts TotalView, loads the executable program, and an associated corefile. You can use wild cards in the core
file name.

Debugging a Replay Recording File
t ot al vi ewexecut abl e repl ay-recordi ng-file

Starts TotalView, loads the executable program, and the replay-recording-file from a previous debugging
session for which a ReplayEngine recording was saved to the named file.

Starting a Session from your Shell Debugging a Program 53

Creating and Managing Sessions

Passing Arguments to the Program Being Debugged

total vi ew execut abl e -a args
Starts TotalView and passes all the arguments following the -a option to the executable program. When using
the -a option, it must be the last TotalView option on the command line. Delimit multiple arguments with spaces.

total vi ew - ar gs execut abl e ar gs
Similar to above, but uses the command line option -args to specify that the executable program and argu-
ments follow.

Loading a Session

total vi ew -1 oad_sessi on sessi on- nane

Starts TotalView and the named session.

RELATED TOPICS

Parallel preferences when debugging a parallel program Parallel Configuration on page 283

Starting TotalView on a Script

It is sometimes convenient to start TotalView on a shell script. For example, a typical use case might be a script
that calls into a shared library, and you need to debug the shared library code; another case is a shell script that
sets environment variables, then execs the application to debug.

Anywhere in the examples above that an executable can be specified, an interpreter script can be specified
instead. The underlying interpreter, which must be a valid executable object file for the platform, is debugged, not
the script itself.

On Unix, an interpreter script starts with a line that is similar to the following:
#! interpreter [interpreter-arg]
Where

m #! are the first two characters in the file.
m interpreter isthe pathto an executable object file or some other interpreter script.
m interpreter-argisanoptional argument to pass to the interpreter.

When the interpreter script is executed, the interpreter is invoked by the system as follows:
interpreter [interpreter-arg] script [script-args]
Here's a simple example:

% cat myscript.sh
#! /bin/sh -x

Starting a Session from your Shell Passing Arguments to the Program Being Debugged 54

Creating and Managing Sessions

echo "$@

% ./myscript.sh a b c
+ echo a b ¢

abc

%

In the example above, the following command was executed:

/bin/sh -x ./nyscript.sh a b c

Whenever TotalView is processing an executable file, it first checks to see if the file is an interpreter script. If the
file starts with #! , it is treated as an interpreter script. The path to the interpreter is extracted from the script and
used as the executable object file to debug. If the interpreter file is itself an interpreter script, TotalView repeats
the procedure (up to 40 times) until it encounters an interpreter file that is not an interpreter script. If the proce-
dure fails to find a valid executable object file for the platform, loading the script into the debugger will fail.

In most cases, the interpreter for the script does not directly contain the code you want to debug, and instead
dynamically loads or executes the code to debug. TotalView contains several configuration settings that make it
easier to plant breakpoints and stop in your code, as described by the Related Topics below. There are three com-
mon cases, where the interpreter script:

m Dynamically loads a shared library and calls into the code to debug (see the entries below
regarding shared libraries and creating pending breakpoints)

m Execs the program containing the code to debug (relevant to exec handling)

m Runs the program containing the code to debug (relevant to fork handling)

RELATED TOPICS

Configuring dynamic library handling Shared Libraries on page 581
Creating a pending breakpoint Pending Breakpoints on page 93
Configuring exec handling Exec Handling on page 348
Configuring fork handling Fork Handling on page 348

Starting a Session from your Shell Starting TotalView on a Script 55

Basic Debugging

This chapter illustrates some basic debugging tasks and is based on the shipped program, expression,
located in the directory installdir/toolworks/totalview.version/platform/examples.

NOTE: We recommend that you follow the procedure in the README.TXT file in the examples
directory to create a local copy of the examples and rebuild them in your environment.

This program takes expressions input by the user and evaluates them. For the purposes of this example, we'll
instead redirect the standard input to read a file, expr.tst, also located in the examples directory. This file
includes three simple expressions:

2+3
2% (4/ 5)
(1/2)-(3/4)

The first steps when debugging programs with TotalView are similar to those using other debuggers:

m Use the -g option to compile the program.

m Start the program under TotalView control.

m Start the debugging process, including setting breakpoints and examining your program'’s data.
The chapter introduces some of TotalView's primary tools, as follows:

m Program Load and Navigation on page 57

m Stepping and Executing on page 62

m Setting and Running to a Breakpoint (Action Point) on page 65

m Examining Data on page 69

56

Basic Debugging

Program Load and Navigation

This section discusses how to load a program and looks at the primary TotalView interface. It also illustrates some
of TotalView's navigation tools.

Load the Program to Debug

Before starting TotalView, you must add TotalView to your PATH variable. For information on installing or configur-
ing TotalView, see the Classic TotalView Installation Guide.

1. Start TotalView.

t ot al vi ew
The Start Page launches.

What do you want to do today?

i, =
- u_m
Debug a Program Debug a Parallel
Program

i A

Attach To Process Load Core or
Replay Recording File

Program Load and Navigation Load the Program to Debug 57

Basic Debugging

2. Select Debug a Program to open the Program Session window.

X Session Editor

Program Session
Session Details

Session Name

Expression Example|

Debug Options

Reverse Debugging

Enable reverse debugging with ReplayEngine

Standard Input Redirection

Redirect standard input from file

/home/marc/tvexamples/expr.tst

Program Details

File Name

= Browse...

fMhome/marc/tvexamples/expression

Arguments

Program Environment
Environment variables for the program

Browse...

Standard Output/Error Redirection -~

3. Provide a name for the session in Session Name field. This can be any string.

4. Inthe File Name field, browse to and select the expression program, located in the directory /installdir/

toolworks/totalview.version/platform/examples.

5. Inthe Standard Input Redirection field, browse to and select the expr.tst file, also located in the exam-
ples directory. This provides the input required by the program. Leave all other fields and options as is.

6. Click Load Session to load the program into TotalView.

Note that this is the same as entering the path to the standard input file and program name as arguments when

starting TotalView:

total view -stdin expr.tst expression

(This invocation assumes that your examples directory is known to TotalView or that you are invoking TotalView

from within the examples directory.)

RELATED TOPICS

Loading programs

Loading Programs from the Session Editor on page 28

Program Load and Navigation

Load the Program to Debug

Basic Debugging

RELATED TOPICS

Starting a session from your shell

Modifying arguments in an existing Modifying Arguments in an Open Session on page 46

session

Starting a Session from your Shell on page 53

Initial Display

At startup, TotalView displays your program’s code in the central area’s Source pane, along with its default views:
the Processes & Threads, Lookup File or Function, Action Points, Call Stack, Local Variables, Documents, and Data

View.

Figure 33, TotalView’s Default Views

Expression Example/expression - Process 2, No current thread - TotalView 2020X

File Edit Group Process Thread Action Points

i Group (Contral)

Debug Window Help

layEngine

‘rocesses &T.. ® | ookupFileorF.. * | Joc., ™
® @ @ | = =
Share Group Thread Staie Function
expression [S6) 1 1
tx_blocks (53) 1 1

expro ¥

StartPage * |

17 longjmp (context, 1);

node_t *readexpr ();
- evaluate ();
freetree (node_t *);

Call Stack *

Y

main I argc, *kargv)
28| {
node_t *node;
28 setjmp (context);
31 while {node = readexpr (1)) {
3z previous = evaluate (node};
33 printf ("%g %ld [@x%l . previous, (1 1A
34 fflush (stdout);
as freetree (node);
3
= 37 return {a);
g | =
I ———— .
T Data View * | CommandLine * | Input/Qutput *
Action Points ¥ | Replay Bookmarks * -
Mame Type Thread ID W
D Type Stop Log

]

[Add New Expression]

Mo current thread

Local Variables *

m The Processes & Threads view lists all processes and threads under TotalView control. You can
use the Window > Views menu item to customize the displayed views.

