Contents

Introduction 1
 IMSL C Math Library ... 2
 Organization of the Documentation ... 3
 Finding the Right Function ... 4
 Naming Conventions ... 5
 Getting Started and the imsl.h file .. 6
 Error Handling, Underflow, Overflow, and Document Examples 7
 Memory Allocation for Output Arrays ... 8
 Printing Results ... 9
 Complex Arithmetic ... 10
 Missing Values ... 11
 Passing Data to User-Supplied Functions 12
 Return Values from User-Supplied Functions 14
 Thread Safe Usage ... 15
 OpenMP Usage .. 16
Vendor Supplied Libraries Usage... 17
 C++ Usage .. 18
 Matrix Storage Modes ... 21

Chapter 1 Linear Systems ... 31
 Functions ... 31
 Usage Notes ... 33
 lin_sol_gen .. 36
 lin_sol_gen (complex) ... 45
 lin_sol_posdef ... 52
 lin_sol_posdef (complex) ... 58
 lin_sol_gen_band .. 64
 lin_sol_gen_band (complex) ... 70
 lin_sol_posdef_band ... 76
 lin_sol_posdef_band (complex) .. 81
 lin_sol_gen_coordinate ... 87
 lin_sol_gen_coordinate (complex) .. 99
 superlu ... 108
 superlu (complex) ... 123
Chapter 2 Eigensystem Analysis

Functions .. 261
Usage Notes .. 262
eig_gen .. 265
eig_gen (complex) .. 269
eig_sym .. 273
eig_herm (complex) .. 277
eig_symgen .. 281
geneig .. 285
geneig (complex) ... 290

Chapter 3 Interpolation and Approximation

Functions .. 295
Usage Notes .. 297
cub_spline_interp_e_cnd .. 306
cub_spline_interp_shape ... 315
cub_spline_tcb .. 321
cub_spline_value ... 329
cub_spline_integral ... 333
spline_interp ... 335
spline_knots .. 341
spline_2d_interp ... 346
spline_value ... 353
spline_integral ... 357
spline_2d_value .. 360
spline_2d_integral ... 365
spline_nd_interp .. 368
user_fcn_least_squares ... 373
spline_least_squares ... 382
spline_2d_least_squares ... 389
Chapter 4 Quadrature

Functions .. 431
Usage Notes .. 432
int_fcn_sing .. 435
int_fcn_sing_1d .. 440
int_fcn .. 448
int_fcn_sing_pts ... 453
int_fcn_alg_log ... 459
int_fcn_inf ... 464
int_fcn_trig .. 469
int_fcn_fourier .. 475
int_fcn_cauchy .. 480
int_fcn_smooth ... 485
int_fcn_2d .. 490
int_fcn_sing_2d ... 496
int_fcn_sing_3d ... 505
int_fcn_hyper_rect .. 516
int_fcn_qmc .. 521
gauss_quad_rule ... 526
fcn_derivative .. 531

Chapter 5 Differential Equations

Functions ... 535
Usage Notes .. 536
ode_runge_kutta ... 539
ode_adams_gear ... 546
bvp_finite_difference ... 547
differential_algebraic_eqs .. 560
dea_petzold_gear ... 577
ode_adams_2nd_order ... 578
ode_adams_krogh ... 579
Introduction to pde_1d_mg .. 589
pde_1d_mg .. 592
pde_method_of_lines ... 630
modified_method_of_lines .. 631
feynman_kac ... 650
feynman_kac_evaluate ... 688
fast_poisson_2d ... 692
Chapter 9 Special Functions

Functions.. 923
Usage Notes .. 927
erf.. 929
erfc .. 931
erfcce... 934
erfcinv .. 936
erfci .. 938
eI ... 941
beta.. 944
log_beta ... 947
betai .. 949
gamma .. 951
gammaln .. 954
gammac .. 957
psi ... 960
psi1 ... 962
bessel_j0 .. 964
bessel_j1 .. 967
bessel_jx .. 969
bessel_y0 ... 972
bessel_y1 ... 975
bessel_yx ... 977
bessel_i0 .. 979
bessel_i1 .. 981
bessel_ik .. 983
bessel_i1 .. 985
bessel_ix .. 987
bessel_k0 ... 989
bessel_k1 ... 991
bessel_kx ... 993
bessel_exp_k0 ... 995
bessel_exp_k1 ... 997
elliptic_integral_k ... 999
elliptic_integral_e ... 1001
elliptic_integral_rf ... 1003
elliptic_integral_rd ... 1005
elliptic_integral_rj ... 1007
elliptic_integral_rc ... 1009
fresnel_integral_c ... 1011
fresnel_integral_s ... 1013
airy_ai .. 1015
airy_bi .. 1017
airy_ai_derivative ... 1019
airy_bi_derivative ... 1021
kelvin_ber0 ... 1023
kelvin_beil0 ... 1025
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>kelvin_ker0</td>
<td>1027</td>
</tr>
<tr>
<td>kelvin_kei0</td>
<td>1029</td>
</tr>
<tr>
<td>kelvin_ber0_derivative</td>
<td>1031</td>
</tr>
<tr>
<td>kelvin_beio_derivative</td>
<td>1033</td>
</tr>
<tr>
<td>kelvin_ker0_derivative</td>
<td>1035</td>
</tr>
<tr>
<td>kelvin_kei0_derivative</td>
<td>1037</td>
</tr>
<tr>
<td>nominal_rate</td>
<td>1039</td>
</tr>
<tr>
<td>modified_internal_rate</td>
<td>1041</td>
</tr>
<tr>
<td>internal_rate_schedule</td>
<td>1043</td>
</tr>
<tr>
<td>present_value_schedule</td>
<td>1046</td>
</tr>
<tr>
<td>present_value</td>
<td>1048</td>
</tr>
<tr>
<td>F_cdf</td>
<td>1050</td>
</tr>
<tr>
<td>t_cdf</td>
<td>1052</td>
</tr>
<tr>
<td>t_inverse_cdf</td>
<td>1055</td>
</tr>
<tr>
<td>gamma_cdf</td>
<td>1057</td>
</tr>
<tr>
<td>binomial_cdf</td>
<td>1059</td>
</tr>
<tr>
<td>hypergeometric_cdf</td>
<td>1061</td>
</tr>
<tr>
<td>poisson_cdf</td>
<td>1063</td>
</tr>
<tr>
<td>beta_cdf</td>
<td>1065</td>
</tr>
<tr>
<td>beta_inverse_cdf</td>
<td>1067</td>
</tr>
<tr>
<td>bivariate_normal_cdf</td>
<td>1069</td>
</tr>
<tr>
<td>cumulative_interest</td>
<td>1071</td>
</tr>
<tr>
<td>cumulative_principal</td>
<td>1073</td>
</tr>
<tr>
<td>depreciation_db</td>
<td>1075</td>
</tr>
<tr>
<td>depreciation_ddb</td>
<td>1078</td>
</tr>
<tr>
<td>depreciation_sln</td>
<td>1081</td>
</tr>
<tr>
<td>depreciation_syd</td>
<td>1083</td>
</tr>
<tr>
<td>depreciation_vdb</td>
<td>1085</td>
</tr>
<tr>
<td>dollar_decimal</td>
<td>1088</td>
</tr>
<tr>
<td>dollar_fraction</td>
<td>1090</td>
</tr>
<tr>
<td>effective_rate</td>
<td>1092</td>
</tr>
<tr>
<td>future_value</td>
<td>1094</td>
</tr>
<tr>
<td>future_value_schedule</td>
<td>1096</td>
</tr>
<tr>
<td>interest_payment</td>
<td>1098</td>
</tr>
<tr>
<td>interest_rate_annuity</td>
<td>1100</td>
</tr>
<tr>
<td>internal_rate_of_return</td>
<td>1103</td>
</tr>
<tr>
<td>internal_rate_schedule</td>
<td>1105</td>
</tr>
<tr>
<td>modified_internal_rate</td>
<td>1108</td>
</tr>
<tr>
<td>net_present_value</td>
<td>1110</td>
</tr>
<tr>
<td>nominal_rate</td>
<td>1112</td>
</tr>
<tr>
<td>number_of_periods</td>
<td>1114</td>
</tr>
<tr>
<td>payment</td>
<td>1116</td>
</tr>
<tr>
<td>present_value</td>
<td>1118</td>
</tr>
<tr>
<td>present_value_schedule</td>
<td>1120</td>
</tr>
<tr>
<td>principal_payment</td>
<td>1122</td>
</tr>
<tr>
<td>accr_interest_maturity</td>
<td>1124</td>
</tr>
<tr>
<td>accr_interest_periodic</td>
<td>1126</td>
</tr>
</tbody>
</table>
Chapter 10 Statistics and Random Number Generation

Functions ... 1183
Usage Notes .. 1184
simple_statistics.. 1186
table_oneway... 1192
chi_squared_test... 1197
covariances ... 1207
regression ... 1214
poly_regression.. 1223
ranks .. 1232
random_seed_get... 1240
random_seed_set... 1242
random_option.. 1243
random_uniform... 1244
random_normal.. 1247
random_poisson... 1249
random_gamma.. 1251
random_beta.. 1254
random_exponential.. 1257
faure_next_point... 1259
Chapter 11 Printing Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>1263</td>
</tr>
<tr>
<td>write_matrix</td>
<td>1264</td>
</tr>
<tr>
<td>page</td>
<td>1271</td>
</tr>
<tr>
<td>write_options</td>
<td>1273</td>
</tr>
</tbody>
</table>

Chapter 12 Utilities

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>1277</td>
</tr>
<tr>
<td>output_file</td>
<td>1279</td>
</tr>
<tr>
<td>version</td>
<td>1284</td>
</tr>
<tr>
<td>ctime</td>
<td>1286</td>
</tr>
<tr>
<td>date_to_days</td>
<td>1287</td>
</tr>
<tr>
<td>days_to_date</td>
<td>1289</td>
</tr>
<tr>
<td>error_options</td>
<td>1291</td>
</tr>
<tr>
<td>error_type</td>
<td>1298</td>
</tr>
<tr>
<td>error_message</td>
<td>1299</td>
</tr>
<tr>
<td>error_code</td>
<td>1301</td>
</tr>
<tr>
<td>initialize_error_handler</td>
<td>1303</td>
</tr>
<tr>
<td>set_user_fcn_return_flag</td>
<td>1305</td>
</tr>
<tr>
<td>initialize</td>
<td>1310</td>
</tr>
<tr>
<td>free</td>
<td>1311</td>
</tr>
<tr>
<td>fopen</td>
<td>1313</td>
</tr>
<tr>
<td>fclose</td>
<td>1315</td>
</tr>
<tr>
<td>omp_options</td>
<td>1316</td>
</tr>
<tr>
<td>constant</td>
<td>1318</td>
</tr>
<tr>
<td>machine (integer)</td>
<td>1322</td>
</tr>
<tr>
<td>machine (float)</td>
<td>1325</td>
</tr>
<tr>
<td>sort</td>
<td>1328</td>
</tr>
<tr>
<td>sort (integer)</td>
<td>1331</td>
</tr>
<tr>
<td>vector_norm</td>
<td>1334</td>
</tr>
<tr>
<td>vector_norm (complex)</td>
<td>1337</td>
</tr>
<tr>
<td>mat_mul_rect</td>
<td>1341</td>
</tr>
<tr>
<td>mat_mul_rect (complex)</td>
<td>1346</td>
</tr>
<tr>
<td>mat_mul_rect_band</td>
<td>1351</td>
</tr>
<tr>
<td>mat_mul_rect_band (complex)</td>
<td>1356</td>
</tr>
<tr>
<td>mat_mul_rect_coordinate</td>
<td>1361</td>
</tr>
<tr>
<td>mat_mul_rect_coordinate (complex)</td>
<td>1366</td>
</tr>
<tr>
<td>mat_add_band</td>
<td>1372</td>
</tr>
<tr>
<td>mat_add_band (complex)</td>
<td>1376</td>
</tr>
<tr>
<td>mat_add_coordinate</td>
<td>1381</td>
</tr>
<tr>
<td>mat_add_coordinate (complex)</td>
<td>1385</td>
</tr>
<tr>
<td>matrix_norm</td>
<td>1390</td>
</tr>
<tr>
<td>matrix_norm_band</td>
<td>1393</td>
</tr>
<tr>
<td>matrix_norm_coordinate</td>
<td>1397</td>
</tr>
<tr>
<td>generate_test_band</td>
<td>1401</td>
</tr>
<tr>
<td>generate_test_band (complex)</td>
<td>1404</td>
</tr>
</tbody>
</table>
Introduction

Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL C Math Library</td>
<td>2</td>
</tr>
<tr>
<td>Organization of the Documentation</td>
<td>3</td>
</tr>
<tr>
<td>Finding the Right Function</td>
<td>4</td>
</tr>
<tr>
<td>Naming Conventions</td>
<td>5</td>
</tr>
<tr>
<td>Getting Started and the imsl.h file</td>
<td>6</td>
</tr>
<tr>
<td>Error Handling, Underflow, Overflow, and Document Examples</td>
<td>7</td>
</tr>
<tr>
<td>Memory Allocation for Output Arrays</td>
<td>8</td>
</tr>
<tr>
<td>Printing Results</td>
<td>9</td>
</tr>
<tr>
<td>Complex Arithmetic</td>
<td>10</td>
</tr>
<tr>
<td>Missing Values</td>
<td>11</td>
</tr>
<tr>
<td>Passing Data to User-Supplied Functions</td>
<td>12</td>
</tr>
<tr>
<td>Return Values from User-Supplied Functions</td>
<td>14</td>
</tr>
<tr>
<td>Thread Safe Usage</td>
<td>15</td>
</tr>
<tr>
<td>OpenMP Usage</td>
<td>16</td>
</tr>
<tr>
<td>Vendor Supplied Libraries Usage</td>
<td>17</td>
</tr>
<tr>
<td>C++ Usage</td>
<td>18</td>
</tr>
<tr>
<td>Matrix Storage Modes</td>
<td>21</td>
</tr>
</tbody>
</table>
IMSL C Math Library

The IMSL® C Math Library, a component of the IMSL® C Numerical Library, is a library of C functions useful in scientific programming. Each function is designed and documented for use in research activities as well as by technical specialists. A number of the example programs also show graphs of resulting output.
Organization of the Documentation

This manual contains a concise description of each function with at least one example demonstrating the use of each function, including sample input and results. All information pertaining to a particular function is in one place within a chapter.

Each chapter begins with a table of contents listing the functions included in the chapter followed by an introduction. Documentation of the functions consists of the following information:

- **Section Name:** Usually, the common root for the type \texttt{float} and type \texttt{double} versions of the function is given.
- **Purpose:** A statement of the purpose of the function.
- **Synopsis:** The form for referencing the subprogram with required arguments listed.
- **Required Arguments:** A description of the required arguments in the order of their occurrence, as follows:
 - **Input:** Argument must be initialized; it is not changed by the function.
 - **Input/Output:** Argument must be initialized; the function returns output through this argument. The argument cannot be a constant or an expression.
 - **Output:** No initialization is necessary. The argument cannot be a constant or an expression; the function returns output through this argument.
- **Return Value:** The value returned by the function.
- **Synopsis with Optional Arguments:** The form for referencing the function with both required and optional arguments listed.
- **Optional Arguments:** A description of the optional arguments in the order of their occurrence.
- **Description:** A description of the algorithm and references to detailed information. In many cases, other IMSL functions with similar or complementary functions are noted.
- **Examples:** At least one application of this function showing input and optional arguments.
- **Errors:** Listing of any errors that may occur with a particular function. A discussion on error types is given in the User Errors section of the Reference Material. The errors are listed by their type as follows:
 - **Informational Errors:** List of information\texttt{al} errors that may occur with the function.
 - **Alert Errors:** List of alert errors that may occur with the function.
 - **Warning Errors:** List of warning errors that may occur with the function.
 - **Fatal Errors:** List of fatal errors that may occur with the function.
Finding the Right Function

The IMSL C Math Library is organized into chapters; each chapter contains functions with similar computational or analytical capabilities. To locate the right function for a given problem, you may use either the table of contents located in each chapter introduction, or in Alphabetical Summary of Functions at the end of this manual.

Often the quickest way to use the IMSL C Math Library is to find an example similar to your problem and then mimic the example. Each function in the document has at least one example demonstrating its application.
Naming Conventions

Most functions are available in both a type `float` and a type `double` version, with names of the two versions sharing a common root. Some functions also are available in type `int`, or the IMSL-defined types `f_complex` or `d_complex` versions. A list of each type and the corresponding prefix of the function name in which multiple type versions exist follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>imsl_f__</td>
</tr>
<tr>
<td>double</td>
<td>imsl_d__</td>
</tr>
<tr>
<td>int</td>
<td>imsl_i__</td>
</tr>
<tr>
<td>f_complex</td>
<td>imsl_c__</td>
</tr>
<tr>
<td>d_complex</td>
<td>imsl_z__</td>
</tr>
</tbody>
</table>

The section names for the functions only contain the common root to make finding the functions easier. For example, the functions `imsl_f_lin_sol_gen` and `imsl_d_lin_sol_gen` can be found in section `lin_sol_gen` in Chapter 1, “Linear Systems.”

Where appropriate, the same variable name is used consistently throughout a chapter in the IMSL C Math Library. For example, in the functions for eigensystem analysis, `eval` denotes the vector of eigenvalues and `n_eval` denotes the number of eigenvalues computed or to be computed.

When writing programs accessing the IMSL C Math Library, the user should choose C names that do not conflict with IMSL external names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the following rule is observed:

- Do not choose a name beginning with “imsl_” in any combination of uppercase or lowercase characters.
Getting Started and the imsl.h file

Getting Started

To use any of the IMSL C Math Library functions, you first must write a program in C to call the function. Each function conforms to established conventions in programming and documentation. We give first priority in development to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions makes it easy to use more than one function in a given application. Also, you will find that the design consistency enables you to apply your experience with one IMSL C Math Library function to all other IMSL functions that you use.

The imsl.h File

The include file `<imsl.h>` is used in all of the examples in this manual. This file contains prototypes for all IMSL-defined functions; the spline structures, `lmsl_f_ppoly`, `lmsl_d_ppoly`, `lmsl_f_spline`, and `lmsl_d_spline`; enumerated data types, `lmsl_quad`, `lmsl_write_options`, `lmsl_page_options`, `lmsl_ode`, and `lmsl_error`; and the IMSL-defined data types `f_complex` (which is the type `float` complex) and `d_complex` (which is the type `double` complex).
Error Handling, Underflow, Overflow, and Document Examples

The functions in the IMSL C Math Library attempt to detect and report errors and invalid input. This error-handling capability provides automatic protection for the user without requiring the user to make any specific provisions for the treatment of error conditions. Errors are classified according to severity and are assigned a code number. By default, errors of moderate or higher severity result in messages being automatically printed by the function. Moreover, errors of highest severity cause program execution to stop. The severity level, as well as the general nature of the error, is designated by an “error type” with symbolic names IMSL_FATAL, IMSL_WARNING, etc. See the User Errors section in the “Reference Material” for further details.

In general, the IMSL C Math Library codes are written so that computations are not affected by underflow, provided the system (hardware or software) replaces an underflow with the value zero. Normally, system error messages indicating underflow can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages indicating overflow should be examined for programming errors such as incorrect input data, mismatch of argument types, or improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the algorithm.

Output from document examples can be system dependent and the user's results may vary depending upon the system used.
Memory Allocation for Output Arrays

Many functions return a pointer to an array containing the computed answers. By default, an array returned as the value of a C Numerical Library function is stored in memory allocated by that function. To release this space, use `imsl_free`. To return the array in memory allocated by the calling program, use the optional argument

\[
\text{IMSL_RETURN_USER, float a[]}\]

In this way, the allocation of space for the computed answers can be made either by the user or internally by the function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user or are to be allocated internally by the function. For example, in many functions in “Linear Systems,” the optional arguments

\[
\text{IMSL_INVERSE_USER, float inva[]} \text{ (Output)}
\]

\[
\text{IMSL_INVERSE, float **p_inva} \text{ (Output)}
\]

specify two mutually exclusive optional arguments. If the first option is chosen, the inverse of the matrix is stored in the user-provided array `inva`.

In the second option, `float **p_inva` refers to the address of a pointer to the inverse. The called function allocates memory for the array and sets `*p_inva` to point to this memory. Typically, `float *p_inva` is declared, `&p_inva` is used as an argument to this function. Use `imsl_free(p_inva)` to release the space.
Printing Results

Most functions in the IMSL C Math Library do not print any of the results; the output is returned in C variables. The IMSL C Math Library contains some special functions just for printing arrays. For example, write_matrix is a convenient function for printing matrices of type float. See Printing Functions for detailed descriptions of these functions.
Complex Arithmetic

Users can perform computations with complex arithmetic by using IMSL predefined data types. These types are available in two floating-point precisions:

- \texttt{fcomplex} for single-precision complex values
- \texttt{dcomplex} for double-precision complex values

A description of complex data types and functions is given in the Reference Material.
Missing Values

Some of the functions in the IMSL C Math Library allow the data to contain missing values. These functions recognize as a missing value the special value referred to as “not a number,” or NaN. The actual value is different on different computers, but it can be obtained by reference to the IMSL function \texttt{imsl_f_machine}, described in Chapter 12, “Utilities.”

The way that missing values are treated depends on the individual function and is described in the documentation for the function.
Passing Data to User-Supplied Functions

In some cases it may be advantageous to pass problem-specific data to a user-supplied function through the IMSL C Math Library interface. This ability can be useful if a user-supplied function requires data that is local to the user's calling function, and the user wants to avoid using global data to allow the user-supplied function to access the data. Functions in IMSL C Math Library that accept user-supplied functions have an optional argument(s) that will accept an alternative user-supplied function, along with a pointer to the data, that allows user-specified data to be passed to the function. The example below demonstrates this feature using the IMSL C Math Library function `imsl_f_min_uncon` and optional argument `IMSL_FCN_W_DATA`.

Example

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>

float fcn_w_data(float x, void *data);

int main()
{
    float a = -100.0;
    float b = 100.0;
    float fx, x;
    float usr_data[] = {5.0, 10.0};
    x = imsl_f_min_uncon (NULL, a, b,
        IMSL_FCN_W_DATA, fcn_w_data, usr_data,
        0);
    fx = fcn_w_data(x, (void*)usr_data);
    printf ("The solution is: %8.4f\n", x);
    printf ("The function evaluated at the solution is: %8.4f\n",
            fx);
}

/*
* User function that accepts additional data in a (void*) pointer.
* This (void*) pointer can be cast to any type and dereferenced to
get at any sort of data-type or structure that is needed.
* For example, to get at the data in this example
* *((float*)data) and usr_data[0] contains the value 5.0
* *((float*)data+1) and usr_data[1] contains the value 10.0
*/
float fcn_w_data(float x, void *data)
{
    float *usr_data = (float*)data;
```
return exp(x) - usr_data[0]*x + usr_data[1];
Return Values from User-Supplied Functions

All values returned by user-supplied functions must be valid real numbers. It is the user’s responsibility to check that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

In addition to the techniques described below, it is also possible to instruct the IMSL C Numerical Library to return control to the calling program in case an unrecoverable error occurs within a user-supplied function. See function `imsl_set_user_fcn_return_flag` for a description of this feature.

Example

```c
#include <imsl.h>
#include <math.h>

void fcn(int, int, float[], float[]);
int main()
{
    int m=3, n=1;
    float *result, fx[3];
    float xguess[]={1.0};
    result = imsl_f_nonlin_least_squares(fcn, m, n, IMSL_XGUESS, xguess, 0);
    fcn(m, n, result, fx);
    /* Print results */
    imsl_f_write_matrix("The solution is", 1, 1, result, 0);
    imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
}

void fcn(int m, int n, float x[], float f[])
{
    int i;
    float y[3] = {2.0, 4.0, 3.0};
    float t[3] = {1.0, 2.0, 3.0};
    for (i=0; i<m; i++)
    {
        /* check for x=0
         do not want to return infinity to nonlin_least_squares */
        if (x[0] == 0.0) {
            f[i] = 10000.;
        } else {
            f[i] = t[i]/x[0] - y[i];
        }
    }
}
```
Thread Safe Usage

The IMSL C Math Library is thread safe based on OpenMP. That means it can be safely called from a multi-threaded application if the calling program adheres to a few important guidelines. In particular, IMSL C Math Library's implementation of error handling and I/O must be understood.

Error Handling

C Math Library's error handling in a multithreaded application behaves similarly to how it behaves in a single-threaded application. The major difference is that an error stack exists for each thread calling C Math Library functions. The result of separate error stacks for each thread is greater control of the error handler options for each thread. Each thread can set its own options for the C Math Library error handler using `imsl_error_options`. For an example of setting error handler options for separate threads, see Chapter 12, Utilities, Example 3 of `imsl_error_options`.

Routines that Produce Output

A number of routines in C Math Library can be used to produce output. The function `imsl_output_file` can be used to control the file to which the output is directed. In an application with a single thread of execution, a single call to `imsl_output_file` can be used to set the file to which the output will be directed. In a multi-threaded application each thread must call `imsl_output_file` to change the default setting of where output will be directed. See the Utilities chapter, Example 2 of `imsl_output_file` for more details.
OpenMP Usage

Thread safety of the IMSL C Numerical Library is based on OpenMP. Users of the IMSL C Numerical Library are also able to leverage shared-memory parallelism by means of native support for the OpenMP API specification within parts of the Library. Those parts are flagged by the OpenMP icon shown below.

Parallelism in OpenMP is implemented by means of threads. In the OpenMP programming model, it is assumed that memory is shared among threads, such as in multi-core machines. These threads are spawned by OpenMP in response to directives embedded in source code.

The Library’s use of OpenMP is largely transparent to the user. Codes that have been enhanced with OpenMP directives will still work properly in serial execution environments. Error handling routines have been extended so that the most severe error during a parallel run will be returned to the user.

OpenMP is used by the Library in these main ways:

1. To implement thread safety within the C Numerical Library.
2. To speed up computationally intensive functions by exploiting data parallelism in their processing.
3. To parallelize the evaluation of user-supplied functions in routines that use them, e.g. in numerical integration routines.

In the last case, the user must explicitly signal to the Library that the user-supplied functions themselves are thread-safe, or by default the user’s function(s) will not evaluate in parallel. The utility `imsl_omp_options` allows the user to assert that all routines passed to the library are thread-safe.

Thread safety implies that function(s) may be executed simultaneously by multiple threads and still function correctly. Requiring that user-supplied functions be thread-safe is crucial, because the different threads spawned by OpenMP may call user-supplied functions simultaneously, and/or in an arbitrary order, and/or with differing inputs. Care must therefore be taken to ensure that the parallelized algorithm acts in the same way as its serial “ancestor”. Functions whose results depend on the order in which they are executed are not thread-safe and are thus not good candidates for parallelization; neither are functions which access and modify global data.

Specifications of the OpenMP standards are provided at http://openmp.org/wp/.
Vendor Supplied Libraries Usage

The IMSL C Numerical Library contains functions which may take advantage of functions in vendor supplied libraries such as Intel's® Math Kernel Library (MKL) or Sun's™ High Performance Library. Functions in the vendor supplied libraries are finely tuned for performance to take full advantage of the environment for which they are supplied. For these functions, the user of the IMSL C Numerical Library has the option of linking to code which is based on either the IMSL legacy functions or the functions in the vendor supplied library. The following icon in the function documentation alerts the reader when this is the case:

![HIGH PERFORMANCE icon](image)

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in the online README file of the product distribution.
C++ Usage

IMSL C Numerical Library functions can be used in both C and C++ applications. It is also possible to wrap library functions into C++ classes.

The function `imsl_f_int_fcn_sing` computes the integral of a user defined function. For C++ usage the user defined function is defined as a member function of the abstract class `IntFcnSingFunction` defined as follows.

```cpp
#include <imsl.h>
#include <math.h>
#include <stdio.h>

class IntFcnSingFunction {
  public:
    virtual float f(float x) = 0;
};
```

The function `imsl_f_int_fcn_sing` is wrapped as the C++ class `IntFcnSing`. This implementation uses the optional argument, `IMSL_FCN_W_DATA`, to call `local_function` which in turn calls the method `f` to evaluate the user defined function. For simplicity, this implementation only wraps a single optional argument, `IMSL_MAX_SUBINTER`, the maximum number of subintervals. More could be included in a similar manner.

```cpp
#include <imsl.h>

class IntFcnSing {
  public:
    int max_subinter;
    IntFcnSing();
    float integrate(IntFcnSingFunction *F, float a, float b);
};

static float local_function(float x, void *data) {
  IntFcnSingFunction *F = (IntFcnSingFunction*)data;
  return F->f(x);
}

IntFcnSing::IntFcnSing() {
  max_subinter = 500;
}

float IntFcnSing::integrate(IntFcnSingFunction *F, float a, float b) {
  float result;
  result = imsl_f_int_fcn_sing(NULL, a, b,
```
IMSL_FCN_W_DATA, local_function, F,
IMSL_MAX_SUBINTER, max_subinter,
0);
if (imsl_error_type() >= 3)
{
 throw imsl_error_message();
}
return result;
}

To use this IntFcnSing the user defined function must be defined as the method \(f \) in a class that extends IntFcnSingFunction. The following class, MyClass, defines the function \(f(x) = e^x - ax \), where \(a \) is a parameter.

class MyClass : public IntFcnSingFunction
{
public:
 MyClass();
 float f(double x);
private:
 float my_parameter;
};

MyClass::MyClass()
{
 my_parameter = 5.0;
}

float MyClass::f(float x)
{
 return exp(x) - my_parameter*x;
}

The following is an example of the use of these classes. Since the C++ throws an exception on fatal or terminal IMSL errors, printing and stopping on these errors is turned off by a call to imsl_error_options. Also, since the user defined function is thread-safe, a call is made to imsl_omp_options to declare this. With this setting, the quadrature code will use OpenMP to evaluate the function in parallel. Both of these calls need be made once per run.

The second part of this example sets the maximum number of subintervals to 5, an unrealistically small number, to show the error handling.

int main()
{
 imsl_error_options(
 IMSL_SET_PRINT, IMSL_FATAL, 0,
 IMSL_SET_PRINT, IMSL_TERMINAL, 0,
 IMSL_SET_STOP, IMSL_FATAL, 0,
 IMSL_SET_STOP, IMSL_TERMINAL, 0,
 0);

c++ usage

int main()
{
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

 IntFcnSing *intFcnSing = new IntFcnSing();
 MyClass *myClass = new MyClass();
 float x = intFcnSing->integrate(myClass, -1.0, 1.0);
 printf("Solution in [-1,+1]: %g\n", x);
 try {
 intFcnSing->max_subinter = 5;
 x = intFcnSing -> integrate (myClass, -100.0, 1000.0);
 printf("Solution in [-100,1000]: %g\n", x);
 } catch(char * exception) {
 printf("Exception raised: %s\n", exception);
 }
}

Output

Integral over [-1,+1] = 2.3504
Exception raised: The maximum number of subintervals allowed "maxsub" = 5
has been reached. Increase "maxsub".
Matrix Storage Modes

In this section, the word *matrix* is used to refer to a mathematical object and the word *array* is used to refer to its representation as a C data structure. In the following list of array types, the IMSL C Math Library functions require input consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For example, in solving linear algebraic systems, the pointer is to the solution. For general, real eigenvalue problems, the pointer is to the eigenvalues. Normally, the input array values are not changed by the functions.

In the IMSL C Math Library, an array is a pointer to a contiguous block of data. They are *not* pointers to pointers to the rows of the matrix. Typical declarations are:

```c
float *a = {1, 2, 3, 4};
float b[2][2] = {{1, 2}, {3, 4}};
float c[] = {1, 2, 3, 4};
```

General Mode

A *general* matrix is a square \(n \times n \) matrix. The data type of a general array can be *float, double, f_complex*, or *d_complex*.

Rectangular Mode

A *rectangular* matrix is an \(m \times n \) matrix. The data type of a rectangular array can be *float, double, f_complex*, or *d_complex*.

Symmetric Mode

A *symmetric* matrix is a square \(n \times n \) matrix \(A \), such that \(A^T = A \). (The matrix \(A^T \) is the transpose of \(A \).) The data type of a symmetric array can be *float* or *double*.

Hermitian Mode

A *Hermitian* matrix is a square \(n \times n \) matrix \(A \), such that

\[
A^H = A^T = A
\]

The matrix \(\bar{A} \) is the complex conjugate of \(A \), and
\[A^H = \overline{A^T} \]

is the conjugate transpose of \(A \). For Hermitian matrices \(A^H = A \). The data type of a Hermitian array can be \textit{f_complex} or \textit{d_complex}.

Sparse Coordinate Storage Format

Only the nonzero elements of a sparse matrix need to be communicated to a function. Sparse coordinate storage format stores the value of each matrix entry along with that entry’s row and column index. The following four non-homogeneous data structures are defined to support this concept:

```c
typedef struct {
    int row;
    int col;
    float val;
} Imsl_f_sparse_elem;

typedef struct {
    int row;
    int col;
    double val;
} Imsl_d_sparse_elem;

typedef struct {
    int row;
    int col;
    f_complex val;
} Imsl_c_sparse_elem;

typedef struct {
    int row;
    int col;
    d_complex val;
} Imsl_z_sparse_elem;
```

See the **Complex Data Types and Functions** in the Reference Material at the end of this manual for a discussion of the complex data types \textit{f_complex} and \textit{d_complex}. Note that the only difference in these structures involves changes in underlying data types. A sparse matrix is passed to functions that accept sparse coordinate format by forming an array of one of these data types. The number of elements in that array will be equal to the number of nonzeros in the sparse matrix.
As an example consider the 6×6 matrix:

$$ A = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 9 & -3 & -1 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 \\ -2 & 0 & 0 & -7 & -1 & 0 \\ -1 & 0 & 0 & -5 & 1 & -3 \\ -1 & -2 & 0 & 0 & 0 & 6 \end{bmatrix} $$

The matrix A has 15 nonzero elements, and the sparse coordinate representation would be

- row: 0 1 1 1 2 3 3 3 4 4 4 5 5 5 5
- col: 0 1 2 3 2 0 3 4 0 3 4 5 0 1 5
- val: 2 9 -3 -1 5 -2 -7 -1 -5 1 -3 -1 -2 6

Since this representation does not rely on order, an equivalent form would be

- row: 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4
- col: 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5
- val: -1 -1 -2 2 -2 9 5 -3 -5 -7 -1 1 -1 6 -3

There are different ways this data could be used to initialize an array of type, for example, `imsl_f_sparse_elem`. Consider the following program fragment:

```c
#include <imsl.h>
int main()
{
    Imsl_f_sparse_elem a[] = {
        {0, 0, 2.0},
        {1, 1, 9.0},
        {1, 2, -3.0},
        {1, 3, -1.0},
        {2, 2, 5.0},
        {3, 0, -2.0},
        {3, 3, -7.0},
        {3, 4, -1.0},
        {4, 0, -1.0},
        {4, 3, -5.0},
        {4, 4, 1.0},
        {4, 5, -3.0},
        {5, 0, -1.0},
        {5, 1, -2.0},
        {5, 5, 6.0}};
    Imsl_f_sparse_elem b[15];

    b[0].row = b[0].col = 0;    b[0].val = 2.0;
    b[1].row = b[1].col = 1;    b[1].val = 9.0;
    b[2].row = 1; b[2].col = 2; b[2].val = -3.0;
    b[3].row = 1; b[3].col = 3; b[3].val = -1.0;
...
Both \( a \) and \( b \) represent the sparse matrix \( A \), and the functions in this module would produce identical results regardless of which identifier was sent through the argument list.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to store the diagonal and either the upper or lower triangle. As an example, consider the 5 × 5 linear system:

\[
\begin{bmatrix}
(4,0) & (1, -1) & 0 & 0 \\
(1, 1) & (4,0) & (1, -1) & 0 \\
0 & (1, 1) & (4,0) & (1, -1) \\
0 & 0 & (1, 1) & (4,0)
\end{bmatrix}
\]

The Hermitian and symmetric positive definite system solvers in this library expect the diagonal and lower triangle to be specified. The sparse coordinate form for the lower triangle is given by

row  
0 1 2 3 1 2 3  

col  
0 1 2 3 0 1 2  

val  
(4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1)  

As before, an equivalent form would be

row  
0 1 1 2 2 3 3  

col  
0 0 1 1 2 2 3  

val  
(4,0) (1,1) (4,0) (1,1) (4,0) (1,1) (4,0)  

The following program fragment will initialize both \( a \) and \( b \) to \( H \).

```c
#include <imsl.h>
int main()
{

 Imsl_c_sparse_elem a[] = {
 {0, 0, {4.0, 0.0}},
 {1, 1, {4.0, 0.0}},
 {2, 2, {4.0, 0.0}},
 {3, 3, {4.0, 0.0}},
 {1, 0, {1.0, 1.0}}
 },
```
There are some important points to note here. \( H \) is not symmetric, but rather Hermitian. The functions that accept Hermitian data understand this and operate assuming that

\[ h_{ij} = \overline{h}_{ij} \]

The IMSL C Math Library cannot take advantage of the symmetry in matrices that are not positive definite. The implication here is that a symmetric matrix that happens to be indefinite cannot be stored in this compact symmetric form. Rather, both upper and lower triangles must be specified and the sparse general solver called.

### Band Storage Format

A band matrix is an \( M \times N \) matrix with all of its nonzero elements “close” to the main diagonal. Specifically, values \( A_{ij} = 0 \) if \( i - j > nlca \) or \( j - i > nuca \). The integer \( m = nlca + nuca + 1 \) is the total band width. The diagonals, other than the main diagonal, are called codiagonals. While any \( M \times N \) matrix is a band matrix, band storage format is only useful when the number of nonzero codiagonals is much less than \( N \).

In band storage format, the \( nlca \) lower codiagonals and the \( nuca \) upper codiagonals are stored in the rows of an array of size \( M \times N \). The elements are stored in the same column of the array as they are in the matrix. The values \( A_{ij} \) inside the band width are stored in the linear array in positions \( [(i - j + nuca + 1) * n + j] \). This results in a row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the \( 5 \times 5 \) matrix \( A \) with 1 lower and 2 upper codiagonals:
In band storage format, the data would be arranged as

\[
A = \begin{bmatrix}
A_{0,0} & A_{0,1} & A_{0,2} & 0 & 0 \\
A_{1,0} & A_{1,1} & A_{1,2} & A_{1,3} & 0 \\
0 & A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\
0 & 0 & A_{3,2} & A_{3,3} & A_{3,4} \\
0 & 0 & 0 & A_{4,3} & A_{4,4}
\end{bmatrix}
\]

In band storage format, the data would be arranged as

\[
\begin{bmatrix}
0 & 0 & A_{0,2} & A_{1,3} & A_{2,4} \\
0 & A_{0,1} & A_{1,2} & A_{2,3} & A_{3,4} \\
A_{0,0} & A_{1,1} & A_{2,2} & A_{3,3} & A_{4,4} \\
A_{1,0} & A_{2,1} & A_{3,2} & A_{4,3} & 0
\end{bmatrix}
\]

This data would then be stored contiguously, row-major order, in an array of length 20.

As an example, consider the following tridiagonal matrix:

\[
A = \begin{bmatrix}
10 & 1 & 0 & 0 & 0 \\
5 & 20 & 2 & 0 & 0 \\
0 & 6 & 30 & 3 & 0 \\
0 & 0 & 7 & 40 & 4 \\
0 & 0 & 0 & 8 & 50
\end{bmatrix}
\]

The following declaration will store this matrix in band storage format:

```c
float a[] = {
0.0, 1.0, 2.0, 3.0, 4.0,
10.0, 20.0, 30.0, 40.0, 50.0,
5.0, 6.0, 7.0, 8.0, 0.0
};
```

As in the sparse coordinate representation, there is a space saving symmetric version of band storage. As an example, look at the following 5 × 5 symmetric problem:

\[
A = \begin{bmatrix}
A_{0,0} & A_{0,1} & A_{0,2} & 0 & 0 \\
A_{0,1} & A_{1,1} & A_{1,2} & A_{1,3} & 0 \\
A_{0,2} & A_{1,2} & A_{2,2} & A_{2,3} & A_{2,4} \\
0 & A_{1,3} & A_{2,3} & A_{3,3} & A_{3,4} \\
0 & 0 & A_{2,4} & A_{3,4} & A_{4,4}
\end{bmatrix}
\]

In band symmetric storage format, the data would be arranged as
The following Hermitian example illustrates the procedure:

\[
H = \begin{bmatrix}
0 & 0 & A_{0,2} & A_{1,3} & A_{2,4} \\
0 & A_{0,1} & A_{1,2} & A_{2,3} & A_{3,4} \\
A_{0,0} & A_{1,1} & A_{2,2} & A_{3,3} & A_{4,4}
\end{bmatrix}
\]

The following program fragments would store \(H\) in \(h\), using band symmetric storage format.

```c
f_complex h[] = {
{0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
{0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
{8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0},
};
```

or equivalently

```c
f_complex h[15];
h[0] = h[1] = h[5] = imsl_cf_convert (0.0, 0.0);
imsl_cf_convert (1.0, 1.0);
imsl_cf_convert (8.0, 0.0);
```

### Choosing Between Banded and Coordinate Forms

It is clear that any matrix can be stored in either sparse coordinate or band format. The choice depends on the sparsity pattern of the matrix. A matrix with all nonzero data stored in bands close to the main diagonal would probably be a good candidate for band format. If nonzero information is scattered more or less uniformly through the matrix, sparse coordinate format is the best choice. As extreme examples, consider the following two cases: (1) an \(n \times n\) matrix with all elements on the main diagonal and the \((0, n-1)\) and \((n-1, 0)\) entries nonzero. The sparse coordinate vector would be \(n + 2\) units long. An array of length \(n(2n-1)\) would be required to store the band representation, nearly twice as much storage as a dense solver might require. (2) a tridiagonal matrix with all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an array of length \(3n\) is needed. In sparse coordinate, format a vector of length \(3n - 2\) is required. But the problem is that, for example, for float precision, each of those \(3n - 2\) units in coordinate format requires three times as much storage as any of the \(3n\) units needed for band representation. This is due to carrying the row and column indices in coordinate form. Band storage evades this requirement by being essentially an ordered list, and defining location in the original matrix by position in the list.
Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in the format described in the Users’ Guide for the Harwell-Boeing Sparse Matrix Collection (via optional argument IMSL_CSC_FORMAT). The scheme is column oriented, with each column held as a sparse vector, represented by a list of the row indices of the entries in an integer array (“rowind” below) and a list of the corresponding values in a separate float (double, f_complex, d_complex) array (“values” below). Data for each column are stored consecutively and the columns are stored in order. A third array (“colptr” below) indicates the location in array “values” in which to place the first nonzero value of each succeeding column of the original sparse matrix. So colptr[i] contains the index of the first free location in array “values” in which to place the values from the i-th column of the original sparse matrix. In other words, values[colptr[i]] holds the first nonzero value of the i-th column of the original sparse matrix. Only entries in the lower triangle and diagonal are stored for symmetric and Hermitian matrices. All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’s one-based arrays.

As in the Harwell-Boeing user guide (link above), the storage scheme is illustrated with the following example: The 5 × 5 matrix

\[
\begin{bmatrix}
1 & -3 & 0 & -1 & 0 \\
0 & 0 & -2 & 0 & 3 \\
2 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & -4 & 0 \\
5 & 0 & -5 & 0 & 6
\end{bmatrix}
\]

would be stored in the arrays colptr (location of first entry), rowind (row indices), and values (nonzero entries) as follows:

<table>
<thead>
<tr>
<th>Subscripts</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colptr</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rowind</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Values</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>-3</td>
<td>4</td>
<td>-2</td>
<td>-5</td>
<td>-1</td>
<td>-4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

The following program fragment shows the relation between CSC storage format and coordinate representation:

```c
void main()
{
 int i, j, k, n=5, nz, start, stop;
 int colptr[] = {0, 3, 5, 7, 9, 11};
 int rowind[] = {0, 2, 4, 0, 3, 1, 4, 0, 3, 1, 4};
 int values[] = {1.0, 2.0, 5.0, -3.0, 4.0, -2.0, -5.0, -1.0, -4.0, 3.0, 6.0};
 Imsl_d_sparse_elem a[11];
 k = 0;
 for (i=0; i<n; i++) {
 start = colptr[i];
 stop = colptr[i+1];
 for (j=start; j<stop; j++) {
 a[k].row = rowind[j];
 a[k].col = i;
 a[k].val = values[j];
 k = k + 1;
 }
 }
}
```
a[k].col = i;
a[k++].val = values[j];
}
}
nz = k;
## Functions

### Linear Equations with Full Matrices

**Factor, Solve, and Inverse for General Matrices**
- Real matrices: \( \text{lin\_sol\_gen} \) \( \quad 36 \)
- Complex matrices: \( \text{lin\_sol\_gen\ (complex)} \) \( \quad 45 \)

**Factor, Solve, and Inverse for Positive Definite Matrices**
- Real matrices: \( \text{lin\_sol\_posdef} \) \( \quad 52 \)
- Complex matrices: \( \text{lin\_sol\_posdef\ (complex)} \) \( \quad 58 \)

### Linear Equations with Band Matrices

**Factor and Solve for Band Matrices**
- Real matrices: \( \text{lin\_sol\_gen\_band} \) \( \quad 64 \)
- Complex matrices: \( \text{lin\_sol\_gen\_band\ (complex)} \) \( \quad 70 \)

**Factor and Solve for Positive Definite Matrices Symmetric**
- Real matrices: \( \text{lin\_sol\_posdef\_band} \) \( \quad 76 \)
- Complex matrices: \( \text{lin\_sol\_posdef\_band\ (complex)} \) \( \quad 81 \)

### Linear Equations with General Sparse Matrices

**Factor and Solve for Sparse Matrices I**
- Real matrices: \( \text{lin\_sol\_gen\_coordinate} \) \( \quad 87 \)
- Complex matrices: \( \text{lin\_sol\_gen\_coordinate\ (complex)} \) \( \quad 99 \)

**Factor and Solve for Sparse Matrices II**
- Real matrices: \( \text{superlu} \) \( \quad 108 \)
- Complex matrices: \( \text{superlu\ (complex)} \) \( \quad 123 \)

**OpenMP-based parallel Factor and Solve for Sparse Matrices**
- Real Matrices: \( \text{superlu\_smp} \) \( \quad 138 \)
- Complex Matrices: \( \text{superlu\_smp\ (complex)} \) \( \quad 150 \)

**Factor and Solve for Positive Definite Matrices**
- Real matrices: \( \text{lin\_sol\_posdef\_coordinate} \) \( \quad 163 \)
Complex matrices ........................................ lin_sol_posdef_coordinate (complex) 172

OpenMP-based parallel Factor and Solve for Positive Definite Matrices
Real Matrices ............................................. sparse_cholesky_smp 181
Complex Matrices ....................................... sparse_cholesky_smp (complex) 191

Iterative Methods
  Restarted generalized minimum residual (GMRES) method ..................... lin_sol_gen_min_residual 201
  Conjugate gradient method ................................ lin_sol_def_cg 207

Linear Least-squares with Full Matrices

Least-squares and QR decomposition
  Least-squares solve, QR decomposition ................................ lin_least_squares_gen 214
  Non-negative least squares solution .................................... nonneg_least_squares 223
  Linear constraints ............................................... lin_lsq_lin_constraints 230

Non-Negative Matrix Factorization (NNMF)
  Non-negative matrix factorization solution ........ nonneg_matrix_factorization 235

Singular Value Decompositions (SVD) and Generalized Inverse
  Real matrix .................................................... lin_svd_gen 240
  Complex matrix ............................................... lin_svd_gen (complex) 247

Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices
  Real matrices .................................................. lin_sol_nonnegdef 254
Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form $Ax = b$, where $A$ is a user-specified $n \times n$ matrix, $b$ is a given right-hand side $n$ vector, and $x$ is the solution $n$ vector. Each entry of $A$ and $b$ must be specified by the user. The entire vector $x$ is returned as output.

When $A$ is invertible, a unique solution to $Ax = b$ exists. The most commonly used direct method for solving $Ax = b$ factors the matrix $A$ into a product of triangular matrices and solves the resulting triangular systems of linear equations. Functions that use direct methods for solving systems of linear equations all compute the solution to $Ax = b$. Thus, if function `imsl_f_superlu` or a function with the prefix “imsl_f_lin_sol” is called with the required arguments, a pointer to $x$ is returned by default. Additional tasks, such as only factoring the matrix $A$ into a product of triangular matrices, can be done using keywords.

Matrix Factorizations

In some applications, it is desirable to just factor the $n \times n$ matrix $A$ into a product of two triangular matrices. This can be done by calling the appropriate function for solving the system of linear equations $Ax = b$. Suppose that in addition to the solution $x$ of a linear system of equations $Ax = b$, the $LU$ factorization of $A$ is desired. Use the keyword `IMSL_FACTOR` in the function `imsl_f_lin_sol_gen` to obtain access to the factorization. If only the factorization is desired, use the keywords `IMSL_FACTOR_ONLY` and `IMSL_FACTOR`. For function `imsl_f_superlu`, use keyword `IMSL_RETURN_SPARSE LU_FACTOR` in order to get the $LU$ factorization. If only the factorization is desired, then keywords `IMSL_RETURN_SPARSE LU_FACTOR` and `IMSL_FACTOR_SOLVE` with value 1 are required.

Besides the basic matrix factorizations, such as $LU$ and $LL^T$, additional matrix factorizations also are provided. For a real matrix $A$, its $QR$ factorization can be computed by the function `imsl_f_lin_least_squares_gen`. Functions for computing the singular value decomposition (SVD) of a matrix are discussed in a later section.

Matrix Inversions

The inverse of an $n \times n$ nonsingular matrix can be obtained by using the keyword `IMSL_INVERSE` in functions for solving systems of linear equations. The inverse of a matrix need not be computed if the purpose is to solve one or more systems of linear equations. Even with multiple right-hand sides, solving a system of linear equations by computing the inverse and performing matrix multiplication is usually more expensive than the method discussed in the next section.
Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector. It is most economical to find the solution vectors by first factoring the coefficient matrix $A$ into products of triangular matrices. Then, the resulting triangular systems of linear equations are solved for each right-hand side. When $A$ is a real general matrix, access to the $LU$ factorization of $A$ is computed by using the keywords IMSL_FACTOR and IMSL_FACTOR_ONLY in function imsl_f_lin_sol_gen. The solution $x_k$ for the $k$-th right-hand side vector $b_k$ is then found by two triangular solves, $Ly_k = b_k$ and $Ux_k = y_k$. The keyword IMSL_SOLVE_ONLY in the function imsl_f_lin_sol_gen is used to solve each right-hand side. These arguments are found in other functions for solving systems of linear equations. For function imsl_f_superlu, use the keywords IMSL_RETURN_SPARSE_LU_FACTOR and IMSL_FACTOR_SOLVE with value 1 to get the $LU$ factorization, and then keyword IMSL_FACTOR_SOLVE with value 2 to get the solution for different right-hand sides.

Least-Squares Solutions and $QR$ Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations $A_{m \times n} x = b$, where $m > n$. A least-squares solution $x$ minimizes the Euclidean length of the residual vector $r = Ax - b$. The function imsl_f_lin_least_squares_gen computes a unique least-squares solution for $x$ when $A$ has full column rank. If $A$ is rank-deficient, then the base solution for some variables is computed. These variables consist of the resulting columns after the interchanges. The $QR$ decomposition, with column interchanges or pivoting, is computed such that $AP = QR$. Here, $Q$ is orthogonal, $R$ is upper-trapezoidal with its diagonal elements nonincreasing in magnitude, and $P$ is the permutation matrix determined by the pivoting. The base solution $x_B$ is obtained by solving $R(P^T)x = Q^Tb$ for the base variables. For details, see the “Description” section of function imsl_f_lin_least_squares_gen. The $QR$ factorization of a matrix $A$ such that $AP = QR$ with $P$ specified by the user can be computed using keywords.

Least-squares problems with linear constraints and one right-hand side can be solved. These equations are

$$A_{m \times n} x = b,$$

subject to constraints and simple bounds

$$b_l \leq Cx \leq b_u$$

$$x_l \leq x \leq x_u$$

Here $A$ is the coefficient matrix of the least-squares equations, $b$ is the right-hand side, and $C$ is the coefficient matrix of the constraints. The vectors $b_l$, $b_u$, $x_l$ and $x_u$ are the lower and upper bounds on the constraints and the variables. This general problem is solved with imsl_f_lin_lsq_lin_constraints.

For the special case of where there are only non-negative constraints, $x \geq 0$, solve the problem with imsl_f_nonneg_least_squares.
Non-Negative Matrix Factorization

If the matrix $A_{m \times n} \geq 0$, factor it as a product of two matrices, $A_{m \times n} = F_{m \times k} G_{k \times n}$. The matrices $F$ and $G$ are both non-negative and $k \leq \min(m, n)$. The factors are computed so that the residual matrix $E = A - FG$ has a sum of squares norm that is minimized. There are normalizations of $F_{m \times k}$ and $G_{k \times n}$ described in the documentation of `imsl_f_nonneg_matrix_factorization`.

Singular Value Decompositions and Generalized Inverses

The SVD of an $m \times n$ matrix $A$ is a matrix decomposition $A = USV^T$. With $q = \min(m, n)$, the factors $U_{m \times q}$ and $V_{n \times q}$ are orthogonal matrices, and $S_{q \times q}$ is a nonnegative diagonal matrix with nonincreasing diagonal terms. The function `imsl_f_lin_svd_gen` computes the singular values of $A$ by default. Using keywords, part or all of the $U$ and $V$ matrices, an estimate of the rank of $A$, and the generalized inverse of $A$, also can be obtained.

Ill-Conditioning and Singularity

An $m \times n$ matrix $A$ is mathematically singular if there is an $x \neq 0$ such that $Ax = 0$. In this case, the system of linear equations $Ax = b$ does not have a unique solution. On the other hand, a matrix $A$ is numerically singular if it is “close” to a mathematically singular matrix. Such problems are called ill-conditioned. If the numerical results with an ill-conditioned problem are unacceptable, users can either use more accuracy if it is available (for type `float` accuracy switch to `double`) or they can obtain an approximate solution to the system. One form of approximation can be obtained using the SVD of $A$: If $q = \min(m, n)$ and

$$A = \sum_{i=1}^{q} s_{i,i} u_i v_i^T$$

then the approximate solution is given by the following:

$$x_k = \sum_{i=1}^{k} t_{i,i} \left( b^T u_i \right) v_i$$

The scalars $t_{i,i}$ are defined below.

$$t_{i,i} = \begin{cases} s_{i,i}^{-1} & \text{if } s_{i,i} \geq tol > 0 \\ 0 & \text{otherwise} \end{cases}$$

The user specifies the value of `tol`. This value determines how “close” the given matrix is to a singular matrix. Further restrictions may apply to the number of terms in the sum, $k \leq q$. For example, there may be a value of $k \leq q$ such that the scalars $\| (b^T u_i) \|$, $i > k$ are smaller than the average uncertainty in the right-hand side $b$. This means that these scalars can be replaced by zero; and hence, $b$ is replaced by a vector that is within the stated uncertainty of the problem.
Solves a real general system of linear equations $Ax = b$. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the $LU$ factorization of $A$ using partial pivoting, computing the inverse matrix $A^{-1}$, solving $A^T x = b$, or computing the solution of $Ax = b$ given the $LU$ factorization of $A$.

Synopsis

```
#include <imsl.h>

float *imsl_f_lin_sol_gen(int n, float a[], float b[], ... , 0)
```

The type `double` function is `imsl_d_lin_sol_gen`.

Required Arguments

- `int n` (Input)
  Number of rows and columns in the matrix.

- `float a[]` (Input)
  Array of size $n \times n$ containing the matrix.

- `float b[]` (Input)
  Array of size $n$ containing the right-hand side.

Return Value

A pointer to the solution $x$ of the linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_lin_sol_gen(int n, float a[], float b[],
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_TRANSPOSE,
```

RogueWave
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, int **p_pvt, float **p_factor,
IMSL_FACTOR_USER, int pvt[], float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE
Solve $A^T x = b$.
Default: Solve $Ax = b$

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length $n$ containing the solution $x$.

IMSL_FACTOR, int **p_pvt, float **p_factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length $n$ containing the pivot sequence for the factorization. On return, the necessary space is allocated by imsl_f_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is used as an argument.

float **p_factor (Output)
The address of a pointer to an array of size $n \times n$ containing the $LU$ factorization of $A$ with column pivoting. On return, the necessary space is allocated by imsl_f_lin_sol_gen. The lower-triangular part of this array contains information necessary to construct $L$, and the upper-triangular part contains $U$ (see Example 2). Typically, float *p_factor is declared, and &p_factor is used as an argument.
IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

int pvt[] (Input/Output)
A user-allocated array of size \( n \) containing the pivot sequence for the factorization.

float factor[] (Input/Output)
A user-allocated array of size \( n \times n \) containing the \( LU \) factorization of \( A \). The strictly lower-triangular part of this array contains information necessary to construct \( L \), and the upper-triangular part contains \( U \) (see Example 2). If \( A \) is not needed, \( \text{factor} \) and \( a \) can share the same storage.

These parameters are \textit{input} if IMSL_SOLVE is specified. They are \textit{output} otherwise.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the \( LU \) factorization of \( A \).
Default: \( \text{fac} \_\text{col} \_\text{dim} = n \)

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size \( n \times n \) containing the inverse of the matrix \( A \). On return, the necessary space is allocated by \text{imsl}_f\_\text{lin}\_\text{sol}_\text{gen}. Typically, \text{float} *p\_inva is declared, and \&p\_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size \( n \times n \) containing the inverse of \( A \).

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of \( A \).
Default: \( \text{inva} \_\text{col} \_\text{dim} = n \)

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the \( L_1 \) norm condition number of the matrix \( A \). This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTORONLY
Compute the \( LU \) factorization of \( A \) with partial pivoting. If IMSL_FACTORONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument \( b \) is then ignored, and the returned value of \text{imsl}_f\_\text{lin}\_\text{sol}_\text{gen} is NULL.

IMSL_SOLVENULY
Solve \( Ax = b \) given the \( LU \) factorization previously computed by \text{imsl}_f\_\text{lin}\_\text{sol}_\text{gen}. By default, the solution to \( Ax = b \) is pointed to by \text{imsl}_f\_\text{lin}\_\text{sol}_\text{gen}. If IMSL_SOLVENULY is used, argument IMSL_FACTOR_USER is required, and the argument \( a \) is ignored.

IMSL_INVERSEONLY
Compute the inverse of the matrix \( A \). If IMSL_INVERSEONLY is used, either IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument \( b \) is then ignored, and the returned value of \text{imsl}_f\_\text{lin}\_\text{sol}_\text{gen} is NULL.
Description

The function `imsl_f_lin_sol_gen` solves a system of linear algebraic equations with a real coefficient matrix $A$. It first computes the $LU$ factorization of $A$ with partial pivoting such that $L^{-1}A = U$. Let $F$ be the matrix $p\_factor$ returned by optional argument `IMSL\_FACTOR`. The triangular matrix $U$ is stored in the upper triangle of $F$. The strict lower triangle of $F$ contains the information needed to reconstruct $L^{-1}$ using

$$\quad L^{-1} = L_{n-1}P_{n-1} \ldots L_1P_1$$

The factors $P_i$ and $L_i$ are defined by partial pivoting. $P_i$ is the identity matrix with rows $i$ and $p\_pvt[i-1]$ interchanged. $L_i$ is the identity matrix with $F_{ji}$, for $j = i+1, \ldots, n$, inserted below the diagonal in column $i$.

The factorization efficiency is based on a technique of “loop unrolling and jamming” by Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. The solution of the linear system is then found by solving two simpler systems, $y = L^{-1}b$ and $x = U^{-1}y$. When the solution to the linear system or the inverse of the matrix is sought, an estimate of the $L_1$ condition number of $A$ is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than $1/\epsilon$ (where $\epsilon$ is the machine precision), a warning message is issued. This indicates that very small changes in $A$ may produce large changes in the solution $x$. The function `imsl_f_lin_sol_gen` fails if $U$, the upper triangular part of the factorization, has a zero diagonal element.

Examples

Example 1

This example solves a system of three linear equations. This is the simplest use of the function. The equations follow below:

\begin{align*}
  x_1 + 3x_2 + 3x_3 &= 1 \\
  x_1 + 3x_2 + 4x_3 &= 4 \\
  x_1 + 4x_2 + 3x_3 &= -1
\end{align*}

```c
#include <imsl.h>

int main()
{
 int n = 3;
 float *x;
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};
 float b[] = {1.0, 4.0, -1.0};
 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_gen (n, a, b, 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
}
Example 2

This example solves the transpose problem $A^T x = b$ and returns the LU factorization of A with partial pivoting. The same data as the initial example is used, except the solution $x = A^T b$ is returned in an array allocated in the main program. The L matrix is returned in implicit form.

```c
#include <imsl.h>

int main()
{
    int n = 3, pvt[3];
    float factor[9];
    float x[3];
    float a[] = {1.0, 3.0, 3.0,
                 1.0, 3.0, 4.0,
                 1.0, 4.0, 3.0};

    float b[] = {1.0, 4.0, -1.0};
    /* Solve trans(A)*x = b for x */
    imsl_f_lin_sol_gen (n, a, b,
                        IMSL_TRANSPOSE,
                        IMSL_RETURN_USER, x,
                        IMSL_FACTOR_USER, pvt, factor,
                        0);

    /* Print x */
    imsl_f_write_matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);

    /* Print factors and pivot sequence */
    imsl_f_write_matrix ("LU factors of A", n, n, factor, 0);
    imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}
```

Output

Solution, x, of $Ax = b$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>1</td>
</tr>
</tbody>
</table>

LU factors of A

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
2 -1 1 0
3 -1 0 1

Pivot sequence
1 2 3
1 3 3

Reconstruction of L^{-1} and U from factor:

$$L^{-1} = L_2P_2L_1P_1$$

P_j is the identity matrix with row i and row $pvt[i-1]$ interchanged.

<table>
<thead>
<tr>
<th>pvt = 1, 3, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

| $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ | row 2 and row pvt[1], or row 3, are interchanged. |

L_j is the identity matrix with F_{ji}, for $j = i + 1, n$, inserted below the diagonal in column i, where F is factor:

<table>
<thead>
<tr>
<th>factor = $\begin{bmatrix} 1 & 3 & 3 \ -1 & 1 & 0 \ -1 & 0 & 1 \end{bmatrix}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_1 = \begin{bmatrix} 1 & 0 & 0 \ -1 & 1 & 0 \ -1 & 0 & 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>$L_2 = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

$$L^{-1} = L_2P_2L_1P_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
U is the upper triangle of factor:

$$U = \begin{bmatrix}
1 & 3 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Example 3

This example computes the inverse of the 3×3 matrix A of the initial example and solves the same linear system. The matrix product $C = A^{-1}A$ is computed and printed. The function `imsl_f_mat_mul_rect` is used to compute C. The approximate result $C = I$ is obtained.

```c
#include <imsl.h>

float a[] = {1.0, 3.0, 3.0,
             1.0, 3.0, 4.0,
             1.0, 4.0, 3.0};

float b[] = {1.0, 4.0, -1.0};

int main()
{
    int n = 3;
    float *x;
    float *p_inva;
    float *C;
    /* Solve $Ax = b$ */
    x = imsl_f_lin_sol_gen(n, a, b,
                          IMSL_INVERSE, &p_inva,
                          0);
    /* Print solution */
    imsl_f_write_matrix("Solution, x, of $Ax = b$", 1, n, x, 0);

    /* Print input and inverse matrices */
    imsl_f_write_matrix("Input $A$", n, n, a);
    imsl_f_write_matrix("Inverse of $A$", n, n, p_inva, 0);
    C = imsl_f_mat_mul_rect("$A*B$",
                            IMSL_A_MATRIX, n, n, p_inva,
                            IMSL_B_MATRIX, n, n, a,
                            0);
    imsl_f_write_matrix("Product matrix, $inv(A)*A$", n, n, C, 0);
}
```

Output

Solution, x, of $Ax = b$

$$1 \quad 2 \quad 3$$
-2 -2 3

Input A
1 2 3
1 1 3 3
2 1 3 4
3 1 4 3

Inverse of A
1 2 3
1 7 -3 -3
2 -1 0 1
3 -1 1 0

Product matrix, inv(A)*A
1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

Example 4
This example computes the solution of two systems. Only the right-hand sides differ. The matrix and first right-hand side are given in the initial example. The second right-hand side is the vector \(c = [0.5, 0.2, 0.4]^T \). The factorization information is computed with the first solution and is used to compute the second solution. The factorization work done in the first step is avoided in computing the second solution.

```c
#include <imsl.h>

int main()
{
    int        n = 3, pvt[3];
    float      factor[9];
    float      *x,*y;
    float      a[] = {1.0, 3.0, 3.0,
                      1.0, 3.0, 4.0,
                      1.0, 4.0, 3.0};

    float      b[] = {1.0, 4.0, -1.0};
    float      c[] = {0.5, 0.3, 0.4};

    /* Solve A*x = b for x */
    x = imsl_f_lin_sol_gen (n, a, b,
                           IMSL_FACTOR_USER, pvt, factor,
                           0);

    /* Print x */
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}```
/ * Solve for A*y = c for y */
    y = imsl_f_lin_sol_gen (n, a, c,
                       IMSL_SOLVE_ONLY,
                       IMSL_FACTOR_USER, pvt, factor,
                       0);
    imsl_f_write_matrix ("Solution, y, of Ay = c", 1, n, y, 0);

Output

Solution, x, of Ax = b
1  2  3
-2 -2  3

Solution, y, of Ay = c
1  2  3
1.4 -0.1 -0.2

Warning Errors

IMSL_ILL_CONDITIONED
The input matrix is too ill-conditioned. An estimate of the reciprocal of its $L_1$ condition number is $\text{rcond} = \#$. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX
The input matrix is singular.
Solves a complex general system of linear equations $\mathbf{Ax} = \mathbf{b}$. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the $LU$ factorization of $\mathbf{A}$ using partial pivoting, computing the inverse matrix $\mathbf{A}^{-1}$, solving $\mathbf{A}^\dagger \mathbf{x} = \mathbf{b}$, or computing the solution of $\mathbf{Ax} = \mathbf{b}$ given the $LU$ factorization of $\mathbf{A}$.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_gen(int n, f_complex a[], f_complex b[], ..., 0)
```

The type `d_complex` function is `imsl_z_lin_sol_gen`.

Required Arguments

- `int n` (Input)
  - Number of rows and columns in the matrix.
- `f_complex a[]` (Input)
  - Array of size $n \times n$ containing the matrix.
- `f_complex b[]` (Input)
  - Array of length $n$ containing the right-hand side.

Return Value

A pointer to the solution $\mathbf{x}$ of the linear system $\mathbf{Ax} = \mathbf{b}$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_gen(int n, f_complex a[], f_complex b[],
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_TRANSPOSE,
```

...
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, f_complex **p_inva,
IMSL_INVERSE_USER, f_complex inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE
  Solve \( A^H x = b \)
  Default: Solve \( Ax = b \)

IMSL_RETURN_USER, f_complex x[] (Output)
  A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)

  int **p_pvt (Output)
  The address of a pointer to an array of length n containing the pivot sequence for the factorization. On return, the necessary space is allocated by imsl_c_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is used as an argument.

  f_complex **p_factor (Output)
  The address of a pointer to an array of size \( n \times n \) containing the LU factorization of A with column pivoting. On return, the necessary space is allocated by imsl_c_lin_sol_gen. The lower-triangular part of this array contains information necessary to construct \( L \), and the upper-triangular part contains \( U \). Typically, f_complex *p_factor is declared, and &p_factor is used as an argument.
IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)

int pvt [] (Input/Output)
A user-allocated array of size $n$ containing the pivot sequence for the factorization.

f_complex factor[] (Input/Output)
A user-allocated array of size $n \times n$ containing the $LU$ factorization of $A$. The lower-triangular part of this array contains information necessary to construct $L$, and the upper-triangular part contains $U$.

These parameters are input if IMSL_SOLVE is specified. They are output otherwise. If $A$ is not needed, factor and a can share the same storage.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the $LU$ factorization of $A$.
Default: fac_col_dim = $n$

IMSL_INVERSE, f_complex **p_inva (Output)
The address of a pointer to an array of size $n \times n$ containing the inverse of the matrix $A$. On return, the necessary space is allocated by imsl_c_lin_sol_gen. Typically, f_complex *p_inva is declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, f_complex inva[] (Output)
A user-allocated array of size $n \times n$ containing the inverse of $A$.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of $A$.
Default: inva_col_dim = $n$

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the $L_1$ norm condition number of the matrix $A$. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the $LU$ factorization of $A$ with partial pivoting. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument $b$ is then ignored, and the returned value of imsl_c_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY
Solve $Ax = b$ given the $LU$ factorization previously computed by imsl_c_lin_sol_gen. By default, the solution to $Ax = b$ is pointed to by imsl_c_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and argument $a$ is ignored.

IMSL_INVERSE_ONLY
Compute the inverse of the matrix $A$. If IMSL_INVERSE_ONLY is used, either IMSL_INVERSE or IMSL_INVERSE_USER is required. Argument $b$ is then ignored, and the returned value of imsl_c_lin_sol_gen is NULL.
Description

The function `imsl_c_lin_sol_gen` solves a system of linear algebraic equations with a complex coefficient matrix $A$. It first computes the $LU$ factorization of $A$ with partial pivoting such that $L^{-1}A = U$. Let $F$ be the matrix $p\_factor$ returned by optional argument `IMSL\_FACTOR`. The triangular matrix $U$ is stored in the upper triangle of $F$. The strict lower triangle of $F$ contains the information needed to reconstruct $L^{-1}$ using

$$L^{-1} = L_{n-1} P_{n-1} \ldots L_1 P_1$$

The factors $P_i$ and $L_i$ are defined by partial pivoting. $P_i$ is the identity matrix with rows $i$ and $p\_pvt[i-1]$ interchanged. $L_i$ is the identity matrix with $F_{ji}$, for $j = i+1, \ldots, n$, inserted below the diagonal in column $i$.

The solution of the linear system is then found by solving two simpler systems, $y = L^{-1}b$ and $x = U^{-1}y$. When the solution to the linear system or the inverse of the matrix is computed, an estimate of the $L_1$ condition number of $A$ is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than $1/\varepsilon$ (where $\varepsilon$ is the machine precision), a warning message is issued. This indicates that very small changes in $A$ may produce large changes in the solution $x$. The function `imsl_c_lin_sol_gen` fails if $U$, the upper-triangular part of the factorization, has a zero diagonal element.

Examples

Example 1

This example solves a system of three linear equations. The equations are:

$$(1 + i) x_1 + (2 + 3i) x_2 + (3 - 3i) x_3 = 3 + 5i$$
$$(2 + i) x_1 + (5 + 3i) x_2 + (7 - 5i) x_3 = 22 + 10i$$
$$(-2 + i) x_1 + (-4 + 4i) x_2 + (5 + 3i) x_3 = -10 + 4i$$

```c
#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main()
{
 int n = 3;
 f_complex *x;
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_gen (n, a, b, 0);
}
```
Output

Solution, x, of Ax = b
1 2 3
(1, -1) (2, 4) (3, -0)

Example 2

This example solves the conjugate transpose problem $A^H x = b$ and returns the LU factorization of $A$ using partial pivoting. This example differs from the first example in that the solution array is allocated in the main program.

#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
    {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
    {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main()
{
    int n = 3, pvt[3];
    f_complex factor[9];
    f_complex x[3];
    /* Solve ctrans(A)*x = b for x */
    imsl_c_lin_sol_gen (n, a, b,
        IMSL_TRANSPOSE,
        IMSL_RETURN_USER, x,
        IMSL_FACTOR_USER, pvt, factor,
        0);

    /* Print x */
    imsl_c_write_matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);

    /* Print factors and pivot sequence */
    imsl_c_write_matrix ("LU factors of A", n, n, factor, 0);
    imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}

Output

Solution, x, of ctrans(A)x = b
1 2 3
(-9.79, 11.23) (2.96, -3.13) (1.85, 2.47)

LU factors of A
1 2 3
Example 3

This example computes the inverse of the $3 \times 3$ matrix $A$ in the first example and also solves the linear system. The product matrix $C = A^{-1}A$ is computed as a check. The approximate result is $C = I$.

```c
#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main()
{
 int n = 3;
 f_complex *x;
 f_complex *p_inva;
 f_complex *C;

 /* Solve $Ax = b$ for x */
 x = imsl_c_lin_sol_gen (n, a, b,
 IMSL_INVERSE, &p_inva,
 0);

 /* Print solution */
 imsl_c_write_matrix ("Solution, x, of $Ax = b$", 1, n, x, 0);

 /* Print input and inverse matrices */
 imsl_c_write_matrix ("Input A", n, n, a, 0);
 imsl_c_write_matrix ("Inverse of A", n, n, p_inva, 0);

 /* Check and print result */
 C = imsl_c_mat_mul_rect ("A*B",
 IMSL_A_MATRIX, n, n, p_inva,
 IMSL_B_MATRIX, n, n, a,
 0);
 imsl_c_write_matrix ("Product, $inv(A)*A$", n, n, C, 0);
}
```

Output

```
Solution, x, of $Ax = b$
```
### Input A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 1</td>
<td>2, 3</td>
<td>3, -3</td>
</tr>
<tr>
<td>2</td>
<td>2, 1</td>
<td>5, 3</td>
<td>7, -5</td>
</tr>
<tr>
<td>3</td>
<td>-2, 1</td>
<td>-4, 4</td>
<td>5, 3</td>
</tr>
</tbody>
</table>

### Inverse of A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.330, 0.594</td>
<td>-0.151, 0.028</td>
<td>-0.604, 0.613</td>
</tr>
<tr>
<td>2</td>
<td>-0.632, -0.538</td>
<td>0.160, 0.189</td>
<td>0.142, -0.245</td>
</tr>
<tr>
<td>3</td>
<td>-0.189, 0.160</td>
<td>0.193, -0.052</td>
<td>0.024, 0.042</td>
</tr>
</tbody>
</table>

### Product, $\text{inv}(A) \times A$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, -0</td>
<td>-0, -0</td>
<td>-0, 0</td>
</tr>
<tr>
<td>2</td>
<td>0, 0</td>
<td>1, 0</td>
<td>0, -0</td>
</tr>
<tr>
<td>3</td>
<td>-0, -0</td>
<td>-0, 0</td>
<td>1, 0</td>
</tr>
</tbody>
</table>

### Warning Errors

**IMSL\_ILL\_CONDITIONED**

The input matrix is too ill-conditioned. An estimate of the reciprocal of the $L_1$ condition number is $\text{rcond} = \#$. The solution might not be accurate.

### Fatal Errors

**IMSL\_SINGULAR\_MATRIX**

The input matrix is singular.
Solves a real symmetric positive definite system of linear equations $Ax = b$. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the Cholesky factor, $L$, of $A$ such that $A = LL^T$, computing the inverse matrix $A^{-1}$, or computing the solution of $Ax = b$ given the Cholesky factor, $L$.

**Synopsis**

```c
#include <imsl.h>

float *imsl_f_lin_sol_posdef(int n, float a[], float b[], ..., 0)
```

The type `double` function is `imsl_d_lin_sol_posdef`.

**Required Arguments**

- `int n` (Input)
  Number of rows and columns in the matrix.
- `float a[]` (Input)
  Array of size $n \times n$ containing the matrix.
- `float b[]` (Input)
  Array of size $n$ containing the right-hand side.

**Return Value**

A pointer to the solution $x$ of the symmetric positive definite linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

float *imsl_f_lin_sol_posdef(int n, float a[], float b[],
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_RETURN_USER, float x[]),
```

...
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n × n containing the LL\(T\) factorization of A. On return, the necessary space is allocated by imsl_f_lin_sol_posdef. The lower-triangular part of this array contains L and the upper-triangular part contains L\(T\). Typically, float *p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n × n containing the LL\(T\) factorization of A. The lower-triangular part of this array contains L, and the upper-triangular part contains L\(T\). If A is not needed, a and factor can share the same storage. If IMSL_SOLVE is specified, it is input; otherwise, it is output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LL\(T\) factorization of A.
Default: fac_col_dim = n
IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size $n \times n$ containing the inverse of the matrix $A$. On return, the necessary space is allocated by imsl_f_lin_sol_posdef. Typically, float *p_inva is declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size $n \times n$ containing the inverse of $A$.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of $A$.
Default: inva_col_dim = $n$

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the $L_1$ norm condition number of the matrix $A$. Do not use this option with IMSL SOLVE ONLY.

IMSL_FACTOR ONLY
Compute the Cholesky factorization $LL^T$ of $A$. If IMSL_FACTOR ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument $b$ is then ignored, and the returned value of imsl_f_lin_sol_posdef is NULL.

IMSL_SOLVE ONLY
Solve $Ax = b$ given the $LL^T$ factorization previously computed by imsl_f_lin_sol_posdef. By default, the solution to $Ax = b$ is pointed to by imsl_f_lin_sol_posdef. If IMSL_SOLVE ONLY is used, argument IMSL_FACTOR_USER is required and the argument $a$ is ignored.

IMSL_INVERSE ONLY
Compute the inverse of the matrix $A$. If IMSL_INVERSE ONLY is used, either IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument $b$ is then ignored, and the returned value of imsl_f_lin_sol_posdef is NULL.

Description
The function imsl_f_lin_sol_posdef solves a system of linear algebraic equations having a symmetric positive definite coefficient matrix $A$. The function first computes the Cholesky factorization $LL^T$ of $A$. The solution of the linear system is then found by solving the two simpler systems, $y = L^{-1}b$ and $x = L^{-T}y$. When the solution to the linear system or the inverse of the matrix is sought, an estimate of the $L_1$ condition number of $A$ is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than $1/\varepsilon$ (where $\varepsilon$ is the machine precision), a warning message is issued. This indicates that very small changes in $A$ may produce large changes in the solution $x$.

The function imsl_f_lin_sol_posdef fails if $L$, the lower-triangular matrix in the factorization, has a zero diagonal element.
Examples

Example 1
A system of three linear equations with a symmetric positive definite coefficient matrix is solved in this example. The equations are listed below:

\[
\begin{align*}
x_1 - 3x_2 + 2x_3 &= 27 \\
-3x_1 + 10x_2 - 5x_3 &= -78 \\
2x_1 - 5x_2 + 6x_3 &= 64 \\
\end{align*}
\]

```c
#include <imsl.h>

int main()
{
 int n = 3;
 float *x;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b, 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}
```

Output

Solution, x, of Ax = b

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>-4</td>
<td>7</td>
</tr>
</tbody>
</table>

Example 2
This example solves the same system of three linear equations as in the initial example, but this time returns the \( LL^\top \) factorization of \( A \). The solution \( x \) is returned in an array allocated in the main program.

```c
#include <imsl.h>

int main()
{
 int n = 3;
 float x[3], *p_factor;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
```
float b[] = {27.0, -78.0, 64.0};

    /* Solve Ax = b for x */
    imsl_f_lin_sol_posdef (n, a, b,
                            IMSL_RETURN_USER, x,
                            IMSL_FACTOR, &p_factor,
                            0);

    /* Print x */
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

    /* Print Cholesky factor of A */
    imsl_f_write_matrix ("Cholesky factor L, and trans(L), of A",
                        n, n, p_factor, 0);

Example 3
This example solves the same system as in the initial example, but given the Cholesky factors of \(A\).

```
#include <imsl.h>

int main()
{
 int n = 3;
 float *x, *a;
 float factor[] = {1.0, -3.0, 2.0,
 -3.0, 1.0, 1.0,
 2.0, 1.0, 1.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
```
Output

Solution, $x$, of $Ax = b$

\[
\begin{bmatrix}
1 & 2 & 3 \\
1 & -4 & 7
\end{bmatrix}
\]

Warning Errors

- **IMSL_Ill_CONDITIONED**
  
  The input matrix is too ill-conditioned. An estimate of the reciprocal of its $L_1$ condition number is $\text{"rcond"} = #$. The solution might not be accurate.

Fatal Errors

- **IMSL_NONPOSITIVE_MATRIX**
  
  The leading $# \times #$ submatrix of the input matrix is not positive definite.

- **IMSL_SINGULAR_MATRIX**
  
  The input matrix is singular.

- **IMSL_SINGULAR_TRI_MATRIX**
  
  The input triangular matrix is singular. The index of the first zero diagonal element is #.
Solves a complex Hermitian positive definite system of linear equations $Ax = b$. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the Cholesky factor, $L$, of $A$ such that $A = LL^H$ or computing the solution to $Ax = b$ given the Cholesky factor, $L$.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef(int n, f_complex a[], f_complex b[], ..., 0)
```

The type d_complex function is imsl_z_lin_sol_posdef.

Required Arguments

- **int n** (Input)
  Number of rows and columns in the matrix.

- **f_complex a[]** (Input)
  Array of size $n \times n$ containing the matrix.

- **f_complex b[]** (Input)
  Array of size $n$ containing the right-hand side.

Return Value

A pointer to the solution $x$ of the Hermitian positive definite linear system $Ax = b$. To release this space, use imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef(int n, f_complex a[], f_complex b[],

IMSL_A_COL_DIM, int a_col_dim,

IMSL_RETURN_USER, f_complex x[],
```

IMSL_FACTOR, \texttt{f-complex} **p_factor,

IMSL_FACTOR_USER, \texttt{f-complex} factor[],

IMSL_FAC_COL_DIM, \texttt{int} fac_col_dim,

IMSL_CONDITION, \texttt{float} *cond,

IMSL_FACTOR_ONLY,

IMSL_SOLVE_ONLY,

0)

**Optional Arguments**

**IMSL\_A\_COL\_DIM, \texttt{int} a\_col\_dim (Input)**

The column dimension of the array \texttt{a}.

Default: \texttt{a\_col\_dim = n}

**IMSL\_RETURN\_USER, \texttt{f-complex} x[] (Output)**

A user-allocated array of size \texttt{n} containing the solution \texttt{x}.

**IMSL\_FACTOR, \texttt{f-complex} **p\_factor (Output)**

The address of a pointer to an array of size \texttt{n x n} containing the \texttt{LL}^H factorization of \texttt{A}. On return, the necessary space is allocated by \texttt{imsl\_c\_lin\_sol\_posdef}. The lower-triangular part of this array contains \texttt{L}, and the upper-triangular part contains \texttt{L}^H. Typically, \texttt{f-complex} **p\_factor is declared, and \&p\_factor is used as an argument.

**IMSL\_FACTOR\_USER, \texttt{f-complex} factor[] (Input/Output)**

A user-allocated array of size \texttt{n x n} containing the \texttt{LL}^H factorization of \texttt{A}. The lower-triangular part of this array contains \texttt{L}, and the upper-triangular part contains \texttt{L}^H. If \texttt{A} is not needed, \texttt{a} and \texttt{factor} can share the same storage. If \texttt{IMSL\_SOLVE} is specified, \texttt{factor} is \texttt{input}. Otherwise, it is \texttt{output}.

**IMSL\_FAC\_COL\_DIM, \texttt{int} fac\_col\_dim (Input)**

The column dimension of the array containing the \texttt{LL}^H factorization of \texttt{A}.

Default: \texttt{fac\_col\_dim = n}

**IMSL\_CONDITION, \texttt{float} *cond (Output)**

A pointer to a scalar containing an estimate of the \texttt{L}_1 norm condition number of the matrix \texttt{A}. Do not use this option with \texttt{IMSL\_SOLVE\_ONLY}.

**IMSL\_FACTOR\_ONLY**

Compute the Cholesky factorization \texttt{LL}^H of \texttt{A}. If \texttt{IMSL\_FACTOR\_ONLY} is used, either \texttt{IMSL\_FACTOR} or \texttt{IMSL\_FACTOR\_USER} is required. The argument \texttt{b} is then ignored, and the returned value of \texttt{imsl\_c\_lin\_sol\_posdef} is \texttt{NULL}.
**IMSL\_SOLVE\_ONLY**

Solve $Ax = b$ given the $LL^H$ factorization previously computed by `imsl\_c\_lin\_sol\_posdef`. By default, the solution to $Ax = b$ is pointed to by `imsl\_c\_lin\_sol\_posdef`. If `IMSL\_SOLVE\_ONLY` is used, argument `IMSL\_FACTOR\_USER` is required and argument $a$ is ignored.

**Description**

The function `imsl\_c\_lin\_sol\_posdef` solves a system of linear algebraic equations having a Hermitian positive definite coefficient matrix $A$. The function first computes the $LL^H$ factorization of $A$. The solution of the linear system is then found by solving the two simpler systems, $y = L^{-1}b$ and $x = L^{-H}y$. When the solution to the linear system is required, an estimate of the $L_1$ condition number of $A$ is computed using the algorithm in Dongarra et al. (1979). If the estimated condition number is greater than $1/\varepsilon$ (where $\varepsilon$ is the machine precision), a warning message is issued. This indicates that very small changes in $A$ may produce large changes in the solution $x$. The function `imsl\_c\_lin\_sol\_posdef` fails if $L$, the lower-triangular matrix in the factorization, has a zero diagonal element.

**Examples**

**Example 1**

A system of five linear equations with a Hermitian positive definite coefficient matrix is solved in this example. The equations are as follows:

$$
2x_1 + (-1 + i)x_2 = 1 + 5i \\
(-1 - i)x_1 + 4x_2 + (1 + 2i)x_3 = 12 - 6i \\
(1 - 2i)x_2 + 10x_3 + 4ix_4 = 1 - 16i \\
-4ix_3 + 6x_4 + (1 + i)x_5 = -3 - 3i \\
(1 - i)x_4 + 9x_5 = 25 + 16i
$$

#include <imsl.h>

```c
int main()
{
 int n = 5;
 f_complex *x;
 f_complex a[] = {
 {2.0,0.0}, {-1.0,1.0}, {0.0,0.0}, {0.0,0.0}, {0.0,0.0},
 {-1.0,-1.0}, {4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
 {0.0,0.0}, {1.0,-2.0}, {10.0,0.0}, {0.0,4.0}, {0.0,0.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,-4.0}, {6.0,0.0}, {1.0,1.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}};
```
f_complex b[] = {
    {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
};
    /* Solve Ax = b for x */
x = imsl_c_lin_sol_posdef(n, a, b, 0);
                /* Print x */
imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);

Output

Solution, x, of Ax = b

1                     2                     3
(        2,        1) (        3,       -0) (       -1,       -1)

4                     5
(        0,       -2) (        3,        2)

Example 2

This example solves the same system of five linear equations as in the first example. This time, the $LL^H$ factorization of $A$ and the solution $x$ is returned in an array allocated in the main program.

#include <imsl.h>

int main()
{
    int n = 5;
    f_complex x[5], *p_factor;
    f_complex a[] = {
        {2.0,0.0}, {-1.0,1.0}, {0.0,0.0}, {0.0,0.0}, {0.0,0.0},
        {-1.0,-1.0}, {4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
        {0.0,0.0}, {1.0,-2.0}, {10.0,0.0}, {0.0,4.0}, {0.0,0.0},
        {0.0,0.0}, {0.0,0.0}, {0.0,-4.0}, {6.0,0.0}, {1.0,1.0},
        {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0}, {9.0,0.0}
    };
    f_complex b[] = {
        {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
    };
    /* Solve Ax = b for x */
imsl_c_lin_sol_posdef(n, a, b,
              IMSL_RETURN_USER, x,
              IMSL_FACTOR, &p_factor,
              0);
              /* Print x */
imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
/* Print Cholesky factor of A */
ims1_c_write_matrix("Cholesky factor L, and ctrans(L), of A",
   n, n, p_factor, 0);
}

Output

Solution, x, of Ax = b

\[
\begin{align*}
1 & \quad 2 & \quad 3 \\
2 & \quad 1 & \quad 3 & \quad -0 & \quad -1 & \quad -1 \\
4 & \quad & \quad 3 & \quad 2 \\
\end{align*}
\]

Cholesky factor L, and ctrans(L), of A

\[
\begin{align*}
1 & \quad 2 & \quad 3 \\
1 & \quad 1.414 & \quad 0.000 & \quad -0.707 & \quad 0.707 & \quad 0.000 & \quad -0.000 \\
2 & \quad -0.707 & \quad -0.707 & \quad 1.732 & \quad 0.000 & \quad 0.577 & \quad 1.155 \\
3 & \quad 0.000 & \quad 0.000 & \quad 0.577 & \quad -1.155 & \quad 2.887 & \quad 0.000 \\
4 & \quad 0.000 & \quad -1.386 \\
5 & \quad 0.000 \\
4 & \quad & \quad 5 \\
1 & \quad 0.000 & \quad -0.000 & \quad 0.000 & \quad -0.000 \\
2 & \quad 0.000 & \quad -0.000 & \quad 0.000 & \quad -0.000 \\
3 & \quad 0.000 & \quad 1.386 & \quad 0.000 & \quad -0.000 \\
4 & \quad 2.020 & \quad 0.000 & \quad 0.495 & \quad 0.495 \\
5 & \quad 0.495 & \quad -0.495 & \quad 2.917 & \quad 0.000 \\
\end{align*}
\]
Warning Errors

IMSL_HERMITIAN_DIAG_REAL_1
The diagonal of a Hermitian matrix must be real. Its imaginary part is set to zero.

IMSL_HERMITIAN_DIAG_REAL_2
The diagonal of a Hermitian matrix must be real. The imaginary part will be used as zero in the algorithm.

IMSL_ILL_CONDITIONED
The input matrix is too ill-conditioned. An estimate of the reciprocal of its $L_1$ condition number is $\|cond\| = \#$. The solution might not be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX
The leading $\# \times \#$ minor matrix of the input matrix is not positive definite.

IMSL_HERMITIAN_DIAG_REAL
During the factorization the matrix has a large imaginary component on the diagonal. Thus, it cannot be positive definite.

IMSL_SINGULAR_TRI_MATRIX
The triangular matrix is singular. The index of the first zero diagonal term is $\#$. 

lin_sol_gen_band

Solves a real general band system of linear equations, \(Ax = b\). Using optional arguments, any of several related computations can be performed. These extra tasks include computing the \(LU\) factorization of \(A\) using partial pivoting, solving \(A^T x = b\), or computing the solution of \(Ax = b\) given the \(LU\) factorization of \(A\).

Synopsis

```
#include <imsl.h>

float *imsl_f_lin_sol_gen_band(int n, float a[], int nlca, int nuca, float b[], ..., 0)
```

The type `double` function is `imsl_d_lin_sol_gen_band`.

Required Arguments

- `int n` (Input)
  Number of rows and columns in the matrix.

- `float a[]` (Input)
  Array of size \((nlca + nuca + 1)\) containing the \(n \times n\) banded coefficient matrix in band storage mode.

- `int nlca` (Input)
  Number of lower codiagonals in \(a\).

- `int nuca` (Input)
  Number of upper codiagonals in \(a\).

- `float b[]` (Input)
  Array of size \(n\) containing the right-hand side.

Return Value

A pointer to the solution \(x\) of the linear system \(Ax = b\). To release this space use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
```
```c
float *imsl_f_lin_sol_gen_band(int n, float a[], int nlca, int nuca, float b[],
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, float x[],
 IMSL_FACTOR, int **p_pvt, float **p_factor,
 IMSL_FACTOR_USER, int pvt[], float factor[],
 IMSL_CONDITION, float *condition,
 IMSL_FACTOR_ONLY,
 IMSL_SOLVE_ONLY,
 IMSL_BLOCKING_FACTOR, int block_factor,
 0)
```

**Optional Arguments**

- **IMSL_TRANSPOSE**
  - Solve \( A^T x = b \).
  - Default: Solve \( Ax = b \).

- **IMSL_RETURN_USER, float x[] (Output)**
  - A user-allocated array of length \( n \) containing the solution \( x \).

- **IMSL_FACTOR, int **p_pvt, float **p_factor (Output)**
  - `int **p_pvt (Input/Output)`
    - The address of a pointer to an array of length \( n \) containing the pivot sequence for the factorization. On return, the necessary space is allocated by `imsl_f_lin_sol_gen_band`. Typically, `int *p_pvt` is declared and `&p_pvt` is used as an argument.
  - `float **p_factor (Input/Output)`
    - The address of a pointer to an array of size \( (2nlca + nuca + 1) \times n \) containing the \( LU \) factorization of \( A \) with column pivoting. On return, the necessary space is allocated by `imsl_f_lin_sol_gen_band`. Typically, `float *p_factor` is declared and `&p_factor` is used as an argument.

- **IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)**
  - `int pvt[] (Input/Output)`
    - A user-allocated array of size \( n \) containing the pivot sequence for the factorization.
float factor[] (Input/Output)
A user-allocated array of size \((2nlca + nuca + 1) \times n\) containing the LU factorization of \(A\). The strictly lower triangular part of this array contains information necessary to construct \(L\), and the upper triangular part contains \(U\). If \(A\) is not needed, \(factor\) and \(a\) can share the first \((nlca + nuca + 1) \times n\) locations.

These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are “Output” otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the \(L_1\) norm condition number of the matrix \(A\). This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of \(A\) with partial pivoting. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument \(b\) is then ignored, and the returned value of \(imsl_f_lin_sol_gen_band\) is NULL.

IMSL_SOLVE_ONLY
Solve \(Ax = b\) given the LU factorization previously computed by \(imsl_f_lin_sol_gen_band\). By default, the solution to \(Ax = b\) is pointed to by \(imsl_f_lin_sol_gen_band\). If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument \(a\) is ignored.

IMSL_BLOCKING_FACTOR, int block_factor (Input)
The blocking factor. \(block\_factor\) must be set no larger than 32.
Default: \(block\_factor = 1\)

Description
The function \(imsl_f_lin_sol_gen_band\) solves a system of linear algebraic equations with a real band matrix \(A\). It first computes the LU factorization of \(A\) based on the blocked LU factorization algorithm given in Du Croz et al. (1990). Level-3 BLAS invocations are replaced with inline loops. The blocking factor \(block\_factor\) has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems, \(y = L^{-1}b\) and \(x = U^{-1}y\). When the solution to the linear system or the inverse of the matrix is sought, an estimate of the \(L_1\) condition number of \(A\) is computed using Higham’s modifications to Hager’s method, as given in Higham (1988). If the estimated condition number is greater than \(1/\varepsilon\) (where \(\varepsilon\) is the machine precision), a warning message is issued. This indicates that very small changes in \(A\) may produce large changes in the solution \(x\). The function \(imsl_f_lin_sol_gen_band\) fails if \(U\), the upper triangular part of the factorization, has a zero diagonal element.
Examples

Example 1

This example demonstrates the simplest use of this function by solving a system of four linear equations. The equations are as follows:

\[
\begin{align*}
2x_1 - x_2 &= 3 \\
-3x_1 + x_2 - 2x_3 &= 1 \\
-x_3 + 2x_4 &= 11 \\
2x_3 + x_4 &= -2
\end{align*}
\]

```c
#include <imsl.h>

int main ()
{
 int n = 4;
 int nuca = 1;
 int nlca = 1;
 float *x;

 /* Note that a is in band storage mode */

 float a[] = {0.0, -1.0, -2.0, 2.0, 2.0, 1.0, -1.0, 1.0, -3.0, 0.0, 2.0, 0.0};
 float b[] = {3.0, 1.0, 11.0, -2.0};
 x = imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b, 0);

 imsl_f_write_matrix ("Solution x, of Ax = b", 1, n, x, 0);
}
```

Output

```
Solution x, of Ax = b
1 2 3 4
2 1 -3 4
```

Example 2

In this example, the problem \( Ax = b \) is solved using the data from the first example. This time, the factorizations are returned and the problem \( A^T x = b \) is solved without recomputing \( LU \).

```c
#include <imsl.h>

int main()
{
 int n = 4;
```
int nlca = 1;
int nuca = 1;
int *pivot;
f_complex *x;
f_complex *factor;

/* Note that a is in band storage mode */

f_complex a[] =
{{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
{-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
{6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

f_complex b[] =
{{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

/* Solve Ax = b and return LU */
x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
IMSL_FACTOR, &pivot, &factor, 0);

imsl_c_write_matrix ("solution of Ax = b", n, 1, x, 0);
imsl_free (x);

/* Use precomputed LU to solve ctrans(A)x = b */
x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
IMSL_FACTOR_USER, pivot, factor,
IMSL_TRANSPOSE, 0);

imsl_c_write_matrix ("solution of ctrans(A)x = b", n, 1, x, 0);

} } Output

Solution of Ax = b
1 2 3 4
2 1 -3 4

Solution of ctrans(A)x = b
1 2 3 4
-6 -5 -1 -0
Warning Errors

IMSL_Ill_CONDITIONED The input matrix is too ill-conditioned. An estimate of the reciprocal of its $L_1$ condition number is "rcond" = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX The input matrix is singular.
Solves a complex general band system of linear equations $Ax = b$. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the $LU$ factorization of $A$ using partial pivoting, solving $A^H x = b$, or computing the solution of $Ax = b$ given the $LU$ factorization of $A$.

**Synopsis**

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[], int nlca, int nuca, f_complex b[], ...), 0)
```

The type `double` function is `imsl_z_lin_sol_gen_band`.

**Required Arguments**

- `int n` (Input)
  - Number of rows and columns in the matrix.

- `f_complex a[]` (Input)
  - Array of size $(nlca + nuca + 1) \times n$ containing the $n \times n$ banded coefficient matrix in band storage mode.

- `int nlca` (Input)
  - Number of lower codiagonals in $a$.

- `int nuca` (Input)
  - Number of upper codiagonals in $a$.

- `f_complex b[]` (Input)
  - Array of size $n$ containing the right-hand side.

**Return Value**

A pointer to the solution $x$ of the linear system $Ax = b$. To release this space use `imsl_free`. If no solution was computed, `NULL` is returned.
Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_band(int n, f_complex a[], int nlca, int nuca, f_complex b[],
    IMSL_TRANSPOSE,
    IMSL_RETURN_USER, f_complex x[],
    IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
    IMSL_FACTOR_USER, int pvt[], f_complex factor[],
    IMSL_CONDITION, float *condition,
    IMSL_FACTOR_ONLY,
    IMSL_SOLVE_ONLY,
    0)

Optional Arguments

IMSL_TRANSPOSE
    Solve $A^H x = b$
    Default: Solve $Ax = b$.

IMSL_RETURN_USER, f_complex x[] (Output)
    A user-allocated array of length $n$ containing the solution $x$.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)
    int **p_pvt (Input/Output)
        The address of a pointer to an array of length $n$ containing the pivot sequence for the factorization. On return, the necessary space is allocated by \texttt{imsl\_c\_lin\_sol\_gen\_band}. Typically, int *p_pvt is declared and &p_pvt is used as an argument.
    
    f_complex **p_factor (Input/Output)
        The address of a pointer to an array of size $(2nlca + nuca + 1) \times n$ containing the \textit{LU} factorization of $A$ with column pivoting. On return, the necessary space is allocated by \texttt{imsl\_c\_lin\_sol\_gen\_band}. Typically, f_complex *p_factor is declared and &p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)
    int pvt[] (Input/Output)
        A user-allocated array of size $n$ containing the pivot sequence for the factorization.
The function `imsl_c_lin_sol_gen_band` solves a system of linear algebraic equations with a complex band matrix $A$. It first computes the $LU$ factorization of $A$ using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same $L_\infty$ norm. The factorization fails if $U$ has a zero diagonal element. This can occur only if $A$ is singular or very close to a singular matrix.