Since the program has been created but not yet executed, there is no process or thread listed here.

Program Load and Navigation

Load the Program to Debug

59

Basic Debugging

m The Lookup File or Function view takes any keyword search and returns a file or function from
within your program’s files.

m The Documents view displays all open files in the order in which their tabs appear in the central
area.

m The Replay Bookmarks view displays bookmarks created to mark a point in program execution
history.

m Action Points displays any breakpoints you set.

m The Call Stack view shows the backtrace of the thread that is currently in focus once the program
iSs running.

m The Local Variables view displays information on the current thread's variables.
m The Source view in the central area displays your source code’s main() function before execution.
m Several views are also visible at the bottom: Data View, Command Line, and Logger.

m Data View enables you to evaluate expressions to observe your data while your program is
running.

m Command Line, which, when selected, displays a prompt for entering CLI commands:

Linux x86_64 TotalView 2815X.106.21

m Logger which, when selected, displays logging output from TotalView:

gnu/libc-2.19.s0, with 0 asects, was
linked at 0x00000000

Mapping 105887 bytes of ELF string
data from ‘fusr/lib/debug/lib/x86_64-
linux-gnu/flibc-2.19.50"...

done

Program Load and Navigation Load the Program to Debug

Basic Debugging

m Optional: The Input/Output view displays stdout and stderr, and supports entering input
directly into the user interface rather than only through the terminal. This view is turned off
by default. To display it, select Window > Views > Input/Output.

Input/Output %

Standard Input:

RELATED TOPICS

Processes & Threads view Customize the Display on page 214

Call Stack panel The Call Stack, Local Variables, and Registers Views on page 150
Action Points Setting and Managing Action Points (Breakpoints) on page 85
The CLI Using the Command Line Interface (CLI) on page 239

Program Navigation

TotalView provides several ways to search your applications for text strings, files or functions. See Program Navi-
gation on page 77 for ways to navigate through your project.

Program Load and Navigation Program Navigation 61

Basic Debugging

Stepping and Executing

Here, we'll step through the program, using the buttons on the Debug toolbar.

Figure 34, Debug toolbar

i Group (Control)

The following sections explore how these work using the expression example.

NOTE: These procedures on stepping and execution can be performed independently of the other
tasks in this chapter, but you must first load the program, as described in Load the Program to
Debug on page 57.

Simple Stepping
Here, we'll use the commands Step, Run To, Next and Out, and then note process and thread status.

1. Step

m Select Step (JH]) in the toolbar. TotalView stops the program just before the first executable

statement, the call to setjmp().

Note the yellow highlight and arrow show the current location of the Program Counter, or PC, in the
Source pane.

main (argc, **argv)
{

node_t *node; /
30 setjmp (context);
31 while (node = readexpr ()) {
32 previous = evaluate (node);
33 printf (. previous, { } previous, | 1]
34 fflush (stdout);
35 freetree (node);

i

Stepping and Executing Simple Stepping 62

Basic Debugging

The process and thread status are displayed in the Processes & Threads pane:

Processes & Threads *
@@ 06 | ==
Description A EP #T Members
expression (53) 1 1 pl
Stopped 1 1 pl
main 1 1 pl.l
1.1 1 1

This program has just a single process 1 and thread, denoted by 1.1, which reports that its status is
Stopped in main(). The thread is in bold, because it is the active thread or the Thread of Interest (TOI).

The status bar at the bottom also displays process/thread status, reporting that the TOl is in main().

Process: expressio Thread: 1.1 - Stop Frame: main File: fhome/marc/t Line: 30 Source Line: 39

m Select Step again to advance to the while loop on line 31, and then select Step again to step
into the readexpr() function. (Next would step over, or execute it.)

Because the readexpr() function is in a different file, TotalView opens the readexpr.c file and
advances the PC to the first line of executable code in the readexpr() function.

Start Page * | exprc ¥ | evalexpr.c *d readexpr.c "i node.h * |

114 node_t *node = term ();

115 while (nextchar == '+' || nextchar == '-"}

116 node_class_t node class = (node_class_t) readchar ();
117 node = new_node (node_class, node, term ());

119 return (nodej;

120 1}

node t *readexpr ()

12 node_t *node = 8;

128 zadcha :

129 (nextchar !'= EOF) {

130 while (nextchar == "\n')

131 readchar ();

132 node = expression ();

133 (nextchar != "\n' &k nextchar != ',' && nextchar !'= EOF)

134 error {"i i t '
i

136 return (nodej;

137 1}

Stepping and Executing Simple Stepping 63

Basic Debugging

Note that the readexpr() function now appears in the Call Stack view:

Call Stack *

[
readexl:)

CIEEEE

& main

_ libc_start_main

_start

The status bar reports the location of the PC:

Frame: readexpr File: Jhomef/marc/tvexamples/readexpr.c Line: 127

2. RunTo

Select the return() statement at line 136, then click Run To (&) in the toolbar. The PC advances to line 136.
Blue highlighting denotes a “run to” location.

134 error { t IH
I3
136 return (nede);
137 1}
3. Out
Select Out () to execute the return statement and exit the function. The PC returns to the while condition
inside main():
’ nod§ t *node;
31 whi{er(node = réadexpr 0 {
33 printf (% . previous, { } previous, |) previous
34 fflush (stdout);
35 freetree (node);
4. Next

Click Next (&) on the toolbar. The Next command simply executes any executable code at the location of
the PC. If that is a function call, it fully executes the function. If the PCis instead at a location within a function,
it executes that line and then moves the PC to the next line.

In this case, the PC moves to the next executable line in main(), the assignment of the evaluate() function's
return value on line 32:

30 setjmp (context):

31 while (node = readexpr ()) {

32 previous = evaluate (node);

33 printf (. previous, { } previous, |) previous
34 fflush (stdout);

35 freetree (node);

Now let's add some breakpoints and rerun the program.

Stepping and Executing Simple Stepping 64

Basic Debugging

Setting and Running to a Breakpoint (Action
Point)

TotalView uses the term action point. A breakpoint is simply a type of action point that stops the execution of the
processes and threads that reach it.

This section uses the expression example to set breakpoints.

NOTE: These procedures on working with action points can be performed independently of the other
sections in this chapter (which starts at Basic Debugging on page 56), but you must first load
the program as described in Load the Program to Debug on page 57.

Set and Control Breakpoints

1. Set a breakpoint.
Navigate to the function readexpr() on line 31 to open the file readexpr.c.

Set a breakpoint on line 119 by clicking on the line number in the Source pane. You can also set a breakpoint
using the Action Points > Set Breakpoint menu item.

Start Page * | expr.c ¥ | evalexpr.c " node.h *

114 node_t *node = term ();

115 while (nextchar == '+' || nextchar == '-") {

116 node_class_t node class = (node_class_t) readchar ();
117 node = new_node (node_class, node, term ());

return (nodej;

node t *readexpr ()

{

The breakpoint will stop the program after executing the expression() function and just before returning
the node object.

NOTE: Bold line numbers indicate known source locations. Breakpoints set on line num-
bers that are not bold are slid to the next valid source location and can become a
valid source location if code is later loaded for that line.

Setting and Running to a Breakpoint (Action Point) Set and Control Breakpoints 65

Basic Debugging

The line number turns red in the Source pane and the action point is added to the Action Points view:

& @

Action Points
ie] Type Stopv File Line
o4 i Process | readexpr.c 119

2. Delete/disable/enable a breakpoint.

To delete the breakpoint, click the red line number in the Source Pane, and then re-add it by
clicking again. You can also select it in the Action Points view, right-click for a context menu,
and select Delete or simply hit the Del or Delete key on your keyboard.

Action Poimis ¥ |Heplay8naltma!ks x |

| ID | Type | Swp Location | Line i

v 1 m_[jw; == Iiderpr.cv‘#llg readexpr.c {line 119)
Ensbie
Dizable
Delete Del

"k |

When hit 3

Properties...

To disable a breakpoint, click the checkmark in the Action Points view. The icon dims to show
it is disabled:

Action Pointz * | Replay Boockmarks * |

| I | Type | Swp Location

o m Process . _freadexprc#119 r

Click the checkmark again to re-enable it. Again, you can also disable or re-enable a breakpoint using
the context menu.

Setting and Running to a Breakpoint (Action Point) Set and Control Breakpoints 66

Basic Debugging

NOTE: An action point also has a “When hit” option for controlling whether to stop all
threads in a process or group, or just a single thread or process. See Controlling
an Action Point's Width on page 127for more information.

RELATED TOPICS

Action points properties About Action Points on page 86
Enabling/disabling action points Managing and Diving on Action Points on page 132

Run Your Program and Observe the Call Stack

Run the program by clicking Restart (@) on the toolbar.

The program halts at the breakpoint with the PC at line 119:

node t *expression ()

{

114 node_t *node = term ();

115 while (nextchar == '+' || nextchar == '-") {

116 node_class_t node class = (node_class_t) readchar ();
117 node = new_node (node_class, node, term ());

}

return (node);

120 }

The Call Stack view shows that the program is stopped in the expression() function.

Call Stack

&» expression
& readexpr
@& main

_ libc_start_main

_start

The Local Variables view displays any local variables in scope.

Local Variahles

Mame Type Walue

node node_t * 0x01396050 -> (node_t)

Setting and Running to a Breakpoint (Action Point) Run Your Program and Observe the Call Stack

67

Basic Debugging

If you move the focus back up the call stack, the local variables in the Local Variables view update for the selected
scope and the source related to that frame displays:

StartPage * | exprc * | readexprc ¥ Call Stack *
TP [=
114 node_t *node = term (), =
115 while (nextchar == '+' || nextchar == '-'}) (
1186 node_class_t node_class = (node_class_t) readchar (); expression
117 node = new_node (node_class, node, term ());
1 |
return (node); ooy D
128 3} expressi
m
__Woc_start_main
node_t *readexpr ()
126 {
127 node_t *node = o; i
128 readchar ();
129 17 (nextchar != EOF) {
13e@ while (nextchar == '\n')
131 il =it
13&' node = expression ();)
133W " r = "',' && nextchar != EOF)
134 errer ["invalid character");
136 return (node);
137 | } eade

Start Page * | exprc % :reade)(pr.c X | Call Stack % |

=stdio.h=
=setjmp.h=

expression
double previous;

ad
jmp_buf context; @ | readexpr

id flush_ line (); ‘: main >

__libec_start_main

error: *g]
120 {
15 flush_line ();
16 fprintf (=stderr, EFfrar %s &
17 longjmp (context, 1);
} Error

cgl Variables * |

node_t *readexpr (); TyE Va.b£
evaluate ();
freetree ([node_t *}); Arguments
t main (int argc, **argv) node node_t* 0x00000000
an il [
node_t *node; *{node) node_t =Bad address: 0x00000000,
20 o P

| e b = P
a1 while (node = readexpr ()i é>
3 Previous = EVar ode) ;

22 nrintf ¢ nrawinne f Vonrewviane Y onrew

RELATED TOPICS

Action points, the Call Stack, and process/ Action Point Width and Process/Thread State on
thread state page 128

Setting and Running to a Breakpoint (Action Point) Run Your Program and Observe the Call Stack 68

Basic Debugging

Examining Data

Examining data is, of course, a primary focus of any debugging process. TotalView provides multiple tools to
examine, display, and edit data.

You can quickly view data local to the selected call stack frame from within the Local Variables view. You can drill
down by clicking on the left arrow to view compound data structures. To watch a variable’s value change while the
program runs, add it to the Data View where it remains even when no longer in scope.

In both the Local Variables view and the Data View, you can drill down on compound variables by clicking on the
arrows to open and observe the data structures.

Add variables to the Data View where you can create expressions, cast data to another type, and perform other
data-related tasks.

This section discusses viewing variables in the Local Variables view, and then using the Data View to look at global
and compound data.

NOTE: These procedures on examining data can be performed independently of the tasks in other
sections in this chapter, but you must first load the program (Load the Program to Debug on
page 57).

Viewing Variables in the Local Variables View
First, we'll add a breakpoint so the program will stop execution and we can view data.

1. Set a breakpoint.

Examining Data Viewing Variables in the Local Variables View 69

Basic Debugging

m Navigate to the word “evaluate” on line 32, in main(), to open evalexpr.c. Set a breakpoint
on line 15 inside the evaluate() function at the assignment statement.

Start Page * | exprc ¥ | evalexprc ¥ |

#include
error | W H
evaluate (node_t *node)
i
result;
11 (!'node)
all error ("invali X i i
13 switch (node-=node class) {
case nc_value:
result = (node->u.value);
16 break;
case nc_add:
18 result = (evaluate (node-=u.node.left) +
19 evaluate (node->u.node.right)});
20 break;
case nc_subtract:
22 result = (evaluate (node-=u.node.left) -
23 evaluate (node-»u.node.right));

NOTE: Disable any other breakpoints you have set, for this discussion.

m Click Go (&) on the toolbar. The program stops on the breakpoint.

Now let's view some data.

2. View variables in the Local Variables view

The Local Variables view lists local variables. To view compound variables, click the left arrow.

Local Variables * |

MName Type Value

W Arguments

¥ node node_t* 0x01225010 -> (node_t)
* *... node_t (node_t)
enum node_cla... nc_value (48)
¥ L union =nameles... (union =nameless13=)
resuit double 9400077 1676748%-317 =denormalized=

Examining Data Viewing Variables in the Local Variables View

Basic Debugging

The Info view displays additional detail about the location of the stopped thread and the selected frame in
the stack trace.

Function evaluste

Source . dldircitotalviewllinux-x86-64/totalview/debugger/srclexamplesievalexpr.c
Line 15

FP Ox7ife776e30f0

3. View variables in a tooltip

In the Source pane or the Local Variables view, hover over the variable result to view a tool tip that displays

its value:
evaluate (node_t *node)
i
result;
11 (!'node)
all error ("invali i i
13 switch (node-=node class) {
case nc_value:
E’esult = (node->u.value);
16 breziy
[E1 MY result: 2.07376940296563e-317 <denormalized=
18 resd SVaLUaLe oue-~0. e . T
19 evaluate (node->u.node.right)});
20 break

Local Variahles %

MName Type Value

¥ Arguments

node node_t * 0x01225010 -= {node_t)

result double 9400077 16767489e-317 =denormalized=

E 4

Viewing Variables in the Data View

The Data View is a powerful tool that can list any variable in your program, along with its current or previous value
and other information. This helps you to monitor variables as your program executes:

m View changing values of variables.

m Drill down into the nested structures of compound variables (which you can also do in the Local
Variables view)

m Add global variables to the Data View by directly typing them in.