The solution of the linear system is then found by solving two simpler systems, $y = L^{-1}b$ and $x = U^{-1}y$. When the solution to the linear system or the inverse of the matrix is sought, an estimate of the $L_1$ condition number of $A$ is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition number is greater than $1/\varepsilon$ (where $\varepsilon$ is the machine precision), a warning message is issued. This indicates that very small changes in $A$ may produce large changes in the solution $x$. The function `imsl_c_lin_sol_gen_band` fails if $U$, the upper triangular part of the factorization, has a zero diagonal element. The function `imsl_c_lin_sol_gen_band` is based on the LINPACK subroutine CGBFA; see Dongarra et al. (1979). CGBFA uses unscaled partial pivoting.

### Examples

**Example 1**

The following linear system is solved:
#include <imsl.h>

int main()
{
    int n = 4;
    int nlca = 1;
    int nuca = 1;
    f_complex *x;

    /* Note that a is in band storage mode */

    f_complex a[] =
        {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
         {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
         {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

    f_complex b[] =
        {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

    x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 0);

    imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
}

Output

Solution, x, of Ax = b
1 ( 3, -0)
2 ( -1, 1)
3 ( 3, 0)
4 ( -1, 1)

Example 2

This example solves the problem \( Ax = b \) using the data from the first example. This time, the factorizations are returned and then the problem \( A^Hx = b \) is solved without recomputing \( LU \).

#include <imsl.h>

int main()
{
    int n = 4;
    int nlca = 1;
    int nuca = 1;

int *pivot;
f_complex *x;
f_complex *factor;

/* Note that a is in band storage mode */
f_complex a[] =
{ {0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
  {2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
  {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

f_complex b[] =
{ {-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

/* Solve Ax = b and return LU */
x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
IMSL_FACTOR, &pivot, &factor, 0);
imsl_c_write_matrix ("solution of Ax = b", n, 1, x, 0);
imsl_free (x);

/* Use precomputed LU to solve ctrans(A)x = b */
x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
IMSL_FACTOR_USER, pivot, factor,
IMSL_TRANSPOSE, 0);
imsl_c_write_matrix ("solution of ctrans(A)x = b", n, 1, x, 0);
}

Output

solution of Ax = b
1 ( 3, -0)
2 (-1, 1)
3 ( 3, 0)
4 (-1, 1)

solution of ctrans(A)x = b
1 ( 5.58, -2.91)
2 (-0.48, -4.67)
3 (-6.19, 7.15)
4 (12.60, 30.20)
Warning Errors

IMSL_ILL_CONDITIONED

The input matrix is too ill-conditioned. An estimate of the reciprocal of its $L_1$ condition number is “rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX

The input matrix is singular.
Solves a real symmetric positive definite system of linear equations $Ax = b$ in band symmetric storage mode. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the $R^T R$ Cholesky factorization of $A$, computing the solution of $Ax = b$ given the Cholesky factorization of $A$, or estimating the $L_1$ condition number of $A$.

Synopsis

```c
#include <imsl.h>

float *imsl_f_lin_sol_posdef_band(int n, float a[], int ncola, float b[], ...), 0)
```

The type `double` function is `imsl_d_lin_sol_posdef_band`.

Required Arguments

- `int n` (Input)
  - Number of rows and columns in the matrix.

- `float a[]` (Input)
  - Array of size $(ncola + 1) \times n$ containing the $n \times n$ positive definite band coefficient matrix in band symmetric storage mode.

- `int ncola` (Input)
  - Number of upper codiagonals of the matrix.

- `float b[]` (Input)
  - Array of size $n$ containing the right-hand side.

Return Value

A pointer to the solution $x$ of the linear system $Ax = b$. To release this space use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
float *imsl_f_lin_sol_posdef_band(int n, float a[], int ncoda, float b[],

IMSL_RETURN_USER, float x[],
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size \( (ncoda + 1) \times n \) containing the \( LL^T \) factorization of A. On return, the necessary space is allocated by imsl_f_lin_sol_posdef_band. Typically, float *p_factor is declared and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size \( (ncoda + 1) \times n \) containing the \( LL^T \) factorization of A in band symmetric form. If A is not needed, factor and a can share the same storage. These parameters are “Input” if IMSL_SOLVE is specified. They are “Output” otherwise.

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the \( L_1 \) norm condition number of the matrix A. This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the \( LL^T \) factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_f_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY
Solve \( Ax = b \) given the \( LL^T \) factorization previously computed by imsl_f_lin_sol_posdef_band. By default, the solution to \( Ax = b \) is pointed to by imsl_f_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument a is ignored.
Description

The function `imsl_f_lin_sol_posdef_band` solves a system of linear algebraic equations with a real symmetric positive definite band coefficient matrix \( A \). It computes the \( R^T R \) Cholesky factorization of \( A \). \( R \) is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the \( L_1 \) condition number of \( A \) is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition number is greater than \( 1/\varepsilon \) (where \( \varepsilon \) is the machine precision), a warning message is issued. This indicates that very small changes in \( A \) may produce large changes in the solution \( x \).

The function `imsl_f_lin_sol_posdef_band` fails if any submatrix of \( R \) is not positive definite or if \( R \) has a zero diagonal element. These errors occur only if \( A \) is very close to a singular matrix or to a matrix which is not positive definite.

The function `imsl_f_lin_sol_posdef_band` is partially based on the LINPACK subroutines CPBFA and SPBSL; see Dongarra et al. (1979).

Example 1

Solves a system of linear equations \( Ax = b \), where

\[
A = \begin{bmatrix}
  2 & 0 & -1 & 0 \\
  0 & 4 & 2 & 1 \\
-1 & 2 & 7 & -1 \\
  0 & 1 & -1 & 3
\end{bmatrix}
\quad \text{and} \quad
b = \begin{bmatrix}
  6 \\
-11 \\
-11 \\
  19
\end{bmatrix}
\]

```c
#include <imsl.h>

int main()
{
 int n = 4;
 int ncoda = 2;
 float *x;

 /* Note that a is in band storage mode */

 float a[] = {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};

 x = imsl_f_lin_sol_posdef_band (n, a, ncoda, b, 0);

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}
```
Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-6</td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Example 2

This example solves the same problem $Ax = b$ given in the first example. The solution is returned in user-allocated space and an estimate of $\kappa_1(A)$ is computed. Additionally, the $R^TR$ factorization is returned. Then, knowing that $\kappa_1(A) = \|A\| \|A^{-1}\|$, the condition number is computed directly and compared to the estimate from Higham's method.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int n = 4;
 int ncoda = 2;
 float a[] =
 {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};
 float x[4];
 float e_i[4];
 float *factor;
 float condition;
 float column_norm;
 float inverse_norm;
 int i;
 int j;

 imsl_f_lin_sol_posdef_band (n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x,
 0);

 /* find one norm of inverse */
 inverse_norm = 0.0;

 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) e_i[j] = 0.0;
```
e_i[i] = 1.0;

/* determine one norm of each column of inverse */
imsl_f_lin_sol_posdef_band (n, a, ncoda, e_i,
   IMSL_FACTOR_USER, factor,
   IMSL_SOLVE_ONLY,
   IMSL_RETURN_USER, x,
   0);

column_norm = imsl_f_vector_norm (n, x,
   IMSL_ONE_NORM,
   0);

/* the max of the column norms is the norm of
inv(A) */
if (inverse_norm < column_norm)
   inverse_norm = column_norm;
}

/* by observation, one norm of A is 11 */
printf ("\nHigham’s condition estimate = %f\n", condition);
printf ("Direct condition estimate = %f\n",
   11.0*inverse_norm);
}

Output

Solution, x, of Ax = b
1          2          3          4
4         -6          2          9

Higham’s condition estimate = 8.650485
Direct condition estimate  = 8.650485

Warning Errors

IMSL_ILL_CONDITIONED

The input matrix is too ill-conditioned. An estimate of
the reciprocal of its $L_1$ condition number is
“rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX
The leading # by # submatrix of the input matrix is not
positive definite.

IMSL_SINGULAR_MATRIX
The input matrix is singular.
Solves a complex Hermitian positive definite system of linear equations $Ax = b$ in band symmetric storage mode. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the $R^*R$ Cholesky factorization of $A$, computing the solution of $Ax = b$ given the Cholesky factorization of $A$, or estimating the $L_1$ condition number of $A$.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_band(int n, f_complex a[], int ncod, f_complex b[], ..., 0)
```

The type `double` function is `imsl_z_lin_sol_posdef_band`.

Required Arguments

- `int n` (Input)
  Number of rows and columns in the matrix.

- `f_complex a[]` (Input)
  Array of size $(ncoda + 1) \times n$ containing the $n \times n$ positive definite band coefficient matrix in band symmetric storage mode.

- `int ncod` (Input)
  Number of upper codiagonals of the matrix.

- `f_complex b[]` (Input)
  Array of size $n$ containing the right-hand side.

Return Value

A pointer to the solution $x$ of the linear system $Ax = b$. To release this space use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
\[ f_{\text{complex}} \text{ *imsl\_c\_lin\_sol\_posdef\_band (int n, f_{\text{complex}} a[], int ncola, f_{\text{complex}} b[],}
\]
\[ \text{IMSL\_RETURN\_USER, } f_{\text{complex}} x[],
\]
\[ \text{IMSL\_FACTOR, } f_{\text{complex}} **p\_factor,
\]
\[ \text{IMSL\_FACTOR\_USER, } f_{\text{complex}} factor[],
\]
\[ \text{IMSL\_CONDITION, } float \text{ *condition,
\]
\[ \text{IMSL\_FACTOR\_ONLY,
\]
\[ \text{IMSL\_SOLVE\_ONLY,
\]
\[ 0)
\]

**Optional Arguments**

**IMSL\_RETURN\_USER, } f_{\text{complex}} x[]** (Output)

A user-allocated array of length \( n \) containing the solution \( x \).

**IMSL\_FACTOR, } f_{\text{complex}} **p\_factor** (Output)

The address of a pointer to an array of size \( (ncola + 1) \times n \) containing the \( R^H R \) factorization of \( A \). On return, the necessary space is allocated by \text{imsl\_c\_lin\_sol\_posdef\_band}. Typically, \( f_{\text{complex}} *p\_factor \) is declared and \&p\_factor is used as an argument.

**IMSL\_FACTOR\_USER, } f_{\text{complex}} factor[]** (Input/Output)

A user-allocated array of size \( (ncola + 1) \times n \) containing the \( R^H R \) factorization of \( A \) in band symmetric form. If \( A \) is not needed, \text{factor} and \( a \) can share the same storage. These parameters are “Input” if \text{IMSL\_SOLVE} is specified. They are “Output” otherwise.

**IMSL\_CONDITION, } float \text{ *condition** (Output)

A pointer to a scalar containing an estimate of the \( L_1 \) norm condition number of the matrix \( A \). This option cannot be used with the option \text{IMSL\_SOLVE\_ONLY}.

**IMSL\_FACTOR\_ONLY**

Compute the \( R^H R \) factorization of \( A \). If \text{IMSL\_FACTOR\_ONLY} is used, either \text{IMSL\_FACTOR} or \text{IMSL\_FACTOR\_USER} is required. The argument \( b \) is then ignored, and the returned value of \text{imsl\_c\_lin\_sol\_posdef\_band} is NULL.

**IMSL\_SOLVE\_ONLY**

Solve \( Ax = b \) given the \( R^H R \) factorization previously computed by \text{imsl\_c\_lin\_sol\_posdef\_band}. By default, the solution to \( Ax = b \) is pointed to by \text{imsl\_c\_lin\_sol\_posdef\_band}. If \text{IMSL\_SOLVE\_ONLY} is used, argument \text{IMSL\_FACTOR\_USER} is required and the argument \( a \) is ignored.
Description

The function `imsl_c_lin_sol_posdef_band` solves a system of linear algebraic equations with a real symmetric positive definite band coefficient matrix $A$. It computes the $R^H R$ Cholesky factorization of $A$. Argument $R$ is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the $L_1$ condition number of $A$ is computed using Higham’s modifications to Hager’s method, as given in Higham (1988). If the estimated condition number is greater than $1/\varepsilon$ (where $\varepsilon$ is the machine precision), a warning message is issued. This indicates that very small changes in $A$ may produce large changes in the solution $x$.

The function `imsl_c_lin_sol_posdef_band` fails if any submatrix of $R$ is not positive definite or if $R$ has a zero diagonal element. These errors occur only if $A$ is very close to a singular matrix or to a matrix which is not positive definite.

The function `imsl_c_lin_sol_posdef_band` is based partially on the LINPACK sub-routines SPBFA and CPBSL; see Dongarra et al. (1979).

Examples

Example 1

Solve a linear system $Ax = b$ where

$$A = \begin{bmatrix}
2 & -1 + i & 0 & 0 & 0 \\
-1 - i & 4 & 1 + 2i & 0 & 0 \\
0 & 1 - 2i & 10 & 4i & 0 \\
0 & 0 & -4i & 6 & 1 + i \\
0 & 0 & 0 & 1 - i & 9
\end{bmatrix}$$

and $b = \begin{bmatrix} 1 + 5i \\ 12 - 6i \\ 1 - 16i \\ -3 - 3i \\ 25 + 16i \end{bmatrix}$

#include <imsl.h>

int main()
{
    int n = 5;
    int ncoma = 1;
    f_complex *x;

    /* Note that a is in band storage mode */

    f_complex a[] =
        {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
            {1.0, 1.0},
            {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
            {9.0, 0.0}};

    f_complex b[] =
        {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0}, {-3.0, -3.0},
            {25.0, 16.0}};

    ...
\[
\begin{pmatrix}
25.0 & 16.0 \\
\end{pmatrix}
\]

\[
x = \text{imsl\_c\_lin\_sol\_posdef\_band}(n, a, ncoda, b, 0);
\]

\[
\text{imsl\_c\_write\_matrix}(\text{"Solution, x, of } A\text{ }=\text{ }b\text{"}, n, 1, x, 0);
\]

**Output**

Solution, x, of \( Ax = b \)

\[
\begin{align*}
1 & (2, 1) \\
2 & (3, -0) \\
3 & (-1, -1) \\
4 & (0, -2) \\
5 & (3, 2)
\end{align*}
\]

**Example 2**

This example solves the same problem \( Ax = b \) given in the first example. The solution is returned in user-allocated space and an estimate of \( \kappa_1(A) \) is computed. Additionally, the \( R^H R \) factorization is returned. Then, knowing that \( \kappa_1(A) = ||A|| \cdot ||A^{-1}|| \), the condition number is computed directly and compared to the estimate from Higham’s method.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
 int n = 5, ncoda = 1, i, j;

 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
 {1.0, 1.0},
 {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
 {9.0, 0.0}};
 f_complex b[] =
 {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0}, {-3.0, -3.0},
 {25.0, 16.0}};
 f_complex x[5], e_i[5], *factor;
 float condition, column_norm, inverse_norm;

 \text{imsl_c_lin_sol_posdef_band}(n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);
```
imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

/* Find one norm of inverse */
inverse_norm = 0.0;

for (i=0; i<n; i++) {
    for (j=0; j<n; j++) e_i[j] = imsl_cf_convert (0.0, 0.0);
    e_i[i] = imsl_cf_convert (1.0, 0.0);

    /* Determine one norm of each column of inverse */
imsl_c_lin_sol_posdef_band (n, a, ncoda, e_i,
        IMSL_FACTOR_USER, factor,
        IMSL_SOLVE_ONLY,
        IMSL_RETURN_USER, x,
        0);

    column_norm = imsl_c_vector_norm (n, x,
        IMSL_ONE_NORM,
        0);

    /* The max of the column norms is the norm of inv(A) */
    if (inverse_norm < column_norm)
        inverse_norm = column_norm;
}

/* By observation, one norm of A is 14+sqrt(5) */
printf ("\nHigham’s condition estimate = %7.4f\n", condition);
printf ("Direct condition estimate  = %7.4f\n",
        (14.0+sqrt(5.0))*inverse_norm);
}

Output

Solution, x, of Ax = b

1                     2                     3
(        2,        1) (        3,       -0) (       -1,       -1)
4                     5
(        0,       -2) (        3,        2)

Higham’s condition estimate = 19.3777
Direct condition estimate  = 19.3777
Warning Errors

IMSL_Ill_CONDITIONED

The input matrix is too ill-conditioned. An estimate of the reciprocal of its $L_1$ condition number is $rcond = \#$. The solution might not be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX

The leading # by # submatrix of the input matrix is not positive definite.

IMSL_SINGULAR_MATRIX

The input matrix is singular.
Solves a sparse system of linear equations $Ax = b$. Using optional arguments, any of several related computations can be performed. These extra tasks include returning the $LU$ factorization of $A$, computing the solution of $Ax = b$ given an $LU$ factorization, setting drop tolerances, and controlling iterative refinement.

**Synopsis**

```c
#include <imsl.h>

float *imsl_f_lin_sol_gen_coordinate(int n, int nz, Imsl_f_sparse_elem *a, float *b, ..., 0)
```

The type `double` function is `imsl_d_lin_sol_gen_coordinate`.

**Required Arguments**

- `int n` (Input)
  - Number of rows in the matrix.
- `int nz` (Input)
  - Number of nonzeros in the matrix.
- `Imsl_f_sparse_elem *a` (Input)
  - Vector of length `nz` containing the location and value of each nonzero entry in the matrix.
- `float *b` (Input)
  - Vector of length `n` containing the right-hand side.

**Return Value**

A pointer to the solution $x$ of the sparse linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

float *imsl_f_lin_sol_gen_coordinate(int n, int nz, Imsl_f_sparse_elem *a, float *b,
 IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor,
```

more...
IMSL_SUPPLY_SPARSE_LU_FACTOR, \texttt{imsl\_f\_sparse\_lu\_factor} *lu\_factor,
IMSL_FREE_SPARSE_LU_FACTOR,
IMSL_RETURN_SPARSE_LU_INCOORD, \texttt{imsl\_f\_sparse\_elem} **lu\_coordinate, \texttt{int} **row\_pivots, \texttt{int} **col\_pivots,
IMSL_SUPPLY_SPARSE_LU_INCOORD, \texttt{int} nzlu, \texttt{imsl\_f\_sparse\_elem} *lu\_coordinate, \texttt{int} *row\_pivots, \texttt{int} *col\_pivots,
IMSL_FACTOR\_ONLY,
IMSL\_SOLVE\_ONLY,
IMSL\_RETURN\_USER, \texttt{float} \texttt{x}[],
IMSL\_TRANSPOSE,
IMSL\_CONDITION, \texttt{float} *condition,
IMSL\_PIVOTING\_STRATEGY, \texttt{imsl\_pivot} method,
IMSL\_NUMBER\_OF\_SEARCH\_ROWS, \texttt{int} num\_search\_row,
IMSL\_ITERATIVE\_REFINEMENT,
IMSL\_DROP\_TOLERANCE, \texttt{float} tolerance,
IMSL\_HYBRID\_FACTORIZATION, \texttt{float} density, \texttt{int} order\_bound,
IMSL\_STABILITY\_FACTOR, \texttt{float} s\_factor,
IMSL\_GROWTH\_FACTOR\_LIMIT, \texttt{float} gf\_limit,
IMSL\_GROWTH\_FACTOR, \texttt{float} *gf,
IMSL\_SMALLEST\_PIVOT, \texttt{float} *small\_pivot
IMSL\_NUM\_NONZEROS\_IN\_FACTOR, \texttt{int} *num\_nonzeros,
IMSL\_CSC\_FORMAT, \texttt{int} *col\_ptr, \texttt{int} *row\_ind, \texttt{float} *values,
IMSL\_MEMORY\_BLOCK\_SIZE, \texttt{int} block\_size,
0)

**Optional Arguments**

**IMSL\_RETURN\_SPARSE\_LU\_FACTOR**, \texttt{imsl\_f\_sparse\_lu\_factor} *lu\_factor* (Output)

The address of a structure of type \texttt{imsl\_f\_sparse\_lu\_factor}. The pointers within the structure are initialized to point to the \texttt{LU} factorization by \texttt{imsl\_f\_lin\_sol\_gen\_coordinate}. 
IMSL_SUPPLY_SPARSE_LU_FACTOR, *lu_factor (Input)
   The address of a structure of type *lu_factor. This structure contains the LU factorization of the input matrix computed by imsl_f_lin_sol_gen_coordinate with the
   IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR.
   Before returning, free the linked list data structure containing the LU factorization of A. Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_INCOORD, **lu_coordinate, (Output)
   The LU factorization is returned in coordinate form in an array of length nz in lu_coordinate. This is more compact than the internal representation encapsulated in *lu_factor. The disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be reconstructed. If however, the factor is to be stored after the program exits, and loaded again at some subsequent run, the combination of IMSL_RETURN_LU_INCOORD and IMSL_SUPPLY_LU_INCOORD probably the best choice, since the factors are in a format that is simple to store and read.

IMSL_SUPPLY_SPARSE_LU_INCOORD, nzlu, *lu_coordinate, (Input)
   Supply the LU factorization in coordinate form. See IMSL_RETURN_SPARSE_LU_INCOORD for a description.

IMSL_FACTOR_ONLY,
   Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
   Solve Ax = b given the LU factorization of A. This option requires the use of option
   IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_INCOORD.

IMSL_RETURN_USER, float x[] (Output)
   A user-allocated array of length n containing the solution x.

IMSL_TRANSPOSE,
   Solve the problem A^T x = b. This option can be used in conjunction with either of the options that supply the factorization.

IMSL_CONDITION, float *condition,
   Estimate the L1 condition number of A and return in the variable condition.

IMSL_PIVOTING_STRATEGY, imsl_pivot method (Input)
   Select the pivoting strategy by setting method to one of the following: IMSL_ROW_MARKOWITZ,
   IMSL_COLUMN_MARKOWITZ, or IMSL_SYMMETRIC_MARKOWITZ. Default: IMSL_SYMMETRIC_MARKOWITZ.
IMSL_NUMBER_OF_SEARCH_ROWS, \textit{int} num_search_row (Input)

The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: \texttt{num\_search\_row} = 3.

IMSL_ITERATIVE_REFINEMENT,

Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, \textit{float} tolerance (Input)

Possible fill-in is checked against tolerance. If the absolute value of the new element is less than
tolerance, it will be discarded.
Default: \texttt{tolerance} = 0.0.

IMSL_HYBRID_FACTORIZATION, \textit{float} density, \textit{int} order_bound,

Enable the function to switch to a dense factorization method when the density of the active subma-
trix reaches $0.0 \leq \text{density} \leq 1.0$ and the order of the active submatrix is less than or equal to
\texttt{order\_bound}.

IMSL_STABILITY_FACTOR, \textit{float} s_factor (Input)

The absolute value of the pivot element must be bigger than the largest element in absolute value in
its row divided by \texttt{s\_factor}.
Default: \texttt{s\_factor} = 10.0.

IMSL_GROWTH_FACTOR_LIMIT, \textit{float} gf_limit (Input)

The computation stops if the growth factor exceeds \texttt{gf\_limit}.
Default: \texttt{gf\_limit} = 1.0e16.

IMSL_GROWTH_FACTOR, \textit{float} *gf (Output)

Argument \texttt{gf} is calculated as the largest element in absolute value at any stage of the Gaussian elim-
nination divided by the largest element in absolute value in \texttt{A}.

IMSL_SMALLEST_PIVOT, \textit{float} *small\_pivot (Output)

A pointer to the value of the pivot element of smallest magnitude that occurred during the
factorization.

IMSL_NUM_NONZEROS_IN_FACTOR, \textit{int} *num_nonzeros (Output)

A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, \textit{int} *col_ptr, \textit{int} *row_ind, \textit{float} *values (Input)

Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main “Introduc-
tion” chapter of this manual for a discussion of this storage scheme.

IMSL_MEMORY_BLOCK_SIZE, \textit{int} blocksize (Input)

If space must be allocated for fill-in, allocate enough space for \texttt{blocksize} new nonzero elements.
Default: \texttt{blocksize} = \texttt{nz}.
Description

The function `imsl_f_lin_sol_gen_coordinate` solves a system of linear equations $Ax = b$, where $A$ is sparse. In its default use, it solves the so-called one off problem, by first performing an $LU$ factorization of $A$ using the improved generalized symmetric Markowitz pivoting scheme. The factor $L$ is not stored explicitly because the saxpy operations performed during the elimination are extended to the right-hand side, along with any row interchanges. Thus, the system $Ly = b$ is solved implicitly. The factor $U$ is then passed to a triangular solver which computes the solution $x$ from $Ux = y$.

If a sequence of systems $Ax = b$ are to be solved where $A$ is unchanged, it is usually more efficient to compute the factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case, the factor $L$ is explicitly stored and a record of all row as well as column interchanges is made. The solve step then solves the two triangular systems $Ly = b$ and $Ux = y$. The user specifies either the `IMSL_RETURN_SPARSE_LU_FACTOR` or the `IMSL_RETURN_LU_INCOORD` option to retrieve the factorization, then calls the function subsequently with different right-hand sides, passing the factorization back in using either `IMSL_SUPPLY_SPARSE_LU_FACTOR` or `IMSL_SUPPLY_SPARSE_LU_INCOORD` in conjunction with `IMSL_SOLVE_ONLY`. If `IMSL_RETURN_SPARSE_LU_FACTOR` is used, the final call to `imsl_lin_sol_gen_coordinate` should include `IMSL_FREE_SPARSE_LU_FACTOR` to release the heap used to store $L$ and $U$.

If the solution to $A^T x = b$ is required, specify the option `IMSL_TRANSPOSE`. This keyword only alters the forward elimination and back substitution so that the operations $U^T y = b$ and $L^T x = y$ are performed to obtain the solution. So, with one call to produce the factorization, solutions to both $Ax = b$ and $A^T x = b$ can be obtained.

The option `IMSL_CONDITION` is used to calculate and return an estimation of the $L_1$ condition number of $A$. The algorithm used is due to Higham. Specification of `IMSL_CONDITION` causes a complete $L$ to be computed and stored, even if a one off problem is being solved. This is due to the fact that Higham’s method requires solution to problems of the form $Az = r$ and $A^T z = r$.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there may be some reduction in fill-in by selecting either `IMSL_ROW_MARKOWITZ` or `IMSL_COLUMN_MARKOWITZ`. The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default number is three, but this can be changed by using `IMSL_NUM_OF_SEARCH_ROWS`.

The option `IMSL_DROP_TOLERANCE` can be used to set a tolerance which can reduce fill-in. This works by preventing any new fill element which has magnitude less than the specified drop tolerance from being added to the factorization. Since this can introduce substantial error into the factorization, it is recommended that `IMSL_ITERATIVE_REFINEMENT` be used to recover more accuracy in the final solution. The trade-off is between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for refinement.

The function `imsl_f_lin_sol_gen_coordinate` provides the option of switching to a dense factorization method at some point during the decomposition. This option is enabled by choosing `IMSL_HYBRID_FACTORIZATION`. One of the two parameters required by this option, `density`, specifies a minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete...
fill-in. The other parameter, order_bound, places an upper bound on the order of the active submatrix which will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the $O(n^3)$ nature of the dense factorization will cause performance degradation. Note that this option can significantly increase heap storage requirements.

**Examples**

**Example 1**

As an example, consider the following matrix:

$$A = \begin{bmatrix}
10 & 0 & 0 & 0 & 0 & 0 \\
0 & 10 & -3 & -1 & 0 & 0 \\
0 & 0 & 15 & 0 & 0 & 0 \\
-2 & 0 & 0 & 10 & -1 & 0 \\
-1 & 0 & 0 & -5 & 1 & -3 \\
-1 & -2 & 0 & 0 & 0 & 6
\end{bmatrix}$$

Let $\mathbf{x}^T = (1, 2, 3, 4, 5, 6)$ so that $A\mathbf{x} = (10, 7, 45, 33, -34, 31)^T$. The number of nonzeros in $A$ is $\text{nz} = 15$.

```c
#include <imsl.h>

int main()
{
 Imsl_f_sparse_elem a[] =
 {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;

 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b, 0);
}
Example 2

This example sets $A = E(1000, 10)$. A linear system is solved and the LU factorization returned. Then a second linear system is solved, using the same coefficient matrix A just factored. Maximum absolute errors and execution time ratios are printed, showing that forward and back solves take approximately 10 percent of the computation time of a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial number of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that timing results are highly machine dependent.

```c
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
    Imsl_f_sparse_elem         *a;
    Imsl_f_sparse_lu_factor     lu_factor;
    float                      *b;
    float                      *x;
    float                      *mod_five;
    float                      *mod_ten;
    float                      error_factor_solve;
    float                      error_solve;
    double                     time_factor_solve;
    double                     time_solve;
    int                         n = 1000;
    int                         c = 10;
    int                         i;
    int                         nz;
    int                         index;

    /* Get the coefficient matrix */
    a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

    /* Set two different predetermined solutions */
    mod_five = (float*) malloc (n*sizeof(*mod_five));
    mod_ten = (float*) malloc (n*sizeof(*mod_ten));

    for (i=0; i<n; i++) {
    }
```
mod_five[i] = (float) (i % 5);
mod_ten[i] = (float) (i % 10);
}

/* Choose b so that x will approximate mod_five */
b = (float *) imsl_f_mat_mul_rect_coordinate("A*x",
IMSL_A_MATRIX, n, n, nz, a,
IMSL_X_VECTOR, n, mod_five, 0);

/* Time the factor/solve */
time_factor_solve = imsl_ctime();

x = imsl_f_lin_sol_gen_coordinate(n, nz, a, b,
IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 0);

time_factor_solve = imsl_ctime() - time_factor_solve;

/* Compute max absolute error */
error_factor_solve = imsl_f_vector_norm(n, x,
IMSL_SECOND_VECTOR, mod_five,
IMSL_INF_NORM, &index, 0);

free(mod_five);
imsl_free(b);
imsl_free(x);

/* Get new right hand side -- b = A * mod_ten */
b = (float *) imsl_f_mat_mul_rect_coordinate("A*x",
IMSL_A_MATRIX, n, n, nz, a,
IMSL_X_VECTOR, n, mod_ten, 0);

/* Use the previously computed factorization
to solve Ax = b */
time_solve = imsl_ctime();

x = imsl_f_lin_sol_gen_coordinate(n, nz, a, b,
IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
IMSL_SOLVE_ONLY, 0);

time_solve = imsl_ctime() - time_solve;

error_solve = imsl_f_vector_norm(n, x,
IMSL_SECOND_VECTOR, mod_ten,
IMSL_INF_NORM, &index, 0);
Output

absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04
time_solve/time_factor_solve = 0.093750

Example 3

This example solves a system $Ax = b$, where $A = E(500, 50)$. Then, the same system is solved using a large drop tolerance. Finally, using the factorization just computed, the same linear system is solved with iterative refinement. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_lu_factor lu_factor;
 float *b;
 float *x;
 float *mod_five;
 float error_zero_drop_tol;
 float error_nonzero_drop_tol;
 float error_nonzero_drop_tol_IR;
 double time_zero_drop_tol;
 double time_nonzero_drop_tol;
 double time_nonzero_drop_tol_IR;
 int nz_nonzero_drop_tol;
 int nz_zero_drop_tol;
 int n = 500;
 int c = 50;
 int i;
 int nz;
 int index;
/* Get the coefficient matrix */
a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
for (i=0; i<nz; i++) a[i].val *= 0.05;

/* Set a predetermined solution */
mod_five = (float*) malloc (n*sizeof(*mod_five));
for (i=0; i<n; i++)
 mod_five[i] = (float) (i % 5);

/* Choose b so that x will approximate mod_five */
b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

/* Time the factor/solve */
time_zero_drop_tol = imsl_ctime();
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_zero_drop_tol,
 0);
time_zero_drop_tol = imsl_ctime() - time_zero_drop_tol;

/* Compute max abolute error */
error_zero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
imsl_free (x);

/* Solve the same problem, with drop
tolerance = 0.005 */
time_nonzero_drop_tol = imsl_ctime();
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_DROP_TOLERANCE, 0.005,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_nonzero_drop_tol,
 0);
time_nonzero_drop_tol = imsl_ctime() - time_nonzero_drop_tol;

/* Compute max abolute error */
error_nonzero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
imsl_free (x);
/* Solve the same problem with IR, use last
factorization */
time_nonzero_drop_tol_IR = imsl_ctime();

x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
IMSL_SOLVE_ONLY,
IMSL_ITERATIVE_REFINEMENT,
0);

time_nonzero_drop_tol_IR = imsl_ctime() - time_nonzero_drop_tol_IR;

/* Compute max absolute error */
error_nonzero_drop_tol_IR = imsl_f_vector_norm (n, x,
IMSL_SECOND_VECTOR, mod_five,
IMSL_INF_NORM, &index,
0);

imsl_free (x);
imsl_free (b);

/* Print errors and ratio of execution times */
printf ("drop tolerance = 0.0\n");
printf ("\tabsolute error = %e\n", error_zero_drop_tol);
printf ("\tfillin = %d\n", nz_zero_drop_tol);
printf ("drop tolerance = 0.005\n");
printf ("\tabsolute error = %e\n", error_nonzero_drop_tol);
printf ("\tfillin = %d\n", nz_nonzero_drop_tol);
printf ("drop tolerance = 0.005 (with IR)\n");
printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR);
printf ("\tfillin = %d\n", nz_nonzero_drop_tol_IR);
printf ("time_nonzero_drop_tol/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol/time_zero_drop_tol);
printf ("time_nonzero_drop_tol_IR/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol_IR/time_zero_drop_tol);
}

Output

drop tolerance = 0.0
 absolute error = 3.814697e-06
 fillin = 9530

drop tolerance = 0.005
 absolute error = 2.699481e+00
 fillin = 8656

drop tolerance = 0.005 (with IR)
 absolute error = 1.907349e-06
 fillin = 8656
time_nonzero_drop_tol/time_zero_drop_tol = 1.086957
time_nonzero_drop_tol_IR/time_zero_drop_tol = 0.840580

Notice the absolute error when iterative refinement is not used. Also note that iterative refinement itself can be quite expensive. In this case, for example, the IR solve took approximately as much time as the factorization. For this problem the use of a drop high drop tolerance and iterative refinement was able to reduce fill-in by 10 percent at a time cost double that of the default usage. In tight memory situations, such a trade-off may be acceptable. Users should be aware that a drop tolerance can be chosen large enough, introducing large errors into LU, to prevent convergence of iterative refinement.
Solves a system of linear equations $Ax = b$, with sparse complex coefficient matrix A. Using optional arguments, any of several related computations can be performed. These extra tasks include returning the LU factorization of A, computing the solution of $Ax = b$ given an LU factorization, setting drop tolerances, and controlling iterative refinement.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz, Imsl_c_sparse_elem *a,
                                         f_complex *b, ..., 0)
```

The type `double` function is `imsl_z_lin_sol_gen_coordinate`.

Required Arguments

- `int n` (Input)
 Number of rows in the matrix.
- `int nz` (Input)
 Number of nonzeros in the matrix.
- `Imsl_c_sparse_elem *a` (Input)
 Vector of length nz containing the location and value of each nonzero entry in the matrix.
- `f_complex *b` (Input)
 Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
\[\text{f_complex } \star \text{imsl_c_lin_sol_gen_coordinate}(\text{int } n, \text{int } nz, \text{imsl_c_sparse_elem } *a, \]
\[\text{f_complex } *b, \]
\[\text{IMSL_RETURN_SPARSE_LU_FACTOR}, \text{imsl_c_sparse_lu_factor } *lu_factor, \]
\[\text{IMSL_SUPPLY_SPARSE_LU_FACTOR}, \text{imsl_c_sparse_lu_factor } *lu_factor, \]
\[\text{IMSL_FREE_SPARSE_LU_FACTOR}, \]
\[\text{IMSL_RETURN_SPARSE_LU_IN_COORD}, \text{imsl_c_sparse_elem } **lu_coordinate, \]
\[\text{int } **\text{row_ pivots}, \text{int } **\text{col_ pivots}, \]
\[\text{IMSL_SUPPLY_SPARSE_LU_IN_COORD}, \text{int } nzlu, \text{imsl_c_sparse_elem } *lu_coordinate, \]
\[\text{int } *\text{row_ pivots}, \text{int } *\text{col_ pivots}, \]
\[\text{IMSL_FACTOR_ONLY}, \]
\[\text{IMSL_SOLVE_ONLY}, \]
\[\text{IMSL_RETURN_USER}, \text{f_complex } x[], \]
\[\text{IMSL_TRANSPOSE}, \]
\[\text{IMSL_CONDITION}, \text{float } *\text{condition}, \]
\[\text{IMSL_PIVOTING_STRATEGY}, \text{imsl_pivot } \text{method}, \]
\[\text{IMSL_NUMBER_OF_SEARCH_ROWS}, \text{int } \text{num_search_row}, \]
\[\text{IMSL_ITERATIVE_REFINEMENT}, \]
\[\text{IMSL_DROP_TOLERANCE}, \text{float } \text{tolerance}, \]
\[\text{IMSL_HYBRID_FACTORIZATION}, \text{float } \text{density}, \text{int } \text{order_bound}, \]
\[\text{IMSL_GROWTH_FACTOR_LIMIT}, \text{float } \text{gf_limit}, \]
\[\text{IMSL_GROWTH_FACTOR}, \text{float } *\text{gf}, \]
\[\text{IMSL_SMALLEST_PIVOT}, \text{float } *\text{small_pivot} \]
\[\text{IMSL_NUM_NONZEROS_IN_FACTOR}, \text{int } *\text{num_nonzeros}, \]
\[\text{IMSL_CSC_FORMAT}, \text{int } *\text{col_ptr}, \text{int } *\text{row_ind}, \text{f_complex } *\text{values}, \]
\[\text{IMSL_MEMORY_BLOCK_SIZE}, \text{int } \text{block_size}, \]
\[0) \]
Optional Arguments

IMSL_RETURN_SPARSE_LU_FACTOR, \texttt{imsl_c_sparse_lu_factor} *lu_factor (Output)
The address of a structure of type \texttt{imsl_c_sparse_lu_factor}. The pointers within the structure are initialized to point to the \textit{LU} factorization by \texttt{imsl_c_lin_sol_gen_coordinate}.

IMSL_SUPPLY_SPARSE_LU_FACTOR, \texttt{imsl_c_sparse_lu_factor} *lu_factor (Input)
The address of a structure of type \texttt{imsl_c_sparse_lu_factor}. This structure contains the \textit{LU} factorization of the input matrix computed by \texttt{imsl_c_lin_sol_gen_coordinate} with the IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,
Before returning, free the linked list data structure containing the \textit{LU} factorization of \(A\). Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_INCOORD, \texttt{imsl_c_sparse_elem} **lu_coordinate, int **row_pivots, int **col_pivots (Output)
The \textit{LU} factorization is returned in coordinate form in an array of length \(\text{nz}\) in \texttt{lu_coordinate}. This is more compact than the internal representation encapsulated in \texttt{imsl_c_sparse_lu_factor}. The disadvantage is that during a \texttt{SOLVE_ONLY} call, the internal representation of the factor must be reconstructed. If however, the factor is to be stored after the program exits, and loaded again at some subsequent run, the combination of IMSL_RETURN_LU_INCOORD and IMSL_SUPPLY_LU_INCOORD is probably the best choice, since the factors are in a format that is simple to store and read.

IMSL_SUPPLY_SPARSE_LU_INCOORD, int \(\text{nzlu}\), \texttt{imsl_c_sparse_elem} *lu_coordinate, int *row_pivots, int *col_pivots (Input)
Supply the \textit{LU} factorization in coordinate form. See IMSL_RETURN_SPARSE_LU_INCOORD for a description.

IMSL_FACTOR_ONLY,
Compute the \textit{LU} factorization of the input matrix and return. The argument \(b\) is ignored.

IMSL_SOLVE_ONLY,
Solve \(Ax = b\) given the \textit{LU} factorization of \(A\). This option requires the use of option IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_INCOORD.

IMSL_RETURN_USER, \texttt{f_complex} x[] (Output)
A user-allocated array of length \(n\) containing the solution \(x\).

IMSL_TRANSPOSE,
Solve the problem \(A^\top x = b\). This option can be used in conjunction with either of the options that supply the factorization.

IMSL_CONDITION, \texttt{float} *condition,
Estimate the \(L_1\) condition number of \(A\) and return in the variable condition.
IMSL_PIVOTING_STRATEGY, int *msl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL_ROW_MARKOWITZ,
IMSL_COLUMN_MARKOWITZ, or IMSL_SYMMETRIC_MARKOWITZ.
Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUMBER_OF_SEARCH_ROWS, int *num_search_row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search_row = 3

IMSL_ITERATIVE_REFINEMENT,
Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float *tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than toler-
ance, it will be discarded.
Default: tolerance = 0.0

IMSL_HYBRID_FACTORIZATION, float *density, int *order_bound, (Input)
Enable the code to switch to a dense factorization method when the density of the active submatrix
reaches $0.0 \leq \text{density} \leq 1.0$ and the order of the active submatrix is less than or equal to
order_bound.

IMSL_GROWTH_FACTOR_LIMIT, float *gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.e16

IMSL_GROWTH_FACTOR, float *gf (Output)
gf is calculated as the largest element in absolute value at any stage of the Gaussian elimination
divided by the largest element in absolute value in A.

IMSL_SMALLEST_PIVOT, float *small_pivot (Output)
A pointer to the value of the pivot element of smallest magnitude.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, f_complex *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main Introduction
chapter at the beginning of this manual for a discussion of this storage scheme.

IMSL_MEMORY_BLOCK_SIZE, int *blocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize = nz
The function `imsl_c_lin_sol_gen_coordinate` solves a system of linear equations \(Ax = b \), where \(A \) is sparse. In its default use, it solves the so-called *one off* problem, by first performing an \(LU \) factorization of \(A \) using the improved generalized symmetric Markowitz pivoting scheme. The factor \(L \) is not stored explicitly because the \(saxpy \) operations performed during the elimination are extended to the right-hand side, along with any row interchanges. Thus, the system \(Ly = b \) is solved implicitly. The factor \(U \) is then passed to a triangular solver which computes the solution \(x \) from \(Ux = y \).

If a sequence of systems \(Ax = b \) are to be solved where \(A \) is unchanged, it is usually more efficient to compute the factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case the factor \(L \) is explicitly stored and a record of all row as well as column interchanges is made. The solve step then solves the two triangular systems \(Ly = b \) and \(Ux = y \). The user specifies either the

- `IMSL_RETURN_SPARSE_LU_FACTOR` or the `IMSL_RETURN_LU_IN_COORD` option to retrieve the factorization, then calls the function subsequently with different right-hand sides, passing the factorization back in using either `IMSL_SUPPLY_SPARSE_LU_FACTOR` or `IMSL_SUPPLY_SPARSE_LU_IN_COORD` in conjunction with `IMSL_SOLVE_ONLY`. If `IMSL_RETURN_SPARSE_LU_FACTOR` is used, the final call to `imsl_lin_sol_gen_coordinate` should include `IMSL_FREE_SPARSE_LU_FACTOR` to release the heap used to store \(L \) and \(U \).

If the solution to \(A^T x = b \) is required, specify the option `IMSL_TRANSPOSE`. This keyword only alters the forward elimination and back substitution so that the operations \(U^T y = b \) and \(L^T x = y \) are performed to obtain the solution. So, with one call to produce the factorization, solutions to both \(Ax = b \) and \(A^T x = b \) can be obtained.

The option `IMSL_CONDITION` is used to calculate and return an estimation of the \(L_1 \) condition number of \(A \). The algorithm used is due to Higham. Specification of `IMSL_CONDITION` causes a complete \(L \) to be computed and stored, even if a one off problem is being solved. This is due to the fact that Higham’s method requires solution to problems of the form \(Az = r \) and \(A^T z = r \).

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there may be some reduction in fill-in by selecting either `IMSL_ROW_MARKOWITZ` or `IMSL_COLUMN_MARKOWITZ`. The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default number is three, but this can be changed by using `IMSL_NUM_OF_SEARCH_ROWS`.

The option `IMSL_DROP_TOLERANCE` can be used to set a tolerance which can reduce fill-in. This works by preventing any new fill element which has magnitude less than the specified drop tolerance from being added to the factorization. Since this can introduce substantial error into the factorization, it is recommended that `IMSL_ITERATIVE_REFINEMENT` be used to recover more accuracy in the final solution. The trade-off is between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for refinement.

The function `imsl_c_lin_sol_gen_coordinate` provides the option of switching to a dense factorization method at some point during the decomposition. This option is enabled by choosing `IMSL_HYBRID_FACTORIZATION`. One of the two parameters required by this option, `density`, specifies a minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete...
fill-in. The other parameter, order_bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the
$O(n^3)$ nature of the dense factorization will cause performance degradation. Note that this option can significantly
increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

$$A = \begin{bmatrix}
10 + 7i & 0 & 0 & 0 & 0 & 0 \\
0 & 3 + 2i & -3 & -1 + 2i & 0 & 0 \\
0 & 0 & 4 + 2i & 0 & 0 & 0 \\
-2 - 4i & 0 & 0 & 1 + 6i & -1 + 3i & 0 \\
-5 + 4i & 0 & 0 & -5 & 12 + 2i & -7 + 7i \\
-1 + 12i & -2 + 8i & 0 & 0 & 0 & 3 + 7i
\end{bmatrix}$$

Let

$$x^T = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)$$

so that

$$Ax = (3 + 17i, -19 + 5i, 6 + 18i, -38 + 32i, -63 + 49i, -57 + 83i)^T$$

#include <imsl.h>

int main()
{
 static Imsl_c_sparse_elem a[] =
 {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};

 static f_complex b[] =
 {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
 {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_sparse_lu_factor lu_factor;
 f_complex *b, *x, *mod_five, *mod_ten;
 float error_factor_solve, error_solve;
 double time_factor_solve, time_solve;
 int n = 1000, c = 10, i, nz, index;

 /* Get the coefficient matrix */
 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

 /* Set two different predetermined solutions */
 mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
 mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
for (i=0; i<n; i++) {
 mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
 mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
}

/* Choose b so that x will approximate mod_five */
b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

/* Time the factor/solve */
time_factor_solve = imsl_ctime();

x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);

time_factor_solve = imsl_ctime() - time_factor_solve;

/* Compute max absolute error */
error_factor_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);

imsl_free (b);
imsl_free (x);

/* Get new right hand side -- b = A * mod_ten */
b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);

/* Use the previously computed factorization to solve Ax = b */
time_solve = imsl_ctime();

x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 0);

time_solve = imsl_ctime() - time_solve;

error_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
imsl_free (b);
imsl_free (x);

/* Print errors and ratio of execution times */
printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
printf ("absolute error (solve) = %e\n", error_solve);
printf ("time_solve/time_factor_solve = %f\n",
 time_solve/time_factor_solve);
}

Output

absolute error (factor/solve) = 2.389053e-06
absolute error (solve) = 7.656095e-06
time_solve/time_factor_solve = 0.070313
Computes the LU factorization of a general sparse matrix by a column method and solves the real sparse linear system of equations $Ax = b$.

Synopsis

```c
#include <imsl.h>

float *imsl_f_superlu(int n, int nz, Imsl_f_sparse_elem a[], float b[], ..., 0)

void imsl_f_superlu_factor_free(Imsl_f_super_lu_factor *factor)
```

The type `double` functions are `imsl_d_superlu` and `imsl_d_superlu_factor_free`.

Required Arguments

- **int n** (Input)
 - The order of the input matrix.

- **int nz** (Input)
 - Number of nonzeros in the matrix.

- **Imsl_f_sparse_elem a[]** (Input)
 - Array of length `nz` containing the location and value of each nonzero entry in the matrix. See the explanation of the `Imsl_f_sparse_elem` structure in the section Matrix Storage Modes in the “Introduction” chapter of this manual.

- **float b[]** (Input)
 - Array of length `n` containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
float *imsl_f_superlu (int n, int nz, Imsl_f_sparse_elem a[], float b[],
 IMSL_EQUILIBRATE, int equilibrate,
 IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method,
 IMSL_COLPERM_VECTOR, int permc[],
 IMSL_TRANSPOSE, int transpose,
 IMSL_ITERATIVE_REFINEMENT, int refine,
 IMSL_FACTOR_SOLVEMETHOD, int factsol,
 IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh,
 IMSL_SYMMETRIC_MODE, int symm_mode,
 IMSL_PERFORMANCE_TUNING, int sp_ienv[],
 IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], float HB_values[],
 IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor lu_factor_supplied,
 IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor *lu_factor_returned,
 IMSL_CONDITION, float *condition,
 IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
 IMSL_FORWARD_ERROR_BOUND, float *ferr,
 IMSL_BACKWARD_ERROR, float *berr,
 IMSL_RETURN_USER, float x[],
 0)

Optional Arguments

IMSL_EQUILIBRATE, int equilibrate (Input)
Specifies if the input matrix A should be equilibrated before factorization.

<table>
<thead>
<tr>
<th>equilibrate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do not equilibrate A before factorization</td>
</tr>
<tr>
<td>1</td>
<td>Equilibrate A before factorization.</td>
</tr>
</tbody>
</table>

Default: equilibrate = 0
IMSL_COLUMN_ORDERING_METHOD, \texttt{imsl_col_ordering} method (Input)

The column ordering method used to preserve sparsity prior to the factorization process. Select the ordering method by setting \texttt{method} to one of the following:

<table>
<thead>
<tr>
<th>\textbf{method}</th>
<th>\textbf{Description}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NATURAL</td>
<td>Natural ordering, i.e. the column ordering of the input matrix.</td>
</tr>
<tr>
<td>IMSL_MMD_ATA</td>
<td>Minimum degree ordering on the structure of $A^T A$.</td>
</tr>
<tr>
<td>IMSL_MMD_AT_PLUS_A</td>
<td>Minimum degree ordering on the structure of $A^T + A$.</td>
</tr>
<tr>
<td>IMSL_COLAMD</td>
<td>Column approximate minimum degree ordering.</td>
</tr>
<tr>
<td>IMSL_PERMC</td>
<td>Use ordering given in permutation vector \texttt{permc}, which is input by the user through optional argument IMSL_COLPERM_VECTOR. Vector \texttt{permc} is a permutation of the numbers 0,1,\ldots,n-1.</td>
</tr>
</tbody>
</table>

Default: \texttt{method = IMSL_COLAMD}

IMSL_COLPERM_VECTOR, \texttt{int permc []} (Input)

Array of length \texttt{n} which defines the permutation matrix P_c before postordering. This argument is required if IMSL_COLUMN_ORDERING_METHOD with \texttt{method = IMSL_PERMC} is used. Otherwise, it is ignored.

IMSL_TRANSPOSE, \texttt{int transpose} (Input)

Indicates if the transposed problem $A^T x = b$ is to be solved. This option can be used in conjunction with either of the options that supply the factorization.

<table>
<thead>
<tr>
<th>\textbf{transpose}</th>
<th>\textbf{Description}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Solve $Ax = b$.</td>
</tr>
<tr>
<td>1</td>
<td>Solve $A^T x = b$.</td>
</tr>
</tbody>
</table>

Default: \texttt{transpose = 0}

IMSL_ITERATIVE_REFINEMENT, \texttt{int refine} (Input)

Indicates if iterative refinement is desired.

<table>
<thead>
<tr>
<th>\textbf{refine}</th>
<th>\textbf{Description}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No iterative refinement.</td>
</tr>
<tr>
<td>1</td>
<td>Do iterative refinement.</td>
</tr>
</tbody>
</table>
Default: refine = 1

IMSL_FACTOR_SOLVE, int factsol (Input)
Indicates if the LU factorization, the solution of a linear system or both are to be computed.

<table>
<thead>
<tr>
<th>factsol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Compute the LU factorization of the input matrix A and solve the system $Ax = b$.</td>
</tr>
<tr>
<td>1</td>
<td>Only compute the LU factorization of the input matrix and return. The LU factorization is returned via optional argument IMSL_RETURN_SPARSE_LU_FACTOR. Input argument b is ignored.</td>
</tr>
<tr>
<td>2</td>
<td>Only solve $Ax = b$ given the LU factorization of A. The LU factorization of A must be supplied via optional argument IMSL_SUPPLY_SPARSE_LU_FACTOR. Input argument a is ignored unless iterative refinement, computation of the condition number or computation of the reciprocal pivot growth factor is required.</td>
</tr>
</tbody>
</table>

Default: factsol = 0

IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot, $0.0 \leq \text{diag_pivot_thresh} \leq 1.0$.
Default: diag_pivot_thresh = 1.0

IMSL_SYMMETRIC_MODE, int symm_mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix A is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold (e.g. 0.0 or 0.01) via option IMSL_DIAG_PIVOT_THRESH and choose an (A^TA)-based column permutation algorithm (e.g. column permutation method IMSL_MMD_AT_PLUS_A).

<table>
<thead>
<tr>
<th>symm_mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do not use symmetric mode option.</td>
</tr>
<tr>
<td>1</td>
<td>Use symmetric mode option.</td>
</tr>
</tbody>
</table>

Default: symm_mode = 0
IMSL_PERFORMANCE_TUNING, int sp_ienv[] (Input)
Array of length 6 containing positive parameters that allow the user to tune the performance of the matrix factorization algorithm.

<table>
<thead>
<tr>
<th>i</th>
<th>Description of sp_ienv[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The panel size.</td>
</tr>
<tr>
<td></td>
<td>Default: sp_ienv[0] = 10</td>
</tr>
<tr>
<td>1</td>
<td>The relaxation parameter to control supernode amalgamation.</td>
</tr>
<tr>
<td></td>
<td>Default: sp_ienv[1] = 5</td>
</tr>
<tr>
<td>2</td>
<td>The maximum allowable size for a supernode.</td>
</tr>
<tr>
<td></td>
<td>Default: sp_ienv[2] = 100</td>
</tr>
<tr>
<td>3</td>
<td>The minimum row dimension to be used for 2D blocking.</td>
</tr>
<tr>
<td>4</td>
<td>The minimum column dimension to be used for 2D blocking.</td>
</tr>
<tr>
<td>5</td>
<td>The estimated fill factor for L and U, compared to A.</td>
</tr>
</tbody>
</table>

IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], float HB_values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the Introduction chapter of this manual for a discussion of this storage scheme.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor lu_factor_supplied (Input)
A structure of type Imsl_f_super_lu_factor containing the LU factorization of the input matrix computed with the IMSL_RETURN_SPARSE_LU_FACTOR option. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function Imsl_f_superlu_factor_free.

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor *lu_factor_returned (Output)
The address of a structure of type Imsl_f_super_lu_factor containing the LU factorization of the input matrix. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function Imsl_f_superlu_factor_free.

IMSL_CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth (Output)
The reciprocal pivot growth factor

$$
\min_j \left\{ \frac{\| P_r D_r A D_c P_c \|_\infty}{\| U_j \|_\infty} \right\}
$$

If recip_pivot_growth is much less than 1, the stability of the LU factorization could be poor.
IMSL_FORWARD_ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_BACKWARD_ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_RETURN_USER, float $x[]$ (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

Consider the sparse linear system of equations

$$Ax = b$$

Here, A is a general square, nonsingular n by n sparse matrix, and x and b are vectors of length n. All entries in A, x and b are of real type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization $P_rD_rAD_cP_c = LU$. Here, D_r and D_c are positive definite diagonal matrices to equilibrate the system and P_r and P_c are permutation matrices to ensure numerical stability and preserve sparsity. L is a unit lower triangular matrix and U is an upper triangular matrix.
2. Solve $Ax = b$ by evaluating

$$x = A^{-1}b = D_c \left(P_c \left(U^{-1} \left(L^{-1} \left(P_r \left(D_r b \right) \right) \right) \right) \right)$$

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of b by D_r. Multiplying $P_r \left(D_r b \right)$ means permuting the rows of $D_r b$.

Multiplying $L^{-1} \left(P_r D_r b \right)$ means solving the triangular system of equations with matrix L by substitution. Similarly, multiplying $U^{-1} \left(L^{-1} \left(P_r D_r b \right) \right)$ means solving the triangular system with U.

Function imsl_f_superlu handles step 1 above by default or if optional argument IMSL_FACTOR_SOLVE is used and set to 1. More precisely, before $Ax = b$ is solved, the following steps are performed:

1. Equilibrate matrix A, i.e. compute diagonal matrices D_r and D_c so that $\hat{A} = D_r A D_c$ is “better conditioned” than A, i.e. \hat{A}^{-1} is less sensitive to perturbations in \hat{A} than A^{-1} is to perturbations in A.
2. Order the columns of \hat{A} to increase the sparsity of the computed L and U factors, i.e. replace \hat{A} by $\hat{AP_c}$ where P_c is a column permutation matrix.
3. Compute the LU factorization of $\tilde{A}P_c$. For numerical stability, the rows of $\tilde{A}P_c$ are eventually permuted through the factorization process by scaled partial pivoting, leading to the decomposition

$$\tilde{A} : = P_c A P_c = LU.$$ The LU factorization is done by a left looking supernode-panel algorithm with 2-D blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

$$\min_{1 \leq j \leq n} \frac{\|\tilde{A}_j\|_\infty}{\|U_j\|_\infty}$$

where \tilde{A}_j and U_j denote the j-th column of matrices \tilde{A} and U, respectively.

5. Estimate the reciprocal of the condition number of matrix \tilde{A}.

During the solution process, this information is used to perform the following steps:

1. Solve the system $Ax = b$ using the computed triangular L and U factors.
2. Iteratively refine the solution, again using the computed triangular factors. This is equivalent to Newton’s method.
3. Compute forward and backward error bounds for the solution vector x.

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional arguments of function `imsl_f_superlu`.

Function `imsl_f_superlu` uses a supernodal storage scheme for the LU factorization of matrix A. The factorization is contained in structure `imsl_f_superlu_factor` and two sub-structures. Following is a short description of these structures:

```c
typedef struct{
    int nnz;                 /* Number of nonzeros in the matrix */
    float *nzval;            /* Array of nonzero values packed by column */
    int *rowind;             /* Array of row indices of the nonzeros */
    int *colpctr;            /* colpctr[j] stores the location in nzval[]
                               and rowind[] which starts column j. It
                               has ncol+1 entries, and colpctr[ncol]
                               points to the first free location in
                               arrays nzval[] and rowind[]. */
} Imsl_f_hb_format;

typedef struct{
    int nnz;                 /* Number of nonzeros in the supernodal
                               matrix */
    int nsuper;              /* Index of the last supernode */
    float *nzval;            /* Array of nonzero values packed by column */
    int *nzval_colpctr;      /* Array of length ncol+1; nzval_colpctr[j]
                               stores the location in nzval which starts
                               column j. nzval_colpctr[ncol] points to
                               the first free location in arrays */
} Imsl_f_superlu_factor;
```
int *rowind; /* Array of compressed row indices of rectangular supernodes */
int *rowind_colptr; /* Array of length ncol+1;
 rowind_colptr[sup_to_col[s]] stores the location in rowind[] which starts
 all columns in supernode s, and rowind_colptr[ncol] points to the first
 free location in rowind[]. */
int *col_to_sup; /* Array of length ncol+1; col_to_sup[j] is the supernode number to which column j belongs. Only the first ncol entries in col_to_sup[] are defined. */
int *sup_to_col; /* Array of length ncol+1; sup_to_col[s] points to the starting column of the s-th supernode. Only the first nsuper+2 entries in sup_to_col[] are defined, and sup_to_col[nsuper+1] = ncol+1. */

} Imsl_f_sc_format;

typedef struct{
 int nrow; /* number of rows of matrix A */
 int ncol; /* number of columns of matrix A */
 int equilibration_method; /* The method used to equilibrate A:
 0 - No equilibration
 1 - Row equilibration.
 2 - Column equilibration
 3 - Both row and column equilibration */
 float *rowscale; /* Array of length nrow containing the row scale factors for A */
 float *columnscale; /* Array of length ncol containing the column scale factors for A */
 int *rowperm; /* Row permutation array of length nrow describing the row permutation matrix Pr */
 int *colperm; /* Column permutation array of length ncol describing the column permutation matrix Pc */
 Imsl_f_hb_format *U; /* The part of the U factor of A outside the supernodal blocks, stored in Harwell-Boeing format */
 Imsl_f_sc_format *L; /* The L factor of A, stored in supernodal format as block lower triangular matrix */
} Imsl_f_super_lu_factor;

Structure Imsl_d_super_lu_factor and its two sub-structures are defined similarly by replacing float by double, Imsl_f_hb_format by Imsl_d_hb_format and Imsl_f_sc_format by Imsl_d_sc_format in their definitions.

As an example, consider the matrix

\[A = \begin{bmatrix}
19 & 0 & 21 & 21 & 0 \\
12 & 21 & 0 & 0 & 0 \\
0 & 12 & 16 & 0 & 0 \\
0 & 0 & 0 & 5 & 21 \\
12 & 12 & 0 & 0 & 18 \\
\end{bmatrix} \]

Factorization of this matrix via `imsl_f_superlu` using natural column ordering, no equilibration and setting `sp_ienv[1]` from its default value 5 to 1 results in the following **LU** decomposition:

\[
A = LU = \begin{bmatrix}
1.00 & 0.63 & 1.00 & 0.57 & 1.00 \\
0.63 & 1.00 & 0.57 & -0.24 & -0.77 & 1.00 \\
\end{bmatrix} \begin{bmatrix}
19.00 & 21.00 & 21.00 \\
21.00 & -13.26 & -13.26 \\
23.58 & 7.58 & 5.00 & 21.00 \\
5.00 & -0.24 & -0.77 & 34.20 \\
\end{bmatrix}.
\]

Considering the filled matrix \(F \) (\(I \) denoting the identity matrix)

\[
F = L + U - I = \begin{bmatrix}
19.00 & 21.00 & 21.00 \\
0.63 & 21.00 & -13.26 & -13.26 \\
0.57 & 23.58 & 7.58 & 5.00 & 21.00 \\
0.63 & 0.57 & -0.24 & -0.77 & 34.20 \\
\end{bmatrix}
\]

the supernodal structure of the factors of matrix \(A \) can be described by

\[
\begin{bmatrix}
s_1 & u_3 & u_4 \\
s_1 & s_2 & s_2 & u_4 \\
s_2 & s_2 & s_2 & u_4 \\
s_1 & s_2 & s_3 & s_3 \\
\end{bmatrix}
\]

where \(s_i \) denotes a nonzero entry in the \(i \) th supernode and \(u_i \) denotes a nonzero entry in the \(i \) th column of \(U \) outside the supernodal block.
Therefore, in a supernodal storage scheme the supernodal part of matrix F is stored as the lower block-diagonal matrix

$$L_{\text{snode}} = \begin{bmatrix} 19.00 & 0.63 & 21.00 & -13.26 & 0.57 \\ 0.63 & 21.00 & -13.26 & 5.00 & 23.58 \\ 0.57 & 23.58 & 5.00 & 21.00 \\ 0.63 & 0.57 & -0.24 & -077 & 34.20 \end{bmatrix}$$

and the part outside the supernodes as the upper triangular matrix

$$U_{\text{snode}} = \begin{bmatrix} * & 21.00 & 21.00 & * & * \\ 0.63 & 21.00 & * & -13.26 & * \\ 0.57 & 23.58 & * & 7.58 & * \\ 0.63 & 0.57 & -0.24 & -077 & 34.20 \end{bmatrix}$$

This is in accordance with the output for structure $\text{imsl_f_superlu_factor}$:

Equilibration method: 0

Scale vectors:
rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000
columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000

Permutation vectors:
colperm: 0 1 2 3 4
rowperm: 0 1 2 3 4

Harwell-Boeing matrix U:
nrow 5, ncol 5, nnz 11
rowind: 0 1 2 0
colptr: 0 0 0 1 4 4

Supernodal matrix L:
nrow 5, ncol 5, nnz 11, nsuper 2
nzval:
0 0 1.900000e+001
1 0 6.315789e-001
4 0 6.315789e-001
1 1 2.100000e+001
2 1 5.714286e-001
4 1 5.714286e-001
1 2 -1.326316e+001
2 2 2.357895e+001
4 2 -2.410714e-001
3 3 5.000000e+000
4 3 -7.714285e-001
3 4 2.100000e+001
4 4 3.420000e+001
nzval_colptr: 0 3 6 9 11 13
rowind: 0 1 4 1 2 4 3 4
rowind_colptr: 0 3 6 6 8 8

col_to_sup: 0 1 1 2 2
sup_to_col: 0 1 3 5

Function `imsl_f_superlu` is based on the SuperLU code written by Demmel, Gilbert, Li et al. For more detailed explanations of the factorization and solve steps, see the SuperLU User’s Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1
The LU factorization of the sparse 6×6 matrix
is computed.

Let \(y = (1, 2, 3, 4, 5, 6)^T \), so that \(b_1 = Ay = (10, 7, 45, 33, -34, 31)^T \) and \(b_2 = A^T y = (-9, 8, 39, 13, 1, 21)^T \).

The \(LU \) factorization of \(A \) is used to solve the sparse linear systems \(Ax = b_1 \) and \(A^T x = b_2 \).

```c
#include <imsl.h>

int main()
{
    Imsl_f_sparse_elem a[] = { 0, 0, 10.0,
        1, 1, 10.0,
        1, 2, -3.0,
        1, 3, -1.0,
        2, 2, 15.0,
        3, 0, -2.0,
        3, 3, 10.0,
        3, 4, -1.0,
        4, 0, -1.0,
        4, 3, -5.0,
        4, 4, 1.0,
        4, 5, -3.0,
        5, 0, -1.0,
        5, 1, -2.0,
        5, 5, 6.0};

    float b1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
    float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0};
    int n = 6, nz = 15;
    float *x = NULL;

    x = imsl_f_superlu (n, nz, a, b1, 0);
    imsl_f_write_matrix ("solution to A*x = b1", 1, n, x, 0);
    imsl_free (x);

    x = imsl_f_superlu (n, nz, a, b2, IMSL_TRANSPOSE, 1, 0);
    imsl_f_write_matrix ("solution to A^T*x = b2", 1, n, x, 0);
    imsl_free (x);
}
```

Output

```
  solution to A*x = b

1  2  3  4  5  6
```

\[
A = \begin{bmatrix}
10 & 0 & 0 & 0 & 0 & 0 \\
0 & 10 & -3 & -1 & 0 & 0 \\
0 & 0 & 15 & 0 & 0 & 0 \\
-2 & 0 & 0 & 10 & -1 & 0 \\
-1 & 0 & 0 & -5 & 1 & -3 \\
-1 & -2 & 0 & 0 & 0 & 6
\end{bmatrix}
\]
Example 2

This example uses the matrix $A = E(1000,10)$ to show how the LU factorization of A can be used to solve a linear system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed. After the computations, the space allocated for the LU factorization is freed via function `imsl_f_superlu_factor_free`.

```c
#include <imsl.h>

int main(){

    Imsl_f_sparse_elem *a;
    Imsl_f_super_lu_factor lu_factor;
    float *b, *x, *mod_five, *mod_ten;
    float error_factor_solve, error_solve;
    int n = 1000, c = 10;

    /* Get the coefficient matrix */
    a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
    
    /* Set two different predetermined solutions */
    mod_five = (float*) malloc (n*sizeof(*mod_five));
    mod_ten = (float*) malloc (n*sizeof(*mod_ten));
    for (i=0; i<n; i++) {
        mod_five[i] = (float) (i % 5);
        mod_ten[i] = (float) (i % 10);
    }
    
    /* Choose b so that x will approximate mod_five */
    b = imsl_f_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, n, nz, a,
        IMSL_X_VECTOR, n, mod_five, 0);
    
    /* Solve Ax = b */
    x = imsl_f_superlu (n, nz, a, b,
        IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 0);
    
    /* Compute max absolute error */
    error_factor_solve = imsl_f_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_five,
        IMSL_INF_NORM, &index,
        0);

    return 0;
}
```
imsl_free (mod_five);
imsl_free (b);
imsl_free (x);

/* Get new right hand side -- b = A * mod_ten */
b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
x = imsl_f_superlu (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, lu_factor,
 IMSL_FACTOR_SOLVE, 2,
0);
error_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
0);

imsl_free (mod_ten);
imsl_free (b);
imsl_free (x);
imsl_free (a);

/* Free sparse LU structure */
imsl_f_superlu_factor_free (&lu_factor);

/* Print errors */
printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
printf ("absolute error (solve) = %e\n", error_solve);
}

Output

absolute error (factor/solve) = 1.502037e-005
absolute error (solve) = 1.621246e-005
Warning Errors

IMSL_IILL_CONDITIONED

The input matrix is too ill-conditioned. An estimate of the reciprocal of its L_1 condition number is $"rcond" = \#$. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX

The input matrix is singular.
superlu (complex)

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_superlu(int n, int nz, Imsl_c_sparse_elem a[], f_complex b[], ... , 0)

void imsl_c_superlu_factor_free (Imsl_c_super_lu_factor *factor)
```

The type `double` functions are `imsl_z_superlu` and `imsl_z_superlu_factor_free`.

Required Arguments

- `int n` (Input)
 The order of the input matrix.

- `int nz` (Input)
 Number of nonzeros in the matrix.

- `Imsl_c_sparse_elem a[]` (Input)
 Array of length `nz` containing the location and value of each nonzero entry in the matrix. See the explanation of the `Imsl_c_sparse_elem` structure in the section Matrix Storage Modes in the “Introduction” chapter of this manual.

- `f_complex b[]` (Input)
 Array of length `n` containing the right-hand side.

Return Value

A pointer to the solution \(x \) of the sparse linear system \(Ax = b \). To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```

f_complex *imsl_c_superlu (int n, int nz, lmsl_c_sparse_elem a[], f_complex b[],
IMSL_EQUIVLIBRATE, int equilibrate,
IMSL_COLUMN_ORDERING_METHOD, lmsl_col_ordering method,
IMSL_COLPERM_VECTOR, int permc[],
IMSL_TRANSPOSE, int transpose,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_SOLVE, int factsol,
IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh,
IMSL_SYMMETRIC_MODE, int symm_mode,
IMSL_PERFORMANCE_TUNING, int sp_ienv[],
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], f_complex HB_values[],
IMSL_SUPPLY_SPARSE_LU_FACTOR, lmsl_c_superlu_factor lu_factor_supplied,
IMSL_RETURN_SPARSE_LU_FACTOR, lmsl_c_superlu_factor *lu_factor_returned,
IMSL_CONDITION, float *condition,
IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
IMSL_FORWARD_ERROR_BOUND, float *ferr,
IMSL_BACKWARD_ERROR, float *berr,
IMSL_RETURN_USER, f_complex x[],
0)

Optional Arguments

IMSL_EQUIVLIBRATE, int equilibrate (Inputs)
Specifies if the input matrix A should be equilibrated before factorization.

<table>
<thead>
<tr>
<th>equilibrate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do not equilibrate A before factorization</td>
</tr>
<tr>
<td>1</td>
<td>Equilibrate A before factorization.</td>
</tr>
</tbody>
</table>

Default: equilibrate = 0
IMSL_COLUMN_ORDERING_METHOD, **imsl_colordering** method (Input)

The column ordering method used to preserve sparsity prior to the factorization process. Select the ordering method by setting `method` to one of the following:

<table>
<thead>
<tr>
<th>method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NATURAL</td>
<td>Natural ordering, i.e. the column ordering of the input matrix.</td>
</tr>
<tr>
<td>IMSL_MMD_ATA</td>
<td>Minimum degree ordering on the structure of $A^T A$.</td>
</tr>
<tr>
<td>IMSL_MMD_AT_PLUS_A</td>
<td>Minimum degree ordering on the structure of $A^T + A$.</td>
</tr>
<tr>
<td>IMSL_COLAMD</td>
<td>Column approximate minimum degree ordering.</td>
</tr>
<tr>
<td>IMSL_PERMC</td>
<td>Use ordering given in permutation vector <code>permc</code>, which is input by the user through optional argument IMSL_COLPERM_VECTOR. Vector <code>permc</code> is a permutation of the numbers 0,1,…,n−1.</td>
</tr>
</tbody>
</table>

Default: `method = IMSL_COLAMD`

IMSL_COLPERM_VECTOR, int permc [] (Input)

Array of length `n` which defines the permutation matrix P_c before postordering. This argument is required if IMSL_COLUMN_ORDERING_METHOD with `method = IMSL_PERMC` is used. Otherwise, it is ignored.

IMSL_TRANSPOSE, int transpose (Input)

Indicates if the problem $Ax = b$ or one of the transposed problems $A^T x = b$ or $A^H x = b$ is to be solved.

<table>
<thead>
<tr>
<th>transpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Solve $Ax = b$.</td>
</tr>
<tr>
<td>1</td>
<td>Solve $A^T x = b$. This option can be used in conjunction with either of the options that supply the factorization.</td>
</tr>
<tr>
<td>2</td>
<td>Solve $A^H x = b$. This option can be used in conjunction with either of the options that supply the factorization.</td>
</tr>
</tbody>
</table>

Default: `transpose = 0`

IMSL_ITERATIVE_REFINEMENT, int refine (Input)

Indicates if iterative refinement is desired.
<table>
<thead>
<tr>
<th>refine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No iterative refinement.</td>
</tr>
<tr>
<td>1</td>
<td>Do iterative refinement.</td>
</tr>
</tbody>
</table>

Default: refine = 1

IMSL_FACTOR_SOLVE, int factsol (input)
Indicates if the \(LU \) factorization, the solution of a linear system or both are to be computed.

<table>
<thead>
<tr>
<th>factsol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Compute the (LU) factorization of the input matrix (A) and solve the system (Ax = b).</td>
</tr>
<tr>
<td>1</td>
<td>Only compute the (LU) factorization of the input matrix and return. The (LU) factorization is returned via optional argument IMSL_RETURN_SPARSE_LU_FACTOR. Input argument (b) is ignored.</td>
</tr>
<tr>
<td>2</td>
<td>Only solve (Ax = b) given the (LU) factorization of (A). The (LU) factorization of (A) must be supplied via optional argument IMSL_SUPPLY_SPARSE_LU_FACTOR. Input argument (a) is ignored unless iterative refinement, computation of the condition number or computation of the reciprocal pivot growth factor is required.</td>
</tr>
</tbody>
</table>

Default: factsol = 0

IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh (input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot, \(0.0 \leq \text{diag_pivot_thresh} \leq 1.0 \).
Default: \(\text{diag_pivot_thresh} = 1.0 \).

IMSL_SYMMETRIC_MODE, int symm_mode (input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix \(A \) is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold (e.g. 0.0 or 0.01) via optional argument IMSL_DIAG_PIVOT_THRESH and choose an \((A^T + A) \)-based column permutation algorithm (e.g. column permutation method IMSL_MMD_AT_PLUS_A).
symm_mode	**Description**
0 | Do not use symmetric mode option.
1 | Use symmetric mode option.

Default: \(\text{symm_mode} = 0 \)

IMSL_PERFORMANCE_TUNING, \(\text{int} \ \text{sp_ienv}[\ldots] \) (Input)

Vector of length 6 containing positive parameters that allow the user to tune the performance of the matrix factorization algorithm.

\(i\)	**Description of sp_ienv[i]**
0 | The panel size. Default: \(\text{sp_ienv}[0] = 10 \)
1 | The relaxation parameter to control supernode amalgamation. Default: \(\text{sp_ienv}[1] = 5 \)
2 | The maximum allowable size for a supernode. Default: \(\text{sp_ienv}[2] = 100 \)
3 | The minimum row dimension to be used for 2D blocking. Default: \(\text{sp_ienv}[3] = 200 \)
4 | The minimum column dimension to be used for 2D blocking. Default: \(\text{sp_ienv}[4] = 40 \)
5 | The estimated fill factor for \(L \) and \(U \), compared to \(A \). Default: \(\text{sp_ienv}[5] = 20 \)

IMSL_CSC_FORMAT, \(\text{int} \ \text{HB_col_ptr}[\ldots], \text{int} \ \text{HB_row_ind}[\ldots], \text{f_complex} \ \text{HB_values}[\ldots] \) (Input)

Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the main *Introduction* chapter of this manual for a discussion of this storage scheme.

IMSL_SUPPLY_SPARSE_LU_FACTOR, \(\text{lm} \text{scl_super_lu_factor} \ \text{lu_factor_supplied} \) (Input)

A structure of type \(\text{lm} \text{scl_super_lu_factor} \) containing the LU factorization of the input matrix computed with the IMSL_RETURN_SPARSE_LU_FACTOR option. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function \(\text{lm} \text{scl_superlu_factor_free} \).

IMSL_RETURN_SPARSE_LU_FACTOR, \(\text{lm} \text{scl_super_lu_factor} * \text{lu_factor_returned} \) (Output)

The address of a structure of type \(\text{lm} \text{scl_super_lu_factor} \) containing the LU factorization of the input matrix. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function \(\text{lm} \text{scl_superlu_factor_free} \).

IMSL_CONDITION, \(\text{float} * \text{condition} \) (Output)

The estimate of the reciprocal condition number of matrix \(A \) after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, \(\text{float} * \text{recip_pivot_growth} \) (Output)

The reciprocal pivot growth factor.
If `recip_pivot_growth` is much less than 1, the stability of the \(LU \) factorization could be poor.

IMSL_FORWARD_ERROR_BOUND, float *ferr (Output)

The estimated forward error bound for the solution vector \(x \). This option requires argument `IMSL_ITERATIVE_REFINEMENT` set to 1.

IMSL_BACKWARD_ERROR, float *berr (Output)

The componentwise relative backward error of the solution vector \(x \). This option requires argument `IMSL_ITERATIVE_REFINEMENT` set to 1.

IMSL_RETURN_USER, f_complex x[] (Output)

A user-allocated array of length \(n \) containing the solution \(x \) of the linear system.

Description

Consider the sparse linear system of equations

\[
Ax = b
\]

Here, \(A \) is a general square, nonsingular \(n \times n \) sparse matrix, and \(x \) and \(b \) are vectors of length \(n \). All entries in \(A \), \(x \) and \(b \) are of complex type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization \(P_rD_rAD_cP_c = LU \). Here, \(D_r \) and \(D_c \) are positive definite diagonal matrices to equilibrate the system and \(P_r \) and \(P_c \) are permutation matrices to ensure numerical stability and preserve sparsity. \(L \) is a unit lower triangular matrix and \(U \) is an upper triangular matrix.

2. Solve \(Ax = b \) by evaluating

\[
x = A^{-1}b = D_c\left(P_c\left(U^{-1}\left(L^{-1}\left(P_r\left(D rb\right)\right)\right)\right)\right)
\]

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of \(b \) by \(D_r \). Multiplying \(P_r\left(D rb\right) \) means permuting the rows of \(D rb \).

Multiplying \(L^{-1}\left(P_rD rb\right) \) means solving the triangular system of equations with matrix \(L \) by substitution. Similarly, multiplying \(U^{-1}\left(L^{-1}\left(P_rD rb\right)\right) \) means solving the triangular system with \(U \).

Function `imsl_c_superlu` handles step 1 above by default or if optional argument `IMSL_FACTOR_SOLVE` is used and set to 1. More precisely, before \(Ax = b \) is solved, the following steps are performed:

1. Equilibrate matrix \(A \), i.e., compute diagonal matrices \(D_r \) and \(D_c \) so that \(\hat{A} = D_rAD_c \) is “better conditioned” than \(A \), i.e., \(\hat{A}^{-1} \) is less sensitive to perturbations in \(\hat{A} \) than \(A^{-1} \) is to perturbations in \(A \).
2. Order the columns of \tilde{A} to increase the sparsity of the computed L and U factors, i.e. replace \tilde{A} by $\tilde{A}P_c$, where P_c is a column permutation matrix.

3. Compute the LU factorization of $\tilde{A}P_c$. For numerical stability, the rows of $\tilde{A}P_c$ are eventually permuted through the factorization process by scaled partial pivoting, leading to the decomposition $\tilde{A} = P_cAP_c = LU$. The LU factorization is done by a left looking supernode-panel algorithm with 2-D blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

$$\min_{1 \leq j \leq n} \frac{\|\tilde{A}_j\|_\infty}{\|U_j\|_\infty}$$

where \tilde{A}_j and U_j denote the j-th column of matrices \tilde{A} and U, respectively.

5. Estimate the reciprocal of the condition number of matrix \tilde{A}.

During the solution process, this information is used to perform the following steps:

1. Solve the system $Ax = b$ using the computed triangular L and U factors.
2. Iteratively refine the solution, again using the computed triangular factors. This is equivalent to Newton's method.
3. Compute forward and backward error bounds for the solution vector x.

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional arguments of function `imsl_c_superlu`.

Function `imsl_c_superlu` uses a supernodal storage scheme for the LU factorization of matrix A. The factorization is contained in structure `imsl_c_superlu_factor` and two sub-structures. Following is a short description of these structures:

typedef struct{
 int nnz; /* Number of nonzeros in the matrix */
 f_complex *nzval; /* Array of nonzero values packed by column */
 int *rowind; /* Array of row indices of the nonzeros */
 int *colptr; /* colptr[j] stores the location in nzval[]
 and rowind[] which starts column j. It has
 ncol+1 entries, and colptr[ncol] points to
 the first free location in arrays nzval[]
 and rowind[]. */
} Imsl_c_hb_format;

typedef struct{
 int nnz; /* Number of nonzeros in the supernodal
 matrix */
 int nsuper; /* Index of the last supernode */
 f_complex *nzval; /* Array of nonzero values packed by column */
} Imsl_c_superlu_factor;
int *nzval_colptr; /* Array of length ncol+1; nzval_colptr[j]
stores the location in nzval which starts
column j. nzval_colptr[ncol] points to the
first free location in arrays nzval[] and
nzval_colptr[]. */
int *rowind; /* Array of compressed row indices of
rectangular supernodes */
int *rowind_colptr; /* Array of length ncol+1;
rowind_colptr[sup_to_col[s]] stores the
location in rowind[] which starts
all columns in supernode s, and
rowind_colptr[ncol] points to the first
free location in rowind[]. */
int *col_to_sup; /* Array of length ncol+1; col_to_sup[j] is
the supernode number to which column j
belongs. Only the first ncol entries in
col_to_sup[] are defined. */
int *sup_to_col; /* Array of length ncol+1; sup_to_col[s]
points to the starting column of the s-th
supernode. Only the first nsuper+2 entries
in sup_to_col[] are defined, and
sup_to_col[nsuper+1] = ncol+1. */

} Imsl_c_sc_format;

typedef struct{
 int nrow; /* number of rows of matrix A */
 int ncol; /* number of columns of matrix A */
 int equilibration_method; /* The method used to equilibrate A:
 0 – No equilibration
 1 – Row equilibration.
 2 – Column equilibration
 3 – Both row and column equilibration */
 float *rowscale; /* Array of length nrow containing the row
 scale factors for A */
 float *columnscale; /* Array of length ncol containing the
 column scale factors for A */
 int *rowperm; /* Row permutation array of length nrow
 describing the row permutation matrix Pr */
 int *colperm; /* Column permutation array of length ncol
 describing the column permutation matrix Pc */
 Imsl_c_hb_format *U; /* The part of the U factor of A outside the
 supernodal blocks, stored in Harwell-
 Boeing format */
 Imsl_c_sc_format *L; /* The L factor of A, stored in supernodal
 format as block lower triangular matrix */
} Imsl_c_super_lu_factor;
Structure _Imsl_z_superlu_factor_ and its two sub-structures are defined similarly by replacing _float_ by _double_, _f_complex_ by _d_complex_, _Imsl_c_hb_format_ by _Imsl_z_hb_format_ and _Imsl_c_sc_format_ by _Imsl_z_sc_format_ in their definitions.

As an example, consider the matrix

\[
A = \begin{bmatrix}
1 - i & 0 & 1 - i & 1 - i & 0 \\
2 & 1 - i & 0 & 0 & 0 \\
0 & 1 + i & 1 - i & 0 & 0 \\
0 & 0 & 0 & 1 + i & 1 - i \\
2 & 1 + i & 0 & 0 & 2 - i
\end{bmatrix}
\]

Factorization of this matrix via _imsl_c__superlu_ using natural column ordering, no equilibration, setting _sp_ienv[1]_ from its default value 5 to 1 and reducing the diagonal pivot thresh factor to 0.5 results in the following _LU_ decomposition:

\[
A = LU = \begin{bmatrix}
1 & 1 & 1 - i \\
1 + i & i & 1 - i \\
1 + i & 2i & 2 & 1
\end{bmatrix} \begin{bmatrix}
1 - i & 1 - i & 1 - i \\
1 - i & 1 & 2i \\
i & 2i & 1 - i \\
1 + i & 1 - i & i
\end{bmatrix}
\]

Considering the filled matrix \(F \) (\(I \) denoting the identity matrix),

\[
F = L + U - I = \begin{bmatrix}
1 - i & 1 - i & 1 - i \\
1 + i & 1 - i & -2 & -2 \\
i & 1 + i & 2i \\
1 + i & i & 2i & 2i
\end{bmatrix}
\]

the supernodal structure of the factors of matrix \(A \) can be described by

\[
\begin{bmatrix}
s_1 & u_3 & u_4 \\
s_1 & s_2 & s_2 & u_4 \\
s_2 & s_2 & u_4 \\
s_1 & s_2 & s_3 & s_3 \\
\end{bmatrix}
\]

where \(s_i \) denotes a nonzero entry in the \(i \) th supernode and \(u_i \) denotes a nonzero entry in the \(i \)-th column of \(U \) outside the supernodal block.
Therefore, in a supernodal storage scheme the supernodal part of matrix F is stored as the lower block-diagonal matrix

$$
L_{\text{snode}} = \begin{bmatrix}
1 - i & 1 + i & 1 - i & -2 & 1 + i \\
1 + i & 1 - i & 1 + i & 1 - i & i \\
1 + i & i & 2i & 2 & i
\end{bmatrix}
$$

and the part outside the supernodes as the upper triangular matrix

$$
U_{\text{snode}} = \begin{bmatrix}
* & 1 - i & 1 - i & * & -2 \\
* & * & -2 & * & 2i \\
* & * & * & * & *
\end{bmatrix}
$$

This is in accordance with the output for structure $\text{Imsl_c_super_lu_factor}$:

Equilibration method: 0

Scale vectors:
rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000
columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000
Permutation vectors:
colperm: 0 1 2 3 4
rowperm: 0 1 2 3 4
Harwell-Boeing matrix U:
nrow 5, ncol 5, nnz 11
nzval: (1.000000,-1.000000) (-2.000000,0.000000) (0.000000,2.000000) (1.000000,-1.000000)
rowind: 0 1 2 0
colptr: 0 0 0 1 4 4

Supernodal matrix L:
nrow 5, ncol 5, nnz 11, nsuper 2
nzval:
0 0 (1.000000,-1.000000)
1 0 (1.000000,1.000000)
4 0 (1.000000,1.000000)
1 1 (1.000000,-1.000000)
2 1 (0.000000,1.000000)
4 1 (0.000000,1.000000)
1 2 (-2.000000,0.000000)
2 2 (1.000000,1.000000)
4 2 (0.000000,2.000000)
3 3 (1.000000,1.000000)
4 3 (2.000000,0.000000)
3 4 (1.000000,-1.000000)
4 4 (0.000000,1.000000)
nzval_colptr: 0 3 6 9 11 13
col_to_sup: 0 1 1 2 2
sup_to_col: 0 1 3 5
rowind: 0 1 4 1 2 4 3 4
rowind_colptr: 0 3 6 6 8 8

Function imsl_c_superlu is based on the SuperLU code written by Demmel, Gilbert, Li et al. For more detailed explanations of the factorization and solve steps, see the SuperLU User's Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The *LU* factorization of the sparse complex 6×6 matrix
is computed. Let

\[
y = (1+i, 2+2i, 3+3i, 4+4i, 5+5i, 6+6i)^T
\]

so that

\[
b = Ay = (3 + 17i, -19 + 5i, 6 + 18i, -38 + 32i, -63 + 49i, -57 + 83i)^T
\]

\[
b_1 = A^T y = (-112 + 54i, -58 + 46i, 12i, -51 + 5i, 34 + 78i, -94 + 60i)^T
\]

and

\[
b_2 = A^H y = (54 - 112i, 46 - 58i, 12, 5 - 51i, 78 + 34i, 60 - 94i)^T
\]

The \textit{LU} factorization of \(A\) is used to solve the sparse complex linear systems \(Ax = b, A^T x = b_1\) and \(A^H x = b_2\).

```c
#include <imsl.h>

int main()
{
    Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
                                1, 1, {3.0, 2.0},
                                1, 3, {-1.0, 2.0},
                                2, 2, {4.0, 2.0},
                                3, 0, {-2.0, -4.0},
                                3, 3, {1.0, 6.0},
                                3, 4, {-1.0, 3.0},
                                4, 0, {-5.0, 4.0},
                                4, 3, {-5.0, 0.0},
                                4, 4, {12.0, 2.0},
                                4, 5, {-7.0, 7.0},
                                5, 0, {-1.0, 12.0},
                                5, 1, {-2.0, 8.0},
                                5, 5, {3.0, 7.0}};

    f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
                      {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};

    f_complex b1[] = {{-112.0, 54.0}, {-58.0, 46.0}, {0.0, 12.0},
                       {-51.0, 5.0}, {34.0, 78.0}, {-94.0, 60.0}};

    f_complex b2[] = {{54.0, -112.0}, {46.0, -58.0}, {12.0, 0.0},
                      {5.0, -51.0}, {78.0, 34.0}, {60.0, -94.0}};
}```
int n = 6, nz = 15;
  f_complex *x = NULL;

  x = imsl_c_superlu (n, nz, a, b, 0);
  imsl_c_write_matrix ("solution to A*x = b", n, 1, x, 0);
  imsl_free (x);

  x = imsl_c_superlu (n, nz, a, b1, IMSL_TRANSPOSE, 1, 0);
  imsl_c_write_matrix ("solution to A^T*x = b1", n, 1, x, 0);
  imsl_free (x);

  x = imsl_c_superlu (n, nz, a, b2, IMSL_TRANSPOSE, 2, 0);
  imsl_c_write_matrix ("solution to A^H*x = b2", n, 1, x, 0);
  imsl_free (x);

Output

  solution to A*x = b
  1 ( 1, 1)
  2 ( 2, 2)
  3 ( 3, 3)
  4 ( 4, 4)
  5 ( 5, 5)
  6 ( 6, 6)

  solution to A^T*x = b1
  1 ( 1, 1)
  2 ( 2, 2)
  3 ( 3, 3)
  4 ( 4, 4)
  5 ( 5, 5)
  6 ( 6, 6)

  solution to A^H*x = b2
  1 ( 1, 1)
  2 ( 2, 2)
  3 ( 3, 3)
  4 ( 4, 4)
  5 ( 5, 5)
  6 ( 6, 6)

Example 2

This example uses the matrix $A = E(1000,10)$ to show how the $LU$ factorization of $A$ can be used to solve a linear system with the same coefficient matrix $A$ but different right-hand side. Maximum absolute errors are printed. After the computations, the space allocated for the $LU$ factorization is freed via function $imsl_c_superlu_factor_free$.

#include <imsl.h>
```c
#include <stdlib.h>
#include <stdio.h>

int main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_super_lu_factor lu_factor;
 f_complex *b, *x, *mod_five, *mod_ten;
 float error_factor_solve, error_solve;
 int n = 1000, c = 10;
 int i, nz, index;

 /* Get the coefficient matrix */
 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

 /* Set two different predetermined solutions */
 mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
 mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
 mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
 }

 /* Choose b so that x will approximate mod_five */
 b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

 /* Solve Ax = b */
 x = imsl_c_superlu (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);

 /* Compute max absolute error */
 error_factor_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);

 free (mod_five);
 imsl_free (b);
 imsl_free (x);

 /* Get new right hand side -- b = A * mod_ten */
 b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);

 /* Use the previously computed factorization to solve Ax = b */
```
x = imsl_c_superlu (n, nz, a, b, 
   IMSL_SUPPLY_SPARSE_LU_FACTOR, lu_factor, 
   IMSL_FACTOR_SOLVE, 2, 
   0);
error_solve = imsl_c_vector_norm (n, x, 
   IMSL_SECOND_VECTOR, mod_ten, 
   IMSL_INF_NORM, &index, 
   0);
free (mod_ten);
imsl_free (b);
imsl_free (x);
imsl_free (a);
/* Free sparse LU structure */
imsl_c_superlu_factor_free (&lu_factor);
/* Print errors */
printf ("absolute error (factor/solve) = %e\n", 
   error_factor_solve);
printf ("absolute error (solve) = %e\n", error_solve);
}

Output
absolute error (factor/solve) = 9.581565e-007
absolute error (solve) = 2.017575e-006

Warning Errors

IMSL_I LL_CONDITIONED The input matrix is too ill-conditioned. An estimate of the reciprocal of its $L_1$ condition number is “rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX The input matrix is singular.
Computes the LU factorization of a general sparse matrix by a left-looking column method using OpenMP parallelism, and solves the real sparse linear system of equations \( Ax = b \).

**Synopsis**

```c
#include <imsl.h>

float *imsl_f_superlu_smp(int n, int nz, Imsl_f_sparse_elem a[], float b[],...0)

void imsl_f_superlu_smp_factor_free (Imsl_f_superlu_smp_factor *factor)
```

The type `double` functions are `imsl_d_superlu_smp` and `imsl_d_superlu_smp_factor_free`.

**Required Arguments**

- `int n` (Input)
  - The order of the input matrix.

- `int nz` (Input)
  - Number of nonzeros in the matrix.

- `Imsl_f_sparse_elem a[]` (Input)
  - An array of length \( nz \) containing the location and value of each nonzero entry in the matrix. See the explanation of the `Imsl_f_sparse_elem` structure in the section Matrix Storage Modes in the "Introduction" chapter of this manual.

- `float b[]` (Input)
  - An array of length \( n \) containing the right-hand side.