Examining Data Viewing Variables in the Data View 71

Basic Debugging

m Add expressions involving your program data.

Watching Data Values Update

As you run your program, any data added to the Data View displays updated values.

NOTE: This discussion assumes that you have set a breakpoint on line 15 in the evaluate() function
and that you have clicked Go, as discussed in Viewing Variables in the Local Variables View.

1. Add a Variable to the Data View

m From the Local Variables view, just drag a variable into the Data View.

Local Variables |

MName Type Value
Arguments

node 1 node t* 0x00efe0l10 -> (node_t)

result double 2.07376940296563e-317 <denormalized>

—
Data Vig ®

MName l' Type | Value

[Ad& MNew Expressi...
(]

node Q.‘-‘ node t* 0x00efe0l0 -> (node_t)

Alternatively, right-click and select Add to Data View:

Local Variables * |

MName Type Value
¥ Arguments
node_ R k 010 -= (node_t})
resuft Copy CrrC 116767489e-317 =denormalized=

Create Watchpoint

m Add a global variable by double clicking Add New Expression in the Data View and manu-
ally entering it:

Data View *

MName Type Value

previous

[Add New Expression]

Examining Data Viewing Variables in the Data View

72

Basic Debugging

Once entered, TotalView populates its type and value:

Data View *

MName Type Value
previous double 0
[Add New Expressi...

2. View nested structures.

NOTE: You can also view compound structures in the Local Variables view.

The variable node is a compound type with several nested structures.

m Toview any nested structure, click the right-arrow, which means that additional nested struc-
tures exist. Here, we've drilled into the node variable’s union u to see that it contains a left
and right struct, and a double value.

Data View *
MName Type Value
previous double 0
node node t* 0x00efe0l0 -> (node_t)
*(node) node_t (node_t)
node_class enum nod... nc_value (46)
u union <na... (union <namelessll=)
node struct <n... (struct <nameless10>)
left struct nod... Ox4000000000000000 -> <Bad address: Ox4...
right struct nod... O0x00000000
value double 2
[Add New Expressi...

m Re-enable the breakpoint at line 119 in the readexpr() function by clicking on its checkbox in
the Action Points view, or recreate it if necessary:

Command Line * | Action Points * |
P
D //ﬁpe Stop™ File Line
o4 Process | evalexpr.c 15
v|'™ 1 Process | readexpr.c 119

m (Click Go twice to run the program to the re-enabled breakpoint.

Examining Data Viewing Variables in the Data View 73

Basic Debugging

To see a variable’s value, drill further down into the left or right variable:

¥ node struct <nameless10> (struct <nameless10>)
¥ left struct node_t * 0x01ee5030 -> (struct node_t)
¥ *(left) struct node_t (struct node_t)
node _clas enum node _class t nc_value (46)

¥ u union <=namelessll> (union <namelessll=)
¥ node struct <nameless10> (struct <nameless10>)
left 0x4010000000000000 -> <Bad address: 0x40100
¥ right 000000000
*{right) struct node_t <Bad address: 0x00000000> (struct node_t)
value double 4
¥ right struct node_t * 0x01ee5010 -> (struct node_t)

Remember that the data provided to the program consists of three simple expressions:

2+3
2% (4/ 5)
(1/2)-(3/4)

At this pointin the program’s execution, the second expression is being read in. In the Data View, note
that left has been assigned a value of 4. If you drill into right, it will have a value of 5, i.e. the input for
the right side of the second expression.

3. View updated values.

m (lick Go several times to run the program to the two breakpoints.

As the program reads in the expressions and evaluates them, the values change in the Data View:

¥ node
¥ left
v *{left)
node_class
¥ u

node

struct <nameless10>
struct node_t *

struct node_t

enum node _class t
union <namelessll>

struct <nameless10>

(struct <nameless10=)
0x010f90d0 -=> (struct node_t)
(struct node_t)

nc_value (46)

{union <nameless11=>})

{struct <nameless10=)

double

),

¥ right
¥ *(right)
node_class
¥ u

node

struct node_t *

struct node_t

enum node _class t
union <namelessll>

struct <nameless10>

0x010f90f0 -> (struct node_t)
(struct node_t)

nc_value (46)

{union <nameless11=>})

{struct <nameless10=)

double

2 D

value

value

double

double

8.7930483525685e-317 <denormalized>

8.79303254246783e-317 <denormalized>

Gevious

double

O.D

Examining Data Viewing Variables in the Data View

74

Basic Debugging

4. View the output in the Input/Output view.
The output of the program goes to stdout when fflush() is called.

31 while (node = readexpr ()) {
32 previous = evaluate (node);
33 printf (. previous, { } previous, |) previous);
fflush (stdout);
35 freetree (node);
}.
37 return (8);

As each expression is evaluated and printed to stdout, when the stdout buffer is flushed, the Input/Output
view shows the result of evaluating the expression. Run the program to the end to see the completed out-
put.

Input/Cutput

5 5 (0x5)
0.8 0 (0x0)
2.6 2 (0x2)
0.39 0 {0x0)

RELATED TOPICS

More on the Data View The Data View on page 164

More on the Local Variables view The Call Stack, Local Variables, and Registers
Views on page 150

Examining Data Viewing Variables in the Data View 75

Basic Debugging

Moving On

m For an overview on TotalView's new interface, see An Initial Look at the Interface on page 4.

m For more information on ways to start and manage sessions in TotalView, see Starting TotalView

and Creating a Debugging Session on page 21 and Creating and Managing Sessions on page 26.

m To use the Command Line Interface, see Using the Command Line Interface (CLI) on page 239.

m To runyour program backward, starting from the point of failure and working back in time to find
the cause, see the ReplayEngine User Guide.

Moving On Viewing Variables in the Data View

76

Program Navigation

If your program is large or includes multiple source files, it may be difficult to find program elements you want
to examine. TotalView provides several ways to search your applications for text strings, files or functions.

Navigating from within the Source Pane on page 78. Navigate to a function from within the
Source pane using the context menu.

Highlighting a String and the Find Function on page 79. Search in the Source view by
highlighting a string or using the Find function.

The Lookup File or Function View on page 81. Use the Lookup File or Function view to search
for files or functions.

You can also customize the system variables TotalView uses as part of the search path when searching
for program elements. See Search Path on page 280.

The Documents View on page 83 displays all open source files, updating automatically when
files in the Source pane are opened or closed.

77

Program Navigation

Navigating from within the Source Pane

You can navigate to a function in the Source pane.

Navigate to the evaluate() function call on line 32, by right-clicking and selecting Navigate to File or Function

from the context menu.

main (argec, *rargv)
{

node_t *node;
30 SeLjNp—taantatlt
31 whil¥e (node = readexpr ()) {
3z previous = evalusra fnadal: -
a3 printf (14 Navigate to File or Function 1) previous, () previous);
a4 fflush (stdout) Add to Data View
35 i'reetree (nodel:

1
a7 return (@);
s}
NOTE: If more than one result is found from the navigation operation, then all the results are shown

in the Lookup File or Function view. You can easily click through the results to navigate to the

location you want.

Note that since the evaluate() function is in a different file, evalexpr.c, that source file opens for viewing in addi-

tion to the source file already open containing the main() function.

Start Page * | expr.c evalexprc)readexpr.c :|

#include =stdio.h=

#include

error | *):

C evaluate (node t *node)

result;

11 ('node)
12 error ("invali X i H
13 switch (nede-=node class) {

case nc_value:
15 result = (node-=u.value);
16 break;

case nc_add:
18 result = (evaluate (node-=u.node.left) +
19 evaluate (node-=u.node.right)):;
20 break;

case nc_subtract:

Navigating from within the Source Pane

78

Program Navigation

Highlighting a String and the Find Function

You can find specific text in Source views either by highlighting a string, or through the Find function.

When you click on some continuous string and it highlights, all other matching strings in that view are highlighted
also. You can scroll through the text to find all other occurrences of the string. To remove the highlighting, simply
click in any open space.

Start Page * | expr.c ® | evalexpr.c % |

#include <stdio.h=
#include "mode.h

error | W H

evaluate (node_t *node)

i
result;

11 17 {'node)
12 error {"invalid expressio e");
13 switch (node->node class) {

case nc_value:
15 result = (node-=u.value);
16 break;

case nc_add:
18 result = (evaluate (node-=u.node.left) +
19 evaluate (node->u.node.right)});
20 break;

case nc_subtract:
22 result = (evaluate (node-=u.node.left) -
23 evaluate (node->u.node.right)});
24 break;

case nc_multiply:
26 result = (evaluate (node-=u.node.left) *
27 evaluate (node->u.node.right)});

To activate the Find function, enter Ctrl-F or select Find from the Edit menu.

Start Page * | expr.c % | readexpr.c * | evalexpr.c * |

error | *s5)
{
15 flush_line ();
16 fprintf (stderr, “error: %s . 5);
17 longjmp (context, 1);
;o ror t
Re evaluate r
node_t *readexpr ():
evaluate (};
freetree (node_t *);
t main arge, **argv)
{
node_t *node;
30 setjmp (context):
31 while (node = readexpr ()) {
32 previous = ewvaluate (node);
33 printf ("%g %ld (@x%Llx , previous, { } previous, |) previocus);
34 fflush (stdout);
35 freetree (node);
i
37 return (8);
38|} /* main *
Find: evaluate| - || d|[p Aa "W & 3 matches x

Highlighting a String and the Find Function 79

Program Navigation

If you select text in the Source view before activating the Find function, the selected string is loaded into the
search text box.

33 printf (

34 results in | fna. ~ (4>

35 freetree (node);

The Find function tells you how many matching strings it has found in a given file, lets you easily move to the Next

p| (Ctrl-g) or Previous - (Ctrl-Shift-g) occurrence, and allows you to make the search case sensitive | 4, | Or

whole word | “w”

You can also activate the Wrap Search button, ¢ |, to wrap back to the beginning of the file after the last
instance is reached.
The advantages of the Find function over simple highlighting are:

m |n alarge file, the Next and Previous controls save you tedious scrolling.

m The search can be refined using the case sensitive and whole word switches. Highlighting always
applies to whole strings whereas Find can look for partial strings, such as “eval” rather than
“evaluate”.

m If you move to another file in the Source view, the search is applied to that file so you can look for
the string in the new file.

Previous search strings are saved in the dropdown menu at the end of the text field, and these are saved
between debugging sessions, as is the state of the case sensitive and whole word buttons.

To close the Find function, press Esc or click the X at the right end of the window.

Highlighting a String and the Find Function

80

Program Navigation

The Lookup File or Function View

The Lookup File or Function view takes any keyword search and returns a file or function from within your pro-
gram’s files.

Open the Lookup File or Function view.

NOTE: If the Lookup view is not visible, select Window > Views > Lookup File or Function or use the
keyboard shortcut F, to open it.

Call Stack # | Lookup File or Function %

File or Function Name:
Q| -

Maiching Iltems:

Dispiay full path information

Searching for files or functions is based on keywords. The search encompasses the debugging symbols available
in the executable files for the processes running in TotalView. This means that if your program links in shared
libraries that were not compiled with debugging symboals, the search does not see files or functions related to
these shared libraries. Also, if a dynamically shared library is not loaded because the program has not called that
code, the debugging symbols from that library are not available.

The Lookup File or Function View 81

Program Navigation

For example, a search of “ex” returns a range functions and files:

Call Stack % | Lookup File or Funcion % |

File or Function Name:
Q ex -

Matching Items: Found 7 matching results

expr.c

readexpr

expression

readexpro
evalexpr.c
ermor

evaluate

Display full path information

Clicking on one of the results opens the source file in a tab in the Source pane. If the result is a function, the func-
tion definition is displayed in the source file. As you click through each returned result, the source appears in the
same tab.

Double-click on a result to create a permanent tab for the source file.

Start Page !prrc x | readexprc | evalexpr.c x) Call Stack % | Lookup File or Function 3 |

File or Function Name:
node_t *term {)

Q ex -
101 node_t *node = factor ();
182 while (nextchar = 5= L] nextchari=— %), f Matching [tems: Found 7 matching results
183 node_class_t node_class = (node_class_t) readchar (};
184 node = new_node (node_class, node, Tactor ()}; —
186 return (nodel; readexpr
187 3
({Tomessn D
readexpr.c
evalexprc
node_t *expression ()
i error
114 node_t *node = term ();
115 while (nextchar == '+' || nextchar == '-') { evaluate
116 node_class_t node_class = (node_class_t) readchar (};
117 node = new_node (node_class, node, term (};
119 return (node);
120
node_t *readexpr ()
127 node_t *node = @;
128 readchar ();
129 (nextchar 1= EOF) {
130 while (nextchar == '\n'})
131 readchar ();
132 node = expression (); e e
133 (nextchar 1= "\n' && nextchar 1= ',' &8 nextchar 1= EOF) e ey

To display full path information in the results, select the checkbox at the bottom of the view.

The Lookup File or Function View 82

Program Navigation

The Documents View

The Documents view displays all active files or documents, useful when a program includes multiple files. The

order of the displayed files matches that in the central area.

Figure 35, The Documents view

Processes & Threads = | Documents = |

Open Documents:

Start Page

EXpr.c

readexpr.c

Help

This view is open by default, but can be toggled off or on using the Windows > Views > Documents menu.

As you step through your code, the Documents view automatically displays any files that are opened, while

Start Page = |Expr.c ® | readexprc X | Help %

113
114
115
118
117

118
12@e

node_t *expression ()

i

node_t *node = term ();

while (nextchar == '+' || nextchar == '-') {
node_class_t node_class = (node_class_t) readchar ();
node = new_node (node_class, node, term (});

i

return (node);

removing files that are closed. It maintains the order in which the files appear in the central area, from left to right.

You can use the Documents view to close or delete files by right-clicking on the file to launch a context menu:

Processes & Threads | Daocuments *

Open Documents:

Start Page Ciose Dl

expr.c
readexpr.c

Help

Closing a file also closes it in the central area.

The Documents View

83

rARTI Debugging Tools and

IENE

m Setting and Managing Action Points (Breakpoints) on page 85

About TotalView's four types of action points: breakpoints, evalpoints, watchpoints, and barrier points.

m Examining and Editing Data on page 145
Using the Call Stack view, the VAR drawer, and the Data View.

m The Processes and Threads View on page 211

Using the Call Stack view, the VAR drawer, and the Data View.

m Debugging Python on page 225

Using TotalView to debug Python extensions.

m Using the Command Line Interface (CLI) on page 239

Using CLI commands via the Command Line view.