**Return Value**

A pointer to the solution \( x \) of the sparse linear system \( Ax = b \). To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>
```
```c
float *imsl_f_superlu_smp (int n, int nz, lmsl_f_sparse_elem a[], float b[],
 IMSL_EQUILIBRATE, int equilibrate,
 IMSL_COLUMN_ORDERING_METHOD, lmsl_col_ordering method,
 IMSL_COLPERM_VECTOR, int permc[],
 IMSL_TRANSPOSE, int transpose,
 IMSL_ITERATIVE_REFINEMENT, int refine,
 IMSL_FACTOR_SOLVE, int factsol,
 IMSL_DIAG_PIVOT_THRESH, float diag_pivot_thresh,
 IMSL_SNODE_PREDICTION, int snode_prediction,
 IMSL_PERFORMANCE_TUNING, int sp_ienv[],
 IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind, float HB_values[],
 IMSL_SUPPLY_SPARSE_LU_FACTOR, lmsl_f_superlu_smp_factor *lu_factor_supplied,
 IMSL_RETURN_SPARSE_LU_FACTOR, lmsl_f_superlu_smp_factor *lu_factor_returned,
 IMSL_CONDITION, float *condition,
 IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
 IMSL_FORWARD_ERROR_BOUND, float *ferr,
 IMSL_BACKWARD_ERROR, float *berr,
 IMSL_RETURN_USER, float x[],
 0)
```

**Optional Arguments**

**IMSL_EQUILIBRATE, int equilibrate (Input)**

Specifies if the input matrix $A$ should be equilibrated before factorization.

<table>
<thead>
<tr>
<th>equilibrate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do not equilibrate $A$ before factorization</td>
</tr>
<tr>
<td>1</td>
<td>Equilibrate $A$ before factorization.</td>
</tr>
</tbody>
</table>

Default: equilibrate = 0.
IMSL\_COLUMN\_ORDERING\_METHOD, \textit{imsl\_col\_ordering} method (Input)

The column ordering method used to preserve sparsity prior to the factorization process. Select the ordering method by setting \textit{method} to one of the following:

<table>
<thead>
<tr>
<th>\textit{method}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NATURAL</td>
<td>Natural ordering, i.e. the column ordering of the input matrix.</td>
</tr>
<tr>
<td>IMSL_MMD_ATA</td>
<td>Minimum degree ordering on the structure of $A^TA$.</td>
</tr>
<tr>
<td>IMSL_MMD_AT_PLUS_A</td>
<td>Minimum degree ordering on the structure of $A^T + A$.</td>
</tr>
<tr>
<td>IMSL_COLAMD</td>
<td>Column approximate minimum degree ordering.</td>
</tr>
<tr>
<td>IMSL_PERMC</td>
<td>Use ordering given in permutation vector \textit{permc}, which is input by the user through the optional argument IMSL_COLPERM_VECTOR. Vector \textit{permc} is a permutation of the numbers $0,1,\ldots,n-1$.</td>
</tr>
</tbody>
</table>

Default: method = IMSL\_COLAMD.

IMSL\_COLPERM\_VECTOR, \textit{int permc[]} (Input)

Array of length $n$ that defines the permutation matrix $P_c$ before postordering. This argument is required if IMSL\_COLUMN\_ORDERING\_METHOD with method = IMSL\_PERMC is used. Otherwise, it is ignored.

IMSL\_TRANSPOSE, \textit{int transpose} (Input)

Indicates if the transposed problem $A^Tx = b$ is to be solved. This option can be used in conjunction with either of the options that supply the factorization.

<table>
<thead>
<tr>
<th>transpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Solve $Ax = b$.</td>
</tr>
<tr>
<td>1</td>
<td>Solve $A^Tx = b$.</td>
</tr>
</tbody>
</table>

Default: transpose = 0.

IMSL\_ITERATIVE\_REFINEMENT, \textit{int refine} (Input)

Indicates if iterative refinement is desired.

<table>
<thead>
<tr>
<th>refine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No iterative refinement.</td>
</tr>
<tr>
<td>1</td>
<td>Do iterative refinement.</td>
</tr>
</tbody>
</table>

Default: refine = 1.

IMSL\_FACTOR\_SOLVE, \textit{int factsol} (Input)

Indicates if the \textit{LU} factorization, the solution of a linear system, or both are to be computed.
**factsol**	**Description**
0 | Compute the $LU$ factorization of the input matrix $A$ and solve the system $Ax = b$.  
1 | Only compute the $LU$ factorization of the input matrix and return. The $LU$ factorization is returned via the optional argument IMSL_RETURN_SPARSE_LU_FACTOR. Input argument $b$ is ignored.  
2 | Only solve $Ax = b$ given the $LU$ factorization of $A$. The $LU$ factorization of $A$ must be supplied via the optional argument IMSL_SUPPLY_SPARSE_LU_FACTOR. Input argument $a$ is ignored unless iterative refinement, computation of the condition number, or computation of the reciprocal pivot growth factor is required.  

Default: factsol = 0.

**IMSL_DIAG_PIVOT_THRESH**, float diag_pivot_thresh (Input)  
Specifies the threshold used for a diagonal entry to be an acceptable pivot, $0.0 \leq \text{diag\_pivot\_thresh} \leq 1.0$. Default: diag_pivot_thresh = 1.0.

**IMSL_SNODE_PREDICTION**, int snode_prediction (Input)  
Indicates which scheme is used to predict the number of nonzeros in the $L$ supernodes.  

snode_prediction	Description
0 | Use static scheme for the prediction of the number of nonzeros in the $L$ supernodes.  
1 | Use dynamic scheme for the prediction of the number of nonzeros in the $L$ supernodes.  

Default: snode_prediction = 0.

**IMSL_PERFORMANCE_TUNING**, int sp_ienv[] (Input)  
Array of length 8 containing parameters that allow the user to tune the performance of the matrix factorization algorithm. The elements $\text{sp\_ienv}[i]$ must be positive for $i = 0,...,4$ and different from zero for $i = 5,6,7$.  

$i$	Description of $\text{sp\_ienv}[i]$
0 | The panel size. Default: $\text{sp\_ienv}[0] = 10$.  
1 | The relaxation parameter to control supernode amalgamation. Default: $\text{sp\_ienv}[1] = 5$.  

<table>
<thead>
<tr>
<th>i</th>
<th>Description of sp_ienv[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The minimum row dimension to be used for 2D blocking. Default: sp_ienv[3] = 200.</td>
</tr>
<tr>
<td>5</td>
<td>The size of the array nzval to store the values of the L supernodes. A negative number represents the fills growth factor, i.e. the product of its absolute magnitude and the number of nonzeros in the original matrix A will be used to allocate storage. A positive number represents the number of nonzeros for which storage will be allocated. This element of array sp_ienv is used only if a dynamic scheme for the prediction of the sizes of the L supernodes is used, i.e. if snode_prediction = 1. Default: sp_ienv[5] = -20.</td>
</tr>
<tr>
<td>6</td>
<td>The size of the arrays rowind and nzval to store the columns in U. A negative number represents the fills growth factor, i.e. the product of its absolute magnitude and the number of nonzeros in the original matrix A will be used to allocate storage. A positive number represents the number of nonzeros for which storage will be allocated. Default: sp_ienv[6] = -20.</td>
</tr>
<tr>
<td>7</td>
<td>The size of the array rowind to store the subscripts of the L supernodes. A negative number represents the fills growth factor, i.e. the product of its absolute magnitude and the number of nonzeros in the original matrix A will be used to allocate storage. A positive number represents the number of nonzeros for which storage will be allocated. Default: sp_ienv[7] = -10.</td>
</tr>
</tbody>
</table>

IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], float HB_values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL_SUPPLY_sparse_LU_FACTOR, lmsl_f_superlu_smp_factor *lu_factor_supplied (Input)
The address of a structure of type lmsl_f_superlu_smp_factor containing the LU factors of the input matrix computed with the IMSL_RETURN_sparse_LU_FACTOR option. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function imsl_f_superlu_smp_factor_free.

IMSL_RETURN_sparse_LU_FACTOR, lmsl_f_superlu_smp_factor *lu_factor_returned (Output)
The address of a structure of type lmsl_f_superlu_smp_factor containing the LU factorization of the input matrix. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function imsl_f_superlu_smp_factor_free.
IMSL_CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth (Output)
The reciprocal pivot growth factor

\[
\min_j \left\{ \left\| \left( P_jD_jAD_jP_c \right)_j \right\|_{\infty} / \left\| U_j \right\|_{\infty} \right\}.
\]

If recip_pivot_growth is much less than 1, the stability of the LU factorization could be poor.

IMSL_FORWARD_ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_BACKWARD_ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

The steps imsl_f_superlu_smp uses to solve linear systems are identical to the steps described in the documentation of the serial version imsl_f_superlu.

Function imsl_f_superlu_smp uses a supernodal storage scheme for the LU factorization of matrix A. In contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode, also pointers to the end of each column or supernode are needed. The factorization is contained in structure imsl_f_superlu_smp_factor and its two sub-structures imsl_f_hbp_format and imsl_f_scp_format. Following is a short description of these structures:

Table 1.1 — Structure Imsl_f_hbp_format

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnz</td>
<td>int</td>
<td>The number of nonzeros in the matrix.</td>
</tr>
<tr>
<td>nzval</td>
<td>float *</td>
<td>Array of nonzero values packed by column.</td>
</tr>
<tr>
<td>rowind</td>
<td>int *</td>
<td>Array of row indices of the nonzeros.</td>
</tr>
<tr>
<td>colbeg</td>
<td>int *</td>
<td>Array of size ncol+1; colbeg[j] stores the location in nzval[] and rowind[], which starts column j. Element colbeg[ncol] points to the first free location in arrays nzval[] and rowind[].</td>
</tr>
<tr>
<td>colend</td>
<td>int *</td>
<td>Array of size ncol; colend[j] stores the location in nzval[] and rowind[], which is one past the last element of column j.</td>
</tr>
</tbody>
</table>
### Table 1.2 — Structure Imsl_f_scp_format

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnz</td>
<td>int</td>
<td>The number of nonzeros in the supernodal matrix.</td>
</tr>
<tr>
<td>nsuper</td>
<td>int</td>
<td>The number of supernodes minus one.</td>
</tr>
<tr>
<td>nzval</td>
<td>float *</td>
<td>Array of nonzero values packed by column.</td>
</tr>
<tr>
<td>nzval_colbeg</td>
<td>int *</td>
<td>Array of size ncol+1; nzval_colbeg[j] points to the beginning of column j in nzval[]. Entry nzval_colbeg[ncol] points to the first free location in nzval[].</td>
</tr>
<tr>
<td>nzval_colend</td>
<td>int *</td>
<td>Array of size ncol; nzval_colend[j] points to one past the last element of column j in nzval[].</td>
</tr>
<tr>
<td>rowind</td>
<td>int *</td>
<td>Array of compressed row indices of the rectangular supernodes.</td>
</tr>
<tr>
<td>rowind_colbeg</td>
<td>int *</td>
<td>Array of size ncol+1; rowind_colbeg[j] points to the beginning of column j in rowind[]. Element rowind_colbeg[ncol] points to the first free location in rowind[].</td>
</tr>
<tr>
<td>rowind_colend</td>
<td>int *</td>
<td>Array of size ncol; rowind_colend[j] points to one past the last element of column j in rowind[].</td>
</tr>
<tr>
<td>col_to_sup</td>
<td>int *</td>
<td>Array of size ncol+1; col_to_sup[j] is the supernode number to which column j belongs. Only the first ncol entries in col_to_sup[] are defined.</td>
</tr>
<tr>
<td>sup_to_colbeg</td>
<td>int *</td>
<td>Array of size ncol+1; sup_to_colbeg[s] points to the first column of the s-th supernode; only the first nsuper+1 locations of this array are used.</td>
</tr>
<tr>
<td>sup_to_colend</td>
<td>int *</td>
<td>Array of size ncol; sup_to_colend[s] points to one past the last column of the s-th supernode. Only the first nsuper+1 locations of this array are used.</td>
</tr>
</tbody>
</table>

### Table 1.3 — Structure Imsl_f_super_lu_smp_factor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nrow</td>
<td>int</td>
<td>The number of rows of matrix A.</td>
</tr>
<tr>
<td>ncol</td>
<td>int</td>
<td>The number of columns of matrix A.</td>
</tr>
<tr>
<td>equilibration_method</td>
<td>int</td>
<td>The method used to equilibrate A: 0 – No equilibration. 1 – Row equilibration. 2 – Column equilibration. 3 – Both row and column equilibration.</td>
</tr>
<tr>
<td>rowscale</td>
<td>float *</td>
<td>Array of size nrow containing the row scale factors for A.</td>
</tr>
</tbody>
</table>
Structure `Imsl_d_super_lu_smp_factor` and its two sub-structures are defined similarly by replacing `float` with `double`, `Imsl_f_hbp_format` with `Imsl_d_hbp_format`, and `Imsl_f_scp_format` with `Imsl_d_scp_format` in their respective definitions.

In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.

Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the estimated sizes of array `rowind` for the `L` and of arrays `rowind` and `nzval` for the `U` factor (see structures `Imsl_f_scp_format` and `Imsl_f_hbp_format` above) must be predetermined by the user via elements 6 and 7 of the performance tuning array `sp_ienv`.

In order to ensure that the columns of each `L` supernode are stored contiguously in memory, a static or dynamic prediction scheme for the size of the `L` supernodes can be used. The static version, which function `imsl_f_superlu_smp` uses by default, exploits the observation that for any row permutation `P` in `PA = LU`, the nonzero structure of `L` is contained in that of the Householder matrix `H` from the Householder sparse QR factorization `A = QR`. Furthermore, it can be shown that each fundamental supernode in `L` is always contained in a fundamental supernode of `H`. Therefore, the storage requirement for the `L` supernodes and array `nzval` in the `L` factor respectively can be estimated and allocated prior to the factorization based on the size of the `H` supernodes. The algorithm used to compute the supernode partition and the size of the supernodes in `H` is almost linear in the number of nonzeros of matrix `A`.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonzeros in `H` greatly exceeds the number of nonzeros in `L`, the user can try a dynamic prediction scheme by setting optional argument `IMSL_SNODE_PREDICTION` to 1. This scheme still uses the supernode partition in `H`, but dynamically searches the supernodal graph of `L` to obtain a much tighter upper bound for the required storage. Use of the dynamic scheme requires the user to define the size of array `nzval` in the `L` factor via element 5 of the performance tuning array `sp_ienv`.

For a complete description of the parallel algorithm, see Demmel et al. (1999c).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy).

All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6×6 matrix

\[ A = \begin{bmatrix} 10 & 0 & 0 & 0 & 0 & 0 \\ 0 & 10 & -3 & -1 & 0 & 0 \\ 0 & 0 & 15 & 0 & 0 & 0 \\ -2 & 0 & 0 & 10 & -1 & 0 \\ -1 & 0 & 0 & -5 & 1 & -3 \\ -1 & -2 & 0 & 0 & 0 & 6 \end{bmatrix} \]

is computed.

Let \( y = (1,2,3,4,5,6)^T \), so that \( b_1 := Ay = (10,7,45,33,-34,31)^T \) and \( b_2 := A^Ty = (-9,8,39,13,1,21)^T \).

The LU factorization of \( A \) is used to solve the sparse linear systems \( Ax = b_1 \) and \( A^Tx = b_2 \).

```c
#include <imsl.h>

int main(){
 Imsl_f_sparse_elem a[] = { 0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 10, 0, 0, 0, 0, 0,
 0, 10, -3, -1, 0, 0,
 0, 0, 15, 0, 0, 0,
 -2, 0, 0, 10, -1, 0,
 -1, 0, 0, -5, 1, -3,
 -1, -2, 0, 0, 0, 6 };`
Example 2

This example uses the matrix $A = E(1000,10)$ to show how the LU factorization of A can be used to solve a linear system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed. After the computations, the space allocated for the LU factorization is freed via function

imsl_f_superlu_smp_factor_free.

#include <ims1.h>
#include <stdlib.h>
#include <stdio.h>
int main()
{

 Imsl_f_sparse_elem *a = NULL;
 Imsl_f_super_lu_smp_factor lu_factor;
 float *b = NULL, *x = NULL, *mod_five = NULL, *mod_ten = NULL;
 float error_factor_solve, error_solve;
 int n = 1000, c = 10;
 int i, nz, index;

 /* Get the coefficient matrix */
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Set two different predetermined solutions */
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 mod_ten = (float*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 mod_ten[i] = (float) (i % 10);
 }

 /* Choose b so that x will approximate mod_five */
 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five, 0);

 /* Solve Ax = b */
 x = imsl_f_superlu_smp (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 0);

 /* Compute max absolute error */
 error_factor_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index, 0);

 free (mod_five);
 imsl_free (b);
 imsl_free (x);

 /* Get new right hand side -- b = A * mod_ten */
 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten, 0);

 /* Use the previously computed factorization
 to solve Ax = b */
 x = imsl_f_superlu_smp (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_FACTOR_SOLVE, 2,

 free (mod_ten);
 imsl_free (b);
 imsl_free (x);

 return 0;
}
error_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);

free (mod_ten);
imsl_free (b);
imsl_free (x);
imsl_free (a);

/* Free sparse LU structure */
imsl_f_superlu_smp_factor_free (&lu_factor);

/* Print errors */
printf ("absolute error (factor/solve) = %e
",
 error_factor_solve);
printf ("absolute error (solve) = %e
",
 error_solve);
}

Output

absolute error (factor/solve) = 1.096725e-005
absolute error (solve) = 5.435944e-005

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L_1 condition number is
"rcond" = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX The input matrix is singular.
superlu_smp (complex)

Computes the LU factorization of a general complex sparse matrix by a left-looking column method using OpenMP parallelism and solves the complex sparse linear system of equations \(Ax = b \).

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_superlu_smp (int n, int nz, Imsl_c_sparse_elem a[], f_complex b[], ...), 0)

void imsl_c_superlu_smp_factor_free (Imsl_c_super.lu.smp_factor *factor)
```

The type `d_complex` functions are `imsl_z_superlu_smp` and `imsl_z_superlu_smp_factor_free`.

Required Arguments

- `int n` (Input)
 The order of the input matrix.

- `int nz` (Input)
 Number of nonzeros in the matrix.

- `Imsl_c_sparse_elem a[]` (Input)
 An array of length `nz` containing the location and value of each nonzero entry in the matrix. See the main “Introduction” chapter of this manual for an explanation of the `Imsl_c_sparse_elem` structure.

- `f_complex b[]` (Input)
 An array of length `n` containing the right-hand side.

Return Value

A pointer to the solution \(x \) of the sparse linear system \(Ax = b \). To release this space, use `imsl_free`. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
f_complex *imsl_c_superlu_smp (int n, int nz, imsl_c_sparse_elem a[], f_complex b[],

IMSL_EQUILIBRATE, int equilibrate,
IMSL_COLUMN_ORDERING_METHOD, imsl_col_ordering method,
IMSL_COLPERM_VECTOR, int permc[],
IMSL_TRANSPOSE, int transpose,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_SOLVE, int factsol,
IMSL_DIAG_PIVOT_THRESH, float diag_pivot_thresh,
IMSL_SNODE_PREDICTION, int snode_prediction,
IMSL_PERFORMANCE_TUNING, int sp_ienv[],
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], f_complex HB_values[],
IMSL_SUPPLY_SPARSE_LU_FACTOR, imsl_c_superlu_smp_factor *lu_factor_supplied,
IMSL_RETURN_SPARSE_LU_FACTOR, imsl_c_superlu_smp_factor *lu_factor_returned,
IMSL_CONDITION, float *condition,
IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
IMSL_FORWARD_ERROR_BOUND, float *ferr,
IMSL_BACKWARD_ERROR, float *berr,
IMSL_RETURN_USER, f_complex x[],
0)

Optional Arguments

IMSL_EQUILIBRATE, int equilibrate (Inputs)
Specifies if the input matrix A should be equilibrated before factorization.

<table>
<thead>
<tr>
<th>equilibrate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do not equilibrate A before factorization.</td>
</tr>
<tr>
<td>1</td>
<td>Equilibrate A before factorization.</td>
</tr>
</tbody>
</table>

Default: equilibrate = 0
IMSL_COLUMN_ORDERING_METHOD, *imsl_col_ordering* method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting *method* to one of the following:

<table>
<thead>
<tr>
<th>method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NATURAL</td>
<td>Natural ordering, i.e. the column ordering of the input matrix.</td>
</tr>
<tr>
<td>IMSL_MMD_A</td>
<td>Minimum degree ordering on the structure of $A^T A$.</td>
</tr>
<tr>
<td>IMSL_MMD_AT_PLUS_A</td>
<td>Minimum degree ordering on the structure of $A^T + A$.</td>
</tr>
<tr>
<td>IMSL_COLAMD</td>
<td>Column approximate minimum degree ordering.</td>
</tr>
<tr>
<td>IMSL_PERMC</td>
<td>Use ordering given in permutation vector permc, which is input by the user through optional argument IMSL_COLPERM_VECTOR. Vector permc is a permutation of the numbers 0, 1, ..., n-1.</td>
</tr>
</tbody>
</table>

Default: method = IMSL_COLAMD

IMSL_COLPERM_VECTOR, *int* *permc[]* (Input)
An array of length *n* which defines the permutation matrix P_c before postordering. This argument is required if IMSL_COLUMN_ORDERING_METHOD with *method* = IMSL_PERMC is used. Otherwise, it is ignored.

IMSL_TRANSPOSE, *int* *transpose* (Input)
Indicates if the problem $Ax = b$ or one of the transposed problems $A^T x = b$ or $A^H x = b$ is to be solved.

<table>
<thead>
<tr>
<th>transpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Solve $Ax = b$.</td>
</tr>
<tr>
<td>1</td>
<td>Solve $A^T x = b$. This option can be used in conjunction with either of the options that supply the factorization.</td>
</tr>
<tr>
<td>2</td>
<td>Solve $A^H x = b$. This option can be used in conjunction with either of the options that supply the factorization.</td>
</tr>
</tbody>
</table>

Default: transpose = 0.

IMSL_ITERATIVE_REFINEMENT, *int* *refine* (Input)
Indicates if iterative refinement is desired.
refine	**Description**
0 | No iterative refinement.
1 | Do iterative refinement.

Default: `refine = 1`.

IMSL_FACTOR_SOLVE,
int factsol *(Input)*
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

factsol	**Description**
0 | Compute the LU factorization of the input matrix A and solve the system $Ax = b$.
1 | Only compute the LU factorization of the input matrix and return. The LU factorization is returned via optional argument `IMSL_RETURN_SPARSE_LU_FACTOR`. Input argument b is ignored.
2 | Only solve $Ax = b$ given the LU factorization of A. The LU factorization of A must be supplied via optional argument `IMSL_SUPPLY_SPARSE_LU_FACTOR`. Input argument a is ignored unless iterative refinement, computation of the condition number, or computation of the reciprocal pivot growth factor is required.

Default: `factsol = 0`.

IMSL_DIAG_PIVOT_THRESH,
float diag_pivot_thresh *(Input)*
Specifies the threshold used for a diagonal entry to be an acceptable pivot, $0.0 \leq \text{diag}_\text{pivot}_\text{thresh} \leq 1.0$.
Default: `diag_pivot_thresh = 1.0`.

IMSL_SNODE_PREDICTION,
int snode_prediction *(Input)*
Indicates which scheme is used to predict the number of nonzeros in the L supernodes.

snode_prediction	**Description**
0 | Use static scheme for the prediction of the number of nonzeros in the L supernodes.
1 | Use dynamic scheme for the prediction of the number of nonzeros in the L supernodes.

Default: `snode_prediction = 0`.

IMSL_PERFORMANCE_TUNING, int sp_ienv[] (Input)
An array of length 8 containing parameters that allow the user to tune the performance of the matrix factorization algorithm. The elements sp_ienv[i] must be positive for i = 0,...,4 and different from zero for i = 5,6,7.

<table>
<thead>
<tr>
<th>i</th>
<th>Description of sp_ienv[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The panel size. Default: sp_ienv[0] = 10.</td>
</tr>
<tr>
<td>1</td>
<td>The relaxation parameter to control supernode amalgamation. Default: sp_ienv[1] = 5.</td>
</tr>
<tr>
<td>3</td>
<td>The minimum row dimension to be used for 2D blocking. Default: sp_ienv[3] = 200.</td>
</tr>
<tr>
<td>5</td>
<td>The size of the array nzval to store the values of the L supernodes. A negative number represents the fills growth factor, i.e. the product of its absolute magnitude and the number of nonzeros in the original matrix A will be used to allocate storage. A positive number represents the number of nonzeros for which storage will be allocated. This element of array sp_ienv is used only if a dynamic scheme for the prediction of the sizes of the L supernodes is used, i.e. if snode_prediction = 1. Default: sp_ienv[5] = -20.</td>
</tr>
<tr>
<td>6</td>
<td>The size of the arrays rowind and nzval to store the columns in U. A negative number represents the fills growth factor, i.e. the product of its absolute magnitude and the number of nonzeros in the original matrix A will be used to allocate storage. A positive number represents the number of nonzeros for which storage will be allocated. Default: sp_ienv[6] = -20.</td>
</tr>
<tr>
<td>7</td>
<td>The size of the array rowind to store the subscripts of the L supernodes. A negative number represents the fills growth factor, i.e. the product of its absolute magnitude and the number of nonzeros in the original matrix A will be used to allocate storage. A positive number represents the number of nonzeros for which storage will be allocated. Default: sp_ienv[7] = -10.</td>
</tr>
</tbody>
</table>

IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], f_complex HB_values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL_SUPPLY_SPARSE_LU_FACTOR, lmsl_c_super_lu_smp_factor *lu_factor_supplied (Input)
The address of a structure of type lmsl_c_super_lu_smp_factor containing the LU factors of the input
matrix computed with the IMSL_RETURN_SPARSE_LU_FACTOR option. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function imsl_c_superlu_smp_factor_free.

IMSL_RETURN_SPARSE_LU_FACTOR, *imsl_c_superlu_smp_factor* *lu_factor_returned* (Output)
The address of a structure of type *imsl_c_superlu_smp_factor* containing the LU factorization of the input matrix. See the Description section for a definition of this structure. To free the memory allocated within this structure, use function imsl_c_superlu_smp_factor_free.

IMSL_CONDITION, *float* *condition* (Output)
The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, *float* *recip_pivot_growth* (Output)
The reciprocal pivot growth factor:

$$\min_j \left\{ \left\| \left(P_r D_r A D_c P_c \right)_j \right\|_{\infty} / \left\| U_j \right\|_{\infty} \right\}.$$

If *recip_pivot_growth* is much less than 1, the stability of the LU factorization could be poor.

IMSL_FORWARD_ERROR_BOUND, *float* *ferr* (Output)
The estimated forward error bound for the solution vector x. This option requires argument IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_BACKWARD_ERROR, *float* *berr* (Output)
The componentwise relative backward error of the solution vector x. This option requires argument IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_RETURN_USER, *f_complex* $x[]$ (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

The steps *imsl_c_superlu_smp* uses to solve linear systems are identical to the steps described in the documentation of the serial version *imsl_c_superlu*.

Function *imsl_c_superlu_smp* uses a supernodal storage scheme for the LU factorization of matrix A. In contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,
also pointers to the end of each column or supernode are needed. The factorization is contained in structure
\texttt{Imsl_c_super_lu_smp_factor} and its two sub-structures \texttt{Imsl_c_hbp_format} and \texttt{Imsl_c_scp_format}. Following is a short description of these structures:

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Parameter & Data Type & Description \\
\hline

\texttt{nnz} & \texttt{int} & The number of nonzeros in the matrix. \\
\hline

\texttt{nzval} & \texttt{f_complex *} & Array of nonzero values packed by column. \\
\hline

\texttt{rowind} & \texttt{int *} & Array of row indices of the nonzeros. \\
\hline

\texttt{colbeg} & \texttt{int *} & Array of size \texttt{ncol+1}; \texttt{colbeg\{}j\texttt{}} stores the location in \texttt{nzval\{}j\texttt{}} and \texttt{rowind\{}j\texttt{}, which starts column \texttt{j}. Element \texttt{colbeg\{}ncol\texttt{}} points to the first free location in arrays \texttt{nzval\{\} and rowind\{\}. \\
\hline

\texttt{colend} & \texttt{int *} & Array of size \texttt{ncol}; \texttt{colend\{}j\texttt{}} stores the location in \texttt{nzval\{\} and rowind\{\}, which is one past the last element of column \texttt{j}. \\
\hline
\end{tabular}
\caption{Structure \texttt{Imsl_c_hbp_format}}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Parameter & Data Type & Description \\
\hline

\texttt{nnz} & \texttt{int} & The number of nonzeros in the supernodal matrix. \\
\hline

\texttt{nsuper} & \texttt{int} & The number of supernodes minus one. \\
\hline

\texttt{nzval} & \texttt{f_complex *} & Array of nonzero values packed by column. \\
\hline

\texttt{nzval_colbeg} & \texttt{int *} & Array of size \texttt{ncol+1}; \texttt{nzval_colbeg\{}j\texttt{}} points to the beginning of column \texttt{j} in \texttt{nzval\{\}. Entry \texttt{nzval_colbeg\{}ncol\texttt{}} points to the first free location in \texttt{nzval\{\}. \\
\hline

\texttt{nzval_colend} & \texttt{int *} & Array of size \texttt{ncol}; \texttt{nzval_colend\{}j\texttt{}} points to one past the last element of column \texttt{j} in \texttt{nzval\{\}. \\
\hline

\texttt{rowind} & \texttt{int *} & Array of compressed row indices of the rectangular supernodes. \\
\hline

\texttt{rowind_colbeg} & \texttt{int *} & Array of size \texttt{ncol+1}; \texttt{rowind_colbeg\{}j\texttt{}} points to the beginning of column \texttt{j} in \texttt{rowind\{\}. Element \texttt{rowind_colbeg\{}ncol\texttt{}} points to the first free location in \texttt{rowind\{\}. \\
\hline

\texttt{rowind_colend} & \texttt{int *} & Array of size \texttt{ncol}; \texttt{rowind_colend\{}j\texttt{}} points to one past the last element of column \texttt{j} in \texttt{rowind\{\}. \\
\hline

\texttt{col_to_sup} & \texttt{int *} & Array of size \texttt{ncol+1}; \texttt{col_to_sup\{}j\texttt{}} is the supernode number to which column \texttt{j} belongs. Only the first \texttt{ncol} entries in \texttt{col_to_sup\{\} are defined. \\
\hline
\end{tabular}
\caption{Structure \texttt{Imsl_c_scp_format}}
\end{table}
Structure `Imsl_z_super_lu_smp_factor` and its two sub-structures are defined similarly by replacing `float` with `double`, `f_complex` with `d_complex`, `Imsl_c_hbp_format` with `Imsl_z_hbp_format`, and `Imsl_c_scp_format` with `Imsl_z_scp_format` in their respective definitions.

In contrast to the sequential version, the numerical factorization phase of the `LU` decomposition is parallelized. Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the estimated sizes of array `rowind` for the `L` and of arrays `rowind` and `nzval` for the `U` factor (see structures `Imsl_c_scp_format` and `Imsl_c_hbp_format` above) must be predetermined by the user via elements 6 and 7 of the performance tuning array `sp_ienv`.

Table 1.5 — Structure `Imsl_c_scp_format`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sup_to_colbeg</code></td>
<td><code>int *</code></td>
<td>Array of size <code>ncol</code>; <code>sup_to_colbeg[s]</code> points to the first column of the <code>s</code>-th supernode; only the first <code>nsuper+1</code> locations of this array are used.</td>
</tr>
<tr>
<td><code>sup_to_colend</code></td>
<td><code>int *</code></td>
<td>Array of size <code>ncol</code>; <code>sup_to_colend[s]</code> points to one past the last column of the <code>s</code>-th supernode. Only the first <code>nsuper+1</code> locations of this array are used.</td>
</tr>
</tbody>
</table>

Table 1.6 — Structure `Imsl_c_super_lu_smp_factor`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nrow</code></td>
<td><code>int</code></td>
<td>The number of rows of matrix <code>A</code>.</td>
</tr>
<tr>
<td><code>ncol</code></td>
<td><code>int</code></td>
<td>The number of columns of matrix <code>A</code>.</td>
</tr>
</tbody>
</table>
| `equilibration_method` | `int` | The method used to equilibrate `A`:
| | | 0 – No equilibration.
| | | 1 – Row equilibration.
| | | 2 – Column equilibration.
| | | 3 – Both row and column equilibration. |
| `rowscale` | `float *` | Array of size `nrow` containing the row scale factors for `A`. |
| `columnscale` | `float *` | Array of size `ncol` containing the column scale factors for `A`. |
| `rowperm` | `int *` | Row permutation array of size `nrow` describing the row permutation matrix `P_r`. |
| `colperm` | `int *` | Column permutation array of size `ncol` describing the column permutation matrix `P_c`. |
| `U` | `Imsl_c_hbp_format *` | The part of the `U` factor of `A` outside the supernodal blocks, stored in Harwell-Boeing format. |
| `L` | `Imsl_c_scp_format *` | The `L` factor of `A`, stored in supernodal format as block lower triangular matrix. |
In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic prediction scheme for the size of the L supernodes can be used. The static version, which function \texttt{ims1_c_superlu_smp} uses by default, exploits the observation that for any row permutation P in $PA = LU$, the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR factorization $A = QR$. Furthermore, it can be shown that each fundamental supernode in L is always contained in a fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array \texttt{nzval} in the L factor respectively can be estimated and allocated prior to the factorization based on the size of the H supernodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonzeros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting optional argument \texttt{IMSL_SNODE_PREDICTION} to 1. This scheme still uses the supernode partition in H, but dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage. Use of the dynamic scheme requires the user to define the size of array \texttt{nzval} in the L factor via element 5 of the performance tuning array $\texttt{sp_ienv}$.

For a complete description of the parallel algorithm, see Demmel et al. (1999c).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Examples

Example 1

The LU factorization of the sparse complex 6x6 matrix

\[
A = \begin{bmatrix}
10 + 7i & 0 & 0 & 0 & 0 & 0 \\
0 & 3 + 2i & -3 & -1 + 2i & 0 & 0 \\
0 & 0 & 4 + 2i & 0 & 0 & 0 \\
-2 - 4i & 0 & 0 & 1 + 6i & -1 + 3i & 0 \\
-5 + 4i & 0 & 0 & -5 & 12 + 2i & -7 + 7i \\
-1 + 12i & -2 + 8i & 0 & 0 & 0 & 3 + 7i
\end{bmatrix}
\]

is computed. Let

\[y := (1+i, 2+2i, 3+3i, 4+4i, 5+5i, 6+6i)^T\]

so that

\[b := Ay = (3+17i, -19+5i, 6+18i, -38+32i, -63+49i, -57+83i)^T\]

\[b_1 := A^Ty = (-112+54i, -58+46i, 12i, -51+5i, 34+78i, -94+60i)^T\]

and

\[b_2 := A^H y = (54-112i, 46-58i, 12, 5-51i, 78+34i, 60-94i)^T\]

The LU factorization of A is used to solve the sparse complex linear systems \(Ax=b\), \(A^Tx=b_1\), and \(A^Hx=b_2\).

#include <imsl.h>

int main()
{
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};

 f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
 {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
f_complex b1[] = {{-112.0, 54.0}, {-58.0, 46.0}, {0.0, 12.0},
{-51.0, 5.0}, {34.0, 78.0}, {-94.0, 60.0}};

f_complex b2[] = {{54.0, -112.0}, {46.0, -58.0}, {12.0, 0.0},
{5.0, -51.0}, {78.0, 34.0}, {60.0, -94.0}};

int n = 6, nz = 15;
f_complex *x = NULL;

x = imsl_c_superlu_smp (n, nz, a, b, 0);
imsl_c_write_matrix ("solution to A*x = b", n, 1, x, 0);
imsl_free (x);

x = imsl_c_superlu_smp (n, nz, a, b1, IMSL_TRANSPOSE, 1, 0);
imsl_c_write_matrix ("solution to A^T*x = b1", n, 1, x, 0);
imsl_free (x);

x = imsl_c_superlu_smp (n, nz, a, b2, IMSL_TRANSPOSE, 2, 0);
imsl_c_write_matrix ("solution to A^H*x = b2", n, 1, x, 0);
imsl_free (x);

Output

solution to A*x = b
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)

solution to A^T*x = b1
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)

solution to A^H*x = b2
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)
Example 2

This example uses the matrix $A = E(1000,10)$ to show how the LU factorization of A can be used to solve a linear system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed. After the computations, the space allocated for the LU factorization is freed via function

```
imsl_c_superlu_smp_factor_free.
```

```c
#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{

    Imsl_c_sparse_elem *a = NULL;
    Imsl_c_super_lu_smp_factor lu_factor;
    f_complex *b = NULL, *x = NULL, *mod_five = NULL, *mod_ten = NULL;
    float error_factor_solve, error_solve;
    int n = 1000, c = 10;
    int i, nz, index;

    /* Get the coefficient matrix */
    a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

    /* Set two different predetermined solutions */
    mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
    mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
    for (i=0; i<n; i++) {
        mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
        mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
    }

    /* Choose b so that x will approximate mod_five */
    b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, n, nz, a,
        IMSL_X_VECTOR, n, mod_five,
        0);

    /* Solve Ax = b */
    x = imsl_c_superlu_smp (n, nz, a, b,
        IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
        0);

    /* Compute max absolute error */
    error_factor_solve = imsl_c_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_five,
        IMSL_INF_NORM, &index,
        0);

    free (mod_five);
    imsl_free (b);
    imsl_free (x);

    /* Get new right hand side -- b = A * mod_ten */
    b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, n, nz, a,
        IMSL_X_VECTOR, n, mod_ten,
        0);
```

/ * Use the previously computed factorization to solve Ax = b */

\[
x = \text{imsl_c_superlu_smp} (n, nz, a, b, \\
 \text{IMSL_SUPPLY_SPARSE_LU_FACTOR}, \&lu_factor, \\
 \text{IMSL_FACTOR_SOLVE}, 2, \\
 0);
\]

\[
\text{error_solve} = \text{imsl_c_vector_norm} (n, x, \\
 \text{IMSL_SECOND_VECTOR}, \text{mod_ten}, \\
 \text{IMSL_INF_NORM}, \&index, \\
 0); \\
\]

\[
\text{free} (\text{mod_ten}); \\
\text{imsl_free} (b); \\
\text{imsl_free} (x); \\
\text{imsl_free} (a); \\
\]

/* Free sparse LU structure */
\[
\text{imsl_c_superlu_smp_factor_free} (\&lu_factor);
\]

/* Print errors */
\[
\text{printf} ("\text{absolute error (factor/solve)} = %e\n", \\
 \text{error_factor_solve}); \\
\text{printf} ("\text{absolute error (solve)} = %e\n", \text{error_solve});
\]

Output

absolute error (factor/solve) = 9.581556e-007
absolute error (solve) = 2.017572e-006

Warning Errors

- **IMSL_ILL_CONDITIONED**
 - The input matrix is too ill-conditioned. An estimate of the reciprocal of its L_1 condition number is "$\text{rcond} = \#$$. The solution might not be accurate.

Fatal Errors

- **IMSL_SINGULAR_MATRIX**
 - The input matrix is singular.
lin_sol_posdef_coordinate

Solves a sparse real symmetric positive definite system of linear equations \(A = b \). Using optional arguments, any of several related computations can be performed. These extra tasks include returning the symbolic factorization of \(A \), returning the numeric factorization of \(A \), and computing the solution of \(Ax = b \) given either the symbolic or numeric factorizations.

Synopsis

```
#include <imsl.h>
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, imsl_f_sparse_elem *a, float *b, ... , 0)
void imsl_free_symbolic_factor (imsl_symbolic_factor *sym_factor)
void imsl_f_free_numeric_factor (imsl_f_numeric_factor *num_factor)
```

The type `double` functions are `imsl_d_lin_sol_posdef_coordinate` and `imsl_d_free_numeric_factor`.

Required Arguments

- \(int \ n \) (Input)
 Number of rows in the matrix.

- \(int \ nz \) (Input)
 Number of nonzeros in lower triangle of the matrix.

- \(imsl_f_sparse_elem *a \) (Input)
 Vector of length \(nz \) containing the location and value of each nonzero entry in the lower triangle of the matrix.

- \(float *b \) (Input)
 Vector of length \(n \) containing the right-hand side.

Return Value

A pointer to the solution \(x \) of the sparse symmetric positive definite linear system \(Ax = b \). To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, imsl_f_sparse_elem *a, float *b,
```
IMSL_RETURN_SYMBOLIC_FACTOR, \texttt{imsl_symbolic_factor} *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR, \texttt{imsl_symbolic_factor} *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR, \texttt{imsl_f_numeric_factor} *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR, \texttt{imsl_f_numeric_factor} *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, \texttt{float} x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, \texttt{float} *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, \texttt{float} *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, \texttt{int} *num_nonzeros,
IMSL_CSC_FORMAT, \texttt{int} *col_ptr, \texttt{int} *row_ind, \texttt{float} *values,
0)

Optional Arguments

IMSL_RETURN_SYMBOLIC_FACTOR, \texttt{imsl_symbolic_factor} *sym_factor (Output)
A pointer to a structure of type \texttt{imsl_symbolic_factor} containing, on return, the symbolic factorization of the input matrix. A detailed description of the \texttt{imsl_symbolic_factor} structure is given in the following table:
To free the memory allocated within this structure, use function

imsl_free_symbolic_factor.

IMSL_SUPPLY_SYMBOLIC_FACTOR, imsl_symbolic_factor *sym_factor (Input)
A pointer to a structure of type imsl_symbolic_factor. This structure contains the symbolic factorization of the input matrix computed by imsl_f_lin_sol_posdef_coordinate with the IMSL_RETURN_SYMBOLIC_FACTOR option. The structure is described in the IMSL_RETURN_SYMBOLIC_FACTOR optional argument description. To free the memory allocated within this structure, use function imsl_free_symbolic_factor.

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nzsub</td>
<td>int **</td>
<td>A pointer to an array containing the compressed row subscripts of the non-zero off-diagonal elements of the Cholesky factor.</td>
</tr>
<tr>
<td>xnzsub</td>
<td>int **</td>
<td>A pointer to an array of length n + 1 containing indices for *nzsub. The row subscripts for the non-zeros in column j of the Cholesky factor are stored consecutively beginning with (*nzsub)[(*xnzsub)[j]].</td>
</tr>
<tr>
<td>maxsub</td>
<td>int</td>
<td>The number of elements in array *nzsub that are used as subscripts. Note that the size of *nzsub can be larger than maxsub.</td>
</tr>
<tr>
<td>xlnz</td>
<td>int **</td>
<td>A pointer to an array of length n + 1 containing the starting and stopping indices to use to extract the non-zero off-diagonal elements from array *alnz (For a description of *alnz, see the description section of optional argument IMSL_RETURN_NUMERIC_FACTOR). For column j of the factor matrix, the starting and stopping indices of *alnz are stored in (*xlnz)[j] and (*xlnz)[j + 1] respectively.</td>
</tr>
<tr>
<td>maxlnz</td>
<td>int</td>
<td>The number of non-zero off-diagonal elements in the Cholesky factor.</td>
</tr>
<tr>
<td>perm</td>
<td>int **</td>
<td>A pointer to an array of length n containing the permutation vector.</td>
</tr>
<tr>
<td>invp</td>
<td>int **</td>
<td>A pointer to an array of length n containing the inverse permutation vector.</td>
</tr>
<tr>
<td>multifrontal_space</td>
<td>int</td>
<td>The required size of working storage for the stack of frontal matrices. If no multifrontal factorization is used, then this variable is set to zero.</td>
</tr>
</tbody>
</table>
IMSL_RETURN_NUMERIC_FACTOR. _lmslf_numeric_factor *num_factor_ (Output)
A pointer to a structure of type _lmslf_numeric_factor_ containing, on return, the numeric factorization
of the input matrix. A detailed description of the _lmslf_numeric_factor_ structure is given in the fol-
lowing table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nzsub</td>
<td>int **</td>
<td>A pointer to an array containing the row subscripts for the non-zero off-diagonal elements of the Cholesky factor. This array is allocated to be of length nz but all elements of the array may not be used.</td>
</tr>
<tr>
<td>xnzsub</td>
<td>int **</td>
<td>A pointer to an array of length n + 1 containing indices for nzsub. The row subscripts for the non-zeros in column j of the cholesky factor are stored consecutively beginning with nzsub[xnzsub[j]].</td>
</tr>
<tr>
<td>xlnz</td>
<td>int **</td>
<td>A pointer to an array of length n + 1 containing the starting and stopping indices to use to extract the non-zero off-diagonal elements from array alnz. For column j of the factor matrix, the starting and stopping indices of alnz are stored in xlnz[j] and xlnz[j + 1] respectively.</td>
</tr>
<tr>
<td>alnz</td>
<td>float **</td>
<td>A pointer to an array containing the non-zero off-diagonal elements of the Cholesky factor.</td>
</tr>
<tr>
<td>perm</td>
<td>int **</td>
<td>A pointer to an array of length n containing the permutation vector.</td>
</tr>
<tr>
<td>diag</td>
<td>float **</td>
<td>A pointer to an array of length n containing the diagonal elements of the Cholesky factor.</td>
</tr>
</tbody>
</table>

Let _L_ be the Cholesky factor of _a_ and _num_nonzeros_ be the number of nonzeros in _L_. In the structure described above, the diagonal elements of _L_ are stored in diag. The off-diagonal non-zero elements of _L_ are stored in alnz. The starting and stopping indices to use to extract the non-zero elements of _L_ from alnz for column _j_ are stored in xlnz[j] and xlnz[j + 1] respectively. The row indices of the non-zero elements of _L_ are contained in nzsub. xnzsub[i] contains the index of nzsub from which one should start to extract the row indices for _L_ for column _i_. This is best illustrated by the following code fragment which reconstructs the lower triangle of the factor matrix _L_ from the components of the above structure:

```
Imsl_f_numeric_factor numfctr;
.
.
for (i = 0; i < n; i++){
    L[i][i] = (*numfctr.diag)[i];
    if (((*numfctr.xlnz)[i] > (num_nonzeros-n)) continue;
    start = (*numfctr.xlnz)[i]-1;
    stop = (*numfctr.xlnz)[i+1]-1;
    k = (*numfctr.xnzsub)[i]-1;
    for (j = start; j < stop; j++){
        L[i][j] = (*numfctr.alnz)[j+k];
    }
```
L[(\text{numfctr.nzsub})[k]-1][i] = (\text{numfctr.alnz})[j];
k++;
}

To free the memory allocated within this structure, use function
\text{imsl_f_free_numeric_factor}.

\text{IMSL_SUPPLY_NUMERIC_FACTOR, imsl_f_numeric_factor *num_factor} (Input)
A pointer to a structure of type \text{imsl_f_numeric_factor}. This structure contains the numeric factorization of the input matrix computed by \text{imsl_f_lin_sol_posdef_coordinate} with the \text{IMSL_RETURN_NUMERIC_FACTOR} option. The structure is described in the \text{IMSL_RETURN_NUMERIC_FACTOR} optional argument description.

To free the memory allocated within this structure, use function
\text{imsl_f_free_numeric_factor}.

\text{IMSL_NUMERIC_FACTOR_ONLY},
Compute the numeric factorization of the input matrix and return. The argument \(b\) is ignored.

\text{IMSL_SOLVE_ONLY},
Solve \(Ax = b\) given the numeric or symbolic factorization of \(A\). This option requires the use of either \text{IMSL_SUPPLY_NUMERIC_FACTOR} or \text{IMSL_SUPPLY_SYMBOLIC_FACTOR}.

\text{IMSL_MULTIFRONTAL_FACTORIZATION},
Perform the numeric factorization using a multifrontal technique. By default, a standard factorization is computed based on a sparse compressed storage scheme.

\text{IMSL_RETURN_USER, float x[]} (Output)
A user-allocated array of length \(n\) containing the solution \(x\).

\text{IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element} (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to \text{imsl_f_lin_sol_posdef_coordinate}.

\text{IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element} (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to \text{imsl_f_lin_sol_posdef_coordinate}.

\text{IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros} (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

\text{IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values} (Input)
Accept the coefficient matrix in \text{Compressed Sparse Column (CSC) Format}. See the “Matrix Storage Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage scheme.
Description

The function `imsl_f_lin_sol_posdef_coordinate` solves a system of linear algebraic equations having a sparse symmetric positive definite coefficient matrix \(A \). In this function’s default usage, a symbolic factorization of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then setting up a sparse data structure for the Cholesky factor, \(L \). This step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the \(\text{val} \) field in the `Imsl_f_sparse_elem` structure is ignored. If an application generates different sparse symmetric positive definite coefficient matrices that all have the same sparsity pattern, then by using `IMSL_RETURN_SYMBOLIC_FACTOR` and `IMSL_SUPPLY_SYMBOLIC_FACTOR`, the symbolic factorization need only be computed once.

Given the sparse data structure for the Cholesky factor \(L \), as supplied by the symbolic factor, the numeric factorization produces the entries in \(L \) so that

\[
PAP^T = LL^T
\]

Here \(P \) is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is performed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981). Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the right-hand sides change, the options `IMSL_RETURN_NUMERIC_FACTOR` and `IMSL_SUPPLY_NUMERIC_FACTOR` can be used to precompute the Cholesky factor. Then the `IMSL_SOLVE_ONLY` option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution \(x \) is obtained by the following calculations:

\[
Ly_1 = Pb
\]
\[
L^Ty_2 = y_1
\]
\[
x = P^Ty_2
\]

The permutation information, \(P \), is carried in the numeric factor structure.
Examples

Example 1
As an example consider the 5×5 coefficient matrix:

\[
A = \begin{bmatrix}
10 & 0 & 1 & 0 & 2 \\
0 & 20 & 0 & 0 & 3 \\
1 & 0 & 30 & 4 & 0 \\
0 & 0 & 4 & 40 & 5 \\
2 & 3 & 0 & 5 & 50
\end{bmatrix}
\]

Let $x^T = (5, 4, 3, 2, 1)$ so that $Ax = (55, 83, 103, 97, 82)^T$. The number of nonzeros in the lower triangle of A is $nz = 10$. The sparse coordinate form for the lower triangle is given by the following:

<table>
<thead>
<tr>
<th>row</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>col</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>val</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>30</td>
<td>4</td>
<td>40</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

Since this representation is not unique, an equivalent form would be as follows:

<table>
<thead>
<tr>
<th>row</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>col</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>val</td>
<td>40</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>30</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

```c
#include <imsl.h>

int main()
{
    Imsl_f_sparse_elem a[] =
        {0, 0, 10.0, 
         1, 1, 20.0, 
         2, 0, 1.0, 
         2, 2, 30.0, 
         3, 2, 4.0, 
         3, 3, 40.0, 
         4, 0, 2.0, 
         4, 1, 3.0, 
         4, 3, 5.0, 
         4, 4, 50.0};

    float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
    int n = 5;
    int nz = 10;
    float *x;

    x = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b, 0);
}
```
Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 2

In this example, set $A = E(2500, 50)$. Then solve the system $Ax = b_1$ and return the numeric factorization resulting from that call. Then solve the system $Ax = b_2$ using the numeric factorization just computed. The ratio of execution time is printed. Be aware that timing results are highly machine dependent.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    Imsl_f_sparse_elem *a;
    Imsl_f_numeric_factor numeric_factor;
    float *b_1;
    float *b_2;
    float *x_1;
    float *x_2;
    int n;
    int ic;
    int nz;
    double time_1;
    double time_2;

    ic = 50;
    n = ic*ic;

    /* Generate two right hand sides */
    b_1 = imsl_f_random_uniform (n*sizeof(*b_1), 0);
    b_2 = imsl_f_random_uniform (n*sizeof(*b_2), 0);

    /* Build coefficient matrix a */
    a = imsl_f_generate_test_coordinate (n, ic, &nz,
                                          IMSL_SYMMETRIC_STORAGE,
                                          0);

    /* Now solve $Ax_1 = b_1$ and return the numeric
     * factorization */
```
time_1 = imsl_ctime ();

x_1 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);

time_1 = imsl_ctime () - time_1;

/* Now solve Ax_2 = b_2 given the numeric factorization */
time_2 = imsl_ctime ();

x_2 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);

time_2 = imsl_ctime () - time_2;
printf("time_2/time_1 = %lf\n", time_2/time_1);
}

Output

time_2/time_1 = 0.037037
lin_sol_posdef_coordinate (complex)

Solves a sparse Hermitian positive definite system of linear equations $Ax = b$. Using optional arguments, any of several related computations can be performed. These extra tasks include returning the symbolic factorization of A, returning the numeric factorization of A, and computing the solution of $Ax = b$ given either the symbolic or numeric factorizations.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_coordinate(int n, int nz, lmsl_c_sparse_elem *a,
                                      f_complex *b, ..., 0)

void imsl_free_symbolic_factor(lmsl_symbolic_factor *sym_factor)

void imsl_c_free_numeric_factor(lmsl_c_numeric_factor *num_factor)
```

The type `d_complex` functions are `imsl_z_lin_sol_posdef_coordinate` and `imsl_z_free_numeric_factor`.

Required Arguments

- `int n` (Input)
 - Number of rows in the matrix.
- `int nz` (Input)
 - Number of nonzeros in the lower triangle of the matrix.
- `lmsl_c_sparse_elem *a` (Input)
 - Vector of length nz containing the location and value of each nonzero entry in lower triangle of the matrix.
- `f_complex *b` (Input)
 - Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse Hermitian positive definite linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
f_complex *imsl_c_lin_sol_posdef_coordinate (int n, int nz, imsl_c_sparse_elem *a, f_complex *b,

IMSL_RETURN_SYMBOLIC_FACTOR, imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR, imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR, imsl_c_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR, imsl_c_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORORIZATION,
IMSL_RETURN_USER, f_complex x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values,
0)

Optional Arguments

IMSL_RETURN_SYMBOLIC_FACTOR, imsl_symbolic_factor *sym_factor (Output)
A pointer to a structure of type imsl_symbolic_factor containing, on return, the symbolic factorization
of the input matrix. A detailed description of the imsl_symbolic_factor structure is given in the following table:
To free the memory allocated within this structure, use function
\texttt{imsl_free_symbolic_factor}.

\texttt{IMSL_SUPPLY_SYMBOLIC_FACTOR}, \texttt{imsl_symbolic_factor} *\texttt{sym_factor} (Input)
A pointer to a structure of type \texttt{imsl_symbolic_factor}. This structure contains the symbolic factorization of the input matrix computed by \texttt{imsl_c_lin_sol_posdef_coordinate} with the \texttt{IMSL_RETURN_SYMBOLIC_FACTOR} option. The structure is described in the \texttt{IMSL_RETURN_SYMBOLIC_FACTOR} optional argument description. To free the memory allocated within this structure, use function \texttt{imsl_free_symbolic_factor}.

\texttt{IMSL_SYMBOLIC_FACTOR_ONLY},
Compute the symbolic factorization of the input matrix and return. The argument \texttt{b} is ignored.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{nzsub}</td>
<td>\texttt{int} **</td>
<td>A pointer to an array containing the compressed row subscripts of the non-zero off-diagonal elements of the Cholesky factor.</td>
</tr>
<tr>
<td>\texttt{xnzsub}</td>
<td>\texttt{int} **</td>
<td>A pointer to an array of length (n + 1) containing indices for \texttt{*nzsub}. The row subscripts for the non-zeros in column (j) of the Cholesky factor are stored consecutively beginning with ((\texttt{nzsub})[(\texttt{xnzsub})[j]]).</td>
</tr>
<tr>
<td>\texttt{maxsub}</td>
<td>\texttt{int}</td>
<td>The number of elements in array \texttt{*nzsub} that are used as subscripts. Note that the size of \texttt{*nzsub} can be larger than \texttt{maxsub}.</td>
</tr>
<tr>
<td>\texttt{xlnz}</td>
<td>\texttt{int} **</td>
<td>A pointer to an array of length (n + 1) containing the starting and stopping indices to use to extract the non-zero off-diagonal elements from array \texttt{*alnz}. For a description of \texttt{alnz}, see the description section of optional argument \texttt{IMSL_RETURN_NUMERIC_FACTOR}. For column (j) of the factor matrix, the starting and stopping indices of \texttt{*alnz} are stored in ((\texttt{*xlnz})[j]) and ((\texttt{*xlnz})[j+1]) respectively.</td>
</tr>
<tr>
<td>\texttt{maxlnz}</td>
<td>\texttt{int}</td>
<td>The number of non-zero off-diagonal elements in the Cholesky factor.</td>
</tr>
<tr>
<td>\texttt{perm}</td>
<td>\texttt{int} **</td>
<td>A pointer to an array of length (n) containing the permutation vector.</td>
</tr>
<tr>
<td>\texttt{invp}</td>
<td>\texttt{int} **</td>
<td>A pointer to an array of length (n) containing the inverse permutation vector.</td>
</tr>
<tr>
<td>\texttt{multifrontal_space}</td>
<td>\texttt{int}</td>
<td>The required size of working storage for the stack of frontal matrices. If no multifrontal factorization is used, then this variable is set to zero.</td>
</tr>
</tbody>
</table>
IMSL_RETURN_NUMERIC_FACTOR
`Imls_c_numeric_factor *num_factor` (Output)
A pointer to a structure of type `Imls_c_numeric_factor` containing, on return, the numeric factorization of the input matrix. A detailed description of the `Imls_c_numeric_factor` structure is given in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nzsub</td>
<td>int **</td>
<td>A pointer to an array containing the row subscripts for the non-zero off-diagonal elements of the Cholesky factor. This array is allocated to be of length nz but all elements of the array may not be used.</td>
</tr>
<tr>
<td>xnzsub</td>
<td>int **</td>
<td>A pointer to an array of length n + 1 containing indices for nzsub. The row subscripts for the non-zeros in column j of the Cholesky factor are stored consecutively beginning with nzsub[xnzsub[j]].</td>
</tr>
<tr>
<td>xlnz</td>
<td>int **</td>
<td>A pointer to an array of length n + 1 containing the starting and stopping indices to use to extract the non-zero off-diagonal elements from array alnz. For column j of the factor matrix, the starting and stopping indices of alnz are stored in xlnz[j] and xlnz[j + 1] respectively.</td>
</tr>
<tr>
<td>alnz</td>
<td>f_complex **</td>
<td>A pointer to an array containing the non-zero off-diagonal elements of the Cholesky factor.</td>
</tr>
<tr>
<td>perm</td>
<td>int **</td>
<td>A pointer to an array of length n containing the permutation vector.</td>
</tr>
<tr>
<td>diag</td>
<td>f_complex **</td>
<td>A pointer to an array of length n containing the diagonal elements of the Cholesky factor.</td>
</tr>
</tbody>
</table>

Let \(L \) be the Cholesky factor of \(a \) and num_nonzeros be the number of nonzeros in \(L \). In the structure described above, the diagonal elements of \(L \) are stored in diag. The off-diagonal non-zero elements of \(L \) are stored in alnz. The starting and stopping indices to use to extract the non-zero elements of \(L \) from alnz for column \(j \) are stored in xlnz[j] and xlnz[j + 1] respectively. The row indices of the elements of \(L \) which are non-zero are contained in nzsub. xnzsub[i] contains the index of nzsub from which one should start to extract the row indices for \(L \) for column \(i \). This is best illustrated by the following code fragment which reconstructs the lower triangle of the factor matrix \(L \) from the components of the above structure:

```c
Imls_c_numeric_factor numfctr;
.
.
.
for (i = 0; i < n; i++){
```
L[i][i] = (*numfctr.diag)[i];
if ((*numfctr.xlnz)[i] > (num_nonzeros-n)) continue;
start = (*numfctr.xlnz)[i]-1;
stop = (*numfctr.xlnz)[i+1]-1;
k = (*numfctr.xnzsub)[i]-1;
for (j = start; j < stop; j++){
 L[(*numfctr.nzsub)[k]-1][i] = (*numfctr.alnz)[j];
k++;
}

To free the memory allocated within this structure, use function
imsl_c_free_numeric_factor.

IMSL_SUPPLY_NUMERIC_FACTOR, imsl_c_numeric_factor *num_factor (Input)
A pointer to a structure of type imsl_c_numeric_factor. This structure contains the numeric factorization of the input matrix computed by imsl_c_lin_sol_posdef_coordinate with the
IMSL_RETURN_NUMERIC_FACTOR option. The structure is described in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description.

To free the memory allocated within this structure, use function
imsl_c_free_numeric_factor.

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default a standard factorization is computed based on a sparse compressed storage scheme.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the “Matrix Storage Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage scheme.

Description

The function imsl_c_lin_sol_posdef_coordinate solves a system of linear algebraic equations having a sparse Hermitian positive definite coefficient matrix A. In this function’s default use, a symbolic factorization of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then setting up a sparse data structure for the Cholesky factor, L. This step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the val field in the Imsl_c_sparse_elem structure is ignored. If an application generates different sparse Hermitian positive definite coefficient matrices that all have the same sparsity pattern, then by using IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factorization produces the entries in L so that

$$PAP^T = LL^H$$

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is performed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981). Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

$$Ly_1 = Pb$$
$$L^H y_2 = y_1$$
$$x = P^T y_2$$
The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite matrix

$$
A = \begin{pmatrix}
2 & -1 + i & 0 \\
-1 - i & 4 & 1 + 2i \\
0 & 1 - 2i & 10
\end{pmatrix}
$$

Let $x^T = (1 + i, 2 + 2i, 3 + 3i)$ so that $Ax = (-2 + 2i, 5 + 15i, 36 + 28i)^T$. The number of nonzeros in the lower triangle is $nz = 5$.

```c
#include <imsl.h>

int main()
{
    Imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0},
                              1, 1, {4.0, 0.0},
                              2, 2, {10.0, 0.0},
                              1, 0, {-1.0, -1.0},
                              2, 1, {1.0, -2.0}};

    f_complex  b[] = {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};
    int        n = 3;
    int        nz = 5;
    f_complex *x;

    x = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b, 0);

    imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);

    imsl_free (x);
}
```

Output

```
Solution, x, of Ax = b
1 ( 1, 1)
2 ( 2, 2)
3 ( 3, 3)
```
Example 2

Set \(A = \mathbf{E}(2500, 50) \). Then solve the system \(Ax = b_1 \) and return the numeric factorization resulting from that call. Then solve the system \(Ax = b_2 \) using the numeric factorization just computed. Absolute errors and execution time are printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    Imsl_c_sparse_elem    *a;
    Imsl_c_numeric_factor numeric_factor;
    f_complex              b_1[2500], b_2[2500], *x_1, *x_2;
    int                    n, ic, nz, i, index;
    double                 time_1, time_2;
    float                  *rand_vec;

    ic = 50;
    n = ic*ic;
    index = 0;

    /* Generate two right hand sides */
    rand_vec = imsl_f_random_uniform (4*n*sizeof(*rand_vec), 0);

    for (i=0; i<n; i++) {
        b_1[i].re = rand_vec[index++];
        b_1[i].im = rand_vec[index++];
        b_2[i].re = rand_vec[index++];
        b_2[i].im = rand_vec[index++];
    }

    /* Build coefficient matrix a */
    a = imsl_c_generate_test_coordinate (n, ic, &nz,
                                        IMSL_SYMMETRIC_STORAGE,
                                        0);

    /* Now solve \( Ax_1 = b_1 \) and return the numeric factorization */
    time_1 = imsl_ctime ();

    x_1 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_1,
                                            IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
                                            0);

    time_1 = imsl_ctime () - time_1;

    /* Now solve \( Ax_2 = b_2 \) given the numeric factorization */
    time_2 = imsl_ctime ();
```
\[
x_2 = \text{imsl_c_lin_sol_posdef_coordinate}(n, nz, a, b_2,
\text{IMSL_SUPPLY_NUMERIC_FACTOR}, \&\text{numeric_factor},
\text{IMSL_SOLVE_ONLY},
0);
\]

time_2 = \text{imsl_ctime}() - time_2;

printf("time_2/time_1 = %lf\n", time_2/time_1);
}

Output

time_2/time_1 = 0.096386
sparse_cholesky_smp

Computes the Cholesky factorization of a sparse real symmetric positive definite matrix A by an OpenMP parallelized supernodal algorithm and solves the sparse real positive definite system of linear equations $Ax = b$.

Synopsis

```c
#include <imsl.h>

float *imsl_f_sparse_cholesky_smp(int n, int nz, Imsl_f_sparse_elem a[], float b[], ..., 0)

void imsl_free_snodal_symbolic_factor(Imsl_snodal_symbolic_factor *sym_factor)

void imsl_f_free_numeric_factor(Imsl_f_numeric_factor *num_factor)
```

The type `double` functions are `imsl_d_sparse_cholesky_smp` and `imsl_d_free_numeric_factor`.

Required Arguments

- `int n` (Input)
 The order of the input matrix.

- `int nz` (Input)
 Number of nonzeros in the lower triangle of the matrix.

- `Imsl_f_sparse_elem a[]` (Input)
 An array of length nz containing the location and value of each nonzero entry in the lower triangle of the matrix.

- `float b[]` (Input)
 An array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.
Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_sparse_cholesky_smp(int n, int nz, Imsl_f_sparse_elem a[], float b[],
IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], float values[],
IMSL_PREORDERING, int preorder,
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_SPARSE_FORMAT_ONLY,
IMSL_MCC_FORMAT,
IMSL_MAX_MCC_FORMAT,
IMSL_MIN_MCC_FORMAT,
IMSLโปรแกรมlication, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

<table>
<thead>
<tr>
<th>preorder</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>George and Liu's Quotient Minimum Degree algorithm.</td>
</tr>
<tr>
<td>1</td>
<td>A variant of George and Liu's Quotient Minimum Degree algorithm using a preprocessing phase and external degrees.</td>
</tr>
</tbody>
</table>

Default: `preorder = 0`.  

Optional Arguments

**IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], float values[] (Input)**
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

**IMSL_PREORDERING, int preorder (Input)**
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:
IMSL\_RETURN\_SYMBOLIC\_FACTOR, imsl\_snodal\_symbolic\_factor *sym\_factor (Output)

A pointer to a structure of type imsl\_snodal\_symbolic\_factor containing, on return, the supernodal symbolic factorization of the input matrix. A detailed description of the imsl\_snodal\_symbolic\_factor structure is given in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nzsub</td>
<td>int **</td>
<td>A pointer to an array containing the compressed row subscripts of the non-zero off-diagonal elements of the Cholesky factor.</td>
</tr>
<tr>
<td>xnzs_sub</td>
<td>int **</td>
<td>A pointer to an array of length n+1 containing indices for *nzsub. The row subscripts for the non-zeros in column j of the Cholesky factor are stored consecutively beginning with (*nzsub)[(*xnzs_sub)[j]].</td>
</tr>
<tr>
<td>max_sub</td>
<td>int</td>
<td>The number of elements in array *nz_sub that are used as subscripts. Note that the size of *nz_sub can be larger than max_sub.</td>
</tr>
<tr>
<td>xlnzs</td>
<td>int **</td>
<td>A pointer to an array of length n+1 containing the starting and stopping indices to use to extract the non-zero off-diagonal elements from array *alnzs (For a description of alnzs, see the description section of optional argument IMSL_RETURN_NUMERIC_FACTOR). For column j of the factor matrix, the starting and stopping indices of *alnzs are stored in (*xlnzs)[j] and (*xlnzs)[j+1] respectively.</td>
</tr>
<tr>
<td>max_lnzs</td>
<td>int</td>
<td>The number of non-zero off-diagonal elements in the Cholesky factor.</td>
</tr>
<tr>
<td>perm</td>
<td>int **</td>
<td>A pointer to an array of length n containing the permutation vector.</td>
</tr>
<tr>
<td>invp</td>
<td>int **</td>
<td>A pointer to an array of length n containing the inverse permutation vector.</td>
</tr>
</tbody>
</table>
| mult
\_frontal\_space | int | This variable is not used in the current implementation.                                                                                   |
| ns\_super   | int       | The number of supernodes in the Cholesky factor.                                                                                            |
| snode       | int **    | A pointer to an array of length n. Element (*snodes)[j] contains the number of the fundamental supernode to which column j belongs.         |
| snode\_ptr  | int **    | A pointer to an array of length ns\_super+1 containing the start column of each supernode.                                                  |
| n\_leaves   | int       | The number of leaves in the postordered elimination tree of the symmetrically permuted input matrix A.                                   |
| etree\_leaves | int ** | A pointer to an array of length n\_leaves+1 containing the leaves of the elimination tree.                                                  |
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SUPPLY_SYMBOLIC_FACTOR, \texttt{imsl_snodal_symbolic_factor *sym\_factor} (Input)
A pointer to a structure of type \texttt{imsl_snodal_symbolic_factor}. This structure contains the symbolic factorization of the input matrix computed by \texttt{imsl_f_sparse_cholesky_smp} with the
IMSL_RETURN_SYMBOLIC_FACTOR option. The structure is described in the
IMSL_RETURN_SYMBOLIC_FACTOR optional argument description.
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SYMBOLIC_FACTOR_ONLY, (Input)
Compute the symbolic factorization of the input matrix and return. The argument \(b\) is ignored.

IMSL_RETURN_NUMERIC_FACTOR, \texttt{imsl_f_numeric_factor *num\_factor} (Output)
A pointer to a structure of type \texttt{imsl_f_numeric_factor} containing, on return, the numeric factorization of the input matrix. A detailed description of the \texttt{imsl_f_numeric_factor} structure is given in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_f_lin_sol_posdef_coordinate. To free the memory allocated within this structure, use
function imsl_f_free_numeric_factor.

IMSL_SUPPLY_NUMERIC_FACTOR, \texttt{imsl_f_numeric_factor *num\_factor} (Input)
A pointer to a structure of type \texttt{imsl_f_numeric_factor}. This structure contains the numeric factorization of the input matrix computed by \texttt{imsl_f_sparse_cholesky_smp} with the
IMSL_RETURN_NUMERIC_FACTOR option. The structure is described in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_f_lin_sol_posdef_coordinate.
To free the memory allocated within this structure, use function
imsl_f_free_numeric_factor.

IMSL_NUMERIC_FACTOR_ONLY, (Input)
Compute the numeric factorization of the input matrix and return. The argument \(b\) is ignored.

IMSL_SOLVE_ONLY, (Input)
Solve \(Ax = b\) given the numeric or symbolic factorization of \(A\). This option requires the use of either
IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_SAMEST_DIAGONAL_ELEMENT, \texttt{float *smallest\_element} (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to
imsl_f_sparse_cholesky_smp.

IMSL_LARGEST_DIAGONAL_ELEMENT, \texttt{float *largest\_element} (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to
imsl_f_sparse_cholesky_smp.
**IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)**

A pointer to a scalar containing the total number of nonzeros in the factor.

**IMSL_RETURN_USER, float x[] (Output)**

A user-allocated array of length n containing the solution x.

---

**Description**

The function `imsl_f_sparse_cholesky_smp` solves a system of linear algebraic equations having a sparse symmetric positive definite coefficient matrix $A$. In this function’s default usage, a symbolic factorization of a permutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then setting up a sparse supernodal data structure for the Cholesky factor, $L$. This step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the $val$ field in the `Imsl_f_sparse_elem` structure is ignored. If an application generates different sparse symmetric positive definite coefficient matrices that all have the same sparsity pattern, then by using `IMSL_RETURN_SYMBOLIC_FACTOR` and `IMSL_SUPPLY_SYMBOLIC_FACTOR`, the symbolic factorization needs only be computed once.

Given the sparse data structure for the Cholesky factor $L$, as supplied by the symbolic factor, the numeric factorization produces the entries in $L$ so that

$$PAP^T = LL^T$$

Here $P$ is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the right-hand sides change, the options `IMSL_RETURN_NUMERIC_FACTOR` and `IMSL_SUPPLY_NUMERIC_FACTOR` can be used to precompute the Cholesky factor. Then the `IMSL_SOLVE_ONLY` option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution $x$ is obtained by the following calculations:

$$Ly_1 = Pb$$
$$L^Ty_2 = y_1$$
$$x = P^Ty_2$$

The permutation information, $P$, is carried in the numeric factor structure `Imsl_f_numeric_factor`.
Examples

Example 1

Consider the $5 \times 5$ coefficient matrix $A$,

$$
A = \begin{bmatrix}
10 & 0 & 1 & 0 & 2 \\
0 & 20 & 0 & 0 & 3 \\
1 & 0 & 30 & 4 & 0 \\
0 & 0 & 4 & 40 & 5 \\
2 & 3 & 0 & 5 & 50
\end{bmatrix}
$$

The number of nonzeros in the lower triangle of $A$ is $n_z = 10$. We construct the solution $x^T = (5, 4, 3, 2, 1)$ to the system $Ax = b$ by setting $b := Ax = (55, 83, 103, 97, 82)^T$. The solution is computed and printed.

```c
#include <imsl.h>

int main()
{
 Imsl_f_sparse_elem a[] =
 {0, 0, 10.0,
 1, 1, 20.0,
 2, 0, 1.0,
 2, 2, 30.0,
 3, 2, 4.0,
 3, 3, 40.0,
 4, 0, 2.0,
 4, 1, 3.0,
 4, 3, 5.0,
 4, 4, 50.0};

 float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
 int n = 5, nz = 10;
 float *x = NULL;

 x = imsl_f_sparse_cholesky_smp (n, nz, a, b, 0);

 imsl_f_write_matrix ("solution", 1, n, x, 0);
 imsl_free (x);
}
```

Output

```
solution
 1 2 3 4 5
 5 4 3 2 1
```
Example 2

This example shows how a symbolic factor can be re-used. At first, the system $Ax = b$ with $A = E(2500, 50)$ is solved and the symbolic factorization of $A$ is returned. Then, the system $Cy = d$ with $C = A+2*I$, $I$ the identity matrix, is solved using the symbolic factorization just computed. This is possible because $A$ and $C$ have the same nonzero structure and therefore also the same symbolic factorization. The solution errors are printed.

```c
#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{
 Imsl_f_sparse_elem *a = NULL, *c = NULL;
 Imsl_snodal_symbolic_factor symbolic_factor;
 float *b = NULL, *d = NULL, *x = NULL, *y = NULL;
 float *mod_vector = NULL;
 int n, ic, nz, i, index;
 float error_1, error_2;

 ic = 50;
 n = ic * ic;
 mod_vector = (float*) malloc (n * sizeof(float));

 /* Build coefficient matrix A */
 a = (Imsl_f_sparse_elem *) imsl_f_generate_test_coordinate (n, ic,
 &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 /* Build coefficient matrix C */
 c = (Imsl_f_sparse_elem*) malloc (nz * sizeof(Imsl_f_sparse_elem));
 for (i = 0; i < nz; i++) c[i] = a[i];
 for (i = 0; i < n; i++)
 c[i].val = 6.0;

 /* Form right hand side b */
 for (i = 0; i < n; i++)
 mod_vector[i] = (float) (i % 5);

 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_vector,
 IMSL_SYMMETRIC_STORAGE,
 0);

 /* Form right hand side d */
 d = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, c,
 IMSL_X_VECTOR, n, mod_vector,
 IMSL_SYMMETRIC_STORAGE,
```
0);

/* Solve Ax = b and return the symbolic factorization */
x = imsl_f_sparse_cholesky_smp (n, nz, a, b,
    IMSL_RETURN_SYMBOLIC_FACTOR, &symbolic_factor,
    0);

/* Compute solution error |x - mod_vector| */
error_1 = imsl_f_vector_norm (n, x,
    IMSL_SECOND_VECTOR, mod_vector,
    IMSL_INF_NORM, &index,
    0);

/* Solve Cy = d given the symbolic factorization */
y = imsl_f_sparse_cholesky_smp (n, nz, c, d,
    IMSL_SUPPLY_SYMBOLIC_FACTOR, &symbolic_factor,
    0);

/* Compute solution error |y - mod_vector| */
error_2 = imsl_f_vector_norm (n, y,
    IMSL_SECOND_VECTOR, mod_vector,
    IMSL_INF_NORM, &index,
    0);

printf ("Solution error |x - mod_vector| = %e\n", error_1);
printf ("Solution error |y - mod_vector| = %e\n", error_2);

/* Free allocated memory */
if (b) imsl_free(b);
if (d) imsl_free(d);
if (x) imsl_free(x);
if (y) imsl_free(y);
if (mod_vector) free(mod_vector);
if (a) imsl_free(a);
if (c) free(c);
imsl_free_snodal_symbolic_factor (&symbolic_factor);
}

Output

Solution error |x - mod_vector| = 4.529953e-005
Solution error |y - mod_vector| = 2.861023e-006

Example 3

In this example, set A = E(2500, 50). First solve the system Ax = b_1 and return the numeric factorization resulting from that call. Then solve the system Ax = b_2 using the numeric factorization just computed. The ratio of execution times is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <omp.h>

int main()
{
    int n, ic, nz;
    float *b_1 = NULL, *b_2 = NULL, *x_1 = NULL, *x_2 = NULL;
    double time_1, time_2;
    Imsl_f_sparse_elem *a = NULL;
    Imsl_f_numeric_factor numeric_factor;

    ic = 50;
    n = ic * ic;

    /* Generate two right hand sides */
    imsl_random_seed_set (1234567);
    b_1 = imsl_f_random_uniform (n, 0);
    b_2 = imsl_f_random_uniform (n, 0);

    /* Build coefficient matrix a */
    a = imsl_f_generate_test_coordinate (n, ic, &nz,
                                         IMSL_SYMMETRIC_STORAGE,
                                         0);

    /* Now solve Ax_1 = b_1 and return the numeric
     factorization */
    time_1 = omp_get_wtime();
    x_1 = imsl_f_sparse_cholesky_smp (n, nz, a, b_1,
                                       IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
                                       0);
    time_1 = omp_get_wtime() - time_1;

    /* Now solve Ax_2 = b_2 given the numeric
     factorization */
    time_2 = omp_get_wtime();
    x_2 = imsl_f_sparse_cholesky_smp (n, nz, a, b_2,
                                       IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
                                       IMSL_SOLVE_ONLY,
                                       0);
    time_2 = omp_get_wtime() - time_2;
    printf("time_2/time_1 = %lf\n", time_2/time_1);

    /* Free allocated memory */
    if (x_1) imsl_free(x_1);
    if (x_2) imsl_free(x_2);
    if (b_1) imsl_free(b_1);
\begin{verbatim}
if (b_2) imsl_free(b_2);
if (a) imsl_free(a);
imsl_f_free_numeric_factor (&numeric_factor);
\}
\end{verbatim}

**Output**

\begin{verbatim}
time_2/time_1 = 0.029411
\end{verbatim}

**Fatal Errors**

\begin{verbatim}
IMSL_BAD_SQUARE_ROOT
A zero or negative square root has occurred during the factorization. The coefficient matrix is not positive definite.
\end{verbatim}
sparse_cholesky_smp (complex)

Computes the Cholesky factorization of a sparse Hermitian positive definite matrix $A$ by an OpenMP parallelized supernodal algorithm and solves the sparse Hermitian positive definite system of linear equations $Ax = b$.

**Synopsis**

```c
#include <imsl.h>

f_complex *imsl_c_sparse_cholesky_smp(int n, int nz, Imsl_c_sparse_elem a[], f_complex b[], ...
 0)

void imsl_free_snodal_symbolic_factor(Imsl_snodal_symbolic_factor *sym_factor)

void imsl_c_free_numeric_factor(Imsl_c_numeric_factor *num_factor)
```

The type `d_complex` functions are `imsl_z_sparse_cholesky_smp` and `imsl_z_free_numeric_factor`.

**Required Arguments**

- `int n` (Input)
  - The order of the input matrix.

- `int nz` (Input)
  - Number of nonzeros in the lower triangle of the matrix.

- `Imsl_c_sparse_elem a[]` (Input)
  - An array of length `nz` containing the location and value of each nonzero entry in the lower triangle of the matrix.

- `f_complex b[]` (Input)
  - An array of length `n` containing the right-hand side.

**Return Value**

A pointer to the solution $x$ of the sparse Hermitian positive definite linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.
Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_sparse_cholesky_smp(int n, int nz, Imsl_c_sparse_elem a[],
 f_complex b[],
 IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], f_complex values[],
 IMSL_PREORDERING, int preorder,
 IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
 IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
 IMSL_SYMBOLIC_FACTOR_ONLY,
 IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor,
 IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor,
 IMSL_NUMERIC_FACTOR_ONLY,
 IMSL_SOLVE_ONLY,
 IMSL_SMALLEST_DIAGONAL_ELEMENT, float *smallest_element,
 IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
 IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
 IMSL_RETURN_USER, f_complex x[],
 0)
```

Optional Arguments

**IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], f_complex values[]** (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

**IMSL_PREORDERING, int preorder** (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

<table>
<thead>
<tr>
<th>preorder</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>George and Liu’s Quotient Minimum Degree algorithm.</td>
</tr>
<tr>
<td>1</td>
<td>A variant of George and Liu’s Quotient Minimum Degree algorithm using a preprocessing phase and external degrees.</td>
</tr>
</tbody>
</table>
Default: preorder = 0.

**IMSL_RETURN_SYMBOLIC_FACTOR**, *IMSL_snodal_symbolic_factor* *sym_factor* (Output)

A pointer to a structure of type *IMSL_snodal_symbolic_factor* containing, on return, the supernodal symbolic factorization of the input matrix. A detailed description of the *IMSL_snodal_symbolic_factor* structure is given in the following table:

**Table 1.8 — Structure Imsl_snodal_symbolic_factor**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nzsub</td>
<td>int **</td>
<td>A pointer to an array containing the compressed row subscripts of the non-zero off-diagonal elements of the Cholesky factor.</td>
</tr>
<tr>
<td>xnzsub</td>
<td>int **</td>
<td>A pointer to an array of length n+1 containing indices for <em>nzsub</em>. The row subscripts for the non-zeros in column j of the Cholesky factor are stored consecutively beginning with (*nzsub)[(*xnzsub)[j]].</td>
</tr>
<tr>
<td>maxsub</td>
<td>int</td>
<td>The number of elements in array <em>nzsub</em> that are used as subscripts. Note that the size of <em>nzsub</em> can be larger than maxsub.</td>
</tr>
<tr>
<td>xlnz</td>
<td>int **</td>
<td>A pointer to an array of length n+1 containing the starting and stopping indices to use to extract the non-zero off-diagonal elements from array <em>alnz</em> (For a description of <em>alnz</em>, see the description section of optional argument IMSL_RETURN_NUMERIC_FACTOR). For column j of the factor matrix, the starting and stopping indices of <em>alnz</em> are stored in (*xlnz)[j] and (*xlnz)[j+1] respectively.</td>
</tr>
<tr>
<td>maxlnz</td>
<td>int</td>
<td>The number of non-zero off-diagonal elements in the Cholesky factor.</td>
</tr>
<tr>
<td>perm</td>
<td>int **</td>
<td>A pointer to an array of length n containing the permutation vector.</td>
</tr>
<tr>
<td>invp</td>
<td>int **</td>
<td>A pointer to an array of length n containing the inverse permutation vector.</td>
</tr>
<tr>
<td>multifrontal_space</td>
<td>int</td>
<td>This variable is not used in the current implementation.</td>
</tr>
<tr>
<td>nsuper</td>
<td>int</td>
<td>The number of supernodes in the Cholesky factor.</td>
</tr>
<tr>
<td>snode</td>
<td>int **</td>
<td>A pointer to an array of length n. Element (*snode)[j] contains the number of the fundamental supernode to which column j belongs.</td>
</tr>
<tr>
<td>snode_ptr</td>
<td>int **</td>
<td>A pointer to an array of length nsuper+1 containing the start column of each supernode.</td>
</tr>
<tr>
<td>nleaves</td>
<td>int</td>
<td>The number of leaves in the postordered elimination tree of the symmetrically permuted input matrix A.</td>
</tr>
<tr>
<td>etree_leaves</td>
<td>int **</td>
<td>A pointer to an array of length nleaves+1 containing the leaves of the elimination tree.</td>
</tr>
</tbody>
</table>
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SUPPLY_SYMBOLIC_FACTOR, imsl_snodal_symbolic_factor *sym_factor (Input)
A pointer to a structure of type imsl_snodal_symbolic_factor. This structure contains the symbolic fac-
torization of the input matrix computed by imsl_c_sparse_cholesky_smp with the
IMSL_RETURN_SYMBOLIC_FACTOR option. The structure is described in the
IMSL_RETURN_SYMBOLIC_FACTOR optional argument description.
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SYMBOLIC_FACTOR_ONLY, (Input)
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, imsl_c_numeric_factor *num_factor (Output)
A pointer to a structure of type imsl_c_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the imsl_c_numeric_factor structure is given in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_c_lin_sol_posdef_coordinate (complex). To free the memory allocated within this
structure, use function imsl_c_free_numeric_factor.

IMSL_SUPPLY_NUMERIC_FACTOR, imsl_c_numeric_factor *num_factor (Input)
A pointer to a structure of type imsl_c_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by imsl_c_sparse_cholesky_smp with the
IMSL_RETURN_NUMERIC_FACTOR option. The structure is described in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_c_lin_sol_posdef_coordinate (complex).
To free the memory allocated within this structure, use function
imsl_c_free_numeric_factor.

IMSL_NUMERIC_FACTOR_ONLY, (Input)
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY, (Input)
Solve $Ax = b$ given the numeric or symbolic factorization of $A$. This option requires the use of either
IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *smallest_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_sparse_cholesky_smp.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_sparse_cholesky_smp.
**IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros** (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

**IMSL_RETURN_USER, f_complex x[]** (Output)
A user-allocated array of length n containing the solution x.

**Description**

The function `imsl_c_sparse_cholesky_smp` solves a system of linear algebraic equations having a sparse Hermitian positive definite coefficient matrix $A$. In this function's default usage, a symbolic factorization of a permutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then setting up a sparse supernodal data structure for the Cholesky factor, $L$. This step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations of the nonzero elements but not any of the elements themselves. Thus, the val field in the `Imsl_c_sparse_elem` structure is ignored. If an application generates different sparse Hermitian positive definite coefficient matrices that all have the same sparsity pattern, then by using `IMSL_RETURN_SYMBOLIC_FACTOR` and `IMSL_SUPPLY_SYMBOLIC_FACTOR`, the symbolic factorization needs only be computed once.

Given the sparse data structure for the Cholesky factor $L$, as supplied by the symbolic factor, the numeric factorization produces the entries in $L$ so that

$$PAP^T = LL^H$$

Here $P$ is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the right-hand sides change, the options `IMSL_RETURN_NUMERIC_FACTOR` and `IMSL_SUPPLY_NUMERIC_FACTOR` can be used to precompute the Cholesky factor. Then the `IMSL_SOLVE_ONLY` option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution $x$ is obtained by the following calculations:

$$Ly_1 = Pb$$
$$L^HY_2 = y_1$$
$$x = P^Ty_2$$

The permutation information, $P$, is carried in the numeric factor structure `Imsl_c_numeric_factor`.

---

`RogueWave`

**sparse_cholesky_smp (complex)** Chapter 1 Linear Systems 195
Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite matrix

\[ A = \begin{bmatrix} 2 & -1 + i & 0 \\ -1 - i & 4 & 1 + 2i \\ 0 & 1 - 2i & 10 \end{bmatrix} \]

We construct the solution \( x^T = (1 + i, 2 + 2i, 3 + 3i) \) to the system \( Ax = b \) by setting 
\[ b = Ax = ( -2 + 2i, 5 + 15i, 36 + 28i)^T \]. The number of nonzeros in the lower triangle is \( nz = 5 \). The solution is computed and printed.

```c
#include <imsl.h>

int main()
{
 int n = 3, nz = 5;
 f_complex b[] = {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};
 f_complex *x = NULL;
 imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0},
 1, 1, {4.0, 0.0},
 2, 2, {10.0, 0.0},
 1, 0, {-1.0, -1.0},
 2, 1, {1.0, -2.0}};

 x = imsl_c_sparse_cholesky_smp (n, nz, a, b, 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);

 imsl_free (x);
}
```

Output

Solution, x, of Ax = b
1 ( 1, 1)
2 ( 2, 2)
3 ( 3, 3)

Example 2

This example shows how a symbolic factor can be re-used. Consider matrix \( A \), a Hermitian positive definite matrix with value 6 on the diagonal and value \(-1 - i\) on its lower codiagonal and the lower band at distance 50 from the diagonal. At first, the system \( Ax = b \) is solved and the symbolic factorization of \( A \) is returned. Then, the system \( Cy = d \) with \( C = A+4*I \), \( I \) the identity matrix, is solved using the symbolic factorization just computed. This is possible because \( A \) and \( C \) have the same nonzero structure and therefore also the same symbolic factorization. The solution errors are printed.
#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{
    int n, ic, nz, i, index;
    float error_1, error_2;
    f_complex *b = NULL, *d = NULL, *x = NULL, *y = NULL;
    f_complex *mod_vector = NULL;
    Imsl_c_sparse_elem *a = NULL, *c = NULL;
    Imsl_snodal_symbolic_factor symbolic_factor;

    ic = 50;
    n = ic * ic;

    mod_vector = (f_complex*) malloc (n * sizeof(f_complex));

    /* Build coefficient matrix A */
    a = imsl_c_generate_test_coordinate (n, ic, &nz,
        IMSL_SYMMETRIC_STORAGE, 0);

    /* Build coefficient matrix C */
    c = (Imsl_c_sparse_elem *) malloc (nz * sizeof (Imsl_c_sparse_elem));
    for (i=0; i<nz; i++)
        c[i] = a[i];

    for (i=0; i<n; i++)
    {
        c[i].val.re = 10.0;
        c[i].val.im = 0.0;
    }

    /* Form right hand side b */
    for (i = 0; i < n; i++)
    {
        mod_vector[i].re = (float) (i % 5);
        mod_vector[i].im = 0.0;
    }

    b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, n, nz, a,
        IMSL_X_VECTOR, n, mod_vector,
        IMSL_SYMMETRIC_STORAGE, 0);

    /* Form right hand side d */
    d = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, n, nz, c,
        IMSL_X_VECTOR, n, mod_vector,
        IMSL_SYMMETRIC_STORAGE, 0);

    ...
sparse_cholesky_smp (complex)  Chapter 1 Linear Systems

IMSL_A_MATRIX, n, n, nz, c,
IMSL_X_VECTOR, n, mod_vector,
IMSL_SYMMETRIC_STORAGE,
0);

/* Solve Ax = b and return the symbolic factorization */
x = imsl_c_sparse_cholesky_smp (n, nz, a, b,
   IMSL_RETURN_SYMBOLIC_FACTOR, &symbolic_factor,
   0);

/* Compute error |x-mod_vector| */
error_1 = imsl_c_vector_norm (n, x,
   IMSL_SECOND_VECTOR, mod_vector,
   IMSL_INF_NORM, &index,
   0);

/* Solve Cy = d given the symbolic factorization */
y = imsl_c_sparse_cholesky_smp (n, nz, c, d,
   IMSL_SUPPLY_SYMBOLIC_FACTOR, &symbolic_factor,
   0);

/* Compute error |y-mod_vector| */
error_2 = imsl_c_vector_norm (n, y,
   IMSL_SECOND_VECTOR, mod_vector,
   IMSL_INF_NORM, &index,
   0);

printf ("Solution error |x - mod_vector| = %e\n", error_1);
printf ("Solution error |y - mod_vector| = %e\n", error_2);

/* Free allocated memory */
if (mod_vector) free(mod_vector);
if (a) imsl_free (a);
if (c) free (c);
if (b) imsl_free (b);
if (d) imsl_free (d);
if (y) imsl_free (y);
if (x) imsl_free (x);
imsl_free_snodal_symbolic_factor(&symbolic_factor);

Output

Solution error |x - mod_vector| = 2.885221e-006
Solution error |y - mod_vector| = 2.386146e-006
Example 3

In this example, set $A = E(2500, 50)$. First solve the system $Ax = b_1$ and return the numeric factorization resulting from that call. Then solve the system $Ax = b_2$ using the numeric factorization just computed. The ratio of execution times is printed. Be aware that timing results are highly machine dependent.

```c
#include <imsl.h>
#include <stdio.h>
#include <omp.h>

int main()
{
 int n, ic, nz, i, index;
 float *rand_vec = NULL;
 double time_1, time_2;
 f_complex b_1[2500], b_2[2500], *x_1 = NULL, *x_2 = NULL;
 Imsl_c_sparse_elem *a = NULL;
 Imsl_c_numeric_factor numeric_factor;

 ic = 50;
 n = ic * ic;
 index = 0;

 /* Generate two right hand sides */
 imsl_random_seed_set (1234567);
 rand_vec = imsl_f_random_uniform (4 * n, 0);

 for (i = 0; i < n; i++) {
 b_1[i].re = rand_vec[index++];
 b_1[i].im = rand_vec[index++];
 b_2[i].re = rand_vec[index++];
 b_2[i].im = rand_vec[index++];
 }

 /* Build coefficient matrix a */
 a = imsl_c_generate_test_coordinate (n, ic, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 /* Now solve Ax_1 = b_1 and return the numeric factorization */
 time_1 = omp_get_wtime();
 x_1 = imsl_c_sparse_cholesky_smp (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = omp_get_wtime() - time_1;

 /* Now solve Ax_2 = b_2 given the numeric factorization */
 time_2 = omp_get_wtime();
```
x_2 = imsl_c_sparse_cholesky_smp (n, nz, a, b_2, 
    IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor, 
    IMSL_SOLVE_ONLY, 
    0);

time_2 = omp_get_wtime() - time_2;

printf("time_2/time_1 = %lf\n", time_2/time_1);

/* Free memory */
if (rand_vec) imsl_free(rand_vec);
if (x_1) imsl_free(x_1);
if (x_2) imsl_free(x_2);
if (a) imsl_free(a);
    imsl_c_free_numeric_factor(&numeric_factor); 
}

**Output**

time_2/time_1 = 0.025771

**Fatal Errors**

IMSL_BAD_SQUARE_ROOT  
A zero or negative square root has occurred during the factorization. The coefficient matrix is not positive definite.
lin_sol_gen_min_residual

Solves a linear system $Ax = b$ using the restarted generalized minimum residual (GMRES) method.

Synopsis

```c
#include <imsl.h>

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (float *p, float *z), float *b, ...);
```

The type `double` function is `imsl_d_lin_sol_gen_min_residual`.

Required Arguments

- `int n` (Input)
  Number of rows in the matrix.
- `void amultp (float *p, float *z)` (Input)
  User-supplied function which computes $z = Ap$.
- `float *b` (Input)
  Vector of length $n$ containing the right-hand side.

Return Value

A pointer to the solution $x$ of the linear system $Ax = b$. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp(), float *b,
 IMSL_RETURN_USER, float x[],
 IMSL_MAX_ITER, int *maxit,
 IMSL_REL_ERR, float tolerance,
 IMSL_PRECOND, void precond(),
 IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kmax,
 IMSL_HOUSEHOLDER_REORTHOG,
```

RogueWave
Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_MAX_ITER, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of GMRES iterations allowed. On exit, the number of iterations used is returned.
Default: maxit = 1000

IMSL_REL_ERR, float tolerance (Input)
The algorithm attempts to generate x such that \( \| b - Ax \|_2 \leq \tau \| b \|_2 \), where \( \tau = \text{tolerance} \).
Default: tolerance = \( \sqrt{\text{imsl}_f\_\text{machine}(4)} \)

IMSL_PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets \( z = M^{-1}r \), where \( M \) is the preconditioning matrix.

IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kmax, (Input)
The maximum Krylov subspace dimension, i.e., the maximum allowable number of GMRES iterations allowed before restarting.
Default: kmax = \( \text{imsl}_i\_\text{min}(n, 20) \)

IMSL_HOUSEHOLDER_REORTHOG,
Perform orthogonalization by Householder transformations, replacing the Gram-Schmidt process.

IMSL_FCN_W_DATA, void amultp (float *p, float *z, void *data), void *data, (Input)
User supplied function which computes \( z = Ap \), which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_PRECOND_W_DATA, void precond (float *r, float *z, void *data), void *data (Input)
User supplied function which sets \( z = M^{-1}r \), where \( M \) is the preconditioning matrix, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions section in the introduction to this manual for more details.
Description

The function `imsl_f_lin_sol_gen_min_residual`, based on the FORTRAN subroutine GMRES by H.F. Walker, solves the linear system \( Ax = b \) using the GMRES method. This method is described in detail by Saad and Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution \( x_0 \) and an initial residual \( r_0 = b - Ax_0 \). At iteration \( m \), a correction \( z_m \) is determined in the Krylov subspace

\[
\kappa_m(v) = \text{span}(v, Av, \ldots, A^{m-1}v)
\]

\( v = r_0 \) which solves the least-squares problem

\[
\left( z \in \min_{\kappa_m(r_0)} \right) \quad \| b - A(x_0 + z) \|_2
\]

Then at iteration \( m, x_m = x_0 + z_m \).

Orthogonalization by Householder transformations requires less storage but more arithmetic than Gram-Schmidt. However, Walker (1988) reports numerical experiments which suggest the Householder approach is more stable, especially as the limits of residual reduction are reached.

Examples

Example 1

As an example, consider the following matrix:

\[
A = \begin{bmatrix}
10 & 0 & 0 & 0 & 0 & 0 \\
0 & 10 & -3 & -1 & 0 & 0 \\
0 & 0 & 15 & 0 & 0 & 0 \\
-2 & 0 & 0 & 10 & -1 & 0 \\
-1 & 0 & 0 & -5 & 1 & -3 \\
-1 & -2 & 0 & 0 & 0 & 6
\end{bmatrix}
\]

Let \( x^T = (1, 2, 3, 4, 5, 6) \) so that \( Ax = (10, 7, 45, 33, -34, 31)^T \). The function `imsl_f_mat_mul_rect_coordinate` is used to form the product \( Ax \).

```c
#include <imsl.h>

void amultp (float*, float*);

int main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 float *x;
    ```
x = imsl_f_lin_sol_gen_min_residual (n, amultp, b, 0);

imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
}

void amultp (float *p, float *z)
{
    Imsl_f_sparse_elem a[] = {0, 0, 10.0, 
                              1, 1, 10.0, 
                              1, 2, -3.0, 
                              1, 3, -1.0, 
                              2, 2, 15.0, 
                              3, 0, -2.0, 
                              3, 3, 10.0, 
                              3, 4, -1.0, 
                              4, 0, -1.0, 
                              4, 3, -5.0, 
                              4, 4, 1.0, 
                              4, 5, -3.0, 
                              5, 0, -1.0, 
                              5, 1, -2.0, 
                              5, 5, 6.0};

    int n = 6;
    int nz = 15;

    imsl_f_mat_mul_rect_coordinate ("A*x", 
                                  IMSL_A_MATRIX, n, n, nz, a, 
                                  IMSL_X_VECTOR, n, p, 
                                  IMSL_RETURN_USER_VECTOR, z, 0);
}

Output

Solution, x, to Ax = b
1 2 3 4 5 6
1 2 3 4 5 6

Example 2
In this example, the same system given in the first example is solved. This time a pre conditioner is provided. The preconditioned matrix is chosen as the diagonal of A.

#include <imsl.h>
#include <stdio.h>

void amultp (float*, float*);
void precond (float*, float*);
```c
int main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 float *x;
 int maxit = 1000;

 x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_PRECOND, precond,
 0);

 imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
 printf ("\nNumber of iterations taken = %d\n", maxit);
}

/* Set z = Ap */
void amultp (float *p, float *z)
{
 static Imsl_f_sparse_elem a[] =
 {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int n = 6;
 int nz = 15;

 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}

/* Solve Mz = r */
void precond (float *r, float *z)
{
 static float diagonal_inverse[] =
 {0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0};
 int n = 6;
```
int i;

for (i=0; i<n; i++)
    z[i] = diagonal_inverse[i]*r[i];
}

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Number of iterations taken =

Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
lin_sol_def_cg

Solves a real symmetric definite linear system using a conjugate gradient method. Using optional arguments, a preconditioner can be supplied.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_def_cg (int n, void amultp(), float *b, ... , 0)

The type double function is imsl_d_lin_sol_def_cg.

Required Arguments

int n (Input)
Number of rows in the matrix.

void amultp (float *p, float *z)
User-supplied function which computes $z = Ap$.

float *b (Input)
Vector of length $n$ containing the right-hand side.

Return Value

A pointer to the solution $x$ of the linear system $Ax = b$. To release this space, use imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_def_cg (int n, void amultp(), float *b,

IMSL_RETURN_USER, float x[]),
IMSL_MAX_ITER, int *maxit,
IMSL_REL_ERR, float relative_error,
IMSL_PRECOND, void precond(),
IMSL_JACOBI, float *diagonal,
IMSL_FCN_W_DATA, void amultp(), void data,
Optional Arguments

**IMSL_RETURN_USER**, float x[] (Output)
A user-allocated array of length \( n \) containing the solution \( x \).

**IMSL_MAX_ITER**, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of iterations allowed. On exit, the number of iterations used is returned.

**IMSL_REL_ERR**, float relative_error (Input)
The relative error desired.
Default: relative_error = sqrt(imsl_f_machine(4))

**IMSL_PRECOND**, void precond (float *r, float *z) (Input)
User supplied function which sets \( z = M^{-1}r \), where \( M \) is the preconditioning matrix.

**IMSL_JACOBI**, float diagonal[] (Input)
Use the Jacobi preconditioner, i.e. \( M = \text{diag}(A) \). The user-supplied vector diagonal should be set so that \( \text{diagonal}[i] = A_{ii} \).

**IMSL_FCN_W_DATA**, void amulp (float *p, float *z, void *data), void *data, (Input)
User supplied function which computes \( z = Ap \), which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

**IMSL_PRECOND_W_DATA**, void precond (float *r, float *z, void *data), void *data, (Input)
User supplied function which sets \( z = M^{-1}r \), where \( M \) is the preconditioning matrix, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function \texttt{ims1_f_lin_sol_def_cg} solves the symmetric definite linear system \( Ax = b \) using the conjugate gradient method with optional preconditioning. This method is described in detail by Golub and Van Loan (1983, Chapter 10), and in Hageman and Young (1981, Chapter 7).

The preconditioning matrix \( M \) is a matrix that approximates \( A \), and for which the linear system \( Mz = r \) is easy to solve. These two properties are in conflict; balancing them is a topic of much current research. In the default use of \texttt{ims1_f_lin_sol_def_cg}, \( M = I \). If the option IMSL_JACOBI is selected, \( M \) is set to the diagonal of \( A \).

The number of iterations needed depends on the matrix and the error tolerance. As a rough guide,
maxit = $\sqrt{n}$ for $n \gg 1$

See the references mentioned above for details.

Let $M$ be the preconditioning matrix, let $b, p, r, x$, and $z$ be vectors and let $\tau$ be the desired relative error. Then the algorithm used is as follows:

$$\lambda = -1$$
$$p_0 = x_0$$
$$r_1 = b - Ap$$

for $k = 1, \ldots, \text{maxit}$

$$z_k = M^{-1}r_k$$

if $k = 1$, then

$$\beta_k = 1$$
$$p_k = z_k$$

else

$$\beta_k = \left( z_k^T r_k \right) / \left( z_{k-1}^T r_{k-1} \right)$$
$$p_k = z_k + \beta_k p_k$$

endif

$$z_k = Ap$$
$$a_k = \left( z_{k-1}^T z_{k-1} \right) / \left( z_{k-1}^T p_k \right)$$
$$x_k = x_k + a_k p_k$$
$$r_k = r_k - a_k z_k$$

if $\left( \|z_k\|_2 \leq \tau \left( 1 - \lambda \right) \|x_k\|_2 \right)$ then

recompute $\lambda$

if $\left( \|z_k\|_2 \leq \tau \left( 1 - \lambda \right) \|x_k\|_2 \right)$ exit

endif

endfor

Here $\lambda$ is an estimate of $\lambda_{\text{max}}(G)$, the largest eigenvalue of the iteration matrix $G = I - M^{-1} A$. The stopping criterion is based on the result (Hageman and Young 1981, pp. 148-151)

$$\frac{\|x_k - x\|_M^2}{\|x\|_M^2} \leq \left( \frac{1}{1 - \lambda_{\text{max}}(G)} \right) \left( \frac{\|z_k\|_M}{\|x_k\|_M} \right)$$

where

$$\|x\|_M^2 = x^T M x$$

It is also known that
\[ \lambda_{\text{max}}(T_1) \leq \lambda_{\text{max}}(T_2) \leq \ldots \leq \lambda_{\text{max}}(G) < 1 \]

where the \( T_n \) are the symmetric, tridiagonal matrices

\[
T_n = \begin{bmatrix}
\mu_1 & \omega_2 & & \\
\omega_2 & \mu_2 & \omega_3 & \\
& \omega_3 & \mu_3 & \\
& & & \ddots
\end{bmatrix}
\]

with \( \mu_k = 1 - B_k/\alpha_k - 1/\alpha_k \), \( \mu_1 = 1 - 1/\alpha_1 \) and

\[
\omega_k = \sqrt{B_k / a_{k-1}}
\]

Usually the eigenvalue computation is needed for only a few of the iterations.

**Examples**

**Example 1**

In this example, the solution to a linear system is found. The coefficient matrix is stored as a full matrix.

```c
#include <imsl.h>

static void amultp (float*, float*);

int main()
{
 int n = 3;
 float b[] = {27.0, -78.0, 64.0};
 float *x;

 x = imsl_f_lin_sol_def_cg (n, amultp, b, 0);
 imsl_f_write_matrix ("x", 1, n, x, 0);
}

static void amultp (float *p, float *z)
{
 static float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 int n = 3;

 imsl_f_mat_mul_rect ("A*x",
 IMSL_A_MATRIX, n, n, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER, z,
 0);
```
Example 2

In this example, two different preconditioners are used to find the solution of a linear system which occurs in a finite difference solution of Laplace's equation on a regular \( c \times c \) grid, \( c = 100 \). The matrix is \( A = E (c^2, c) \). For the first solution, select Jacobi preconditioning and supply the diagonal, so \( M = \text{diag}(A) \). The number of iterations performed and the maximum absolute error are printed. Next, use a more complicated preconditioning matrix, \( M \), consisting of the symmetric tridiagonal part of \( A \).