84

Setting and Managing Action

Points (Breakpoints)

m About Action Points on page 86

m Breakpoints on page 88

m Evalpoints on page 100

m Watchpoints on page 110

m Barrier Points on page 119

m Controlling an Action Point's Width on page 127

m Managing and Diving on Action Points on page 132

m More on Action Points Using the CLI on page 138

85

Setting and Managing Action Points (Breakpoints)

About Action Points

TotalView employs the concept of action points, which specify an action to perform when a thread or process
reaches a source line or machine instruction in your program.

TotalView supports four types of action points:

m A breakpoint stops execution of processes and threads that reach it. Other threads in the process
also stop, and you can also indicate that you want other related processes to stop. Breakpoints are
the simplest kind of action point.

m Anevalpoint executes a code fragment when it is reached.

m A watchpoint monitors a location in memory and stops execution when it changes. A watchpoint
can stop all the threads in a group or a process, or can include an expression to evaluate.

m A barrier point synchronizes a set of threads or processes at a location.

Action Point Properties

m You can independently enable or disable action points. A disabled action point isn't deleted;
however, when your program reaches a disabled action point, TotalView ignores it.

m You can share action points across multiple processes or set them in individual processes.

m Action points apply to all the threads in a process. In a multi-process program, the action point's
width, or scope, applies by default to all threads in all processes in a share group, i.e. those
processes that share the same executable. You can narrow the width to stop just a single thread
that executed to the breakpoint, or, conversely, broaden it to apply to all threads in all processes in
the control group, which contains all share groups.

m TotalView assigns unigue ID numbers to each action point. These IDs display in the Action Points
view.

Figure 36, Action Points View

Action Points % | Command Line * | Logger

v |} Type Stop Location
v 1 | Break | Process tx_blocks.cx
v 2 | Break | Process tx_blocks.cxx 54
v PO Wwatch | Group 4 bytes @ Ox7fffbeeb...

About Action Points

86

Setting and Managing Action Points (Breakpoints)

Each type of action point is identified with a distinctive icon, as displayed in Table 2.

Table 2: Action Point Types and Identifying Icons

Breakpoint See Breakpoints on page 88

| Eval | Evalpoint See Evalpoints on page 100

[Watch | Watchpoint See Watchpoints on page 110
Barrier point See Barrier Points on page 142
NOTE: Conditional watchpoints can be created only in the CLI for this release.

About Action Points

87

Setting and Managing Action Points (Breakpoints)

Breakpoints

You can set breakpoints either directly in source by navigating to the location and clicking on the line, or by using
the At Location dialog.

Setting Source-Level Breakpoints

Typically, you set and clear breakpoints before you start a process. To set a source-level breakpoint, select a line
number in the Source view.

Source View Line Number Indicators

m Abold line number denotes that the compiler generated one or more line number symbols for
the source line. Multiple symbols might be within a single image file, for example on a "for" loop
statement. Or, the line number symbols might be spread across multiple image files if the source
file was compiled into the executable, shared libraries, and/or CUDA code.

m No bold indicates that the compiler did not generate any line number symbols for the source line.
However, you can still set a sliding or pending breakpoint at the line, which is useful if you know that
code for that line will be dynamically loaded at runtime, for example, in a dynamically loaded
shared library or a CUDA kernel launch.

For example, Figure 37 illustrates that source lines 48 and 49 both have line number symbols. Lines with no bold
indicate that no executable code exists at those source lines yet (although you can set a sliding or pending break-
point at those lines, discussed in Pending Breakpoints on page 93 and Sliding Breakpoints on page 90).

Figure 37, Possible breakpoint locations in the Source view

- -
strucData myStrucArray[1a];
myArray[1a];
strucData mystruct;
48 myStruct.x = 10;
49 myStruct.y = 20;

Breakpoints Setting Source-Level Breakpoints 88

Setting and Managing Action Points (Breakpoints)

Set a breakpoint either by:
m (licking directly on the line number in the Source view, or

m Right-clicking on the line number and using the context menu, or

struchata myStruct;

muStruet v = i@
Set Breakpaoint
Set Barrier
E Create Evaluation Paint. .. lse;
53 Tor 1L = 0; I = 3; 1i++)
54 myStruct.nsafi] = i*z;
55 *charPtr = H

m Clicking on aline in the Source View and then selecting the Action Points > Set Breakpoint menu
item.

Once set, the breakpoint displays in the Action Points menu.

Figure 38, Set a breakpoint

Start Page * | tx blocks.coxx *
strucData myStrucArray[18];
myArray[108];
strucData myStruct;
myStruct.x = 18;
]
S . § —
Action Points|
53 (=08 4 S
myStruct.ns T .
-
55 | \‘. Type Stop File Line
ad 1 Process | tx_blocks.cxx 48
57 (i =0a:4 -
{ i ad 2 Process | tx_blocks.cxx 54
g0 k=8 = 3 P block 59
61 myArrayill rea rocess | tx_blocks.cxx
62 myStrucAr
63 myStrucAr
64 myStrucAr
65 myStrucAr]
oo i s

Add any number of breakpoints before you run your program. (You can add or remove breakpoints at any point
during your program's execution.)

NOTE: Setting a breakpoint on a line may cause that breakpoint to appear at many code locations.
For example, setting a breakpoint on a line of templated code may cause the breakpoint to
appear at all instances of that template.

When you set a breakpoint or barrier point, it is defined by a breakpoint expression, also called a breakpoint speci-
fication, displayed in the Action Points tab for that breakpoint, or entered into the CLI (if created using the CLI).
For more information, see dbreak in the TotalView Reference Guide.

Breakpoints Setting Source-Level Breakpoints 89

Setting and Managing Action Points (Breakpoints)

Sliding Breakpoints

If you try to set a breakpoint in the Source view at a location with no bolded line, i.e., if there are no line number
symbols for that source code line yet, TotalView automatically “slides” the breakpoint to the next line number in
the source file that does have a line number symbol.

For example, in Figure 39, a breakpoint was set at line 45 and slid to line 48 where there was a line number sym-
bol. The Source view then displayed a hollow red box indicating that it slid, along with a solid red box at the slid
location.

Figure 39, Sliding breakpoint

1 i
int k = @8;
strucData myStrucArray[i1e];
T omyArray[1o];
struchata mysStruct;
RyStruct.x = 108;

truct = ms

48

AD

int k = 8;

struchata myStrucArray[18];
L myArray[1a8];

s@
51§

1 -
Action Points * | Command Line

D% Type Stop Location Line Fune

The Action Points Location column always displays the full breakpoint expression (in brackets). It also displays the
"best" source file and line number it can currently find. TotalView does not change the original breakpoint expres-
sion, in the event that dynamically loaded code would be a better match later.

v 11 | EIETE | Process | ..hx_bioWks.cxx#4s tx_blocks

The breakpoint expression—pointing to line 45—is displayed in the Actions Points Location column as well as the
location of the actual breakpoint at line 48. Retaining the original expression supports the situation in which a
library that is dynamically loaded does have line number symbols at that location. As the program runs and
dynamically loads code, TotalView reevaluates the breakpoint expressions, factoring in any new line number sym-
bols it finds. If better-matching line number information is found, the address blocks in the breakpoint are
updated to add the addresses of the new line number symbols, and possibly disable or invalidate old address
blocks. This ensures that the breakpoint triggers for the most relevant source line.

If TotalView cannot find a line number symbol following the line specified in the breakpoint expression, it creates
a pending breakpoint. For example, this could occur when setting a breakpoint at the end of a source file. See
Pending Breakpoints on page 93 for information.

Breakpoints Setting Source-Level Breakpoints 90

Setting and Managing Action Points (Breakpoints)

Dynamic Code Loading Example

To see how this works, consider a program that will load code at runtime, such as when debugging CUDA code
running on a GPU.

Figure 40 illustrates a breakpoint set at line 91 that has slid to line 134:

Figure 40, Sliding breakpoints when dynamically loading code

b.locl-cIdx g
blockIdx.x;

—

] .biocl-th.Jw
el ockCcol

Matrix e WHatrix(C, blockRow, blockcol);

Action Poims X | Command Line

D Type Stop

v 1 | EEIETE Process | g

Function

tx_cuda_matmul.cu (line 134) Mathulkernel

Once the program is running and the CUDA code is loaded, TotalView recalculates the breakpoint expression and
is able to plant a breakpoint at line 91 in the CUDA code, which is an exact match for the breakpoint expression:

int blockRow = blockIdx.y;
92 int bloekcol = b]_.ockIch.x;]

' 1
Action Points | Command Line * |Logger »

IDw Type Stop Location Line Function

v 1 m Proces< e _cuda_matmul cus81 tx_cuda_matmul cu (line 91) >Ma1MuIKemeI

TotalView then disables the slid breakpoint at line 134 since it found a better match. Verify this using the dactions
command in the CLI:

1.<> dactions -full -block Iines

1 shared action point for group 3:

1 [/ hone/total vi ew cuda- exanpl e/t x_cuda_mat mul . cu#91] Enabl ed

Address 0: [Di sabl ed] Mat Mul Ker nel +0x18, tx_cuda_mat mul . cu#134 (0x0040372d)
Address 1: [Enabl ed] Mat Mul Ker nel +Oxae0, tx_cuda mat mul . cu#91 (Locati on not mapped)
Share in group: true

Stop when hit: process

Breakpoints at a Specific Location

You can quickly create breakpoints throughout your program using the At Location dialog, providing a conve-
nient way to enter a valid breakpoint expression. Typical breakpoint expressions include a file and line number
location (myFi | e. cxx#35), or a function signature (mai n). Use the Create a pending breakpoint option to cre-
ate a pending breakpoint that becomes a breakpoint when TotalView finds the function or file.

Breakpoints Breakpoints at a Specific Location 91

Setting and Managing Action Points (Breakpoints)

For detailed information about the kinds of information you can enter in this dialog box, see the BreakPoint
Expressions section in dbreak in the TotalView Reference Guide.

To enter a breakpoint expression, select At Location from the Action Points menu, or press Ctrl-B.

GHRRGHRS] Scoinaris O Y

Set Breakpaint

Set Barrier

At Location. .. Cri+B
Create Evaluation Point. ..
Create Watchpoint...

Suppress All
Delete All

Load...
Save
Save As...

This launches the At Location dialog for entering a breakpoint expression. Here, a breakpoint is created at line
119 in the file readexpr.c.

At Location in tx_cuda_matmul (on nvidia6.totalvic x

Enter breakpoint expression:
readexpr.c#119| -
Examples: 51, drawCircle, circle.cpp#35, Circledraw

:' | Create a pending breakpoint

CREATE BREAKPQINT CANCEL

NOTE: TotalView does not support ambiguous breakpoints in the Ul, meaning that if it cannot find a
location to set a breakpoint (or a barrier point), the breakpoint cannot be set.

Once you click Create Breakpoint, TotalView sets a breakpoint at the location. If you enter a function name,
TotalView s sets the breakpoint at the function’s first executable line. If you check the Create a pending break-
point box, TotalView creates the breakpoint as soon as it finds the function or file. See Pending Breakpoints on
page 93.

Setting Machine-Level Action Points

To set a machine-level action point, first display assembler code by selecting the menu item Window > Show
Assembler or right-clicking in the Source View and selecting Show Assembler from the context menu.

Select an instruction and click the line number to set a breakpoint. Alternatively, right-click on a line number to set
an eval or barrier point.

Breakpoints Setting Machine-Level Action Points 92

Setting and Managing Action Points (Breakpoints)

Action points set in the Assembler View have the same functionality and properties as those set in the Source
View.

RELATED TOPICS

The Assembler view The Assembler View

Source-level breakpoints Setting Source-Level Breakpoints

Pending Breakpoints

TotalView supports pending breakpoints, useful when setting a breakpoint on code contained in a library that has
not yet been loaded into memory.

A pending action point is a breakpoint, barrier point, or evalpoint created with a breakpoint expression that does
not yet correspond to any executable code. For example, a common use case is to create a pending function
breakpoint with a breakpoint expression that matches the name of a function that will be loaded at runtime via
dlopen(), CUDA kernel launch, or anything that dynamically loads executable code.

All four types of breakpoints can be pending (this includes line, function, methods in a class, and virtual function
breakpoints). Further, a breakpoint may transition between pending to non-pending as image files are loaded,
breakpoint expressions are reevaluated, address blocks are added, and invalid address blocks are nullified.

Set a pending breakpoint either on a function using the At Location dialog, or on a line number in the Source
view.

Pending Breakpoints on a Function

When creating a breakpoint on a function using the Action Points > At Location dialog box, you are prompted to
choose whether to set the breakpoint as pending if TotalView can't find the function:

At Location in tx_cuda_matmul (on nvidia6.totalvic x '

Enter breakpoint expression:
dynamically_loaded_code.cuf8s -

drawCircle, circle cpp?35, Crclesdraw

‘ ~(' Create a pending breakpoint ,

CREATE BREAKPOINT CANCEL

To immediately set a pending breakpoint, click Create a pending breakpoint directly in the At Location dialog.
This is useful if you are sure that the function name you are entering is correct (even if TotalView can't find it)
because it will be dynamically loaded at runtime. The breakpoint is set as pending:

Breakpoints Pending Breakpoints 93

Setting and Managing Action Points (Breakpoints)

Action Paimts. ¥ | Command Line % |Lugger X |

IDw Type Stop Location

i 8 m Group ‘dynamica]ly_loaded_code.cu.‘.lSE (pending) >

(Note that, if you click the pending box when TotalView can find the function, it ignores the “Create Pending”
request.)
Pending breakpoint prompt

If you didn't select to create a pending breakpoint and the name you entered was not similar to any existing func-
tion, TotalView prompts to set a pending breakpoint.

Question (on nvidia6.totalviewtech.com) x

4
Q Line dynamically_loaded_code.cu#85 has no code associated with it
Make it a pending breakpoint for a future shared library load?

@ XeS @ MNa

Pending Breakpoints on a Line Number

Because TotalView “slides” a line number breakpoint to the next valid location (see Sliding Breakpoints), explicitly
setting a line number pending breakpoint is rarely necessary. If, however, you know that there will be code at that
spot, you can explicitly set a pending breakpoint in only these ways:

m By creating a line number breakpoint at a line near the end of a source file where the following
lines have no line number symbols, but where you expect there to be dynamically loaded code at
runtime. For example, here is a breakpoint set at line 177 just before the end of a file:

irm I
150 |

Action Points % iCummand Line * | Logger *

D™ Type Stop Location

¥ 10 BEITTE Process | ..tx_cuda matmul.cu2177 (pending)

m |Inthe At Location dialog box, type the file name and line number of a source file that has not been
loaded yet. For example, dynal oaded. c#42 where dynal oaded. ¢ is compiled into a dynamically
loaded shared library. TotalView posts a dialog box to confirm, unless "Create a pending
breakpoint" is selected.