Notice that the symmetric positive definite band solver is used to factor \( M \) once, and subsequently just perform forward and back solves. Again, the number of iterations performed and the maximum absolute error are printed. Note the substantial reduction in iterations.

```c
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
static void amultp (float*, float*);
static void precond (float*, float*);
static Imsl_f_sparse_elem *a;
static int n = 2500;
static int c = 50;
static int nz;

int main()
{
 int maxit = 1000;
 int i;
 int index;
 float *b;
 float *x;
 float *mod_five;
 float *diagonal;
 float norm;

 n = c*c;
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 diagonal = (float*) malloc (n*sizeof(*diagonal));
 b = (float*) malloc (n*sizeof(*b));

 /* Generate coefficient matrix */
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
```
/* Set a predetermined answer and diagonal */
for (i=0; i<n; i++) {
    mod_five[i] = (float) (i % 5);
    diagonal[i] = 4.0;
}

/* Get right hand side */
amultp (mod_five, b);

/* Solve with jacobi preconditioning */
x = imsl_f_lin_sol_def_cg (n, amultp, b,
                          IMSL_MAX_ITER, &maxit,
                          IMSL_JACOBI, diagonal,
                          0);

/* Find max absolute error, print results */
norm = imsl_f_vector_norm (n, x,
                          IMSL_SECOND_VECTOR, mod_five,
                          IMSL_INF_NORM, &index,
                          0);
printf ("iterations = %d, norm = %e\n", maxit, norm);
imsl_free (x);

/* Solve same system, with different preconditioner */
x = imsl_f_lin_sol_def_cg (n, amultp, b,
                          IMSL_MAX_ITER, &maxit,
                          IMSL_PRECOND, precond,
                          0);

    norm = imsl_f_vector_norm (n, x,
                          IMSL_SECOND_VECTOR, mod_five,
                          IMSL_INF_NORM, &index,
                          0);
    printf ("iterations = %d, norm = %e\n", maxit, norm);
}

/* Set z = Ap */
static void amultp (float *p, float *z)
{
    imsl_f_mat_mul_rect_coordinate ("A*x",
                          IMSL_A_MATRIX, n, n, nz, a,
                          IMSL_X_VECTOR, n, p,
                          IMSL_RETURN_USER_VECTOR, z,
                          0);
}

/* Solve Mz = r */
static void precond (float *r, float *z)
{
    static float *m;
static float *factor;
static int first = 1;
float *null = (float*) 0;

if (first) {
    /* Factor the first time through */
    m = imsl_f_generate_test_band (n, 1,
       IMSL_SYMMETRIC_STORAGE,
       0);

    imsl_f_lin_sol_posdef_band (n, m, 1, null,
       IMSL_FACTOR, &factor,
       IMSL_FACTOR_ONLY,
       0);
    first = 1;
}

/* Perform the forward and back solves */
imsl_f_lin_sol_posdef_band (n, m, 1, r,
   IMSL_FACTOR_USER, factor,
   IMSL_SOLVE_ONLY,
   IMSL_RETURN_USER, z,
   0);

**Output**

iterations = 115, norm = 1.382828e-05
iterations = 75, norm = 7.319450e-05

**Fatal Errors**

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = ":#".
Solves a linear least-squares problem $Ax = b$. Using optional arguments, the QR factorization of $A$, $AP = QR$, and the solve step based on this factorization can be computed.

**Synopsis**

```c
#include <imsl.h>

float *imsl_f_lin_least_squares_gen(int m, int n, float a[], float b[], ...,
0)
```

The type `double` procedure is `imsl_d_lin_least_squares_gen`.

**Required Arguments**

- `int m` *(Input)*
  Number of rows in the matrix.
- `int n` *(Input)*
  Number of columns in the matrix.
- `float a[]` *(Input)*
  Array of size $m \times n$ containing the matrix.
- `float b[]` *(Input)*
  Array of size $m$ containing the right-hand side.

**Return Value**

If no optional arguments are used, function `imsl_f_lin_least_squares_gen` returns a pointer to the solution $x$ of the linear least-squares problem $Ax = b$. To release this space, use `imsl_free`. If no value can be computed, then `NULL` is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

float *imsl_f_lin_least_squares_gen(int m, int n, float a[], float b[],
IMSL_A_COL_DIM, int a_col_dim,
```
IMSL_RETURN_USER, float x[],
IMSL_BASIS, float tol, int *kbasis,
IMSL_RESIDUAL, float **p_res,
IMSL_RESIDUAL_USER, float res[],
IMSL_FACTOR, float **p_qraux, float **p_qr,
IMSL_FACTOR_USER, float qraux[], float qr[],
IMSL_FAC_COL_DIM, int qr_col_dim,
IMSL_Q, float **p_q,
IMSL_Q_USER, float q[],
IMSL_Q_COL_DIM, int q_col_dim,
IMSL_PIVOT, int pvt[],
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array \( A \).
Default: \( a_{\text{col\_dim}} = n \)

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of size \( n \) containing the least-squares solution \( x \). If IMSL_RETURN_USER is used, the return value of the function is a pointer to the array \( x \).

IMSL_BASIS, float tol, int *kbasis (Input, Input/Output)

float tol (Input)
Nonnegative tolerance used to determine the subset of columns of \( A \) to be included in the solution.
Default: \( \text{tol} = \sqrt{\text{imsl_amach}(4)} \)

int *kbasis (Input/Output)
Integer containing the number of columns used in the solution. \( \text{kbasis} = k \) if \( |r_{k+1,k+1}| < |\text{tol}| |r_{1,1}| \). For more information on the use of this option, see Description section.
Default: \( \text{kbasis} = \min(m, n) \)
IMSL_RESIDUAL, float **p_res (Output)
The address of a pointer to an array of size \( m \) containing the residual vector \( b - Ax \). On return, the necessary space is allocated by the function. Typically, \( float *p_res \) is declared, and \&p_res is used as an argument.

IMSL_RESIDUAL_USER, float res[] (Output)
A user-allocated array of size \( m \) containing the residual vector \( b - Ax \).

IMSL_FACTOR, float **p_qraux, float **p_qr (Output)

float **p_qraux (Input/Output)
The address of a pointer \( qraux \) to an array of size \( n \) containing the scalars \( \tau_k \) of the Householder transformations in the first \( \min(m, n) \) positions. On return, the necessary space is allocated by the function. Typically, \( float *qraux \) is declared, and \&qraux is used as an argument.

float **p_qr (Input/Output)
The address of a pointer to an array of size \( m \times n \) containing the Householder transformations that define the decomposition. The strictly lower-triangular part of this array contains the information to construct \( Q \), and the upper-triangular part contains \( R \). On return, the necessary space is allocated by the function. Typically, \( float *qr \) is declared, and \&qr is used as an argument.

IMSL_FACTOR_USER, float qraux[], float qr[] (Input /Output)

float qraux[] (Input/Output)
A user-allocated array of size \( n \) containing the scalars \( \tau_k \) of the Householder transformations in the first \( \min(m, n) \) positions.

float qr[] (Input/Output)
A user-allocated array of size \( m \times n \) containing the Householder transformations that define the decomposition. The strictly lower-triangular part of this array contains the information to construct \( Q \). The upper-triangular part contains \( R \). If the data in \( a \) is not needed, \( qr \) can share the same storage locations as \( a \) by using \( a \) instead of the separate argument \( qr \).

These parameters are “Input” if \( IMSL\_SOLVE \) is specified; “Output” otherwise.

IMSL_FAC_COL_DIM, int qr_col_dim (Input)
The column dimension of the array containing \( QR \) factorization.
Default: \( qr_col_dim = n \)

IMSL_Q, float **p_q (Output)
The address of a pointer to an array of size \( m \times m \) containing the orthogonal matrix of the factorization. On return, the necessary space is allocated by the function. Typically, \( float *q \) is declared, and \&q is used as an argument.

IMSL_Q_USER, float q[] (Output)
A user-allocated array of size \( m \times m \) containing the orthogonal matrix \( Q \) of the \( QR \) factorization.
IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of the array containing the Q matrix of the factorization.
Default: q_col_dim = m

IMSL_PIVOT, int pvt[] (Input/Output)
Array of size n containing the desired variable order and usage information. The argument is used with IMSL_FACTOR_ONLY or IMSL_SOLVE_ONLY.

On input, if pvt[k − 1] > 0, then column k of A is an initial column. If pvt[k − 1] = 0, then the column of A is a free column and can be interchanged in the column pivoting. If pvt[k − 1] < 0, then column k of A is a final column. If all columns are specified as initial (or final) columns, then no pivoting is performed. (The permutation matrix P is the identity matrix in this case.)

On output, pvt[k − 1] contains the index of the column of the original matrix that has been interchanged into column k.
Default: pvt[k − 1] = 0, k = 1, ..., n

IMSL_FACTOR_ONLY
Compute just the QR factorization of the matrix AP with the permutation matrix P defined by pvt and by further pivoting involving free columns. If IMSL_FACTOR_ONLY is used, the additional arguments IMSL_PIVOT and IMSL_FACTOR are required. In that case, the required argument b is ignored, and the returned value of the function is NULL.

IMSL_SOLVE_ONLY
Compute the solution to the least-squares problem Ax = b given the QR factorization previously computed by this function. If IMSL_SOLVE_ONLY is used, arguments IMSL_FACTOR_USER, IMSL_PIVOT, and IMSL_BASIS are required, and the required argument a is ignored.

Description
The function imsl_f_lin_least_squares_gen solves a system of linear least-squares problems Ax = b with column pivoting. It computes a QR factorization of the matrix AP, where P is the permutation matrix defined by the pivoting, and computes the smallest integer k satisfying |r_{k+1,k+1}| < |tol| * |r_{1,1}| to the output variable kbasis. Householder transformations

\[ Q_k = I - \tau_k u_k u_k^T Q \]

k = 1, ..., min(m - 1, n) are used to compute the factorization. The decomposition is computed in the form Q_{min(m-1, n)}...Q_1 AP = R, so AP = QR where Q = Q_1...Q_{min(m-1, n)} Since each Householder vector u_k has zeros in the first k − 1 entries, it is stored as part of column k of qr. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of the first min(m, n) rows of qr. The solution x to the least-squares problem is computed by solving the upper-triangular system of linear equations R(1:k, 1:k) y(1:k) = (Q^T b)(1:k) with k = kbasis. The solution is completed by setting y(k + 1 : n) to zero and rearranging the variables, x = Py.
When **IMSL_FACTOR_ONLY** is specified, the function computes the QR factorization of \( AP \) with \( P \) defined by the input \( \text{pvt} \) and by column pivoting among “free” columns. Before the factorization, initial columns are moved to the beginning of the array \( a \) and the final columns to the end. Both initial and final columns are not permuted further during the computation. Just the free columns are moved.

If **IMSL_SOLVE_ONLY** is specified, then the function computes the least-squares solution to \( Ax = b \) given the QR factorization previously defined. There are \( k_{\text{basis}} \) columns used in the solution. Hence, in the case that all columns are free, \( x \) is computed as described in the default case.

**Examples**

**Example 1**

This example illustrates the least-squares solution of four linear equations in three unknowns using column pivoting. The problem is equivalent to least-squares quadratic polynomial fitting to four data values. Write the polynomial as \( p(t) = x_1 + tx_2 + t^2x_3 \) and the data pairs \((t_i, b_i), t_i = 2i, i = 1, 2, 3, 4\). A pointer to the solution to \( Ax = b \) is returned by the function **imsl_f_lin_least_squares_gen**.

```c
#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

float b[] = {4.999, 9.001, 12.999, 17.001};

int main()
{
 int m = 4, n = 3;
 float *x;
 /* Solve Ax = b for x */
 x = imsl_f_lin_least_squares_gen (m, n, a, b, 0);
 /* Print x */
 imsl_f_write_matrix ("Solution vector", 1, n, x, 0);
}
```

**Output**

Solution vector

```
 1 2 3
0.999 2.000 0.000
```
**Example 2**

This example uses the same coefficient matrix \( A \) as in the initial example. It computes the QR factorization of \( A \) with column pivoting. The final and free columns are specified by \( pvt \) and the column pivoting is done only among the free columns.

```c
#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

int pvt[] = {0, 0, -1};

int main()
{
 int m = 4, n = 3;
 float *x, *b;
 float *p_qraux, *p_qr;
 float *p_q;
 /* Compute the QR factorization */
 /* of A with partial column */
 /* pivoting */
 x = imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_Q, &p_q,
 IMSL_FACTOR_ONLY,
 0);

 /* Print Q */
 imsl_f_write_matrix ("The matrix Q", m, m, p_q, 0);

 /* Print R */
 imsl_f_write_matrix ("The matrix R", m, n, p_qr,
 IMSL_PRINT_UPPER,
 0);

 /* Print pivots */
 imsl_i_write_matrix ("The Pivot Sequence", 1, n, pvt, 0);
}
```

**Output**

```
The matrix Q

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1826</td>
<td>-0.8165</td>
<td>0.5000</td>
</tr>
<tr>
<td>2</td>
<td>-0.3651</td>
<td>-0.4082</td>
<td>-0.5000</td>
</tr>
<tr>
<td>3</td>
<td>-0.5477</td>
<td>0.0000</td>
<td>-0.5000</td>
</tr>
</tbody>
</table>
```
The matrix \( R \)

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & -10.95 & -1.83 & -73.03 \\
2 & -0.82 & 16.33 & \\
3 & & & 8.00 \\
\end{array}
\]

The Pivot Sequence

1 2 3
2 1 3

**Example 3**

This example computes the QR factorization with column pivoting for the matrix \( A \) of the initial example. It computes the least-squares solutions to \( Ax = b_i \) for \( i = 1, 2, 3 \).

```c
#include <imsl.h>
#include <stdio.h>

float a[] = {1.0, 2.0, 4.0, 1.0, 4.0, 16.0, 1.0, 6.0, 36.0, 1.0, 8.0, 64.0};
float b[] = {4.999, 9.001, 12.999, 17.001, 2.0, 3.142, 5.11, 0.0, 1.34, 8.112, 3.76, 10.99};
int pvt[] = {0, 0, 0};

int main()
{
 int m = 4, n = 3;
 int i, k = 3;
 float *p_qraux, *p_qr;
 float tol = 1.e-4;
 int *kbasis;
 float *x, *p_res;

 /* Factor A with the given pvt */
 /* setting all variables to */
 /* be imsl_free */
 imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_BASIS, tol, &kbasis,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_FACTOR_ONLY, 0);
```
/* Print some factorization */
/* information*/
printf("Number of Columns in the base\n%2d", kbasis);

imsl_f_write_matrix ("Upper triangular R Matrix", m, n, p_qr,
    IMSL_PRINT_UPPER,
    0);
imsl_i_write_matrix ("The output column order ", 1, n, pvt,
    0);

/* Solve Ax = b for each x */
/* given the factorization */
for ( i = 0; i < k; i++) {
    x = imsl_f_lin_least_squares_gen (m, n, a, &b[i*m],
        IMSL_BASIS, tol, &kbasis,
        IMSL_PIVOT, pvt,
        IMSL_FACTOR_USER, p_qraux, p_qr,
        IMSL_RESIDUAL, &p_res,
        IMSL_SOLVE_ONLY,
        0);

    /* Print right-hand side, b */
    /* and solution, x */
    imsl_f_write_matrix ("Right-hand side, b ", 1, m, &b[i*m],
        0);
    imsl_f_write_matrix ("Solution, x ", 1, n, x, 0);

    /* Print residuals, b - Ax */
    imsl_f_write_matrix ("Residual, b - Ax ", 1, m, p_res,
        0);
}

Output

Number of Columns in the base
3

  Upper triangular R Matrix

     1     2     3
1  -75.26  -10.63  -1.59
2            -2.65  -1.15
3                     0.36

The output column order
1  2  3
3  2  1

    Right-hand side, b
     1     2     3     4
   5     9    13    17
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution, x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.999</td>
<td>2.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual, b - Ax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.0004</td>
<td>0.0012</td>
<td>-0.0012</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-hand side, b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.000</td>
<td>3.142</td>
<td>5.110</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution, x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.244</td>
<td>3.706</td>
<td>-0.391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual, b - Ax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.395</td>
<td>-1.186</td>
<td>1.186</td>
<td>-0.395</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-hand side, b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.34</td>
<td>8.11</td>
<td>3.76</td>
<td>10.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution, x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.4735</td>
<td>0.9437</td>
<td>0.0286</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual, b - Ax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.135</td>
<td>3.406</td>
<td>-3.406</td>
<td>1.135</td>
</tr>
</tbody>
</table>

**Fatal Errors**

**IMSL_SINGULAR_TRI_MATRIX** The input triangular matrix is singular. The index of the first zero diagonal term is #.
nonneg_least_squares

Compute the non-negative least squares (NNLS) solution of an $m \times n$ real linear least squares system, $Ax \approx b$, $x \geq 0$.

Synopsis

```c
#include <imsl.h>

float *imsl_f_nonneg_least_squares (int m, int n, float a[], float b[], ..., 0)
```

The type `double` function is `imsl_d_nonneg_least_squares`.

Required Arguments

- `int m` (Input)
  - The number of rows in the matrix.
- `int n` (Input)
  - The number of columns in the matrix.
- `float a[]` (Input)
  - An array of length $m \times n$ containing the matrix.
- `float b[]` (Input)
  - An array of length $m$ containing the right-hand side vector.

Return Value

An array of length $n$ containing the approximate solution vector, $x \geq 0$.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_nonneg_least_squares (int m, int n, float a[], float b[],
 IMSL_ITMAX, int itmax,
 IMSL_DROP_MAX_POS_DUAL, int maxdual,
 IMSL_DROP_TOLERANCE, float tol,
 IMSL_SUPPLY_WORK_ARRAYS, int lwork, float work[], int liwork, int iwork[],
 IMSL_OPTIMIZED, int *iflag,
```
Optional Arguments

**IMSL_ITMAX, int itmax (Input)**
The number of times a constraint is added or dropped should not exceed this maximum value. An approximate solution \( x \geq 0 \) is returned when the maximum number is reached.
Default: \( itmax = 3 \times n \).

**IMSL_DROP_MAX_POS_DUAL, int maxdual (Input)**
Indicates how a variable is moved from its constraint to a positive value, or dropped, when its current dual value is positive. By dropping the variable corresponding to the first computed positive dual value, instead of the maximum, better runtime efficiency usually results by avoiding work in the early stages of the algorithm.
If \( maxdual = 0 \), the first encountered positive dual is used. Otherwise, the maximum positive dual, is used. The results for \( x \geq 0 \) will usually vary slightly depending on the choice.
Default: \( maxdual = 0 \)

**IMSL_DROP_TOLERANCE, float tol (Input)**
This is a rank-determination tolerance. A candidate column

\[
a = \begin{bmatrix} c \\ d \end{bmatrix}
\]

has values eliminated below the first entry of \( d \). The resulting value must satisfy the relative condition

\[
\|d\|_2 > tol \times \|c\|_2
\]

Otherwise the constraint remains satisfied because the column \( a \) is linearly dependent on previously dropped columns.
Default: \( tol = \sqrt{\text{imsl_f_machine}(3)} \);

**IMSL_SUPPLY_WORK ARRAYS, int lwork, float work[], int liwork, int iwork[] (Input/Output)**
The use of this optional argument will increase efficiency and avoid memory fragmentation run-time failures for large problems by allowing the user to provide the sizes and locations of the working arrays \( work \) and \( iwork \). With \( maxt \) as the maximum number of threads that will be active, it is required that:

\[
lwork \geq maxt \times (m \times (n+2) + n), \text{ and } liwork \geq maxt \times n.
\]

Without the use of OpenMP and parallel threading, \( maxt = 1 \).
IMSL_OPTIMIZED, int *flag (Output)
A 0-1 flag noting whether or not the optimum residual norm was obtained. A value of 1 indicates the
optimum residual norm was obtained. A value of 0 occurs if the maximum number of iterations was
reached.

<table>
<thead>
<tr>
<th>flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>the maximum number of iterations was reached.</td>
</tr>
<tr>
<td>1</td>
<td>the optimum residual norm was obtained.</td>
</tr>
</tbody>
</table>

IMSL_DUAL_SOLUTION, float **dual (Output)
An array of length n containing the dual vector, \( w = A^T (Ax - b) \). This may not be optimal (all com-
ponents may not satisfy \( w \leq 0 \)), if the maximum number of iterations occurs first.

IMSL_DUAL_SOLUTION_USER, float dual[] (Output)
Storage for dual provided by the user. See IMSL_DUAL_SOLUTION.

IMSL_RESIDUAL_NORM, float *rnorm (Output)
The value of the residual vector norm, \( ||Ax - b||_2 \).

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the approximate solution vector, \( x \geq 0 \).

Description
Function imsl_f_nonneg_least_squares computes the constrained least squares solution of \( Ax \cong b \),
by minimizing \( ||Ax - b||_2 \) subject to \( x \geq 0 \). It uses the algorithm NNLS found in Charles L. Lawson and Richard J.
threads and the constraint dropping strategy are new features. The original NNLS algorithm was silent about mul-
tiple threads; all dual components were computed when only one was used. Using the first encountered eligible
variable to make non-active usually improves performance. An optimum solution is obtained in either approach.
There is no restriction on the relative sizes of m and n.

Examples

Example 1
A model function of exponentials is

\[
f(t) = c_1 + c_2 \exp(-\lambda_2 t) + c_3 \exp(-\lambda_3 t), \ t \geq 0
\]

The exponential function argument parameters

\( \lambda_2 = 1, \lambda_3 = 5 \)

are fixed. The coefficients
are estimated by sampling data values,

\[ f(t_i), \ i = 1, \ldots, 21 \]

using non-negative least squares. The values used for the data are

\[ t_i = 0.25i, \ i = 0, \ldots, 20 \]

with

\[ c_1 = 1, \ c_2 = 0.2, \ c_3 = 0.3 \]

```c
#include <imsl.h>
#include <math.h>

#define M 21
#define N 3

int main() {
 int i;
 float a[M][N], b[M], *c;

 for (i = 0; i < M; i++) {
 /* Generate exponential values. This model is
 \(y(t) = c_0 + c_1 \exp(-t) + c_2 \exp(-5t) \) */
 a[i][0] = 1.0;
 a[i][1] = exp(-(i*0.25));
 a[i][2] = exp(-(i*0.25)*5.0);

 /* Compute sample values */
 b[i] = a[i][0] + 0.2*a[i][1] + 0.3*a[i][2];
 }

 /* Solve for coefficients, constraining values
to be non-negative. */
 c = imsl_f_nonneg_least_squares(M, N, &a[0][0], b, 0);

 /* With noise level = 0, solution should be \(1, 0.2, 0.3\) */
 imsl_f_write_matrix("Coefficients", 1, N, c, 0);
}
```

**Output**

<table>
<thead>
<tr>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
</tr>
<tr>
<td>1.0 0.2 0.3</td>
</tr>
</tbody>
</table>
Example 2

The model function of exponentials is

\[ f(t) = c_1 + c_2 \exp(-\lambda_2 t) + c_3 \exp(-\lambda_3 t) + n(t), \quad t \geq 0 \]

The values \( \lambda_2, \lambda_3 \) are the same as in Example 1. The function \( n(t) \) represents normally distributed random noise with a standard deviation \( \sigma = 10^{-3} \). A simulation is done with \( ns = 10001 \) samples for \( n(t) \). The resulting problem is solved using OpenMP. To check that the OpenMP results are correct, a loop computes the solutions without OpenMP followed by the same loop using OpenMP. The residual norms agree, showing that the routine returns the same values using OpenMP as without using OpenMP.

```c
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>

#define M 21
#define N 3
#define NS 10001

int main() {
#define BS(i_,j_) bs[(i_)*M + (j_)]
#define X(i_,j_) x[(i_)*N + (j_)]
 int thread_safe=1, seed=123457, i, *iwork, j, lwork, liwork, maxt;
 float b[M], *work, sigma=1.0e-3, a[M][N], rseq[NS], rpar[NS],
 *bs, *x;

 /* Allocate work memory for all threads that are used in the loops below. */
 maxt = omp_get_max_threads();
 lwork = maxt*(M*(N+2)+N);
 liwork = maxt*N;
 work = (float *) malloc(lwork * sizeof(float));
 iwork = (int *) malloc(liwork * sizeof(int));
 x = (float *) malloc(NS*N * sizeof(float));
 bs = (float *) malloc(NS*M * sizeof(float));

 for (i = 0; i < M; i++) {
 /* Generate matrix values.
 * This model is \(y(t) = c_0 + c_1 \exp(-t) + c_2 \exp(-5t) + n(t) \) */
 a[i][0] = 1.0;
 a[i][1] = exp(-(i*0.25));
 a[i][2] = exp(-(i*0.25)*5.0);
 }
```

/* Solve for coefficients, constraining values to be non-negative. 
First use a sequential for loop. Then a parallel for loop. 
Record the residual norms and compare them. */

imsl_random_seed_set(seed);
/* First the sequential loop. 
Working memory is not included as an argument. */
for (j = 0; j < NS; j++) {
imsl_f_random_normal(M, IMSL_RETURN_USER, b, 0);

    /* Add normal pdf noise at the level sigma. */
    for (i=0; i<M; i++) {
        b[i] = sigma*b[i] + a[i][0] + 0.2*a[i][1] + 0.3*a[i][2];
        BS(j,i) = b[i];
    }

    imsl_f_nonneg_least_squares(M, N, &a[0][0], &BS(j,0),
                                IMSL_RETURN_USER, &X(j,0),
                                IMSL_RESIDUAL_NORM, &rseq[j], 0);
}

/* Then the parallel for loop using OpenMP. 
Working memory is an optional argument. This is not required 
but helps prevent memory fragmentation. */

/* Reset x for output for the OpenMP loop. */
for (i = 0; i < NS*N; i++)
    x[i] = 0.0;

#pragma omp parallel for private(j)
for (j = 0; j < NS; j++) {
imsl_f_nonneg_least_squares(M, N, &a[0][0], &BS(j,0),
                                IMSL_RETURN_USER, &X(j,0),
                                IMSL_RESIDUAL_NORM, &rpar[j],
                                IMSL_SUPPLY_WORK_ARRAYS, lwork, work, liwork, iwork, 0);
}

/* Check that residual norms agree exactly for both loops. They 
should because the same problems are solved - one set 
sequentially and the next set in parallel. */
for (j = 0; j < NS; j++) {
    /* Since the two loops solve the same set of problems, the 
residual norms must agree exactly. */
    if (rpar[j] != rseq[j]) {
        thread_safe = 0;
        break;
    }
}
if(thread_safe)
    printf("imsl_f_nonneg_least_squares is thread-safe.\n");
else
    printf("imsl_f_nonneg_least_squares is not thread-safe.\n");

    system("pause");
}

Output

imsl_f_nonneg_least_squares is thread-safe.

Warning Errors

IMSL_MAX_NNLS_ITER_REACHED The maximum number of iterations was reached. The best answer will be returned. “itmax” = # was used. A larger value may help the algorithm complete.
lin_lsq_lin_constraints

Solves a linear least-squares problem with linear constraints.

Synopsis

```c
#include <imsl.h>
float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float a[], float b[],
 float c[], float bl[], float bu[], int con_type[], float xlb[], float xub[]), ... , 0)
```

The type double function is `imsl_d_lin_lsq_lin_constraints`.

Required Arguments

1. `int nra (Input)`
   - Number of least-squares equations.
2. `int nca (Input)`
   - Number of variables.
3. `int ncon (Input)`
   - Number of constraints.
4. `float a[] (Input)`
   - Array of size `nra × nca` containing the coefficients of the `nra` least-squares equations.
5. `float b[] (Input)`
   - Array of length `nra` containing the right-hand sides of the least-squares equations.
6. `float c[] (Input)`
   - Array of size `ncon × nca` containing the coefficients of the `ncon` constraints.
7. `float bl[] (Input)`
   - Array of length `ncon` containing the lower limit of the general constraints. If there is no lower limit on the `i`-th constraint, then `bl[i]` will not be referenced.
8. `float bu[] (Input)`
   - Array of length `ncon` containing the upper limit of the general constraints. If there is no upper limit on the `i`-th constraint, then `bu[i]` will not be referenced. If there is no range constraint, `bl` and `bu` can share the same storage.
9. `int con_type[] (Input)`
   - Array of length `ncon` indicating the type of constraints exclusive of simple bounds, where `con_type[i] = 0, 1, 2, 3` indicates `=, <=, >=` and range constraints, respectively.
float xlb[] (Input)
Array of length nca containing the lower bound on the variables. If there is no lower bound on the
i-th variable, then xlb[i] should be set to 1.0e30.

float xub[] (Input)
Array of length nca containing the upper bound on the variables. If there is no lower bound on the
i-th variable, then xub[i] should be set to −1.0e30.

Return Value
A pointer to the to a vector of length nca containing the approximate solution. To release this space, use
imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_lsq_lin_constraints(int nra, int nca, int ncon, float a[], float b[],
float c[], float bl[], float bu[], int con_type[], float xlb[], float xub[],
IMSL_RETURN_USER, float x[],
IMSL_RESIDUAL, float **residual,
IMSL_RESIDUAL_USER, float residual_user[],
IMSL_PRINT,
IMSL_ITMAX, int max_iter,
IMSL_REL_FCN_TOL, float rel_tol,
IMSL_ABS_FCN_TOL, float abs_tol,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
Store the solution in the user supplied vector x of length nca.

IMSL_RESIDUAL, float **residual (Output)
The address of a pointer to an array containing the residuals b − Ax of the least-squares equations at
the approximate solution.

IMSL_RESIDUAL_USER, float residual_user[] (Output)
Store the residuals in the user-supplied vector of length nra.
IMSL_PRINT,
   Debug output flag. Choose this option if more detailed output is desired.

IMSL_ITMAX, int max_iter (Input)
   Set the maximum number of add/drop iterations.
   Default: max_iter = 5*max(nra,nca)

IMSL_REL_FCN_TOL, float rel_tol (Input)
   Relative rank determination tolerance to be used.
   Default: rel_tol = sqrt(imsl_f_machine(4))

IMSL_ABS_FCN_TOL, float abs_tol (Input)
   Absolute rank determination tolerance to be used.
   Default: abs_tol = sqrt(imsl_f_machine(4))

Description
The function imsl_f_lin_lsq_lin_constraints solves linear least-squares problems with linear constraints. These are systems of least-squares equations of the form

\[ Ax \cong b \]

subject to

\[ b_l \leq Cx \leq b_u \]
\[ x_l \leq x \leq x_u \]

Here \( A \) is the coefficient matrix of the least-squares equations, \( b \) is the right-hand side, and \( C \) is the coefficient matrix of the constraints. The vectors \( b_l, b_u, x_l \) and \( x_u \) are the lower and upper bounds on the constraints and the variables, respectively. The system is solved by defining dependent variables \( y \equiv Cx \) and then solving the least-squares system with the lower and upper bounds on \( x \) and \( y \). The equation \( Cx - y = 0 \) is a set of equality constraints. These constraints are realized by heavy weighting, i.e., a penalty method, Hanson (1986, pp. 826-834).

Examples

Example 1
In this example, the following problem is solved in the least-squares sense:

\[
\begin{align*}
3x_1 + 2x_2 + x_3 &= 3.3 \\
4x_1 + 2x_2 + x_3 &= 2.2 \\
2x_1 + 2x_2 + x_3 &= 1.3 \\
x_1 + x_2 + x_3 &= 1.0
\end{align*}
\]

Subject to

\[ x_1 = x_2 + x_3 \leq 1 \]
\[ 0 \leq x_1 \leq 0.5 \]
\[ 0 \leq x_2 \leq 0.5 \]
\[ 0 \leq x_3 \leq 0.5 \]

```c
#include <imsl.h>

int main()
{
 int nra = 4;
 int nca = 3;
 int ncon = 1;
 float *x;
 float a[] = {3.0, 2.0, 1.0,
 4.0, 2.0, 1.0,
 2.0, 2.0, 1.0,
 1.0, 1.0, 1.0};
 float b[] = {3.3, 2.3, 1.3, 1.0};
 float c[] = {1.0, 1.0, 1.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {0.5, 0.5, 0.5};
 int con_type[] = {1};
 float bc[] = {1.0};

 x = imsl_f_lin_lsq_lin_constraints(nra, nca, ncon, a, b, c,
 bc, bc, con_type, xlb, xub,
 0);
 imsl_f_write_matrix("Solution", 1, nca, x,
 0);
}
```

**Output**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

**Example 2**
The same problem solved in the first example is solved again. This time residuals of the least-squares equations at the approximate solution are returned, and the norm of the residual vector is printed. Both the solution and residuals are returned in user-supplied space.

```c
#include <ims1.h>
#include <stdio.h>

int main()
{
 int nra = 4;
 int nca = 3;
```
int ncon = 1;
float x[3];
float residual[4];
float a[] = {3.0, 2.0, 1.0,
            4.0, 2.0, 1.0,
            2.0, 2.0, 1.0,
            1.0, 1.0, 1.0};
float b[] = {3.3, 2.3, 1.3, 1.0};
float c[] = {1.0, 1.0, 1.0};
float xlb[] = {0.0, 0.0, 0.0};
float xub[] = {0.5, 0.5, 0.5};
int con_type[] = {1};
float bc[] = {1.0};

imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
                                bc, bc, con_type, xlb, xub,
                                IMSL_RETURN_USER, x,
                                IMSL_RESIDUAL_USER, residual, 0);

imsl_f_write_matrix ("Solution", 1, nca, x, 0);
imsl_f_write_matrix ("Residual", 1, nra, residual, 0);
printf ("\n\nNorm of residual = %f\n",
imsl_f_vector_norm (nra, residual, 0));
}

Output

Solution
1          2          3
0.5        0.3        0.2

Residual
1          2          3          4
-1.0        0.5        0.5       -0.0

Norm of residual = 1.224745

Fatal Errors

IMSL_BAD_COLUMN_ORDER The input order of columns must be between 1 and "nvar" while input order = # and "nvar"=# are given.

IMSL_BAD_POLARITY_FLAGS The bound polarity flags must be positive while component # flag "ibb[#]."

IMSL_TOO_MANY_ITN Maximum numbers of iterations exceeded.
Given an $m \times n$ real matrix $A \geq 0$, and an integer $k \leq \min(m, n)$, compute a factorization $A \approx FG$. The matrix factors $F_{m \times k} \geq 0$, $G_{k \times n} \geq 0$ are computed to minimize the Frobenius, or sum of squares, norm of the error matrix: $E = \{e_{i,j}\} = A - FG$.

### Synopsis

```c
#include <imsl.h>

float imsl_f_nonneg_matrix_factorization(int m, int n, int k, float a[], float f[], float g[], ...
, 0)
```

The type `double` function is `imsl_d_nonneg_matrix_factorization`.

### Required Arguments

- **int m** (Input)
  - The number of rows in the matrix.

- **int n** (Input)
  - The number of columns in the matrix.

- **int k** (Input)
  - The number of columns in the matrix $F$ and rows in the matrix $G$.

- **float a[]** (Input)
  - An array of length $m \times n$ containing the $A$ matrix.

- **float f[]** (Input/Output)
  - An array of length $m \times k$ containing the $F$ matrix. If `IMSL_INITIAL_FACTORS` is used, the sweeps begin using the input values for $F_{m \times k} \geq 0$.

- **float g[]** (Output)
  - An array of length $k \times n$ containing the $G$ matrix.

### Return Value

A scalar containing the Frobenius norm of the error matrix.
Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_nonneg_matrix_factorization(int m, int n, int k, float a[], float f[], float g[],
 IMSL_WEIGHT, float w[],
 IMSL_INITIAL_FACTORS, int factors,
 IMSL_ITMAX, int itmax,
 IMSL_RESIDUAL_ERROR, float err,
 IMSL_RELATIVE_ERROR, float rerr,
 IMSL_STOPPING_CRITERION, int *reason,
 IMSL_NSTEPS_TAKEN, int *nsteps,
 0)
```

Optional Arguments

**IMSL_WEIGHT, float w[]** (Input)
An array of length \( m \times n \) containing the matrix \( W \geq 0 \) of weights that will be applied to the entries of \( A \geq 0 \) during the solution sweeps. The factorization obtained is \( FG \cong W \circ A \), where the weights are applied element-wise.
Default: Weights are not applied, or equivalently, the weights all have value 1.

**IMSL_INITIAL_FACTORS, int factors** (Input)
A flag that signifies if the matrix \( F \) is given an input estimate. If \( factors = 0 \), start sweeps using

\[
F = \begin{bmatrix} I_k \\ 0 \end{bmatrix}
\]

Otherwise, use initial values in \( f \) as the matrix \( F \) to start the sweeps.
Default: \( factors = 0 \)

**IMSL_ITMAX, int itmax** (Input)
The maximum number of sweeps allowed for alternately solving for \( G \geq 0 \), then \( F \geq 0 \).
Default: \( itmax = 2 \times (m + n + 1) \)
IMSL_RESIDUAL_ERROR, float err (Input)
   A scalar that will stop the sweeps at the first one satisfying error ≤ err.
   Default: err = 0

IMSL_RELATIVE_ERROR, float rerr (Input)
   A scalar that will stop the sweeps at the first one satisfying
   \[ \text{error}_{\text{iter}-2} - \text{error}_{\text{iter}-1} \leq \text{rerr} \times \text{error}_{\text{iter}}, \text{iter} > 2. \]
   This test is made after three values of the error matrix norm have been computed. The sequence
   \{error_{\text{iter}}\} is decreasing with increasing values of the iteration counter, iter. If error_{\text{iter}} ≥ error_{\text{iter}-1}
   occurs, the sweeps stop.
   Default: rerr = (ims1_f_machine(3))^{0.4}.

IMSL_STOPPING_CRITERION, int *reason (Output)
   This flag has the value 0,1,2 or 3 depending on which of the following conditions stopped the sweeps:

<table>
<thead>
<tr>
<th>reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Errors in user input occurred</td>
</tr>
<tr>
<td>1</td>
<td>Reached maximum iterations</td>
</tr>
<tr>
<td>2</td>
<td>Residual norm is small</td>
</tr>
<tr>
<td>3</td>
<td>Relative error convergence</td>
</tr>
</tbody>
</table>

IMSL_NSTEPS_TAKEN, int *nsteps (Output)
   The last value of the iteration count, iter, that gives the number of sweeps.

Description

Function imsl_f_nonneg_matrix_factorization computes an approximation \( A \cong FG \), or with weights, \( W \odot A \cong FG \); the factors are constrained: \( F_{m \times k} \geq 0 \), \( G_{k \times n} \geq 0 \). The matrix factors \( F_{m \times k} \geq 0 \), \( G_{k \times n} \geq 0 \) are computed to minimize the Frobenius or sum of squares, norm of the error matrix:

\[
E = \{ e_{i,j} \} = A - FG
\]


Each constrained least squares problem is solved using imsl_f_nonneg_least_squares. This process alternates between computing the batch of \( n \) columns of \( G \) and then the batch of \( m \) rows of \( F \). This constitutes a “sweep.”

There is no restriction on the relative sizes of \( m \) and \( n \). The restrictions on the integer \( k \) are

\[ 0 < k \leq \min (m, n) \]

When an initial matrix \( G \) is to be used, instead of an initial \( F \), repose the factorization in transposed form \( A^T \cong G^T F^T \), or with weights, \( A^T \odot W^T \cong G^T F^T \).
The matrix factors $F, G$ are not unique. In the function, the output rows of $G$ are scaled to have sum equal to the value 1. The scaled columns of $F$ are sorted so the column sums are non-increasing. This sort order is then applied to the rows of $G$.

**Example**

Five customers, Beth, Dick, Fred, Joe and Kay make purchases at a convenience store.

<table>
<thead>
<tr>
<th></th>
<th>Flour</th>
<th>Balloons</th>
<th>Beer</th>
<th>Sugar</th>
<th>Chips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dick</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>5</td>
<td></td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Joe</td>
<td>20</td>
<td>40</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kay</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

This matrix $A_{5\times5}$ of customers versus items purchased is approximated by a non-negative matrix factorization, using $k = 2: A \cong FG$. The example is taken from one due to H. Jin and M. Saunders, “Exploring Nonnegative Matrix Factorization,” A Workshop on Algorithms for Massive Data Sets, Stanford University, June 25-28, (2008).

```c
#include <imsl.h>
#include <stdio.h>
#define M 5
#define N 5
#define K 2

int main() {
 float a[M][N] = {
 { 0, 3, 8, 0, 1}, // Example data
 { 0, 2, 5, 1, 0},
 { 5, 0, 1, 10, 0},
 { 0, 20, 40, 2, 1},
 {10, 0, 1, 10, 1}
 };
 float error, f[M*K], g[K*N];
 int nsteps, reason;

 /* Solve for factors, constraining values to be non-negative. */
 error = imsl_f_nonneg_matrix_factorization(M, N, K, &a[0][0], f, g,
 IMSL_STOPPING_CRITERION, &reason,
 IMSL_NSTEPS_TAKEN, &nsteps,
 0);

 imsl_f_write_matrix("Matrix Factor F", M, K, f, 0);
 imsl_f_write_matrix("Matrix Factor G", K, N, g, 0);
}```
printf("\nFrobenius Norm of E=A-F*G is %e\n", error);
printf("Reason for stopping sweeps: %d\n", reason);
printf("Number of sweeps taken: %d\n", nsteps);
}

Output

Matrix Factor F

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.96</td>
</tr>
<tr>
<td>2</td>
<td>7.51</td>
</tr>
<tr>
<td>3</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>62.90</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Matrix Factor G

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.3150</td>
<td>0.6373</td>
<td>0.0298</td>
</tr>
<tr>
<td>2</td>
<td>0.4048</td>
<td>0.0000</td>
<td>0.0473</td>
<td>0.5190</td>
</tr>
</tbody>
</table>

Frobenius Norm of E=A-F*G is 3.195350e+000
Reason for stopping sweeps: 3
Number of sweeps taken: 10
Computes the SVD, $A = USV^T$, of a real rectangular matrix A. An approximate generalized inverse and rank of A also can be computed.

Synopsis

```c
#include <imsl.h>

float *imsl_f_lin_svd_gen (int m, int n, float a[], ..., 0)
```

The type `double` procedure is `imsl_d_lin_svd_gen`.

Required Arguments

- `int m` (Input)
 - Number of rows in the matrix.
- `int n` (Input)
 - Number of columns in the matrix.
- `float a[]` (Input)
 - Array of size $m \times n$ containing the matrix.

Return Value

If no optional arguments are used, `imsl_f_lin_svd_gen` returns a pointer to an array of size $\min(m, n)$ containing the ordered singular values of the matrix. To release this space, use `imsl_free`. If no value can be computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_lin_svd_gen (int m, int n, float a[],

IMSL_A_COL_DIM, int a_col_dim,

IMSL_RETURN_USER, float s[]),
```

- `IMSL_A_COL_DIM` (Input)
 - Number of columns in the matrix.
- `IMSL_RETURN_USER` (Input)
 - `true` to return the user-supplied values of the singular values, `false` otherwise.
- `float s[]` (Output)
 - Array of size n containing the singular values if `IMSL_RETURN_USER` is `true`. Otherwise, it is ignored.
IMSL_RANK, float tol, int *rank,
IMSL_U, float **p_u,
IMSL_U_USER, float u[],
IMSL_U_COL_DIM, int u_col_dim,
IMSL_V, float **p_v,
IMSL_V_USER, float v[],
IMSL_V_COL_DIM, int v_col_dim,
IMSL_INVERSE, float **p_gen_inva,
IMSL_INVERSE_USER, float gen_inva[],
IMSL_INV_COL_DIM, int gen_inva_col_dim,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float s[] (Output)
A user-allocated array of size min (m+1, n) containing the singular values of A in its first min (m, n)
positions in nonincreasing order. If IMSL_RETURN_USER is used, the return value of
imsl_f_lin_svd_gen is s.

IMSL_RANK, float tol, int *rank (Input/Output)

float tol (Input)
Scalar containing the tolerance used to determine when a singular value is negligible and
replaced by the value zero. If tol > 0, then a singular value s_ii is considered negligible if
s_ii ≤ tol. If tol < 0, then a singular value s_ii is considered negligible if s_ii ≤ |tol|*\|A\|_\infty. In this
case, |tol| should be an estimate of relative error or uncertainty in the data.

int *rank (Input/Output)
Integer containing an estimate of the rank of A.

IMSL_U, float **p_u (Output)
**p_u: The address of a pointer to an array of size m × min (m, n) containing the min (m, n) left-singular
vectors of A. On return, the necessary space is allocated by imsl_f_lin_svd_gen. Typically,
float *p_u is declared, and &p_u is used as an argument.
IMSL_U_USER, float *u[] (Output)

u[]: The address of a pointer to an array of size \(m \times \min(m, n) \) containing the \(\min(m, n) \) left-singular vectors of \(A \). If \(m \geq n \), the left-singular vectors can be returned using the storage locations of the array \(a \).

IMSL_U_COL_DIM, int *u_col_dim (Input)

The column dimension of the array containing the left-singular vectors.

Default: \(u_col_dim = \min(m, n) \)

IMSL_V, float **p_v (Output)

p_v: The address of a pointer to an array of size \(n \times n \) containing the right singular vectors of \(A \).

On return, the necessary space is allocated by \texttt{imsl_f_lin_svd_gen}. Typically, \texttt{float *p_v} is declared, and \&p_v is used as an argument.

IMSL_V_USER, float v[] (Output)

v[]: The address of a pointer to an array of size \(n \times n \) containing the right singular vectors of \(A \). The right-singular vectors can be returned using the storage locations of the array \(a \). Note that the return of the left- and right-singular vectors cannot use the storage locations of \(a \) simultaneously.

IMSL_V_COL_DIM, int *v_col_dim (Input)

The column dimension of the array containing the right-singular vectors.

Default: \(v_col_dim = n \)

IMSL_INVERSE, float **p_gen_inva (Output)

The address of a pointer to an array of size \(n \times m \) containing the generalized inverse of the matrix \(A \).

On return, the necessary space is allocated by \texttt{imsl_f_lin_svd_gen}. Typically, \texttt{float *p_gen_inva} is declared, and \&p_gen_inva is used as an argument.

IMSL_INVERSE_USER, float gen_inva[] (Output)

A user-allocated array of size \(n \times m \) containing the general inverse of the matrix \(A \).

IMSL_INV_COL_DIM, int *gen_inva_col_dim (Input)

The column dimension of the array containing the general inverse of the matrix \(A \).

Default: \(gen_inva_col_dim = m \)

Description

The function \texttt{imsl_f_lin_svd_gen} computes the singular value decomposition of a real matrix \(A \). It first reduces the matrix \(A \) to a bidiagonal matrix \(B \) by pre- and post-multiplying Householder transformations. Then, the singular value decomposition of \(B \) is computed using the implicit-shifted QR algorithm. An estimate of the rank of the matrix \(A \) is obtained by finding the smallest integer \(k \) such that \(s_{k,k} \leq \text{tol} \) or \(s_{k,k} \leq |\text{tol}| \cdot \|A\|_\infty \). Since \(s_{i+1,j+1} \leq s_{i,j} \), it follows that all the \(s_{i,j} \) satisfy the same inequality for \(i = k, \ldots, \min(m, n) - 1 \). The rank is set to the value \(k - 1 \). If \(A = USV^T \), its generalized inverse is \(A^+ = VS^+ U^T \). Here,
Only singular values that are not negligible are reciprocated. If `IMSL_INVERSE` or `IMSL_INVERSE_USER` is specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is then computed. The function `imsl_f_lin_svd_gen` fails if the QR algorithm does not converge after 30 iterations isolating an individual singular value.

Examples

Example 1
This example computes the singular values of a real 6×4 matrix.

```c
#include <imsl.h>

float a[] = {1.0, 2.0, 1.0, 4.0,
            3.0, 2.0, 1.0, 3.0,
            4.0, 3.0, 1.0, 4.0,
            2.0, 1.0, 3.0, 1.0,
            1.0, 5.0, 2.0, 2.0,
            1.0, 2.0, 2.0, 3.0};

int main()
{
    int         m = 6, n = 4;
    float       *s;
    /* Compute singular values */
    s = imsl_f_lin_svd_gen (m, n, a, 0);
    /* Print singular values */
    imsl_f_write_matrix ("Singular values", 1, n, s, 0);
}
```

Output

```
Singular values
1          2          3          4
11.49       3.27       2.65       2.09
```

Example 2
This example computes the singular value decomposition of the 6×4 real matrix A. The singular values are returned in the user-provided array. The matrices U and V are returned in the space provided by the function `imsl_f_lin_svd_gen`.

```c
#include <imsl.h>

float a[] = {1.0, 2.0, 1.0, 4.0,
            3.0, 2.0, 1.0, 3.0,
            4.0, 3.0, 1.0, 4.0,
            2.0, 1.0, 3.0, 1.0,
            1.0, 5.0, 2.0, 2.0,
            1.0, 2.0, 2.0, 3.0};
```
Example 3
This example computes the rank and generalized inverse of a 3×2 matrix A. The rank and the 2×3 generalized inverse matrix A^+ are printed.
```c
#include <imsl.h>
#include <stdio.h>

float a[] =
{1.0,  0.0,
 1.0,  1.0,
 100.0, -50.0};

int main()
{
    int          m = 3, n = 2;
    float        tol;
    float        gen_inva[6];
    float        *s;
    int          rank;

    / * Compute generalized inverse */
    tol = 1.e-4;

    s = imsl_f_lin_svd_gen (m, n, a,
        IMSL_RANK, tol, &rank,
        IMSL_INVERSE_USER, gen_inva,
        IMSL_INV_COL_DIM, m,
        0);

    / * Print rank, singular values and */
    / * generalized inverse. */
    printf ("Rank of matrix = %2d", rank);
    imsl_f_write_matrix ("Singular values", 1, n, s, 0);
    imsl_f_write_matrix ("Generalized inverse", n, m, gen_inva,
        IMSL_A_COL_DIM, m,
        0);
}
```

Output

Rank of matrix = 2

Singular values

1 2
111.8 1.4

Generalized inverse

1 2 3
1 0.100 0.300 0.006
2 0.200 0.600 -0.008
Warning Errors

IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30 iterations.
Compress the SVD, \(A = USV^H \), of a complex rectangular matrix \(A \). An approximate generalized inverse and rank of \(A \) also can be computed.

Synopsis

```
#include <imsl.h>

f_complex *imsl_c_lin_svd_gen(int m, int n, f_complex a[], ... , 0)
```

The type \(d\text{complex function} \) is \(\text{imsl}_2\text{lin_svd_gen} \).

Required Arguments

- \(int \ m \) (Input)
 - Number of rows in the matrix.
- \(int \ n \) (Input)
 - Number of columns in the matrix.
- \(f\text{complex} \ a[] \) (Input)
 - Array of size \(m \times n \) containing the matrix.

Return Value

Using only required arguments, \(\text{imsl}_2\text{lin_svd_gen} \) returns a pointer to a complex array of length \(\min(m, n) \) containing the singular values of the matrix. To release this space, use \(\text{imsl_free} \). If no value can be computed then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

f_complex *imsl_c_lin_svd_gen(int m, int n, f_complex a[],

    IMSL_A_COL_DIM, int a_col_dim,
```

- \(\text{IMSL}_A_\text{COL_DIM}, \) \(\text{int} \ a_\text{col}_\text{dim}, \)
Optional Arguments

- **IMSL_A_COL_DIM, int a_col_dim (Input)**
 The column dimension of the array a.
 Default: a_col_dim = n

- **IMSL_RETURN_USER, f_complex s[] (Output)**
 A user-allocated array of length min (m, n) containing the singular values of A in its first min (m, n) positions in nonincreasing order. The complex entries are all real. If IMSL_RETURN_USER is used, the return value of imsl_c_lin_svd_gen is s.

- **IMSL_RANK, float tol, int *rank (Input/Output)**
 - **float tol (Input)**
 Scalar containing the tolerance used to determine when a singular value is negligible and replaced by the value zero. If tol > 0, then a singular value s_{ij} is considered negligible if s_{ij} ≤ tol. If tol < 0, then a singular value s_{ij} is considered negligible if s_{ij} ≤ |tol|*||A||_{∞}. In this case, should be an estimate of relative error or uncertainty in the data.
 - **int *rank (Input/Output)**
 Integer containing an estimate of the rank of A.
The function *imsl_c_lin_svd_gen* computes the singular value decomposition of a complex matrix *A*. It first reduces the matrix *A* to a bidiagonal matrix *B* by pre- and post-multiplying Householder transformations. Then, the singular value decomposition of *B* is computed using the implicit-shifted *QR* algorithm. An estimate of the
rank of the matrix A is obtained by finding the smallest integer k such that $s_{kk} \leq \text{tol}$ or $s_{kk} \leq |\text{tol}| \cdot \|A\|_{\infty}$. Since $s_{i+1,j+1} \leq s_{ij}$, it follows that all the s_{ii} satisfy the same inequality for $i = k, \ldots, \min(m, n) - 1$. The rank is set to the value $k - 1$. If $A = U S V^H$, its generalized inverse is $A^* = V S^+ U^T$.

Here,

$$S^+ = \text{diag}\left(s_{1,1}^{-1}, \ldots, s_{i,n}^{-1}, 0, \ldots, 0\right)$$

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or IMSL_INVERSE_USER is specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is then computed. The function imsl_c_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a 6×3 complex matrix.

```c
#include <ims1.h>
int main()
{
    int m = 6, n = 3;
    f_complex *s;
    f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
                     {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
                     {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
                     {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
                     {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
                     {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};
    /* Compute singular values */
    s = imsl_c_lin_svd_gen (m, n, a, 0);
    /* Print singular values */
    imsl_c_write_matrix ("Singular values", 1, n, s, 0);
}
```

Output

```
Singular values

1                     2                     3
( 11.77, 0.00 ) (  9.30, 0.00 ) (  4.99, 0.00 )
```

Example 2

This example computes the singular value decomposition of the 6×3 complex matrix A. The singular values are returned in the user-provided array. The matrices U and V are returned in the space provided by the function imsl_c_lin_svd_gen.
```c
#include <imsl.h>

int main()
{
    int m = 6, n = 3;
    f_complex s[3], *p_u, *p_v;
    f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
                     {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
                     {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
                     {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
                     {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
                     {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};

    imsl_c_lin_svd_gen (m, n, a,
                        IMSL_RETURN_USER, s,
                        IMSL_U, &p_u,
                        IMSL_V, &p_v,
                        0);
    /* Print decomposition factors */
    imsl_c_write_matrix ("Singular values, S", 1, n, s, 0);
    imsl_c_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
    imsl_c_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
}

Output

Singular values, S
1                     2                     3
( 11.77, 0.00) (  9.30, 0.00) (  4.99, 0.00)

Left singular vectors, U
1                     2                     3
1 ( 0.1968, 0.2186) ( 0.5011, 0.0217) ( -0.2007, -0.1003)
2 ( 0.3443, -0.3542) ( 0.2933, 0.0248) (  0.1155, -0.2338)
3 ( 0.1457, 0.2307) ( 0.5424, 0.1381) ( -0.4361, -0.4407)
4 ( 0.3016, -0.0844) ( 0.2157, 0.2659) (  0.0523, -0.0894)
5 ( 0.2283, -0.6008) ( 0.1325, 0.1433) (  0.3152, -0.0090)
6 ( 0.2876, -0.0350) ( 0.4377, -0.0400) (  0.0458, -0.6205)

Right singular vectors, V
1                     2                     3
1 ( 0.6616, 0.0000) ( -0.2651, 0.0000) ( -0.7014, 0.0000)
2 ( 0.7355, 0.0379) ( 0.3850, -0.0707) (  0.5482, 0.0624)
3 ( 0.0507, -0.1317) ( 0.1724, 0.8642) ( -0.0173, -0.4509)
Example 3

This example computes the rank and generalized inverse of a $6 \times 4$ matrix $A$. The rank and the $4 \times 6$ generalized inverse matrix $A^+$ are printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int m = 6, n = 4, rank;
 float tol;
 f_complex gen_inv[24], *s;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, {1.0,0.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, {0.0,1.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, {0.0,0.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, {2.0,1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, {1.0,3.1},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}, {1.4,1.9}};

 /* Factor a */
 tol = 1.e-4;
 s = imsl_c_lin_svd_gen (m, n, a,
 IMSL_RANK, tol, &rank,
 IMSL_INVERSE_USER, gen_inv,
 IMSL_INV_COL_DIM, m,
 0);

 /* Print rank and generalized inverse matrix */
 printf ("Rank = %2d", rank);
 imsl_c_write_matrix ("Singular values", 1, n, s,
 0);
 imsl_c_write_matrix ("Generalized inverse", n, m, gen_inv,
 IMSL_A_COL_DIM, m,
 0);
}
```

Output

Rank = 4

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.13</td>
<td>0.00</td>
<td>9.53</td>
</tr>
<tr>
<td>4.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0266</td>
<td>0.0164</td>
<td>-0.0185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>2</td>
<td>0.0061</td>
<td>0.0280</td>
</tr>
<tr>
<td>3</td>
<td>-0.0019</td>
<td>-0.0572</td>
</tr>
<tr>
<td>4</td>
<td>0.0380</td>
<td>0.0298</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Warning Errors**

**IMSL_SLOWCONVERGENT_MATRIX**

Convergence cannot be reached after 30 iterations.
Solves a real symmetric nonnegative definite system of linear equations $Ax = b$. Using options, computes a Cholesky factorization of the matrix $A$, such that $A = R^T R = LL^T$. Computes the solution to $Ax = b$ given the Cholesky factor.

Synopsis

```c
#include <imsl.h>

float *imsl_f_lin_sol_nonnegdef(int n, float a[], float b[], ...), 0)
```

The type `double` function is `imsl_d_lin_sol_nonnegdef`.

Required Arguments

- `int n` (Input)
  - Number of rows and columns in the matrix.

- `float a[]` (Input)
  - Array of size $n \times n$ containing the matrix.

- `float b[]` (Input)
  - Array of size $n$ containing the right-hand side.

Return Value

Using required arguments, `imsl_f_lin_sol_nonnegdef` returns a pointer to a solution $x$ of the linear system. To release this space, use `imsl_free`. If no value can be computed, `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_lin_sol_nonnegdef(int n, float a[], float b[],

 IMSL_RETURN_USER, float x[],

 IMSL_A_COL_DIM, int a_col_dim,

 IMSL_FACTOR, float **p_factor,

 IMSL_FACTOR_USER, float factor[],

 IMSL_FAC_COL_DIM, int fac_colDim,
```

lin_sol_nonnegdef
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_TOLERANCE, float tol,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x. When this option is specified, no storage is allocated for the solution, and imsl_f_lin_sol_nonnegdef returns a pointer to the array x.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n × n containing the LLᵀ factorization of A. When this option is specified, the space for the factor matrix is allocated by imsl_f_lin_sol_nonnegdef. The lower-triangular part of the factor array contains L, and the upper-triangular part contains LᵀR. Typically, float *p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n × n containing the LLᵀ factorization of A. The lower-triangular part of factor contains L, and the upper-triangular part contains LᵀR. If a is not needed, a and factor can be the same storage locations. If IMSL_SOLVE is specified, this parameter is input; otherwise, it is output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LLᵀ factorization.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of A. The space for this array is allocated by imsl_f_lin_sol_nonnegdef. Typically, float *p_inva is declared, and &p_inva is used as an argument.
IMSL_INVERSE_USER, float inva[] (Output)

A user-allocated array of size \( n \times n \) containing the inverse of \( A \). If \( a \) is not needed, \( a \) and \( \text{factor} \) can be the same storage locations. The storage locations for \( A \) cannot be the factorization and the inverse of \( A \) at the same time.

IMSL_INV_COL_DIM, int inva_col_dim (Input)

The column dimension of the array containing the inverse of \( A \).

Default: \( \text{inva\_col\_dim} = n \)

IMSL_TOLERANCE, float tol (Input)

Tolerance used in determining linear dependence. See the documentation for \(-\text{imsl\_f\_machine} (\text{imsl\_f\_machine}(\text{float}))\) in Chapter 12, “Utilities.”

Default: \( \text{tol} = 100 \ast \text{imsl\_f\_machine}(4) \)

IMSL_FACTOR_ONLY

Compute the \( LL^T \) factorization of \( A \) only. The argument \( b \) is ignored, and either the optional argument IMSL_FACTOR or IMSL_FACTOR_USER is required.

IMSL_SOLVE_ONLY

Solve \( Ax = b \) using the factorization previously computed by this function. The argument \( a \) is ignored, and the optional argument IMSL_FACTOR_USER is required.

IMSL_INVERSE_ONLY

Compute the inverse of \( A \) only. The argument \( b \) is ignored, and either the optional argument IMSL_INVERSE or IMSL_INVERSE_USER is required.

Description

The function \texttt{imsl\_f\_lin\_sol\_nonnegdef} solves a system of linear algebraic equations having a symmetric nonnegative definite (positive semidefinite) coefficient matrix. It first computes a Cholesky (\( LL^T \) or \( R^T R \)) factorization of the coefficient matrix \( A \).

The factorization algorithm is based on the work of Healy (1968) and proceeds sequentially by columns. The \( i \)-th column is declared to be linearly dependent on the first \( i - 1 \) columns if

\[
|a_{ii} - \sum_{j=1}^{i-1} r_{ji}^2| \leq \varepsilon |a_{ii}|
\]

where \( \varepsilon \) (specified in \( \text{tol} \)) may be set by the user. When a linear dependence is declared, all elements in the \( i \)-th row of \( R \) (column of \( L \)) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for checking for matrices that are not nonnegative definite also are incorporated. The function \texttt{imsl\_f\_lin\_sol\_nonnegdef} declares \( A \) to not be nonnegative definite and issues an error message if either of the following conditions are satisfied:
Healy’s (1968) algorithm and the function imsl_f_lin_sol_nonnegdef permit the matrices $A$ and $R$ to occupy the same storage. Barrett and Healy (1978) in their remark neglect this fact. The function imsl_f_lin_sol_nonnegdef uses

$$
\sum_{j=1}^{i-1} r_{ij}^2
$$

for $a_{ii}$ in the above condition 2 to remedy this problem.

If an inverse of the matrix $A$ is required and the matrix is not (numerically) positive definite, then the resulting inverse is a symmetric $g_2$ inverse of $A$. For a matrix $G$ to be a $g_2$ inverse of a matrix $A$, $G$ must satisfy conditions 1 and 2 for the Moore-Penrose inverse, but generally fail conditions 3 and 4. The four conditions for $G$ to be a Moore-Penrose inverse of $A$ are as follows:

1. $AGA = A$
2. $GAG = G$
3. $AG$ is symmetric
4. $GA$ is symmetric

The solution of the linear system $Ax = b$ is computed by solving the factored version of the linear system $R^T R x = b$ as two successive triangular linear systems. In solving the triangular linear systems, if the elements of a row of $R$ are all zero, the corresponding element of the solution vector is set to zero. For a detailed description of the algorithm, see Section 2 in Sallas and Lionti (1988).

**Examples**

**Example 1**

A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83-86 and 104-105) discusses the computations for the factorization and solution to this problem.

```c
#include <imsl.h>

int main()
{
 int n = 4;
 float *x;
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 1.0,
 0.0};
```

1. $a_{ii} - \sum_{j=1}^{i-1} r_{ji}^2 < -\varepsilon |a_{ii}|$

2. $r_{ii} = 0$ and $|a_{ik} - \sum_{j=1}^{i-1} r_{jk} r_{kj}| > \varepsilon \sqrt{a_{ii} a_{kk}}, k > i$
6.0, 10.0, 1.0, 14.0};
float b[] = {18.0, 22.0, 7.0, 20.0};

/* Solve Ax = b for x */
x = imsl_f_lin_sol_nonnegdef(n, a, b, 0);
/* Print solution, x, of Ax = b */
imsl_f_write_matrix("Solution, x", 1, n, x, 0);

Output

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.167</td>
<td>0.500</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

**Example 2**

The symmetric nonnegative definite matrix in the initial example is used to compute the factorization only in the first call to `lin_sol_nonnegdef`. The space needed for the factor is provided by the user. On the second call, both the $LL^T$ factorization and the right-hand side vector in the first example are used as the input to compute a solution $x$. It also illustrates another way to obtain the solution array $x$.

```c
#include <imsl.h>

int main()
{
 int n = 4, a_col_dim = 6;
 float factor[36], x[5];
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 float b[] = {18.0, 22.0, 7.0, 20.0};
 /* Factor A */
imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_FACTOR_ONLY,
 0);
 /* NULL is returned in */
 /* this case. Another */
 /* way to obtain the */
 /* factor is to use the */
 /* IMSL_FACTOR option. */
imsl_f_write_matrix("factor", n, n, factor,
 IMSL_A_COL_DIM, a_col_dim,
 0);
 /* Get the solution using */
 /* the factorized matrix. */
imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_A_COL_DIM, a_col_dim,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_FACTOR_ONLY,
 0);
}
```
IMSL_FACTOR_USER, factor,
IMSL_FAC_COL_DIM, a_col_dim,
IMSL_RETURN_USER, x,
IMSL_SOLVE_ONLY,
0);

imsl_f_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}

Output

<table>
<thead>
<tr>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1  2  3  4</td>
</tr>
<tr>
<td>1  6  2  5  1</td>
</tr>
<tr>
<td>2  2  4  2  2</td>
</tr>
<tr>
<td>3  5  0  0  0</td>
</tr>
<tr>
<td>4  1  2  0  3</td>
</tr>
</tbody>
</table>

Solution, x, of Ax = b

| 1  2  3  4 |
| 0.167 0.500 0.000 1.000 |

Example 3

This example uses the IMSL_INVERSE option to compute the symmetric $g$ inverse of the symmetric nonnegative matrix in the first example. Maindonald (1984, p. 106) discusses the computations for this problem.

#include <imsl.h>

int main()
{
    int n = 4;
    float *p_a_inva, *p_a_inva_a, *p_inva;
    float a[] = {
        36.0, 12.0, 30.0, 6.0,
        12.0, 20.0, 2.0, 10.0,
        30.0, 2.0, 29.0, 1.0,
        6.0, 10.0, 1.0, 14.0};

    /* Get g2_inverse(a) */
    imsl_f_lin_sol_nonnegdef(n, a, NULL,
        IMSL_INVERSE, &p_inva,
        IMSL_INVERSE_ONLY,
        0);

    /* Form a*g2_inverse(a) */
    p_a_inva = imsl_f_mat_mul_rect("A*B",
        IMSL_A_MATRIX, n, n, a,
        IMSL_B_MATRIX, n, n, p_inva,
        0);
/ Form a*g2_inverse(a)*a */

p_a_inva_a = imsl_f_mat_mul_rect("A*B",
    IMSL_A_MATRIX, n, n, p_a_inva,
    IMSL_B_MATRIX, n, n, a,
    0);

imsl_f_write_matrix("The g2 inverse of a", n, n, p_inva,
    0);

imsl_f_write_matrix("a*g2_inverse(a)\nvio\ntes condition 3 of"
    " the M-P inverse", n, n, p_a_inva,
    0);

imsl_f_write_matrix("a = a*g2 inverse(a)*a\ncondition 1 of"
    " the M-P inverse", n, n, p_a_inva_a,
    0);

}
Chapter 2 Eigensystem Analysis

Functions

**Linear Eigensystem Problems**

*General Matrices*
- Eigenvalues and eigenvectors: \( \text{eig\_gen} \) 265
- Eigenvalues and eigenvectors (complex): \( \text{eig\_gen\_complex} \) 269

*Real Symmetric Matrices*
- Eigenvalues and eigenvectors: \( \text{eig\_sym} \) 273

*Complex Hermitian Matrices*
- Eigenvalues and eigenvectors: \( \text{eig\_herm\_complex} \) 277

*Real Symmetric Matrices and B Positive Definite*
- Eigenvalues and eigenvector: \( \text{eig\_symgen} \) 281
- Real matrices: \( \text{geneig} \) 285
- Complex matrices: \( \text{geneig\_complex} \) 290
Usage Notes

An ordinary linear eigensystem problem is represented by the equation $Ax = \lambda x$ where $A$ denotes an $n \times n$ matrix. The value $\lambda$ is an eigenvalue and $x \neq 0$ is the corresponding eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we have chosen this factor so that $x$ has Euclidean length one, and the component of $x$ of largest magnitude is positive. The eigenvalues and corresponding eigenvectors are sorted then returned in the order of largest to smallest complex magnitude. If $x$ is a complex vector, this component of largest magnitude is scaled to be real and positive. The entry where this component occurs can be arbitrary for eigenvectors having nonunique maximum magnitude values.

A generalized linear eigensystem problem is represented by $Ax = \lambda Bx$ where $A$ and $B$ are $n \times n$ matrices. The value $\lambda$ is a generalized eigenvalue, and $x$ is the corresponding generalized eigenvector. The generalized eigenvectors are normalized in the same manner as the ordinary eigensystem problem.

Error Analysis and Accuracy

The remarks in this section are for ordinary eigenvalue problems. Except in special cases, functions will not return the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem $Ax = \lambda x$. Typically, the computed pair

\[
\tilde{x}, \tilde{\lambda}
\]

are an exact eigenvector-eigenvalue pair for a "nearby" matrix $A + E$. Information about $E$ is known only in terms of bounds of the form $\|E\|_2 \leq f(n) \|A\|_2 \varepsilon$. The value of $f(n)$ depends on the algorithm, but is typically a small fractional power of $n$. The parameter $\varepsilon$ is the machine precision. By a theorem due to Bauer and Fike (see Golub and Van Loan 1989, p. 342),

\[
\min |\tilde{\lambda} - \lambda| \leq \kappa(X) \|E\|_2 \text{ for all } \lambda \text{ in } \sigma(A)
\]

where $\sigma(A)$ is the set of all eigenvalues of $A$ (called the spectrum of $A$), $X$ is the matrix of eigenvectors, $\| \cdot \|_2$ is Euclidean length, and $\kappa(X)$ is the condition number of $X$ defined as $\kappa(X) = \|X\|_2 \|X^{-1}\|_2$. If $A$ is a real symmetric or complex Hermitian matrix, then its eigenvector matrix $X$ is respectively orthogonal or unitary. For these matrices, $\kappa(X) = 1$.

The accuracy of the computed eigenvalues

\[
\tilde{\lambda}_j
\]

and eigenvectors

\[
\tilde{x}_j
\]

can be checked by computing their performance index $\tau$. The performance index is defined to be
where $\epsilon$ is again the machine precision.

The performance index $\tau$ is related to the error analysis because

$$\|E\tilde{x}_j\|_2 = \|A\tilde{x}_j - \tilde{\lambda}_j\tilde{x}_j\|_2$$

where $E$ is the “nearby” matrix discussed above.

While the exact value of $\tau$ is precision and data dependent, the performance of an eigensystem analysis function is defined as excellent if $\tau < 1$, good if $1 \leq \tau \leq 100$, and poor if $\tau > 100$. This is an arbitrary definition, but large values of $\tau$ can serve as a warning that there is a significant error in the calculation.

If the condition number $\kappa(X)$ of the eigenvector matrix $X$ is large, there can be large errors in the eigenvalues even if $\tau$ is small. In particular, it is often difficult to recognize near multiple eigenvalues or unstable mathematical problems from numerical results. This facet of the eigenvalue problem is often difficult for users to understand.

Reformulating Generalized Eigenvalue Problems

The eigenvalue problem $Ax = \lambda Bx$ is often difficult for users to analyze because it is frequently ill-conditioned. Occasionally, changes of variables can be performed on the given problem to ease this ill-conditioning. Suppose that $B$ is singular, but $A$ is nonsingular. Define the reciprocal $\mu = \lambda^{-1}$. Then assuming $A$ is definite, the roles of $A$ and $B$ are interchanged so that the reformulated problem $Bx = \mu Ax$ is solved. Those generalized eigenvalues $\mu_j = 0$ correspond to eigenvalues $\lambda_j = \infty$. The remaining $\lambda_j = \mu_j^{-1}$. The generalized eigenvectors for $\lambda_j$ correspond to those for $\mu_j$.

Now suppose that $B$ is nonsingular. The user can solve the ordinary eigenvalue problem $Cx = \lambda x$ where $C = B^{-1}A$. The matrix $C$ is subject to perturbations due to ill-conditioning and rounding errors when computing $B^{-1}A$. Computing the condition numbers of the eigenvalues for $C$ may, however, be helpful for analyzing the accuracy of results for the generalized problem.
There is another method that users can consider to reduce the generalized problem to an alternate ordinary problem. This technique is based on first computing a matrix decomposition $B = PQ$ where both $P$ and $Q$ are matrices that are “simple” to invert. Then, the given generalized problem is equivalent to the ordinary eigenvalue problem $Fy = \lambda y$. The matrix $F = P^{-1}AQ^{-1}$ and the unnormalized eigenvectors of the generalized problem are given by $x = Q^{-1}y$. An example of this reformulation is used in the case where $A$ and $B$ are real and symmetric, with $B$ positive definite. The function `imsl_f_eig_symgen` uses $P = R^T$ and $Q = R$ where $R$ is an upper-triangular matrix obtained from a Cholesky decomposition, $B = R^T R$. The matrix $F = R^T AR^{-1}$ is symmetric and real. Computation of the eigenvalue-eigenvector expansion for $F$ is based on function `imsl_f_eig_sym`. 
eig_gen

Computes the eigenexpansion of a real matrix $A$.

**Synopsis**

```c
#include <imsl.h>

f_complex *imsl_f_eig_gen(int n, float *a, ...) 0)
```

The type $d_{\text{complex}}$ function is $imsl_d_eig_gen$.

**Required Arguments**

- **int** $n$ (Input)
  - Number of rows and columns in the matrix.
- **float** $a$ (Input)
  - An array of size $n \times n$ containing the matrix.

**Return Value**

A pointer to the $n$ complex eigenvalues of the matrix. To release this space, use $imsl_{\text{free}}$. If no value can be computed, then NULL is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

f_complex *imsl_f_eig_gen(int n, float *a,
 IMSL_VECTORS, f_complex **evec,
 IMSL_VECTORS_USER, f_complex evecu[],
 IMSL_RETURN_USER, f_complex evalu[],
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_EVECU_COL_DIM, int evecu_col_dim
```

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size \( n \times n \) containing eigenvectors of the matrix. On return, the necessary space is allocated by the function. Typically, f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size \( n \times n \) containing the matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evevecu_col_dim (Input)
The column dimension of evevecu.
Default: evevecu_col_dim = n

Description

Function imsl_f_eig_gen computes the eigenvalues of a real matrix by a two-phase process. The matrix is reduced to upper Hessenberg form by elementary orthogonal or Gauss similarity transformations. Then, eigenvalues are computed using a QR or combined LR-QR algorithm (Golub and Van Loan 1989, pp. 373 - 382, and Watkins and Elsner 1990). The combined LR-QR algorithm is based on an implementation by Jeff Haag and David Watkins. Eigenvectors are then calculated as required. When eigenvectors are computed, the QR algorithm is used to compute the eigenexpansion. When only eigenvalues are required, the combined LR-QR algorithm is used.

Examples

Example 1

```c
#include <imsl.h>

int main()
{
 int n = 3;
 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,};
```
Chapter 2 Eigensystem Analysis

18.0, -5.0, -7.0);

f_complex *eval;  /* Compute eigenvalues of A */
eval = imsl_f_eig_gen (n, a, 0);

/* Print eigenvalues */
imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

Output

```
Eigenvalues
1 2 3
(2, 4) (2, -4) (1, 0)
```

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

```
#include <imsl.h>

int main()
{
 int n = 3;
 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,
 18.0, -5.0, -7.0};

 f_complex *eval;
 f_complex *evec;

 /* Compute eigenvalues of A */
 eval = imsl_f_eig_gen (n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}
```

Output

```
Eigenvalues
1 2 3
(2, 4) (2, -4) (1, 0)

Eigenvectors
1 2 3
1 (0.3162, 0.3162) (0.3162, -0.3162) (0.4082, 0.0000)
2 (0.0000, 0.6325) (0.0000, -0.6325) (0.8165, 0.0000)
3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)
```
Warning Errors

**IMSL_SLOW_CONVERGENCE_GEN**  The iteration for an eigenvalue did not converge after # iterations.
Computes the eigenexpansion of a complex matrix $A$.

**Synopsis**

```c
#include <imsl.h>

f_complex *imsl_c_eig_gen (int n, f_complex *a, ... , 0)
```

The type `d_complex` procedure is `imsl_z_eig_gen`.

**Required Arguments**

- `int n` (Input)
  Number of rows and columns in the matrix.
- `f_complex *a` (Input)
  Array of size $n \times n$ containing the matrix.

**Return Value**

A pointer to the $n$ complex eigenvalues of the matrix. To release this space, use `imsl_free`. If no value can be computed, then NULL is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

f_complex *imsl_c_eig_gen (int n, f_complex *a
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, f_complex evalu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
```
Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
   The address of a pointer to an array of size \( n \times n \) containing eigenvectors of the matrix. On return, the necessary space is allocated by the function. Typically, f_complex *evecu is declared, and &evecu is used as an argument.

IMSL_VECTORS USER, f_complex evecu[] (Output)
   Compute eigenvectors of the matrix. An array of size \( n \times n \) containing the matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
   Store the \( n \) eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
   The column dimension of \( A \).
   Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
   The column dimension of evecu.
   Default: evecu_col_dim = n

Description

The function imsl_c_eig_gen computes the eigenvalues of a complex matrix by a two-phase process. The matrix is reduced to upper Hessenberg form by elementary Gauss transformations. Then, the eigenvalues are computed using an explicitly shifted LR algorithm. Eigenvectors are calculated during the iterations for the eigenvalues (Martin and Wilkinson 1971).

Examples

Example 1

#include <imsl.h>

int main()
{
    int        n = 4;
    f_complex  a[] =  {{5,9}, {5,5}, {-6,-6}, {-7,-7},
                        {3,3}, {6,10}, {-5,-5}, {-6,-6},
                        {2,2}, {3,3}, {-1,3}, {-5,-5},
                        {1,1}, {2,2}, {-3,-3}, { 0, 4} };

    f_complex  *eval;
/* Compute eigenvalues */
eval = imsl_c_eig_gen (n, a, 0);
/* Print eigenvalues */
imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main()
{
    int n = 4;
    f_complex a[] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
                     {3,3}, {6,10}, {-5,-5}, {-6,-6},
                     {2,2}, {3,3}, {-1, 3}, {-5,-5},
                     {1,1}, {2,2}, {-3,-3}, {0, 4} };
    f_complex *eval;
    f_complex *evec;
    /* Compute eigenvalues and eigenvectors */
    eval = imsl_c_eig_gen (n, a,
                   IMSL_VECTORS, &evec, 0);
    /* Print eigenvalues and eigenvectors */
    imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
    imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

Eigenvalues

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5773, -0.0000</td>
<td>0.5774, 0.0000</td>
<td>0.3780, -0.0000</td>
</tr>
</tbody>
</table>
2 ( 0.5773, -0.0000) ( 0.5773, -0.0000) ( 0.7559, 0.0000)
3 ( 0.5774, 0.0000) ( -0.0000, -0.0000) ( 0.3780, 0.0000)
4 ( -0.0000, -0.0000) ( 0.5774, 0.0000) ( 0.3780, -0.0000)

Fatal Errors

IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge after # iterations.
eig_sym

Computes the eigenexpansion of a real symmetric matrix $A$.

Synopsis

```c
#include <imsl.h>

float *imsl_f_eig_sym(int n, float *a, ...); 0)
```

The type `double` procedure is `imsl_d_eig_sym`.

Required Arguments

- `int n` (Input)
  Number of rows and columns in the matrix.

- `float *a` (Input)
  Array of size $n \times n$ containing the symmetric matrix.

Return Value

A pointer to the $n$ eigenvalues of the symmetric matrix. To release this space, use `imsl_free`. If no value can be computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_eig_sym(int n, float *a,
 IMSL_VECTORS, float **evec,
 IMSL_VECTORS_USER, float evecu[],
 IMSL_RETURN_USER, float evalu[],
 IMSL_RANGE, float elow, float ehigh,
 IMSL_A_COL_DIM, int a_col_dim,
```

Optional Arguments

**IMSL_VECTORS, float **evec (Output)**
The address of a pointer to an array of size \( n \times n \) containing the eigenvectors of the matrix. On return, the necessary space is allocated by the function. Typically, `float *evec` is declared, and `&evec` is used as an argument.

**IMSL_VECTORS_USER, float evec[] (Output)**
Compute eigenvectors of the matrix. An array of size \( n \times n \) containing the orthogonal matrix of eigenvectors is returned in the space `evecu`.

**IMSL_RETURN_USER, float evalu[] (Output)**
Store the \( n \) eigenvalues in the space `evalu`.

**IMSL_RANGE, float elow, float ehigh (Input)**
Return eigenvalues and optionally eigenvectors that lie in the interval with lower limit `elow` and upper limit `ehigh`.
Default: `(elow, ehigh) = (-\infty, +\infty)`

**IMSL_A_COL_DIM, int a_col_dim (Input)**
The column dimension of \( a \).
Default: `a_col_dim = n`

**IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)**
The column dimension of `evecu`.
Default: `evecu_col_dim = n`

**IMSL_RETURN_NUMBER, int *n_eval (Output)**
The number of output eigenvalues and eigenvectors in the range `elow`, `ehigh`.

Description

The function `imsl_f_eig_sym` computes the eigenvalues of a symmetric real matrix by a two-phase process. The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the eigenvalues are computed using a rational QR or bisection algorithm. Eigenvectors are calculated as required (Parlett 1980, pp. 169 - 173).
Examples

Example 1

#include <imsl.h>

int main()
{
    int n = 3;
    float a[] = {7.0, -8.0, -8.0,
                 -8.0, -16.0, -18.0,
                 -8.0, -18.0, 13.0};
    float *eval;        /* Compute eigenvalues */
    eval = imsl_f_eig_sym(n, a, 0);
    /* Print eigenvalues */
    imsl_f_write_matrix ("Eigenvalues", 1, 3, eval, 0);
}

Output

Eigenvalues

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-27.90</td>
<td>22.68</td>
<td>9.22</td>
</tr>
</tbody>
</table>

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main()
{
    int n = 3;
    float a[] = {7.0, -8.0, -8.0,
                 -8.0, -16.0, -18.0,
                 -8.0, -18.0, 13.0};
    float *eval;
    float *evec;
    /* Compute eigenvalues and eigenvectors */
    eval = imsl_f_eig_sym(n, a, IMSL_VECTORS, &evec, 0);
    /* Print eigenvalues and eigenvectors */
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
    imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}
Output

Eigenvalues

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-27.90</td>
<td>22.68</td>
<td>9.22</td>
</tr>
</tbody>
</table>

Eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2945</td>
<td>-0.2722</td>
<td>0.9161</td>
</tr>
<tr>
<td>2</td>
<td>0.8521</td>
<td>-0.3591</td>
<td>-0.3806</td>
</tr>
<tr>
<td>3</td>
<td>0.4326</td>
<td>0.8927</td>
<td>0.1262</td>
</tr>
</tbody>
</table>

Warning Errors

- **IMSL_SLOW_CONVERGENCE_SYM**: The iteration for the eigenvalue failed to converge in 100 iterations before deflating.
- **IMSL_SLOW_CONVERGENCE_2**: Inverse iteration did not converge. Eigenvector is not correct for the specified eigenvalue.
- **IMSL_LOST_ORTHOGONALITY_2**: The eigenvectors have lost orthogonality.
- **IMSL_NO_EIGENVALUES_RETURNED**: The number of eigenvalues in the specified interval exceeds mxeval. The argument n_eval contains the number of eigenvalues in the interval. No eigenvalues will be returned.
eig_herm (complex)

Computes the eigenexpansion of a complex Hermitian matrix $A$.

**Synopsis**

```
#include <imsl.h>

float *imsl_c_eig_herm(int n, f_complex *a, ...);
```

The type `double` procedure is `imsl_d_eig_herm`.

**Required Arguments**

- `int n` (Input)
  Number of rows and columns in the matrix.

- `f_complex *a` (Input)
  Array of size $n \times n$ containing the matrix.

**Return Value**

A pointer to the $n$ eigenvalues of the matrix. To release this space, use `imsl_free`. If no value can be computed, then NULL is returned.

**Synopsis with Optional Arguments**

```
#include <imsl.h>

float *imsl_c_eig_herm(int n, f_complex *a,
 IMSL_VECTORS, f_complex **evec,
 IMSL_VECTORS_USER, f_complex evecu[],
 IMSL_RETURN_USER, float evalu[],
 IMSL_RANGE, float elow, float ehigh,
 IMSL_A_COL_DIM, int a_col_dim,
```
Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size $n \times n$ containing eigenvectors of the matrix. On return, the necessary space is allocated by the function. Typically, f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evec[] (Output)
Compute eigenvectors of the matrix. An array of size $n \times n$ containing the unitary matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the $n$ eigenvalues in the space evalu.

IMSL_RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower limit $elow$ and upper limit $ehigh$.
Default: ($elow$, $ehigh$) = ($-\infty$, $+\infty$).

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of $A$.
Default: $a_{\text{col\_dim}} = n$

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of $X$.
Default: $evecu_{\text{col\_dim}} = n$

IMSL_RETURN_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range $elow$, $ehigh$.

Description
The function imsl_c_eig_herm computes the eigenvalues of a complex Hermitian matrix by a two-phase process. The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the eigenvalues are computed using a rational QR or bisection algorithm. Eigenvectors are calculated as required.
Examples

Example 1

```c
#include <imsl.h>

int main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {2,0} };
 float *eval; /* Compute eigenvalues */
 eval = imsl_c_eig_herm(n, a, 0); /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}
```

Output

```
Eigenvalues
1 2 3
15.38 -10.63 -0.75
```

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

```c
#include <imsl.h>

int main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {2,0} };
 float *eval;
 f_complex *evec;
 eval = imsl_c_eig_herm(n, a, 0);
 /* Compute eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}
```
Output

Eigenvalues

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.38</td>
<td>-10.63</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

Eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>( 0.0631,  -0.4075)</td>
<td>( -0.0598,  -0.3117)</td>
<td>(  0.8539,   0.0000)</td>
</tr>
<tr>
<td>2</td>
<td>( 0.7703,   0.0000)</td>
<td>( -0.5939,   0.1841)</td>
<td>( -0.0313,  -0.1380)</td>
</tr>
<tr>
<td>3</td>
<td>( 0.4668,   0.1366)</td>
<td>(  0.7160,   0.0000)</td>
<td>(  0.0808,  -0.4942)</td>
</tr>
</tbody>
</table>

Warning Errors

IMSL_LOST_ORTHOGONALITY
The iteration for at least one eigenvector failed to converge. Some of the eigenvectors may be inaccurate.

IMSL_NEVAL_MXEVAL_MISMATCH
The determined number of eigenvalues in the interval (#, #) is #. However, the input value for the maximum number of eigenvalues in this interval is #.

Fatal Errors

IMSL_SLOW_CONVERGENCE_GEN
The iteration for the eigenvalues did not converge.

IMSL_HERMITIAN_DIAG_REAL
The matrix element $A(#, #) = #$. The diagonal of a Hermitian matrix must be real.
**eig_symgen**

**HIGH PERFORMACE**

more...

Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$. The matrices $A$ and $B$ are real and symmetric, and $B$ is positive definite.

**Synopsis**

```
#include <imsl.h>

float *imsl_f_eig_symgen (int n, float *a, float *b, ... 0)
```

The type `double` procedure is `imsl_d_eig_symgen`.

**Required Arguments**

- `int n` (Input)
  Number of rows and columns in the matrices.
- `float *a` (Input)
  Array of size $n \times n$ containing the symmetric coefficient matrix $A$.
- `float *b` (Input)
  Array of size $n \times n$ containing the positive definite symmetric coefficient matrix $B$.

**Return Value**

A pointer to the $n$ eigenvalues of the symmetric matrix. To release this space, use `imsl_free`. If no value can be computed, then NULL is returned.

**Synopsis with Optional Arguments**

```
#include <imsl.h>

float *imsl_f_eig_symgen (int n, float *a, float *b,
 IMSL_VECTORS, float **evec,
 IMSL_VECTORS_USER, float evecu[],
 IMSL_RETURN_USER, float evalu[],
```


IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments

IMSL_VECTORS, float **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the problem. On return, the necessary space is allocated by the function. Typically, float *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix of generalized eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description

The function imsl_f_eig_symgen computes the eigenvalues of a symmetric, positive definite eigenvalue problem by a three-phase process (Martin and Wilkinson 1971). The matrix \( B \) is reduced to factored form using the Cholesky decomposition. These factors are used to form a congruence transformation that yields a symmetric real matrix whose eigenexpansion is obtained. The problem is then transformed back to the original coordinates. Eigenvectors are calculated and transformed as required.
Examples

Example 1

#include <imsl.h>

int main()
{
    int n = 3;
    float a[] = {1.1, 1.2, 1.4,
                 1.2, 1.3, 1.5,
                 1.4, 1.5, 1.6};
    float b[] = {2.0, 1.0, 0.0,
                 1.0, 2.0, 1.0,
                 0.0, 1.0, 2.0};
    float *eval;
    eval = imsl_f_eig_symgen (n, a, b, 0); /* Solve for eigenvalues */
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0); /* Print eigenvalues */
}

Output

Eigenvalues
1          2          3
1.386     -0.058     -0.003

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main()
{
    int n = 3;
    float a[] = {1.1, 1.2, 1.4,
                 1.2, 1.3, 1.5,
                 1.4, 1.5, 1.6};
    float b[] = {2.0, 1.0, 0.0,
                 1.0, 2.0, 1.0,
                 0.0, 1.0, 2.0};
    float *eval;
    float *evec;
    eval = imsl_f_eig_symgen (n, a, b,
                              IMSL_VECTORS, &evec,
                              0); /* Solve for eigenvalues and eigenvectors */
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0); /* Print eigenvalues and eigenvectors */
```
imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
```

**Output**

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.386</td>
<td>-0.058</td>
<td>-0.003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenvectors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.6431</td>
<td>-0.1147</td>
<td>-0.6817</td>
</tr>
<tr>
<td>2</td>
<td>-0.0224</td>
<td>-0.6872</td>
<td>0.7266</td>
</tr>
<tr>
<td>3</td>
<td>0.7655</td>
<td>0.7174</td>
<td>-0.0858</td>
</tr>
</tbody>
</table>

**Warning Errors**

**IMSL_SLOW_CONVERGENCE_SYM**

The iteration for an eigenvalue failed to converge in 100 iterations before deflating.

**Fatal Errors**

**IMSL_SUBMATRIX_NOT_POS_DEFINITE**

The leading # by # submatrix of the input matrix is not positive definite.

**IMSL_MATRIX_B_NOT_POS_DEFINITE**

Matrix B is not positive definite.
Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$, with $A$ and $B$ real.

**Synopsis**

```c
#include <imsl.h>

void imsl_f_geneig(int n, float *a, float *b, f_complex *alpha, float *beta, ..., 0)
```

The double analogue is `imsl_d_geneig`.