Breakpoints Pending Breakpoints 94

Setting and Managing Action Points (Breakpoints)

Conflicting Breakpoints

TotalView can place only one action point on an address. Because the breakpoints you specify are actually
expressions, the locations to which these expressions evaluate can overlap or even be the same. Sometimes, and
this most often occurs with pending breakpoints in dynamically loaded libraries, TotalView cannot predict when
action points will overlap. If they do, TotalView enables only one of the action points and disables all others that
evaluate to the same address. The action point that TotalView enables is that with the lowest actionpoint ID. The
other overlapping action points are marked as "conflicted" in the Action Points pane and dactions output.

Breakpoints at Execution

Once you have added all your breakpoints, run or step through your program. When a breakpoint is hit, the
Action Points view highlights the breakpoint that stopped execution.

53 [i=8; 1=<3; i++)
myStruct.nsa[i] = i*2;

55 C *charPtr = "7
57 br (i = 8; i < 18; i++)
{
j=18;
60 k = 108;
61 myArray[i] = i+j;
Commal d Line * | Action Points *
[ID Type Stopv File Line
ad 1 Process | tx_blocks.cxx 48
7
hd 2 Process | tx_blocks.cxx 54
ad & Process | tx_blocks.cxx E9
|

Both the window title bar and the status bar at the bottom of the interface display information when a break-

point is reached:

tx_blocks - Process 5, Thread 5.1 (Breakpoint) - CodeDynamics 2016X

Process: t_blocks (5) Thread: 5.1 - Breakpoint Frame: main File: . . WJB_TVPDA. git'debugger/srcitests/srcitx_blocks.cxx Line: 54

The above image shows execution stopped at a breakpoint. Similar information is displayed for the other action
points, which currently are set through the command line interface as described in the section More on Action
Points Using the CLI on page 138.

Modifying a Breakpoint
Modify a breakpoint by either:

m In the Action Points view, right-clicking on the breakpoint to bring up the context menu and
selecting Properties.

Breakpoints Breakpoints at Execution 95

Setting and Managing Action Points (Breakpoints)

Action Points X | Replay Bookmarks * |

| ID¥ | Type | Stop | Location . Line
v 3 ETE. Grouo . te blocks.cxx 54
————— Dive i
v 5 Enable blocks.cxx
Disable t
Delete Dl

)

| When hit (4
N

or

m In the Source view, right clicking on the breakpoint’s line number to bring up the context menu
and selecting Properties.

3 o e oS N
struchata myStruct;
L mmmdmembe Do,
Delete = 2a;
Disable = 777,25
ta = 2;
Properties... l.b = false;

— - I3y dEs])
mystruct.nsafi] = i*2;

E P S —

This launches the Modify BreakPoint dialog.

Modify BreakPoint {(on ubuntul404-x8664) x

Modify BreakPoint ID: 3 ¥] Enabled

At location: tx_blocks.cxodisd T

When hit, stop: | Group -

DELETE MODIFY BREAKPOINT CANCEL

In this dialog, you can enable, disable or delete a breakpoint, view the breakpoint’s location using the At location
drop-down, or adjust the breakpoint's width under the When hit, stop drop-down.

Breakpoints Modifying a Breakpoint 96

Setting and Managing Action Points (Breakpoints)

For example:

Modify BreakPoint (on ubuntul404-x8664) x

Modify BreakPoint ID: 3 ¥| Enabled

At location: tx_blocks.cxdsd T

J

When hit, stop: || Group
Process
Thread

The three width selections control how a breakpoint behaves in a multi-threaded or multi-process program.
Here's a summary:

m Group: Stops all running threads in all processes in the group.
m Process: Stops all the running threads in the process containing the thread that hit the breakpoint.

m Thread: Stops only the thread that first executes to this breakpoint.

RELATED TOPICS

About an action point's width Controlling an Action Point’'s Width on page 127
Saving action points Saving and Loading Action Points on page 136

About the TV::stop_all variable which indicates The TV::stop_all variable in the TotalView Reference Guide
the default behavior for a breakpoint's width

Setting Breakpoints When Using the fork()/execve() Functions

You must link with the dbfork library before debugging programs that call the fork() and execve() functions.

Debugging Processes That Call the fork() Function

By default, TotalView places breakpoints in all processes in a share group. When any process in the share group
reaches a breakpoint, TotalView stops all processes in the control group. This means that TotalView stops the
control group that contains the share group. This control can contain more than one share group.

To override these defaults, modify the breakpoint's width in the action point's properties, Modify Breakpoint dia-
log box.

CLI: dset SHARE_ACTION_POINT false

Breakpoints Setting Breakpoints When Using the fork()/execve() Functions 97

Setting and Managing Action Points (Breakpoints)

RELATED TOPICS

The Modify Breakpoint dialog box Modifying a Breakpoint on page 95

More on an action point's width Controlling an Action Point's Width on page 127
Linking with the dbfork library Linking with the dbfork Library on page 583
More on share groups and control How TotalView Creates Groups on page 353

Debugging Processes that Call the execve() Function

NOTE: You can control how TotalView handles system calls to execve(). See Exec Handling on
page 348.

Shared breakpoints are not set in children that have different executables.
To set the breakpoints for children that call the execve() function:

1. Set the breakpoints and breakpoint options in the parent and the children that do not call the execve()
function.

2. Start the multi-process program using the Group > Go command.
When the first child calls the execve() function, TotalView displays the following message:

Processname has exec’ d name. Do you want to stop it now?

G

3. Answer Yes.

(If you answer No, you won't have an opportunity to set breakpoints.)

4. Set breakpoints for the process.

After you set breakpoints for the first child using this executable, TotalView won't prompt when other chil-
dren call the execve() function. This means that if you do not want to share breakpoints in children that use
the same executable, set the breakpoint options using the action point properties dialog.

5. Select the Group > Go command.

Example: Multi-process Breakpoint

The following program excerpt illustrates the places where you can set breakpoints in a multi-process program:

1 pid = fork();
2if (pid==-1)
3 error ("fork failed");

Breakpoints Setting Breakpoints When Using the fork()/execve() Functions 98

Setting and Managing Action Points (Breakpoints)

4 else if (pid == 0)
5 children_play();

6 el se

7 parents_work();

The following table describes what happens when you set a breakpoint at different places:

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes.

3 Stops the parent process if the fork() function failed.
5 Stops the child process.

7 Stops the parent process.

RELATED TOPICS

Linking with the dbfork library Linking with the dbfork Library on page 583

Controlling system calls to execve(). Exec Handling on page 348

Breakpoints Setting Breakpoints When Using the fork()/execve() Functions

99

Setting and Managing Action Points (Breakpoints)

Evalpoints

TotalView can execute code fragments at specified locations with a special type of action point called an evalpoint.
TotalView evaluates these code fragments in the context of the target program, which means that you can refer to
program variables and branch to places in your program.

Use evalpoints to:

m Include instructions that stop a process and its relatives. If the code fragment can make a decision
whether to stop execution, it is called a conditional breakpoint, see Creating Conditional
Breakpoints on page 105.

m Test potential fixes or patches for your program; see Patching Programs on page 106.

m Include a goto in C or Fortran that transfers control to a line number in your program. This lets you
test program patches.

m Execute a TotalView function. These functions can stop execution and create barriers and
countdown breakpoints. For more information on these statements, see Using Built-in Variables
and Statements on page 567.

m Set the values of your program’s variables.

You can set an evalpoint at any source line that generates executable code. Valid source lines have a bold line
number. When TotalView encounters an evalpoint, it executes the code in the evalpoint before the code on that
line.

NOTE: If you call a function from an evalpoint and a breakpoint is within that function, TotalView
stops execution at that breakpoint. Similarly, if an evalpoint is in the function,