**Required Arguments**

- `int n` (Input)
  - Number of rows and columns in $A$ and $B$.
- `float *a` (Input)
  - Array of size $n \times n$ containing the coefficient matrix $A$.
- `float *b` (Input)
  - Array of size $n \times n$ containing the coefficient matrix $B$.
- `f_complex *alpha` (Output)
  - Vector of size $n$ containing scalars $\alpha_i$. If $\beta_i \neq 0$, $\lambda_i = \alpha_i/\beta_i$ for $i = 0, \ldots, n - 1$ are the eigenvalues of the system.
- `float *beta` (Output)
  - Vector of size $n$.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

void imsl_f_geneig(int n, float *a, float *b,
 IMSL_VECTORS, f_complex **evec,
 IMSL_VECTORS_USER, f_complex evecu[],
 IMSL_A_COL_DIM, int a_col_dim,
```
Optional Arguments

**IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size \( n \times n \) containing eigenvectors of the problem. Each vector is normalized to have Euclidean length equal to the value one. On return, the necessary space is allocated by the function. Typically, \( f_{\text{complex}} * \text{evec} \) is declared, and \&evec is used as an argument.

**IMSL_VECTORS_USER, f_complex evecu[] (Output)**

Compute eigenvectors of the matrix. An array of size \( n \times n \) containing the matrix of generalized eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length equal to the value one.

**IMSL_A_COL_DIM, int a_col_dim (Input)**

The column dimension of \( A \).
Default: \( a_{\text{col\_dim}} = n \)

**IMSL_B_COL_DIM, int b_col_dim (Input)**

The column dimension of \( B \).
Default: \( b_{\text{col\_dim}} = n \).

**IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)**

The column dimension of evecu.
Default: \( evecu_{\text{col\_dim}} = n \)

Description

The function \texttt{imsl\_f\_geneig} uses the QZ algorithm to compute the eigenvalues and eigenvectors of the generalized eigensystem \( \mathbf{Ax} = \lambda \mathbf{Bx} \), where \( \mathbf{A} \) and \( \mathbf{B} \) are real matrices of order \( n \). The eigenvalues for this problem can be infinite, so \( \alpha \) and \( \beta \) are returned instead of \( \lambda \). If \( \beta \) is nonzero, \( \lambda = \alpha / \beta \).

The first step of the QZ algorithm is to simultaneously reduce \( \mathbf{A} \) to upper-Hessenberg form and \( \mathbf{B} \) to upper-triangular form. Then, orthogonal transformations are used to reduce \( \mathbf{A} \) to quasi-upper-triangular form while keeping \( \mathbf{B} \) upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function \texttt{imsl\_f\_geneig} is based on the QZ algorithm due to Moler and Stewart (1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).
Examples

Example 1

In this example, the eigenvalue, $\lambda$, of system $Ax = \lambda Bx$ is computed, where

$$A = \begin{bmatrix} 1.0 & 0.5 & 0.0 \\ -10.0 & 2.0 & 0.0 \\ 5.0 & 1.0 & 0.5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0.5 & 0.0 & 0.0 \\ 3.0 & 3.0 & 0.0 \\ 4.0 & 0.5 & 1.0 \end{bmatrix}$$
```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int n = 3;
 f_complex alpha[3];
 float beta[3];
 int i;
 f_complex eval[3];

 float a[] =
 {1.0, 0.5, 0.0,
 -10.0, 2.0, 0.0,
 5.0, 1.0, 0.5};

 float b[] =
 {0.5, 0.0, 0.0,
 3.0, 3.0, 0.0,
 4.0, 0.5, 1.0};

 /* Compute eigenvalues */
 imsl_f_geneig (n, a, b, alpha, beta, 0);

 for (i=0; i<n; i++)
 if (beta[i] != 0.0)
 eval[i] = imsl_c_div(alpha[i],
 imsl_cf_convert(beta[i], 0.0));
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}
```

**Output**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.833</td>
<td>1.993</td>
<td>0.833</td>
</tr>
</tbody>
</table>

**Example 2**

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

```c
#include <imsl.h>
#include <stdio.h>
```
int main()
{
    int n = 3;
    f_complex alpha[3];
    float beta[3];
    int i;
    f_complex eval[3];
    f_complex *evec;

    float a[] =
    {1.0, 0.5, 0.0,
     -10.0, 2.0, 0.0,
     5.0, 1.0, 0.5};

    float b[] =
    {0.5, 0.0, 0.0,
     3.0, 3.0, 0.0,
     4.0, 0.5, 1.0};

    imsl_f_geneig (n, a, b, alpha, beta,
                   IMSL_VECTORS, &evec,
                   0);

    for (i=0; i<n; i++)
        if (beta[i] != 0.0)
            eval[i] = imsl_c_div(alpha[i],
                                 imsl_cf_convert(beta[i], 0.0));
        else
            printf("Infinite eigenvalue\n");

    /* Print eigenvalues */
    imsl_c_write_matrix("Eigenvalues", 1, n, eval,
                        0);

    /* Print eigenvectors */
    imsl_c_write_matrix("Eigenvectors", n, n, evec,
                        0);
}

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>( 0.833, 1.993)</td>
<td>( 0.833, -1.993)</td>
<td>( 0.500, -0.000)</td>
</tr>
<tr>
<td>2</td>
<td>( -0.197, 0.150)</td>
<td>( -0.197, -0.150)</td>
<td>( -0.000, 0.000)</td>
</tr>
<tr>
<td>3</td>
<td>( 0.782, 0.000)</td>
<td>( 0.782, 0.000)</td>
<td>( 1.000, 0.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>( -0.197, 0.150)</td>
<td>( -0.197, -0.150)</td>
<td>( -0.000, 0.000)</td>
</tr>
<tr>
<td>2</td>
<td>( -0.069, -0.568)</td>
<td>( -0.069, 0.568)</td>
<td>( -0.000, 0.000)</td>
</tr>
<tr>
<td>3</td>
<td>( 0.782, 0.000)</td>
<td>( 0.782, 0.000)</td>
<td>( 1.000, 0.000)</td>
</tr>
</tbody>
</table>
geneig (complex)

more...

Computes the generalized eigenexpansion of a system \( Ax = \lambda Bx \), with \( A \) and \( B \) complex.

Synopsis

```
#include <imsl.h>

void imsl_c_geneig(int n, f_complex *a, f_complex *b, f_complex *alpha, float *beta, ...) 0)
```

The double analogue is imsl_z_geneig.

Required Arguments

```
int n (Input)
 Number of rows and columns in \(A \) and \(B \).

f_complex *a (Input)
 Array of size \(n \times n \) containing the coefficient matrix \(A \).

f_complex *b (Input)
 Array of size \(n \times n \) containing the coefficient matrix \(B \).

f_complex *alpha (Output)
 Vector of size \(n \) containing scalars \(\alpha_i \). If \(\beta_i \neq 0 \), \(\lambda_i = \alpha_i/\beta_i \) for \(i = 0, \ldots, n - 1 \) are the eigenvalues of the system.

f_complex *beta (Output)
 Vector of size \(n \).
```

Synopsis with Optional Arguments

```
#include <imsl.h>

void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha, f_complex *beta,
 IMSL_VECTORS, f_complex **evec,
 IMSL_VECTORS_USER, f_complex evecu[],
 IMSL_A_COL_DIM, int a_col_dim,
```
Optional Arguments

IMSL_VECTORS, \texttt{f\_complex **evec} (Output)
The address of a pointer to an array of size \( n \times n \) containing eigenvectors of the problem. Each vector is normalized to have Euclidean length equal to the value one. On return, the necessary space is allocated by the function. Typically, \texttt{f\_complex *evec} is declared, and \&evec is used as an argument.

IMSL_VECTORS_USER, \texttt{f\_complex evecu[]} (Output)
Compute eigenvectors of the matrix. An array of size \( n \times n \) containing the matrix of generalized eigenvectors is returned in the space \texttt{evecu}. Each vector is normalized to have Euclidean length equal to the value one.

IMSL_A_COL_DIM, \texttt{int a\_col\_dim} (Input)
The column dimension of \( A \).
Default: \( a\_col\_dim = n \)

IMSL_B_COL_DIM, \texttt{int b\_col\_dim} (Input)
The column dimension of \( B \).
Default: \( b\_col\_dim = n \)

IMSL_EVECU_COL_DIM, \texttt{int evecu\_col\_dim} (Input)
The column dimension of \texttt{evecu}.
Default: \( evecu\_col\_dim = n \)

Description

The function \texttt{imsl\_c\_geneig} uses the QZ algorithm to compute the eigenvalues and eigenvectors of the generalized eigensystem \( Ax = \lambda Bx \), where \( A \) and \( B \) are complex matrices of order \( n \). The eigenvalues for this problem can be infinite, so \( \alpha \) and \( \beta \) are returned instead of \( \lambda \). If \( \beta \) is nonzero, \( \lambda = \alpha / \beta \).

The first step of the QZ algorithm is to simultaneously reduce \( A \) to upper-Hessenberg form and \( B \) to upper-triangular form. Then, orthogonal transformations are used to reduce \( A \) to quasi-upper-triangular form while keeping \( B \) upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function \texttt{imsl\_c\_geneig} is based on the QZ algorithm due to Moler and Stewart (1973).
Examples

Example 1

In this example, the eigenvalue, $\lambda$, of system $Ax = \lambda Bx$ is solved, where

\[
A = \begin{bmatrix}
1 & 0.5 + i & 5i \\
-10 & 2 + i & 0 \\
5 + i & 1 & 0.5 + 3i
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
0.5 & 0 & 0 \\
3 + 3i & 3 + 3i & i \\
4 + 2i & 0.5 + i & 1 + i
\end{bmatrix}
\]

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int n = 3, i;
 f_complex alpha[3], beta[3], eval[3];
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};

 /* Compute eigenvalues */
 imsl_c_geneig (n, a, b, alpha, beta, 0);

 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf("Infinite eigenvalue\n");

 /* Print eigenvalues */
 imsl_c_write_matrix("Eigenvalues", 1, n, eval, 0);
}
```

Output

Eigenvalues

$1$                     $2$                     $3$

$(-8.18, -25.38)$  $(2.18, 0.61)$  $(0.12, -0.39)$
Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int n = 3, i;
 f_complex alpha[3], beta[3], eval[3], *evec;
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};

 /* Compute eigenvalues and eigenvectors */
 imsl_c_geneig (n, a, b, alpha, beta,
 IMSL_VECTORS, & evec, 0);

 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

 /*Print eigenvectors */
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}
```

Output

```
Eigenvalues
1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)

Eigenvectors
1
1 (-0.3267, -0.1245) (-0.3007, -0.2444) (0.0371, 0.1518)
2 (0.1767, 0.0054) (0.8959, 0.0000) (0.9577, 0.0000)
3 (0.9201, 0.0000) (-0.2019, 0.0801) (0.2215, 0.0968)
```
### Functions

#### Cubic Spline Interpolation
- Derivative end conditions: `cub_spline_interp_e_cnd` 306
- Shape preserving: `cub_spline_interp_shape` 315
- Tension-Continuity-Bias Conditions: `cub_spline_tcb` 321

#### Cubic Spline Evaluation and Integration
- Evaluation and differentiation: `cub_spline_value` 329
- Integration: `cub_spline_integral` 333

#### Spline Interpolation
- One-dimensional interpolation: `spline_interp` 335
- Knot sequence given interpolation data: `spline_knots` 341
- Two-dimensional, tensor-product interpolation: `spline_2d_interp` 346

#### Spline Evaluation and Integration
- One-dimensional evaluation and differentiation: `spline_value` 353
- One-dimensional integration: `spline_integral` 357
- Two-dimensional evaluation and differentiation: `spline_2d_value` 360
- Two-dimensional integration: `spline_2d_integral` 365

#### Multi-dimensional
- Multidimensional interpolation and differentiation: `spline_nd_interp` 368

#### Least-Squares Approximation and Smoothing
- General functions: `user_fcn_least_squares` 373
- Splines with fixed knots: `spline_least_squares` 382
- Tensor-product splines with fixed knots: `spline_2d_least_squares` 389
- Cubic smoothing spline: `cub_spline_smooth` 395
- Splines with constraints: `spline_lsq_constrained` 400
- Smooth one-dimensional data by error detection: `smooth_1d_data` 409
Scattered Data Interpolation
Akima's surface-fitting method ........................................... scattered_2d_interp 414

Scattered Data Least Squares
Fit using radial-basis functions ................................. radial_scattered_fit 419
Evaluate radial-basis fit ................................................. radial_evaluate 427
Usage Notes

The majority of the functions in this chapter produce cubic piecewise polynomial or general spline functions that either interpolate or approximate given data or support the evaluation and integration of these functions. Two major subdivisions of functions are provided. The cubic spline functions begin with the prefix “cub_spline_” and use the piecewise polynomial representation described below. The spline functions begin with the prefix “spline_” and use the B-spline representation described below. Most of the spline functions are based on routines in the book by de Boor (1978).

We provide a few general purpose routines for general least-squares fit to data and a routine that produces an interpolant to two-dimensional scattered data.

Piezewise Polynomials

A univariate piecewise polynomial (function) \( p \) is specified by giving its breakpoint sequence \( \xi \in \mathbb{R} \), the order \( k \) (degree \( k - 1 \)) of its polynomial pieces, and the \( k \times (n - 1) \) matrix \( c \) of its local polynomial coefficients. In terms of this information, the piecewise polynomial (ppoly) function is given by

\[
p(x) = \sum_{j=1}^{k} c_{ji} (x - \xi_i)^{j-1} \quad \text{for} \quad \xi_i \leq x \leq \xi_{i+1}
\]

The breakpoint sequence \( \xi \) is assumed to be strictly increasing, and we extend the ppoly function to the entire real axis by extrapolation from the first and last intervals. This representation is redundant when the ppoly function is known to be smooth. For example, if \( p \) is known to be continuous, then we can compute \( c_{1,i+1} \) from the \( c_{ii} \) as follows:

\[
c_{1,i+1} = p(\xi_{i+1}) = \sum_{j=1}^{k} c_{ji} \frac{(\xi_{i+1} - \xi_i)^{j-1}}{(j-1)!}
\]

For smooth ppoly, we prefer to use the nonredundant representation in terms of the “basis” or B-splines, at least when such a function is first to be determined.

Splines and B-Splines

B-splines provide a particularly convenient and suitable basis for a given class of smooth ppoly functions. Such a class is specified by giving its breakpoint sequence, its order \( k \), and the required smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified by giving its knot sequence \( t \in \mathbb{R}^M \). The specification rule is as follows: If the class is to have all derivatives up to and including the \( j \)-th derivative continuous across the interior breakpoint \( \xi_i \), then the number \( \xi_i \) should occur \( k - j - 1 \) times in the knot sequence. Assuming that \( \xi_1 \) and \( \xi_n \) are the endpoints of the interval of interest, choose the first \( k \) knots equal to \( \xi_1 \) and the last \( k \) knots equal to \( \xi_n \). This can be done because the B-splines are defined to be right continuous near \( \xi_1 \) and left continuous near \( \xi_n \).
When the above construction is completed, a knot sequence $t$ of length $M$ is generated, and there are $m = M - k$ B-splines of order $k$, for example $B_0, \ldots, B_{m-1}$, spanning the ppoly functions on the interval with the indicated smoothness. That is, each ppoly function in this class has a unique representation

$$p = a_0B_0 + a_1B_1 + \ldots + a_{m-1}B_{m-1}$$

as a linear combination of B-splines. A B-spline is a particularly compact ppoly function. $B_i$ is a nonnegative function that is nonzero only on the interval $[t_i, t_{i+k}]$. More precisely, the support of the $i$-th B-spline is $[t_i, t_{i+k}]$. No ppoly function in the same class (other than the zero function) has smaller support (i.e., vanishes on more intervals) than a B-spline. This makes B-splines particularly attractive basis functions since the influence of any particular B-spline coefficient extends only over a few intervals. When it is necessary to emphasize the dependence of the B-spline on its parameters, we will use the notation $B_{i,k,t}$ to denote the $i$-th B-spline of order $k$ for the knot sequence $t$.

**Cubic Splines**

Cubic splines are smooth (i.e., $C^0$, $C^1$ or $C^2$), fourth-order ppoly functions. For historical and other reasons, cubic splines are the most heavily used ppoly functions. Therefore, we provide special functions for their construction and evaluation. These routines use the ppoly representation as described above for general ppoly functions (with $k = 4$).

We provide three cubic spline interpolation functions: `imsl_f_cub_spline_interp_e_cnd`, `imsl_f_cub_spline_interp_shape` and `imsl_f_cub_spline_tcb`. The function `imsl_f_cub_spline_interp_e_cnd` allows the user to specify various endpoint conditions (such as the value of the first or second derivative at the right and left points). The natural cubic spline, for example, can be obtained using this function by setting the second derivative to zero at both endpoints. The function `imsl_f_cub_spline_interp_shape` is designed so that the shape of the curve matches the shape of the data. In particular, one option of this function preserves the convexity of the data while the default attempts to minimize oscillations. The function `imsl_f_cub_spline_tcb` allows the user to specify tension, continuity and bias parameters at each data point.

It is possible that the cubic spline interpolation functions will produce unsatisfactory results. For example, the interpolant may not have the shape required by the user, or the data may be noisy and require a least-squares fit. The interpolation function `imsl_f_spline interp` is more flexible, as it allows you to choose the knots and order of the spline interpolant. We encourage the user to use this routine and exploit the flexibility provided.

**Tensor Product Splines**

The simplest method of obtaining multivariate interpolation and approximation functions is to take univariate methods and form a multivariate method via tensor products. In the case of two-dimensional spline interpolation, the derivation proceeds as follows. Let $t_x$ be a knot sequence for splines of order $k_x$, and $t_y$ be a knot sequence for splines of order $k_y$. Let $N_x + k_x$ be the length of $t_x$, and $N_y + k_y$ be the length of $t_y$. Then, the tensor-product spline has the following form.
Given two sets of points

\[
\{x_i\}_{i=1}^{N_x}
\]
and

\[
\{y_i\}_{i=1}^{N_y}
\]
for which the corresponding univariate interpolation problem can be solved, the tensor-product interpolation problem finds the coefficients \(c_{nm}\) so that

\[
\sum_{m=0}^{N_y-1} \sum_{n=0}^{N_x-1} c_{nm} B_{n,kx}(x) B_{m,ky}(y) = f_{ij}
\]

This problem can be solved efficiently by repeatedly solving univariate interpolation problems as described in de Boor (1978, p. 347). Three-dimensional interpolation can be handled in an analogous manner. This chapter provides functions that compute the two-dimensional, tensor-product spline coefficients given two-dimensional interpolation data (\texttt{imsl\_f\_spline\_2d\_interp}) and that compute the two-dimensional, tensor-product spline coefficients for a tensor-product, least-squares problem (\texttt{imsl\_f\_spline\_2d\_least\_squares}). In addition, we provide evaluation, differentiation, and integration functions for the two-dimensional, tensor-product spline functions. The relevant functions are \texttt{imsl\_f\_spline\_2d\_value} and \texttt{imsl\_f\_spline\_2d\_integral}.

### Scattered Data Interpolation

The IMSL C Math Library provides one function, \texttt{imsl\_f\_scattered\_2d\_interp}, that returns values of an interpolant to scattered data in the plane. This function is based on work by Akima (1978), which uses \(C^1\) piece-wise quintics on a triangular mesh.

### Multi-dimensional Interpolation

\texttt{imsl\_f\_spline\_nd\_interp} computes a piecewise polynomial interpolant, of up to 15-th degree, to a function of up to 7 variables, defined on a multi-dimensional grid.

### Least Squares

The IMSL C Math Library includes functions for smoothing noisy data. The function \texttt{imsl\_f\_user\_fcn\_least\_squares} computes regressions with user-supplied functions. The function \texttt{imsl\_f\_spline\_least\_squares} computes a least-squares fit using splines with fixed knots or variable knots. These functions produce cubic spline, least-squares fit by default. Optional arguments allow the user to choose
the order and the knot sequence. IMSL C Math Library also includes a tensor-product spline regression function (imsl_f_spline_2d_least_squares), mentioned above. The function imsl_f_radial_scattered_fit computes an approximation to scattered data in $\mathbb{R}^N$ using radial-basis functions.

In addition to the functions listed above, several functions in Chapter 10, “Statistics and Random Number Generation”, provide for polynomial regression and general linear regression.

### Smoothing by Cubic Splines

One “smoothing spline” function is provided. The default action of imsl_f_cub_spline_smooth estimates a smoothing parameter by cross-validation and then returns the cubic spline that smooths the data. If the user wishes to supply a smoothing parameter, then this function returns the appropriate cubic spline.

### Structures for Splines and Piecewise Polynomials

This optional section includes more details concerning the structures for splines and piecewise polynomials.

#### B-Splines

A spline may be viewed as a mapping with domain $\mathbb{R}^d$ and target $\mathbb{R}^r$, where $d$ and $r$ are positive integers. For this version of the IMSL C Math Library, only $r = 1$ is supported. Thus, if $s$ is a spline, then for some $d$ and $r$

$$s : \mathbb{R}^d \rightarrow \mathbb{R}^r$$

This implies that such a spline $s$ must have $d$ knot sequences and orders (one for each domain dimension). Thus, associated with $s$, we have knots and orders

$$t_0, \ldots, t_{d-1}$$

$$k_0, \ldots, k_{d-1}$$

The precise form of the spline follows:

$$s(x) = (s_0(x), \ldots, s_{r-1}(x)) \quad x = (x_1, \ldots, x_d) \in \mathbb{R}^d$$

where the following equation is true.

$$s_j(x) = \sum_{j_d = 0}^{n_d - 1} \ldots \sum_{j_0 = 0}^{n_0 - 1} c_{j_0, \ldots, j_{d-1}}^j B_{j_0, k_0}^i \cdots B_{j_{d-1}, k_{d-1}}^i x^i$$

Note that $n_i$ is the number of knots in $t_i$ minus the order $k_i$.

We store all the information for a spline in one structure called imsl_f_spline. (If the type is double, then the structure name is imsl_d_spline, and the float becomes double.) The specification for this structure follows:

```c
typedef struct {
 int domain_dim;
 int target_dim;
```
int *order;
int *num_coef;
int *num_knots;
float **knots;
float **coef;
}
Imsl_f_spline;

The following function demonstrates how the contents of an \texttt{Imsl\_f\_spline} can be viewed:

```c
#include <imsl.h>
#include <stdio.h>

void sp_print(Imsl_f_spline *sp) {
 int i, j;

 printf("Domain dimension: %d\n", sp->domain_dim);
 printf("Target dimension: %d\n", sp->target_dim);
 for (i = 0; i < sp->domain_dim; i++) {
 printf("Domain #%d\n", (i + 1));
 printf(" Order %d\n", sp->order[i]);
 printf(" # of coefficients %d\n", sp->num_coef[i]);
 printf(" # of knots %d\n", sp->num_knots[i]);
 printf(" Knots:\n");
 for (j = 0; j < (sp->num_knots[i]); j++)
 printf("%8.3f\n", sp->knots[i][j]);
 }
 /*
 * Handle printing of 1D and 2D B-spline coefficients separately.
 */
 if (sp->domain_dim==1) {
 imsl_f_write_matrix("Spline Coefficients",
 sp->num_coef[0], 1, sp->coef[0], 0);
 }
 if (sp->domain_dim==2) {
 /*
 * Coefficients of 2D B-splines are stored in column-major order.
 * To view the coefficients correctly we reverse the dimensions and
 * use optional argument IMSL_TRANSPOSE when calling
 * imsl_f_write_matrix() .
 */
 imsl_f_write_matrix("Spline Coefficients",
 sp->num_coef[1], sp->num_coef[0],
 sp->coef[0], IMSL_TRANSPOSE, 0);
 }
}
```
Example

The data for this example comes from the function $e^x \sin (x + y)$ on the rectangle $[0, 3] \times [0, 5]$. This function is sampled on a $50 \times 25$ grid and a tensor-product spline approximation is computed using `imsl_f_spline_2d_least_squares()`. The contents of the spline structure are then printed using the function `sp_print()` provided above.

```c
#include <imsl.h>
void sp_print(Imsl_f_spline *sp);

int main()
{
#define NXDATA 50
#define NYDATA 25
 /* Define function */
#define F(x,y) ((float)(exp(x)*sin(x+y))

 int i, j;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA];
 Imsl_f_spline *sp;

 /* Set up grid */
 for (i = 0; i < NXDATA; i++)
 xdata[i] = 3.*(float) i / ((float)(NXDATA-1));
 for (i = 0; i < NYDATA; i++)
 ydata[i] = 5.*(float) i / ((float)(NYDATA-1));

 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++)
 for (j = 0; j < NYDATA; j++)
 fdata[i][j] = F(xdata[i], ydata[j]);

 /* Compute tensor-product fit */
 sp = imsl_f_spline_2d_least_squares(NXDATA, &xdata[0], NYDATA,
 &ydata[0], &fdata[0][0], 5, 7, 0);

 sp_print(sp);
}
```

Output

Domain dimension: 2
Target dimension: 1

Domain #1
Order 4
# of coefficients 5
# of knots 9
Knots:
0.000
0.000
0.000
0.000
1.500
3.000
3.000
3.000
3.000

Domain #2
Order 4
# of coefficients 7
# of knots 11
Knots:
0.000
0.000
0.000
0.000
1.250
2.500
3.750
5.000
5.000
5.000
5.000
5.000

Spline Coefficients

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.02</td>
<td>0.43</td>
<td>1.34</td>
<td>0.87</td>
<td>-0.78</td>
</tr>
<tr>
<td>2</td>
<td>0.52</td>
<td>0.99</td>
<td>1.62</td>
<td>0.35</td>
<td>-1.40</td>
</tr>
<tr>
<td>3</td>
<td>3.35</td>
<td>4.99</td>
<td>6.16</td>
<td>-0.46</td>
<td>-6.45</td>
</tr>
<tr>
<td>4</td>
<td>10.43</td>
<td>7.44</td>
<td>-5.11</td>
<td>-16.78</td>
<td>-5.56</td>
</tr>
<tr>
<td>5</td>
<td>2.98</td>
<td>-5.24</td>
<td>-23.55</td>
<td>-18.74</td>
<td>11.62</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.18</td>
<td>-1.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.30</td>
<td>-0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-4.60</td>
<td>-2.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.10</td>
<td>10.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>21.49</td>
<td>20.07</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Piecewise Polynomials**

For ppoly functions, we view a ppoly as a mapping with domain $\mathbb{R}^d$ and target $\mathbb{R}^r$ where $d$ and $r$ are positive integers. Thus, if $p$ is a ppoly, then for some $d$ and $r$ the following is true.

$$p : \mathbb{R}^d \rightarrow \mathbb{R}^r$$

For this version of the C MathLibrary, only $r = d = 1$ is supported. See the section Piecewise Polynomials near the beginning of this chapter for a detailed description of ppoly construction.

We store all the information for a ppoly in one structure called `imsf_ppoly`. (If the type is `double`, then the structure name is `imsld_ppoly`, and the `float` becomes `double`.) The following is the specification for this structure.

```c
typedef struct {
```
int   domain_dim;
int   target_dim;
int   *order;
int   *num_coef;
int   *num_breakpoints;
float **breakpoints;
float **coef;
} Imsl_f_ppoly;

The following function demonstrates how the contents of an `Imsl_f_ppoly` can be viewed.

```c
#include <imsl.h>
#include <stdio.h>

void pp_print(Imsl_f_ppoly *pp) {
 int i, j, k;
 printf("Domain dimension: %d\n", pp->domain_dim);
 printf("Target dimension: %d\n", pp->target_dim);
 for (i = 0; i < pp->domain_dim; i++) {
 printf("Domain #\n", (i + 1));
 printf("Order %d\n", pp->order[i]);
 printf("# of coefficients %d\n", pp->num_coef[i]);
 printf("# of breakpoints %d\n", pp->num_breakpoints[i]);
 printf("Breakpoints:\n");
 for (j = 0; j < (pp->num_breakpoints[i]); j++)
 printf("%8.3f\n", pp->breakpoints[i][j]);
 }
 printf("\nCoefficients:\n");
 for (j = 0; j < ((pp->num_breakpoints[0]) - 1); j++) {
 printf("ppoly piece %4d", j + 1);
 for (k = 0; k < (pp->order[0]); k++)
 printf(" %9.3f ", pp->coef[0][j * (pp->order[0]) + k]);
 printf("\n");
 }
}
```

**Example**

In this example, a cubic spline interpolant to a function $f$ is computed. The contents of the ppoly structure are then printed using the sample code `pp_print()` provided above.

```c
#include <imsl.h>
void pp_print(Imsl_f_ppoly *pp);
```
```c
int main()
{
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

int

float fdata[NDATA], xdata[NDATA], x, y;
Imsl_f_ppoly *ppoly;
 /* Compute xdata and fdata */

for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
}
 /* Compute cubic spline interpolant */

ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print contents of ppoly structure. */

pp_print(ppoly);
}
```

Output

Domain dimension: 1
Target dimension: 1

Domain #1
Order 4
# of coefficients 40
# of breakpoints 11
Breakpoints:

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

Coefficients:

<table>
<thead>
<tr>
<th>ppoly piece</th>
<th>1</th>
<th>0.000</th>
<th>23.414</th>
<th>-310.479</th>
<th>1250.916</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppoly piece</td>
<td>2</td>
<td>0.997</td>
<td>-1.379</td>
<td>-185.387</td>
<td>1250.917</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>3</td>
<td>0.141</td>
<td>-13.663</td>
<td>-60.295</td>
<td>3294.986</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>4</td>
<td>-0.978</td>
<td>-3.218</td>
<td>269.203</td>
<td>-1956.621</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>5</td>
<td>-0.279</td>
<td>13.919</td>
<td>73.541</td>
<td>-3253.285</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>6</td>
<td>0.938</td>
<td>5.007</td>
<td>-251.787</td>
<td>1394.176</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>7</td>
<td>0.412</td>
<td>13.201</td>
<td>-112.370</td>
<td>3540.767</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>8</td>
<td>-0.880</td>
<td>-6.734</td>
<td>241.707</td>
<td>-1152.020</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>9</td>
<td>-0.537</td>
<td>11.677</td>
<td>126.505</td>
<td>-2758.902</td>
</tr>
<tr>
<td>ppoly piece</td>
<td>10</td>
<td>0.804</td>
<td>10.532</td>
<td>-149.385</td>
<td>-2758.903</td>
</tr>
</tbody>
</table>
cub_spline_interp_e_cnd

Computes a cubic spline interpolant, specifying various endpoint conditions. The default interpolant satisfies the "not-a-knot" condition.

Synopsis

```c
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd(int ndata, float xdata[], float fdata[], ...
,..., 0)
```

The type `Imsl_d_ppoly` function is `imsl_d_cub_spline_interp_e_cnd`.

Required Arguments

- `int ndata` (Input)
  Number of data points.

- `float xdata[]` (Input)
  Array with `ndata` components containing the abscissas of the interpolation problem.

- `float fdata[]` (Input)
  Array with `ndata` components containing the ordinates for the interpolation problem.

Return Value

A pointer to the structure that represents the cubic spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd(int ndata, float xdata[], float fdata[],
IMSL_LEFT, int ileft, float left,
IMSL_RIGHT, int iright, float right,
IMSL_PERIODIC,
0)
```
Optional Arguments

IMSL_LEFT, int ileft, float left (Input)
Set the value for the first or second derivative of the interpolant at the left endpoint. If ileft = i,
then the interpolant s satisfies
\[ s^{(i)}(x_L) = left \]
where \( x_L \) is the leftmost abscissa. The only valid values for ileft are 1 or 2.

IMSL_RIGHT, int iright, float right (Input)
Set the value for the first or second derivative of the interpolant at the right endpoint. If iright = i,
then the interpolant s satisfies
\[ s^{(i)}(x_R) = right \]
where \( x_R \) is the rightmost abscissa. The only valid values for iright are 1 or 2.

IMSL_PERIODIC
Compute the \( C^2 \) periodic interpolant to the data. That is, we require
\[ s^{(i)}(x_L) = s^{(i)}(x_R) \quad i = 0, 1, 2 \]
where \( s, x_L, \) and \( x_R \) are defined above.

Description

The function imsl_f_cub_spline_interp_e_cnd computes a \( C^2 \) cubic spline interpolant to a set of data points \((x_i, f_i)\) for \( i = 0, \ldots, n_{\text{data}} - 1 = n \). The breakpoints of the spline are the abscissas. We emphasize here that for all the univariate interpolation functions, the abscissas need not be sorted. Endpoint conditions are to be selected by the user. The user may specify "not-a-knot" or first derivative or second derivative at each endpoint, or \( C^2 \) periodicity may be requested (see de Boor 1978, Chapter 4). If no defaults are selected, then the "not-a-knot" spline interpolant is computed. If the IMSL_PERIODIC keyword is selected, then all other keywords are ignored; and a \( C^2 \) periodic interpolant is computed. In this case, if the \( f_{\text{data}} \) values at the left and right endpoints are not the same, then a warning message is issued; and we set the right value equal to the left. If IMSL_LEFT or IMSL_RIGHT are selected (in the absence of IMSL_PERIODIC), then the user has the ability to select the values of the first or second derivative at either endpoint. The default case (when the keyword is not used) is the "not-a-knot" condition on that endpoint. Thus, when no optional arguments are chosen, this function produces the "not-a-knot" interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth (say \( C^4 \)) function \( f \), i.e. \( f = f(x_i) \), then the error will behave in a predictable fashion. Let \( \xi \) be the breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies
\[ \| f - s \|_{[\xi_0, \xi_n]} \leq C \| f^{(4)} \|_{[\xi_0, \xi_n]} |\xi|^4 \]

where

\[ |\xi| = \max_{i=0, \ldots, n-1} |\xi_{i+1} - \xi_i| \]

For more details, see de Boor (1978, Chapters 4 and 5).

The return value for this function is a pointer to the structure `imsl_f_ppoly`. The calling program must receive this in a pointer `imsl_f_ppoly *ppoly`. This structure contains all the information to determine the spline (stored as a piecewise polynomial) that is computed by this function. For example, the following code sequence evaluates this spline at \( x \) and returns the value in \( y \)

\[ y = \text{imsl_f_cub_spline_value}(x, \text{ppoly}, 0) \]

The difference between the default ("not-a-knot") spline and the interpolating cubic spline, which has first derivative set to 1 at the left end and the second derivative set to \(-90\) at the right end, is illustrated in the following figure.

![Figure 3.1 — Two Interpolating Splines](image)

### Examples

#### Example 1

In this example, a cubic spline interpolant to a function \( f \) is computed. The values of this spline are then compared with the exact function values. Since we are using the default settings, the interpolant is determined by the "not-a-knot" condition (see de Boor 1978).
```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F(x) (float)(sin(15.0*x))

int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *ppoly;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error
");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,ppoly,0);
 printf(" %6.3f %10.3f %10.3f %10.4f
", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.050</td>
<td>0.682</td>
<td>0.809</td>
<td>0.1270</td>
</tr>
<tr>
<td>0.100</td>
<td>0.997</td>
<td>0.997</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.150</td>
<td>0.778</td>
<td>0.723</td>
<td>0.0552</td>
</tr>
<tr>
<td>0.200</td>
<td>0.141</td>
<td>0.141</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.549</td>
<td>0.0228</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.843</td>
<td>0.0162</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.441</td>
<td>0.0093</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.903</td>
<td>0.0199</td>
</tr>
<tr>
<td>0.600</td>
<td>0.412</td>
<td>0.412</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.320</td>
<td>-0.315</td>
<td>0.0049</td>
</tr>
<tr>
<td>0.700</td>
<td>-0.880</td>
<td>-0.880</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>-0.968</td>
<td>-0.938</td>
<td>0.0295</td>
</tr>
</tbody>
</table>
```
Example 2

In this example, a cubic spline interpolant to a function $f$ is computed. The value of the derivative at the left endpoint and the value of the second derivative at the right endpoint are specified. The values of this spline are then compared with the exact function values.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F(x) (float)(sin(15.0*x))

int main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA], xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 1;
 left = 0.0;
 iright = 2;
 right = -225.0*sin(15.0);
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error

");
 for (i=0; i<NDATA; i++) {
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}
```
Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.050</td>
<td>0.682</td>
<td>0.438</td>
<td>0.2441</td>
</tr>
<tr>
<td>0.100</td>
<td>0.997</td>
<td>0.997</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.150</td>
<td>0.778</td>
<td>0.822</td>
<td>0.0442</td>
</tr>
<tr>
<td>0.200</td>
<td>0.141</td>
<td>0.141</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.575</td>
<td>0.0038</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.836</td>
<td>0.0233</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.439</td>
<td>0.0111</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Example 3

This example computes the natural cubic spline interpolant to a function \( f \) by forcing the second derivative of the interpolant to be zero at both endpoints. As in the previous example, the exact function values are computed with the values of the spline.

```c
#include <ims1.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

int main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA],
 xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 2;
 left = 0.0;
 iright = 2;
 right = 0.0;
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right, 0);
}
/* Print results for first half */
/* of interval */
printf(" x F(x) Interpolant Error
\n");
for (i = 0; i < NDATA; i++){
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.050</td>
<td>0.682</td>
<td>0.667</td>
<td>0.0150</td>
</tr>
<tr>
<td>0.100</td>
<td>0.997</td>
<td>0.997</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.150</td>
<td>0.778</td>
<td>0.761</td>
<td>0.0172</td>
</tr>
<tr>
<td>0.200</td>
<td>0.141</td>
<td>0.141</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.559</td>
<td>0.0126</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.840</td>
<td>0.0189</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.440</td>
<td>0.0098</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Example 4

This example computes the cubic spline interpolant to a functions, and imposes the periodic end conditions $s(a) = s(b)$, $s'(a) = s'(b)$, and $s''(a) = s''(b)$, where a is the leftmost abscissa and b is the rightmost abscissa.
```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define F(x)   (float)(sin(x))

int main()
{
    int                i;
    float              x, y, twopi, fdata[NDATA], xdata[NDATA];
    Imsl_f_ppoly       *pp;
    twopi = 2.0*imsl_f_constant("pi", 0);
    for (i = 0; i < NDATA; i++) {
        xdata[i] = twopi*(float)(i)/(NDATA-1);
        fdata[i] = F(xdata[i]);
    }
    fdata[NDATA-1] = fdata[0];
    pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
                                       IMSL_PERIODIC,
                                       0);
    printf("x F(x) Interpolant Error\n\n");
    printf("%s %s %s %s\n", "x", "F(x)", "Interpolant", "Error");
    printf("%6.3f %10.3f %10.3f %10.4f\n", x, F(x), y, fabs(F(x)-y));
}
```

Output

<table>
<thead>
<tr>
<th>(x)</th>
<th>(F(x))</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.314</td>
<td>0.309</td>
<td>0.309</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.628</td>
<td>0.588</td>
<td>0.588</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.942</td>
<td>0.809</td>
<td>0.809</td>
<td>0.0004</td>
</tr>
<tr>
<td>1.257</td>
<td>0.951</td>
<td>0.951</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.571</td>
<td>1.000</td>
<td>1.000</td>
<td>0.0004</td>
</tr>
<tr>
<td>1.885</td>
<td>0.951</td>
<td>0.951</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.199</td>
<td>0.809</td>
<td>0.809</td>
<td>0.0004</td>
</tr>
<tr>
<td>2.513</td>
<td>0.588</td>
<td>0.588</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.827</td>
<td>0.309</td>
<td>0.309</td>
<td>0.0001</td>
</tr>
<tr>
<td>3.142</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Warning Errors

IMSL_NOT_PERIODIC
The data is not periodic. The rightmost fdata value is set to the leftmost fdata value.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES
The xdata values must be distinct.
cub_spline_interp_shape

Computes a shape-preserving cubic spline.

Synopsis

```c
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_shape(int ndata, float xdata[], float fdata[], ...
```

The type `Imsl_d_ppoly` function is `imsl_d_cub_spline_interp_shape`.

Required Arguments

- **int ndata** (Input)
 Number of data points.
- **float xdata[]** (Input)
 Array with `ndata` components containing the abscissas of the interpolation problem.
- **float fdata[]** (Input)
 Array with `ndata` components containing the ordinates for the interpolation problem.

Return Value

A pointer to the structure that represents the cubic spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_shape(int ndata, float xdata[], float fdata[],

    IMSL_CONCAVE,
    IMSL_CONCAVE_ITMAX, int itmax,
    0)
```

Optional Arguments

- **IMSL_CONCAVE**
 This option produces a cubic interpolant that will preserve the concavity of the data.
IMSL_CONCAVE_ITMAX, int itmax (Input)

This option allows the user to set the maximum number of iterations of Newton's Method.

Default: \(itmax = 25 \).

Description

The function `imsl_f_cub_spline_interp_shape` computes a \(C^1 \) cubic spline interpolant to a set of data points \((x_i, f_i)\) for \(i = 0, ..., n_{\text{data}} - 1 = n \). The breakpoints of the spline are the abscissas. This computation is based on a method by Akima (1970) to combat wiggles in the interpolant. Endpoint conditions are automatically determined by the program; see Akima (1970) or de Boor (1978).

If the optional argument `IMSL_CONCAVE` is chosen, then this function computes a cubic spline interpolant to the data. For ease of explanation, we will assume that \(x_i < x_{i+1} \), although it is not necessary for the user to sort these data values. If the data are strictly convex, then the computed spline is convex, \(C^2 \), and minimizes the expression

\[
\int_{x_1}^{x_n} (g''')^2
\]

over all convex \(C^1 \) functions that interpolate the data. In the general case, when the data have both convex and concave regions, the convexity of the spline is consistent with the data, and the above integral is minimized under the appropriate constraints. For more information on this interpolation scheme, refer to Michelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this function is that it is not possible, a priori, to predict the number of breakpoints of the resulting interpolant. In most cases, there will be breakpoints at places other than data locations. This function should be used when it is important to preserve the convex and concave regions implied by the data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear polynomials are reproduced.) This explains the theoretical error estimate below.

If the data points arise from the values of a smooth (say \(C^4 \)) function \(f \); i.e., \(f_i = f(x_i) \), then the error will behave in a predictable fashion. Let \(\xi \) be the breakpoint vector for either of the above spline interpolants. Then, the maximum absolute error satisfies

\[
\left\| f - s \right\|_{\left[\xi_{0..m} \right]} \leq C \left\| f^{(2)} \right\|_{\left[\xi_{0..m} \right]} |\xi|^2
\]

where

\[
|\xi| := \max_{i=0,\ldots,m-1} \left| \xi_{i+1} - \xi_i \right|
\]

and \(\xi_m \) is the last breakpoint.
The return value for this function is a pointer of the type `imsl_f_ppoly`. The calling program must receive this in a pointer `imsl_f_ppoly *ppoly`. This structure contains all the information to determine the spline (stored as a piecewise polynomial) that is computed by this function. For example, the following code sequence evaluates this spline at \(x \) and returns the value in \(y \).

\[
y = \text{imsl}_f_\text{cub}_\text{spline}_\text{value}(x, \text{ppoly}, 0)
\]

The difference between the convexity-preserving spline and Akima's spline is illustrated in the following figure. Note that the convexity-preserving interpolant exhibits linear segments where the convexity constraints are binding.

Examples

Example 1

In this example, a cubic spline interpolant to a function \(f \) is computed. The values of this spline are then compared with the exact function values.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F(x) (float)(sin(15.0*x))
```
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp; /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error

");
 for (i = 0; i < 2*NDATA-1; i++) {
 x = (float) i / (float) (2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f
", x, F(x), y, fabs(F(x)-y));
 }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.050</td>
<td>0.682</td>
<td>0.818</td>
<td>0.1360</td>
</tr>
<tr>
<td>0.100</td>
<td>0.997</td>
<td>0.997</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.150</td>
<td>0.778</td>
<td>0.615</td>
<td>0.1635</td>
</tr>
<tr>
<td>0.200</td>
<td>0.141</td>
<td>0.141</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.478</td>
<td>0.0934</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.812</td>
<td>0.0464</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.386</td>
<td>0.0645</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.854</td>
<td>0.0683</td>
</tr>
<tr>
<td>0.600</td>
<td>0.412</td>
<td>0.412</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.320</td>
<td>-0.276</td>
<td>0.0433</td>
</tr>
<tr>
<td>0.700</td>
<td>-0.880</td>
<td>-0.880</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>-0.968</td>
<td>-0.889</td>
<td>0.0789</td>
</tr>
<tr>
<td>0.800</td>
<td>-0.537</td>
<td>-0.537</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.850</td>
<td>0.183</td>
<td>0.149</td>
<td>0.0338</td>
</tr>
<tr>
<td>0.900</td>
<td>0.804</td>
<td>0.804</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.950</td>
<td>0.994</td>
<td>0.932</td>
<td>0.0613</td>
</tr>
<tr>
<td>1.000</td>
<td>0.650</td>
<td>0.650</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Example 2

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values.
```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11        /* Define function */
#define F(x)   (float)(sin(15.0*x))

int main()
{
    int                i;
    float              fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_ppoly       *pp;
    /* Compute xdata and fdata */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)(i)/(NDATA-1);
        fdata[i] = F(xdata[i]);
    }
    /* Compute cubic spline interpolant */
    pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata,
                                        IMSL_CONCAVE,
                                        0);
    /* Print results */
    printf("    x        F(x)      Interpolant   Error

");
    for (i = 0; i < 2*NDATA-1; i++) {
        x = (float) i /(float)(2*NDATA-2);
        y = imsl_f_cub_spline_value(x, pp, 0);
        printf(" %6.3f %10.3f  %10.3f  %10.4f
", x, F(x), y,
               fabs(F(x)-y));
    }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.050</td>
<td>0.682</td>
<td>0.667</td>
<td>0.0150</td>
</tr>
<tr>
<td>0.100</td>
<td>0.997</td>
<td>0.997</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.150</td>
<td>0.778</td>
<td>0.761</td>
<td>0.0172</td>
</tr>
<tr>
<td>0.200</td>
<td>0.141</td>
<td>0.141</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.559</td>
<td>0.0126</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.840</td>
<td>0.0189</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.440</td>
<td>0.0098</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.902</td>
<td>0.0208</td>
</tr>
<tr>
<td>0.600</td>
<td>0.412</td>
<td>0.412</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.320</td>
<td>-0.311</td>
<td>0.0086</td>
</tr>
<tr>
<td>0.700</td>
<td>-0.880</td>
<td>-0.880</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
```
0.750 -0.968 -0.952 0.0156
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.200 0.0174
0.900 0.804 0.804 0.0000
0.950 0.994 0.892 0.1020
1.000 0.650 0.650 0.0000

Warning Errors

IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been reached. The best approximation is returned.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.
cub_spline_tcb

Computes a tension-continuity-bias (TCB) cubic spline interpolant. This is also called a Kochanek-Bartels spline and is a generalization of the Catmull–Rom spline.

Synopsis

```c
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_tcb(int ndata, float xdata[], float fdata[], ... , 0)
```

The type `Imsl_d_ppoly` function is `imsl_d_cub_spline_tcb`.

Required Arguments

- `int ndata` (Input)
 Number of data points.

- `float xdata[]` (Input)
 Array with `ndata` components containing the abscissas of the interpolation problem.

- `float fdata[]` (Input)
 Array with `ndata` components containing the ordinates for the interpolation problem.

Return Value

A pointer to the structure that represents the interpolant. If an interpolant cannot be computed, NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_tcb(int ndata, float xdata[], float fdata[],

  IMSL_TENSION, float tension[],

  IMSL_continuity, float continuity[],

  IMSL_BIAS, float bias[],

  IMSL_LEFT, double left,

  IMSL_RIGHT, double right,

  0)
```
Optional Arguments

IMSL_TENSION, float tension[] (Input)
Sets the tension values at the data points. The array tension is of length ndata and contains tension values in the interval \([-1,1]\). For each point, if the tension value is near +1 the curve is tightened at that point. If it is near -1, the curve is slack.
Default: All values of tension are zero.

IMSL_CONTINUITY, float continuity[] (Input)
Sets the continuity values at the data points. The array continuity is of length ndata and contains continuity values in the interval \([-1,1]\). For each point, if the continuity value is zero the curve is C^1 at that point. Otherwise the curve has a corner at that point, but is still continuous (C^0).
Default: All values of continuity are zero.

IMSL_BIAS, float bias[] (Input)
Sets the bias values at the data points. The array bias is of length ndata and contains bias values in the interval \([-1,1]\). For each point, if the bias value is zero the left and right side tangents are equally weighted. If the value is near +1 the left-side tangent dominates. If the value is near -1 the right-side tangent dominates.
Default: All values of bias are zero.

IMSL_LEFT, double left (Input)
Sets the value of the tangent at the leftmost endpoint.
Default: left = 0.

IMSL_RIGHT, double right (Input)
Sets the value of the tangent at the rightmost endpoint.
Default: right = 0.

Description

The function imsl_f_cub_spline_tcb computes the Kochanek-Bartels spline, a piecewise cubic Hermite spline interpolant to a set of data points \(\{x_i, f_i\}\) for \(i = 0, \ldots, \text{ndata}-1\). The breakpoints of the spline are the abscissas. As with all of the univariate interpolation functions, the abscissas need not be sorted.

The \(\{x_i\}\) values are the knots, so the \(i\)-th interval is \([x_i, x_{i+1}]\). (To simplify the explanation, it is assumed that the data points are given in increasing order.) The cubic Hermite in the \(i\)-th segment has a starting value of \(f_i\) and an ending value of \(f_{i+1}\). Its incoming tangent is

\[
DS_i = \frac{1}{4} (1-t_i) (1-c_i) (1+b_i) \frac{y_i - y_{i-1}}{x_{i+1} - x_i} + \frac{1}{4} (1-t_i) (1+c_i) (1-b_i) \frac{y_{i+1} - y_i}{x_{i+1} - x_i}
\]

where \(t_i\) is the \(i\)-th tension value, \(c_i\) is the \(i\)-th continuity value, and \(b_i\) is the \(i\)-th bias value. Its outgoing tangent is
The optional arguments `left` and `right` are used at the endpoints:

\[\frac{y_0 - y_{-1}}{x_1 - x_0} = \text{left} \quad \text{and} \quad \frac{y_n - y_{n-1}}{x_{n-1} - x_n} = \text{right} \]

Both `left` and `right` default to zero.

The spline has a continuous first derivative (is \(C^1 \)) if at each data point the left and right tangents are equal. This is true if the continuity parameters, \(c_i \), are all zero. For any values of the parameters the spline is continuous (\(C^0 \)).

If \(t_i = c_i = b_i = 0 \) for all \(i \), then the curve is the Catmull-Rom spline.

The following chart shows the same data points interpolated with different parameter values. All of the tension, continuity and bias parameters are zero except for the labeled parameter, which has the indicated value at all data points.

Tension controls how sharply the spline bends at the data points. If `tension` is near +1, the curve tightens. If `tension` is near -1, the curve slackens.

The continuity parameter controls the continuity of the first derivative. If continuity is zero, the spline's first derivative is continuous, so the spline is \(C^1 \).

The bias parameter controls the weighting of the left and right tangents. If zero, the tangents are equally weighted. If the bias parameter is near +1, the left tangent dominates. If the bias parameter is near -1, the right tangent dominates.
Examples

Example 1
This example interpolates to a set of points. At x = 3 the continuity and tension parameters are -1. At all other points, they are zero. Interpolated values are then printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int ndata = 6;
    float xdata[] = {0, 1, 2, 3, 4, 5};
    float fdata[] = {5, 2, 3, 5, 1, 2};
    float continuity[] = {0, 0, 0, -1, 0, 0};
    float tension[] = {0, 0, 0, -1, 0, 0};
    Imsl_f_ppoly *ppoly;
```
int m = 2;
int i;

ppoly = imsl_f_cub_spline_tcb(n, x, f, IMSL_CONTINUITY, continuity,
IMSL_TENSION, tension,
0);
for (i = 0; i < m*(n-1)+1; i++) {
 float x = i / (float)m;
 float y = imsl_f_cub_spline_value(x, ppoly, 0);
 printf(" %6.3f %10.4f\n", x, y);
}

Output

0.000 5.0000
0.500 3.4375
1.000 2.0000
1.500 2.1875
2.000 3.0000
2.500 3.6875
3.000 5.0000
3.500 2.1875
4.000 1.0000
4.500 1.2500
5.000 2.0000

Example 2

It is possible to use an interpolating spline for approximation by using an optimization function to compute its parameters. In this example a series of \(n \) interest rates, \(r_i \), for different maturities, \(x_i \), is given, \(\{x_i, r_i\} \) for \(i = 0, ..., n-1 \). Since the dates are given on a widely varying time scale, the base 10 logarithm of the dates is used for interpolation.

A TCB spline is constructed using a subset of the given data points for knot locations, \(\{p_i, q_i\} \), for \(i = 0, ..., m-1 \). The \(p \) values are a subset of the \(\log_{10} x_i \) values. The \(q \) values are to be determined by the optimizer. The spline has non-zero values of the continuity parameter, \(c_i \), for \(i = 0, ..., m-1 \).

The optimization problem finds the spline, \(s(r;p, q, c, left, right) \), which interpolates the points \(\{p_i, q_i\} \) and has continuity parameters, \(c \), and specified \(left \) and \(right \) parameters.

The optimization problem is

\[
\min_{q,c,left,right} \sum_{i=0}^{n-1} |s(r; q,c,left,right) - r_i|^2
\]

subject to the bounds, for all \(i \).
The function `constrained_nlp` is used as the optimizer. The unknowns q, c, `left` and `right` are packed into the array x, respectively.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

void fcn(int n, double x[], int iact, double *result, int *ierr);

double objective(double *yknots, double *continuity, 
    double left, double right);

#define N_DATA         15

static int days[] = {3, 31, 62, 94, 185, 367, 731, 1096, 1461, 1826, 2194, 
    2558, 2922, 3287, 3653};
static double log_days[N_DATA];
static double rate[] = {5.01772, 4.98284, 4.97234, 4.96157, 4.99058, 
    5.09389, 5.79733, 6.30595, 6.73464, 6.94816, 7.08807, 7.27527, 
    7.30852, 7.3979, 7.49015};

/* Knots are set on a subset of the data points */
#define N_KNOTS        4
static double xknots[N_KNOTS];
static int subset[] = {0, 5, 10, 14};
#define Y_KNOTS        0
#define CONTINUITY     (Y_KNOTS + N_KNOTS)
#define LEFT           (CONTINUITY + N_KNOTS)
#define RIGHT          (LEFT + 1)
#define N_VARIABLES    (RIGHT + 1)

int main()
{
    Imsl_d_ppoly *ppoly;
    double *x, xlb[N_VARIABLES], xub[N_VARIABLES];
    double xguess[N_VARIABLES];
    int n_constraints, ibtype, i;

    n_constraints = 0;
    ibtype = 0;

    for (i = 0; i < N_KNOTS; i++) {
        xlb[Y_KNOTS+i] = 0.1; /* lower bound on rate */
        xub[Y_KNOTS+i] = 10.0; /* upper bound on rate */
        xlb[CONTINUITY+i] = -0.95; /* lower bound on continuity */
        xub[CONTINUITY+i] = 0.95; /* upper bound on continuity */
    }

    Imsl_d_ppoly *ppoly;
    double *x, xlb[N_VARIABLES], xub[N_VARIABLES];
    double xguess[N_VARIABLES];
    int n_constraints, ibtype, i;

    n_constraints = 0;
    ibtype = 0;

    for (i = 0; i < N_KNOTS; i++) {
        xlb[Y_KNOTS+i] = 0.1; /* lower bound on rate */
        xub[Y_KNOTS+i] = 10.0; /* upper bound on rate */
        xlb[CONTINUITY+i] = -0.95; /* lower bound on continuity */
        xub[CONTINUITY+i] = 0.95; /* upper bound on continuity */
    }
```
/ Set bounds wide enough on LEFT and RIGHT so they are not binding */

\[
xlb[\text{LEFT}] = -100.0; \quad \text{xub}[\text{LEFT}] = 100.0;
\]
\[
xlb[\text{RIGHT}] = -100.0; \quad \text{xub}[\text{RIGHT}] = 100.0;
\]

for (i = 0; i < N_DATA; i++) {
 \[
 \log_days[i] = \log10(\text{days}[i]);
 \]
}

for (i = 0; i < N_KNOTS; i++) {
 \[
 \text{xknots}[i] = \log_days[\text{subset}[i]];
 \]
 \[
 \text{xguess}[\text{Y_KNOTS}+i] = \text{rate}[\text{subset}[i]];
 \]
 \[
 \text{xguess}[\text{CONTINUITY}+i] = 0.0;
 \]
 \[
 \text{xguess}[\text{LEFT}] = \text{xguess}[\text{RIGHT}] = 0.0;
 \]
/* Find the optimal curve */

= \text{imsl_d_constrained_nlp}(\text{fcn}, \text{n_constraints}, 0, \text{N_VARIABLES},
\text{ibtype, xlb, xub,}
\text{IMSL_XGUESS, xguess,}
\text{IMSL_DIFFTYPE, 3,}
0);

/* Report results */
\[
\text{ppoly} = \text{imsl_d_cub_spline_tcb}(\text{N_KNOTS, xknots, x,}
\text{IMSL_CONTINUITY, x+CONTINUITY,}
0);
\]

printf("Days Rate Curve Error \n");

for (i = 0; i < N_DATA; i++) {
 \[
 \text{double y} = \text{imsl_d_cub_spline_value}(\log_days[i], \text{ppoly}, 0);
 \]
 \[
 \text{printf("%4d %6.3f %6.3f %6.3f\n",}
 \]
 \[
 \text{days}[i], \text{rate}[i], y, y-rate[i]);
 \]
}

printf("\n");

for (i = 0; i < N_KNOTS; i++) {
 \[
 \text{printf("continuity[%2d] = %6.3f\n", days[i], x[CONTINUITY+i]);}
 \]
}

printf("\n left = %6.3f\n right = %6.3f\n", x[LEFT], x[RIGHT]);
}

/* Function passed to imsl_d_constrained_nlp */
\[
\text{void fcn(int n, double x[], int iact, double *result, int *ierr)}\[
\]
\[
\{ \text{if (iact == 0) }\{
\text{ *result = objective(x+Y_KNOTS, x+CONTINUITY, x[LEFT], x[RIGHT]);}
\}
\}
}
/ * Compute the objective function, the sum of squares error */
double objective(double *yknots, double *continuity,
 double left, double right)
{
 Imsl_d_ppoly *ppoly;
 double error;
 int i;

 ppoly = imsl_d_cub_spline_tcb(N_KNOTS, xknots, yknots,
 IMSL_CONTINUITY, continuity,
 IMSL_LEFT, left,
 IMSL_RIGHT, right,
 0);

 error = 0.0;
 for (i = 0; i < N_DATA; i++) {
 double y = imsl_d_cub_spline_value(log_days[i], ppoly, 0);
 double diff = (y - rate[i]);
 error += diff * diff;
 }

 imsl_free(ppoly);
 return error/N_DATA;
}

Output

Days Rate Curve Error
 3 5.018 5.019 0.002
 31 4.983 4.926 -0.057
 62 4.972 4.911 -0.061
 94 4.962 4.919 -0.043
 185 4.991 4.970 -0.021
 367 5.094 5.084 -0.010
 731 5.797 5.842 0.045
1096 6.306 6.340 0.034
1461 6.735 6.683 -0.052
1826 6.948 6.931 -0.017
2194 7.088 7.118 0.030
2558 7.275 7.240 -0.035
2922 7.309 7.332 0.023
3287 7.398 7.409 0.011
3653 7.490 7.479 -0.011

continuity[3] = 0.009
continuity[31] = -0.630
continuity[62] = -0.184
continuity[94] = -0.950

left = 0.534
right = 0.266
cub_spline_value

Computes the value of a cubic spline or the value of one of its derivatives.

Synopsis

```c
#include <imsl.h>

float imsl_f_cub_spline_value(float x, Imsl_f_ppoly *ppoly, ... , 0)
```

The type `double` function is `imsl_d_cub_spline_value`.

Required Arguments

- `float x` (Input)
 - Evaluation point for the cubic spline.

- `Imsl_f_ppoly *ppoly` (Input)
 - Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value

The value of a cubic spline or one of its derivatives at the point `x`. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_cub_spline_value(float x, Imsl_f_ppoly *ppoly, Imsl_DERIV, int deriv, Imsl_GRID, int n, float *xvec, float **value, Imsl_GRID_USER, int n, float *xvec, float value_user[], 0)
```

Optional Arguments

- `IMSL_DERIV, int deriv` (Input)
 - Let `d = deriv` and let `s` be the cubic spline that is represented by the structure `*ppoly`, then this option produces the `d`-th derivative of `s` at `x`, `s^{(d)}(x)`.
IMSL_GRID, int n, float *xvec, float **value (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to be evaluated. The d-th derivative of the spline at the points in xvec is returned in value. The values in array xvec must appear sorted and non-decreasing. Arranging for this requirement may benefit by use of the function imsl_f_sort, Chapter 12.

IMSL_GRID_USER, int n, float *xvec, float value_user[] (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to be evaluated. The d-th derivative of the spline at the points in xvec is returned in the user-supplied space value_user. The values in array xvec must appear sorted and non-decreasing.

Description

The function imsl_f_cub_spline_value computes the value of a cubic spline or one of its derivatives. The first and last pieces of the cubic spline are extrapolated. As a result, the cubic spline structures returned by the cubic spline routines are defined and can be evaluated on the entire real line. This routine is based on the routine PPVALU by de Boor (1978, p. 89).

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. Since the default settings are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 1978).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA   11
   /* Define function */
#define F(x)    (float)(sin(15.0*x))

int main()
{
    int                i;
    float              fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_ppoly       *pp;
                       /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                       /* Compute cubic spline interpolant */
    pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
    // Further processing...
}
```
/* Print results */
printf(" x F(x) Interpolant Error
");
for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f
", x, F(x), y,
 fabs(F(x)-y));
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.549</td>
<td>0.0228</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.843</td>
<td>0.0162</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.441</td>
<td>0.0093</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.903</td>
<td>0.0199</td>
</tr>
<tr>
<td>0.600</td>
<td>0.412</td>
<td>0.412</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.320</td>
<td>-0.315</td>
<td>0.0049</td>
</tr>
<tr>
<td>0.700</td>
<td>-0.880</td>
<td>-0.880</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>-0.968</td>
<td>-0.938</td>
<td>0.0295</td>
</tr>
</tbody>
</table>

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. This example compares the values of the first derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define functions */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))

int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
\[\text{pp} = \text{imsl_f_cub_spline_interp_e_cnd} \ (\text{NDATA}, \ xdata, \ fdata, \ 0); \]

\[
\text{printf(" x \ FP(x) \ Interpolant \ Deriv \ Error\n");}
\]

\[
\text{for } (i = \text{NDATA}/2; \ i < 3*\text{NDATA}/2; \ i++)\{
\]

\[
x = (\text{float}) \ i / (\text{float}) (2*\text{NDATA}-2); \]

\[
y = \text{imsl_f_cub_spline_value}(x, \ pp, \ IMSL_DERIV, 1, \ 0); \]

\[
\text{printf(" %6.3f %10.3f %10.3f %10.4f\n", \ x, \ FP(x), \ y, \ \text{fabs}(FP(x)-y));}
\]

\[
\}
\]

\textbf{Output}

<table>
<thead>
<tr>
<th>x</th>
<th>FP(x)</th>
<th>Interpolant</th>
<th>Deriv Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>-12.308</td>
<td>-12.559</td>
<td>0.2510</td>
</tr>
<tr>
<td>0.300</td>
<td>-3.162</td>
<td>-3.218</td>
<td>0.0560</td>
</tr>
<tr>
<td>0.350</td>
<td>7.681</td>
<td>7.796</td>
<td>0.1151</td>
</tr>
<tr>
<td>0.400</td>
<td>14.403</td>
<td>13.919</td>
<td>0.4833</td>
</tr>
<tr>
<td>0.450</td>
<td>13.395</td>
<td>13.530</td>
<td>0.1346</td>
</tr>
<tr>
<td>0.500</td>
<td>5.200</td>
<td>5.007</td>
<td>0.1926</td>
</tr>
<tr>
<td>0.550</td>
<td>-5.786</td>
<td>-5.840</td>
<td>0.0535</td>
</tr>
<tr>
<td>0.600</td>
<td>-13.667</td>
<td>-13.201</td>
<td>0.4660</td>
</tr>
<tr>
<td>0.650</td>
<td>-14.214</td>
<td>-14.393</td>
<td>0.1798</td>
</tr>
<tr>
<td>0.700</td>
<td>-7.133</td>
<td>-6.734</td>
<td>0.3990</td>
</tr>
<tr>
<td>0.750</td>
<td>3.775</td>
<td>3.911</td>
<td>0.1359</td>
</tr>
</tbody>
</table>
cub_spline_integral

Computes the integral of a cubic spline.

Synopsis

```c
#include <imsl.h>

float imsl_f_cub_spline_integral (float a, float b, Imsl_f_ppoly *ppoly)
```

The type `double` function is `imsl_d_cub_spline_integral`.

Required Arguments

- `float a` (Input)
- `float b` (Input)
 Endpoints for integration.
- `Imsl_f_ppoly *ppoly` (Input)
 Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value

The integral from `a` to `b` of the cubic spline. If no value can be computed, then NaN is returned.

Description

The function `imsl_f_cub_spline_integral` computes the integral of a cubic spline from `a` to `b`.

\[\int_{a}^{b} s(x) \, dx \]

Example

In this example, a cubic spline interpolant to a function `f` is computed. The values of the integral of this spline are then compared with the exact integral values. Since the default settings are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 1978).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 21

/* Define function */
#define F(x)   (float)(sin(15.0*x))
    /* Integral from 0 to x */
#define FI(x)  (float)((1.-cos(15.0*x))/15.)

int main()
{
    int                i;
    float              fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_ppoly       *pp;
    /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
    /* Compute cubic spline interpolant */
    pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
    /* Print results */
    printf("    x        FI(x)     Interpolant  Integral Error
");  /* Output
    for (i = NDATA/2; i < 3*NDATA/2; i++) {
        x = (float) i /(float)(2*NDATA-2);
        y = imsl_f_cub_spline_integral(0.0, x, pp);
        printf(" %6.3f %10.3f  %10.3f  %10.4f
", x, FI(x), y,
                             fabs(FI(x)-y));
    }
    return 0;
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>FI(x)</th>
<th>Interpolant</th>
<th>Integral Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>0.121</td>
<td>0.121</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.275</td>
<td>0.104</td>
<td>0.104</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.300</td>
<td>0.081</td>
<td>0.081</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.325</td>
<td>0.056</td>
<td>0.056</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.350</td>
<td>0.033</td>
<td>0.033</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.375</td>
<td>0.014</td>
<td>0.014</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.400</td>
<td>0.003</td>
<td>0.003</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.425</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.450</td>
<td>0.007</td>
<td>0.007</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.475</td>
<td>0.022</td>
<td>0.022</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.500</td>
<td>0.044</td>
<td>0.044</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.525</td>
<td>0.068</td>
<td>0.068</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.550</td>
<td>0.092</td>
<td>0.092</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.575</td>
<td>0.113</td>
<td>0.113</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.600</td>
<td>0.127</td>
<td>0.128</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.625</td>
<td>0.133</td>
<td>0.133</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.650</td>
<td>0.130</td>
<td>0.130</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.675</td>
<td>0.118</td>
<td>0.118</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.700</td>
<td>0.098</td>
<td>0.098</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.725</td>
<td>0.075</td>
<td>0.075</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.750</td>
<td>0.050</td>
<td>0.050</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
spline_interp

Compute a spline interpolant.

Synopsis

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_interp(int ndata, float xdata[], float fdata[], ... , 0)
```

The type `Imsl_d_spline` function is `imsl_d_spline_interp`.

Required Arguments

- `int ndata` (Input)
  Number of data points.

- `float xdata[]` (Input)
  Array with `ndata` components containing the abscissas of the interpolation problem.

- `float fdata[]` (Input)
  Array with `ndata` components containing the ordinates of the interpolation problem.

Return Value

A pointer to the structure that represents the spline interpolant. If an interpolant cannot be computed, then `NULL` is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_interp(int ndata, float xdata[], float fdata[],
 IMSL_ORDER, int order,
 IMSL_KNOTS, float knots[],
 0)
```
Optional Arguments

**IMSL\_ORDER**, int order (Input)
The order of the spline subspace for which the knots are desired. This option is used to communicate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

**IMSL\_KNOTS**, float knots [] (Input)
This option requires the user to provide the knots.
Default: knots are selected by the function imsl\_f\_spline\_knots using its defaults.

Description

Given the data points \(x = xdata, f = fdata\), and the number \(n = n\)\_data of elements in xdata and fdata, the default action of imsl\_f\_spline\_interp computes a cubic \((k = 4)\) spline interpolant \(s\) to the data using the default knot sequence generated by imsl\_f\_spline\_knots.

The optional argument **IMSL\_ORDER** allows the user to choose the order of the spline interpolant. The optional argument **IMSL\_KNOTS** allows user specification of knots.

The function imsl\_f\_spline\_interp is based on the routine SPLINT by de Boor (1978, p. 204).

First, imsl\_f\_spline\_interp sorts the xdata vector and stores the result in \(x\). The elements of the fdata vector are permuted appropriately and stored in \(f\), yielding the equivalent data \((x_i, f_i)\) for \(i = 0 \) to \(n - 1\).

The following preliminary checks are performed on the data. We verify that

\[
  x_i < x_{i+1} \quad i = 0, \ldots, n - 2 \\
  t_i < t_{i+k} \quad i = 0, \ldots, n - 1 \\
  t_i < t_{i+1} \quad i = 0, \ldots, n + k - 2
\]

The first test checks to see that the abscissas are distinct. The second and third inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check \(t_{i+k-1} \leq x_i \leq t_i\) for \(i = 0 \) to \(n - 1\). This first inequality in the last check is necessary since the method used to generate the entries of the interpolation matrix requires that the \(k\) possibly nonzero B-splines at \(x_i\),

\[
  B_{j-k+1}, \ldots, B_j \quad \text{where } j \text{ satisfies } t_j \leq x_i < t_{j+1}
\]

be well-defined (that is, \(j - k + 1 \geq 0\)).

General conditions are not known for the exact behavior of the error in spline interpolation; however, if \(t\) and \(x\) are selected properly and the data points arise from the values of a smooth (say \(C^k\)) function \(f\), i.e. \(f_j = f(x_j)\), then the error will behave in a predictable fashion. The maximum absolute error satisfies
\[ \| f - s \|_{[t_{k-1}, t_n]} \leq C \| f^{(k)} \|_{[t_{k-1}, t_n]} |t|^k \]

where

\[ |t| = \max_{i=k-1, \ldots, n-1} |t_{i+1} - t_i| \]

For more information on this problem, see de Boor (1978, Chapter 13) and his reference. This function can be used in place of the IMSL function `imsl_f_cub_spline_interp`.

The return value for this function is a pointer of type `Imsl_f_spline`. The calling program must receive this in a pointer `Imsl_f_spline *sp`. This structure contains all the information to determine the spline (stored as a linear combination of B-splines) that is computed by this function. For example, the following code sequence evaluates this spline at \( x \) and returns the value in \( y \).

\[
y = \text{imsl\_f\_spline\_value}\ (x, \ sp, \ 0)
\]

Three spline interpolants of order 2, 3, and 5 are plotted. These splines use the default knots.

![Figure 3.4 — Three Spline Interpolants](image)

**Examples**

**Example 1**

In this example, a cubic spline interpolant to a function \( f \) is computed. The values of this spline are then compared with the exact function values. Since the default settings are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 1978).
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11

#define F(x) (float)(sin(15.0*x))

int main()
{
    int i;
    float xdata[NDATA], fdata[NDATA], x, y;
    Imsl_f_spline *sp;

    /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }

    /* Compute cubic spline interpolant */
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);

    /* Print results */
    printf("    x        F(x)      Interpolant   Error
");
    for (i = 0; i < 2*NDATA-1; i++){
        x = (float) i /((float)(2*NDATA-2));
        y = imsl_f_spline_value(x, sp, 0);
        printf(" %6.3f %10.3f  %10.3f  %10.4f
", x, F(x), y, fabs(F(x)-y));
    }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.050</td>
<td>0.682</td>
<td>0.809</td>
<td>0.1270</td>
</tr>
<tr>
<td>0.100</td>
<td>0.997</td>
<td>0.997</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.150</td>
<td>0.778</td>
<td>0.723</td>
<td>0.0552</td>
</tr>
<tr>
<td>0.200</td>
<td>0.141</td>
<td>0.141</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.549</td>
<td>0.0228</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.843</td>
<td>0.0162</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.441</td>
<td>0.0093</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.903</td>
<td>0.0199</td>
</tr>
<tr>
<td>0.600</td>
<td>0.412</td>
<td>0.412</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.320</td>
<td>-0.315</td>
<td>0.0049</td>
</tr>
<tr>
<td>0.700</td>
<td>-0.880</td>
<td>-0.880</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>-0.968</td>
<td>-0.938</td>
<td>0.0295</td>
</tr>
<tr>
<td>0.800</td>
<td>-0.537</td>
<td>-0.537</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Example 2

Recall that in the first example, a cubic spline interpolant to a function \( f \) is computed. The values of this spline are then compared with the exact function values. This example chooses to use a quadratic \( (k = 3) \) and a quintic \( k = 6 \) spline interpolant to the data instead of the default values.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F(x) (float)(sin(15.0*x))

int main()
{
 int i, order;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 for (order =3; order<7; order += 3) {
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata,
 IMSL_ORDER, order,
 0);
 /* Print results */
 printf("The order of the spline is %d\n", order);
 printf("%s F(x) Interpolant Error\n", x, F(x), y,
 fabs(F(x)-y));
 }
}
```

Output

The order of the spline is 3

\[
\begin{array}{cccc}
0.850 & 0.183 & 0.148 & 0.0347 \\
0.900 & 0.804 & 0.804 & 0.0000 \\
0.950 & 0.994 & 1.086 & 0.0926 \\
1.000 & 0.650 & 0.650 & 0.0000 \\
\end{array}
\]
The order of the spline is 6

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.573</td>
<td>0.0016</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.856</td>
<td>0.0031</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.448</td>
<td>0.0020</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.922</td>
<td>0.0003</td>
</tr>
<tr>
<td>0.600</td>
<td>0.412</td>
<td>0.412</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.320</td>
<td>-0.322</td>
<td>0.0025</td>
</tr>
<tr>
<td>0.700</td>
<td>-0.880</td>
<td>-0.880</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>-0.968</td>
<td>-0.959</td>
<td>0.0090</td>
</tr>
</tbody>
</table>

Warning Errors

**IMSL_ILL_COND_INTERP_PROB**
The interpolation matrix is ill-conditioned. The solution might not be accurate.

Fatal Errors

**IMSL_DUPLICATE_XDATA_VALUES**
The xdata values must be distinct.

**IMSL_KNOT_MULTIPLICITY**
Multiplicity of the knots cannot exceed the order of the spline.

**IMSL_KNOT_NOT_INCREASING**
The knots must be nondecreasing.

**IMSL_KNOT_XDATA_INTERLACING**
The \( i \)-th smallest element of xdata \( x_j \) must satisfy \( t_j \leq x_j < t_{j+\text{order}} \) where \( t \) is the knot sequence.

**IMSL_XDATA_TOO_LARGE**
The array xdata must satisfy \( xdata_j \leq \text{ndata} \) for \( i = 1, \ldots, \text{ndata} \).

**IMSL_XDATA_TOO_SMALL**
The array xdata must satisfy \( xdata_j \geq \text{order}-1 \) for \( i = 1, \ldots, \text{ndata} \).
spline_knots

Computes the knots for a spline interpolant

Synopsis

```c
#include <imsl.h>

float *imsl_f_spline_knots(int ndata, float xdata[], ... , 0)
```

The type `double` function is `imsl_d_spline_knots`.

Required Arguments

- `int ndata` (Input)
  Number of data points.

- `float xdata[]` (Input)
  Array with `ndata` components containing the abscissas of the interpolation problem.

Return Value

A pointer to the knots. If the knots cannot be computed, then NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_spline_knots(int ndata, float xdata[],
 IMSL_ORDER, int order,
 IMSL_OPT,
 IMSL_OPT_ITMAX, int itmax,
 IMSL_RETURN_USER, float knots[],
 0)
```
Optional Arguments

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option is used to communicate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

IMSL_OPT
This option produces knots that satisfy an optimality criterion.

IMSL_OPT_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of Newton’s method.
Default: itmax = 10

IMSL_RETURN_USER, float knots[] (Output)
This option requires the user to provide the space for the return knots. For example, the user could declare float knots[100]; and pass in knots. The return value is then also set to knots.

Description

Given the data points \( x = xdata \), the order of the spline \( k = order \), and the number \( n = ndata \) of elements in xdata, the default action of imsl_f_spline_knots returns a pointer to a knot sequence that is appropriate for interpolation of data on \( x \) by splines of order \( k \) (the default order is \( k = 4 \)). The knot sequence is contained in its first \( n + k \) positions. If \( k \) is even, and we assume that the entries in the input vector \( x \) are increasing, then the resulting knot sequence \( t \) is returned as

\[
    t_i = x_0 \quad \text{for} \quad i = 0, \ldots, k - 1
\]
\[
    t_i = x_{j-1} - k/2 - 1 \quad \text{for} \quad i = k, \ldots, n - 1
\]
\[
    t_i = x_{n-1} \quad \text{for} \quad i = n, \ldots, n + k - 1
\]

There is some discussion concerning this selection of knots in de Boor (1978, p. 211). If \( k \) is odd, then \( t \) is returned as

\[
    t_i = x_0 \quad \text{for} \quad i = 0, \ldots, k - 1
\]
\[
    t_i = \left( x_i - \frac{k-1}{2} - 1 + x_{i-1} - \frac{k-2}{2} \right) / 2 \quad \text{for} \quad i = k, \ldots, n - 1
\]
\[
    t_i = x_{n-1} \quad \text{for} \quad i = n, \ldots, n + k - 1
\]

It is not necessary to sort the values in xdata.

If the option IMSL_OPT is selected, then the knot sequence returned minimizes the constant \( c \) in the error estimate

\[
    \| f - s \| \leq c \| f^{(k)} \|
\]

In the above formula, \( f \) is any function in \( C^k \), and \( s \) is the spline interpolant to \( f \) at the abscissas \( x \) with knot sequence \( t \).
The algorithm is based on a routine described in de Boor (1978, p. 204), which in turn is based on a theorem of Micchelli et al. (1976).

Examples

Example 1
In this example, knots for a cubic spline are generated and printed. Notice that the knots are stacked at the endpoints and that the second and next to last data points are not knots.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 6

int main()
{
 int i;
 float *knots, xdata[NDATA];

 for(i = 0; i < NDATA; i++)
 xdata[i] = i;
 knots = imsl_f_spline_knots(NDATA, xdata, 0);
 imsl_f_write_matrix("The knots for the cubic spline are:
 1, NDATA+4, knots,
 IMSL_COL_NUMBER_ZERO,
 0);
}
```

Output

The knots for the cubic spline are:

```
 0 1 2 3 4 5
 0 0 0 0 2 3
 6 7 8 9
 5 5 5 5
```

Example 2
This is a continuation of the examples for `imsl_f_spline_interp`. Recall that in these examples, a cubic spline interpolant to a function \( f \) is computed first. The values of this spline are then compared with the exact function values. The second example uses a quadratic \( (k = 3) \) and a quintic \( (k = 6) \) spline interpolant to the data. Now, instead of using the default knots, select the “optimal” knots as described above. Notice that the error is actually worse in this case.
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F(x)   (float)(sin(15.0*x))

int main()
{
    int i, order;
    float fdata[NDATA], xdata[NDATA], *knots, x, y;
    Imsl_f_spline *sp;
    /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
    for(order = 3; order < 7; order += 3) {
        knots = imsl_f_spline_knots(NDATA, xdata, IMSL_ORDER, order,
                                      IMSL_OPT, 0);
        /* Compute spline interpolant */
        sp = imsl_f_spline_interp (NDATA, xdata, fdata,
                                     IMSL_ORDER, order,
                                     IMSL_KNOTS, knots, 0);
        /* Print results */
        printf("The order of the spline is %d\n", order);
        printf(" x     F(x)      Interpolant   Error\n");
        for (i = NDATA/2; i < 3*NDATA/2; i++) {
            x = (float) i /((float)(2*NDATA-2));
            y = imsl_f_spline_value(x, sp, 0);
            printf(" %6.3f %10.3f  %10.3f  %10.4f\n", x, F(x), y,
                   fabs(F(x)-y));
        }
    }
}

**Output**

The order of the spline is 3

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.543</td>
<td>0.0290</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.819</td>
<td>0.0401</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.429</td>
<td>0.0210</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.879</td>
<td>0.0433</td>
</tr>
</tbody>
</table>
The order of the spline is 6

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>-0.572</td>
<td>-0.578</td>
<td>0.0061</td>
</tr>
<tr>
<td>0.300</td>
<td>-0.978</td>
<td>-0.978</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.350</td>
<td>-0.859</td>
<td>-0.854</td>
<td>0.0054</td>
</tr>
<tr>
<td>0.400</td>
<td>-0.279</td>
<td>-0.279</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.448</td>
<td>0.0019</td>
</tr>
<tr>
<td>0.500</td>
<td>0.938</td>
<td>0.938</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.550</td>
<td>0.923</td>
<td>0.920</td>
<td>0.0022</td>
</tr>
<tr>
<td>0.600</td>
<td>0.412</td>
<td>0.412</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.320</td>
<td>-0.317</td>
<td>0.0020</td>
</tr>
<tr>
<td>0.700</td>
<td>-0.880</td>
<td>-0.880</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>-0.968</td>
<td>-0.966</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

Warning Errors

- **IMSL_NO_CONV_NEWTON**: Newton's method iteration did not converge.

Fatal Errors

- **IMSL_DUPLICATE_XDATA_VALUES**: The xdata values must be distinct.
- **IMSL_ILL_COND_LIN_SYS**: Interpolation matrix is singular. The xdata values may be too close together.
**spline_2d_interp**

Computes a two-dimensional, tensor-product spline interpolant from two-dimensional, tensor-product data.

**Synopsis**

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_interp(int num_xdata, float xdata[], int num_ydata,
 float ydata[], float fdata[], ..., 0)
```

The type *Imsl_d_spline* function is *imsl_d_spline_2d_interp*.

**Required Arguments**

- `int num_xdata` (Input)
  Number of data points in the *X* direction.

- `float xdata[]` (Input)
  Array with `num_xdata` components containing the data points in the *X* direction.

- `int num_ydata` (Input)
  Number of data points in the *Y* direction.

- `float ydata[]` (Input)
  Array with `num_ydata` components containing the data points in the *Y* direction.

- `float fdata[]` (Input)
  Array of size `num_xdata` × `num_ydata` containing the values to be interpolated. `fdata[i][j]` is the value at `(xdata[i], ydata[j])`.

**Return Value**

A pointer to the structure that represents the tensor-product spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use *imsl_free*.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_interp(int num_xdata, float xdata[], int num_ydata,
 float ydata[], float fdata[],
 IMSL_ORDER, int xorder, int yorder,
```
Optional Arguments

**IMSL_ORDER, int xorder, int yorder (Input)**

This option is used to communicate the order of the spline subspace.
Default: \( xorder, yorder = 4 \) (i.e., tensor-product cubic splines)

**IMSL_KNOTS, float xknots[], float yknots[] (Input)**

This option requires the user to provide the knots. The default knots are selected by the function
imsl_f_spline_knots using its defaults.

**IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)**

The column dimension of the matrix \( fdata \).
Default: \( fdata\_col\_dim = num\_ydata \)

Description

The function \( \text{imsl\_f\_spline\_2d\_interp} \) computes a tensor-product spline interpolant. The tensor-product spline interpolant to data \( \{(x_j, y_j, f_{ij})\} \), where \( 0 \leq i \leq n_x - 1 \) and \( 0 \leq j \leq n_y - 1 \) has the form

\[
\sum_{m=0}^{n_y-1} \sum_{n=0}^{n_x-1} c_{nm} B_{n, k_x, t_x(x)} B_{m, k_y, t_y(y)}
\]

where \( k_x \) and \( k_y \) are the orders of the splines. These numbers are defaulted to be 4, but can be set to any positive integer using the keyword, IMSL_ORDER. Likewise, \( t_x \) and \( t_y \) are the corresponding knot sequences (xknots and yknots). These values are defaulted to the knots returned by \( \text{imsl\_f\_spline\_knots} \). The algorithm requires that

\[
t_x(k_x-1) \leq x_i \leq t_x(n_x) \quad 0 \leq i \leq n_x - 1
\]
\[
t_y(k_y-1) \leq y_j \leq t_y(n_y) \quad 0 \leq j \leq n_y - 1
\]

Tensor-product spline interpolants in two dimensions can be computed quite efficiently by solving (repeatedly) two univariate interpolation problems.

The computation is motivated by the following observations. It is necessary to solve the system of equations

\[
\sum_{m=0}^{n_y-1} \sum_{n=0}^{n_x-1} c_{nm} B_{n,k_x,t_x(x_i)} B_{m,k_y,t_y(y_j)} = f_{ij}
\]

Setting
\[ h_{mi} = \sum_{n=0}^{n_x-1} c_{nm} B_{n, k_x, t_x}(x_i) \]

Note that for each fixed \( i \) from 1 to \( n_x - 1 \), we have \( n_y - 1 \) linear equations in the same number of unknowns as can be seen below:

\[ \sum_{m=0}^{n_y-1} h_{mi} B_{m, k_y, t_y}(y_i) = f_{ij} \]

The same matrix appears in all of the equations above:

\[ \begin{bmatrix} B_{m, k_y, t_y}(y_j) \end{bmatrix} \quad 1 \leq m, j \leq n_y - 1 \]

Thus, only factor this matrix once and then apply this factorization to the \( n_x \) right-hand sides. Once this is done and \( h_{mi} \) is computed, then solve for the coefficients \( c_{nm} \) using the relation

\[ \sum_{n=0}^{n_x-1} c_{nm} B_{n, k_x, t_x}(x_i) = h_{mi} \]

for \( m \) from 0 to \( n_y - 1 \), which again involves one factorization and \( n_y \) solutions to the different right-hand sides.

The function imsl_f_spline_2d_interp is based on the routine SPLI2D by de Boor (1978, p. 347).

The return value for this function is a pointer to the structure imsl_f_spline. The calling program must receive this in a pointer imsl_f_spline *sp. This structure contains all the information to determine the spline (stored in B-spline format) that is computed by this procedure. For example, the following code sequence evaluates this spline at (\( x, y \)) and returns the value in \( z \).

\[
z = \text{imsl}_f\_\text{spline}_2d\_\text{value} (x, y, sp, 0);
\]

**Examples**

**Example 1**

In this example, a tensor-product spline interpolant to a function \( f \) is computed. The values of the interpolant and the error on a 4 \( \times \) 4 grid are displayed.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
/* Define function */
#define F(x, y) (float)(x*x*x+y*y)
```
int main()
{
    int                i, j, num_xdata, num_ydata;
    float              fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
    float              x, y, z;
    Imsl_f_spline      *sp;       /* Set up grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
    }
    for (i = 0; i < NDATA; i++) {
        for (j = 0; j < NDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
    }
    num_xdata = num_ydata = NDATA;   /* Compute tensor-product interpolant */
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata, ydata, (float*) fdata, 0);
    /* Print results */
    printf("    x      y       F(x, y)   Interpolant   Error 
");
    for (i = 0; i < OUTDATA; i++) {
        x = (float) i / (float) (OUTDATA);
        for (j = 0; j < OUTDATA; j++) {
            y = (float) j / (float) (OUTDATA);
            z = imsl_f_spline_2d_value(x, y, sp, 0);
            printf(" %6.3f %6.3f %10.3f  %10.3f  %10.4f
", x, y, F(x,y), z, fabs(F(x,y)-z));
        }
    }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>0.250</td>
<td>0.250</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>0.125</td>
<td>0.125</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>0.375</td>
<td>0.375</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Example 2

Recall that in the first example, a tensor-product spline interpolant to a function \( f \) is computed. The values of the interpolant and the error on a 4 \( \times 4 \) grid are displayed. Notice that the first interpolant with order = 3 does not reproduce the cubic data, while the second interpolant with order = 6 does reproduce the data.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
```c
#define NDATA 7
#define OUTDATA 4
/* Define function */
#define F(x,y) (float)(x*x*x+y*y)

int main()
{
 int i, j, num_xdata, num_ydata, order;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 for(order = 3; order < 7; order += 3) {
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata, ydata, (float *)fdata,
 IMSL_ORDER, order, order, 0);
 /* Print results */
 printf("The order of the spline is %d \n", order);
 printf(" x y F(x, y) Interpolant Error\n");
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f \n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
}

Output

The order of the spline is 3

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.250</td>
<td>0.062</td>
<td>0.063</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>0.250</td>
<td>0.250</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.750</td>
<td>0.562</td>
<td>0.562</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
```
The order of the spline is 6

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.250</td>
<td>0.062</td>
<td>0.063</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>0.250</td>
<td>0.250</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.750</td>
<td>0.562</td>
<td>0.562</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>0.000</td>
<td>0.016</td>
<td>0.016</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>0.250</td>
<td>0.078</td>
<td>0.078</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>0.500</td>
<td>0.266</td>
<td>0.266</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>0.750</td>
<td>0.578</td>
<td>0.578</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>0.125</td>
<td>0.125</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.250</td>
<td>0.188</td>
<td>0.188</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>0.375</td>
<td>0.375</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.750</td>
<td>0.688</td>
<td>0.687</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>0.000</td>
<td>0.422</td>
<td>0.422</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>0.250</td>
<td>0.484</td>
<td>0.484</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>0.500</td>
<td>0.672</td>
<td>0.672</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>0.750</td>
<td>0.984</td>
<td>0.984</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

**Warning Errors**

- **IMSL_ILLCOND_INTERP_PROB**  
The interpolation matrix is ill-conditioned. The solution might not be accurate.

**Fatal Errors**

- **IMSL_XDATA_NOT_INCREASING**  
The *x* data values must be strictly increasing.

- **IMSL_YDATA_NOT_INCREASING**  
The *y* data values must be strictly increasing.

- **IMSL_KNOT_MULTIPLICITY**  
  Multiplicity of the knots cannot exceed the order of the spline.

- **IMSL_KNOT_NOT_INCREASING**  
The knots must be nondecreasing.

- **IMSL_KNOT_DATA_INTERLACING**  
The *i*-th smallest element of the data arrays *x* data and *y* data must satisfy *t* ≤ *data* ≤ *t* + *order*, where *t* is the knot sequence.
IMSL_DATA_TOO_LARGE

The data arrays xdata and ydata must satisfy $data_i \leq t_{num\_data}$ for $i = 1, \ldots, num\_data$.

IMSL_DATA_TOO_SMALL

The data arrays xdata and ydata must satisfy $data_i \geq t_{order\_1}$ for $i = 1, \ldots, num\_data$. 
spline_value

Computes the value of a spline or the value of one of its derivatives.

Synopsis

```c
#include <imsl.h>

float imsl_f_spline_value (float x, Imsl_f_spline *sp, ..., 0)
```

The type `double` function is `imsl_d_spline_value`.

Required Arguments

- `float x` (Input)
  Evaluation point for the spline.
- `Imsl_f_spline *sp` (Input)
  Pointer to the structure that represents the spline.

Return Value

The value of a spline or one of its derivatives at the point `x`. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_spline_value (float x, Imsl_f_spline *sp,
IMSL_DERIV, int deriv,
IMSL_GRID, int n, float *xvec, float **value,
IMSL_GRID_USER, int n, float *xvec, float value_user[],
0)
```

Optional Arguments

- `IMSL_DERIV, int deriv` (Input)
  Let `d = deriv` and let `s` be the spline that is represented by the structure `*sp`. Then, this option produces the `d`-th derivative of `s` at `x`, `s^{(d)}(x)`.
  Default: `deriv = 0`
Description

The function `imsl_f_spline_value` computes the value of a spline or one of its derivatives. This function is based on the routine BVALUE by de Boor (1978, p. 144).

Examples

Example 1

In this example, a cubic spline interpolant to a function $f$ is computed. The values of this spline are then compared with the exact function values. Since the default settings are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 1978).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define F(x) (float)(sin(15.0*x))

int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;

 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }

 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
```
Example 2

Recall that in the first example, a cubic spline interpolant to a function $f$ is computed. The values of this spline are then compared with the exact function values. This example compares the values of the first derivatives.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11

/* Define function */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))

int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FP(x) Interpolant Deriv Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /((float)(2*NDATA-2));
 y = imsl_f_spline_value(x, sp, IMSL_DERIV, 1, 0);
 printf("%1.2f %6.2f %10.4f %10.4f %10.4f\n", x, FP(x), y, 0.0, 0.0);
 }
}
```
printf(" %6.3f %10.3f  %10.3f  %10.4f  
", x, FP(x), y, fabs(FP(x)-y));
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>FP(x)</th>
<th>Interpolant</th>
<th>Deriv Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>-12.308</td>
<td>-12.559</td>
<td>0.2510</td>
</tr>
<tr>
<td>0.300</td>
<td>-3.162</td>
<td>-3.218</td>
<td>0.0560</td>
</tr>
<tr>
<td>0.350</td>
<td>7.681</td>
<td>7.796</td>
<td>0.1151</td>
</tr>
<tr>
<td>0.400</td>
<td>14.403</td>
<td>13.919</td>
<td>0.4833</td>
</tr>
<tr>
<td>0.450</td>
<td>13.395</td>
<td>13.530</td>
<td>0.1346</td>
</tr>
<tr>
<td>0.500</td>
<td>5.200</td>
<td>5.007</td>
<td>0.1926</td>
</tr>
<tr>
<td>0.550</td>
<td>-5.786</td>
<td>-5.840</td>
<td>0.0535</td>
</tr>
<tr>
<td>0.600</td>
<td>-13.667</td>
<td>-13.201</td>
<td>0.4660</td>
</tr>
<tr>
<td>0.650</td>
<td>-14.214</td>
<td>-14.393</td>
<td>0.1798</td>
</tr>
<tr>
<td>0.700</td>
<td>-7.133</td>
<td>-6.734</td>
<td>0.3990</td>
</tr>
<tr>
<td>0.750</td>
<td>3.775</td>
<td>3.911</td>
<td>0.1359</td>
</tr>
</tbody>
</table>

Fatal Errors

IMSL_KNOT_MULTIPLICITY
Multiplicity of the knots cannot exceed the order of the spline.

IMSL_KNOT_NOT_INCREASING
The knots must be nondecreasing.
spline_integral

Computes the integral of a spline.

Synopsis

```c
#include <imsl.h>

float imsl_f_spline_integral(float a, float b, Imsl_f_spline *sp)
```

The type `double` function is `imsl_d_spline_integral`.

Required Arguments

- `float a` (Input)
  - The lower limit of integration.
- `float b` (Input)
  - Endpoints for integration.
- `Imsl_f_spline * sp` (Input)
  - Pointer to the structure that represents the spline.

Return Value

The integral of a spline. If no value can be computed, then NaN is returned.

Description

The function `imsl_f_spline_integral` computes the integral of a spline from $a$ to $b$

$$\int_{a}^{b} s(x) dx$$

This routine uses the identity (22) on page 151 of de Boor (1978).

Example

In this example, a cubic spline interpolant to a function $f$ is computed. The values of the integral of this spline are then compared with the exact integral values. Since the default settings are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 1978).

```c
#include <imsl.h>
#include <stdio.h>
```
#include <math.h>

#define NDATA 21    /* Define function */
#define F(x) (float)(sin(15.0*x))
#define FI(x) (float)((1.-cos(15.0*x))/15.)

int main()
{
    int i;
    float fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_spline *sp;
    /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)i/((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
    /* Compute cubic spline interpolant */
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
    /* Print results */
    printf("x    FI(x)    Interpolant    Integral Error\n");
    for (i = NDATA/2; i < 3*NDATA/2; i++) {
        x = (float) i/((float)(2*NDATA-2));
        y = imsl_f_spline_integral(0.0, x, sp);
        printf("%6.3f %10.3f %10.3f %10.4f %f ", x, FI(x), y, fabs(FI(x)-y));
    }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>FI(x)</th>
<th>Interpolant</th>
<th>Integral Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>0.121</td>
<td>0.121</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.275</td>
<td>0.104</td>
<td>0.104</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.300</td>
<td>0.081</td>
<td>0.081</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.325</td>
<td>0.056</td>
<td>0.056</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.350</td>
<td>0.033</td>
<td>0.033</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.375</td>
<td>0.014</td>
<td>0.014</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.400</td>
<td>0.003</td>
<td>0.003</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.425</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.450</td>
<td>0.007</td>
<td>0.007</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.475</td>
<td>0.022</td>
<td>0.022</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.500</td>
<td>0.044</td>
<td>0.044</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.525</td>
<td>0.068</td>
<td>0.068</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.550</td>
<td>0.092</td>
<td>0.092</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.575</td>
<td>0.113</td>
<td>0.113</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.600</td>
<td>0.127</td>
<td>0.128</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.625</td>
<td>0.133</td>
<td>0.133</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.650</td>
<td>0.130</td>
<td>0.130</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Warning Errors

IMSL_SPLINE_SMLST_ELEMNT
The data arrays xdata and ydata must satisfy data$_i$ ≤ t$_{\text{order}-1}$, for $i = 1, \ldots, \text{num_data}$.

IMSL_SPLINE_EQUAL_LIMITS
The upper and lower endpoints of integration are equal. The indefinite integral is zero.

IMSL_LIMITS_LOWER_TOO_SMALL
The left endpoint is less than t$_{\text{order}-1}$. Integration occurs only from t$_{\text{order}-1}$ to b.

IMSL_LIMITS_UPPER_TOO_SMALL
The right endpoint is less than t$_{\text{order}-1}$. Integration occurs only from t$_{\text{order}-1}$ to a.

IMSL_LIMITS_UPPER_TOO_BIG
The right endpoint is greater than t$_{\text{spline_space_dim}-1}$. Integration occurs only from a to t$_{\text{spline_space_dim}-1}$.

IMSL_LIMITS_LOWER_TOO_BIG
The left endpoint is greater than t$_{\text{spline_space_dim}-1}$. Integration occurs only from b to t$_{\text{spline_space_dim}-1}$.

Fatal Errors

IMSL_KNOT_MULTIPLICITY
Multiplicity of the knots cannot exceed the order of the spline.

IMSL_KNOT_NOT_INCREASING
The knots must be nondecreasing.
spline_2d_value

Computes the value of a tensor-product spline or the value of one of its partial derivatives.

Synopsis

```c
#include <imsl.h>

float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp, ... , 0)
```

The type `double` function is `imsl_d_spline_2d_value`.

Required Arguments

- `float x` (Input)
- `float y` (Input)
  - The `(x, y)` coordinates of the evaluation point for the tensor-product spline.
- `Imsl_f_spline *sp` (Input)
  - Pointer to the structure that represents the spline.

Return Value

The value of a tensor-product spline or one of its derivatives at the point `(x, y)`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp,
 IMSL_DERIV, int x_partial, int y_partial,
 IMSL_GRID, int nx, float *xvec, int ny, float *yvec, float **value,
 IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec, float value_user[],
 0)
```
Optional Arguments

IMSL_DERIV, int x_partial, int y_partial (Input)
Let \( p = x_{\text{partial}} \) and \( q = y_{\text{partial}} \), and let \( s \) be the spline that is represented by the structure *sp, then this option produces the \( (p, q) \)-th derivative of \( s \) at \((x, y)\), \( s^{(p,q)}(x, y) \).
Default: \( x_{\text{partial}} = y_{\text{partial}} = 0 \)

IMSL_GRID, int nx, float *xvec, int ny, float *yvec, float **value (Input/Output)
The argument xvec is the array of length \( nx \) containing the \( X \) coordinates at which the spline is to be evaluated. The argument yvec is the array of length \( ny \) containing the \( Y \) coordinates at which the spline is to be evaluated. The value of the spline on the \( nx \) by \( ny \) grid is returned in value.

IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec, float value_user[] (Input/Output)
The argument xvec is the array of length \( nx \) containing the \( X \) coordinates at which the spline is to be evaluated. The argument yvec is the array of length \( ny \) containing the \( Y \) coordinates at which the spline is to be evaluated. The value of the spline on the \( nx \) by \( ny \) grid is returned in the user-supplied space value_user.

Description

The function imsl_f_spline_2d_value computes the value of a tensor-product spline or one of its derivatives. This function is based on the discussion in de Boor (1978, pp. 351–353).

Examples

Example 1
In this example, a spline interpolant \( s \) to a function \( f \) is constructed. Using the procedure imsl_f_spline_2d_interp to compute the interpolant, imsl_f_spline_2d_value is employed to compute \( s(x, y) \). The values of this partial derivative and the error are computed on a \( 4 \times 4 \) grid and then displayed.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2

/* Define function */
#define F(x,y) (float)(x*x*x+y*y)

int main()
{
 int i, j, num_xdata, num_ydata;
```
float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
float x, y, z;
Imsl_f_spline *sp;
/* Set up grid */
for (i = 0; i < NDATA; i++) {
    xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
}
for (i = 0; i < NDATA; i++) {
    for (j = 0; j < NDATA; j++) {
        fdata[i][j] = F(xdata[i], ydata[j]);
    }
}
num_xdata = num_ydata = NDATA;
/* Compute tensor-product interpolant */
sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata, ydata, fdata, 0);
/* Print results */
printf(" x y F(x, y) Value Error
");
for (i = 0; i < OUTDATA; i++) {
    x = (float) (1+i) / (float) (OUTDATA+1);
    for (j = 0; j < OUTDATA; j++) {
        y = (float) (1+j) / (float) (OUTDATA+1);
        z = imsl_f_spline_2d_value(x, y, sp, 0);
        printf("%6.3f %6.3f %10.3f %10.3f %10.4f\n",
                x, y, F(x,y), z, fabs(F(x,y)-z));
    }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.333</td>
<td>0.333</td>
<td>0.148</td>
<td>0.148</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.333</td>
<td>0.667</td>
<td>0.481</td>
<td>0.481</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.667</td>
<td>0.333</td>
<td>0.407</td>
<td>0.407</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.667</td>
<td>0.667</td>
<td>0.741</td>
<td>0.741</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Example 2

In this example, a spline interpolant $s$ to a function $f$ is constructed. Using function $\text{imsl\_f\_spline\_2d\_interp}$ to compute the interpolant, then $\text{imsl\_f\_spline\_2d\_value}$ is employed to compute $s^{(2,1)}(x, y)$. The values of this partial derivative and the error are computed on a $4 \times 4$ grid and then displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA           11
#define OUTDATA         2
/* Define function */
#define F(x, y) (float)(x*x*x*y*y)
#define F21(x, y) (float)(6.*x*2.*y)

int main()
{
    int i, j, num_xdata, num_ydata;
    float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
    float x, y, z;
    Imsl_f_spline *sp;
    /* Set up grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
    }
    for (i = 0; i < NDATA; i++) {
        for (j = 0; j < NDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
    }
    num_xdata = num_ydata = NDATA;
    /* Compute tensor-product interpolant */
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
                                ydata, fdata, 0);
    /* Print results */
    printf("    x      y      F21(x, y)  21InterpDeriv  Error
");  
    for (i = 0; i < OUTDATA; i++) {
        x = (float) (1+i) / (float) (OUTDATA+1);
        for (j = 0; j < OUTDATA; j++) {
            y = (float) (1+j) / (float) (OUTDATA+1);
            z = imsl_f_spline_2d_value(x, y, sp,
                                         IMSL_DERIV, 2, 1, 0);
            printf(" %6.3f %6.3f %10.3f  %10.3f  %10.4f
", x, y, F21(x, y), z, fabs(F21(x,y)-z));
        }
    }
    Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F21(x, y)</th>
<th>21InterpDeriv</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.333</td>
<td>0.333</td>
<td>1.333</td>
<td>1.333</td>
<td>0.000</td>
</tr>
<tr>
<td>0.333</td>
<td>0.667</td>
<td>2.667</td>
<td>2.667</td>
<td>0.000</td>
</tr>
<tr>
<td>0.667</td>
<td>0.333</td>
<td>2.667</td>
<td>2.667</td>
<td>0.000</td>
</tr>
<tr>
<td>0.667</td>
<td>0.667</td>
<td>5.333</td>
<td>5.333</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
**Warning Errors**

- **IMSL_X_NOT_WITHIN_KNOTS**
  - The value of \( x \) does not lie within the knot sequence.

- **IMSL_Y_NOT_WITHIN_KNOTS**
  - The value of \( y \) does not lie within the knot sequence.

**Fatal Errors**

- **IMSL_KNOT_MULTIPLICITY**
  - Multiplicity of the knots cannot exceed the order of the spline.

- **IMSL_KNOT_NOT_INCREASING**
  - The knots must be nondecreasing.
spline_2d_integral

Evaluates the integral of a tensor-product spline on a rectangular domain.

Synopsis

```c
#include <imsl.h>

float imsl_f_spline_2d_integral (float a, float b, float c, float d, Imsl_f_spline *sp)
```

The type `double` function is `imsl_d_spline_2d_integral`.

Required Arguments

- **float a** (Input)  
  The integration limits for the first variable of the tensor-product spline.

- **float b** (Input)  
  The integration limits for the first variable of the tensor-product spline.

- **float c** (Input)  
  The integration limits for the first variable of the tensor-product spline.

- **float d** (Input)  
  The integration limits for the first variable of the tensor-product spline.

- **Imsl_f_spline *sp** (Input)  
  Pointer to the structure that represents the spline.

Return Value

The value of the integral of the tensor-product spline over the rectangle \([a, b] \times [c, d]\). If no value can be computed, NaN is returned.

Description

The function `imsl_f_spline_2d_integral` computes the integral of a tensor-product spline. If \(s\) is the spline, then this function returns

\[
\int_a^b \int_c^d s(x, y) \, dy \, dx
\]

This function uses the (univariate integration) identity (22) in de Boor (1978, p. 151)
\[
\int_{t_0}^{x} \sum_{i=0}^{n-1} a_i B_{i,k}(\tau) d\tau = \sum_{i=0}^{r-1} \left[ \sum_{j=0}^{i} a_j \frac{t_{j+k} - t_j}{k} \right] B_{i,k+1}(x)
\]

where \(t_0 \leq x \leq t_r\).

It assumes (for all knot sequences) that the first and last \(k\) knots are stacked, that is, \(t_0 = \ldots = t_{k-1}\) and \(t_n = \ldots = t_{n+k-1}\), where \(k\) is the order of the spline in the \(x\) or \(y\) direction.

**Example**

This example integrates a two-dimensional, tensor-product spline over the rectangle \([0, x] \times [0, y]\).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2

/* Define function */
#define F(x,y) (float)(x*x*x+y*y)
/* The integral of F from 0 to x */
/* and 0 to y */
#define FI(x,y) (float)(y*x*x*x*x/4. + x*y*y*y/3.)

int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i],ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y FI(x, y) Integral Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 printf("%f %f %f %f %f\n", x, y, FI(x,y), (fdata[i][j]), 0);
 }
 }
}
```
\[ y = \frac{1+j}{\text{OUTDATA}+1}; \]
\[ z = \text{imsl_f_spline_2d_integral}(0.0, x, 0.0, y, \text{sp}); \]
\[ \text{printf}(" \%6.3f \%6.3f \%10.3f \ %10.3f \ %10.4f\n", \]
\[ x, y, \text{FI}(x, y), z, \text{fabs}(\text{FI}(x,y)-z)); \]
\]

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>FI(x, y)</th>
<th>Integral</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.333</td>
<td>0.333</td>
<td>0.005</td>
<td>0.005</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.333</td>
<td>0.667</td>
<td>0.035</td>
<td>0.035</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.667</td>
<td>0.333</td>
<td>0.025</td>
<td>0.025</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.667</td>
<td>0.667</td>
<td>0.099</td>
<td>0.099</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Warning Errors

- **IMSL_SPLINE_LEFT_ENDPT**
  The left endpoint of \(X\) integration is not within the knot sequence. Integration occurs only from \(t_{\text{order-1}}\) to \(b\).

- **IMSL_SPLINE_RIGHT_ENDPT**
  The right endpoint of \(X\) integration is not within the knot sequence. Integration occurs only from \(t_{\text{order-1}}\) to \(a\).

- **IMSL_SPLINE_LEFT_ENDPT_1**
  The left endpoint of \(X\) integration is not within the knot sequence. Integration occurs only from \(b\) to \(t_{\text{spline_space_dim}-1}\).

- **IMSL_SPLINE_RIGHT_ENDPT_1**
  The right endpoint of \(X\) integration is not within the knot sequence. Integration occurs only from \(a\) to \(t_{\text{spline_space_dim}-1}\).

- **IMSL_SPLINE_LEFT_ENDPT_2**
  The left endpoint of \(Y\) integration is not within the knot sequence. Integration occurs only from \(t_{\text{order-1}}\) to \(d\).

- **IMSL_SPLINE_RIGHT_ENDPT_2**
  The right endpoint of \(Y\) integration is not within the knot sequence. Integration occurs only from \(t_{\text{order-1}}\) to \(c\).

- **IMSL_SPLINE_LEFT_ENDPT_3**
  The left endpoint of \(Y\) integration is not within the knot sequence. Integration occurs only from \(d\) to \(t_{\text{spline_space_dim}-1}\).

- **IMSL_SPLINE_RIGHT_ENDPT_3**
  The right endpoint of \(Y\) integration is not within the knot sequence. Integration occurs only from \(c\) to \(t_{\text{spline_space_dim}-1}\).

Fatal Errors

- **IMSL_KNOT_MULTIPLICITY**
  Multiplicity of the knots cannot exceed the order of the spline.

- **IMSL_KNOT_NOT_INCREASING**
  The knots must be nondecreasing.
spline_nd_interp

Performs multidimensional interpolation and differentiation for up to 7 dimensions.

Synopsis

```c
#include <imsl.h>

float imsl_f_spline_nd_interp(int n, int d[], float x[], float xdata[], float fdata[], ... , 0)
```

The type `double` function is `imsl_d_spline_nd_interp`.

Required Arguments

- **int n** (Input)
  The dimension of the problem. \( n \) cannot be greater than seven.

- **int d[]** (Input)
  Array of length \( n \). \( d[i] \) contains the number of gridpoints in the \( i \)-th direction.

- **float x[]** (Input)
  Array of length \( n \) containing the point at which interpolation is to be done. An interpolant is to be calculated at the point:

  \[
  (X_1, X_2, \ldots, X_n)
  \]

  where

  \[
  X_1 = x[0], \ X_2 = x[1], \ldots
  \]

- **float xdata[]** (Input)
  Array of size \( n \times \max(d[0], \ldots, d[n-1]) \) containing the gridpoint values for the grid.

- **float fdata[]** (Input)
  Array of length \( d[0] \times d[1] \times \ldots \times d[n-1] \) containing the values of the function to be interpolated at the gridpoints.
  
  \( fdata(i, j, k, \ldots) \) is the value of the function at

  \[
  (Z_1, Z_2, j, Z_3, k, \ldots)
  \]

  where
\[ Z_{1,i} = xdata[0][i-1] \]
\[ Z_{2,j} = xdata[1][j-1] \]
\[ Z_{3,k} = xdata[2][k-1] \]

for \( i = 1, \ldots, d[0], j = 1, \ldots, d[1], k = 1, \ldots, d[2], \ldots \)

**Return Value**

Interpolated value of the function. If no value can be computed, NaN is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

float imsl_f_spline_nd_interp(int n, int d[], float x[], float xdata[], float fdata[],
 IMSL_NDEGREE, int ndeg[],
 IMSL_ORDER, int nders,
 IMSL_DERIV, float **deriv,
 IMSL_DERIV_USER, float deriv[],
 IMSL_ERR_EST, float *error,
 0)
```

**Optional Arguments**

**IMSL_NDEGREE, int ndeg[]** (Input)
Array of length \( n \) containing the degree of polynomial interpolation to be used in each dimension. \( ndeg[i] \) must be less than or equal to 15.
Default: \( ndeg[i] = 5, \text{ for } i = 0, \ldots, n-1 \).

**IMSL_ORDER, int nders** (Input)
Maximum order of derivatives to be computed with respect to each variable. \( nders \) cannot be larger than \( \max(7 - n, 2) \). All partial derivatives up to and including order \( nders \) are returned in each of the \( n \) dimensions. See \( \text{deriv} \) for more details.
Default: \( nders = 0 \).

**IMSL_DERIV, float **deriv** (Output)
Address of a pointer to an internally allocated \( n \) dimensional array, dimensioned \((nders+1) \times (nders+1) \times \ldots\), containing derivative estimates at the interpolation point.
deriv \( [i \, j] \) ... will hold an estimate of the derivative with respect to \( x_1 \) \( i \) times, and with respect to \( x_2 \) \( j \) times, etc. where \( i = 0, \ldots, \text{nders}, j = 0, \ldots, \text{nders}, \ldots \). The 0–th derivative means the function value, thus, deriv[0][0] ... = imsl_f_spline_nd_interp.

IMSL_DERIV_USER, float deriv[] (Output)
Storage for deriv is provided by the user. See IMSL_DERIV.

IMSL_ERR_EST, float *error (Output)
Estimate of the error.

**Description**

The function imsl_f_spline_nd_interp interpolates a function of up to 7 variables, defined on a (possibly nonuniform) grid. It fits a polynomial of up to degree 15 in each variable through the grid points nearest the interpolation point. Approximations of partial derivatives are calculated, if requested. If derivatives are desired, high precision is strongly recommended. For more details, see Krogh (1970).

**Example**

The 3D function \( f(x, y, z) = \exp(x + 2y + 3z) \), defined on a 20 by 30 by 40 uniform grid, is interpolated together with several partial derivatives.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define N 3
#define ND1 20
#define ND2 30
#define ND3 40
#define NDERS 1

int main() {
 char order[3];
 int i, j, k, ndeg[N], d[N], nders=NDERS;
 float xdata[N][ND3], fdata[ND1][ND2][ND3], x[N], xx, yout, yy, zz, derout[NDERS+1][NDERS+1][NDERS+1], error, relerr, tr;

 d[0] = ND1;
 d[1] = ND2;
 d[2] = ND3;

 /*
 * 20 by 30 by 40 uniform grid used for
 * interpolation of F(x,y,z) = exp(x+2*y+3*z)
 */
 ndeg[0] = 8;
```
ndeg[1] = 7;
ndeg[2] = 9;
for (i=0; i < ND1; i++)
    xdata[0][i] = 0.05*(i);

for (j=0; j < ND2; j++)
    xdata[1][j] = 0.03*(j);

for (k=0; k < ND3; k++)
    xdata[2][k] = 0.025*(k);

for (i=0; i < ND1; i++) {
    for (j=0; j < ND2; j++) {
        for (k=0; k < ND3; k++) {
            xx = xdata[0][i];
            yy = xdata[1][j];
            zz = xdata[2][k];
            fdata[i][j][k] = exp(xx+2*yy+3*zz);
        }
    }
}

/* Interpolate at (0.18,0.43,0.35)*/
x[0] = 0.18;
x[1] = 0.43;
x[2] = 0.35;
yout = imsl_f_spline_nd_interp(N, d, x, &xdata[0][0],
    &fdata[0][0][0],
    IMSL_NDEGREE, ndeg,
    IMSL_ORDER, nders,
    IMSL_DERIV_USER, &derout[0][0][0],
    IMSL_ERR_EST, &error, 0);

/*
 * Output F,Fx,Fy,Fz,Fxy,Fxz,Fyz,Fxyz at
 * interpolation point
 */
xx = x[0];
yy = x[1];
zz = x[2];

printf("EST. VALUE = %g, EST. ERROR = %g\n\n", yout, error);
printf("       Computed Der.  True Der.     Rel. Err\n");
for (k=0; k <= NDERS; k++) {
    for (j=0; j <= NDERS; j++) {
        for (i=0; i <= NDERS; i++) {
            order[0] = ' ';
            order[1] = ' ';
            order[2] = ' ';
            if (i == 1) order[0] = 'x';
            printf("%sFx%sFy%sFz%sFxy%sFxz%sFyz%sFxyz = %g, ",
                order[0], order[1], order[2], order[0],
                order[0], order[2], order[0], order[2],
                fdata[i][j][k]);
        }
    }
}
if (j == 1) order[1] = 'y';
if (k == 1) order[2] = 'z';
tr = pow(2,j) * pow(3,k) * exp(xx+2*yy+3*zz);
relerr = (derout[i][j][k] - tr)/tr;
printf("%s", order);
printf("%14.6f %14.6f %14.3e\n", derout[i][j][k],
    tr, relerr);
}
}
}

Output

Est. Value = 8.08491, Est. Error = 4.18959e-006

<table>
<thead>
<tr>
<th>Computed Der.</th>
<th>True Der.</th>
<th>Rel. Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>8.084914</td>
<td>-1.180e-007</td>
</tr>
<tr>
<td>Fx</td>
<td>8.084922</td>
<td>8.257e-007</td>
</tr>
<tr>
<td>F y</td>
<td>16.169794</td>
<td>-2.241e-006</td>
</tr>
<tr>
<td>F xy</td>
<td>16.170071</td>
<td>1.486e-005</td>
</tr>
<tr>
<td>F z</td>
<td>24.254747</td>
<td>7.864e-008</td>
</tr>
<tr>
<td>F xz</td>
<td>24.253994</td>
<td>-3.098e-005</td>
</tr>
<tr>
<td>F yz</td>
<td>48.510410</td>
<td>1.895e-005</td>
</tr>
<tr>
<td>Fxyz</td>
<td>48.533176</td>
<td>4.883e-004</td>
</tr>
</tbody>
</table>

Warning Errors

IMSL_ARG_TOO_BIG
“nders” is too large, it has been reset to max(7-n,2).

IMSL_INTERP_OUTSIDE_DOMAIN
The interpolation point is outside the domain of the table, so extrapolation is used.

Fatal Errors

IMSL_TOO_MANY_DERIVATIVES
Too many derivatives requested for the polynomial degree used.

IMSL_POLY_DEGREE_TOO_LARGE
One of the polynomial degrees requested is too large for the number of gridlines in that direction.
user_fcn_least_squares

Computes a least-squares fit using user-supplied functions.

Synopsis

```
#include <imsl.h>

float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int nbasis, int ndata,
 float xdata[], float ydata[],..., 0)
```

The type `double` function is `imsl_d_user_fcn_least_squares`.

Required Arguments

```
float fcn (int k, float x) (Input)
 User-supplied function that defines the subspace from which the least-squares fit is to be performed.
 The k-th basis function evaluated at x is f (k, x) where k = 1, 2, ..., nbasis.
```

```
int nbasis (Input)
 Number of basis functions.
```

```
int ndata (Input)
 Number of data points.
```

```
float xdata[] (Input)
 Array with ndata components containing the abscissas of the least-squares problem.
```

```
float ydata[] (Input)
 Array with ndata components containing the ordinates of the least-squares problem.
```

Return Value

A pointer to the vector containing the coefficients of the basis functions. If a fit cannot be computed, then NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_user_fcn_least_squares (float fcn(), int nbasis, int ndata, float xdata[],
 float ydata[],
 IMSL_RETURN_USER, float coef[],
```
IMSL_INTERCEPT, float *intercept,
IMSL_SSE, float *ssq_err,
IMSL_WEIGHTS, float weights[],
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments

IMSL_RETURN_USER, float coef[] (Output)
The coefficients are stored in the user-supplied array.

IMSL_INTERCEPT, float *intercept (Output)
This option adds an intercept to the model. Thus, the least-squares fit is computed using the user-
supplied basis functions augmented by the constant function. The coefficient of the constant func-
tion is stored in intercept.

IMSL_SSE, float *ssq_err (Output)
This option returns the error sum of squares.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_FCN_W_DATA, float fcn (int k, float x, float *data), void *data, (Input)
User supplied function that defines the subspace from which the least-squares fit is to be performed,
which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be
passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduc-
tion to this manual for more details.

Description

The function imsl_f_user_fcn_least_squares computes a best least-squares approximation to given
univariate data of the form

\[ \{ (x_i, f_i) \}_{i=0}^{n-1} \]

by \( M \) basis functions

\[ \{ F_j \}_{j=1}^{M} \]

(\( M = \text{nbasis} \)). In particular, the default for this function returns the coefficients \( a \) which minimize
\[ \sum_{i=0}^{n-1} w_i \left[ f_i - \sum_{j=1}^{M} a_{j-1} F_j(x_i) \right]^2 \]

where \( w = \text{weights} \), \( n = \text{ndata} \), \( x = \text{xdata} \), and \( f = \text{ydata} \).

If the optional argument IMSL_INTCERCEPT is chosen, then an intercept is placed in the model, and the coefficients \( a \), returned by \textit{imsl\_f\_user\_fcn\_least\_squares}, minimize the error sum of squares as indicated below.

\[ \sum_{i=0}^{n-1} w_i \left[ f_i - \text{intercept} - \sum_{j=1}^{M} a_{j-1} F_j(x_i) \right]^2 \]

**Remarks**

Note that although the system is linear, for very large problems the Chapter 8 function, \textit{imsl\_f\_nonlin\_least\_squares}, might be better suited. This is because \textit{imsl\_f\_user\_fcn\_least\_squares} will gather the matrix entries one at a time by calls to the user-supplied function. By using the nonlinear solver and supplying the Jacobian the user can sidestep this issue and likely achieve accurate results since the nonlinear solver utilizes regularization and iterative refinement. Example 3 below demonstrates the use of the nonlinear solver \textit{imsl\_f\_nonlin\_least\_squares} as an alternative to \textit{imsl\_f\_user\_fcn\_least\_squares}.

**Examples**

**Example 1**

This example fits the following two functions (indexed by \( \delta \)):

\[ 1 + \sin x + 7 \sin 3x + \delta \epsilon \]

where \( \epsilon \) is a random uniform deviate over the range \([-1, 1]\) and \( \delta \) is 0 for the first function and 1 for the second. These functions are evaluated at 90 equally spaced points on the interval \([0, 6]\). Four basis functions are used: 1, \( \sin x \), \( \sin 2x \), \( \sin 3x \).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90

#include <math.h>
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

float fcn(int n, float x);
```
int main()
{
    int        nbasis = 4, i, delta;
    float      ydata[NDATA], xdata[NDATA], *random, *coef;
    /* Generate random numbers */
    imsl_random_seed_set(1234567);
    random = imsl_f_random_uniform(NDATA, 0);
    /* Set up data */
    for(delta = 0; delta < 2; delta++) {
        for (i = 0; i < NDATA; i++) {
            xdata[i] = 6.*((float)i)/((float)(NDATA-1));
            ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
        }
        coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata, ydata, 0);
        printf("\nFor delta = %1d", delta);
        imsl_f_write_matrix("the computed coefficients are\n", 1, nbasis, coef, 0);
    }
}

float fcn(int n, float x)
{
    return (n == 1) ? 1.0 : sin((n-1)*x);
}

Output

For delta = 0
    the computed coefficients are

    1          2          3          4
    1          1         -0          7

For delta = 1
    the computed coefficients are

    1          2          3          4
    0.979      0.998      0.096      6.839

Example 2

Recall that the first example fitted the following two functions (indexed by δ):

1 + sin x + 7 sin3x + δε

where ε is a random uniform deviate over the range[−1, 1], and δ is 0 for the first function and 1 for the second. These functions are evaluated at 90 equally spaced points on the interval [0, 6]. Previously, the four basis functions were used: 1, sinx, sin2x, sin3x. This example uses the four basis functions: sinx, sin2x, sin3x, sin4x, combined with the intercept option.
```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90 /* Define function */
#define F(x) (float)(1. + sin(x)+7.*sin(3.0*x))

float fcn(int n, float x);

int main()
{
 int nbasis = 4, i, delta;
 float ydata[NDATA], xdata[NDATA], *random, *coef, intercept;
 /* Generate random numbers */
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for(delta = 0; delta < 2; delta++){
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
 ydata,
 IMSL_INTERCEPT, &intercept, 0);
 printf("For delta = %1d
", delta);
 printf("The predicted intercept value is %10.3f
", intercept);
 imsl_f_write_matrix("the computed coefficients are
", 1, nbasis, coef, 0);
 }
}

float fcn(int n, float x)
{
 return sin(n*x);
}

Output

For delta = 0
The predicted intercept value is 1.000
the computed coefficients are

 1 2 3 4
 1 0 7 -0
```
For \( \delta = 1 \)
The predicted intercept value is \( 0.978 \)

The computed coefficients are

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0.998 & 0.097 & 6.841 & 0.075 \\
\end{array}
\]

**Example 3**

This example solves the same problem as **Example 1**, demonstrating the use of

`imsl_f_nonlin_least_squares` as an alternative to `imsl_f_user_fcn_least_squares`. See the Remarks section above for a discussion of why, for some problems, `imsl_f_nonlinear_least_squares` might be better suited than `imsl_f_user_fcn_least_squares`. 
#include <stdio.h>
#include <imsl.h>
#include <math.h>

float fcn(int n, float x);
void fcn2(int m, int n, float x[], float f[], void* data);
void fcn2jac(int m, int n, float x[], float fjac[], int fjac_col_dim, void *data);

/*
* The following structure type will be used to pass
* additional data to imsl_f_nonlin_least_squares() using
* the optional argument IMSL_FCN_W_DATA
*/
typedef struct {
  float *xdata;
  float *ydata;
} Problem_data;

int main()
{
#define NDATA  90
#define F(x)  (float)(1.+ sin(x)+7.*sin(3.0*x))

int  nbasis = 4, i, delta;
float  *random, *coef, *coef2;
float  ydata[NDATA], xdata[NDATA];
Problem_data data;
data.xdata = xdata;
data.ydata = ydata;

imsl_random_seed_set(1234567);
random = imsl_f_random_uniform(NDATA, 0);
for(delta = 0;  delta < 2;  delta++) {
  printf("\n\nFor delta = %1d", delta);
  for (i = 0; i < NDATA; i++) {
        xdata[i] = 6.*(float)i /((float)(NDATA-1));
        ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
  }
  coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
                               ydata, 0);
  imsl_f_write_matrix(
    "  Coefficients from user_fcn_least_squares
      ",
    1, nbasis, coef, IMSL_NO_COL_LABELS, IMSL_NO_ROW_LABELS,
    IMSL_WRITE_FORMAT, "%6.3f", 0);

  coef2 = imsl_f_nonlin_least_squares(NULL, NDATA, nbasis,
                                   IMSL_FCEN_W_DATA, fcn2, &data,
                                   IMSL_JACOBIAN_W_DATA, fcn2jac, &data, 0);
  imsl_f_write_matrix(
    "  Coefficients from nonlin_least_squares
      ",
    1, nbasis, coef2, IMSL_NO_COL_LABELS, IMSL_NO_ROW_LABELS,
    IMSL_WRITE_FORMAT, "%6.3f", 0);
}
}
1, nbasis, coef2, IMSL_NO_COL_LABELS, IMSL_NO_ROW_LABELS,
IMSL_WRITE_FORMAT, "%6.3f", 0);
}

float fcn(int n, float x)
{
    return (n == 1) ? 1.0 : sin((n-1)*x);
}

void fcn2(int m, int n, float x[], float f[], void *data)
{
    int i;
    float *xdata, *ydata;
    xdata = ((Problem_data*)data)->xdata;
    ydata = ((Problem_data*)data)->ydata;
    for (i=0; i<m; i++)
        f[i] = x[0] + x[1]*sin(xdata[i]) + x[2]*sin(2.0*xdata[i]) +
        x[3]*sin(3.0*xdata[i]) - ydata[i];
}

void fcn2jac(int m, int n, float x[], float fjac[], int fjac_col_dim,
void *data)
{
    int i, j;
    float *xdata;
    xdata = ((Problem_data*)data)->xdata;
    for (i=0; i<m; i++)
        for (j=0; j<n; j++)
            fjac[i*fjac_col_dim+j] = (j==0) ? 1.0 : sin(j*xdata[i]);
}

Output

For delta = 0
Coefficients from user_fcn_least_squares

  1.000  1.000  0.000  7.000

Coefficients from nonlin_least_squares

  1.000  1.000  0.000  7.000

For delta = 1
Coefficients from user_fcn_least_squares

  0.979  0.998  0.096  6.839
Coefficients from nonlin_least_squares

0.979  0.998  0.096  6.839

Warning Errors

IMSL_LINEAR_DEPENDENCE

Linear dependence of the basis functions exists. One or more components of coef are set to zero.

IMSL_LINEAR_DEPENDENCE_CONST

Linear dependence of the constant function and basis functions exists. One or more components of coef are set to zero.

Fatal Errors

IMSL_NEGATIVE_WEIGHTS_2

All weights must be greater than or equal to zero.

IMSL_STOP_USER_FCN

Request from user supplied function to stop algorithm.
User flag = "#".
Computes a least-squares spline approximation.

**Synopsis**

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_least_squares(int ndata, float xdata[], float fdata[],
 int spline_space_dim, ... , 0)
```

The type `Imsl_d_spline` function is `imsl_d_spline_least_squares`.

**Required Arguments**

- `int ndata` (Input)
  Number of data points.
- `float xdata[]` (Input)
  Array with `ndata` components containing the abscissas of the least-squares problem.
- `float fdata[]` (Input)
  Array with `ndata` components containing the ordinates of the least-squares problem.
- `int spline_space_dim` (Input)
  The linear dimension of the spline subspace. It should be smaller than `ndata` and greater than or equal to `order` (whose default value is 4).

**Return Value**

A pointer to the structure that represents the spline fit. If a fit cannot be computed, then `NULL` is returned. To release this space, use `imsl_free`.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_least_squares(int ndata, float xdata[], float fdata[],
 int spline_space_dim,
 IMSL_SSE, float *sse_err,
 IMSL_WEIGHTS, float weights[],
 IMSL_ORDER, int order,
```
Optional Arguments

IMSL_SSE, float *sse (Output)
This option places the weighted error sum of squares in the place pointed to by sse.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one.

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option is used to communicate
the order of the spline subspace.
Default: order = 4, (i.e., cubic splines).

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots. The user must provide a knot sequence of length
spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

IMSL_OPTIMIZE
This option optimizes the knot locations, by attempting to minimize the least-squares error as a func-
tion of the knots. The optimal knots are available in the returned spline structure.

Description

Let’s make the identifications

\[ n = \text{ndata} \]
\[ x = \text{xdata} \]
\[ f = \text{fdata} \]
\[ m = \text{spline_space_dim} \]
\[ k = \text{order} \]

For convenience, we assume that the sequence \( x \) is increasing, although the function does not require this.

By default, \( k = 4 \), and the knot sequence we select equally distributes the knots through the distinct \( x \)’s. In partic-
ular, the \( m + k \) knots will be generated in \([x_1, x_n]\) with \( k \) knots stacked at each of the extreme values. The interior
knots will be equally spaced in the interval.
Once knots $\mathbf{t}$ and weights $\mathbf{w}$ are determined (and assuming that the option IMSL_OPTIMIZE is not chosen), then the function computes the spline least-squares fit to the data by minimizing over the linear coefficients $a_j$

$$\sum_{i=0}^{n-1} w_i \left[ f_i - \sum_{j=1}^{m} a_j B_j(x_i) \right]^2$$

where the $B_j, j = 1, \ldots, m$ are a (B-spline) basis for the spline subspace.

The optional argument IMSL_ORDER allows the user to choose the order of the spline fit. The optional argument IMSL_KNOTS allows user specification of knots. The function imsl_f_spline_least_squares is based on the routine L2APPR by de Boor (1978, p. 255).

If the option IMSL_OPTIMIZE is chosen, then the procedure attempts to find the best placement of knots that will minimize the least-squares error to the given data by a spline of order $k$ with $m$ coefficients. For this problem to make sense, it is necessary that $m > k$. We then attempt to find the minimum of the functional

$$F(a, t) = \sum_{i=0}^{n-1} w_i \left[ f_i - \sum_{j=0}^{m-1} a_j B_{j,k}(x_i) \right]$$

The technique employed here uses the fact that for a fixed knot sequence $\mathbf{t}$ the minimization in $a$ is a linear least-squares problem that can be easily solved. Thus, we can think of our objective function $F$ as a function of just $\mathbf{t}$ by setting

$$G(\mathbf{t}) = \min_{\mathbf{a}} F(\mathbf{a}, \mathbf{t})$$

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new objective function $G$. In addition to this local method, there is a global heuristic built into the algorithm that will be useful if the data arise from a smooth function. This heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184 and 258–261).

The initial guess, $\mathbf{t}^0$, for the knot sequence is either provided by the user or is the default. This guess must be a valid knot sequence for splines of order $k$ with

$$t^0_0 \leq \ldots \leq t^0_{k-1} \leq x_i \leq t^0_m \leq \ldots \leq t^0_{m+k-1} i = 1, \ldots, M$$

with $\mathbf{t}^0$ nondecreasing, and

$$t^0_i < t^0_{i+k} \text{ for } i = 0, \ldots, m-1$$

In regard to execution speed, this function can be several orders of magnitude slower than a simple least-squares fit.

The return value for this function is a pointer of type Imsl_f_spline. The calling program must receive this in a pointer Imsl_f_spline *sp. This structure contains all the information to determine the spline (stored in B-spline form) that is computed by this function. For example, the following code sequence evaluates this spline at $x$ and returns the value in $y$. 

$$\sum_{i=0}^{n-1} w_i \left[ f_i - \sum_{j=1}^{m} a_j B_j(x_i) \right]^2$$
y = imsl_f_spline_value (x, sp, 0);

In the figure below, two cubic splines are fit to

\[ \sqrt{|x|} \]

Both splines are cubics with the same `spline_space_dim = 8`. The first spline is computed with the default settings, while the second spline is computed by optimizing the knot locations using the keyword `IMSL_OPTIMIZE`.

![Figure 3.5 — Two Cubic Splines](image)

**Examples**

**Example 1**

This example fits data generated from a trigonometric polynomial

\[ 1 + \sin x + 7 \sin 3x + \epsilon \]

where \( \epsilon \) is a random uniform deviate over the range \([-1, 1]\). The data are obtained by evaluating this function at 90 equally spaced points on the interval \([0, 6]\). This data is fitted with a cubic spline with 12 degrees of freedom (eight equally spaced interior knots). The error at 10 equally spaced points is printed out.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
/* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
```
```c
int main()
{
 int i, spline_space_dim = 12;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_spline *sp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim, 0);
 printf("x error \n");
 for(i = 0; i < 10; i++) {
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f
", x, error);
 }
}
```

**Output**

<table>
<thead>
<tr>
<th>x</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-0.356</td>
</tr>
<tr>
<td>0.667</td>
<td>-0.004</td>
</tr>
<tr>
<td>1.333</td>
<td>0.434</td>
</tr>
<tr>
<td>2.000</td>
<td>-0.069</td>
</tr>
<tr>
<td>2.667</td>
<td>-0.494</td>
</tr>
<tr>
<td>3.333</td>
<td>0.362</td>
</tr>
<tr>
<td>4.000</td>
<td>-0.273</td>
</tr>
<tr>
<td>4.667</td>
<td>-0.247</td>
</tr>
<tr>
<td>5.333</td>
<td>0.303</td>
</tr>
<tr>
<td>6.000</td>
<td>0.578</td>
</tr>
</tbody>
</table>

**Example 2**

This example continues with the first example in which we fit data generated from the trigonometric polynomial

\[
1 + \sin x + 7 \sin 3x + \epsilon
\]

where \( \epsilon \) is random uniform deviate over the range \([-1, 1]\). The data is obtained by evaluating this function at 90 equally spaced points on the interval \([0, 6]\). This data was fitted with a cubic spline with 12 degrees of freedom (in this case, the default gives us eight equally spaced interior knots) and the error sum of squares was printed. In this example, the knot locations are optimized and the error sum of squares is printed. Then, the error at 10 equally spaced points is printed.
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA  90    /* Define function */
#define F(x)       (float)(1.+ sin(x)+7.*sin(3.0*x))

int main()
{
    int                i, spline_space_dim = 12;
    float              fdata[NDATA], xdata[NDATA], *random, sse1, sse2;
    Imsl_f_spline       *sp;
    /* Generate random numbers */
    imsl_random_seed_set(123457);
    random = imsl_f_random_uniform(NDATA, 0);
    /* Set up data */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = 6.*(float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
    }
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
                                     spline_space_dim,
                                     IMSL_SSE, &sse1,
                                     0);
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
                                     spline_space_dim,
                                     IMSL_OPTIMIZE,
                                     IMSL_SSE, &sse2,
                                     0);
    printf("The error sum of squares before optimizing is %10.1f\n", sse1);
    printf("The error sum of squares after optimizing is %10.1f\n\n", sse2);
    printf("      x        error\n");
    for(i = 0; i < 10; i++){
        float  x, error;
        x = 6.*i/9.;
        error = F(x) - imsl_f_spline_value(x, sp, 0);
        printf("%10.3f %10.3f\n", x, error);
    }
}

Output

The error sum of squares before optimizing is 32.6
The error sum of squares after optimizing is 27.0

x  Error
0.000  -0.656
0.667   0.107
1.333    0.055
2.000    -0.243
2.667    -0.063
3.333    -0.015
4.000    -0.424
4.667    -0.138
5.333    0.133
6.000    0.494

Warning Errors

**IMSL_OPT_KNOTS_STACKED_1**
The knots found to be optimal are stacked more than order. This indicates fewer knots will produce the same error sum of squares. The knots have been separated slightly.

Fatal Errors

**IMSL_XDATA_TOO_LARGE**
The array xdata must satisfy \( xdata_i \leq t_{ndata} \), for \( i = 1, \ldots, ndata \).

**IMSL_XDATA_TOO_SMALL**
The array xdata must satisfy \( xdata_i \geq t_{order - 1} \), for \( i = 1, \ldots, ndata \).

**IMSL_NEGATIVE_WEIGHTS**
All weights must be greater than or equal to zero.

**IMSL_KNOT_MULTIPLICITY**
Multiplicity of the knots cannot exceed the order of the spline.

**IMSL_KNOT_NOT_INCREASING**
The knots must be nondecreasing.

**IMSL_OPT_KNOTS_STACKED_2**
The knots found to be optimal are stacked more than order. This indicates fewer knots will produce the same error sum of squares.
spline_2d_least_squares

Computes a two-dimensional, tensor-product spline approximant using least-squares.

Synopsis

```c
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float xdata[],
 int num_ydata, float ydata[], float fdata[], int x_spline_space_dim,
 int y_spline_space_dim, ..., 0)
```

The type `Imsl_d_spline` function is `imsl_d_spline_2d_least_squares`.

Required Arguments

- `int num_xdata` (Input)
  Number of data points in the x direction.

- `float xdata[]` (Input)
  Array with `num_xdata` components containing the data points in the x direction.

- `int num_ydata` (Input)
  Number of data points in the y direction.

- `float ydata[]` (Input)
  Array with `num_ydata` components containing the data points in the y direction.

- `float fdata[]` (Input)
  Array of size `num_xdata` x `num_ydata` containing the values to be approximated. `fdata[i][j]` is the value at `(xdata[i], ydata[j])`.

- `int x_spline_space_dim` (Input)
  The linear dimension of the spline subspace for the x variable. It should be smaller than `num_xdata` and greater than or equal to `xorder` whose default value is 4.

- `int y_spline_space_dim` (Input)
  The linear dimension of the spline subspace for the y variable. It should be smaller than `num_ydata` and greater than or equal to `yorder` whose default value is 4.

Return Value

This is a pointer to the structure that represents the tensor-product spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use `imsl_free`.
Synopsis with Optional Arguments

```c
#include <imsl.h>

IMSL_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float xdata[],
 int num_ydata, float ydata[], float fdata[], int x_spline_space_dim,
 int y_spline_space_dim,
 IMSL_SSE, float *sse,
 IMSL_ORDER, int xorder, int yorder,
 IMSL_KNOTS, float xknots[], float yknots[],
 IMSL_FDATA_COL_DIM, int fdata_col_dim,
 IMSL_WEIGHTS, float xweights[], float yweights[],
 0)
```

Optional Arguments

- **IMSL_SSE, float *sse** (Output)
  This option places the weighted error sum of squares in the place pointed to by sse.

- **IMSL_ORDER, int xorder, int yorder** (Input)
  This option is used to communicate the order of the spline subspace.
  Default: `xorder, yorder = 4` i.e., tensor-product cubic splines

- **IMSL_KNOTS, float xknots[], float yknots[]** (Input)
  This option requires the user to provide the knots.
  Default: The default knots are equally spaced in the `x` and `y` dimensions.

- **IMSL_FDATA_COL_DIM, int fdata_col_dim** (Input)
  The column dimension of `fdata`.
  Default: `fdata_col_dim = num_ydata`

- **IMSL_WEIGHTS, float xweights[], float yweights[]** (Input)
  This option requires the user to provide the weights for the least-squares fit.
  Default: all weights are equal to 1.

Description

The `imsl_f_spline_2d_least_squares` procedure computes a tensor-product spline least-squares approximation to weighted tensor-product data. The input for this function consists of data vectors to specify the tensor-product grid for the data, two vectors with the weights (optional, the default is 1), the values of the surface on the grid, and the specification for the tensor-product spline (optional, a default is chosen). The grid is specified by the two arrays `x = xdata` and `y = ydata` of length `n = num_xdata` and `m = num_ydata`, respectively. A
two-dimensional array \( f = \text{fdata} \) contains the data values which are to be fit. The two vectors \( w_x = \text{xweights} \) and \( w_y = \text{yweights} \) contain the weights for the weighted least-squares problem. The information for the approximating tensor-product spline can be provided using the keywords \text{IMSL\_ORDER} \ and \text{IMSL\_KNOTS}. This information is contained in \( k_x = \text{xorder}, t_x = \text{xknots}, \) and \( N = \text{x spline space dim} \) for the spline in the first variable, and in \( k_y = \text{yorder}, t_y = \text{yknots}, \) and \( M = \text{y spline space dim} \) for the spline in the second variable.

This function computes coefficients for the tensor-product spline by solving the normal equations in tensor-product form as discussed in de Boor (1978, Chapter 17). Also see the paper by Grosse (1980).

As the computation proceeds, we obtain coefficients \( c \) minimizing

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} w_x(i) w_y(j) \left[ \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} c_{kl} B_{kl}(x_i, y_j) - f_{ij} \right]^2
\]

where the function \( B_{kl} \) is the tensor-product of two B-splines of order \( k_x \) and \( k_y \). Specifically, we have

\[
B_{kl}(x, y) = B_{k, k_x, t_x}(x) B_{l, k_y, t_y}(y)
\]

The spline

\[
\sum_{k=0}^{N-1} \sum_{l=0}^{M-1} c_{kl} B_{kl}(x, y)
\]

and its partial derivatives can be evaluated at any point \((x, y)\) using \text{imsl\_f\_spline\_2d\_value}. The return value for this function is a pointer to the structure \text{imsl\_f\_spline}. The calling program must receive this in a pointer of type \text{imsl\_f\_spline}. This structure contains all the information to determine the spline that is computed by this procedure. For example, the following code sequence evaluates this spline (stored in the structure \text{sp} at \((x, y)\)) and returns the value in \text{v}.

\[
v = \text{imsl\_f\_spline\_2d\_value} (x, y, \text{sp}, 0)
\]

**Examples**

**Example 1**

The data for this example comes from the function \( e^x \sin (x + y) \) on the rectangle \([0, 3] \times [0, 5]\). This function is sampled on a \(50 \times 25\) grid. Then recover or smooth the data by using tensor-product cubic splines and least-squares fitting. The values of the function \( e^x \sin (x + y) \) are printed on a \(2 \times 2\) grid and compared with the values of the tensor-product spline least-squares fit.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>
```
#define NXDATA  50
#define NYDATA  25
#define OUTDATA  2
            /* Define function */
#define F(x,y)  (float)(exp(x)*sin(x+y))

int main()
{
    int i, j, num_xdata, num_ydata;
    float fdata[NXDATA][NYDATA];
    float xdata[NXDATA], ydata[NYDATA];
    Imsl_f_spline *sp;
            /* Set up grid */
    for (i = 0; i < NXDATA; i++) {
        xdata[i] = 3.*(float) i / ((float)(NXDATA-1));
    }
    for (i = 0; i < NYDATA; i++) {
        ydata[i] = 5.*(float) i / ((float)(NYDATA-1));
    }
            /* Compute function values on grid */
    for (i = 0; i < NXDATA; i++) {
        for (j = 0; j < NYDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
        num_xdata = NXDATA;
        num_ydata = NYDATA;
        /* Compute tensor-product interpolant */
        sp = imsl_f_spline_2d_least_squares(num_xdata, &xdata[0], num_ydata, &ydata[0], &fdata[0][0], 5, 7, 0);
        /* Print results */
        printf(" x    y    F(x, y)    Spline Fit    Abs. Error\n");
        for (i = 0; i < OUTDATA; i++) {
            x = (float)i / (float)(OUTDATA);
            for (j = 0; j < OUTDATA; j++) {
                y = (float)j / (float)(OUTDATA);
                z = imsl_f_spline_2d_value(x, y, sp, 0);
                printf("%6.3f %6.3f %10.3f %10.3f %10.4f\n",
                        x, y, F(x, y), z, fabs(F(x,y)-z));
            }
        }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Spline Fit</th>
<th>Abs. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.020</td>
<td>0.0204</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>0.479</td>
<td>0.500</td>
<td>0.0208</td>
</tr>
</tbody>
</table>
Example 2

The same data is used as in the previous example. Optional argument IMSL_SSE is used to return the error sum of squares.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NXDATA 50
#define NYDATA 25
#define OUTDATA 2

/* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))

int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA], sse, x, y, z;
 Imsl_f_spline *sp;

 /* Set up grid */
 for (i = 0; i < NXDATA; i++) {
 xdata[i] = 3.*(float) i / ((float) (NXDATA - 1));
 }
 for (i = 0; i < NYDATA; i++) {
 ydata[i] = 5.*(float) i / ((float) (NYDATA - 1));
 }

 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++) {
 for (j = 0; j < NYDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }

 num_xdata = NXDATA;
 num_ydata = NYDATA;

 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_least_squares(num_xdata, &xdata[0], num_ydata,
 &ydata[0], &fdata[0][0], 5, 7,
 IMSL_SSE, &sse, 0);

 /* Print results */
 printf("The error sum of squares is %10.3f\n\n", sse);
 printf(" x y F(x, y) Spline Fit Abs. Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 printf("%8.5f %8.5f %8.5f %8.5f %8.5f\n", x, y, F(x, y), sp->data[i][j], abs(sp->data[i][j] - fdata[i][j]));
 }
 }
}
```

0.500 0.000 0.790 0.816 0.0253
0.500 0.500 1.387 1.384 0.0031
\[ y = \text{float} \frac{j}{\text{float} \text{OUTDATA));} \]
\[ z = \text{imsl_f_spline_2d_value}(x, y, sp, 0); \]
\[ \text{printf}("%6.3f%6.3f%10.3f%10.3f%10.4f
", \]
\[ x, y, F(x, y), z, \text{fabs}(F(x, y) - z)); \]
\]
\}
\}
\}
\}
}

**Output**

The error sum of squares is 3.753

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Spline Fit</th>
<th>Abs. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.020</td>
<td>0.0204</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>0.479</td>
<td>0.500</td>
<td>0.0208</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>0.790</td>
<td>0.816</td>
<td>0.0253</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>1.387</td>
<td>1.384</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

**Warning Errors**

- **IMSL_I_ll_COND_LSQ_PROB**
  - The least-squares matrix is ill-conditioned. The solution might not be accurate.

- **IMSL_SPLINE_LOW_ACCURACY**
  - There may be less than one digit of accuracy in the least-squares fit. Try using a higher precision if possible.

**Fatal Errors**

- **IMSL_KNOT_MULTIPLICITY**
  - Multiplicity of the knots cannot exceed the order of the spline.

- **IMSL_KNOT_NOT_INCREASING**
  - The knots must be nondecreasing.

- **IMSL_SPLINE_LRGST_ELEMNT**
  - The data arrays xdata and ydata must satisfy \(data_i \leq t_{\text{spline \_space \_dim}}\) for \(i = 1, \ldots, \text{num \_data}\).

- **IMSL_SPLINE_SMLST_ELEMNT**
  - The data arrays xdata and ydata must satisfy \(data_i \geq t_{\text{order} - 1}\) for \(i = 1, \ldots, \text{num \_data}\).

- **IMSL_NEGATIVE_WEIGHTS**
  - All weights must be greater than or equal to zero.

- **IMSL_DATA_DECREASING**
  - The \(x\text{data}\) values must be nondecreasing.
cub_spline_smooth

Computes a smooth cubic spline approximation to noisy data by using cross-validation to estimate the smoothing parameter or by directly choosing the smoothing parameter.

Synopsis

```c
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_smooth(int ndata, float xdata[], float fdata[], ..., 0)
```

The type `Imsl_d_ppoly` function is `imsl_d_cub_spline_smooth`.

Required Arguments

- `int` `ndata` (Input)  
  Number of data points.
- `float` `xdata[]` (Input)  
  Array with `ndata` components containing the abscissas of the problem.
- `float` `fdata[]` (Input)  
  Array with `ndata` components containing the ordinates of the problem.

Return Value

A pointer to the structure that represents the cubic spline. If a smoothed cubic spline cannot be computed, then `NULL` is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_smooth(int ndata, float xdata[], float fdata[],
 IMSL_WEIGHTS, float weights[],
 IMSL_SMOOTHING_PAR, float sigma,
 0)
```

Optional Arguments

**IMSL_WEIGHTS**, *float* weights[] (Input)
This option requires the user to provide the weights.
Default: all weights are equal to 1.

**IMSL_SMOOTHING_PAR**, *float* sigma (Input)
This option sets the smoothing parameter $\sigma = \text{sigma}$ explicitly.

Description

The function `imsl_f_cub_spline_smooth` is designed to produce a $C^2$ cubic spline approximation to a data set in which the function values are noisy. This spline is called a smoothing spline.

Consider first the situation when the optional argument **IMSL_SMOOTHING_PAR** is selected. Then, a natural cubic spline with knots at all the data abscissas $x = \text{xdata}$ is computed, but it does not interpolate the data $(x_i, f_i)$.

The smoothing spline $s$ is the unique $C^2$ function which minimizes

$$\int_a^b s''(x)^2 \, dx$$

subject to the constraint

$$\sum_{i=0}^{n-1} \left( s(x_i) - f_i \right)^2 w_i \leq \sigma$$

where $w = \text{weights}$, $\sigma = \text{sigma}$ is the smoothing parameter, and $n = \text{ndata}$.

Recommended values for $\sigma$ depend on the weights $w$. If an estimate for the standard deviation of the error in the value $f_i$ is available, then $w_i$ should be set to the inverse of this value; and the smoothing parameter $\sigma$ should be chosen in the confidence interval corresponding to the left side of the above inequality. That is,

$$n - \sqrt{2n} \leq \sigma \leq n + \sqrt{2n}$$

The function `imsl_f_cub_spline_smooth` is based on an algorithm of Reinsch (1967). This algorithm is also discussed in de Boor (1978, pp. 235–243).

The default for this function chooses the smoothing parameter $\sigma$ by a statistical technique called cross-validation. For more information on this topic, refer to Craven and Wahba (1979).

The return value for this function is a pointer to the structure `imsl_f_ppoly`. The calling program must receive this in a pointer `imsl_f_ppoly *pp`. This structure contains all the information to determine the spline (stored as a piecewise polynomial) that is computed by this procedure. For example, the following code sequence evaluates this spline at $x$ and returns the value in $y$.

```c
y = imsl_f_cub_spline_value (x, pp, 0);
```
### Examples

#### Example 1

In this example, function values are contaminated by adding a small “random” amount to the correct values. The function `imsl_f_cub_spline_smooth` is used to approximate the original, uncontaminated data.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
/* Define function */
#define F(x) (float)(1. + sin(x)+7.*sin(3.0*x))

int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_ppoly *pp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i/((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
 }
 pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata, 0);
 printf("\

Output

<table>
<thead>
<tr>
<th>x</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-0.201</td>
</tr>
<tr>
<td>0.667</td>
<td>0.070</td>
</tr>
<tr>
<td>1.333</td>
<td>-0.008</td>
</tr>
<tr>
<td>2.000</td>
<td>-0.058</td>
</tr>
<tr>
<td>2.667</td>
<td>-0.025</td>
</tr>
<tr>
<td>3.333</td>
<td>0.076</td>
</tr>
<tr>
<td>4.000</td>
<td>-0.002</td>
</tr>
<tr>
<td>4.667</td>
<td>-0.008</td>
</tr>
<tr>
<td>5.333</td>
<td>0.045</td>
</tr>
</tbody>
</table>
Example 2

Recall that in the first example, function values are contaminated by adding a small "random" amount to the correct values. Then, `imsl_f_cub_spline_smooth` is used to approximate the original, uncontaminated data. This example explicitly inputs the value of the smoothing parameter to be 5.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA  90           /* Define function */
#define F(x)   (float)(1.+ sin(x)+7.*sin(3.0*x))

int main()
{
    int                i;
    float              fdata[NDATA], xdata[NDATA], *random;
    Imsl_f_ppoly       *pp;
    /* Generate random numbers */
    imsl_random_seed_set(123457);
    random = imsl_f_random_uniform(NDATA, 0);
    /* Set up data */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = 6.*(float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
    }
    pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata,
                                  IMSL_SMOOTHING_PAR, 5.0,
                                  0);
    printf("      x        error \n");
    for(i = 0; i < 10; i++){
        float x, error;
        x = 6.*i/9.;
        error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
        printf("%10.3f %10.3f\n", x, error);
    }
}
```

Output

<table>
<thead>
<tr>
<th>x</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-0.593</td>
</tr>
<tr>
<td>0.667</td>
<td>0.230</td>
</tr>
<tr>
<td>1.333</td>
<td>-0.116</td>
</tr>
<tr>
<td>2.000</td>
<td>-0.106</td>
</tr>
<tr>
<td>2.667</td>
<td>0.176</td>
</tr>
<tr>
<td>3.333</td>
<td>-0.071</td>
</tr>
</tbody>
</table>
4.000 -0.171
4.667 0.196
5.333 -0.036
6.000 0.971

Warning Errors

IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been reached.
The best approximation is returned.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.
IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to zero.
spline_lsq_constrained

Computes a least-squares constrained spline approximation.

Synopsis

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_lsq_constrained(int ndata, float xdata[], float fdata[],
int spline_space_dim, int num_con_pts, f_constraint_struct constraints[], ... , 0)
```

The type `Imsl_d_spline` function is `imsl_d_spline_lsq_constrained`.

Required Arguments

- `int ndata` (Input)
 Number of data points.

- `float xdata[]` (Input)
 Array with `ndata` components containing the abscissas of the least-squares problem.

- `float fdata[]` (Input)
 Array with `ndata` components containing the ordinates of the least-squares problem.

- `int spline_space_dim` (Input)
 The linear dimension of the spline subspace. It should be smaller than `ndata` and greater than or equal to `order` (whose default value is 4).

- `int num_con_pts` (Input)
 The number of points in the vector constraints.

- `f_constraint_struct constraints[]` (Input)
 A structure containing the abscissas at which the fit is to be constrained, the derivative of the spline that is to be constrained, the type of constraints, and any lower or upper limits. A description of the structure fields follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xval</td>
<td>point at which fit is constrained</td>
</tr>
<tr>
<td>deriv</td>
<td>derivative value of the spline to be constrained</td>
</tr>
<tr>
<td>type</td>
<td>types of the general constraints</td>
</tr>
<tr>
<td>bl</td>
<td>lower limit of the general constraints</td>
</tr>
<tr>
<td>bu</td>
<td>upper limit of the general constraints</td>
</tr>
</tbody>
</table>
In order to have two point constraints, must have \(\text{constraints}[i].\text{type} = \text{constraints}[i+1].\text{type} \geq 0 \) and \(c \leq d \). Note that every \(\text{der} \) must be at least \(-1\).

<table>
<thead>
<tr>
<th>(\text{constraints}[i].\text{type})</th>
<th>(i)-th constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(bl_i = \int c \text{ to } d f(t)) dt</td>
</tr>
<tr>
<td>2</td>
<td>(f^{(d)}(x_i) \leq bu_i)</td>
</tr>
<tr>
<td>3</td>
<td>(f^{(d)}(x_i) \geq bl_i)</td>
</tr>
<tr>
<td>4</td>
<td>(bl_i \leq f^{(d)}(x_i) \leq bu_i)</td>
</tr>
<tr>
<td>5</td>
<td>(bl_i = \int c \text{ to } d f(t)) dt</td>
</tr>
<tr>
<td>6</td>
<td>(\int c \text{ to } d f(t)) dt (\leq bu_i)</td>
</tr>
<tr>
<td>7</td>
<td>(\int c \text{ to } d f(t)) dt (\geq bl_i)</td>
</tr>
<tr>
<td>8</td>
<td>(bl_i \leq \int c \text{ to } d f(t)) dt (\leq bu_i)</td>
</tr>
<tr>
<td>20</td>
<td>periodic end conditions</td>
</tr>
<tr>
<td>99</td>
<td>disregard this constraint</td>
</tr>
</tbody>
</table>

Notes: If you want to constrain the integral of the spline over the closed interval \((c, d) \), then set \(\text{constraints}[i].\text{der} = \text{constraints}[i+1].\text{der} = -1 \) and \(\text{constraints}[i].\text{xval} = c \) and \(\text{constraints}[i+1].\text{xval} = d \). For consistency, insist that \(\text{constraints}[i].\text{type} = \text{constraints}[i+1].\text{type} \geq 0 \) and \(c \leq d \). Note that every \(\text{der} \) must be at least \(-1\).

<table>
<thead>
<tr>
<th>(\text{constraints}[i].\text{type})</th>
<th>(i)-th constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(bl_i = f^{(d)}(x_i) - f^{(d+1)}(x_{i+1}))</td>
</tr>
<tr>
<td>10</td>
<td>(f^{(d)}(x_i) \leq bu_i)</td>
</tr>
<tr>
<td>11</td>
<td>(f^{(d)}(x_i) - f^{(d+1)}(x_{i+1}) \geq bl_i)</td>
</tr>
<tr>
<td>12</td>
<td>(bl_i \leq f^{(d)}(x_i) - f^{(d+1)}(x_{i+1}) \leq bu_i)</td>
</tr>
</tbody>
</table>
Return Value

A pointer to the structure that represents the spline fit. If a fit cannot be computed, then NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments

```c
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_lsq_constrained(int ndata, float xdata[], float fdata[],
    int spline_space_dim, int num_con_pts, f_constraint_struct constraints[],
    IMSL_NHARD, int nhard,
    IMSL_WEIGHTS, float weights[],
    IMSL_ORDER, int order,
    IMSL_KNOTS, float knots[],
    0)
```

Optional Arguments

IMSL_NHARD, int nhard (Input)

The argument nhard is the number of entries of constraints involved in the “hard” constraints. Note that 0 ≤ nhard ≤ num_con_pts. The default, nhard = 0, always results in a fit, while setting nhard = num_con_pts forces all constraints to be met. The “hard” constraints must be met, or else the function signals failure. The “soft” constraints need not be satisfied, but there will be an attempt to satisfy the “soft” constraints. The constraints must be listed in terms of priority with the most important constraints first. Thus, all of the “hard” constraints must precede the “soft” constraints. If infeasibility is detected among the “soft” constraints, we satisfy, in order, as many of the “soft” constraints as possible.

Default: nhard = 0

IMSL_WEIGHTS, float weights[] (Input)

This option requires the user to provide the weights.

Default: all weights equal one

IMSL_ORDER, int order (Input)

The order of the spline subspace for which the knots are desired. This option is used to communicate the order of the spline subspace.

Default: order = 4 (i.e., cubic splines)
IMSL_KNOTS, float knots[] (Input)

This option requires the user to provide the knots. The user must provide a knot sequence of length
spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

Description

The function `imsl_f_spline_lsq_constrained` produces a constrained, weighted least-squares fit to
data from a spline subspace. Constraints involving one point, two points, or integrals over an interval are allowed.
The types of constraints supported by the functions are of four types:

<table>
<thead>
<tr>
<th>$E_p[f]$</th>
<th>$f(j_p)(y_p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$f(j_p)(y_p) - f(j_{p+1})(y_{p+1})$</td>
</tr>
<tr>
<td>Or</td>
<td>$\int_{y_p}^{y_{p+1}} f(t) dt$</td>
</tr>
<tr>
<td>Or</td>
<td>periodic end conditions</td>
</tr>
</tbody>
</table>

An interval, I_p (which may be a point, a finite interval, or a semi-infinite interval), is associated with each of these
constraints.

The input for this function consists of several items; first, the data set (x_i, f_i) for $i = 1, \ldots, N$ (where $N = \text{NDATA}$), that
is the data which is to be fit. Second, we have the weights to be used in the least-squares fit ($w = \text{WEIGHT}$,
defaulting to 1). The vector constraints contains the abscissas of the points involved in specifying the con-
straints, as well as information relating the type of constraints and the constraint interval.

Let n_f denote the number of feasible constraints as described above. Then, the function solved the problem

$$\sum_{i=1}^{n} \left| f_i - \sum_{j=1}^{m} a_j B_j(x_i) \right|^2 w_i$$

subject to

$$E_p \left[\sum_{j=1}^{m} a_j B_j \right] \in I_p \quad p = 1, \ldots, n_f$$

This linearly constrained least-squares problem is treated as a quadratic program and is solved by invoking the
function `imsl_f_quadratic_prog` (See Chapter 8, “Optimization”)

The choice of weights depends on the data uncertainty in the problem. In some cases, there is a natural choice
for the weights based on the estimates of errors in the data points.

Determining feasibility of linear constraints is a numerically sensitive task. If you encounter difficulties, a quick fix
would be to widen the constraint intervals I_p.
Examples

Example 1

This is a simple application of `imsl_f_lsq_constrained`. Data is generated from the function

\[\frac{x}{2} + \sin \left(\frac{x}{2} \right) \]

and contaminated with random noise and fit with cubic splines. The function is increasing, so least-squares fit should also be increasing. This is not the case for the unconstrained least-squares fit generated by `imsl_f_spline_least_squares`. Then, the derivative is forced to be greater than 0 at `num_con_pts = 15` equally spaced points and `imsl_f_lsq_constrained` is called. The resulting curve is monotone. The error is printed for the two fits averaged over 100 equally spaced points.

```c
#include <imsl.h>
#include <math.h>

#define MXKORD  4
#define MXNCOF 20
#define MXNDAT 51
#define MXNXVL 15

int main()
{
    f_constraint_struct constraint[MXNXVL];
    int  i, korder, ncoef, ndata, nxval,
    float *noise, errlsq, errnft, grdsiz, x;
    float fdata[MXNDAT], xdata[MXNDAT];
    Imsl_f_spline *sp, *spls;

#define F1(x)   (float)(.5*(x) + sin( .5*(x) ))

    korder = 4;
    ndata = 15;
    nxval = 15;
    ncoef = 8;
    /*
     * Compute original xdata and fdata with random noise.
     */
    imsl_random_seed_set (234579);
    noise = imsl_f_random_uniform (ndata, 0);
    grdsiz = 10.0;
    for (i = 0; i < ndata; i++) {
        xdata[i] = grdsiz * ((float) (i) / (float) (ndata - 1));
        fdata[i] = F1 (xdata[i]) + (noise[i] - .5);
    }
```
/* Compute least-squares fit. */
spls = imsl_f_spline_least_squares (ndata, xdata, fdata, ncoef, 0);
/*
 * Construct the constraints.
 */
for (i = 0; i < nxval; i++) {
 constraint[i].xval = grdsiz * (float)(i) / (float)(nxval - 1);
 constraint[i].type = 3;
 constraint[i].der = 1;
 constraint[i].bl = 0.0;
}
/* Compute constrained least-squares fit. */
sp = imsl_f_spline_lsq_constrained (ndata, xdata, fdata, ncoef,
 nxval, constraint, 0);
/*
 * Compute the average error of 100 points in the interval.
 */
errlsq = 0.0;
errnft = 0.0;
for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
}
/* Print results */
printf ("Average error with spline_least_squares fit: \%8.5f
",
 errlsq / 100.0);
printf ("Average error with spline_lsq_constrained fit: \%8.5f
",
 errnft / 100.0);
}

Output

Average error with spline_least_squares fit: 0.20250
Average error with spline_lsq_constrained fit: 0.14334

Example 2

Now, try to recover the function

\[
\frac{1}{1 + x^4}
\]

from noisy data. First, try the unconstrained least-squares fit using `imsl_f_spline_least_squares`. Finding that fit somewhat unsatisfactory, several constraints are applied using `imsl_f_spline_lsq_constrained`. First, notice that the unconstrained fit oscillates through the true function at both ends of the interval. This is common for flat data. To remove this oscillation, the cubic spline is constrained to have zero second derivative at the first and last four knots. This forces the cubic spline to reduce to a linear polynomial on the first and last three knot intervals. In addition, the fit is constrained (called \(s\)) as follows:
\[
\begin{align*}
\int_{-7}^{7} s(x) \, dx &\leq 2.3 \\
\int_{-7}^{7} s(x) \, dx &\leq 2.3
\end{align*}
\]

Notice that the last constraint was generated using the periodic option (requiring only the zero-th derivative to be periodic). The error is printed for the two fits averaged over 100 equally spaced points.

```c
#include <imsl.h>
#include <math.h>

#define KORDER  4
#define NDATA  51
#define NXVAL  12
#define NCOEF  13

int main()
{
    f_constraint_struct constraint[NXVAL];
    int i;
    float *noise, errlsq, errnft, grdsiz, x;
    float fdata[NDATA], xdata[NDATA], xknot[NDATA+KORDER];
    Imsl_f_spline *sp, *spls;

    #define F1(x)   (float)(1.0/(1.0+x*x*x*x))

    /* Compute original xdata and fdata with random noise */
    imsl_random_seed_set (234579);
    noise = imsl_f_random_uniform (NDATA, 0);
    grdsiz = 14.0;
    for (i = 0; i < NDATA; i++) {
        xdata[i] = grdsiz * ((float)(i)/(float)(NDATA - 1))
                  - grdsiz/2.0;
        fdata[i] = F1 (xdata[i]) + 0.125*(noise[i] - .5);
    }
    /* Generate knots. */
    for (i = 0; i < NCOEF-KORDER+2; i++) {
        xknot[i+KORDER-1] = grdsiz * ((float)(i)/(float)(NCOEF-KORDER+1))
                           - grdsiz/2.0;
    }
    for (i = 0; i < KORDER - 1; i++) {
        xknot[i] = xknot[KORDER-1];
        xknot[i+NCOEF+1] = xknot[NCOEF];
    }
    /* Compute spline_least_squares fit */
    spls = imsl_f_spline_least_squares (NDATA, xdata, fdata, NCOEF, 
                                       Imsl_KNOTS, xknot, 0);
```
/* Construct the constraints for CONFT */

for (i = 0; i < 4; i++) {
 constraint[i].xval = xknot[KORDER+i-1];
 constraint[i+4].xval = xknot[NCOEF-3+i];
 constraint[i].type = 1;
 constraint[i+4].type = 1;
 constraint[i].der = 2;
 constraint[i+4].der = 2;
 constraint[i].bl = 0.0;
 constraint[i+4].bl = 0.0;
}
constraint[8].xval = -7.0;
constraint[8].type = 3;
constraint[8].der = 0;
constraint[8].bl = 0.0;

constraint[9].xval = -7.0;
constraint[9].type = 6;
constraint[9].bu = 2.3;

constraint[10].xval = 7.0;
constraint[10].type = 6;
constraint[10].bu = 2.3;

constraint[11].xval = -7.0;
constraint[11].type = 20;
constraint[11].der = 0;

sp = imsl_f_spline_lsq_constrained (NDATA, xdata, fdata, NCOEF,
 NXVAL, constraint, IMSL_KNOTS, xknot, 0);

/* Compute the average error of 100 points in the interval */

errlsq = 0.0;
errnft = 0.0;
for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0 - grdsiz/2.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
}
/* Print results */
printf ("Average error with BSLSQ fit: %8.5f\n",
 errlsq / 100.0);
printf ("Average error with CONFT fit: %8.5f\n",
 errnft / 100.0);
}
Output

Average error with BSLSQ fit: 0.01783
Average error with CONFT fit: 0.01339
smooth_1d_data

Smooth one-dimensional data by error detection.

Synopsis

#include <imsl.h>

float *imsl_f_smooth_1d_data (int ndata, float xdata[], float fdata[], ..., 0)

The type double function is imsl_d_smooth_1d_data.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the data points.

float ydata[] (Input)
Array with ndata components containing the ordinates of the data points.

Return Value

A pointer to the vector of length ndata containing the smoothed data.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_smooth_1d_data (int ndata, float xdata[], float fdata[],
IMSL_RETURN_USER, float sdata[],
IMSL_ITMAX, int itmax,
IMSL_DISTANCE, float dis,
IMSL_STOPPING_CRITERION, float sc,
0)
Optional Arguments

IMSL_RETURN_USER, float sdata[] (Output)
The smoothed data is stored in the user-supplied array.

IMSL_ITMAX, int itmax (Input)
The maximum number of iterations allowed.
Default: itmax = 500

IMSL_DISTANCE, float dis (Input)
Proportion of the distance the ordinate in error is moved to its interpolating curve. It must be in the range 0.0 to 1.0.
Default: dis = 1.0

IMSL_STOPPING_CRITERION, float sc (Input)
The stopping criterion. sc should be greater than or equal to zero.
Default: sc = 0.0

Description

The function imsl_f_smooth_1d_data is designed to smooth a data set that is mildly contaminated with isolated errors. In general, the routine will not work well if more than 25% of the data points are in error. The routine imsl_f_smooth_1d_data is based on an algorithm of Guerra and Tapia (1974).

Settingndata = n, ydata = f, sdata = s and xdata = x, the algorithm proceeds as follows. Although the user need not input an ordered xdata sequence, we will assume that x is increasing for simplicity. The algorithm first sorts the xdata values into an increasing sequence and then continues. A cubic spline interpolant is computed for each of the 6-point data sets (initially setting s = f)

\[(x_i, s_i) \quad j = i - 3, ..., i + 3 \neq i,\]

where \(i = 4, ..., n - 3\). For each i the interpolant, which we will call \(S_i\), is compared with the current value of \(s_i\), and a ‘point energy’ is computed as

\[pe_i = S_i(x_i) - s_i\]

Setting sc = sc, the algorithm terminates either if itmax iterations have taken place or if

\[|pe_i| \leq sc\left(x_{i+3} - x_{i-3}\right) / 6 \quad i = 4, ..., n - 3\]

If the above inequality is violated for any i, then we update the i-th element of s by setting \(s_i = s_i + d\cdot pe_i\), where d = dis. Note that neither the first three nor the last three data points are changed. Thus, if these points are inaccurate, care must be taken to interpret the results.

The choice of the parameters d, sc and itmax are crucial to the successful usage of this subroutine. If the user has specific information about the extent of the contamination, then he should choose the parameters as follows: d = 1, sc = 0 and itmax to be the number of data points in error. On the other hand, if no such specific information is available, then choose d = 5, itmax ≤ 2n, and
\[sc = 0.5 \frac{\text{max}_s - \text{min}_s}{(x_n - x_1)} \]

In any case, we would encourage the user to experiment with these values.

Example

We take 91 uniform samples from the function \(5 + (5 + t^2 \sin t) / t \) on the interval \([1, 10]\). Then, we contaminate 10 of the samples and try to recover the original function values.

```c
#include <ims1.h>
#include <stdlib.h>
#include <math.h>

#define NDATA 91
#define F(X) (X*X*sin((double)(X))+5.0)/X + 5.0

int main()
{
    int i, maxit;
    int isub[10] = {5, 16, 25, 33, 41, 48, 55, 61, 74, 82};
    float dis, fdata[NDATA], sc, *sdata=NULL;
    float xdata[NDATA], s_user[NDATA];

    /* Example 1: No specific information available. */
    dis = .5;
    sc = .56;
    maxit = 182;

    /* Set values for xdata and fdata. */
    xdata[0] = 1.;
    fdata[0] = F(xdata[0]);
    for (i=1;i<NDATA;i++) {
        xdata[i] = xdata[i-1]+.1;
        fdata[i] = F(xdata[i]);
    }

    /* Contaminate the data. */
    for (i=0;i<10;i++) fdata[isub[i]] += rnoise[i];

    /* Smooth the data. */
    sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,
                                  IMSL_DISTANCE, dis,
                                  IMSL_STOPPING_CRITERION, sc,
                                  IMSL_ITMAX, maxit,
                                  0);
```
/* Output the result. */
printf("Case A - No specific information available. \n");
printf(" F(X) F(X)+noise sdata\n");

for (i=0; i<10; i++) printf("%7.3f\t%15.3f\t%15.3f\n",
 F(xdata[sub[i]]),
 fdata[sub[i]],
 sdata[sub[i]]);

/* Example 2: No specific information is available. */
dis = 1.0;
sc = 0.0;
maxit = 10;

/* A warning message is produced because the maximum
 number of iterations is reached. */

/* Smooth the data. */
sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,
 IMSL_DISTANCE, dis,
 IMSL_STOPPING_CRITERION, sc,
 IMSL_ITMAX, maxit,
 IMSL_RETURN_USER, s_user,
 0);

/* Output the result. */
printf("Case B - Specific information available. \n");
printf(" F(X) F(X)+noise sdata\n");

for (i=0; i<10; i++) printf("%7.3f\t%15.3f\t%15.3f\n",
 F(xdata[sub[i]]),
 fdata[sub[i]],
 s_user[sub[i]]);

Output

Case A - No specific information available.
 F(X) F(X)+noise sdata
 9.830 12.330 9.870
 8.263 5.263 8.215
 5.201 3.201 5.168
 2.223 4.723 2.264
 1.259 4.259 1.308
 3.167 1.167 3.138
 7.167 4.667 7.131
 10.880 12.880 10.909
 12.774 10.774 12.708
7.594 10.594 7.639

*** WARNING Error IMSL_ITMAX_EXCEEDED from imsl_f_smooth_1d_data.
*** Maximum number of iterations limit "itmax" = 10 exceeded.
*** The best answer found is returned.

Case B - Specific information available.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F(X)</td>
<td>F(X)+noise</td>
<td>sdata</td>
</tr>
<tr>
<td>9.830</td>
<td>12.330</td>
<td>9.831</td>
</tr>
<tr>
<td>8.263</td>
<td>5.263</td>
<td>8.262</td>
</tr>
<tr>
<td>5.201</td>
<td>3.201</td>
<td>5.199</td>
</tr>
<tr>
<td>2.223</td>
<td>4.723</td>
<td>2.225</td>
</tr>
<tr>
<td>1.259</td>
<td>4.259</td>
<td>1.261</td>
</tr>
<tr>
<td>3.167</td>
<td>1.167</td>
<td>3.170</td>
</tr>
<tr>
<td>7.167</td>
<td>4.667</td>
<td>7.170</td>
</tr>
<tr>
<td>10.880</td>
<td>12.880</td>
<td>10.878</td>
</tr>
<tr>
<td>12.774</td>
<td>10.774</td>
<td>12.770</td>
</tr>
<tr>
<td>7.594</td>
<td>10.594</td>
<td>7.592</td>
</tr>
</tbody>
</table>
scattered_2d_interp

Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables.

Synopsis

```c
#include <imsl.h>
float *imsl_f_scattered_2d_interp(int ndata, float xydata[], float fdata[], int nx_out, int ny_out, float x_out[], float y_out[], ... , 0)
```

The type double function is imsl_d_scattered_2d_interp.

Required Arguments

- `int ndata` (Input)
 Number of data points.

- `float xydata[]` (Input)
 Array with `ndata*2` components containing the data points for the interpolation problem. The `i`-th data point `(x_i, y_i)` is stored consecutively in the `2i` and `2i + 1` positions of `xydata`.

- `float fdata[]` (Input)
 Array of size `ndata` containing the values to be interpolated.

- `int nx_out` (Input)
 Number of data points in the `x` direction for the output grid.

- `int ny_out` (Input)
 Number of data points in the `y` direction for the output grid.

- `float x_out[]` (Input)
 Array of length `nx_out` specifying the `x` values for the output grid. It must be strictly increasing.

- `float y_out[]` (Input)
 Array of length `ny_out` specifying the `y` values for the output grid. It must be strictly increasing.

Return Value

A pointer to the `nx_out × ny_out` grid of values of the interpolant. If no answer can be computed, then NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
```c
float *imsl_f_scattered_2d_interp(int ndata, float xydata[],
    float fdata[], int nx_out, int ny_out, float x_out[],
    float y_out[],
    IMSL_RETURN_USER, float surface[],
    IMSL_SUR_COL_DIM, int surface_col_dim,
    0)
```

Optional Arguments

- **IMSL_RETURN_USER, float surface[]** (Output)

 This option allows the user to provide his own space for the result. In this case, the answer will be returned in `surface`.

- **IMSL_SUR_COL_DIM, int surface_col_dim** (Input)

 This option requires the user to provide the column dimension of the two-dimensional array `surface`.
 Default: `surface_col_dim = ny_out`

Description

The function `imsl_f_scattered_2d_interp` computes a C^1 interpolant to scattered data in the plane. Given the data points

\[
\{(x_p, y_p, f_p)\}_{p=0}^{n-1}
\]

in \mathbb{R}^3 where $n = ndata$, `imsl_f_scattered_2d_interp` returns the values of the interpolant s on the user-specified grid. The computation of s is as follows: First the Delaunay triangulation of the points

\[
\{(x_p, y_p)\}_{p=0}^{n-1}
\]

is computed. On each triangle T in this triangulation, s has the form

\[
s(x, y) = \sum_{m+n\leq 5} c_{mn} x^m y^n \quad \forall \ x, y \in T
\]

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In addition, we have

\[
s(x_i, y_i) = f_i \quad \text{for} \quad i = 0, \ldots, n - 1
\]

and s is continuously differentiable across the boundaries of neighboring triangles. These conditions do not exhaust the freedom implied by the above representation. This additional freedom is exploited in an attempt to produce an interpolant that is faithful to the global shape properties implied by the data. For more information on
this procedure, refer to the article by Akima (1978). The output grid is specified by the two integer variables \(nx_{\text{out}} \) and \(ny_{\text{out}} \) that represent the number of grid points in the first (second) variable and by two real vectors that represent the first (second) coordinates of the grid.

Examples

Example 1

In this example, the interpolant to the linear function \((3 + 7x + 2y)\) is computed from 20 data points equally spaced on the circle of radius 3. Then the values are printed on a 3 \times 3 grid.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA          20
#define OUTDATA         3
/* Define function */
#define F(x,y)         (float)(3.+7.*x+2.*y)
#define SURF(I,J)      surf[(J) +(I)*OUTDATA]

int main()
{
    int                i, j;
    float              fdata[NDATA], xydata[2*NDATA], *surf;
    float              x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;
    pi = imsl_f_constant("pi", 0);
    /* Set up output grid */
    for (i = 0; i < OUTDATA; i++) {
        x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
    }
    for (i = 0; i < 2*NDATA; i += 2) {
        xydata[i]  = 3.*cos(pi*i/NDATA);
        xydata[i+1] = 3.*sin(pi*i/NDATA);
        fdata[i/2] = F(xydata[i], xydata[i+1]);
    }
    /* Compute scattered data interpolant */
    surf = imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA, OUTDATA, x_out, y_out, 0);
    /* Print results */
    printf(" x y F(x, y) Interpolant Error\n");
    for (i = 0; i < OUTDATA; i++) {
        for (j = 0; j < OUTDATA; j++) {
            x = x_out[i];
            y = y_out[j];
            z = SURF(i,j);
            printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
```
\begin{verbatim}
x, y, F(x, y), z, fabs(F(x, y) - z));
}
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>3.000</td>
<td>3.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>4.000</td>
<td>4.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>5.000</td>
<td>5.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>6.500</td>
<td>6.500</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>7.500</td>
<td>7.500</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>1.000</td>
<td>8.500</td>
<td>8.500</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>10.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.000</td>
<td>0.500</td>
<td>11.000</td>
<td>11.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>12.000</td>
<td>12.000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Example 2

Recall that in the first example, the interpolant to the linear function $3 + 7x + 2y$ is computed from 20 data points equally spaced on the circle of radius 3. We then print the values on a 3×3 grid. This example used the optional arguments to indicate that the answer is stored noncontiguously in a two-dimensional array \texttt{surf} with column dimension equal to 11.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA          20
#define OUTDATA         3
#define COLDIM         11
/* Define function */
#define F(x,y)         (float)(3.+7.*x+2.*y)

int main()
{
    int                i, j;
    float              fdata[NDATA], xydata[2*NDATA];
    float              surf[OUTDATA][COLDIM];
    float              x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;

    pi = imsl_f_constant("pi", 0);
    /* Set up output grid */
    for (i = 0; i < OUTDATA; i++) {
        x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
    }
    for (i = 0; i < 2*NDATA; i += 2) {
        xydata[i] = 3.*cos(pi*i/NDATA);
        xydata[i+1] = 3.*sin(pi*i/NDATA);
    }
```
\[
\text{fdata}[i/2] = F(xydata[i], xydata[i+1]);
\]

/* Compute scattered data interpolant */
imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
 OUTDATA, x_out, y_out,
IMSL_RETURN_USER, surf,
IMSL_SUR_COL_DIM, COLDIM,
0);
/* Print results */
printf(" x y F(x, y) Interpolant Error\n");
for (i = 0; i < OUTDATA; i++) {
 for (j = 0; j < OUTDATA; j++) {
 x = x_out[i];
 y = y_out[j];
 z = surf[i][j];
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>3.000</td>
<td>3.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>4.000</td>
<td>4.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>5.000</td>
<td>5.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>6.500</td>
<td>6.500</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>7.500</td>
<td>7.500</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>1.000</td>
<td>8.500</td>
<td>8.500</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.000</td>
<td>0.000</td>
<td>10.000</td>
<td>10.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.000</td>
<td>0.500</td>
<td>11.000</td>
<td>11.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>12.000</td>
<td>12.000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Fatal Errors

IMSL_DUPLICATE_XYDATA_VALUES The two-dimensional data values must be distinct.

IMSL_XOUT_NOT STRICTLY_INCRISING The vector x_out must be strictly increasing.

IMSL_YOUT_NOT STRICTLY_INCRISING The vector y_out must be strictly increasing.
Computes an approximation to scattered data in \(\mathbb{R}^n \) for \(n \geq 1 \) using radial-basis functions.

Synopsis

```c
#include <imsl.h>

Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit(int dimension, int num_points,
            float abscissae[], float fdata[], int num_centers,..., 0)
```

The type `Imsl_d_radial_basis_fit` function is `imsl_d_radial_scattered_fit`.

Required Arguments

- `int dimension` (Input)
 Number of dimensions.

- `int num_points` (Input)
 The number of data points.

- `float abscissae[]` (Input)
 Array of size `dimension \times num_points` containing the abscissae of the data points. The argument `abscissae[i][j]` is the abscissa value of the \((i+1)-th\) data point in the \((j+1)-th\) dimension.

- `float fdata[]` (Input)
 Array with `num_points` components containing the ordinates for the problem.

- `int num_centers` (Input)
 The number of centers to be used when computing the radial-basis fit. The argument `num_centers` should be less than or equal to `num_points`.

Return Value

A pointer to the structure that represents the radial-basis fit. If a fit cannot be computed, then NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit(int dimension, int num_points,
            float abscissae[], float fdata[], int num_centers,
            IMSL_CENTERS, float centers[],
```
Optional Arguments

IMSL_CENTERS (Input)
User-supplied centers. See the Description section of this function for details.

IMSL_CENTERS_RATIO, *float* *ratio* (Input)
The desired ratio of centers placed on an evenly spaced grid to the total number of centers. The condition that the same number of centers placed on a grid for each dimension must be equal. Thus, the actual number of centers placed on a grid is usually less than *ratio* × num_centers, but will never be more than *ratio* × num_centers. The remaining centers are randomly chosen from the set of abscissae given in abscissae.
Default: *ratio* = 0.5

IMSL_RANDOM_SEED, *int* *seed*
The value of the random seed used when determining the random subset of abscissae to use as centers. By changing the value of seed on different calls to *imsl_f_radial_scattered_fit*, with the same data set, a different set of random centers will be chosen. Setting *seed* to zero forces the random number seed to be based on the system clock, so a possibly different set of centers will be chosen each time the program is executed.
Default: *seed* = 234579

IMSL_SUPPLY_BASIS, *float* radial_function (*float* *distance*) (Input)
User-supplied function to compute the values of the radial functions.
Default: Hardy multiquadric

IMSL_SUPPLY_BASIS_W_DATA, *float* radial_function (*float* *distance*, *void* *data*), *void* *data* (Input)
User-supplied function to compute the values of the radial functions, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.
Default: Hardy multiquadric
IMSL_SUPPLY_DELTA, float delta (Input)
The delta used in the default basis function

\[\phi(r) = \sqrt{r^2 + \delta^2} \]

Default: delta = 1

IMSL_WEIGHTS, float weights[]
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_NO_SVD
This option forces the use of a QR decomposition instead of a singular value decomposition. This may result in space savings for large problems.

Description

The function `imsl_f_radial_scattered_fit` computed a least-squares fit to scattered data in \(\mathbb{R}^d \) where \(d = \text{dimension} \). More precisely, let \(n = \text{ndata} \), \(x = \text{abscissae} \), \(f = \text{fdata} \), and \(d = \text{dimension} \). Then we have

\[x^0, \ldots, x^{n-1} \subset \mathbb{R}^d, f_0, \ldots, f_{n-1} \subset \mathbb{R}^1 \]

This function computes a function \(F \) which approximates the above data in the sense that it minimizes the sum-of-squares error

\[\sum_{i=0}^{n-1} w_i (F(x^i) - f_i)^2 \]

where \(w = \text{weights} \). Of course, we must restrict the functional form of \(F \). This is done as follows:

\[F(x) := \sum_{j=0}^{k-1} a_j \phi(\|x - c\|^2 + \delta^2)^{1/2} \]

The function \(\phi \) is called the radial function. It maps \(\mathbb{R}^1 \) into \(\mathbb{R}^1 \), only defined for the nonnegative reals. For the purpose of this routine, the user-supplied function

\[\phi(r) = \left(r^2 + \delta^2\right)^{1/2} \]

Note that the value of \(\delta \) is defaulted to 1. It can be set by the user by using the keyword `IMSL_DELTA`. The parameter \(\delta \) is used to scale the problem. Generally choose \(\delta \) to be near the minimum spacing of the centers.

The default basis function is called the Hardy multiquadric, and it is defined as
A key feature of this routine is the user's control over the selection of the basis function.

To obtain the default selection of centers, we first compute the number of centers that will be on a grid and how many are on a random subset of the abscissae. Next, we compute those centers on a grid. Finally, a random subset of abscissae are obtained determining where the centers are placed. Let us examine the selection of centers in more detail.

First, we restrict the computed grid to have the same number of grid values in each of the dimension directions. Then, the number of centers placed on a grid, num_gridded, is computed as follows:

\[
\alpha = \text{centers_ratio} \times \text{num_centers}
\]

\[
\beta = \left\lfloor \alpha^{1/\text{dimension}} \right\rfloor
\]

\[
\text{num_gridded} = \beta^{\text{dimension}}
\]

Note that there are \(\beta \) grid values in each of the dimension directions. Then we have

\[
\text{num_random} = \text{num_centers} - \text{num_gridded}
\]

Now we know how many centers will be placed on a grid and how many will be placed on a random subset of the abscissae. The gridded centers are computed such that they are equally spaced in each of the dimension directions. The last problem is to compute a random subset, without replacement, of the abscissa. The selection is based on a random seed. The default seed is 234579. The user can change this using the optional argument IMSL_RANDOM_SEED. Once the subset is computed, we use the abscissae as centers.

Since the selection of good centers for a specific problem is an unsolved problem at this time, we have given the ultimate flexibility to the user. That is, you can select your own centers using the keyword IMSL_CENTERS. As a rule of thumb, the centers should be interspersed with the abscissae.

The return value for this function is a pointer to the structure, which contains all the information necessary to evaluate the fit. This pointer is then passed to the function imsl_f_radial_evaluate to produce values of the fitted function.

Examples

Example 1

This example generates data from a function and contaminates it with noise on a grid of 10 equally spaced points. The fit is evaluated on a finer grid and compared with the actual function values.

```c
#include <imsl.h>
#include <math.h>

#define NDATA 10
#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))
```
int main ()
{
 int i;
 int dim = 1;
 float fdata[NDATA];
 float *fdata2;
 float xdata[NDATA];
 float xdata2[2*NDATA];
 float pi;
 float *noise;
 Imsl_f_radial_basis_fit *radial_fit;

 pi = imsl_f_constant("pi", 0);

 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform(NDATA, 0);

 /* Set up the sampled data points with noise. */
 for (i = 0; i < NDATA; ++i) {
 xdata[i] = (float)(i)/(float)(NDATA-1);
 fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
 }

 /* Compute the radial fit. */
 radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
 fdata, NUM_CENTERS, 0);

 /* Compare result to the original function at twice as many values as
 * there were original data points. */
 for (i = 0; i < 2*NDATA; ++i)
 {
 xdata2[i] = (float)(i/(float)(2*(NDATA-1)));
 }
 /* Evaluate the fit at these new points. */
 fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);

 printf(" I TRUE APPROX ERROR\n");
 for (i = 0; i < 2*NDATA; ++i)
 {
 printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
 }
}

Output

<table>
<thead>
<tr>
<th>I</th>
<th>TRUE</th>
<th>APPROX</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000</td>
<td>-0.08980</td>
<td>0.08980</td>
</tr>
<tr>
<td>2</td>
<td>0.34202</td>
<td>0.38795</td>
<td>-0.04593</td>
</tr>
<tr>
<td>3</td>
<td>0.64279</td>
<td>0.75470</td>
<td>-0.11191</td>
</tr>
<tr>
<td>4</td>
<td>0.86603</td>
<td>0.99915</td>
<td>-0.13312</td>
</tr>
</tbody>
</table>
5 0.98481 1.11597 -0.13116
6 0.98481 1.10692 -0.12211
7 0.86603 0.98183 -0.11580
8 0.64279 0.75826 -0.11547
9 0.34202 0.46078 -0.11876
10 -0.00000 0.11996 -0.11996
11 -0.34202 -0.23007 -0.11195
12 -0.64279 -0.55348 -0.08931
13 -0.86603 -0.81624 -0.04979
14 -0.98481 -0.98752 -0.00271
15 -0.98481 -1.04276 0.05795
16 -0.86603 -0.96471 -0.09868
17 -0.64279 -0.74472 -0.10193
18 -0.34202 -0.38203 -0.04001
19 0.00000 0.11600 -0.11600
20 0.34202 0.73553 -0.39351

Example 2

This example generates data from a function and contaminates it with noise. We fit this data successively on grids of size 10, 20, ..., 100. Now interpolate and print the 2-norm of the difference between the interpolated result and actual function values. Note that double precision is used for higher accuracy.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA          100
#define NUM_CENTERS    100
#define NRANDOM        200
#define NOISE_SIZE     1.0
#define G(x,y)         (exp((y)/2.0)*sin(x) - cos((y)/2.0))

double radial_function (double r);

int main()
{
    int       i;
    int       ndata;
    double    *fit;
    double    ratio;
    double    fdata[NDATA+1];
    double    xydata[2 * NDATA+1];
    double    pi;
    double    *noise;
    int       num_centers;
    Imsl_d_radial_basis_fit *radial_struct;

    pi = imsl_d_constant ("pi", 0);

    for (i = 1; i <= NDATA; i++) {
        fdata[i] = G(i, i);
    }
```
/ Get the random numbers used for the noise. */

imsl_random_seed_set (234579);
noise = imsl_d_random_uniform (NRANDOM+1, 0);
for (i = 0; i < NRANDOM; ++i) noise[i] = 1.0 - 2.0 * noise[i];
printf(" NDATA || Error ||_2
");

for (ndata = 10; ndata <= 100 ; ndata += 10) {
 num_centers = ndata;

 /* Set up the sampled data points with noise. */
 for (i = 0; i < 2 * ndata; i += 2) {
 xydata[i] = 3. * (noise[i]);
 xydata[i + 1] = 3. * (noise[i + 1]);
 fdata[i / 2] = G(xydata[i], xydata[i + 1])
 + NOISE_SIZE * noise[i];
 }

 /* Compute the radial fit. */
 ratio = 0.5;
 radial_struct= imsl_d_radial_scattered_fit (2, ndata, xydata,
 fdata, num_centers,
 IMSL_CENTERS_RATIO, ratio,
 IMSL_SUPPLY_BASIS, radial_function,
 0);
 fit = imsl_d_radial_evaluate (ndata, xydata, radial_struct, 0);
 for (i = 0; i < ndata; ++i) fit[i] -= fdata[i];
 printf("%8d %17.8f \n", ndata,
 imsl_d_vector_norm(ndata, fit, 0));
}

double radial_function (double r)
{
 return log(1.0+r);
}
Output

<table>
<thead>
<tr>
<th>NDATA</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.00000000</td>
</tr>
<tr>
<td>20</td>
<td>0.00000000</td>
</tr>
<tr>
<td>30</td>
<td>0.00000000</td>
</tr>
<tr>
<td>40</td>
<td>0.00000000</td>
</tr>
<tr>
<td>50</td>
<td>0.00000000</td>
</tr>
<tr>
<td>60</td>
<td>0.00000000</td>
</tr>
<tr>
<td>70</td>
<td>0.00000000</td>
</tr>
<tr>
<td>80</td>
<td>0.00000000</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
</tr>
<tr>
<td>100</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm. User flag = ".#".
radial_evaluate

Evaluates a radial-basis fit.

Synopsis

```c
#include <imsl.h>
float *imsl_f_radial_evaluate(int n, float x[], Imsl_d_radial_basis_fit *radial_fit, ...), 0)
```

The type `double` function is `imsl_d_evaluate`.

Required Arguments

- `int n` (Input)
 - The number of points at which the fit will be evaluated.

- `float x[]` (Input)
 - Array of size `radial_fit -> dimension` × `n` containing the abscissae of the data points at which the fit will be evaluated. The argument `x[i][j]` is the abscissa value of the `(i+1)`-th data point in the `(j+1)`-th dimension.

- `Imsl_f_radial_basis_fit *radial_fit` (Input)
 - A pointer to radial-basis structure to be used for the evaluation. (Input).

Return Value

A pointer to an array of length `n` containing the values of the radial-basis fit at the desired values. If no value can be computed, then NULL is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>
float *imsl_f_radial_evaluate(int n, float x[], Imsl_f_radial_basis_fit *radial_fit
                      IMSL_RETURN_USER, float value[],
                      0)
```

Optional Arguments

- `IMSL_RETURN_USER, float value[]` (Input)
 - A user-allocated array of length `n` containing the returned values.
Description

The function `imsl_f_radial_evaluate` evaluates a radial-basis fit from data generated by `imsl_f_radial_scattered_fit`.
Example

```c
#include <imsl.h>
#include <math.h>

#define NDATA 10
#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))

int main ()
{
    int       i;
    int       dim = 1;
    float     fdata[NDATA];
    float     *fdata2;
    float     xdata[NDATA];
    float     xdata2[2*NDATA];
    float     pi;
    float     *noise;
    Imsl_f_radial_basis_fit  *radial_fit;

    pi = imsl_f_constant ("pi", 0);

    imsl_random_seed_set (234579);
    noise = imsl_f_random_uniform(NDATA, 0);

    /* Set up the sampled data points with noise */
    for (i = 0; i < NDATA; ++i) {
        xdata[i] = (float)(i)/(float)(NDATA-1);
        fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
    }

    /* Compute the radial fit */
    radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
                                              fdata, NUM_CENTERS, 0);

    /* Compare result to the original function at twice as many values as there
     were original data points */
    for (i = 0; i < 2*NDATA; ++i)
        xdata2[i] = (float)(i/(float)(2*(NDATA-1)));

    /* Evaluate the fit at these new points */
    fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);

    printf("   I    TRUE      APPROX    ERROR\n");
    for (i = 0; i < 2*NDATA; ++i)
```
printf("%5d %10.5f %10.5f %10.5f\n", i+1, F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
}

Output

<table>
<thead>
<tr>
<th>I</th>
<th>TRUE</th>
<th>APPROX</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000</td>
<td>-0.08980</td>
<td>0.08980</td>
</tr>
<tr>
<td>2</td>
<td>0.34202</td>
<td>0.38795</td>
<td>-0.04593</td>
</tr>
<tr>
<td>3</td>
<td>0.64279</td>
<td>0.75470</td>
<td>-0.11191</td>
</tr>
<tr>
<td>4</td>
<td>0.86603</td>
<td>0.99915</td>
<td>-0.13312</td>
</tr>
<tr>
<td>5</td>
<td>0.98481</td>
<td>1.11597</td>
<td>-0.13116</td>
</tr>
<tr>
<td>6</td>
<td>0.98481</td>
<td>1.10692</td>
<td>-0.12211</td>
</tr>
<tr>
<td>7</td>
<td>0.86603</td>
<td>0.98183</td>
<td>-0.11580</td>
</tr>
<tr>
<td>8</td>
<td>0.64279</td>
<td>0.75826</td>
<td>-0.11547</td>
</tr>
<tr>
<td>9</td>
<td>0.34202</td>
<td>0.46078</td>
<td>-0.11876</td>
</tr>
<tr>
<td>10</td>
<td>-0.00000</td>
<td>0.11996</td>
<td>-0.11996</td>
</tr>
<tr>
<td>11</td>
<td>-0.34202</td>
<td>-0.23007</td>
<td>-0.11195</td>
</tr>
<tr>
<td>12</td>
<td>-0.64279</td>
<td>-0.55348</td>
<td>-0.08931</td>
</tr>
<tr>
<td>13</td>
<td>-0.86603</td>
<td>-0.81624</td>
<td>-0.04979</td>
</tr>
<tr>
<td>14</td>
<td>-0.98481</td>
<td>-0.98752</td>
<td>0.00271</td>
</tr>
<tr>
<td>15</td>
<td>-0.98481</td>
<td>-1.04276</td>
<td>0.05795</td>
</tr>
<tr>
<td>16</td>
<td>-0.86603</td>
<td>-0.96471</td>
<td>0.09868</td>
</tr>
<tr>
<td>17</td>
<td>-0.64279</td>
<td>-0.74472</td>
<td>0.10193</td>
</tr>
<tr>
<td>18</td>
<td>-0.34202</td>
<td>-0.38203</td>
<td>0.04001</td>
</tr>
<tr>
<td>19</td>
<td>0.00000</td>
<td>0.11600</td>
<td>-0.11600</td>
</tr>
<tr>
<td>20</td>
<td>0.34202</td>
<td>0.73553</td>
<td>-0.39351</td>
</tr>
</tbody>
</table>
Chapter 4 Quadrature

Functions

Univariate Quadrature

Adaptive general-purpose endpoint singularity int_fcn_sing 435
Adaptive general-purpose with a possible internal or endpoint singularity int_fcn_sing_1d 440
Adaptive general purpose .. int_fcn 448
Adaptive general-purpose points of singularity int_fcn_sing_pts 453
Adaptive weighted algebraic singularities int_fcn_alg_log 459
Adaptive infinite interval .. int_fcn_inf 464
Adaptive weighted oscillatory (trigonometric) int_fcn_trig 469
Adaptive weighted Fourier (trigonometric) int_fcn_fourier 475
Cauchy principal value .. int_fcn_cauchy 480
Nonadaptive general purpose ... int_fcn_smooth 485

Multivariate Quadrature

Two-dimensional iterated integral ... int_fcn_2d 490
Two-dimensional quadrature with a possible internal or endpoint singularity int_fcn_sing_2d 496
Three-dimensional quadrature with a possible internal or endpoint singularity int_fcn_sing_3d 505
Iterated integral using product Gauss formulas int_fcn_hyper_rect 516
Iterated integral using a quasi-Monte Carlo method int_fcn_qmc 521

Gauss Quadrature

Gauss quadrature formulas .. gauss_quad_rule 526

Differentiation

First, second, or third derivative of a function fcn_derivative 531
Usage Notes

Univariate Quadrature

The first nine functions in this chapter section are designed to compute approximations to integrals of the form

\[\int_{c}^{b} f(x)w(x)\,dx \]

The weight function \(w \) is used to incorporate known singularities (either algebraic or logarithmic) or to incorporate oscillations. For general-purpose integration, we recommend the use of \texttt{int_fcn_sing} (even if no endpoint singularities are present). If more efficiency is desired, then the use of one of the more specialized functions should be considered. These functions are organized as follows:

\begin{itemize}
 \item \(w = 1 \)
 \begin{align*}
 \texttt{imsl_f_int_fcn_sing} \\
 \texttt{int_fcn_sing_ld} \\
 \texttt{imsl_f_int_fcn} \\
 \texttt{imsl_f_int_fcn_sing_pts} \\
 \texttt{imsl_f_int_fcn_inf} \\
 \texttt{imsl_f_int_fcn_smooth}
 \end{align*}
 \item \(w(x) = \sin\omega x \) or \(w(x) = \cos\omega x \)
 \begin{align*}
 \texttt{imsl_f_int_fcn_trig} \text{ (for a finite interval)} \\
 \texttt{imsl_f_int_fcn_fourier} \text{ (for an infinite interval)}
 \end{align*}
 \item \(w(x) = (x - a)^{p}(b - x)^{q}\ln(x - a)\ln(b - x) \) where the \(\ln \) factors are optional
 \begin{align*}
 \texttt{imsl_f_int_fcn_alg_log}
 \end{align*}
 \item \(w(x) = 1/(x - c) \)
 \begin{align*}
 \texttt{imsl_f_int_fcn_cauchy}
 \end{align*}
\end{itemize}

The calling sequences for these functions are very similar. The function to be integrated is always \(fcn \), and the lower and upper limits are \(a \) and \(b \), respectively. The requested absolute error \(\varepsilon \) is \texttt{err_abs}, while the requested relative error \(\rho \) is \texttt{err_rel}. These quadrature functions return the estimated answer \(R \). An optional value \texttt{err_est} = \(E \) estimates the error. These numbers are related as follows:

\[\left| \int_{a}^{b} f(x)w(x)\,dx - R \right| \leq E \leq \max_{\varepsilon, \rho} \left\{ \varepsilon, \rho \left| \int_{a}^{b} f(x)w(x)\,dx \right| \right\} \]

Several of the univariate quadrature functions have arguments of type \texttt{imsl_quad}, which is defined in \texttt{imsl.h}.
One situation that occasionally arises in univariate quadrature concerns the approximation of integrals when only tabular data are given. The functions described above do not directly address this question. However, the standard method for handling this problem is first to interpolate the data, and then to integrate the interpolant. This can be accomplished by using the IMSL spline interpolation functions with one of the spline integration functions, which can be found in Interpolation and Approximation.

Multivariate Quadrature

Four functions have been included in this chapter that are of use in approximating certain multivariate integrals. In particular, the functions `imsl_f_int_fcn_2d` and `imsl_f_int_fcn_sing_2d` return an approximation to an iterated two-dimensional integral of the form

\[
\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) \, dy \, dx
\]

while `imsl_f_int_fcn_sing_3d` returns an approximation to an iterated three-dimensional integral of the form

\[
\int_{a}^{b} \int_{g(x)}^{h(x)} \int_{p(x, y)}^{q(x, y)} f(x, y, z) \, dz \, dy \, dx
\]

The fourth function, `imsl_f_int_fcn_hyper_rect`, returns an approximation to the integral of a function of \(n \) variables over a hyper-rectangle

\[
\int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(x_1, \ldots, x_n) \, dx_n \cdots dx_1
\]

When working with two-dimensional tensor-product tabular data, use the IMSL spline interpolation function `imsl_f_spline_2d_interp`, followed by the IMSL spline integration function `imsl_f_spline_2d_integral` described in Chapter 3, “Interpolation and Approximation”.

Gauss Quadrature

Before computing Gauss quadratures, you must compute so-called Gauss quadrature rules that integrate polynomials of as high degree as possible. These quadrature rules can be easily computed using the function `imsl_f_gauss_quad_rule`, which produces the points \(\{w_i\} \) for \(i = 1, \ldots, N \) that satisfy
for all functions \(f \) that are polynomials of degree less than \(2N \). The weight functions \(w \) may be selected from the following table.

\[
\int_{a}^{b} f(x) w(x) \, dx = \sum_{i=1}^{N} f(x_i) w_i
\]

Where permissible, `imsl_f_gauss_quad_rule` also computes Gauss-Radau and Gauss-Lobatto quadrature rules.
Integrates a function, which may have endpoint singularities, using a globally adaptive scheme based on Gauss-Kronrod rules.

Synopsis

```
#include <imsl.h>

float imsl_f_int_fcn_sing (float fcn(), float a, float b, ..., 0)
```

The type `double` function is `imsl_d_int_fcn_sing`.

Required Arguments

- `float fcn (float x)` (input)
 User-supplied function to be integrated.
- `float a` (Input)
 Lower limit of integration.
- `float b` (Input)
 Upper limit of integration.

Return Value

An estimate of

```
\int_{a}^{b} fcn(x) \, dx
```

If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

float imsl_f_int_fcn_sing (float fcn(), float a, float b,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
```
IMSL_ERR_EST, `float *err_est`,

IMSL_MAX_SUBINTER, `int max_subinter`,

IMSL_N_SUBINTER, `int *n_subinter`,

IMSL_N_EVALS, `int *n_evals`,

IMSL_FCN_W_DATA, `float fcn (float x, void *data), void *data` (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Optional Arguments

IMSL_ERR_ABS, `float err_abs` (Input)
Absolute accuracy desired.
Default: $err_abs = \sqrt{\varepsilon}$ where ε is the machine precision

IMSL_ERR_REL, `float err_rel` (Input)
Relative accuracy desired.
Default: $err_rel = \sqrt{\varepsilon}$ where ε is the machine precision

IMSL_ERR_EST, `float *err_est` (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, `int max_subinter` (Input)
Number of subintervals allowed.
Default: $max_subinter = 500$

IMSL_N_SUBINTER, `int *n_subinter` (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, `int *n_evals` (Output)
Address to store the number of evaluations of fcn.

Description

This function is designed to handle functions with endpoint singularities. However, the performance on functions that are well-behaved at the endpoints is also quite good.

The function `imsl_f_int_fcn_sing` is a general-purpose integrator that uses a globally adaptive scheme in order to reduce the absolute error. It subdivides the interval $[a, b]$ and uses a 21-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the 10-
point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. This function uses an extrapolation procedure known as the ε-algorithm.

On some platforms, `imsl_f_int_fcn_sing` can evaluate the user-supplied function $f(x)$ in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

The function `imsl_f_int_fcn_sing` is based on the subroutine QAGS by Piessens et al. (1983).

Examples

Example 1

The value of

$$
\int_0^1 \ln(x)x^{-1/2}dx = -4
$$

is estimated.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
    float q, exact;

    imsl_omp_options(
        IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
        0);

            /* Evaluate the integral */
            q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0,
                0);

            /* Print the result and */
            /* the exact answer */
            exact = -4.0;
            printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
    return (x * x - 1) / (x * x + 1);
}
```

return log(x)/sqrt(x);
}

Output

integral = -4.000
exact = -4.000

Example 2

The value of

\[
\int_0^1 \frac{\ln x}{x^{1/2}} \, dx = -4
\]

is again estimated. The values of the actual and estimated errors are printed as well. Note that these numbers are machine dependent. Furthermore, usually the error estimate is pessimistic. That is, the actual error is usually smaller than the error estimate as is in this example.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 float q, exact, err_est, exact_err;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0,
 IMSL_ERR_EST, &err_est,
 0);

 /* Print the result and */
 /* the exact answer */
 exact = -4.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est, exact_err);
}

float fcn(float x)
{
 return log(x)/sqrt(x);
}
Output

integral = -4.000
exact = -4.000
error estimate = 2.708435e-004
exact error = 2.241135e-005

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION
Roundoff error, preventing the requested tolerance from being achieved, has been detected.

IMSL_PRECISION_DEGRADATION
A degradation in precision has been detected.

IMSL_EXTRAPOLATION_ROUNDOFF
Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.

Fatal Errors

IMSL_DIVERGENT
Integral is probably divergent or slowly convergent.

IMSL_PRECISION_DEGRADATION
Integral is probably divergent or slowly convergent.

IMSL_MAX_SUBINTERVALS
The maximum number of subintervals allowed has been reached.

IMSL_STOP_USER_FCN
Request from user supplied function to stop algorithm.
User flag = ".#".
int_fcn_sing_1d

Integrates a function with a possible internal or endpoint singularity.

Synopsis

```
#include <imsl.h>

float imsl_f_int_fcn_sing_1d(float fcn(), float a, float b, ... , 0)
```

The type `double` function is `imsl_d_int_fcn_sing_1d`.

Required Arguments

```
float fcn (float x) (Input/Output)
    User-supplied function to be integrated.
```

Arguments

```
float x (Input)
    Independent variable.
```

Return Value

```
The computed function value at the point x.
```

```
float a (Input)
    Lower limit of integration.

float b (Input)
    Upper limit of integration. The relative values of a and b are interpreted properly. Thus if one exchanges a and b, the sign of the answer is changed. When the integrand is positive, the sign of the result is the same as the sign of b – a.
```

Return Value

An estimate of

```
\int_a^b fcn(x) \, dx
```

Synopsis with Optional Arguments

```
#include <imsl.h>

float imsl_f_int_fcn_sing_1d(float fcn(), float a, float b, ...
```
Optional Arguments

User supplied function to be integrated, which also accepts a pointer to an a posteriori estimate of the absolute value of the error committed while evaluating the integrand, and a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Arguments

- **float x (Input)**
 The point at which the function is evaluated.

- **float *err_post (Output)**
 An a posteriori estimate of the absolute value of the error committed while evaluating the integrand. This argument provides a means for the user to have fcn compute this value as output. Although this argument must appear in the argument list of fcn, it need not be referenced in the function. See Example 2 for an example of this.

- **void *data (Input)**
 A pointer to the data to be passed to the user-supplied function.

Return Value

The computed function value at the point x.

IMSL_FCN_W_DATA, float fcn (float x, float *err_post, void *data), float *err_post, void *data (Input)

float fcn (float x, float *err_post, void *data) (Input)
\texttt{float *err_post (Input/Output)}

An a posteriori estimate of the absolute value of the error committed while evaluating the integrand. On input, the user may supply this estimate and that value will be used as the estimate thereafter provided \texttt{fcn} does not calculate a new value. If an a posteriori estimate of the value of the error is not known, set \texttt{err_post} to 0.0 on input. On output, \texttt{err_post} will contain either the input value set by the user or the value calculated by \texttt{fcn}.

\texttt{void *data (Input)}

A pointer to the data to be passed to the user-supplied function.

\texttt{IMSL_ERR_ABS, float err_abs (Input)}

Absolute error tolerance. See \texttt{Remark 1} for a discussion on the error tolerances.

Default: \texttt{err_abs} = 0.0

\texttt{IMSL_ERR_FRAC, float err_frac (Input)}

A fraction expressing the \texttt{(number of correct digits of accuracy desired)/(number of digits of achievable precision)}. See \texttt{Remark 1} for a discussion on accuracy.

Default: \texttt{err_frac} = 0.75

\texttt{IMSL_ERR_REL, float err_rel (Input)}

The error tolerance relative to the value of the integral. See \texttt{Remark 1} for a discussion on the error tolerances.

Default: \texttt{err_rel} = 0.0

\texttt{IMSL_ERR_PRIOR, float err_prior (Input)}

An a priori estimate of the absolute value of the relative error expected to be committed while evaluating the integrand. Changes to this value are not detected during evaluation of the integral.

Default: \texttt{err_prior} = \texttt{imsl_f_machine(4)}

\texttt{IMSL_MAX_EVALS, int maxfn (Input)}

The maximum number of function evaluations to use to compute the integral.

Default: The number of function values is not bounded.

\texttt{IMSL_SINGULARITY, float singularity, int singularity_type (Input)}

\texttt{singularity} is the real part of the abscissa of a singularity or discontinuity in the integrand. \texttt{singularity_type} is a signed integer specifying the type of singularity which occurs in the integrand. If the singularity has a leading term of the form \(x^\alpha\) where \(\alpha\) is not an integer, if \(\alpha\) is “large” or has the form \(\alpha = (2n-1)/2\) where \(n\) is a nonnegative integer, or the singularity is well outside the interval, set \texttt{singularity_type} to a positive integer. Otherwise, set \texttt{singularity_type} to a negative integer. Also see \texttt{Remark 2}.

Default: It is assumed that there is no singularity in the integrand so \texttt{singularity} and \texttt{singularity_type} are not set.

\texttt{IMSL_N_EVALS, int *n_evals (Output)}

Number of function evaluations used to calculate the integral.
IMSL_ERR_EST, float *err_est (Output)
An estimate of the upper bound of the magnitude of the difference between the value returned by
imsl_f_int_fcn_sing_1d and the true value of the integral.

IMSL_ISTATUS, int *istatus (Output)
A status flag indicating the error criteria which was satisfied on exit.

<table>
<thead>
<tr>
<th>istatus</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Indicates normal termination with either the absolute or relative error tolerance criteria satisfied.</td>
</tr>
<tr>
<td>-2</td>
<td>Indicates normal termination with neither the absolute nor the relative error tolerance criteria satisfied, but the error tolerance based on the locally achievable precision is satisfied.</td>
</tr>
<tr>
<td>-3</td>
<td>Indicates normal termination with none of the error tolerance criteria satisfied.</td>
</tr>
<tr>
<td>Other</td>
<td>Any value other than the above indicates abnormal termination due to an error condition.</td>
</tr>
</tbody>
</table>

Description

The function imsl_f_int_fcn_sing_1d is based on the JPL Library routine SINT1. The integral is estimated using quadrature formulae due to T. N. L. Patterson (1968). Patterson described a family of formulae in which the k^{th} formula used all the integrand values used in the $k-1^{st}$ formula, and added 2^{k-1} new integrand values in an optimal way. The first formula is the midpoint rule, the second is the three point Gauss formula, and the third is the seven point Kronrod formula. Formulae of this family of higher degree had not previously been described. This program uses formulae up to $k = 8$.

An error estimate is obtained by comparing the values of the integral estimated by two adjacent formulae, examining differences up to the fifteenth order, integrating round-off error, integrating error declared to have been committed during computation of the integrand, integrating a first order estimate of the effect round-off error in the abscissa has on integrand values, and including errors in the limits. The latter four methods are also used to derive a bound on the achievable precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is subdivided. The difference table is used to discover whether the integral is difficult to compute because the integrand is too complex or has singular behavior. In the former case, the estimated error, requested error tolerance, and difference table are used to choose a step size.

In the latter case, the difference table is used in a search algorithm to find the abscissa of the singular behavior. If the singular behavior is discovered on the end of an interval, a change of independent variable is applied to reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump discontinuities, and computational noise.
Remarks

Remark 1

The user provides the absolute error tolerance through optional argument IMSL_ERR_ABS. Optional argument IMSL_ERR_FRAC represents the ratio of the (number of correct digits of accuracy desired) to (number of digits of achievable precision). Optional argument IMSL_ERR_REL represents the error tolerance relative to the value of the integral. The internal value for err_frac is bounded between .5 and 1. By default, err_abs and err_rel are set to 0.0 and err_frac is set to .75. These default values usually provide all the accuracy that can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the entire region of integration) rather than locally (one step at a time). This policy provides true control of error relative to the value of the integral when the integrand is not sign definite, as well as when the integrand is sign definite. To apply the criterion of error tolerance relative to the value of the integral, the value of the integral over the entire region, estimated without refinement of the region, is used to derive an absolute error tolerance that may be applied locally. If the preliminary estimate of the value of the integral is significantly in error, and the least restrictive error tolerance is relative to the value of the integral, the cost of computing the integral will be larger than the cost of computing the integral to the same degree of accuracy using appropriate values of either of the other tolerance criteria. The preliminary estimate of the integral may be significantly in error if the integrand is not sign definite or has large variation.

Remark 2

Optional argument IMSL_SINGULARITY provides the user with a means to give the routine information about the location and type of any known singularity of the integrand. When an integrand appears to have singular behavior at the end of the interval, a transformation of the variable of integration is applied to reduce the strength of the singularity. When an integrand appears to have singular behavior inside the interval, the abscissa of the singularity is determined as precisely as necessary, depending on the error tolerance, and the interval is subdivided. The discovery of singular behavior and determination of the abscissa of singular behavior are expensive. If the user knows of the existence of a singularity, the efficiency of computation of the integral may be improved by requesting an immediate transformation of the independent variable or subdivision of the interval. It is recommended that the user select these optional arguments for all singularities, even those outside \([a, b]\).

If the singularity has a leading term of the form \(x^\alpha\) where \(\alpha\) is not an integer, if \(\alpha\) is “large” or has the form \(\alpha = (2n - 1)/2\) where \(n\) is a nonnegative integer, or the singularity is well outside the interval, set singularity_type to a positive value. Otherwise, set singularity_type to a negative value. The meaning of “large” depends on the rest of the integrand and the length of the interval. For the typical case, a value of about 2 is considered “large”. For a singularity of the form \(x^\alpha \log x\) use the above rule, even if \(\alpha\) is an integer. For other types of singularities make a reasonable guess based on the above. If several similar integrals are to be computed, some experimentation may be useful.

When singularity_type is positive, a transformation of the form \(T = TA + (X - TA)^2 / (TB - TA)\) is applied, where \(TA\) is the abscissa of the singularity and \(TB\) is the end of the interval. If \(TA\) is outside the interval, \(TB\) will be the end of the interval farthest from \(TA\). If \(TA\) is inside the interval, the interval will immediately be subdivided at \(TA\).
and both parts will be separately integrated with TB equal to each end of the original interval, respectively. When singularity_type is negative, a transformation of the form $T = TA + (X - TA)^4 / (TB - TA)^3$ is applied, with TA and TB as above.

If the integrand has singularities at more than one abscissa within the region, or more than one pole near the real axis such that the real parts are within the region of integration, then the interval should be subdivided at the abscissa of the singularities or the real parts of the poles, and the integrals should be computed as separate problems, with the results summed.

Examples

Example 1

The value of

$$\int_0^1 \ln(x) \left(x^{-1/2} \right) dx = -4$$

is estimated. Note that the optional argument IMSL_SINGULARITY is used.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
    int n_evals, singularity_type=-1;
    float a=0.0, b=1.0, singularity=0.0, errabs=0.0, errest, result;

    result = imsl_f_int_fcn_sing_1d(fcn,a,b,
        IMSL_ERR_ABS, errabs,
        IMSL_SINGULARITY, singularity, singularity_type,
        IMSL_ERR_EST, &errest,
        IMSL_N_EVALS, &n_evals, 0);
    printf("The approximation to the integral is \%f\n", result);
    printf("The estimated absolute error is \%f\n", errest);
    printf("The number of evaluations taken is \%d\n", n_evals);
}

float fcn(float x) {
    return log(x)/sqrt(x);
}
```

Output

The approximation to the integral is -4.000000
The estimated absolute error is 6.0e-007
The number of evaluations taken is 32

Example 2
The value of

$$\int_{1}^{2} (2x + kx) \, dx = 6$$

is estimated. Note that the optional argument IMSL_FCN_W_DATA is used to set the value of \(k = 2 \) in the user-supplied function, \(fcn2 \). We do not attempt to calculate the an a posteriori error in the function evaluation so \(\text{err}_\text{post} \) is set to 0.0.

```c
#include <ims1.h>
#include <stdio.h>

float fcn (float x, float *err_post, void *fcn_data);

int main(){
  float a=1.0, b=2.0, err_post=0.0,rdata[1]={2.0}, errest, result;

  result = imsl_f_int_fcn_sing_1d(NULL, a, b, IMSL_FCN_W_DATA, fcn, &err_post, (void *)rdata,
   IMSL_ERR_EST, &errest, 0);
  printf("The approximation to the integral is %f\n", result);
  printf("The estimated absolute error is %6.1e\n", errest);
}

float fcn (float x, float *err_post, void *fcn_data) {
  float k = ((float*)fcn_data)[0];
  return 2.0*x + k*x;
}
```

Output

The approximation to the integral is 6.000000
The estimated absolute error is 1.2e-006

Fatal Errors

IMSL_NONINTEGRABLE
The integrand apparently contains a nonintegrable singularity. The abscissa of the singularity is near \(# \). The result has been set to NaN.

IMSL_MAX_FCN_EVAL_EXCEEDED_NAN
The maximum number of function evaluations allowed, “maxfn”, has been exceeded. “maxfn” is currently set to a value of \(# \). The result has been set to NaN.
IMSL_CRITERIA_NOT_SATISFIED

The algorithm has terminated without satisfying any of the error tolerance criteria. The error estimate is

IMSL_STOP_USER_FCN

Request from user supplied function to stop algorithm. User flag = "#".
int_fcn

Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn (float fcn(), float a, float b, ..., 0)
```

The type `double` function is `imsl_d_int_fcn`.

Required Arguments

- `float fcn(float x)` (Input)
 User-supplied function to be integrated.
- `float a` (Input)
 Lower limit of integration.
- `float b` (Input)
 Upper limit of integration.

Return Value

The value of

\[
\int_{a}^{b} fcn(x)\,dx
\]

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn (float fcn(float x), float a, float b,
                      IMSL_RULE, int rule,
                      IMSL_ERR_ABS, float err_abs,
                      IMSL_ERR_REL, float err_rel,
                      IMSL_ERR_EST, float *err_est,
                      IMSL_MAX_SUBINTER, int max_subinter,
                      ...)  
```

The type `double` function is `imsl_d_int_fcn`.
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,

Optional Arguments

IMSL_RULE, int rule (Input)
Choice of quadrature rule.

<table>
<thead>
<tr>
<th>rule</th>
<th>Gauss-Kronrod Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7-15 points</td>
</tr>
<tr>
<td>2</td>
<td>10-21 points</td>
</tr>
<tr>
<td>3</td>
<td>15-31 points</td>
</tr>
<tr>
<td>4</td>
<td>20-41 points</td>
</tr>
<tr>
<td>5</td>
<td>25-51 points</td>
</tr>
<tr>
<td>6</td>
<td>30-61 points</td>
</tr>
</tbody>
</table>

Default: rule = 1

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: \(err_abs = \sqrt{\varepsilon} \) where \(\varepsilon \) is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: \(err_rel = \sqrt{\varepsilon} \) where \(\varepsilon \) is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function IMSL_FCN_W_DATA is a general-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It subdivides the interval \([a, b]\) and uses a \((2k + 1)\)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the \(k\)-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. The function IMSL_FCN_W_DATA is based on the subroutine QAG by Piessens et al. (1983).

On some platforms, IMSL_FCN_W_DATA can evaluate the user-supplied function \(f_{cn}\) in parallel. This is done only if the function IMSL_OMP_OPTIONS is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Should IMSL_FCN_W_DATA fail to produce acceptable results, consider one of the more specialized functions documented in this chapter section.

Examples

Example 1

The value of

\[
\int_0^2 xe^x dx = e^2 + 1
\]

is computed. Since the integrand is not oscillatory, all of the default values are used. The values of the actual and estimated error are machine dependent.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);
float q;
float exact;

int main()
{
    imsl_omp_options(
```
The value of \(\int_{0}^{1} \sin(1/x) \, dx \) is computed. Since the integrand is oscillatory, \texttt{rule} = 6 is used. The exact value is 0.50406706. The values of the actual and estimated error are machine dependent.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x) {
    float y;
    y = x * (exp(x));
    return y;
}

int main() {
    float q, err_est, err_abs= 0.0001, exact = 0.50406706, error;
    imsl_omp_options(
        IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
        0);
    /* integrate fcn(x) from 0 to 1 */
    q = imsl_f_int_fcn (fcn, 0.0, 1.0,
        IMSL_ERR_ABS, err_abs, /* set abs error value*/
        0);
    /* print the result and the exact answer */
    printf("integral = %10.3f
exact = %10.3f
\n", q, exact);
}
```

Output

integral = 8.389
exact = 8.389
IMSL_RULE, 6,
IMSL_ERR_EST, &err_est, /* pass in address */
0);

error = q - exact;
/* print the result and the exact answer */
printf(" integral = %10.3f
 exact = %10.3f
 error = %10.3f",
 q, exact , error);
printf(" err_est = %g",
 err_est);
}

float fcn(float x)
{
 /* compute sin(1/x), avoiding division by zero */
 return ((x)>1.0e-5) ? sin(1.0/(x)) : 0.0;
}

Output

integral = 0.504
exact = 0.504
error = 0.000
err_est = 0.000170593

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error has been detected. The requested tolerances,“err_abs”=# and “err_rel” cannot be reached.

IMSL_PRECISION_DEGRADATION Precision is degraded due to too fine a sub-division relative to the requested tolerance. This may be due to bad integrand behavior in the interval (#,#). Higher precision may alleviate this problem.

Fatal Errors

IMSL_MAX_SUBINTERVALS The maximum number of subintervals allowed “max_sub” has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
int_fcn_sing_pts

Integrates a function with singularity points given.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_sing_pts(float fcn(), float a, float b, int npoints, float points[],..., 0)
```

The type `double` function is `imsl_d_int_fcn_sing_pts`.

Required Arguments

- `float fcn (float x)` (Input)
 User-supplied function to be integrated.

- `float a` (Input)
 Lower limit of integration.

- `float b` (Input)
 Upper limit of integration.

- `int npoints` (Input)
 The number of singularities of the integrand.

- `float points[]` (Input)
 The abscissas of the singularities. These values should be interior to the interval `[a, b]`.

Return Value

The value of

\[\int_a^b fcn(x) \, dx \]

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
float imsl_f_int_fcn_sing_pts(float fcn(), float a, float b, int npoints, float points[],
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: \(err_abs = \sqrt{\varepsilon} \) where \(\varepsilon \) is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: \(err_rel = \sqrt{\varepsilon} \) where \(\varepsilon \) is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: \(max_subinter = 500 \)

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.
Description

The function `imsl_f_int_fcn_sing_pts` is a special-purpose integrator that uses a globally adaptive scheme in order to reduce the absolute error. It subdivides the interval \([a, b]\) into `npoints` + 1 user-supplied subintervals and uses a 21-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. This function uses an extrapolation procedure known as the \(\varepsilon \)-algorithm.

On some platforms, `imsl_f_int_fcn_sing_pts` can evaluate the user-supplied function \(fcn \) in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

The function `imsl_f_int_fcn_sing_pts` is based on the subroutine QAGP by Piessens et al. (1983).

Examples

Example 1

The value of

\[
\int_{0}^{3} x^3 \ln |(x^2 - 1)(x^2 - 2)| \, dx = 61 \ln 2 + \frac{77}{4} \ln 7 - 27
\]

is computed. The values of the actual and estimated error are machine dependent. Note that this function never evaluates the user-supplied function at the user-supplied breakpoints.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
    int npoints = 2;
    float q, exact, points[2];

    /* Set singular points */
    points[0] = 1.0;
    points[1] = sqrt(2.);

    imsl_omp_options(
        IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
        0);
```

```c
```
/ Evaluate the integral */
q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points, 0);

/* print the result and */
/* the exact answer */
exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
printf("integral = %10.3f\nexact = %10.3f\n", q, exact);

float fcn(float x)
{
 return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}

Output

integral = 52.741
exact = 52.741

Example 2

The value of

\[
\int_0^3 x^3 \ln \left| \left(x^2 - 1 \right) \left(x^2 - 2 \right) \right| dx = 61 \ln 2 + \frac{77}{4} \ln 7 - 27
\]

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as in this example. The number of function evaluations also are printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 int n_evals, npoints = 2;
 float q, exact, err_est, exact_err, points[2];

 /* Set singular points */
 points[0] = 1.0;
 points[1] = sqrt(2.);

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

 /* Set singular points */
 points[0] = 1.0;
 points[1] = sqrt(2.);

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
/* Evaluate the integral and get the */
/* error estimate and the number of */
/* evaluations */
q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);

/* Print the result and the */
/* exact answer */
exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
exact_err = fabs(exact - q);
printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
printf("error estimate = %e\nextact error = %e\n", err_est,
exact_err);
printf("The number of function evaluations = %d\n", n_evals);

float fcn(float x)
{ return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}
Output

integral = 52.741
exact = 52.741
error estimate = 1.258850e-04
exact error = 3.051758e-05
The number of function evaluations = 819

Warning Errors

IMSL_ROUND_OFF_CONTAMINATION
Roundoff error, preventing the requested tolerance from being achieved, has been detected.

IMSL_PRECISION_DEGRADATION
A degradation in precision has been detected.

IMSL_EXTRAPOLATION_ROUND_OFF
Roundoff error has been detected in the extrapolation table. The tolerances, "err_abs" = # and "err_rel" = # cannot be reached.

Fatal Errors

IMSL_DIVERGENT
Integral is probably divergent or slowly convergent.

IMSL_STOP_USER_FCN
Request from user supplied function to stop algorithm.
User flag = ".#".
integrates a function with algebraic-logarithmic singularities.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_alg_log(float fcn(), float a, float b, imsl_quad weight, float alpha, float beta,..., 0)
```

The type `double` function is `imsl_d_int_fcn_alg_log`.

Required Arguments

- `float fcn (float x)` (Input)
 User-supplied function to be integrated.

- `float a` (Input)
 Lower limit of integration.

- `float b` (Input)
 Upper limit of integration.

- `imsl_quad` weight, `float` alpha, `float` beta (Input)
 These three parameters are used to describe the weight function that may have algebraic or logarithmic singularities at the endpoints. The parameter weight can take on four values as described below. The parameters $\alpha = \alpha$ and $\beta = \beta$ specify the strength of the singularities at a or b and hence, must be greater than -1.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Integration Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_ALG</td>
<td>$(x - a)^{a} (b - x)^{b}$</td>
</tr>
<tr>
<td>IMSL_ALG_LEFT_LOG</td>
<td>$(x - a)^{a} (b - x)^{b} \log (x - a)$</td>
</tr>
<tr>
<td>IMSL_ALG_RIGHT_LOG</td>
<td>$(x - a)^{a} (b - x)^{b} \log (b - x)$</td>
</tr>
<tr>
<td>IMSL_ALG_LOG</td>
<td>$(x - a)^{a} (b - x)^{b} \log (x - a) \log (b - x)$</td>
</tr>
</tbody>
</table>

Return Value

The value of
\[\int_a^b fcn(x) w(x) \, dx \]

is returned where \(w(x) \) is one of the four weights above. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn_alg_log (float fcn (float x), float a, float b, imsl_quad weight,
float alpha, float beta,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn (), void *data,
0)
```

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: \(err_abs = \sqrt{\varepsilon} \) where \(\varepsilon \) is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: \(err_rel = \frac{\varepsilon}{\sqrt{|f(x)|}} \) where \(\varepsilon \) is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.
Description

The function `imsl_f_int_fcn_alg_log` is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It computes integrals whose integrands have the special form \(w(x)f(x)\) where \(w(x)\) is a weight function described above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas is employed. This function is based on the subroutine `QAWS`, which is fully documented by Piessens et al. (1983).

On some platforms, `imsl_f_int_fcn_alg_log` can evaluate the user-supplied function `fcn` in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Examples

Example 1

The value of

\[
\int_0^1 \left(1 + x\right) \left(1 - x\right)^{1/2} \ln(x) \, dx = \frac{3\ln(2) - 4}{9}
\]

is computed.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
    float q, exact;

    imsl_omp_options( 
        IMSL_SET_FUNCTIONS_Thread_Safe, 1, 0);
    /* Evaluate the integral */
    q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
```
/* Print the result and the */
/* exact answer */
exact = (3.*log(2.)-4.)/9.;
printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return sqrt(1+x);
}

Output
integral = -0.213
exact = -0.213

Example 2
The value of
\[
\int_0^1 \left(1 + x \right) \left(1 - x \right)^{1/2} \ln(x) \, dx = \frac{3 \ln(2) - 4}{9}
\]
is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate, as in this example. The number of function evaluations also are printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 int n_evals;
 float q, exact, err_est, exact_err;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
 IMSL_ALG_LEFT_LOG, 1.0, 0.5,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 IMSL_ERR_REL, 0.0001,
 IMSL_ERR_ABS, 0.0001,
 IMSL_ERR_SCA, 0.0001,
/* Print the result and the */
/* exact answer */
exact = (3.*log(2.)-4.)/9.;
exact_err = fabs(exact - q);
printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
printf("error estimate = %e\nexact error = %e\n", err_est, exact_err);
printf("The number of function evaluations = %d\n", n_evals);

float fcn(float x)
{
 return sqrt(1+x);
}

Output

integral = -0.213
exact = -0.213
error estimate = 3.725290e-09
exact error = 1.490116e-08
The number of function evaluations = 50

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to stop
algorithm. User flag = ".#".
int_fcn_inf

Integrates a function over an infinite or semi-infinite interval.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_inf(float fcn(), float bound, imsl_quad interval, ..., 0)
```

The type `double` procedure is `imsl_d_int_fcn_inf`.

Required Arguments

- `float fcn(float x)` (Input)
 User-supplied function to be integrated.

- `float bound` (Input)
 Finite limit of integration. This argument is ignored if `interval` has the value `IMSL_INF_INF`.

- `imsl_quad interval` (Input)
 Flag indicating integration limits. The following settings are allowed:

<table>
<thead>
<tr>
<th><code>interval</code></th>
<th>Integration Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_INF_BOUND</td>
<td>((-\infty, \text{bound}))</td>
</tr>
<tr>
<td>IMSL_BOUND_INF</td>
<td>((\text{bound}, \infty))</td>
</tr>
<tr>
<td>IMSL_INF_INF</td>
<td>((-\infty, \infty))</td>
</tr>
</tbody>
</table>

Return Value

The value of

\[
\int_{a}^{b} fcn(x) \, dx
\]

is returned where \(a\) and \(b\) are appropriate integration limits. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
float imsl_f_int_fcn_inf (float fcn, float bound, imsl_quad interval,
 IMSL_ERR_ABS, float err_abs,
 IMSL_ERR_REL, float err_rel,
 IMSL_ERR_EST, float *err_est,
 IMSL_MAX_SUBINTER, int max_subinter,
 IMSL_N_SUBINTER, int *n_subinter,
 IMSL_N_EVALS, int *n_evals,
 IMSL_FCN_W_DATA, float fcn(), void *data,
 0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
 Absolute accuracy desired.
 Default: err_abs = \sqrt{\epsilon} where \epsilon is the machine precision

IMSL_ERR_REL, float err_rel (Input)
 Relative accuracy desired.
 Default: err_rel = \sqrt{\epsilon} where \epsilon is the machine precision

IMSL_ERR_EST, float *err_est (Output)
 Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
 Number of subintervals allowed.
 Default: max_subinter = 500.

IMSL_N_SUBINTER, int *n_subinter (Output)
 Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
 Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
 User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.
Description

The function `imsl_f_int_fcn_inf` is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It initially transforms an infinite or semi-infinite interval into the finite interval [0, 1]. It then uses the same strategy as the function `imsl_f_int_fcn_sing`.

On some platforms, `imsl_f_int_fcn_inf` can evaluate the user-supplied function `fcn` in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

The function `imsl_f_int_fcn_inf` is based on the subroutine QAGI by Piessens et al. (1983).

Examples

Example 1

The value of

\[\int_{0}^{\infty} \frac{\ln(x)}{1 + (10x)^2} \, dx = \frac{-\pi \ln(10)}{20} \]

is computed.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
    float q, exact, pi;
    pi = imsl_f_constant("pi", 0);

    imsl_omp_options(
        IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
        0);

    /* Evaluate the integral */
    q = imsl_f_int_fcn_inf (fcn, 0.0,
        IMSL_BOUND_INF,
        0);

    /* Print the result and the */
    /* exact answer */
    exact = -pi*log(10.)/20.;
}```
printf("integral = %10.3f
exact    = %10.3f\n", q, exact);
}

float fcn(float x)
{
    float z;
    z = 10.*x;
    return log(x)/(1+ z*z);
}

Output

integral =    -0.362
exact    =    -0.362

Example 2

The value of

\[
\int_0^\infty \frac{\ln x}{1 + (10x)^2} dx = -\frac{\pi \ln 10}{20}
\]

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate, as in this example. The number of function evaluations also are printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
    int n_evals;
    float q, exact, err_est, exact_err, pi;

    pi = imsl_f_constant("pi", 0);

    imsl_omp_options(
        IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
        0);

    /* Evaluate the integral */
    q = imsl_f_int_fcn_inf (fcn, 0.0,
        IMSL_BOUND_INF,
        IMSL_ERR_EST, &err_est,
        IMSL_N_EVALS, &n_evals,
/* Print the result and the */
/* exact answer */
extact = -pi*log(10.)/20.;
extact_err = fabs(exact - q);
printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
printf("error estimate = %e\nexact error = %e\n", err_est, exact_err);
printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
    float z;

    z = 10.*x;
    return log(x)/(1 + z*z);
}

Output

integral =  -0.362
exact    =  -0.362
error estimate = 2.801418e-06
exact error    = 2.980232e-08
The number of function evaluations = 285

Warning Errors

**IMSL_ROUNDOFF_CONTAMINATION**
Roundoff error, preventing the requested tolerance from being achieved, has been detected.

**IMSL_PRECISION_DEGRADATION**
A degradation in precision has been detected.

**IMSL_EXTRAPOLATION_ROUNDOff**
Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.

Fatal Errors

**IMSL_DIVERGENT**
Integral is probably divergent or slowly convergent.

**IMSL_MAX_SUBINTERVALS**
The maximum number of subintervals allowed has been reached.

**IMSL_STOP_USER_FCN**
Request from user supplied function to stop algorithm.
User flag = ".#."
Integrates a function containing a sine or a cosine factor.

Synopsis

```
#include <imsl.h>

float imsl_f_int_fcn_trig(float fcn(), float a, float b, imsl_quad weight, float omega, ..., 0)
```

The type `double` function is `imsl_d_int_fcn_trig`.

Required Arguments

- `float fcn(float x)` (Input)
  User-supplied function to be integrated.

- `float a` (Input)
  Lower limit of integration.

- `float b` (Input)
  Upper limit of integration.

- `imsl_quad weight` and `float omega` (Input)
  These two parameters are used to describe the trigonometric weight. The parameter `weight` can take on the two values described below, and the parameter `omega = ω` specifies the frequency of the trigonometric weighting function.

<table>
<thead>
<tr>
<th>weight</th>
<th>Integration Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_COS</td>
<td>( \cos(\omega x) )</td>
</tr>
<tr>
<td>IMSL_SIN</td>
<td>( \sin(\omega x) )</td>
</tr>
</tbody>
</table>

Return Value

The value of

\[
\int_{a}^{b} fcn(x) \cos(\omega x) \, dx
\]

is returned if `weight = IMSL_COS`. If `weight = IMSL_SIN`, then the cosine factor is replaced with a sine factor. If no value can be computed, NaN is returned.
Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn_trig (float fcn(), float a, float b, imsl_quad weight, float omega,
 IMSL_ERR_ABS, float err_abs,
 IMSL_ERR_REL, float err_rel,
 IMSL_ERR_EST, float *err_est,
 IMSL_MAX_SUBINTER, int max_subinter,
 IMSL_N_SUBINTER, int *n_subinter,
 IMSL_N_EVALS, int *n_evals,
 IMSL_MAX_MOMENTS, int max_moments,
 IMSL_FCN_W_DATA, float fcn(), void *data,
 0)
```

Optional Arguments

- **IMSL_ERR_ABS, float err_abs** (Input)
  Absolute accuracy desired.
  Default: \( err_{\text{abs}} = \sqrt{\epsilon} \) where \( \epsilon \) is the machine precision

- **IMSL_ERR_REL, float err_rel** (Input)
  Relative accuracy desired.
  Default: \( err_{\text{rel}} = \sqrt{\epsilon} \) where \( \epsilon \) is the machine precision

- **IMSL_ERR_EST, float *err_est** (Output)
  Address to store an estimate of the absolute value of the error.

- **IMSL_MAX_SUBINTER, int max_subinter** (Input)
  Number of subintervals allowed.
  Default: \( max_{\text{subinter}} = 500 \)

- **IMSL_N_SUBINTER, int *n_subinter** (Output)
  Address to store the number of subintervals generated.

- **IMSL_N_EVALS, int *n_evals** (Output)
  Address to store the number of evaluations of \( fcn \).
IMSL_MAX_MOMENTS, int max_moments (Input)
This is an upper bound on the number of Chebyshev moments that can be stored. Increasing
(decreasing) this number may increase (decrease) execution speed and space used.
Default: max_moments = 21

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

Description

The function imsl_f_int_fcn_trig is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It computes integrals whose integrands have the special form \( w(x)f(x) \) where \( w(x) \) is
either \( \cos(\omega x) \) or \( \sin(\omega x) \). Depending on the length of the subinterval in relation to the size of \( \omega \), either a modified
Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to approximate the integral on a subinterval.
This function uses the general strategy of the function imsl_f_int_fcn_sing.

On some platforms, imsl_f_int_fcn_trig can evaluate the user-supplied function fcn in parallel. This is
done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is
thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

The function imsl_f_int_fcn_trig is based on the subroutine QAWO by Piessens et al. (1983).

Examples

Example 1

The value of

\[
\int_0^1 \ln(x) \sin(10\pi x) \, dx
\]

is computed. Notice that we have coded around the singularity at zero. This is necessary since this procedure
evaluates the integrand at the two endpoints.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 float q, exact, omega;
```
omega = 10*imsl_f_constant("pi", 0);

imsl_omp_options(
    IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

/* Evaluate the integral */
q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
    IMSL_SIN, omega, 0);

/* Print the result and the */
/* exact answer */
exact = -.1281316;
printf("integral = %10.3f\nexact    = %10.3f\n", q, exact);
}

float fcn(float x)
{
    return (x==0.0) ? 0.0 : log(x);
}

Output

integral =    -0.128
exact    =    -0.128

Example 2

The value of

\[ \int_0^1 \ln(x) \sin(10\pi x) \, dx \]

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, it is usually the case that the error estimate is pessimistic. That is, the actual error is usually smaller than the error estimate as is the case in this example. The number of function evaluations are also printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
int n_evals;

float q, exact, omega, err_est, exact_err;

omega = 10*imsl_f_constant("pi", 0);

imsl_omp_options(
  IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

/* Evaluate the integral */
q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0, IMSL_SIN, omega, IMSL_ERR_EST, &err_est, IMSL_N_EVALS, &n_evals, 0);

/* Print the result and the */
/* exact answer */
exact = -.1281316;
exact_err = fabs(exact - q);
printf("integral = %10.3f\n\nexact = %10.3f\n", q, exact);
printf("error estimate = %e\nexact error = %e\n", err_est, exact_err);
printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
  return (x==0.0) ? 0.0 : log(x);
}

Output

integral =  -0.128
exact    =  -0.128
error estimate = 7.504603e-05
exact error   = 5.245209e-06
The number of function evaluations = 215
Warning Errors

- **IMSL_ROUNDOFF_CONTAMINATION**
  Roundoff error, preventing the requested tolerance from being achieved, has been detected.

- **IMSL_PRECISION_DEGRADATION**
  A degradation in precision has been detected.

- **IMSL_EXTRAPOLATION_ROUNDOFF**
  Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.

Fatal Errors

- **IMSL_DIVERGENT**
  Integral is probably divergent or slowly convergent.

- **IMSL_MAX_SUBINTERVALS**
  The maximum number of subintervals allowed has been reached.

- **IMSL_STOP_USER_FCN**
  Request from user supplied function to stop algorithm.
  User flag = ".#".
int_fcn_fourier

Computes a Fourier sine or cosine transform.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_fourier(float fcn(), float a, imsl_quad weight, float omega, ..., 0)
```

The type `double` function is `imsl_d_int_fcn_fourier`.

Required Arguments

- `float fcn(float x)` (Input)
  - User-supplied function to be integrated.

- `float a` (Input)
  - Lower limit of integration. The upper limit of integration is $\infty$.

- `imsl_quad weight` and `float omega` (Input)
  - These two parameters are used to describe the trigonometric weight. The parameter `weight` can take on the two values described below, and the parameter $\omega = \omega$ specifies the frequency of the trigonometric weighting function.

<table>
<thead>
<tr>
<th>weight</th>
<th>Integration Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_COS</td>
<td>$\cos(\omega x)$</td>
</tr>
<tr>
<td>IMSL_SIN</td>
<td>$\sin(\omega x)$</td>
</tr>
</tbody>
</table>

Return Value

The return value is

$$\int_{a}^{\infty} fcn(x) \cos(\omega x) \, dx$$

if `weight = IMSL_COS`. If `weight = IMSL_SIN`, then the cosine factor is replaced with a sine factor. If no value can be computed, NaN is returned.
Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn_fourier(float fcn(), float a, imsl_quad weight, float omega,
 IMSL_ERR_ABS, float err_abs,
 IMSL_ERR_EST, float *err_est,
 IMSL_MAX_SUBINTER, int max_subinter,
 IMSL_MAX_CYCLES, int max_cycles,
 IMSL_MAX_MOMENTS, int max_moments,
 IMSL_N_CYCLES, int *n_cycles,
 IMSL_N_EVALS, int *n_evals,
 IMSL_FCN_W_DATA, float fcn(), void *data,
 0)
```

Optional Arguments

- **IMSL_ERR_ABS, float err_abs (Input)**
  Absolute accuracy desired.
  Default: $\text{err\_abs} = \sqrt{\varepsilon}$ where $\varepsilon$ is the machine precision.

- **IMSL_ERR_EST, float *err_est (Output)**
  Address to store an estimate of the absolute value of the error.

- **IMSL_MAX_SUBINTER, int max_subinter (Input)**
  Number of subintervals allowed.
  Default: max_subinter = 500

- **IMSL_MAX_CYCLES, int max_cycles (Input)**
  Number of cycles allowed.
  Default: max_subinter = 50

- **IMSL_MAX_MOMENTS, int max_moments (Input)**
  Number of subintervals allowed in the partition of each cycle.
  Default: max_moments = 21

- **IMSL_N_CYCLES, int *n_cycles (Output)**
  Address to store the number of cycles generated.

- **IMSL_N_EVALS, int *n_evals (Output)**
  Address to store the number of evaluations of fcn.
IMSLFcnW DATA, \textit{float} fcn (\textit{float} x, \textit{void} *data), \textit{void} *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. \textit{data} is a pointer to the data to be passed to the user-supplied function. See the \textit{Introduction, Passing Data to User-Supplied Functions} at the beginning of this manual for more details.

**Description**

The function \texttt{imsl\_f\_int\_fcn\_fourier} is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It computes integrals whose integrands have the special form \(w(x)f(x)\) where \(w(x)\) is either \(\cos \omega x\) or \(\sin \omega x\). The integration interval is always semi-infinite of the form \([a, \infty]\). These Fourier integrals are approximated by repeated calls to the function \texttt{imsl\_f\_int\_fcn\_trig} followed by extrapolation.

On some platforms, \texttt{imsl\_f\_int\_fcn\_fourier} can evaluate the user-supplied function \textit{fcn} in parallel. This is done only if the function \texttt{imsl\_omp\_options} is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

The function \texttt{imsl\_f\_int\_fcn\_fourier} is based on the subroutine \texttt{QAWF} by Piessens et al. (1983).

**Examples**

**Example 1**

The value of

\[
\int_0^\infty x^{-1/2}\cos(\pi x / 2)\,dx = 1
\]

is computed. Notice that the integrand is coded to protect for the singularity at zero.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 float q, exact, omega;
 omega = imsl_f_constant("pi", 0) / 2.;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
```

```c
 return 0;
}
```
/ * Evaluate the integral */
q = imsl_f_int_fcn_fourier (fcn, 0.0, 
  IMSL_COS, omega, 
  0);

/* Print the result and the */
/* exact answer */
exact = 1.0;
printf("integral = %10.3f\nexact    = %10.3f\n", q, exact);
}

float fcn(float x)
{
  return (x==0.) ? 0. : 1./sqrt(x);
}

Output

integral = 1.000
exact    = 1.000

Example 2
The value of

$$\int_0^{\infty} x^{-1/2} \cos \left( \frac{\pi x}{2} \right) dx = 1$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as is the case in this example. The number of function evaluations also are printed. Notice that the integrand is coded to protect for the singularity at zero.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
  int   n_evals;
  float q, exact, omega, err_est, exact_err;

  omega = imsl_f_constant("pi",0) / 2.0;

  imsl_omp_options(
    IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 
    0);

  ...
/ Evaluate the integral */
q = imsl_f_int_fcn_fourier (fcn, 0.0,
    IMSL_COS, omega,
    IMSL_ERR_EST, &err_est,
    IMSL_N_EVALS, &n_evals,
    0);

/* Print the result and the */
/* exact answer */
exact = 1.:
exact_err = fabs(exact - q);
printf("integral = %10.3f\nexact    = %10.3f\n", q, exact);
printf("error estimate = %e\nexact error     = %e\n", err_est,
    exact_err);
printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
    return (x==0.) ? 0. : 1./sqrt(x);
}

Output

integral =     1.000
exact    =     1.000
error estimate = 1.803637e-04
exact error     = 1.013279e-06
The number of function evaluations = 405

Warning Errors

IMSL_BAD_INTEGRAND_BEHAVIOR Bad integrand behavior occurred in one or more cycles.
IMSL_EXTRAPOLATION_PROBLEMS Extrapolation table constructed for convergence acceleration of the series formed by the integral contributions of the cycles does not converge to the requested accuracy.

Fatal Errors

IMSL_MAX_CYCLES Maximum number of cycles allowed has been reached.
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = 

Computes integrals of the form

\[ \int_{a}^{b} \frac{f(x)}{x-c} \, dx \]

in the Cauchy principal value sense.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_cauchy(float fcn(), float a, float b, float c, ... , 0)
```

The type `double` function is `imsl_d_int_fcn_cauchy`.

Required Arguments

- `float fcn (float x)` (Input)
  User-supplied function to be integrated.
- `float a` (Input)
  Lower limit of integration.
- `float b` (Input)
  Upper limit of integration.
- `float c` (Input)
  Singular point, `c` must not equal `a` or `b`.

Return Value

The value of

\[ \int_{a}^{b} \frac{f(x)}{x-c} \, dx \]

is returned. If no value can be computed, NaN is returned.
Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn_cauchy(float fcn(), float a, float b, float c,
 IMSL_ERR_ABS, float err_abs,
 IMSL_ERR_REL, float err_rel,
 IMSL_ERR_EST, float *err_est,
 IMSL_MAX_SUBINTER, int max_subinter,
 IMSL_N_SUBINTER, int *n_subinter,
 IMSL_N_EVALS, int *n_evals,
 IMSL_FCN_W_DATA, float fcn(), void *data,
 0)
```

Optional Arguments

**IMSL_ERR_ABS, float err_abs (Input)**
Absolute accuracy desired.
Default: \( \text{err\_abs} = \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision

**IMSL_ERR_REL, float err_rel (Input)**
Relative accuracy desired.
Default: \( \text{err\_rel} = \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision

**IMSL_ERR_EST, float *err_est (Output)**
Address to store an estimate of the absolute value of the error.

**IMSL_MAX_SUBINTER, int max_subinter (Input)**
Number of subintervals allowed.
Default: \( \text{max\_subinter} = 500 \)

**IMSL_N_SUBINTER, int *n_subinter (Output)**
Address to store the number of subintervals generated.

**IMSL_N_EVALS, int *n_evals (Output)**
Address to store the number of evaluations of \( fcn \).

**IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)**
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. \( \text{data} \) is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.
Description

The function \texttt{imsl\_f\_int\_fcn\_cauchy} uses a globally adaptive scheme in an attempt to reduce the absolute error. It computes integrals whose integrands have the special form $w(x)f(x)$ where $w(x) = 1/(x - c)$. If $c$ lies in the interval of integration, then the integral is interpreted as a Cauchy principal value. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas are employed.

On some platforms, \texttt{imsl\_f\_int\_fcn\_cauchy} can evaluate the user-supplied function \texttt{fcn} in parallel. This is done only if the function \texttt{imsl\_omp\_options} is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

The function \texttt{imsl\_f\_int\_fcn\_cauchy} is an implementation of the subroutine QAWC by Piessens et al. (1983).

Examples

Example 1

The Cauchy principal value of

$$
\int_{-1}^{5} \frac{1}{x(5x^3 + 6)} \, dx = \frac{\ln(125/631)}{18}
$$

is computed.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 float q, exact;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0, 0);

 /* Print the result and the */
 /* exact answer */
 exact = log(125.0/631.0)/18.0;
 printf("integral = %.10f\nexact = %.10f\n", q, exact);
}
```
float fcn(float x)
{
    return 1.0/(5.0*x*x*x+6.0);
}

**Output**

integral = -0.090
exact = -0.090

**Example 2**

The Cauchy principal value of

\[
\int_{-1}^{5} \frac{1}{x(5x^3+6)} \, dx = \frac{\ln(125/631)}{18}
\]

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as is the case in this example. The number of function evaluations also are printed.

```c
#include <ims1.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 int n_evals;
 float q, exact, err_est, exact_err;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals, 0);

 /* Print the result and the */
 /* exact answer */
 exact = log(125./631.)/18.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\n", q);
 printf("exact = %10.3f\n", exact);
 printf("error estimate = %e\n", err_est);
 printf("exact error = %e\n", exact_err);
 printf("n_evals = %d\n", n_evals);
}
```
printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
    return 1.0/(5.0*x*x*x+6.0);
}

Output

integral = -0.090
exact    = -0.090
error estimate = 2.160174e-06
exact error  = 0.000000e+00
The number of function evaluations = 215

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to stop
algorithm.
User flag = "+".
Integrates a smooth function using a nonadaptive rule.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_smooth (float fcn(), float a, float b, ..., 0)
```

The type `double` function is `imsl_d_int_fcn_smooth`.

Required Arguments

- `float fcn (float x)` (Input)
  User-supplied function to be integrated.
- `float a` (Input)
  Lower limit of integration.
- `float b` (Input)
  Upper limit of integration.

Return Value

The value of

\[ \int_{a}^{b} fcn(x) \, dx \]

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn_smooth (float fcn(), float a, float b,
 IMSL_ERR_ABS, float err_abs,
 IMSL_ERR_REL, float err_rel,
```
Optional Arguments

**IMSL_ERR_ABS**, **float** err_abs (Input)
- Absolute accuracy desired.
- Default: \( err_{\text{abs}} = \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision

**IMSL_ERR_REL**, **float** err_rel (Input)
- Relative accuracy desired.
- Default: \( err_{\text{rel}} = \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision

**IMSL_ERR_EST**, **float** *err_est* (Output)
- Address to store an estimate of the absolute value of the error.

**IMSL_FCN_W_DATA**, **float** fcn (**float** x, **void** *data*, **void** *data*) (Input)
- User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. **data** is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function `imsl_f_int_fcn_smooth` is designed to integrate smooth functions. It implements a nonadaptive quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87. These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130, respectively. The function `imsl_f_int_fcn_smooth` applies these rules successively, estimating the error, until either the error estimate satisfies the user-supplied constraints or the last rule is applied.

This function is not very robust, but for certain smooth functions it can be efficient. If `imsl_f_int_fcn_smooth` should not perform well, we recommend the use of the function `imsl_f_int_fcn_sing`.

On some platforms, `imsl_f_int_fcn_smooth` can evaluate the user-supplied function `fcn` in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

The function `imsl_f_int_fcn_smooth` is based on the subroutine QNG by Piessens et al. (1983).
Examples

Example 1
The value of
\[ \int_0^2 xe^x \, dx = e^2 + 1 \]
is computed.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 float q, exact;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0., 2.,
 0);

 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f
exact = %10.3f
", q, exact);
}

float fcn(float x)
{
 return x * exp(x);
}
```

Output

integral = 8.389
exact = 8.389

Example 2
The value of
is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate, as is the case in this example.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x);

int main()
{
 float q, exact, err_est, exact_err;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0.0, 2.0,
 IMSL_ERR_EST, &err_est,
 0);

 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f
exact = %10.3f\n", q, exact);
 printf("error estimate = %e
exact error = %e\n", err_est,
 exact_err);
}

float fcn(float x)
{
 return x * exp(x);
}
```

**Output**

```
integral = 8.389
exact = 8.389
error estimate = 5.000267e-05
exact error = 9.536743e-07
```

\[
\int_0^2 xe^x \, dx = e^2 + 1
\]
**Fatal Errors**

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_MAX_STEPS</td>
<td>The maximum number of steps allowed have been taken. The integrand is too difficult for this routine.</td>
</tr>
<tr>
<td>IMSL_STOP_USER_FCN</td>
<td>Request from user supplied function to stop algorithm. User flag = &quot;#&quot;.</td>
</tr>
</tbody>
</table>
int_fcn_2d

Computes a two-dimensional iterated integral.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_2d(float fcn(), float a, float b, float gcn (float x), float hcn (float x), ... , 0)
```

The type `double` function is `imsl_d_int_fcn_2d`.

Required Arguments

- `float fcn (float x, float y)` (Input)
  User-supplied function to be integrated.

- `float a` (Input)
  Lower limit of outer integral.

- `float b` (Input)
  Upper limit of outer integral.

- `float gcn (float x)` (Input)
  User-supplied function to evaluate the lower limit of the inner integral.

- `float hcn (float x)` (Input)
  User-supplied function to evaluate the upper limit of the inner integral.

Return Value

The value of

\[ \int_{a}^{b} \int_{gcn(x)}^{hcn(x)} fcn(x, y) \, dy \, dx \]

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn_2d (float fcn (), float a, float b, float gcn (), float hcn (),
 IMSL_ERR_ABS, float err_abs,
```

...
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int *max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GCN_W_DATA, float gcn(), void *data,
IMSL_HCN_W_DATA, float hcn(), void *data,
)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
   Absolute accuracy desired.
   Default: \( \text{err}_\text{abs} = \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision.

IMSL_ERR_REL, float err_rel (Input)
   Relative accuracy desired.
   Default: \( \text{err}_\text{rel} = \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision.

IMSL_ERR_EST, float *err_est (Output)
   Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
   Number of subintervals allowed.
   Default: \( \text{max}_\text{subinter} = 500 \)

IMSL_N_SUBINTER, int *n_subinter (Output)
   Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
   Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, float y, void *data), void *data (Input)
   User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.
User supplied function to evaluate the lower limit of the inner integral, which also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

User supplied function to evaluate the upper limit of the inner integral, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function `ims1_f_int_fcn_2d` approximates the two-dimensional iterated integral

\[
\int_a^b \int_g^h f(x, y) dy dx
\]

An estimate of the error is returned in `err_est`. The lower-numbered rules are used for less smooth integrands while the higher-order rules are more efficient for smooth (oscillatory) integrands.

Examples

Example 1

In this example, compute the value of the integral

\[
\int_0^1 \int_1^3 y \cos(x + y^2) dy dx
\]

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(float x, float y), gcn(float x), hcn(float x);

int main()
{
 float q, exact;

 /* Evaluate the integral */
 q = imsl_f_int_fcn_2d (fcn, 0.0, 1.0, gcn, hcn, 0);
 /* print the result and the exact answer */
 exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x, float y)
{
 return y * cos(x+y*y);
}

float gcn(float x)
{
 return 1.0;
}

float hcn(float x)
{
 return 3.0;
}

Output

integral = -0.514
exact = -0.514

Example 2

In this example, compute the value of the integral

\[
\int_{0}^{1} \int_{1}^{3} y \cos(x + y^2) \, dy \, dx
\]

The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as is the case in this example. The number of function evaluations also is printed.

```
#include <imsl.h>  
#include <stdio.h>  
#include <math.h>  

float fcn(float x, float y), gcn(float x), hcn(float x);

int main()  
{  
    int n_evals;  
    float q, exact, err_est, exact_err;  

    imsl_omp_options(  
        IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,  
        0);  
    /* Evaluate the integral */  
    q = imsl_f_int_fcn_2d (fcn, 0., 1., gcn, hcn,  
        IMSL_ERR_EST, &err_est,  
        IMSL_OMP Options, n_evals);  
    printf("integral = \%f\n", q);  
    printf("exact = \%f\n", exact);  
    printf("err_est = \%f\n", err_est);  
    printf("n_evals = \%d\n", n_evals);  
}  
```
IMSL_N_EVALS, &n_evals, 0);
/* Print the result and the */
/* exact answer */
exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
extact_err = fabs(exact - q);

printf("integral = %10.3f
exact = %10.3f
error estimate = %e
exact error = %e
The number of function evaluations = %d
", q, exact, err_est, exact_err, n_evals);

float fcn(float x, float y)
{
 return y * cos(x+y*y);
}

float gcn(float x)
{
 return 1.0;
}

float hcn(float x)
{
 return 3.0;
}

Output

integral = -0.514
exact = -0.514
error estimate = 3.065193e-06
exact error = 1.192093e-07
The number of function evaluations = 441
Warning Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_ROUNDOFF_CONTAMINATION</td>
<td>Roundoff error, preventing the requested tolerance from being achieved, has been detected.</td>
</tr>
<tr>
<td>IMSL_PRECISION_DEGRADATION</td>
<td>A degradation in precision has been detected.</td>
</tr>
</tbody>
</table>

Fatal Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_MAX_SUBINTERVALS</td>
<td>The maximum number of subintervals allowed has been reached.</td>
</tr>
<tr>
<td>IMSL_STOP_USER_FCN</td>
<td>Request from user supplied function to stop algorithm. User flag = "#".</td>
</tr>
</tbody>
</table>
int_fcn_sing_2d

Integrates a function of two variables with a possible internal or endpoint singularity.

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_sing_2d(float fcn(), float a, float b, float gcn(), float hcn(), ...); 0
```

The type `double` function is `imsl_d_int_fcn_sing_2d`.

Required Arguments

```c
float fcn(float x, float y) (Input/Output)
    User-supplied function to be integrated.
```

Arguments

- **x** (Input)
 - Independent variable.

- **y** (Input)
 - Independent variable.

Return Value

The computed function value.

```c
float a (Input)
    Lower limit of integration for outer dimension.
```

```c
float b (Input)
    Upper limit of integration for outer dimension. The relative values of a and b are interpreted properly. Thus if one exchanges a and b, the sign of the answer is changed. When the integrand is positive, the sign of the result is the same as the sign of b - a.
```

```c
float gcn(float x) (Input/Output)
    User-supplied function to compute the lower limit of integration for the inner dimension.
```

Arguments

- **x** (Input)
 - Independent variable.

Return Value

The computed function value at the point x.
float hcn (float x) (Input/Output)
User-supplied function to compute the upper limit of integration for the inner dimension.

Arguments

float x (Input)
Independent variable.

Return Value

The computed function value at the point x.

Return Value

An estimate of

\[\int_a^b \int_{gcn(x)}^{hcn(x)} fcn(x, y) dy dx \]

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_sing_2d (float fcn (), float a, float b, float gcn (), float hcn (),
IMSL_FCN_W_DATA, float fcn (), float *err_post, void *data,
IMSL_GCN_W_DATA, float gcn (), void *data,
IMSL_HCN_W_DATA, float hcn (), void *data,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_FRAC, float err_frac,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_PRIOR, float err_prior,
IMSL_MAX_EVALS, int maxfn,
IMSL_SINGULARITY, float singularity, int singularity_type,
IMSL_N_EVALS, int *n_evals,
IMSL_ERR_EST, float *err_est,
IMSL_ISTATUS, int *istatus,
0)
Optional Arguments

IMSL_FCN_W_DATA, float fcn (float x, float y, float *err_post, void *data), float *err_post, void *data (Input)

float fcn (float x, float y, float *err_post, void *data) (Input)

User supplied function to be integrated, which also accepts a pointer to an a posteriori estimate of the absolute value of the error committed while evaluating the integrand, and a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Arguments

float x (Input)

Independent variable.

float y (Input)

Independent variable.

float *err_post (Output)

An a posteriori estimate of the absolute value of the error committed while evaluating the integrand. This argument provides a means for the user to have fcn compute this value as output. Although this argument must appear in the argument list of fcn, it need not be referenced in the function. See Example 2 of int_fcn_sing_1d for an example of this.

void *data (Input)

A pointer to the data to be passed to the user-supplied function.

Return Value

The computed function value.

float *err_post (Input/Output)

An a posteriori estimate of the absolute value of the error committed while evaluating the integrand. On input, the user may supply this estimate and that value will be used as the estimate thereafter provided fcn does not calculate a new value. If an a posteriori estimate of the value of the error is not known, set err_post to 0.0 on input. On output, err_post will contain either the input value set by the user or the value calculated by fcn.

void *data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_GCN_W_DATA, float gcn (float x, void *data), void *data (Input)

float gcn (float x, void *data) (Input)

User supplied function to compute the lower limit of integration for the inner dimension which also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.
Arguments

float x (Input)
Independent variable.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value

The computed function value at the point x.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_HCN_W_DATA, float \texttt{hcn} (float x, void *data), void *data (Input)

float \texttt{hcn} (float x, void *data) (Input)
User supplied function to compute the upper limit of integration for the inner dimension which also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Arguments

float x (Input)
Independent variable.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value

The computed function value at the point x.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_ERR_ABS, float \texttt{err_abs} (Input)
Absolute error tolerance. See Remark 1 for a discussion on the error tolerances.
Default: \texttt{err_abs} = 0.0

IMSL_ERR_FRAC, float \texttt{err_frac} (Input)
A fraction expressing the (number of correct digits of accuracy desired)/(number of digits of achievable precision). See Remark 1 for a discussion on accuracy.
Default: \texttt{err_frac} = 0.75

IMSL_ERR_REL, float \texttt{err_rel} (Input)
The error tolerance relative to the value of the integral. See Remark 1 for a discussion on the error tolerances.
Default: \texttt{err_rel} = 0.0
IMSL_ERR_PRIOR, float err_prior (Input)
An a priori estimate of the absolute value of the relative error expected to be committed while evaluating the integrand. Changes to this value are not detected during evaluation of the integral.
Default: Default: err_prior = imsl_f_machine(4)

IMSL_MAX_EVALS, int maxfn (Input)
The maximum number of function evaluations to use to compute the integral.
Default: The number of function values is not bounded.

IMSL_SINGULARITY, float singularity, int singularity_type (Input)
singularity is the real part of the abscissa of a singularity or discontinuity in the innermost integrand. singularity_type is a signed integer specifying the type of singularity which occurs in the integrand. If the singularity has a leading term of the form \(x^\alpha\) where \(\alpha\) is not an integer, if \(\alpha\) is “large” or has the form \(\alpha = (2n-1)/2\) where \(n\) is a nonnegative integer, or the singularity is well outside the interval, set singularity_type to a positive integer. Otherwise, set singularity_type to a negative integer. Also see Remark 2.
Default: It is assumed that there is no singularity in the innermost integrand so singularity and singularity_type are not set.

IMSL_N_EVALS, int *n_evals (Output)
Number of function evaluations used to calculate the integral.

IMSL_ERR_EST, float *err_est (Output)
An estimate of the upper bound of the magnitude of the difference between the value returned by imsl_f_int_fcn_sing_2d and the true value of the integral.

IMSL_ISTATUS, int *istatus (Output)
A status flag indicating the error criteria which was satisfied on exit.

<table>
<thead>
<tr>
<th>istatus</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>Indicates normal termination with either the absolute or relative error tolerance criteria satisfied.</td>
</tr>
<tr>
<td>-3</td>
<td>Indicates normal termination with neither the absolute nor the relative error tolerance criteria satisfied, but the error tolerance based on the locally achievable precision is satisfied.</td>
</tr>
<tr>
<td>-4</td>
<td>Indicates normal termination with none of the error tolerance criteria satisfied.</td>
</tr>
<tr>
<td>Other</td>
<td>Any value other than the above indicates abnormal termination due to an error condition.</td>
</tr>
</tbody>
</table>

Description
The function imsl_f_int_fcn_sing_2d, based on the JPL Library routine SINTM, approximates an iterated two-dimensional integral of the form
The integral over two dimensions is computed by repeated integration over one dimension. The integration over one dimension is estimated using quadrature formulae due to T. N. L. Patterson (1968). Patterson described a family of formulae in which the \(k^{th} \) formula used all the integrand values used in the \(k-1^{st} \) formula, and added \(2^{k-1} \) new integrand values in an optimal way. The first formula is the midpoint rule, the second is the three point Gauss formula, and the third is the seven point Kronrod formula. Formulae of this family of higher degree had not previously been described. This program uses formulae up to \(k = 8 \).

An error estimate is obtained by comparing the values of the integral estimated by two adjacent formulae, examining differences up to the fifteenth order, integrating round-off error, integrating error declared to have been committed during computation of the integrand, integrating a first order estimate of the effect round-off error in the abscissa has on integrand values, and including errors in the limits. The latter four methods are also used to derive a bound on the achievable precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is subdivided. The difference table is used to discover whether the integral is difficult to compute because the integrand is too complex or has singular behavior. In the former case, the estimated error, requested error tolerance, and difference table are used to choose a step size.

In the latter case, the difference table is used in a search algorithm to find the abscissa of the singular behavior. If the singular behavior is discovered on the end of an interval, a change of independent variable is applied to reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump discontinuities, and computational noise.

Remarks

Remark 1

The user provides the absolute error tolerance through optional argument `IMSL_ERR_ABS`. Optional argument `IMSL_ERR_FRAC` represents the ratio of the (number of correct digits of accuracy desired) to (number of digits of achievable precision). Optional argument `IMSL_ERR_REL` represents the error tolerance relative to the value of the integral. The internal value for `err_frac` is bounded between .5 and 1. By default, `err_abs` and `err_rel` are set to 0.0 and `err_frac` is set to .75. These default values usually provide all the accuracy that can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the entire region of integration) rather than locally (one step at a time). This policy provides true control of error relative to the value of the integral when the integrand is not sign definite, as well as when the integrand is sign definite. To apply the criterion of error tolerance relative to the value of the integral, the value of the integral over the entire region, estimated without refinement of the region, is used to derive an absolute error tolerance that may be applied locally. If the preliminary estimate of the value of the integral is significantly in error, and the least restrictive error tolerance is relative to the value of the integral, the cost of computing the integral will be larger than the cost of computing

\[
\int_a^b \int_{g(x)}^{h(x)} f(x, y) \, dy \, dx
\]
the integral to the same degree of accuracy using appropriate values of either of the other tolerance criteria. The preliminary estimate of the integral may be significantly in error if the integrand is not sign definite or has large variation.

Remark 2

Optional argument IMSL_SINGULARITY provides the user with a means to give the routine information about the location and type of any known singularity of the innermost integrand. When an integrand appears to have singular behavior at the end of the interval, a transformation of the variable of integration is applied to reduce the strength of the singularity. When an integrand appears to have singular behavior inside the interval, the abscissa of the singularity is determined as precisely as necessary, depending on the error tolerance, and the interval is subdivided. The discovery of singular behavior and determination of the abscissa of singular behavior are expensive. If the user knows of the existence of a singularity, the efficiency of computation of the integral may be improved by requesting an immediate transformation of the independent variable or subdivision of the interval. It is recommended that the user select these optional arguments for all singularities, even those outside \([a, b]\).

If the singularity has a leading term of the form \(x^\alpha\) where \(\alpha\) is not an integer, if \(\alpha\) is “large” or has the form \(\alpha = (2n - 1)/2\) where \(n\) is a nonnegative integer, or the singularity is well outside the interval, set `singularity_type` to a positive value. Otherwise, set `singularity_type` to a negative value. The meaning of “large” depends on the rest of the integrand and the length of the interval. For the typical case, a value of about 2 is considered “large”. For a singularity of the form \(x^\alpha \log x\) use the above rule, even if \(\alpha\) is an integer. For other types of singularities make a reasonable guess based on the above. If several similar integrals are to be computed, some experimentation may be useful.

When `singularity_type` is positive, a transformation of the form \(T = TA + (X - TA)^2 / (TB - TA)\) is applied, where \(TA\) is the abscissa of the singularity and \(TB\) is the end of the interval. If \(TA\) is outside the interval, \(TB\) will be the end of the interval farthest from \(TA\). If \(TA\) is inside the interval, the interval will immediately be subdivided at \(TA\), and both parts will be separately integrated with \(TB\) equal to each end of the original interval, respectively. When `singularity_type` is negative, a transformation of the form \(T = TA + (X - TA)^3 / (TB - TA)^3\) is applied, with \(TA\) and \(TB\) as above.

If the integrand has singularities at more than one abscissa within the region, or more than one pole near the real axis such that the real parts are within the region of integration, then the interval should be subdivided at the abscissa of the singularities or the real parts of the poles, and the integrals should be computed as separate problems, with the results summed.

Example

The value of
\[\int_0^1 \int_1^3 y \cos(x + y^2) \, dy \, dx \]

is estimated.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn (float x, float y);
float gcn (float x);
float hcn (float x);

int main(){
    float a=0.0, b=1.0, errest, result;
    result = imsl_f_int_fcn_sing_2d(fcn, a, b, gcn, hcn, IMSL_ERR_EST, &errest, 0);
    printf("The approximation to the integral is %f\n", result);
    printf("The estimated error is %6.1e\n", errest);
}

float fcn (float x, float y) {
    return y*cos(x+y*y);
}

float gcn (float x) {
    return 1.0;
}

float hcn (float x) {
    return 3.0;
}

Output

The approximation to the integral is -0.514254
The estimated error is 5.3e-006
Fatal Errors

**IMSL_NONINTEGRABLE**

The integrand apparently contains a nonintegrable singularity. The abscissa of the singularity is near #. The result has been set to NaN.

**IMSL_MAX_FCN_EVAL_EXCEEDED_NAN**

The maximum number of function evaluations allowed, “maxfn”, has been exceeded. “maxfn” is currently set to a value of #. The result has been set to NaN.

**IMSL_CRITERIA_NOT_SATISFIED**

The algorithm has terminated without satisfying any of the error tolerance criteria. The error estimate is #.

**IMSL_STOP_USER_FCN**

Request from user supplied function to stop algorithm.
User flag = "#".
int_fcn_sing_3d

Integrates a function of three variables with a possible internal or endpoint singularity.

Synopsis

```
#include <imsl.h>

float imsl_f_int_fcn_sing_3d(float fcn(), float a, float b, float gcn(), float hcn(),
float pcn(), float qcn(), ..., 0)
```

The type *double* function is *imsl_d_int_fcn_sing_3d*.

Required Arguments

- **float fcn (float x, float y, float z)** (Input/Output)
  User-supplied function to be integrated.

  **Arguments**

  - **float x** (Input)
    Independent variable.

  - **float y** (Input)
    Independent variable.

  - **float z** (Input)
    Independent variable.

  **Return Value**

    The computed function value.

- **float a** (Input)
  Lower limit of integration for outer dimension.

- **float b** (Input)
  Upper limit of integration for outer dimension. The relative values of \(a\) and \(b\) are interpreted properly. Thus if one exchanges \(a\) and \(b\), the sign of the answer is changed. When the integrand is positive, the sign of the result is the same as the sign of \(b - a\).

- **float gcn (float x)** (Input/Output)
  User-supplied function to compute the lower limit of integration for the middle dimension.

  **Arguments**

  - **float x** (Input)
    Independent variable.
Return Value
The computed function value at the point $x$.

float hcn (float $x$) (Input/Output)
User-supplied function to compute the upper limit of integration for the middle dimension.

Arguments
  float $x$ (Input)
  Independent variable.

Return Value
The computed function value.

float pcn (float $x$, float $y$) (Input/Output)
User-supplied function to compute the lower limit of integration for the inner dimension.

Arguments
  float $x$ (Input)
  Independent variable.
  float $y$ (Input)
  Independent variable.

Return Value
The computed function value.

float qcn (float $x$, float $y$) (Input/Output)
User-supplied function to compute the upper limit of integration for the inner dimension.

Arguments
  float $x$ (Input)
  Independent variable.
  float $y$ (Input)
  Independent variable.

Return Value
The computed function value.
Return Value

An estimate of

\[ \int_a^b \int_{gcn(x)}^{hcn(x)} \int_{pcn(x,y)}^{qcn(x,y)} f(x, y, z) \, dz \, dy \, dx \]

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_int_fcn_sing_3d(float fcn(), float a, float b, float gcn(), float hcn(),
 float pcn(), float qcn(),
 IMSL_FCN_W_DATA, float fcn(),
 float *err_post, void *data,
 IMSL_GCN_W_DATA, float gcn(),
 void *data,
 IMSL_HCN_W_DATA, float hcn(),
 void *data,
 IMSL_PCN_W_DATA, float pcn(),
 void *data,
 IMSL_QCN_W_DATA, float qcn(),
 void *data,
 IMSL_ERR_ABS, float err_abs,
 IMSL_ERR_FRAC, float err_frac,
 IMSL_ERR_REL, float err_rel,
 IMSL_ERR_PRIOR, float err_prior,
 IMSL_MAX_EVALS, int maxfn,
 IMSL_SINGULARITY, float singularity,
 int singularity_type,
 IMSL_N_EVALS, int *n_evals,
 IMSL_ERR_EST, float *err_est,
 IMSL_ISTATUS, int *istatus,
 0)
```

Optional Arguments

```c
IMSL_FCN_W_DATA, float fcn(float x, float y, float z, float *err_post, void *data),
float *err_post, void *data (Input)
```
**float** `fcn (float x, float y, float z, float *err_post, void *data)` (Input)
User supplied function to be integrated, which also accepts a pointer to an a posteriori estimate of the absolute value of the error committed while evaluating the integrand, and a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

**Arguments**

- **float** `x` (Input)
  Independent variable.

- **float** `y` (Input)
  Independent variable.

- **float** `z` (Input)
  Independent variable.

- **float** `*err_post` (Output)
  An a posteriori estimate of the absolute value of the error committed while evaluating the integrand. This argument provides a means for the user to have `fcn` compute this value as output. Although this argument must appear in the argument list of `fcn`, it need not be referenced in the function. See Example 2 of `int_fcn_sing_1d` for an example of this.

- **void** `*data` (Input)
  A pointer to the data to be passed to the user-supplied function.

**Return Value**

The computed function value.

- **float** `*err_post` (Input/Output)
  An a posteriori estimate of the absolute value of the error committed while evaluating the integrand. On input, the user may supply this estimate and that value will be used as the estimate thereafter provided `fcn` does not calculate a new value. If an a posteriori estimate of the value of the error is not known, set `err_post` to 0.0 on input. On output, `err_post` will contain either the input value set by the user or the value calculated by `fcn`.

- **void** `*data` (Input)
  A pointer to the data to be passed to the user-supplied function.

**IMSL_GCN_W_DATA**

- **float** `gcn (float x, void *data)` (Input)
  User supplied function to compute the lower limit of integration for the middle dimension which also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

**Arguments**

- **void** `*data` (Input)
**float** `x` (Input)
Independent variable.

**void** *data (Input)
A pointer to the data to be passed to the user-supplied function.

**Return Value**
The computed function value at the point `x`.

**void** *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_HCN_W_DATA, **float** `hcn (float` `x, void` *data), void` *data (Input)

**float** `hcn (float` `x, void` *data) (Input)
User supplied function to compute the upper limit of integration for the middle dimension which also accepts a pointer to data that is supplied by the user. See **Passing Data to User-Supplied Functions** in the introduction to this manual for more details.

**Arguments**

**float** `x` (Input)
Independent variable.

**void** *data (Input)
A pointer to the data to be passed to the user-supplied function.

**Return Value**
The computed function value at the point `x`.

**void** *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_PCN_W_DATA, **float** `pcn (float` `x, float` `y, void` *data), void` *data (Input)

**float** `pcn (float` `x, float` `y, void` *data) (Input)
User supplied function to compute the lower limit of integration for the inner dimension which also accepts a pointer to data that is supplied by the user. See **Passing Data to User-Supplied Functions** in the introduction to this manual for more details.

**Arguments**

**float** `x` (Input)
Independent variable.

**float** `y` (Input)
Independent variable.

**void** *data (Input)
A pointer to the data to be passed to the user-supplied function.
**Return Value**

The computed function value.

```c
void *data (Input)
```

A pointer to the data to be passed to the user-supplied function.

```c
IMSL_QCN_W_DATA, float qcn (float x, float y, void *data), void *data (Input)
```

### Arguments

- **float x** (Input)
  Independent variable.

- **float y** (Input)
  Independent variable.

- **void *data** (Input)
  A pointer to the data to be passed to the user-supplied function.

### Return Value

The computed function value.

```c
void *data (Input)
```

A pointer to the data to be passed to the user-supplied function.

### IMSL_ERR_ABS, float err_abs (Input)

Absolute error tolerance. See **Remark 1** for a discussion on the error tolerances.

Default: `err_abs = 0.0`

### IMSL_ERR_FRAC, float err_frac (Input)

A fraction expressing the (number of correct digits of accuracy desired)/(number of digits of achievable precision). See **Remark 1** for a discussion on accuracy.

Default: `err_frac = 0.75`

### IMSL_ERR_REL, float err_rel (Input)

The error tolerance relative to the value of the integral. See **Remark 1** for a discussion on the error tolerances.

Default: `err_rel = 0.0`

### IMSL_ERR_PRIOR, float err_prior (Input)

An a priori estimate of the absolute value of the relative error expected to be committed while evaluating the integrand. Changes to this value are not detected during evaluation of the integral.

Default: `err_prior = imsl_f_machine(4)`
IMSL_MAX_EVALS, float maxfn (Input)
The maximum number of function evaluations to use to compute the integral.
Default: The number of function values is not bounded.

IMSL_SINGULARITY, float singularity, int singularity_type (Input)
singularity is the real part of the abscissa of a singularity or discontinuity in the innermost integrand. By default it is assumed that there is no singularity in the integrand. singularity_type is a signed integer specifying the type of singularity which occurs in the integrand. If the singularity has a leading term of the form $x^\alpha$ where $\alpha$ is not an integer, if $\alpha$ is “large” or has the form $\alpha = (2n-1)/2$ where $n$ is a nonnegative integer, or the singularity is well outside the interval, set singularity_type to a positive integer. Otherwise, set singularity_type to a negative integer. Also see Remark 2.
Default: It is assumed that there is no singularity in the innermost integrand so singularity and singularity_type are not set.

IMSL_N_EVALS, int *n_evals (Output)
Number of function evaluations used to calculate the integral.

IMSL_ERR_EST, float *err_est (Output)
An estimate of the upper bound of the magnitude of the difference between the value returned by imsl_f_int_fcn_sing_3d and the true value of the integral.

IMSL_ISTATUS, int *istatus (Output)
A status flag indicating the error criteria which was satisfied on exit.

<table>
<thead>
<tr>
<th>istatus</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>Indicates normal termination with either the absolute or relative error tolerance criteria satisfied.</td>
</tr>
<tr>
<td>-4</td>
<td>Indicates normal termination with neither the absolute nor the relative error tolerance criteria satisfied, but the error tolerance based on the locally achievable precision is satisfied.</td>
</tr>
<tr>
<td>-5</td>
<td>Indicates normal termination with none of the error tolerance criteria satisfied.</td>
</tr>
<tr>
<td>Other</td>
<td>Any value other than the above indicates abnormal termination due to an error condition.</td>
</tr>
</tbody>
</table>

**Description**

The function imsl_f_int_fcn_sing_3d, based on the JPL Library routine SINTM, approximates an iterated three-dimensional integral of the form
The integral over three dimensions is computed by repeated integration over one dimension. The integration over one dimension is estimated using quadrature formulae due to T. N. L. Patterson (1968). Patterson described a family of formulae in which the $k^{th}$ formula used all the integrand values used in the $(k-1)^{st}$ formula, and added $2^{k-1}$ new integrand values in an optimal way. The first formula is the midpoint rule, the second is the three point Gauss formula, and the third is the seven point Kronrod formula. Formulae of this family of higher degree had not previously been described. This program uses formulae up to $k = 8$.

An error estimate is obtained by comparing the values of the integral estimated by two adjacent formulae, examining differences up to the fifteenth order, integrating round-off error, integrating error declared to have been committed during computation of the integrand, integrating a first order estimate of the effect round-off error in the abscissa has on integrand values, and including errors in the limits. The latter four methods are also used to derive a bound on the achievable precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is subdivided. The difference table is used to discover whether the integral is difficult to compute because the integrand is too complex or has singular behavior. In the former case, the estimated error, requested error tolerance, and difference table are used to choose a step size.

In the latter case, the difference table is used in a search algorithm to find the abscissa of the singular behavior. If the singular behavior is discovered on the end of an interval, a change of independent variable is applied to reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump discontinuities, and computational noise.

**Remarks**

**Remark 1**

The user provides the absolute error tolerance through optional argument **IMSL_ERR_ABS**. Optional argument **IMSL_ERR_FRAC** represents the ratio of the (number of correct digits of accuracy desired) to (number of digits of achievable precision). Optional argument **IMSL_ERR_REL** represents the error tolerance relative to the value of the integral. The internal value for **err_frac** is bounded between .5 and 1. By default, **err_abs** and **err_rel** are set to 0.0 and **err_frac** is set to .75. These default values usually provide all the accuracy that can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the entire region of integration) rather than locally (one step at a time). This policy provides true control of error relative to the value of the integral when the integrand is not sign definite, as well as when the integrand is sign definite. To apply the criterion of error tolerance relative to the value of the integral, the value of the integral over the entire region, estimated without refinement of the region, is used to derive an absolute error tolerance that may be applied locally. If the preliminary estimate of the value of the integral is significantly in error, and the least restrictive error tolerance is relative to the value of the integral, the cost of computing the integral will be larger than the cost of computing.
the integral to the same degree of accuracy using appropriate values of either of the other tolerance criteria. The preliminary estimate of the integral may be significantly in error if the integrand is not sign definite or has large variation.

Remark 2

Optional argument IMSL_SINGULARITY provides the user with a means to give the routine information about the location and type of any known singularity of the innermost integrand. When an integrand appears to have singular behavior at the end of the interval, a transformation of the variable of integration is applied to reduce the strength of the singularity. When an integrand appears to have singular behavior inside the interval, the abscissa of the singularity is determined as precisely as necessary, depending on the error tolerance, and the interval is subdivided. The discovery of singular behavior and determination of the abscissa of singular behavior are expensive. If the user knows of the existence of a singularity, the efficiency of computation of the integral may be improved by requesting an immediate transformation of the independent variable or subdivision of the interval. It is recommended that the user select these optional arguments for all singularities, even those outside \([a, b]\).

If the singularity has a leading term of the form \(x^\alpha\) where \(\alpha\) is not an integer, if \(\alpha\) is “large” or has the form \(\alpha = (2n - 1)/2\) where \(n\) is a nonnegative integer, or the singularity is well outside the interval, set singularity_type to a positive value. Otherwise, set singularity_type to a negative value. The meaning of “large” depends on the rest of the integrand and the length of the interval. For the typical case, a value of about 2 is considered “large”. For a singularity of the form \(x^\alpha \log x\) use the above rule, even if \(\alpha\) is an integer. For other types of singularities make a reasonable guess based on the above. If several similar integrals are to be computed, some experimentation may be useful.

When singularity_type is positive, a transformation of the form \(T = TA + (X - TA)^2 / (TB - TA)\) is applied, where \(TA\) is the abscissa of the singularity and \(TB\) is the end of the interval. If \(TA\) is outside the interval, \(TB\) will be the end of the interval farthest from \(TA\). If \(TA\) is inside the interval, the interval will immediately be subdivided at \(TA\), and both parts will be separately integrated with \(TB\) equal to each end of the original interval, respectively. When singularity_type is negative, a transformation of the form \(T = TA + (X - TA)^4 / (TB - TA)^3\) is applied, with \(TA\) and \(TB\) as above.

If the integrand has singularities at more than one abscissa within the region, or more than one pole near the real axis such that the real parts are within the region of integration, then the interval should be subdivided at the abscissa of the singularities or the real parts of the poles, and the integrals should be computed as separate problems, with the results summed.

Example

The value of

\[
\int_0^1 \int_0^{1-x} \int_0^{1-x-y} (1.0 + x + y + 2z) \, dz \, dy \, dx
\]

is estimated.

\#include <imsl.h>
\#include <stdio.h>
float fcn (float x, float y, float z);
float gcn (float x);
float hcn (float x);
float pcn (float x, float y);
float qcn (float x, float y);

int main(){
    float a=0.0, b=1.0, errest, result;
    result = imsl_f_int_fcn_sing_3d(fcn, a, b, gcn, hcn, pcn, qcn,
                                 IMSL_ERR_EST, &errest, 0);
    printf("The approximation to the integral is %f\n", result);
    printf("The estimated error is %6.1e\n", errest);
}

float fcn (float x, float y, float z) {
    return 1.0 + x + y + 2.0*z;
}

float gcn (float x) {
    return 0.0;
}

float hcn (float x) {
    return 1.0 - x;
}

float pcn (float x, float y) {
    return 0.0;
}

float qcn (float x, float y) {
    return 1.0 - x - y;
}

Output

The approximation to the integral is 0.333333
The estimated error is 1.9e-007
## Fatal Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NONINTEGRABLE</td>
<td>The integrand apparently contains a nonintegrable singularity. The abscissa of the singularity is near #. The result has been set to NaN.</td>
</tr>
<tr>
<td>IMSL_MAX_FCN_EVAL_EXCEEDED_NA N</td>
<td>The maximum number of function evaluations allowed, &quot;maxfn&quot;, has been exceeded. &quot;maxfn&quot; is currently set to a value of #. The result has been set to NaN.</td>
</tr>
<tr>
<td>IMSL_CRITERIA_NOT_SATISFIED</td>
<td>The algorithm has terminated without satisfying any of the error tolerance criteria. The error estimate is #.</td>
</tr>
<tr>
<td>IMSL_STOP_USER_FCN</td>
<td>Request from user supplied function to stop algorithm. User flag = &quot;#&quot;.</td>
</tr>
</tbody>
</table>
int_fcn_hyper_rect

Integrate a function on a hyper-rectangle,

\[ \int_{a_0}^{b_0} \cdots \int_{a_{n-1}}^{b_{n-1}} f(x_0, \ldots, x_{n-1}) \, dx_{n-1} \cdots dx_0 \]

Synopsis

```c
#include <imsl.h>

float imsl_f_int_fcn_hyper_rect(float fcn(), int ndim, float a[], float b[], ..., 0)
```

The type `double` function is `imsl_d_int_fcn_hyper_rect`.

Required Arguments

- `float fcn (int ndim, float x[])` (Input)
  
  User-supplied function to be integrated.

- `int ndim` (Input)
  
  The dimension of the hyper-rectangle.

- `float a[]` (Input)
  
  Lower limits of integration.

- `float b[]` (Input)
  
  Upper limits of integration.

Return Value

The value of

\[ \int_{a_0}^{b_0} \cdots \int_{a_{n-1}}^{b_{n-1}} f(x_0, \ldots, x_{n-1}) \, dx_{n-1} \cdots dx_0 \]

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```


```
float imsl_f_int_fcn_hyper_rect (float fcn (), int ndim, float a[], float b[],
 IMLS_ERR_ABS, float err_abs,
 IMLS_ERR_REL, float err_rel,
 IMLS_ERR_EST, float *err_est,
 IMLS_MAX_EVALS, int max_evals,
 IMLS_FCN_W_DATA, float fcn (), void *data,
0)
```

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_abs = \( \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision.

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = \( \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision.

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_EVALS, int max_evals (Input)
Number of evaluations allowed.
Default: max_evals = \( 32^n \).

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function imsl_f_int_fcn_hyper_rect approximates the \( n \)-dimensional iterated integral

\[
\int_{a_0}^{b_0} \cdots \int_{a_{n-1}}^{b_{n-1}} f(x_0, \ldots, x_{n-1}) \, dx_{n-1} \cdots dx_0
\]

An estimate of the error is returned in the optional argument err_est. The approximation is achieved by iterated applications of product Gauss formulas. The integral is first estimated by a two-point tensor product formula in each direction. Then for \( i = 1, \ldots, n \), the function calculates a new estimate by doubling the number of points in the \( i \)-th direction, then halving the number immediately afterwards if the new estimate does not change apprecia-
This process is repeated until either one complete sweep results in no increase in the number of sample points in any dimension; the number of Gauss points in one direction exceeds 256; or the number of function evaluations needed to complete a sweep exceeds max_evals.

On some platforms, imsl_f_int_fcn_hyper_rect can evaluate the user-supplied function fcn in parallel. This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Example

In this example, we compute the integral of

\[ e^{-\left(x_1^2 + x_2^2 + x_3^2\right)} \]

on an expanding cube. The values of the error estimates are machine dependent. The exact integral over \( \mathbb{R}^3 \) is \( \pi^{3/2} \).
```
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(int n, float x[]);

int main()
{
 int i, j, ndim = 3;
 float q, limit, a[3], b[3];

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

 printf(" integral limit
");
 limit = pow(imsl_f_constant("pi",0), 1.5);

 /* Evaluate the integral */
 for (i = 0; i < 6; i++) {
 for (j = 0; j < 3; j++) {
 a[j] = -(i+1)/2.;
 b[j] = (i+1)/2.;
 }
 q = imsl_f_int_fcn_hyper_rect (fcn, ndim, a, b,
 0);

 /* Print the result and the */
 /* limiting answer */
 printf(" %10.3f %10.3f
", q, limit);
 }

 float fcn(int n, float x[])
 {
 float s;

 s = x[0]*x[0] + x[1]*x[1] + x[2]*x[2];
 return exp(-s);
 }

 Output

 integral limit
 0.785 5.568
 3.332 5.568
 5.021 5.568
 5.491 5.568
```
Warning Errors

IMSL_MAX_EVALS_TOO_LARGE  The argument max_evals was set greater than $2^n$.

Fatal Errors

IMSL_NOT_CONVERGENT  The maximum number of function evaluations has been reached, and convergence has not been attained

IMSL_STOP_USER_FCN  Request from user supplied function to stop algorithm.
User flag = "#".
int_fcn_qmc

Integrates a function on a hyper-rectangle using a quasi-Monte Carlo method.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_qmc(float fcn(), int ndim, float a[], float b[], ...)

The type double function is imsl_d_int_fcn_qmc.

Required Arguments

float fcn (int ndim, float x[]) (Input)
    User-supplied function to be integrated.

int ndim (Input)
    The dimension of the hyper-rectangle.

float a[] (Input)
    Lower limits of integration.

float b[] (Input)
    Upper limits of integration.

Return Value

The value of

\[ \int_{a_0}^{b_0} \cdots \int_{a_{n-1}}^{b_{n-1}} f(x_0, \ldots, x_{n-1}) \, dx_{n-1} \cdots dx_0 \]

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_int_fcn_qmc (float fcn(), int ndim, float a[], float b[],
                          IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_EVALS, int max_evals,
IMSL_BASE, int base,
IMSL_SKIP, int skip,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
   Absolute accuracy desired.
   Default: err_abs = 1.0e-4.

IMSL_ERR_REL, float err_rel (Input)
   Relative accuracy desired.
   Default: err_abs = 1.0e-4.

IMSL_ERR_EST, float *err_est (Output)
   Address to store an estimate of the absolute value of the error.

IMSL_MAX_EVALS, int max_evals (Input)
   Number of evaluations allowed.
   Default: No limit.

IMSL_BASE, int base (Input)
   The value of IMSL_BASE used to compute the Faure sequence.

IMSL_SKIP, int skip (Input)
   The value of IMSL_SKIP used to compute the Faure sequence.

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data (Input)
   User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
   user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
   User-Supplied Functions in the introduction to this manual for more details.

Description

Integration of functions over hypercubes by direct methods, such as imsl_f_fcn_hyper_rect, is practical
only for fairly low dimensional hypercubes. This is because the amount of work required increases exponential as
the dimension increases.
An alternative to direct methods is Monte Carlo, in which the integral is evaluated as the value of the function averaged over a sequence of randomly chosen points. Under mild assumptions on the function, this method will converge like $1/n^{1/2}$, where $n$ is the number of points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the points at which the function is to be evaluated. Randomly distributed points tend to be non-uniformly distributed. The alternative to a sequence of random points is a low-discrepancy sequence. A low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by `imsl_f_faure_next_point` (see Chapter 10, “Statistics and Random Number Generation”).

On some platforms, `imsl_f_int_fcn_qmc` can evaluate the user-supplied function $f$ in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.
Example

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

float fcn(int ndim, float x[]);

int main()
{
 int k, ndim = 10;
 float q, a[10], b[10];

 for (k = 0; k < ndim; k++) {
 a[k] = 0.0;
 b[k] = 1.0;
 }

 q = imsl_f_int_fcn_qmc (fcn, ndim, a, b, 0);
 printf("integral=%10.3f\n", q);
}

float fcn (int ndim, float x[])
{
 int i, j;
 float prod, sum = 0.0, sign = -1.0;

 for (i = 0; i < ndim; i++) {
 prod = 1.0;
 for (j = 0; j <= i; j++) {
 prod *= x[j];
 }
 sum += sign * prod;
 sign = -sign;
 }
 return sum;
}

Output

q = -0.333
Fatal Errors

<table>
<thead>
<tr>
<th>IMSL_NOT_CONVERGENT</th>
<th>The maximum number of function evaluations has been reached, and convergence has not been attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_STOP_USER_FCN</td>
<td>Request from user supplied function to stop algorithm. User flag = "#".</td>
</tr>
</tbody>
</table>
gauss_quad_rule

Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions.

Synopsis

```c
#include <imsl.h>

void imsl_f_gauss_quad_rule(int n, float weights[], float points[], ... , 0)
```

The type `double` procedure is `imsl_d_gauss_quad_rule`.

Required Arguments

- `int n` (Input)
 - Number of quadrature points.
- `float weights[]` (Output)
 - Array of length `n` containing the quadrature weights.
- `float points[]` (Output)
 - Array of length `n` containing quadrature points. The default action of this routine is to produce the Gauss Legendre points and weights.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void imsl_f_gauss_quad_rule(int n, float weights[], float points[],
    IMSL_CHEBYSHEV_FIRST, IMSL_CHEBYSHEV_SECOND, IMSL_HERMITE,
    IMSL_COSH, IMSL_JACOBI, float alpha, float beta,
    IMSL_GEN_LAGUERRE, float alpha,
    IMSL_FIXED_POINT, float a,
    IMSL_TWO_FIXED_POINTS, float a, float b,
    0)
```
Optional Arguments

IMSL_CHEBYSHEV_FIRST
Compute the Gauss points and weights using the weight function
\[\frac{1}{\sqrt{1-x^2}} \]
on the interval \((-1, 1)\).

IMSL_CHEBYSHEV_SECOND
Compute the Gauss points and weights using the weight function
\[\sqrt{1-x^2} \]
on the interval \((-1, 1)\).

IMSL_HERMITE
Compute the Gauss points and weights using the weight function \(\exp(-x^2)\) on the interval \((-\infty, \infty)\).

IMSL_COSH
Compute the Gauss points and weights using the weight function \(\frac{1}{\cosh(x)}\) on the interval \((-\infty, \infty)\).

IMSL_JACOBI, float alpha, float beta (Input)
Compute the Gauss points and weights using the weight function \((1 - x)^a (1 + x)^b\) on the interval \((-1, 1)\).

IMSL_GEN_LAGUERRE, float alpha (Input)
Compute the Gauss points and weights using the weight function \(\exp(-x)x^a\) on the interval \((0, \infty)\).

IMSL_FIXED_POINT, float a (Input)
Compute the Gauss-Radau points and weights using the specified weight function and the fixed point \(a\). This formula will integrate polynomials of degree less than \(2n - 1\) exactly.

IMSL_TWO_FIXED_POINTS, float a, float b (Input)
Compute the Gauss-Lobatto points and weights using the specified weight function and the fixed points \(a\) and \(b\). This formula will integrate polynomials of degree less than \(2n - 2\) exactly.

Description
The function \texttt{imsl_f_gauss_quad_rule} produces the points and weights for the Gauss, Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most popular weights. The default weight is the weight function identically equal to 1 on the interval \((-1, 1)\). In fact, it is slightly more general than this suggests, because the extra one or two points that may be specified do not have to lie at the endpoints of the interval. This function is a modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969).

In the default case, the function returns points in \(x = \text{points}\) and weights in \(w = \text{weights}\) so that
\[\int_{a}^{b} f(x) \, w(x) \, dx = \sum_{i=1}^{N} f(x_i) \, w_i \]

for all functions \(f \) that are polynomials of degree less than \(2n \).

If the keyword `IMSL_FIXED_POINT` is specified, then one of the above \(x_i \) is equal to \(a \). Similarly, if the keyword `IMSL_TWO_FIXED_POINTS` is specified, then two of the components of \(x \) are equal to \(a \) and \(b \). In general, the accuracy of the above quadrature formula degrades when \(n \) increases. The quadrature rule will integrate all functions \(f \) that are polynomials of degree less than \(2n - F \), where \(F \) is the number of fixed points.

Examples

Example 1

The three-point Gauss Legendre quadrature points and weights are computed and used to approximate the integrals

\[\int_{-1}^{1} x^i \, dx = 0, \ldots, 6 \]

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In general, the Gauss rules with \(k \) points integrate polynomials with degree less than \(2k \) exactly.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define QUADPTS 3
#define POWERS 7

int main()
{
    int i, j;
    float weights[QUADPTS], points[QUADPTS], s[POWERS];

    /* Produce the Gauss Legendre */
    /* quadrature points */
    imsl_f_gauss_quad_rule (QUADPTS, weights, points, 0);

    /* integrate the functions */
    /* 1, x, ..., pow(x,POWERS-1) */
    for(i = 0; i < POWERS; i++) {
        s[i] = 0.0;
        for(j = 0; j < QUADPTS; j++) {
            s[i] += weights[j]*imsl_fi_power(points[j], i);
        }
    }
```
printf("The integral from -1 to 1 of pow(x, i) is\n");
printf("Function Quadrature Exact\n\n");
for(i = 0; i < POWERS; i++){
 float z;
 z = (1-i%2)*2.0/(i+1.);
 printf("pow(x, %d) %10.3f %10.3f\n", i, s[i], z);
}

Output

The integral from -1 to 1 of pow(x, i) is

<table>
<thead>
<tr>
<th>Function</th>
<th>Quadrature</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>pow(x, 0)</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>pow(x, 1)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>pow(x, 2)</td>
<td>0.667</td>
<td>0.667</td>
</tr>
<tr>
<td>pow(x, 3)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>pow(x, 4)</td>
<td>0.400</td>
<td>0.400</td>
</tr>
<tr>
<td>pow(x, 5)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>pow(x, 6)</td>
<td>0.240</td>
<td>0.286</td>
</tr>
</tbody>
</table>

Example 2

The three-point Gauss Laguerre quadrature points and weights are computed and used to approximate the integrals

\[\int_0^\infty x^i e^{-x} \, dx = i! \quad i = 0, \ldots, 6 \]

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In general, the Gauss rules with \(k \) points integrate polynomials with degree less than \(2k \) exactly.

#include <imsl.h>
#include <stdio.h>
#define QUADPTS 3
#define POWERS 7

int main()
{
 int i, j;
 float weights[QUADPTS], points[QUADPTS], s[POWERS], z;

 /* Produce the Gauss Legendre */
 /* quadrature points */
integrate the functions */
/* 1, x, ..., pow(x,POWERS-1) */
for(i = 0; i < POWERS; i++) {
 s[i] = 0.0;
 for(j = 0; j < QUADPTS; j++) {
 s[i] += weights[j] * imsl_fi_power(points[j], i);
 }
}
printf("The integral from 0 to infinity of pow(x, i)*x*exp(x) is\n");
printf("Function Quadrature Exact\n
 دورأ
for(z = 1.0, i = 0; i < POWERS; i++) {
 z *= (i+1);
 printf("pow(x, %d) %10.3f %10.3f \n", i, s[i], z);
}"

Output

The integral from 0 to infinity of pow(x, i)*x*exp(x) is
Function Quadrature Exact

pow(x, 0) 1.000 1.000
pow(x, 1) 2.000 2.000
pow(x, 2) 6.000 6.000
pow(x, 3) 24.000 24.000
pow(x, 4) 120.000 120.000
pow(x, 5) 720.000 720.000
pow(x, 6) 4896.000 5040.000
fcn_derivative

Computes the first, second, or third derivative of a user-supplied function.

Synopsis

```c
#include <imsl.h>

float imsl_f_fcn_derivative (float fcn(), float x, ..., 0)
```

The type *double* procedure is *imsl_d_fcn_derivative*.

Required Arguments

- `float fcn(float x)` (Input)
 User-supplied function whose derivative at `x` will be computed.

- `float x` (Input)
 Point at which the derivative will be evaluated.

Return Value

An estimate of the first, second or third derivative of `fcn` at `x`. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_fcn_derivative (float fcn(), float x,
    IMSL_ORDER, int order,
    IMSL_INITIAL_STEPSIZE, float stepize,
    IMSL_RELATIVE_ERROR, float tolerance,
    IMSL_FCN_W_DATA, float fcn(), void *data,
    0)
```

Optional Arguments

- `IMSL_ORDER, int order` (Input)
 The order of the desired derivative (1, 2 or 3).
 Default: `order = 1`.

IMSL_INITIAL_STEP_SIZE, float stepsize (Input)
Beginning value used to compute the size of the interval for approximating the derivative. Stepsize
must be chosen small enough that \(fcn \) is defined and reasonably smooth in the interval
\((x - 4.0 \times \text{stepsize}, x + 4.0 \times \text{stepsize})\), yet large enough to avoid roundoff problems.
Default: \(\text{stepsize} = 0.01 \)

IMSL_RELATIVE_ERROR, float tolerance (Input)
The relative error desired in the derivative estimate. Convergence is assumed when
\((2/3) |d_{2} - d_{1}| < \text{tolerance} \), for two successive derivative estimates, \(d_{1} \) and \(d_{2} \).
Default: \(\text{tolerance} = \frac{\varepsilon}{\sqrt{E}} \) where \(\varepsilon \) is the machine precision.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function whose derivative at \(x \) will be computed, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function \texttt{imsl_f_fcn_derivative} produces an estimate to the first, second, or third derivative of a
function. The estimate originates from first computing a spline interpolant to the input function using value within
the interval \((x - 4.0 \times \text{stepsize}, x + 4.0 \times \text{stepsize})\), then differentiating the spline at \(x \).

Examples

Example 1
This example obtains the approximate first derivative of the function \(f(x) = -2 \sin(3x/2) \) at the point \(x = 2 \).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
    float fcn(float);
    float x;
    float deriv;
    x = 2.0;

    deriv = imsl_f_fcn_derivative(fcn, x, 0);
    printf("f'(x) = %7.4f\n", deriv);
}

float fcn(float x)
{
```
\begin{verbatim}
 return -2.0*sin(1.5*x);
}

\textbf{Output}

\(f'(x) = 2.9701 \)

\textbf{Example 2}

This example obtains the approximate first, second, and third derivative of the function \(f(x) = -2\sin(3x/2) \) at the point \(x = 2 \).

\begin{verbatim}
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
 double fcn(double);
 double x, tolerance, deriv;
 x = 2.0;

 deriv = imsl_d_fcn_derivative(fcn, x, 0);
 printf ("f'(x) = %7.3f, error = %5.2e\n", deriv,
 fabs(deriv+3.0*cos(1.5*x)));

 deriv = imsl_d_fcn_derivative(fcn, x, IMSL_ORDER, 2, 0);
 printf ("f''(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-4.5*sin(1.5*x)));

 deriv = imsl_d_fcn_derivative(fcn, x, IMSL_ORDER, 3, 0);
 printf ("f'''(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-6.75*cos(1.5*x)));
}

double fcn(double x)
{
 return -2.0*sin(1.5*x);
}
\end{verbatim}

\textbf{Output}

\(f'(x) = 2.970, \text{ error } = 1.11\times 10^{-7} \)
\(f''(x) = 0.6350, \text{ error } = 8.52\times 10^{-9} \)
\(f'''(x) = -6.6824, \text{ error } = 1.12\times 10^{-8} \)
Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
Chapter 5 Differential Equations

Functions

First Order Ordinary Differential Equations

Solution of the Initial-Value Problem for ODEs
Runge-Kutta method ode_runge_kutta 539

Solution of the Initial-Value Problem for ODEs
Finite-difference method bvpFinite_difference 547

Solution of Differential-Algebraic Systems
Solves a first order differential-algebraic system of equations differential_algebraic_eqs 560

First-and-Second-Order Ordinary Differential Equations

Solution of the Initial-Value Problem for ODEs
Solves an initial-value problem for a system of ODEs using a variable order Adams method ode_adams_krogh 579

Partial Differential Equations

Solution of Systems of PDEs in One Dimension
Method of lines with a Variable Gridding
Introduction to pde_1d.mg pde_1d.mg 589
Solves a system of one-dimensional time-dependent partial differential equations using a moving-grid interfacepde_1d.mg 592
Method of lines with a Hermite cubic basis modified_method_of_lines 631
Solves a generalized Feynman-Kac equation on a finite interval using Hermite quintic splines feynman_kac 650
Computes the value of a Hermite quintic spline or the value of one of its derivatives feynman_kac_evaluate 688

Solution of a PDE in Two Dimensions
Fast Poisson solver fast_poisson_2d 692
Usage Notes

Ordinary Differential Equations

An ordinary differential equation is an equation involving one or more dependent variables y_i, an independent variable t, and derivatives of the y_i with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent variables y_i at a known value $t = t_0$ are given. Values of $y_i(t)$ for $t > t_0$ or $t < t_0$ are required.

The functions `imsl_f_ode_runge_kutta` and `imsl_f_ode_adams_krogh` solve the IVP for ODEs of the form

$$\frac{dy_i}{dt} = y'_i = f_i(t, y_1, ..., y_N) \quad i = 1, ..., N$$

with $y_i(t = t_0)$ specified. Here f_i is a user-supplied function that must be evaluated at any set of values $(t, y_1, ..., y_N)$, $i = 1, ..., N$.

This problem statement is abbreviated by writing it as a system of first-order ODEs,

$$y(t) = [y_1(t), ..., y_N(t)]^T, \quad f(t, y) = [f_1(t, y), ..., f_N(t, y)]^T,$$

so that the problem becomes $y' = f(t, y)$ with initial values $y(t_0)$.

The system $\frac{dy}{dt} = y' = f(t, y)$ is said to be stiff if some of the eigenvalues of the Jacobian matrix $\left\{ \frac{\partial y'_i}{\partial y_j} \right\}$ are large and negative. An alternate definition is based on the disparate integration times using a non-stiff solver compared to an implicit integration solver. Frequently differential equations modeling the behavior of physical systems are stiff, such as chemical reactions proceeding to equilibrium where subspecies effectively complete their reactions in different epochs. An alternate model concerns discharging capacitors such that different parts of the system have widely varying decay rates (or time constants).

Users typically identify stiff systems by the fact that numerical differential equation solvers such as `imsl_f_ode_runge_kutta` are inefficient, or else completely fail. Special methods are often required. The most common inefficiency is that a large number of evaluations of $f(t, y)$ (and hence an excessive amount of computer time) are required to satisfy the accuracy and stability requirements of the software. In such cases, use the IMSL function `imsl_f_ode_adams_krogh`. For more discussion about stiff systems, see Gear (1971, Chapter 11) or Shampine and Gear (1979).

The function `imsl_f_pde_method_of_lines` solves the boundary value problem (BVP) for first order systems of the form $y' = f(t, y, p)$ subject to the boundary conditions $h(y_{left}, y_{right}) = 0$. Both functions f, h are user-supplied. The function assumes that the user has embedded the problem into a one-parameter family of problems. In this formulation, p is an optional continuation parameter. It can be useful in solving nonlinear problems. When used, $p = 0$ corresponds to an easy-to-solve problem and $p = 1$ corresponds to the actual problem.

The function `imsl_ode_adams_krogh` solves systems of ordinary differential equations of order one, order two, or mixed order one and two.
Differential-algebraic Equations

Frequently, it is not possible or not convenient to express the model of a dynamical system as a set of ODEs. Rather, an implicit equation is available in the form

\[g_i(t, y, \ldots, y_N, y_1', \ldots, y_N') = 0 \quad i = 1, \ldots, N \]

The \(g_i \) are user-supplied functions. The system is abbreviated as

\[g(t, y, y') = [g_1(t, y, y'), \ldots, g_N(t, y, y')]^T = 0 \]

With initial value \(y(t_0) \). Any system of ODEs can be trivially written as a differential-algebraic system by defining

\[g(t, y, y') = f(t, y) - y' \]

The function \texttt{imsl_f_differential_algebraic_eqs} solves differential-algebraic systems of index 1 or index 0. For a definition of index of a differential-algebraic system, see (Brenan et al. 1989). Also, see Gear and Petzold (1984) for an outline of the computing methods used.

Partial Differential Equations

There is a section Introduction to \texttt{pde_1d_mg} in this chapter for \texttt{imsl_pde_1d_mg} with greater details. This software is a variable grid-variable order integrator. It solves a problem

\[
\sum_{k=1}^{NPDE} C_{j,k}(x, t, u, u_x) \frac{\partial^k u}{\partial t^k} = - x^{-m} \frac{\partial}{\partial x} \left(x^m R_j(x, t, u, u_x) \right) - Q_j(x, t, u, u_x), \\
\quad j = 1, \ldots, NPDE, \quad x_L < x < x_R, \quad t > t_0, \quad m \in \{0, 1, 2\}
\]

with boundary conditions

\[
\beta_j(x, t) R_j(x, t, u, u_x) = \gamma_j(x, t, u, u_x), \\
\alpha x = x_L \text{ and } x = x_R, \quad j = 1, \ldots, NPDE
\]

The function \texttt{imsl_f_modified_method_of_lines} solves the IVP problem for systems of the form

\[
\frac{\partial u_i}{\partial t} = f_i\left(x, t, u_1, \ldots, u_N, \frac{\partial u_1}{\partial x}, \ldots, \frac{\partial u_N}{\partial x}, \frac{\partial^2 u_1}{\partial x^2}, \ldots, \frac{\partial^2 u_N}{\partial x^2}\right)
\]

subject to the boundary conditions

\[
\alpha_1^{(j)} u_i(a) + \beta_1^{(j)} \frac{\partial u_i}{\partial x}(a) = \gamma_1(t) \\
\alpha_2^{(j)} u_i(b) + \beta_2^{(j)} \frac{\partial u_i}{\partial x}(b) = \gamma_2(t)
\]

and subject to the initial conditions \(u_i(x, t = t_0) = g_i(x) \), for \(i = 1, \ldots, N \). Here, \(f_j, g_j, \alpha_j^{(j)}, \) and \(\beta_j^{(j)} \) are user-supplied, \(j = 1, 2 \).
The function `imsl_f_feynman_kac` solves a single equation on a finite interval \([x_{\text{min}}, x_{\text{max}}]\). This equation often arises in applications from financial engineering and that is the primary focus of the document examples. The equation, initial conditions and Feynman-Kac boundary values are given by

\[
f_t + \mu(x, t)f_x + \frac{\sigma^2(x, t)}{2}f_{xx} - \kappa(x, t)f = \phi(f, x, t),
\]

\[
f(x, T) = p(x), \{f_t = \frac{\partial f}{\partial t}, \text{etc.}\}
\]

\[
a(x, t)f + b(x, t)f_x + c(x, t)f_{xx} = d(x, t), \quad x = x_{\text{min}} \leq x \leq x_{\text{max}}
\]

The solution is approximated by a piece-wise series of Hermite quintic polynomials on a grid of the interval \([x_{\text{min}}, x_{\text{max}}]\) that yields a twice differentiable solution. To assist in the evaluation of the approximate solution and its derivatives there is the function `imsl_f_feynman_kac_evaluate`.

The function `imsl_f_fast_poisson_2d` solves Laplace’s, Poisson’s, or Helmholtz’s equation in two dimensions. This function uses a fast Poisson method to solve a PDE of the form

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + cu = f(x, y)
\]

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant \(c\) and the function \(f\) are user specified.
ode_runge_kutta

Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method.

Synopsis

```c
#include <imsl.h>

float imsl_f_ode_runge_kutta_mgr(int task, void **state, ... , 0)

void imsl_f_ode_runge_kutta(int neq, float *t, float tend, float y[], void *state, void fcn())
```

The type double functions are imsl_d_ode_runge_kutta_mgr and imsl_d_ode_runge_kutta.

Required Arguments for imsl_f_ode_runge_kutta_mgr

- **int task** (Input)

 This function must be called with `task` set to `IMSL_ODE_INITIALIZE` to set up for solving an ODE system and with `task` equal to `IMSL_ODE_RESET` to clean up after it has been solved. These values for `task` are defined in the include file, `imsl.h`.

- **void **state** (Input/Output)

 The current state of the ODE solution is held in a structure pointed to by `state`. It cannot be directly manipulated.

Required Arguments for imsl_f_ode_runge_kutta

- **int neq** (Input)

 Number of differential equations.

- **float *t** (Input/Output)

 Independent variable. On input, `t` is the initial independent variable value. On output, `t` is replaced by `tend`, unless error conditions arise.

- **float tend** (Input)

 Value of `t` at which the solution is desired. The value `tend` may be less than the initial value of `t`.

- **float y[]** (Input/Output)

 Array with `neq` components containing a vector of dependent variables. On input, `y` contains the initial values. On output, `y` contains the approximate solution.

- **void *state** (Input/Output)

 The current state of the ODE solution is held in a structure pointed to by `state`. It must be initialized by a call to `imsl_f_ode_runge_kutta_mgr`. It cannot be directly manipulated.
void fcn (int neq, float t, float *y, float *yprime)
 User-supplied function to evaluate the right-hand side where float *yprime (Output)
 Array with neq components containing the vector y’. This function computes

 \[yprime = \frac{dy}{dt} = y' = f(t, y) \]

 and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_ode_runge_kutta_mgr (int task, void **state,
 IMSL_TOL, float tol,
 IMSL_HINIT, float hinit,
 IMSL_HMIN, float hmin,
 IMSL_HMAX, float hmax,
 IMSL_MAX_NUMBER_STEPS, int max_steps,
 IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals,
 IMSL_SCALE, float scale,
 IMSL_NORM, int norm,
 IMSL_FLOOR, float floor,
 IMSL_NSTEP, int *nstep,
 IMSL_NFCN, int *nfcn,
 IMSL_HTRIAL, float *htrial,
 IMSL_FCN_W_DATA, void fcn(), void *data,
 0)

Optional Arguments

IMSL_TOL, float tol (Input)
 Tolerance for error control. An attempt is made to control the norm of the local error such that the
global error is proportional to tol.
 Default: tol = 100.0*imsl_f_machine(4)
IMSL_HINIT, float hinit (Input)
 Initial value for the step size \(h \). Steps are applied in the direction of integration.
 Default: \(hinit = 0.001|tend - t| \)

IMSL_HMIN, float hmin (Input)
 Minimum value for the step size \(h \).
 Default: \(hmin = 0.0 \).

IMSL_HMAX, float hmax (Input)
 Maximum value for the step size \(h \).
 Default: \(hmax = 2.0 \).

IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
 Maximum number of steps allowed.
 Default: \(max_steps = 500 \).

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
 Maximum number of function evaluations allowed.
 Default: \(max_fcn_evals = \) No enforced limit.

IMSL_SCALE, float scale (Input)
 A measure of the scale of the problem, such as an approximation to the Jacobian along the trajectory.
 Default: \(scale = 1 \).

IMSL_NORM, int norm (Input)
 Switch determining the error norm. In the following, \(e_i \) is the absolute value of the error estimate for \(y_i \):

<table>
<thead>
<tr>
<th>norm</th>
<th>Error norm used</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>minimum of the absolute error and the relative error, equals the maximum of (e_i / \max(</td>
</tr>
<tr>
<td>1</td>
<td>absolute error, equals (\max</td>
</tr>
<tr>
<td>2</td>
<td>(\max(e_i / w_i)) where (w_i = \max(</td>
</tr>
</tbody>
</table>

 Default: \(norm = 0 \).

IMSL_FLOOR, float floor (Input)
 This is used with IMSL_NORM. It provides a positive lower bound for the error norm option with value 2.
 Default: \(floor = 1.0 \).

IMSL_NSTEP, int *nstep (Output)
 Returns the number of steps taken.

IMSL_NFCN, int *nfcn (Output)
 Returns the number of function evaluations used.
IMSL_HTRIAL, float *htrial (Output)
Returns the current trial step size.

IMSL_FCN_W_DATA, void fcn(int neq, float t, float *y, float *yprime, void *data), void *data, (Input)
User-supplied function to evaluate the right-hand side, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function imsl_f_ode_runge_kutta finds an approximation to the solution of a system of first-order differential equations of the form

\[y' = \frac{dy}{dt} = y = f(t, y) \]

with given initial conditions for \(y \) at the starting value for \(t \). The function attempts to keep the global error proportional to a user-specified tolerance. The proportionality depends on the differential equation and the range of integration.

The function imsl_f_ode_runge_kutta is efficient for nonstiff systems where the evaluations of \(f(t, y) \) are not expensive. The code is based on an algorithm designed by Hull et al. (1976, 1978). It uses Runge-Kutta formulas of order five and six developed by J.H. Verner.

Examples

Example 1

This example solves

\[\frac{dy}{dt} = -y \]

over the interval \([0, 1]\) with the initial condition \(y(0) = 1 \). The solution is \(y(t) = e^t \).

The ODE solver is initialized by a call to imsl_f_ode_runge_kutta_mgr with IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default values are changed. The function imsl_f_ode_runge_kutta is then called to integrate from \(t = 0 \) to \(t = 1 \).

```c
#include <imsl.h>
#include <math.h>

void fcn (int neq, float t, float y[], float yprime[]);

int main()
{
    int neq = 1;    /* Number of ode's */
```
float t = 0.0; /* Initial time */
float tend = 1.0; /* Final time */
float y[1] = {1.0}; /* Initial condition */
void *state;
 /* Initialize the ODE solver */
imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state, 0);
 /* Integrate from t=0 to tend=1 */
imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
 /* Print the solution and error */
printf("y[1.000000] = %f
", t, y[0]);
printf("Error is: %e\n", exp((double)(-tend))-y[0]);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = -y[0];
}

Output

y[1.000000] = 0.367879
Error is: -9.149755e-09

Example 2

Consider a predator-prey problem with rabbits and foxes. Let \(r \) be the density of rabbits, and let \(f \) be the density of foxes. In the absence of any predator-prey interaction, the rabbits would increase at a rate proportional to their number, and the foxes would die of starvation at a rate proportional to their number. Mathematically, the model without species interaction is approximated by the equation

\[
\begin{align*}
 r' &= 2r \\
 f' &= f
\end{align*}
\]

With species interaction, the rate at which the rabbits are consumed by the foxes is assumed to equal the value \(2rf \). The rate at which the foxes increase, because they are consuming the rabbits, is equal to \(rf \). Thus, the model differential equations to be solved are

\[
\begin{align*}
 r' &= 2r - 2rf \\
 f' &= -f + rf
\end{align*}
\]

For illustration, the initial conditions are taken to be \(r(0) = 1 \) and \(f(0) = 3 \). The interval of integration is \(0 \leq t \leq 10 \). In the program, \(y[0] = r \) and \(y[1] = f \). The ODE solver is initialized by a call to \texttt{imsl_f_ode_runge_kutta_mgr}.

The error tolerance is set to 0.0005. Absolute error control is selected by setting \texttt{IMSL_NORM} to the value one. We also request that \texttt{nstep} be set to the current number of steps in the integration. The function \texttt{imsl_f_ode_runge_kutta} is then called in a loop to integrate from \(t = 0 \) to \(t = 10 \) in steps of \(\delta t = 1 \). At each step, the solution is printed.

Note that \texttt{nstep} is updated even though it is not an argument to this function. Its address has been stored within \texttt{imsl_f_ode_runge_kutta_mgr} into the area pointed to by \texttt{state}. The last call to \texttt{imsl_f_ode_runge_kutta_mgr} with \texttt{IMSL_ODE_RESET} releases workspace.
#include <imsl.h>

void fcn(int neq, float t, float y[], float yprime[]);

int main()
{
 int neq = 2;
 float t = 0.0; /* Initial time */
 float tend; /* Final time */
 float y[2] = {1.0, 3.0}; /* Initial conditions */
 int k;
 int nstep;
 void *state;

 /* Initialize the ODE solver */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state,
 IMSL_TOL, 0.0005,
 IMSL_NSTEP, &nstep,
 IMSL_NORM, 1,
 0);

 printf("\n Start End Density of Density of Number of");
 printf("\n Time Time Rabbits Foxes Steps\n\n");

 for (k = 0; k < 10; k++) {
 tend = k + 1;
 imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
 printf("%3d %12.3f %12.3f %12.3f %12d\n", k, t, y[0], y[1], nstep);
 }
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_RESET, &state, 0);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 /* Density change rate for Rabbits: */
 yprime[0] = 2*y[0]*(1 - y[1]);
 /* Density change rate for Foxes: */
 yprime[1] = -y[1]*(1 - y[0]);
}

Output

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Density of Rabbits</th>
<th>Density of Foxes</th>
<th>Number of Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>0.078</td>
<td>1.465</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2.000</td>
<td>0.085</td>
<td>0.578</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3.000</td>
<td>0.292</td>
<td>0.250</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4.000</td>
<td>1.449</td>
<td>0.187</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5.000</td>
<td>4.046</td>
<td>1.444</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>6.000</td>
<td>0.176</td>
<td>2.256</td>
<td>15</td>
</tr>
<tr>
<td>#</td>
<td>x</td>
<td>h</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>6</td>
<td>7.000</td>
<td>0.066</td>
<td>0.908</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>8.000</td>
<td>0.148</td>
<td>0.367</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>9.000</td>
<td>0.655</td>
<td>0.188</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>10.000</td>
<td>3.157</td>
<td>0.352</td>
<td>23</td>
</tr>
</tbody>
</table>

Fatal Errors

- **IMSL_ODE_TOO_MANY_EVALS**: Completion of the next step would make the number of function evaluations #, but only # evaluations are allowed.

- **IMSL_ODE_TOO_MANY_STEPS**: Maximum number of steps allowed, #, used. The problem may be stiff.

- **IMSL_ODE_FAIL**: Unable to satisfy the error requirement. “tol” = # may be too small.

- **IMSL_STOP_USER_FCN**: Request from user supplied function to stop algorithm.
 User flag = "#".
Note: This function is deprecated and has been replaced by `imsl_f_ode_adams_krogh`. To view the deprecated documentation, see `imsl_f_ode_adams_gear.pdf` on the Rogue Wave website. You can also access a local copy in your IMSL installation directory at `pdf\deprecated_routines\math\ode_adams_gear.pdf`.
bvp_finite_difference

Solves a (parameterized) system of differential equations with boundary conditions at two points, using a variable order, variable step size finite difference method with deferred corrections.

Synopsis

```
#include <imsl.h>

void imsl\_f\_bvp\_finite\_difference (void fcneq(), void fcnjac(), void fcncb(), int n,
int nleft, int ncupbc, float tleft, floattright, int linear, float *nfinal, float *xfinal,
float *yfinal, ... , 0)
```

The type `double` function is `imsl_d_bvp_finite_difference`.

Required Arguments

```
void fcneq (int n, float t, float y[], float p, float dydt[]) (Input)
User supplied function to evaluate derivatives.

int n (Input)
Number of differential equations.

float t (Input)
Independent variable, t.

float y[] (Input)
Array of size n containing the dependent variable values, y(t).

float p (Input)
Continuation parameter, p. See optional argument IMSL\_PROBLEM\_EMBEDDED.

float dydt[] (Output)
Array of size n containing the derivatives y'(t).
```

```
void fcnjac(int n, float t, float y[], float p, float dypdy[]) (Input)
User supplied function to evaluate the Jacobian.

int n (Input)
Number of differential equations.

float t (Input)
Independent variable, t.

float y[] (Input)
Array of size n containing the dependent variable values, y(t).
```
float p (Input)
 Continuation parameter, \(p \). See optional argument IMSL_PROBLEM_EMBEDDED.

float dypdy[] (Output)
 \(n \) by \(n \) array containing the partial derivatives \(a_{ij} = \frac{\partial f_i}{\partial y_j} \) evaluated at \((t, y) \). The values \(a_{ij} \) are returned in \(\text{dypdy}[(i-1)*n+(j-1)] \).

void fcnbc(int n, float yleft[], float yright[], float p, float h[])(Input)
 User supplied function to evaluate the boundary conditions.

 int n (Input)
 Number of differential equations.

 float yleft[] (Input)
 Array of size \(n \) containing the values of the dependent variable at the left endpoint.

 float yright[] (Input)
 Array of size \(n \) containing the values of the dependent variable at the right endpoint.

 float p (Input)
 Continuation parameter, \(p \). See optional argument IMSL_PROBLEM_EMBEDDED.

 float h[] (Output)
 Array of size \(n \) containing the boundary condition residuals. The boundary conditions are defined by \(h_i = 0 \), for \(i = 0, \ldots, n-1 \). The left endpoint conditions must be defined first, then, the conditions involving both endpoints, and finally the right endpoint conditions.

 int n (Input)
 Number of differential equations.

 int nleft (Input)
 Number of initial conditions. The value \(\text{nleft} \) must be greater than or equal to zero and less than \(n \).

 int ncupbc (Input)
 Number of coupled boundary conditions. The value \(\text{nleft} + \text{ncupbc} \) must be greater than zero and less than or equal to \(n \).

 float tleft (Input)
 The left endpoint.

 float tright (Input)
 The right endpoint.

 int linear (Input)
 Integer flag to indicate if the differential equations and the boundary conditions are linear. Set \(\text{linear} \) to one if the differential equations and the boundary conditions are linear, otherwise set \(\text{linear} \) to zero.
int *nfinal (Output)
 Number of final grid points, including the endpoints.

float *tfinal (Output)
 Array of size mxgrid containing the final grid points. Only the first nfinal points are significant. See optional argument IMSL_MAX_SUBINTER for definition of mxgrid.

float *yfinal (Output)
 Array of size mxgrid by n containing the values of Y at the points in tfinal. See optional argument IMSL_MAX_SUBINTER for definition of mxgrid.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_bvp_finite_difference (void fcneq(), void fcnjac(), void fcnbc(),
 int n, int nleft, int ncupbc, float tleft, float tright, int linear, float *nfinal,
 float *xfinal[], float *yfinal,
 IMSL_TOL, float tol,
 IMSL_HINIT, int ninit, float tinit[], float yinit[][],
 IMSL_PRINT, int iprint,
 IMSL_MAX_SUBINTER, int mxgrid,
 IMSL_PROBLEM_EMBEDDED, float pistep, void fcnpeq(), void fcnpbc(),
 IMSL_ERR_EST, float **errest,
 IMSL_ERR_EST_USER, float errest[][],
 IMSL_FCN_W_DATA, void fcneq(), void *data,
 IMSL_JACOBIAN_W_DATA, void fcnjac(), void *data,
 IMSL_FCN_BC_W_DATA, void fcnbc(), void *data,
 IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep(), void *data, void fcnpeq(),
 void fcnpbc(), void *data,
 0)

Optional Arguments

IMSL_TOL, float tol (Input)
 Relative error control parameter. The computations stop when
\[|E_{ij}| / \max \left(y_{i,j}, 1.0 \right) < tol \text{ for all } i = 0, n = 1, \text{ and } j = 0, ngrid - 1 \]

Here \(E_{ij} \) is the estimated error on \(y_{i,j} \)

Default: \(tol = .001 \).

IMSL_HINIT, int ninit, float tinit[], float yinit[][], (Input)

Initial gridpoints. Number of initial grid points, including the endpoints, is given by \(ninit \). \(tinit \) is an array of size \(ninit \) containing the initial grid points. \(yinit \) is an array size \(ninit \) by \(n \) containing an initial guess for the values of \(Y \) at the points in \(tinit \).

Default: \(ninit = 10, tinit[*] \) equally spaced in the interval \([tleft, tright] \), and \(yinit[\ast][\ast] = 0 \).

IMSL_PRINT, int iprint (Input)

Parameter indicating the desired output level.

<table>
<thead>
<tr>
<th>iprint</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output printed.</td>
</tr>
<tr>
<td>1</td>
<td>Intermediate output is printed. Default: (iprint = 0).</td>
</tr>
</tbody>
</table>

IMSL_MAX_SUBINTER, int mxgrid (Input)

Maximum number of grid points allowed.

Default: \(mxgrid = 100 \).

IMSL_PROBLEM_EMBEDDED, float pistep, void fcnpeq(), void fcnpbc()

If this optional argument is supplied, then the function \texttt{ims1_f_bvp_finite_difference} assumes that the user has embedded the problem into a one-parameter family of problems:

\[
y' = y'(t, y, p) \\
h(y_{\text{left}}, y_{\text{right}}, p) = 0
\]

such that for \(p = 0 \) the problem is simple. For \(p = 1 \), the original problem is recovered. The function \texttt{ims1_f_bvp_finite_difference} automatically attempts to increment from \(p = 0 \) to \(p = 1 \). The value \(pistep \) is the beginning increment used in this continuation. The increment will usually be changed by function \texttt{ims1_f_bvp_finite_difference}, but an arbitrary minimum of 0.01 is imposed.

The argument \(p \) is the initial increment size for \(p \). The functions \texttt{fcnpeq} and \texttt{fcnpbc} are user-supplied functions, and are defined:

\texttt{void fcnpeq(int n, float t[], float y[], float p, float dypdp[])} (Input)

User supplied function to evaluate the derivative of \(y' \) with respect to the parameter \(p \).

\texttt{int n} (Input)

Number of differential equations.
float t (Input)
 Independent variable, t.

float y[] (Input)
 Array of size n containing the dependent variable values.

float p (Input)
 Continuation parameter, p.

float dydp[] (Output)
 Array of size n containing the derivative y′ with respect to the parameter p at (t, y).

void fcnpbc(int n, floatyleft[], floatyright[], float p, float h[])(Input)
 User supplied function to evaluate the derivative of the boundary conditions with respect to the parameter p.

int n (Input)
 Number of differential equations.

float yleft[] (Input)
 Array of size n containing the values of the dependent variable at the left endpoint.

float yright[] (Input)
 Array of size n containing the values of the dependent variable at the right endpoint.

float p (Input)
 Continuation parameter, p.

float h[] (Output)
 Array of size n containing the derivative of f, with respect to p.

IMSL_ERR_EST, float **errest (Output)
 Address of a pointer to an array of size n containing estimated error in y.

IMSL_ERR_EST_USER, float errest[] (Output)
 User allocated array of size n containing estimated error in y.

IMSL_FCN_W_DATA, void fcnq (int n, float t, float y[], float p, float dydt[], void *data)
 , void *data, (Input)
 User-supplied function to evaluate derivatives, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_JACOBIAN_W_DATA, void fcnjac(int n, float t, float y[], float p, float dydpdy[],
 void *data), void *data, (Input)
 User-supplied function to evaluate the Jacobian, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.
IMSL_FCN_BC_W_DATA, void fcnbc(int n, float yleft[], float yright[], float p, float h[],
void *data), void *data, (Input)
User-supplied function to evaluate the boundary conditions, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep, void fcnpeq(void *data), void fcnpbc(),
void *data, (Input)
Same as optional argument IMSL_PROBLEM_EMBEDDED, except user-supplied functions also
accept a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this man-
ual for more details.

Description
The function imsl_f_bvp_finite_difference is based on the subprogram PASVA3 by M. Lentini and V.
Pereyra (see Pereyra 1978). The basic discretization is the trapezoidal rule over a nonuniform mesh. This mesh is
chosen adaptively, to make the local error approximately the same size everywhere. Higher-order discretizations
are obtained by deferred corrections. Global error estimates are produced to control the computation. The
resulting nonlinear algebraic system is solved by Newton's method with step control. The
linearized system of
equations is solved by a special form of Gauss elimination that preserves the sparseness.

Examples
Example 1
This example solves the third-order linear equation

\[y''' - 2y'' + y' - y = \sin t \]

subject to the boundary conditions \(y(0) = y(2\pi) \) and \(y'(0) = y'(2\pi) = 1 \). (Its solution is \(y = \sin t \).) To use
imsl_f_bvp_finite_difference, the problem is reduced to a system of first-order equations by defining
\(y_1 = y, y_2 = y' \) and \(y_3 = y'' \). The resulting system is

\[
\begin{align*}
 y'_1 &= y_2 \\
 y'_2 &= y_3 \\
 y'_3 &= 2y_3 - y_2 + y_1 + \sin t
\end{align*}
\]

\[
\begin{align*}
 y_2(0) - 1 &= 0 \\
 y_1(0) - y_1(2\pi) &= 0 \\
 y_2(2\pi) - 1 &= 0
\end{align*}
\]

Note that there is one boundary condition at the left endpoint \(t = 0 \) and one boundary condition coupling the left
and right endpoints. The final boundary condition is at the right endpoint. The total number of boundary condi-
tions must be the same as the number of equations (in this case 3).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>
```
void fcneqn(int n, float t, float y[], float p, float dydt[]);
void fcnjac(int n, float t, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);

#define MXGRID 100
#define N 3

int main()
{
 int n = N;
 int nleft = 1;
 int ncupbc = 1;
 float tleft = 0;
 float tright;
 int linear = 1;
 int nfinal;
 float tfinal[MXGRID];
 float yfinal[MXGRID][N];
 float errest[N];
 int i;

 tright = 2.0*imsl_f_constant("pi", 0);

 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc,
 n, nleft, ncupbc, tleft, tright,
 linear, &nfinal, tfinal,
 (float*)(&yfinal[0][0]),
 IMSL_ERR_EST_USER, errest,
 0);
 printf(" tfinal y0 y1 y2
");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e\n", i, tfinal[i], yfinal[i][0], yfinal[i][1], yfinal[i][2]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e%15.6e\n",errest[0],errest[1],errest[2]);
}

void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 dydt[0] = y[1];
 dydt[1] = y[2];
}

void fcnjac(int n, float t, float y[], float p, float dfdy[])
{
 dfdy[0*n+0] = 0; /* df1/dy1 */
 dfdy[1*n+0] = 0; /* df2/dy1 */
\[df^{2n+0} = 1; \quad /* df^3/\text{dy}1 */ \]
\[df^{0*n+1} = 1; \quad /* df^1/\text{dy}2 */ \]
\[df^{1*n+1} = 0; \quad /* df^2/\text{dy}2 */ \]
\[df^{2*n+1} = -1; \quad /* df^3/\text{dy}2 */ \]
\[df^{0*n+2} = 0; \quad /* df^1/\text{dy}3 */ \]
\[df^{1*n+2} = 1; \quad /* df^2/\text{dy}3 */ \]
\[df^{2*n+2} = 2; \quad /* df^3/\text{dy}3 */ \]

```c
void fcnbc( int n, float yleft[], float yright[], float p, float h[] )
{
    h[0] = yleft[1] - 1;
    h[1] = yleft[0] - yright[0];
}
```

Output

<table>
<thead>
<tr>
<th>tfinal</th>
<th>y0</th>
<th>y1</th>
<th>y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000000e+00</td>
<td>-1.123446e-04</td>
<td>1.000000e+00</td>
</tr>
<tr>
<td>2</td>
<td>6.981317e-01</td>
<td>6.426907e-01</td>
<td>7.660918e-01</td>
</tr>
<tr>
<td>3</td>
<td>1.396263e+00</td>
<td>9.847531e-01</td>
<td>1.737333e-01</td>
</tr>
<tr>
<td>4</td>
<td>2.094395e+00</td>
<td>8.660527e-01</td>
<td>-4.998748e-01</td>
</tr>
<tr>
<td>5</td>
<td>2.792527e+00</td>
<td>3.421828e-01</td>
<td>-9.395475e-01</td>
</tr>
<tr>
<td>6</td>
<td>3.490659e+00</td>
<td>-8.660881e-01</td>
<td>-9.396111e-01</td>
</tr>
<tr>
<td>7</td>
<td>4.188790e+00</td>
<td>-8.656881e-01</td>
<td>-5.000588e-01</td>
</tr>
<tr>
<td>8</td>
<td>4.886922e+00</td>
<td>-9.845795e-01</td>
<td>1.734572e-01</td>
</tr>
<tr>
<td>9</td>
<td>5.585054e+00</td>
<td>-6.427722e-01</td>
<td>7.658259e-01</td>
</tr>
<tr>
<td>10</td>
<td>5.934120e+00</td>
<td>-3.420819e-01</td>
<td>9.395434e-01</td>
</tr>
<tr>
<td>11</td>
<td>6.283185e+00</td>
<td>-1.123446e-04</td>
<td>1.000000e+00</td>
</tr>
</tbody>
</table>

Error Estimates: 2.840487e-04 1.792839e-04 5.587848e-04

Example 2

In this example, the following nonlinear problem is solved:

\[y'' - y^3 + (1 + \sin^2 t) \sin t = 0 \]

with \(y(0) = y(\pi) = 0 \). Its solution is \(y = \sin t \). As in Example 1, this equation is reduced to a system of first-order differential equations by defining \(y_1 = y \) and \(y_2 = y' \). The resulting system is

\[
\begin{align*}
y'_1 &= y_2 y_1(0) = 0 \\
y'_2 &= y_1^3 - (1 + \sin^2 t) \sin t y_1(\pi) = 0
\end{align*}
\]

In this problem, there is one boundary condition at the left endpoint and one at the right endpoint; there are no coupled boundary conditions.

```c
#include <imsl.h>
#include <stdio.h>
```
#include <math.h>

void fcneqn(int n, float x, float y[], float p, float dydx[]);
void fcnjac(int n, float x, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);

#define MXGRID 100
#define NINIT 12
#define N 2

int main()
{
 int n = N, nleft = 1, ncupbc = 0, linear = 0;
 int i, nfinal, ninit = NINIT;
 float tleft = 0, tright;
 float tinit[NINIT], yinit[NINIT][N];
 float tfinal[MXGRID], yfinal[MXGRID][N];
 float *errest, step;

 tright = imsl_f_constant("pi", 0);
 step = (tright-tleft) / (ninit-1);

 for(i=0; i<ninit; i++) {
 tinit[i] = tleft + i*step;
 yinit[i][0] = 0.4 * (tinit[i]-tleft) * (tright-tinit[i]);
 yinit[i][1] = 0.4 * (tright+tleft-2*tinit[i]);
 }

 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc, n, nleft, ncupbc, tleft, tright, linear, &nfinal, tfinal,
 (float*)(&yfinal[0][0]),
 IMSL_HINIT, ninit, tinit, yinit,
 IMSL_ERR_EST, &errest,
 0);
 printf(" t y0 y1
");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e
" , i, tfinal[i], yfinal[i][0], yfinal[i][1]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e
",errest[0],errest[1]);
}

void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 float sx = sin(t);
 dydt[0] = y[1];
 dydt[1] = y[0]*y[0]*y[0] - (sx*sx+1)*sx;
}

void fcnjac(int n, float t, float y[], float p, float dfdy[])
\begin{verbatim}
{
 dfdy[0*n+0] = 0; /* df1/dy1 */
 dfdy[1*n+0] = 3*y[0]*y[0]; /* df2/dy1 */
 dfdy[0*n+1] = 1; /* df1/dy2 */
 dfdy[1*n+1] = 0; /* df2/dy2 */
}

void fcnbc(int n, float yleft[], float yright[], float p, float h[]) {
 h[0] = yleft[0];
 h[1] = yright[0];
}

Output

<table>
<thead>
<tr>
<th>t</th>
<th>y0</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000000e+00</td>
<td>0.000000e+00</td>
</tr>
<tr>
<td>1</td>
<td>2.855994e-01</td>
<td>2.817682e-01</td>
</tr>
<tr>
<td>2</td>
<td>5.711987e-01</td>
<td>5.406458e-01</td>
</tr>
<tr>
<td>3</td>
<td>8.567981e-01</td>
<td>7.557380e-01</td>
</tr>
<tr>
<td>4</td>
<td>1.142397e+00</td>
<td>9.096186e-01</td>
</tr>
<tr>
<td>5</td>
<td>1.427997e+00</td>
<td>9.898143e-01</td>
</tr>
<tr>
<td>6</td>
<td>1.713596e+00</td>
<td>9.898143e-01</td>
</tr>
<tr>
<td>7</td>
<td>1.999195e+00</td>
<td>9.096185e-01</td>
</tr>
<tr>
<td>8</td>
<td>2.284795e+00</td>
<td>7.557380e-01</td>
</tr>
<tr>
<td>9</td>
<td>2.570394e+00</td>
<td>5.406460e-01</td>
</tr>
<tr>
<td>10</td>
<td>2.855994e+00</td>
<td>2.817682e-01</td>
</tr>
<tr>
<td>11</td>
<td>3.141593e+00</td>
<td>0.000000e+00</td>
</tr>
</tbody>
</table>

Error Estimates 3.907291e-05 7.124317e-05

Example 3

In this example, the following nonlinear problem is solved:

\[
y'' - y^3 = \frac{40}{9}(t - \frac{1}{2})^{2/3} - \left(t - \frac{1}{2}\right)^8
\]

with \(y(0) = y(1) = \pi/2\). As in the previous examples, this equation is reduced to a system of first-order differential equations by defining \(y_1 = y\) and \(y_2 = y'\). The resulting system is

\[
y_1' = y_2 \\ y_1(0) = \pi/2 \\

y_2' = y_1^3 - \frac{40}{9}(t - \frac{1}{2})^{2/3} + \left(t - \frac{1}{2}\right)^8 y_1(1) = \pi/2
\]

The problem is embedded in a family of problems by introducing the parameter \(p\) and by changing the second differential equation to
\end{verbatim}
At $p = 0$, the problem is linear; and at $p = 1$, the original problem is recovered. The derivatives $\partial y' / \partial p$ must now be specified in the subroutine `fcnpeq`. The derivatives $\partial f / \partial p$ are zero in `fcnpbc`.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

void fcneqn(int n, float t, float y[], float p, float dydt[]);
void fcnjac(int n, float t, float y[], float p, float dfdy[]);
void fcncbc(int n, float yleft[], float yright[], float p, float h[]);
void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[]);

#define MXGRID 45
#define NINIT 12
#define N 2

int main()
{
    int n = 2;
    int nleft = 1;
    int ncupbc = 0;
    float tleft = 0;
    float tright = 1;
    float pistep = 0.1;
    int ninit = 5;
    float tinit[NINIT] = { 0.0, 0.4, 0.5, 0.6, 1.0 };  
    float yinit[NINIT][N] =
        { 0.15749,  0.00215,  
          0.0,      0.00215,  
          0.15749, -0.83995,  
         -0.05745,  0.0,  
          0.05745,  0.83995 };  
    int linear = 0;
    int nfinal;
    float tfinal[MXGRID];
    float yfinal[MXGRID][N];
    float *errest;
    int i;

    imsl_f_bvp_finite_difference( fcneqn, fcnjac, fcncbc, n, nleft, 
                              ncupbc, tleft, tright, 
                              linear, &nfinal, tfinal, (float*)(&yfinal[0][0]), 
                              IMSL_MAX_SUBINTER, MXGRID, 
                              IMSL_PROBLEM_EMBEDDED, pistep, fcnpeq, fcnpbc, 
                              IMSL_HINIT, ninit, tinit, yinit, 
                              IMSL_ERR_EST, &errest, 
                              0 );
}
```

\[y'_2 = py_1^3 + \frac{40}{9}(t - \frac{1}{2})^{2/3}(t - \frac{1}{2})^8 \]
```c
void fcneqn(int n, float t, float y[], float p, float dydt[]) {
    float z = t - 0.5;
    dydt[0] = y[1];
    dydt[1] = p*y[0]*y[0]*y[0] + 40./9.*pow(z*z,1./3.) - pow(z,8);
}

void fcnjac(int n, float t, float y[], float p, float dfdy[]) {
    dfdy[0*n+0] = 0;                  /* df0/dy0 */
    dfdy[0*n+1] = 1;                  /* df0/dy1 */
    dfdy[1*n+0] = 3.*(p)*(y[0]*y[0]); /* df1/dy0 */
    dfdy[1*n+1] = 0;                  /* df1/dy1 */
}

void fcnbc(int n, float yleft[], float yright[], float p, float h[]) {
    float pi2 = imsl_f_constant("pi", 0)/2.0;
    h[0] = yleft[0] - pi2;
    h[1] = yright[0] - pi2;
}

void fcnpeq(int n, float t, float y[], float p, float dfdp[]) {
    dfdp[0] = 0;
    dfdp[1] = y[0]*y[0]*y[0];
}

void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[]) {
    dhdp[0] = 0;
    dhdp[1] = 0;
}

Output

<table>
<thead>
<tr>
<th>t</th>
<th>y0</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000000e+000</td>
<td>1.570796e+000</td>
</tr>
<tr>
<td>1</td>
<td>4.444445e-002</td>
<td>1.490495e+000</td>
</tr>
<tr>
<td>2</td>
<td>8.888889e-002</td>
<td>1.421951e+000</td>
</tr>
<tr>
<td>3</td>
<td>1.333333e-001</td>
<td>1.363953e+000</td>
</tr>
<tr>
<td>4</td>
<td>2.000000e-001</td>
<td>1.294526e+000</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th></th>
<th>2.666667e-001</th>
<th>1.243628e+000</th>
<th>-6.373191e-001</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3.333334e-001</td>
<td>1.208785e+000</td>
<td>-4.135206e-001</td>
</tr>
<tr>
<td>7</td>
<td>4.000000e-001</td>
<td>1.187783e+000</td>
<td>-2.219351e-001</td>
</tr>
<tr>
<td>8</td>
<td>4.250000e-001</td>
<td>1.183038e+000</td>
<td>-1.584200e-001</td>
</tr>
<tr>
<td>9</td>
<td>4.500000e-001</td>
<td>1.179822e+000</td>
<td>-9.973147e-002</td>
</tr>
<tr>
<td>10</td>
<td>4.625000e-001</td>
<td>1.178748e+000</td>
<td>-7.233894e-002</td>
</tr>
<tr>
<td>11</td>
<td>4.750000e-001</td>
<td>1.178007e+000</td>
<td>-4.638249e-002</td>
</tr>
<tr>
<td>12</td>
<td>4.812500e-001</td>
<td>1.177756e+000</td>
<td>-3.399764e-002</td>
</tr>
<tr>
<td>13</td>
<td>4.875000e-001</td>
<td>1.177582e+000</td>
<td>-2.205549e-002</td>
</tr>
<tr>
<td>14</td>
<td>4.937500e-001</td>
<td>1.177480e+000</td>
<td>-1.061179e-002</td>
</tr>
<tr>
<td>15</td>
<td>5.000000e-001</td>
<td>1.17447e+000</td>
<td>-1.603742e-007</td>
</tr>
<tr>
<td>16</td>
<td>5.062500e-001</td>
<td>1.17480e+000</td>
<td>1.061152e+002</td>
</tr>
<tr>
<td>17</td>
<td>5.125000e-001</td>
<td>1.17556e+000</td>
<td>2.205516e-002</td>
</tr>
<tr>
<td>18</td>
<td>5.187500e-001</td>
<td>1.17756e+000</td>
<td>3.399726e-002</td>
</tr>
<tr>
<td>19</td>
<td>5.250000e-001</td>
<td>1.17807e+000</td>
<td>4.638217e-002</td>
</tr>
<tr>
<td>20</td>
<td>5.375000e-001</td>
<td>1.18748e+000</td>
<td>7.233874e-002</td>
</tr>
<tr>
<td>21</td>
<td>5.500000e-001</td>
<td>1.19822e+000</td>
<td>9.973122e-002</td>
</tr>
<tr>
<td>22</td>
<td>5.750000e-001</td>
<td>1.18308e+000</td>
<td>1.584198e-001</td>
</tr>
<tr>
<td>23</td>
<td>6.000000e-001</td>
<td>1.18783e+000</td>
<td>2.219350e-001</td>
</tr>
<tr>
<td>24</td>
<td>6.666667e-001</td>
<td>1.20878e+000</td>
<td>4.135205e-001</td>
</tr>
<tr>
<td>25</td>
<td>7.333333e-001</td>
<td>1.24363e+000</td>
<td>6.373190e-001</td>
</tr>
<tr>
<td>26</td>
<td>8.000000e-001</td>
<td>1.29452e+000</td>
<td>8.958460e-001</td>
</tr>
<tr>
<td>27</td>
<td>8.666667e-001</td>
<td>1.36395e+000</td>
<td>1.194307e+000</td>
</tr>
<tr>
<td>28</td>
<td>9.111111e-001</td>
<td>1.42195e+000</td>
<td>1.419465e+000</td>
</tr>
<tr>
<td>29</td>
<td>9.555556e-001</td>
<td>1.49049e+000</td>
<td>1.669566e+000</td>
</tr>
<tr>
<td>30</td>
<td>1.000000e+000</td>
<td>1.57079e+000</td>
<td>1.949336e+000</td>
</tr>
</tbody>
</table>

Error Estimates

- 3.449248e-006
- 5.550227e-005

Fatal Errors

IMSL_STOP_USER_FCN

Request from user supplied function to stop algorithm.

User flag = "#"...
differential_algebraic_eqs

Solves a first order differential-algebraic system of equations, $g(t, y, y') = 0$, with optional additional constraints and user-defined linear system solver.

Note: `imsl_f_differential_algebraic_eqs` replaces `imsl_f_dea_petzold_gear`.

Synopsis

```c
#include <imsl.h>

void imsl_f_differential_algebraic_eqs(int neq, float *t, float tend, int *ido, float y[],
   float yprime[], void gcn(), ..., 0)
```

The type `double` function is `imsl_d_differential_algebraic_eqs`.

Required Arguments

- **int** `neq` (Input)
 Number of dependent variables, and number of differential/algebraic equations, not counting any additional constraints.

- **float** `*t` (Input/Output)
 Set t to the starting value t_0 at the first step. On output, t is set to the value to which the integration has advanced. Normally, this new value is t_{end}.

- **float** `tend` (Input)
 Final value of the independent variable. Update this value when re-entering after output with $\text{id}_0 = 2$.

- **int** `*ido` (Input/Output)
 Flag indicating the state of the computation.

<table>
<thead>
<tr>
<th>ido</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial entry</td>
</tr>
<tr>
<td>2</td>
<td>Normal re-entry after obtaining output</td>
</tr>
<tr>
<td>3</td>
<td>Release workspace, last call</td>
</tr>
</tbody>
</table>

 The user sets $\text{id}_0 = 1$ on the first call at $t = t_0$. The function then sets $\text{id}_0 = 2$, and this value is used for all but the last entry, which is made with $\text{id}_0 = 3$.

- **float** `y[]` (Input/Output)
 Array of length neq containing the dependent variable values, y. On input, y must contain initial values. On output, y contains the computed solution at t_{end}.
float yprime[] (Input/Output)
Array of length neq containing derivative values, \(y' \). This array must contain initial values, but they need not be such that \(g(t, y, y') = 0 \) at \(t = t_0 \). See the description of parameter iypr for more information.

void gcn (int neq, float t, float y[], float yprime[], float delta[], float d[], int ldd, int *ires) (Input)
User-supplied function to evaluate \(g(t, y, y') \), and any constraints. Also partial derivative evaluations and optionally linear solving steps occur here. The equations \(g(t, y, y') = 0 \) consist of \(neq \) differential-algebraic equations of the form:

\[
F_i(t, y_1, \ldots, y_{neq}, y'_1, \ldots, y'_{neq}) = F_i(t, y, y') = 0, \quad i = 1, \ldots, neq
\]

The function gcn is also used to evaluate the \(ncon \) additional algebraic constraints.

\[
C_i(t, y_1, \ldots, y_{neq}) = 0, \quad i = 1, \ldots, ncon, \quad ncon \geq 0
\]

Arguments

int neq (Input)
Number of dependent variables, and number of differential–algebraic equations, not counting any additional constraints.

float t (Input)
Integration variable \(t \).

float y[] (Input)
Array of \(neq \) dependent variables, \(y \).

float yprime[] (Input)
Array of \(neq \) derivative values, \(y' \).

float delta[] (Input/Output)
Array of length max(neq, ncon) containing residuals, \(\delta \). See parameter ires for a definition.

float d[] (Input/Output)
Array of length ldd \(\times \) neq containing partial derivatives, \(d \). See parameter ires for a definition.

int ldd (Input)
Number of rows in \(d \).

int *ires (Input/Output)
Flag indicating what is to be calculated in the user function, gcn.

Note: ires is input only, except when ires = 6. It is input/output when ires = 6. For a detailed description see the table below.
The code calls \texttt{gcn} with \texttt{ires} = 0, 1, 2, 3, 4, 5, 6, or 7, defined as follows:

<table>
<thead>
<tr>
<th>\texttt{ires}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do initializations which may be required in later calls to \texttt{gcn}. This is a setup flag that is input to \texttt{gcn} just once per problem. Initializations might be computing parameters to be used internally by \texttt{gcn} or taking any other necessary steps for what may follow in terms of evaluating derivatives or linear solves. Return and do nothing if no initializations are needed.</td>
</tr>
<tr>
<td>1</td>
<td>Compute $\delta_i = F_i(t, y, y')$, the \textit{i}-th residual, for $i = 1, \ldots, \text{neq}$.</td>
</tr>
<tr>
<td>2</td>
<td>(Required only if \texttt{iujac} = 1 and \texttt{matstr} = 0 or 1). Compute $d_{i,j} = \frac{\partial F_i(t, y, y')}{\partial y_j}$, the partial derivative matrix. These are derivatives of F_i with respect to y_j, for $i = 1, \ldots, \text{neq}$ and $j = 1, \ldots, \text{neq}$.</td>
</tr>
<tr>
<td>3</td>
<td>(Required only if \texttt{iujac} = 1 and \texttt{matstr} = 0 or 1). Compute $d_{i,j} = \frac{\partial F_i(t, y, y')}{\partial y'_j}$, the partial derivative of F_i with respect to y'_j, for $i = 1, \ldots, \text{neq}$ and $j = 1, \ldots, \text{neq}$.</td>
</tr>
<tr>
<td>4</td>
<td>(Required only if \texttt{iypr} = 2). Compute $\delta_i = \frac{\partial F_i(t, y, y')}{\partial t}$, the partial derivative of F_i with respect to t, for $i = 1, \ldots, \text{neq}$.</td>
</tr>
<tr>
<td>5</td>
<td>(Required only if \texttt{ncon} > 0). Compute $\delta_i = C_i(t, y)$, the \textit{i}-th residual in the additional constraints, for $i = 1, \ldots, \text{ncon}$, and $d_{i,j} = \frac{\partial C_i(t, y)}{\partial y_j}$, the partial derivative of C_i with respect to y_j for $i = 1, \ldots, \text{ncon}$ and $j = 1, \ldots, \text{neq}$.</td>
</tr>
<tr>
<td>(\textbf{ires})</td>
<td>\textbf{Description}</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 6 | (Required only if \(\text{isolve} = 1 \)) If \(\text{matstr} = 2 \), the user must compute the matrix \[
A = \frac{\partial F}{\partial y} + c j \frac{\partial F}{\partial y'},
\]
where \(c j = \delta_1 \), and save this matrix in any user-defined format. This is for later use when \(\text{ires} = 7 \). The matrix may also be factored in this step, if desired. The array \(d \) is not referenced if \(\text{matstr} = 2 \).

If \(\text{matstr} = 0 \) or 1, the \(A \) matrix will already be defined and passed to \(\text{gcn} \) in the array \(d \), which will be in full matrix format if \(\text{matstr} = 0 \), and band matrix format, if \(\text{matstr} = 1 \). The user may factor \(d \) in this step, if desired.

Note: For \(\text{matstr} = 0 \), 1, or 2, the user must set \(\text{ires} = 0 \) to signal that \(A \) is nonsingular. If \(A \) is nearly singular, leave \(\text{ires} = 6 \). This results in using a smaller step-size internally.

| 7 | (Required only if \(\text{isolve} = 1 \)) The user must solve \[Ax = b, \]
where \(b \) is passed to \(\text{gcn} \) in the vector \(\delta \), and \(x \) is returned in \(\delta \). If \(\text{matstr} = 2 \), \(A \) is the matrix which was computed and saved at the call with \(\text{ires} = 6 \); if \(\text{matstr} = 0 \) or 1, \(A \) is passed to \(\text{gcn} \) in the array \(d \). In either case, the \(A \) matrix will remain factored if the user factored it when \(\text{ires} = 6 \).

Synopsis with Optional Arguments

```c
#include <imsl.h>

void imsl_f_differential_algebraic_eqs(int neq, float *t, float tend, int *ido, float y[], float yprime[], void gcn[],
  IMSL_N_CONSTRAINTS, int ncon,
  IMSL_JACOBIAN_OPTION, int iujac,
  IMSL_YPRIME_METHOD, int iypr,
  IMSL_JACOBIAN_MATRIX_TYPE, int matstr,
  IMSL_METHOD, int isolve,
  IMSL_N_LOWER_DIAG, int ml,
  IMSL_N_UPPER_DIAG, int mu,
  IMSL_RELATIVE_TOLERANCE, float rtol,
  IMSL_ABSOLUTE_TOLERANCE, float atol[],
  IMSL_INITIAL_STEPSIZE, float h0,
  IMSL_MAX_STEPSIZE, float hmax,
```
IMSL_MAX_ORDER, int maxord,
IMSL_MAX_NUMBER_STEPS, int maxsteps,
IMSL_INTEGRATION_LIMIT, float tstop,
IMSL_ORDER_MAGNITUDE_EST, float fmag,
IMSL_GCN_W_DATA, void gcn(), void *data,
0)

Optional Arguments

IMSL_N_CONSTRAINTS, int ncon (Input)
Number of additional constraints.
Default: ncon = 0.

IMSL_JACOBIAN_OPTION, int iujac (Input)
Jacobian calculation option.

<table>
<thead>
<tr>
<th>iujac</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calculates using finite difference approximations.</td>
</tr>
<tr>
<td>1</td>
<td>User supplies the Jacobian matrices of partial derivatives of (F_i, i = 1, \ldots, neq,) in the function gcn, when ires = 2 and 3.</td>
</tr>
</tbody>
</table>

Default: iujac = 0 for matstr = 0 or 1. iujac = 1 for matstr = 2.

IMSL_YPRIME_METHOD, int iypr (Input)
Initial \(y' \) calculation method.

<table>
<thead>
<tr>
<th>iypr</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The initial input values of (y') are already consistent with the input values of (y). That is (g(t, y, y') = 0) at (t = t_0). Any constraints must be satisfied at (t = t_0).</td>
</tr>
<tr>
<td>1</td>
<td>Consistent values of (y') are calculated by Petzold's original DASSL algorithm.</td>
</tr>
<tr>
<td>2</td>
<td>Consistent values of (y') are calculated using a new algorithm [Hanson and Krogh, 2008], which is generally more robust but requires that iujac = 1 and isolve = 0, and additional derivatives corresponding to ires = 4 are to be calculated in gcn.</td>
</tr>
</tbody>
</table>

Default: iypr = 1.
IMSL_JACOBIAN_MATRIX_TYPE, int matstr (Input)
Parameter specifying the Jacobian matrix structure.

<table>
<thead>
<tr>
<th>matstr</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The Jacobian matrices (whether iujac = 0 or 1) are to be stored in full storage mode.</td>
</tr>
<tr>
<td>1</td>
<td>The Jacobian matrices are to be stored in band storage mode. In this case, if iujac = 1, the partial derivative matrices have their entries for row (i) and column (j), stored as array elements (d(i-j*mu+1, j)). This occurs when ires = 2 or 3 in gcn.</td>
</tr>
<tr>
<td>2</td>
<td>A user-defined matrix structure is used (see the documentation for 6 for more details). If matstr = 2, isolve and iujac are set to 1 internally.</td>
</tr>
</tbody>
</table>

Default: matstr = 0.

IMSL_METHOD, int isolve (Input)
Solve method.

<table>
<thead>
<tr>
<th>isolve</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>imsl_f_differential_algebraic_eqs solves the linear systems.</td>
</tr>
<tr>
<td>1</td>
<td>The user wishes to solve the linear system in function gcn. See parameter gcn for details.</td>
</tr>
</tbody>
</table>

Default: isolve = 0 for matstr = 0 or 1, isolve = 1 for matstr = 2.

IMSL_N_LOWER_DIAG, int ml (Input)
Number of non-zero diagonals below the main diagonal in the Jacobian matrices when band storage mode is used. ml is ignored if matstr ≠ 1.
Default: ml = neq - 1.

IMSL_N_UPPER_DIAG, int mu (Input)
Number of non-zero diagonals above the main diagonal in the Jacobian matrices when band storage mode is used. mu is ignored if matstr ≠ 1.
Default: mu = neq - 1.

IMSL_RELATIVE_TOLERANCE, float rtol (Input)
Relative error tolerance for solver. The program attempts to maintain a local error in \(Y(i) \) less than \(rtol*|y[i]| + atol[i] \).
Default: \(rtol = \sqrt{\epsilon} \), where \(\epsilon \) is machine precision.

IMSL_ABSOLUTE_TOLERANCE, float atol[] (Input)
Array of size neq containing absolute error tolerances. See description of rtol.
Default: \(atol[i] = 0.0 \).
IMSL_INITIAL_STEP_SIZE, float h0 (Input)
Initial stepsize used by the solver. If $h_0 = 0.0$, the function defines the initial stepsize.
Default: $h_0 = 0.0$.

IMSL_MAX_STEP_SIZE, float hmax (Input)
Maximum stepsize used by the solver. If $h_{\text{max}} = 0.0$, the function defines the maximum stepsize.
Default: $h_{\text{max}} = 0.0$.

IMSL_MAX_ORDER, int maxord (Input)
Maximum order of the backward difference formulas used. $1 \leq \text{maxord} \leq 5$.
Default: maxord = 5.

IMSL_MAX_NUMBER_STEPS, int maxsteps (Input)
Maximum number of steps allowed from t to t_{end}.
Default: maxsteps = 500.

IMSL_INTEGRATION_LIMIT, float tstop (Input)
Integration limit point. For efficiency reasons, the code sometimes integrates past t_{end} and interpolates a solution at t_{end}. If a value for t_{stop} is specified, the code will never integrate past $t=t_{\text{stop}}$.
Default: No t_{stop} value is specified.

IMSL.ORDER_MAGNITUDE_EST, float fmag (Input)
Order-of-magnitude estimate. f_{mag} is used as an order-of-magnitude estimate of the magnitude of the functions F_i (see description of g_{cn}), for convergence testing, if $\text{iypr}=2$. f_{mag} is ignored if $\text{iypr}=0$ or 1.
Default: $f_{\text{mag}} = 1.0$.

IMSL_GCN_W_DATA, void g_{cn}(int neq, float t, float y[], float yprime[], float delta[], float d[],
int ldd, int *ires, void *data), void *data (Input)
User-supplied function to evaluate $g(t, y, y')$, and any constraints, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. Please refer to g_{cn} in the Required Arguments section for more information. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

Function imsl_f_differential_algebraic_eqs finds an approximation to the solution of a system of differential-algebraic equations $g(t, y, y') = 0$ with given initial data for y and y'. The function uses BDF formulas, which are appropriate for stiff systems. imsl_f_differential_algebraic_eqs is based on the code DASSL designed by Linda Petzold [1982], and has been modified by Hanson and Krogh [2008] Solving Constrained Differential-Algebraic Systems Using Projections to allow the inclusion of additional constraints,
including conservation principles, after each time step. The modified code also provides a more robust algorithm
to calculate initial \(y' \) values consistent with the given initial \(y \) values. This occurs when the initial \(y' \) are not
known.

A differential-algebraic system of equations is said to have “index 0” if the Jacobian matrix of partial derivatives of
the \(F_i \) with respect to the \(y'_j \) is nonsingular. Thus it is possible to solve for all the initial values of \(y'_j \) and put
the system in the form of a standard ODE system. If it is possible to reduce the system to a system of index 0 by
taking first derivatives of some of the equations, the system has index 1, otherwise the index is greater than 1.
See Brenan [1989] for a definition of index. imsl_f_differential_algebraic_eqs can generally only solve systems of index 0 or 1; other systems will usually have to be reduced to such a form through
differentiation.

Examples

Example 1 – Method of Lines PDE Problem

This example solves the partial differential equation \(U_t = U_{xx} + U \), with initial condition
\(U(x, 0) = 1 + x \), and
boundary conditions \(U(0, t) = e^t \), \(U(1, t) = 2e^t \) which has exact solution \(U(x, t) = (1 + x)e^t \). If we
approximate the \(U_{xx} \) term using finite differences, where \(x_i = (i - 1)h \), and \(h = 1/(n - 1) \), we get:

\[
U(x_1, t) = e^t
\]

\[
U'(x_i, t) = \left[U(x_{i+1}, t) - 2U(x_i, t) + U(x_{i-1}, t) \right] / h^2 + U(x_i, t), \quad i = 2, \ldots, n - 1
\]

\[
U(x_n, t) = 2e^t
\]

If \(Y(t) = U(x, t) \), the first and last equations are algebraic and the others are differential equations, so this is a sys-
tem of differential-algebraic equations. The system has index 1, since it could be transformed into an ODE
system by differentiating the first and last equations. Note that the Jacobian matrices are banded (tridiagonal),
with \(m_l = m_u = 1 \). We use this and specify the option for dealing with banded matrices in
imsl_f_differential_algebraic_eqs.

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>

#define NEQ 101
#define MAX(a,b) ((a) > (b)) ? (a) : (b)

void gcn(int neq, float t, float y[], float yprime[], float delta[],
         float *d, int ldd, int *ires);

int main() {
    int i, ido, iujac=1, iypr=1, matstr=1, ml=1, mu=1, nsteps=10;
    float errmax=0.0, hx, rtol=1.0e-4, t, tend, tr, x,
```
```c
y[NEQ], yprime[NEQ];

hx = 1.0 / (float) (NEQ - 1);

/* Initial values */
for (i = 0; i < NEQ; i++) {
    yprime[i] = 0.0;
    x = ((float) i) * hx;
    y[i] = 1.0 + x;
}

/* Always set ido=1 on first call */
ido = 1;

for (i = 0; i < nsteps; i++) {
    /* Output solution at t=0.1,0.2,...,1.0 */
    t = 0.1 * (float) i;
    tend = 0.1 * (float) (i + 1);

    /* Set ido = 3 on last call */
    if (i == (nsteps-1))
        ido = 3;

    /* User-supplied jacobian matrix (iujac=1)
    Banded jacobian (matstr=1) */
    imsl_f_differential_algebraic_eqs(NEQ, &t, tend, &ido, y, yprime, gcn,
        IMSL_JACOBIAN_OPTION, iujac,
        IMSL_YPRIME_METHOD, iypr,
        IMSL_JACOBIAN_MATRIX_TYPE, matstr,
        IMSL_N_LOWER_DIAG, ml,
        IMSL_N_UPPER_DIAG, mu,
        IMSL_RELATIVE_TOLERANCE, rtol,
        0);
}

for (i = 0; i < NEQ; i++) {
    x = ((float) i) * hx;
    tr = (1.0 + x) * exp(t);
    errmax = MAX(errmax, fabs(y[i]-tr));
}

printf("Max Error at T=1 is %g.\n", errmax);
}

void gcn(int neq, float t, float y[], float yprime[], float delta[],
    float *d, int ldd, int *ires) {
#define D(I_,J_)  (*(d+(I_)*(neq)+(J_)))
    int i, j, mu;
    float hx;
```
hx = 1.0 / (float) (neq - 1);
mu = 1;

if (*ires == 1) {
 /* f_i defined here */
 delta[0] = y[0] - exp(t);
 for (i = 1; i < (neq - 1); i++)
 delta[i] = -yprime[i] + (y[i+1] - 2.0 * y[i] + y[i-1]) / pow(hx,2) + y[i];
 delta[neq-1] = y[neq-1] - 2.0 * exp(t);
} else if (*ires == 2) {
 /* d(i-j+mu+1,j) = d(f_i)/d(y_j)
 in band storage mode */
 D(mu,0) = 1.0;
 for (i = 1; i < (neq - 1); i++) {
 j = i;
 D(i-j+mu+1,j-1) = 1.0 / pow(hx,2);
 j = i + 1;
 D(i-j+mu+1,j-1) = -2.0 / pow(hx,2) + 1.0;
 j = i + 2;
 D(i-j+mu+1,j-1) = 1.0 / pow(hx,2);
 }
 D(mu,neq-1) = 1.0;
} else if (*ires == 3) {
 /* d(i-j+mu+1,j) = d(f_i)/d(yprime_j) */
 for (i = 1; i < (neq - 1); i++)
 D(mu,i) = -1.0;
}

Output

Max Error at T=1 is 5.53131e-005.

Example 2 – Pendulum Problem

The first-order equations of motion of a point-mass m suspended on a massless wire of length L under the influence of gravity, mg, and wire tension, λ, in Cartesian coordinates (p,q) are
The problem above has an index number equal to 3, thus it cannot be solved with `imsl_f_differential_algebraic_eqs` directly. Unfortunately, the fact that the index is greater than 1 is not obvious, but an attempt to solve it will generally produce an error message stating the corrector equation did not converge, or if `iyprr = 2` an error message stating that the index appears to be greater than 1 should be issued. The user then differentiates the last equation, which after replacing p' by u and q' by v, gives $pu + qv = 0$. This system still has index=2 (again not obvious, the user discovers this by unsuccessfully trying to solve the new system) and the last equation must be differentiated again, to finally (after appropriate substitutions) give the equation of total energy balance:

$$m(u^2 + v^2) - mgq - L^2\lambda = 0$$

With initial conditions and appropriate definitions of the dependent variables, the system becomes:

$$p(0) = Lq(0) = u(0) = v(0) = \lambda(0) = 0$$
$$y_1 = p$$
$$y_2 = q$$
$$y_3 = u$$
$$y_4 = v$$
$$y_5 = \lambda$$
$$F_1 = y_3 - y_1 = 0$$
$$F_2 = y_4 - y_2 = 0$$
$$F_3 = -y_1y_5 - my'_3 = 0$$
$$F_4 = -y_2y_5 - mg - my'_4 = 0$$
$$F_5 = m(y_3^2 + y_4^2) - mgv_2 - L^2y_5 = 0$$

The initial conditions correspond to the pendulum starting in a horizontal position.

Since we have replaced the original constraint, $C_1 = p^2 + q^2 - L^2 = 0$, which requires that the pendulum length be L, by differentiating it twice, this constraint is no longer explicitly enforced, and if we try to solve the above system alone (i.e., with `ncon=0`), the pendulum length drifts substantially from L at larger times.

`imsl_f_differential_algebraic_eqs` therefore allows the user to add additional constraints, to be re-enforced after each time step, so we add this original constraint, as well as the intermediate constraint $C_2 = pu + qv = 0$. Using these two supplementary constraints, (ncon = 2), the pendulum length is constant.

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>
```
```c
#define NEQ 5

void gcn(int neq, float t, float y[], float yprime[], float delta[],
         float *d, int ldd, int *ires);

int main() {
    int i, ido, ncon=2, nsteps=5, iypr=2, iujac=1, maxsteps=50000;
    float atol[NEQ], len, t, tend, tol, y[NEQ], yprime[NEQ],
         mass=1.0, length=1.1, gravity=9.806650;

    /* Initial values */
    tol = 1.0e-5;
    for (i = 0; i < NEQ; i++) {
        y[i] = 0.0;
        yprime[i] = 0.0;
        atol[i] = tol;
    }
    y[0] = length;

    printf("       T               Y(0)          ");
    printf("Y(1)           Length\n");

    /* Always set ido=1 on first call */
    ido = 1;

    for (i = 0; i < nsteps; i++) {
        /* Output solution at t=10,20,30,40,50 */
        t = 10.0 * (float) i;
        tend = 10.0 * (float) (i + 1);

        /* Set ido = 3 on last call*/
        if (i == (nsteps-1))
            ido = 3;

        /* User-supplied jacobian matrix (iujac=1)
        Use new algorithm to get compatible y' */
        imsl_f_differential_algebraic_eqs(NEQ, &t, tend, &ido, y,
                         yprime, gcn,
                         IMSL_N_CONSTRAINTS, ncon,
                         IMSL_JACOBIAN_OPTION, iujac,
                         IMSL_YPRIME_METHOD, iypr,
                         IMSL_RELATIVE_TOLERANCE, tol,
                         IMSL_ABSOLUTE_TOLERANCE, atol,
                         IMSL_MAX_NUMBER_STEPS, maxsteps,
                         0);

        /* len = pendulum length (should be constant) */
        len = sqrt(pow(y[0],2) + pow(y[1],2));
        printf("%15.7f %15.7f %15.7f %15.7f\n", t, y[0], y[1], len);
    }
}
```
void gcn(int neq, float t, float y[], float yprime[], float delta[],
float *d, int ldd, int *ires) {
#define D(I_,J_) (*(d+(I_)*(neq)+(J_)))
float lsq, mg, mass=1.0, length=1.1, gravity=9.806650;

/* Simple swinging pendulum problem */
mg = mass * gravity;
lsq = pow(length,2);

if (*ires == 1) {
/* f_i defined here */
 delta[0] = y[2] - yprime[0];
 delta[4] = mass * (pow(y[2],2) + pow(y[3],2)) -
 mg * y[1] - lsq * y[4];
} else if (*ires == 2) {
/* d(i,j) = d(f_i)/d(y_j) */
 D(0,2) = 1.0;
 D(1,3) = 1.0;
 D(2,0) = -y[4];
 D(2,4) = -y[0];
 D(3,1) = -y[4];
 D(3,4) = -y[1];
 D(4,1) = -mg;
 D(4,2) = mass * 2.0 * y[2];
 D(4,3) = mass * 2.0 * y[3];
 D(4,4) = -lsq;
} else if (*ires == 3) {
/* d(i,j) = d(f_i)/d(yprime_j) */
 D(0,0) = -1.0;
 D(1,1) = -1.0;
 D(2,2) = -mass;
 D(3,3) = -mass;
} else if (*ires == 4) {
/* delta(i) = d(f_i)/dt */
 delta[0] = 0.0;
 delta[1] = 0.0;
 delta[2] = 0.0;
 delta[3] = 0.0;
 delta[4] = 0.0;
} else if (*ires == 5) {
/* delta(i) = g_i */
 d(i,j) = d(g_i)/d(y_j) */
 delta[0] = pow(y[0],2) + pow(y[1],2) - lsq;
 delta[1] = y[0]*y[2] + y[1]*y[3];
 D(0,0) = 2.0 * y[0];
 D(0,1) = 2.0 * y[1];
\[
D(0,2) = 0.0; \\
D(0,3) = 0.0; \\
D(0,4) = 0.0; \\
D(1,0) = y[2]; \\
D(1,1) = y[3]; \\
D(1,2) = y[0]; \\
D(1,3) = y[1]; \\
D(1,4) = 0.0;
\]

}\}

Output

<table>
<thead>
<tr>
<th>T</th>
<th>Y(0)</th>
<th>Y(1)</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0000000</td>
<td>1.0998138</td>
<td>-0.0202353</td>
<td>1.0999999</td>
</tr>
<tr>
<td>20.0000000</td>
<td>1.0970403</td>
<td>-0.0806356</td>
<td>1.0999998</td>
</tr>
<tr>
<td>30.0000000</td>
<td>1.0852183</td>
<td>-0.1797250</td>
<td>1.0999999</td>
</tr>
<tr>
<td>40.0000000</td>
<td>1.0541573</td>
<td>-0.3142486</td>
<td>1.0999999</td>
</tr>
<tr>
<td>50.0000000</td>
<td>0.9912723</td>
<td>-0.4768429</td>
<td>1.1000000</td>
</tr>
</tbody>
</table>

Example 3 – User Solves Linear System

Consider the system of ordinary differential equations, \(y' = By \), where \(B \) is the bi-diagonal matrix with \((-1, -1/2, -1/3, ..., -1/(n-1), 0)\) on the main diagonal and with 1's along the first sub-diagonal. The initial condition is \(y(0) = (1, 0, 0, ..., 0)^T \), and since \(y'(0) = By(0) = (-1, 1, 0, ..., 0)^T \), \(y' \) (0) is also known for this problem.

Since \(B^T v = 0 \), where \(v_i = 1/(i-1)! \), \(v \) is an eigenvector of \(B^T \) corresponding to the eigenvalue 0. Thus

\[
0 = v^T (y' - By) = v^T y' - (B^T v)^T y = v^T y' = (v^T y)' \]

so \(v^T y(t) \) is constant. Since it has the value \(v^T y(0) = v_i = 1 \) at \(t = 0 \), the constraint \(v^T y(t) = 1 \) is satisfied for all \(t \). This constraint is imposed in this example.

This example also illustrates how the user can solve his/her own linear systems (matstr=2). Normally, when \(ires = 6 \), the matrix

\[
A = \frac{\partial g}{\partial y} + cj \frac{\partial g}{\partial y^T}
\]

is computed, saved and possibly factored, using a sparse matrix factorization function of the user’s choice. Then when \(ires=7 \), the system \(Ax = \delta \) is solved, using the matrix \(B \) saved and factored earlier, and the solution is returned in \(\delta \). In this case, \(B \) is just a bi-diagonal matrix, so there is no need to save or factor \(A \) when \(ires = 6 \), since a bi-diagonal system can be solved directly using forward substitution, when \(ires = 7 \).

#include <imsl.h>
#include <stdio.h>

#define NEQ 100
void gcn(int neq, float t, float y[], float yprime[], float delta[], float *d, int ldd, int *ires);

int main() {
 int i, ido, nsteps=10, ncon=1, iypr=0, matstr=2;
 float atol[NEQ], con=0.0, t, tend, v[NEQ], y[NEQ], yprime[NEQ];

 /* a^t eigenvector v */
 v[0] = 1.0;
 for (i = 1; i < NEQ; i++)
 v[i] = v[i-1] / (float) i;
 /* initial values */
 for (i = 0; i < NEQ; i++) {
 y[i] = 0.0;
 yprime[i] = 0.0;
 atol[i] = 1.0e-4;
 }
 y[0] = 1.0;
 yprime[0] = -1.0;
 yprime[1] = 1.0;

 /* always set ido=1 on first call */
 ido = 1;
 for (i = 0; i < nsteps; i++) {
 /* output solution at t=1,2,...,10 */
 t = (float) i;
 tend = (float) (i + 1);

 /* set ido = 3 on last call */
 if (i == (nsteps-1))
 ido = 3;

 /* user-defined jacobian matrix structure (matstr=2) */
 imsl_f_differential_algebraic_eqs(NEQ, &t, tend, &ido, y, yprime, gcn,
 IMSL_N_CONSTRAINTS, ncon,
 IMSL_YPRIME_METHOD, iypr,
 IMSL_JACOBIAN_MATRIX_TYPE, matstr,
 IMSL_ABSOLUTE_TOLERANCE, atol,
 0);
 }
 /* check if solution satisfies constraint */
 for (i = 0; i < NEQ; i++)
 con += v[i] * y[i];

 printf(" V dot Y = %f
", con);
}

void gcn(int neq, float t, float y[], float yprime[], float delta[], float *d, int ldd, int *ires)
```c
#define D(I_,J_) (*(d+(I_)*(neq)+(J_)))

int i;
float con, v[NEQ];
static float cj;

v[0] = 1.0;
for (i = 1; i < NEQ; i++)
    v[i] = v[i-1] / (float) i;

if (*ires == 1) {
    /* f_i defined here */
    delta[0] = yprime[0] + y[0];

    for (i = 1; i < (NEQ - 1); i++)
        delta[i] = yprime[i] - y[i-1] + y[i] / (float) (i + 1);

    delta[NEQ-1] = yprime[NEQ-1] - y[NEQ-2];
} else if (*ires == 5) {
    /* constraint is v dot y = 1 */
    con = -1.0;

    for (i = 0; i < NEQ; i++)
        con += v[i]*y[i];
    D(0,i) = v[i];

    delta[0] = con;
} else if (*ires == 6) {
    /* normally, compute matrix
       a = df/dy + cj*df/dy' = -b + cj*i
       here. only cj needs to be saved in this case, however,
       since b is bidiagonal, so a*x=delta can be solved (ires=7)
       without saving or factoring b. */
    cj = delta[0];

    /* if cj > 0 not close to zero, a is nonsingular,
       so set ires = 0. */
    if (cj >= 1.0e-4)
        *ires = 0;
} else if (*ires == 7) {
    /* solve a*x=delta and return x in delta. */
    delta[0] /= 1.0 + cj;

    for (i = 1; i < (NEQ - 1); i++)
        delta[i] = (delta[i] + delta[i-1]) /
            (1.0 / (float) (i + 1) + cj);

    delta[NEQ-1] = (delta[NEQ-1] + delta[NEQ-2]) / cj;
}
```
Output

V dot Y = 1.000000

Fatal Errors

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_SYSTEM_CONVERGENCE</td>
<td>The system has index # but convergence of “yp’’ values was not achieved.</td>
</tr>
<tr>
<td>IMSL_SYSTEM_CONVERGENCE</td>
<td>The system appears to have index > 1.</td>
</tr>
<tr>
<td>IMSL_SYS_INDEX_GT_ONE</td>
<td>For the Pareto distribution, the Hessian cannot be calculated because the parameter estimate is 0.</td>
</tr>
<tr>
<td>IMSL_SYS_NOT_DIFF_ALG</td>
<td>This is not a differential-algebraic system.</td>
</tr>
<tr>
<td>IMSL_ACCURACY_EXCEEDED_1</td>
<td>Accuracy requested exceeds machine precision.</td>
</tr>
<tr>
<td>IMSL_STEPS_EXCEEDED</td>
<td>More than “maxsteps”=# steps taken between output points.</td>
</tr>
<tr>
<td>IMSL_ERROR_TEST_FAILURE_2</td>
<td>The error test has failed repeatedly.</td>
</tr>
<tr>
<td>IMSL_CORRECTOR_FAILED_3</td>
<td>The corrector iteration failed repeatedly to converge.</td>
</tr>
<tr>
<td>IMSL_SINGULAR_MATRIX_1</td>
<td>The iteration matrix is singular.</td>
</tr>
<tr>
<td>IMSL_UNABLE_TO_SOLVE_YPR</td>
<td>Unable to solve for initial “yp’’.</td>
</tr>
<tr>
<td>IMSL_TEND_GT_TSTOP</td>
<td>“tend” is greater than “tstop”.</td>
</tr>
<tr>
<td>IMSL_TEND_CLOSE_TO_T</td>
<td>“tend” is too close to “t”.</td>
</tr>
<tr>
<td>IMSL_TSTOP_INCONSIST_T</td>
<td>“tstop” is not consistent with “t”.</td>
</tr>
<tr>
<td>IMSL_CONSTRAINTS_INCONSIST</td>
<td>Constraints appear inconsistent.</td>
</tr>
<tr>
<td>IMSL_STOP_USER_FCN</td>
<td>Request from user supplied function to stop algorithm.</td>
</tr>
<tr>
<td></td>
<td>User flag = “#”.</td>
</tr>
</tbody>
</table>
Note: This function is deprecated and has been replaced by differential_algebraic_eqs. To view the deprecated documentation, see dea_petzold_gear.pdf on the Rogue Wave website. You can also access a local copy in your IMSL installation directory at pdf\deprecated_routines\math\dea_petzold_gear.pdf.
Note: This function is deprecated and has been replaced by `imsl_f_ode_adams_krogh`. To view the deprecated documentation, see `imsl_f_ode_adams_2nd_order.pdf` on the Rogue Wave website. You can also access a local copy in your IMSL installation directory at `pdf\deprecated_routines\math\ode_adams_2nd_order.pdf`.
ode_adams_krogh

Note: imsl_f_ode_adams_krogh replaces imsl_f_ode_adams_gear and imsl_f_ode_adams_2nd_order.

Solves an initial-value problem for a system of ordinary differential equations of order one or two using a variable order Adams method.

Synopsis

```c
#include <imsl.h>

void imsl_f_ode_adams_krogh(int neq, float *t, float tend, int *ido, float y[],
                           float hidrvs[], void fcn(),..., 0)
```

The type `double` function is imsl_d_ode_adams_krogh.

Required Arguments

- **`int neq`** (Input)
 Number of differential equations in the system of equations to solve.

- **`float *t`** (Input/Output)
 On input, `t` contains the initial independent variable value. On output, `t` is replaced by `tend` unless error conditions arise. See `ido` for details.

- **`float tend`** (Input)
 Value of `t = tend` where the solution is required.

- **`int *ido`** (Input/Output)
 Flag indicating the state of the computation.

<table>
<thead>
<tr>
<th>ido</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial entry input value.</td>
</tr>
<tr>
<td>2</td>
<td>Normal re-entry input value. On output, if <code>ido = 2</code> then integration is finished. If the integrator is called with a new value for <code>tend</code>, the integration continues. If the integrator is called with <code>tend</code> unchanged, an error message is issued.</td>
</tr>
<tr>
<td>3</td>
<td>Input value to use on final call to release workspace.</td>
</tr>
<tr>
<td>>3</td>
<td>Output value that indicates that a fatal error has occurred.</td>
</tr>
</tbody>
</table>

The initial call is made with `ido = 1`. The function then sets `ido = 2`, and this value is used for all but the last call that is made with `ido = 3`. This final call is only used to release workspace which was automatically allocated by the initial call with `ido = 1`.

Note: imsl_f_ode_adams_krogh replaces imsl_f_ode_adams_gear and imsl_f_ode_adams_2nd_order.
float y[] (Input/Output)

An array of length k containing the dependent variables, $y(t)$, and first derivatives, if any. k will be the sum of the orders of the equations in the system of equations to solve, that is, the sum of the elements of $korder$. On input, y contains the initial values, $y(t_0)$ and $y'(t_0)$ (if needed). On output, y contains the approximate solution, $y(t)$. For example, for a system of first order equations, $y[i-1]$ is the i-th dependent variable. For a system of second order equations, $y[2i-2]$ is the i-th dependent variable and $y[2i-1]$ is the derivative of the i-th dependent variable. For systems of equations in which one or more equations is of order 2, optional argument IMSL_EQ_ORDER must be used to denote the order of each equation so that the derivatives in y can be identified. By default it is assumed that all equations are of order 1 and y contains only dependent variables.

float hidrvs[] (Output)

An array of length neq containing the highest order derivatives at the point y.

void fcn(int neq, int ido, float t, float y[], float hidrvs)(Input)

User-supplied function to evaluate derivatives.

Arguments

- **int neq** (Input)

 Number of differential equations in the system of equations to solve.

- **int ido** (Input)

 Flag indicating the state of the computation. This flag corresponds to the ido argument described above. If fcn has complicated subexpressions, which depend only weakly or not at all on y then these subexpressions need only be computed when $ido = 1$ and their values then reused when $ido = 2$.

- **float t** (Input)

 Independent variable, t.

- **float y[]** (Input)

 An array of length k containing the dependent variable values, y, and first derivatives, if any. k will be the sum of the orders of the equations in the system of equations to solve.

- **float hidrvs[]** (Output)

 An array of length neq containing the values of the highest order derivatives evaluated at (t, y).

Synopsis with Optional Arguments

```c
#include <imsl.h>

void imsl_f_ode_adams_krogh(int neq, float *t, float tend, int *ido, float y[],
float hidrvs[], void fcn(),
IMSL_EQ_ORDER, int korder[]),
```
IMSL_EQ_ERR, float eqnerr[],
IMSL_STEPSIZE_INC, float hinc,
IMSL_STEPSIZE_DEC, float hdec,
IMSL_MIN_STEPSIZE, float hmin,
IMSL_MAX_STEPSIZE, float hmax,
IMSL_FCN_W_DATA, void fcn(), void *data,
0)

Optional Arguments

IMSL_EQ_ORDER, int korder[] (Input)
An array of length neq specifying the orders of the equations in the system of equations to solve.
The elements of korder can be 1 or 2. korder must be used with argument y to define systems of mixed or higher order.
Default: korder = [1,1,...,1].

IMSL_EQ_ERR, float eqnerr[] (Input)
An array of length neq specifying the error tolerance for each equation. Let e(i) be the error tolerance for equation i for i = 0,..., neq -1. Then

<table>
<thead>
<tr>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>e(i) > 0</td>
<td>Implies an absolute error tolerance of e(i) is to be used for equation i.</td>
</tr>
<tr>
<td>e(i) = 0</td>
<td>Implies no error checking is to be performed for equation i.</td>
</tr>
<tr>
<td>e(i) < 0</td>
<td>Implies a relative error test is to be performed for equation i. In this case, the base error tolerance used will be</td>
</tr>
</tbody>
</table>

Default: An absolute error tolerance of 1.e-5 is used for single precision and 1.e-10 for double precision for all equations.

IMSL_STEPSIZE_INC, float hinc (Input)
Factor used for increasing the stepsize. One should set hinc such that 9/8 <= hinc <= 4.
Default: hinc = 2.0.

IMSL_STEPSIZE_DEC, float hdec (Input)
Factor used for decreasing the stepsize. One should set hdec such that 1/4 <= hdec <= 7/8.
Default: hdec = 0.5.
IMSL_MIN_STEP_SIZE, float hmin (input)

Absolute value of the minimum stepsize permitted.

Default: \(hmin = 10.0/\text{imsl_f_machine}(2)\).

IMSL_MAX_STEP_SIZE, float hmax (input)

Absolute value of the maximum stepsize permitted.

Default: \(hmax = \text{imsl_f_machine}(2)\).

IMSL_FCN_W_DATA, void fcn (int neq, int ido, float t, float y[], float hidrvs[], void *data),
void *data (input)

User-supplied function to evaluate functions, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. Please refer to the fcn argument in the Required Arguments section for more information. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

`imsl_f_ode_adams_krogh` is based on the JPL Library routine SIVA. `imsl_f_ode_adams_krogh` uses a variable order Adams method to solve the initial value problem

\[
\frac{dy_i}{dt} = f(t, y_1, y_2, \ldots, y_{neq}), \quad i = 1, 2, \ldots, neq
\]

\[
y_i(t_0) = \eta_i
\]

or more generally

\[
z_i^{(d_i)} = f(t, y), \quad y(t_0) = \eta_0, \quad i = 1, 2, \ldots, neq,
\]

where \(y\) is the vector

\[
\left(z_1, z_1', \ldots, z_1^{(d_1-1)}, z_2, \ldots, z_{neq}^{(d_{neq}-1)} \right)
\]

\(z_i^{(\cdot)}\) is the \(k\)th derivative of \(z_i\) with respect to \(t\), \(d_i\) is the order of the \(i\)th differential equation, and \(\eta\) is a vector with the same dimension as \(y\).

Note that the systems of equations solved by `imsl_f_ode_adams_krogh` can be of order one, order two, or mixed order one and two.

Examples

Example 1

In this example a system of two equations of order two is solved.

\[
Y''_1 = -\frac{Y_1}{(Y_1^2 + Y_2^2)^{\frac{3}{2}}}
\]

\[
Y''_2 = -\frac{Y_2}{(Y_1^2 + Y_2^2)^{\frac{3}{2}}}
\]

The initial conditions are

\[Y_1(0) = 1.0, \ Y'_1(0) = 0.0, \ Y_2(0) = 0.0, \ Y'_2(0) = 1.0\]

Since the system is of order two, optional argument `imsl_eq_order` must be used to specify the orders of the equations. Also, because the system is of order two, \(y[0]\) contains the first dependent variable, \(y[1]\) contains the derivative of the first dependent variable, \(y[2]\) contains the second dependent variable, and \(y[3]\) contains the derivative of the second dependent variable.

```c
#include <ims1.h>
#include <math.h>
#include <stdio.h>

#define     NEQ  2

void fcn(int neq, int ido, float t, float y[], float hidrvs[]);

int main() {
    int iend, ido, k, korder[NEQ];
    float delta, t, tend, y[4], hidrvs[NEQ];

    /* Initialize */

    ido = 1;
t = 0.0;
y[0] = 1.0;
y[1] = 0.0;
y[2] = 0.0;
y[3] = 1.0;
korder[0] = 2;
korder[1] = 2;

    /* Write Title */

    printf(" T Y1/Y2 Y1P/Y2P ");
    printf("\n");

    /* Integrate ODE */
```
iend = 0;
delta = 2.0 * imsl_f_constant("PI",0);
for(k=0;k<5;k++){
 iend += 1;
 tend = t + delta;
 if(tend > 20.0) tend = 20.0;
 imsl_f_ode_adams_krogh (NEQ, &t, tend, &ido, y, hidrvs, fcn,
 IMSL_EQ_ORDER, korder,
 0);
 if(iend < 5){
 printf("%15.4f %15.4f %15.4f %15.4f\n",
 t, y[0], y[1], hidrvs[0]);
 printf("%15.4f %15.4f %15.4f\n",
 y[2], y[3], hidrvs[1]);
 }
 /* Finish up */
 if (iend == 4) ido = 3;
}

void fcn(int neq, int ido, float t, float y[], float hidrvs[])
{
 float tp;
 tp = y[0] * y[0] + y[2] * y[2];
 tp = 1.0e0/(tp * sqrt(tp));
 hidrvs[0] = -y[0] * tp;
}

Output

<table>
<thead>
<tr>
<th>T</th>
<th>Y1/Y2</th>
<th>Y1P/Y2P</th>
<th>Y1PP/Y2PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2832</td>
<td>1.0000</td>
<td>-0.0000</td>
<td>-1.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>12.5664</td>
<td>1.0000</td>
<td>-0.0000</td>
<td>-1.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>1.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>18.8496</td>
<td>1.0000</td>
<td>-0.0000</td>
<td>-1.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>1.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>20.0000</td>
<td>0.4081</td>
<td>-0.9129</td>
<td>-0.4081</td>
</tr>
<tr>
<td></td>
<td>0.9129</td>
<td>0.4081</td>
<td>-0.9129</td>
</tr>
</tbody>
</table>

Example 2

This contrived example illustrates how to use imsl_f_ode_adams_krogh to solve a system of equations of mixed order.
The height, $y(t)$, of an object of mass m above the surface of the Earth can be modeled using Newton's second law as:

$$my'' = -mg - ky'$$

or

$$y''' = -g - \left(\frac{k}{m}\right)y'$$

where $-mg$ is the downward force of gravity and $-ky'$ is the force due to air resistance, in a direction opposing the velocity. If the object is a meteor, the mass, m, and air resistance, k, will decrease as the meteor burns up in the atmosphere. The mass is proportional to r^3 ($r =$ radius) and the air resistance, presumably dependent on the surface area, may be assumed to be proportional to r^2, so that $k/m = k_0/r$. The rate at which the meteor's radius decreases as it burns up may depend on r, on the velocity y', and, since the density of the atmosphere depends on y, on y itself. However, we will construct a very simple model where the rate is just proportional to the square of the velocity,

$$r' = -c_0(y')^2$$

We solve (1) and (2), with $k_0 = 0.005$, $c_0 = 10^{-8}$, $g = 9.8$ and initial conditions $y(0) = 100,000$ meters, $y'(0) = -1000$ meters/second, $r(0) = 1$ meter.
#include <ims1.h>
#include <stdio.h>

#define NEQ 2

void fcn(int neq, int ido, float t, float y[], float hidrvs[]);

int main() {
 int iend, ido, k, korder[NEQ];
 float delta, t, tend, y[3], eqnerr[NEQ], hidrvs[NEQ];

 /* Initialize */
 ido = 1;
 t = 0.0;
 y[0] = 100000.0;
 y[1] = -1000.0;
 y[2] = 1.0;
 korder[0] = 2;
 korder[1] = 1;
 eqnerr[0] = .003;
 eqnerr[1] = .003;

 /* Write Title */
 printf(" T Y1/Y2 Y1P ");
 printf("Y1PP/Y2PP\n");

 /* Integrate ODE */
 iend = 0;
 delta = 10.0;

 for(k=0;k<6;k++){
 iend += 1;
 tend = t + delta;
 if(tend > 50.0) tend = 50.0;
 imsl_f_ode_adams_krogh (NEQ, &t, tend, &ido, y, hidrvs, fcn,
 IMSL_EQ_ORDER, korder,
 IMSL_EQ_ERR, eqnerr,
 0);
 if(iend < 6){
 printf("%15.4f %15.4f %15.4f %15.4f\n",
 t, y[0], y[1], hidrvs[0]);
 printf("%15.4f %15.4f\n",
 y[2], hidrvs[1]);
 }
 }

 /* Finish up */
 if (iend == 5) ido = 3;
}
void fcn(int neq, int ido, float t, float y[], float hidrvs[])
{
 hidrvs[0] = -9.8 - .005/y[2]*y[1];
 hidrvs[1] = -1.e-8 * y[1] * y[1];
}

Output

<table>
<thead>
<tr>
<th>T</th>
<th>Y1/Y2</th>
<th>Y1P</th>
<th>Y1PP/Y2PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0000</td>
<td>89773.0391</td>
<td>-1044.0096</td>
<td>-3.9701</td>
</tr>
<tr>
<td></td>
<td>0.8954</td>
<td></td>
<td>-0.0109</td>
</tr>
<tr>
<td>20.0000</td>
<td>79150.9922</td>
<td>-1078.6333</td>
<td>-2.9083</td>
</tr>
<tr>
<td></td>
<td>0.7826</td>
<td></td>
<td>-0.0116</td>
</tr>
<tr>
<td>30.0000</td>
<td>68240.9531</td>
<td>-1101.0377</td>
<td>-1.5031</td>
</tr>
<tr>
<td></td>
<td>0.6635</td>
<td></td>
<td>-0.0121</td>
</tr>
<tr>
<td>40.0000</td>
<td>57184.9180</td>
<td>-1106.9633</td>
<td>0.4253</td>
</tr>
<tr>
<td></td>
<td>0.5413</td>
<td></td>
<td>-0.0123</td>
</tr>
<tr>
<td>50.0000</td>
<td>46178.1445</td>
<td>-1089.8291</td>
<td>3.1699</td>
</tr>
<tr>
<td></td>
<td>0.4201</td>
<td></td>
<td>-0.0119</td>
</tr>
</tbody>
</table>

Warning Errors

IMSL_TOLERANCE_TOO_SMALL
The requested error tolerance, # is too small. Using # instead.

IMSL_RESTART
The stepsize has been reduced too rapidly The integrator is going to do a restart.

Fatal Errors

IMSL_ADJUST_STEPSIZE1
The current step length = #, is less than the minimum stepleth, "hmin" = #, at the conclusion of the starting phase of the integration. Decreasing "hmin" to a value less than or equal to # may help.

IMSL_ADJUST_STEPSIZE2
The integrator needs to take a step smaller than # in order to maintain the requested local error. Decreasing "hmin" to a value less than or equal to # may help.

IMSL_INCORRECT_TEND
Either the new output point precedes the last one or it has the same value. "tend" = #.
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_ADJUST_ERROR_TOLERANCE</td>
<td>The step length, $H = #$, is so small that when $T_n + H$ is formed, the result will be the same as T_n, where T_n is the base value of the independent variable. If this problem is not due to a nonintegrable singularity, it can probably be corrected by translating "t" so that it is closer to 0. Reducing the error tolerance for the equations through argument "eqnerr" may also help with this problem.</td>
</tr>
<tr>
<td>IMSL_ERROR_TOLERANCE</td>
<td>A local error tolerance of zero has been requested.</td>
</tr>
<tr>
<td>IMSL_ERROR_PREVIOUS</td>
<td>A fatal error has occurred because of the error reported in the previous error message.</td>
</tr>
</tbody>
</table>
| IMSL_STOP_USER_FCN | Request from user supplied function to stop algorithm.
User flag = "#". |
The section describes an algorithm and a corresponding integrator function `imsl_f_pde_1d_mg` for solving a system of partial differential equations.

Equation 1

\[u_t = f(u, x, t), \quad x_L < x < x_R, \quad t > t_0 \]

This software is a one-dimensional differential equation solver. It requires the user to provide initial and boundary conditions in addition to a function for the evaluation of \(u_t \). The integration method is noteworthy due to the maintenance of grid lines in the space variable, \(x \). Details for choosing new grid lines are given in Blom and Zegeling, (1994). The class of problems solved with `imsl_f_pde_1d_mg` is expressed by **Equation 1** and given in more detail by:

Equation 2

\[
C_j \sum_{k=1}^{NPDE} k \left(x, t, u, u_x \right) \frac{\partial u}{\partial t} = x^{-m} \frac{\partial}{\partial x} \left(x^m R_j \left(x, t, u, u_x \right) \right) - Q_j \left(x, t, u, u_x \right),
\]

\[j = 1, \ldots, NPDE, \quad x_L < x < x_R, \quad t > t_0, \quad m \in \{0, 1, 2\} \]

The vector \(u = [u^1, \ldots, u^{NPDE}]^T \) is the solution. The integer value \(NPDE \geq 1 \) is the number of differential equations. The functions \(R_j \) and \(Q_j \) can be regarded, in special cases, as flux and source terms. The functions \(u, C_j, k, R_j, Q_j \) are expected to be continuous. Allowed values for the integer \(m \) are any of \(m = 0, 1, 2 \). These are respectively for problems in Cartesian, cylindrical or polar, and spherical coordinates. In the two cases with \(m > 0 \), the interval \([x_L, x_R]\) must not contain \(x = 0 \) as an interior point.

The boundary conditions have the master equation form

Equation 3

\[\beta_j(x, t) R_j(x, t, u, u_x) = \gamma_j(x, t, u, u_x), \]

\[\text{at } x = x_L \text{ and } x = x_R, \quad j = 1, \ldots, NPDE \]

In the boundary conditions the functions \(\beta_j \) and \(\gamma_j \) are continuous. In the two cases with \(m > 0 \), with an endpoint of \([x_L, x_R]\) at 0, the finite value of the solution at \(x = 0 \) must be ensured. This requires the specification of the solution at \(x = 0 \), or it implies that \(R_j |_{x=x_L} = 0 \) or \(R_j |_{x=x_R} = 0 \). The initial values satisfy

\[u(x, t_0) = u_0(x), \quad x \in [x_L, x_R], \text{ where } u_0 \text{ is a piece-wise continuous vector function of } x \text{ with } NPDE \text{ components.} \]
The user must pose the problem so that mathematical definitions are known for the functions

\[C_{j,k}, R_j, Q_j, \beta_j, \gamma_j \text{ and } u_0 \]

These functions are provided to the function `ims1_f_pde_1d_mg` in the form of two user-supplied functions. This form of the usage interface is explained below and illustrated with several examples. \(u_0 \) can be supplied as the input argument \(u \) or by an optional user-supplied function. Users comfortable with the description of this algorithm may skip directly to the Examples section.

Description Summary

Equation 1 is approximated at \(N = \text{ngrids} \) time-dependent grid values

\[x_L = x_0 < x_1 < \ldots < x_i(t) < \ldots < x_{N+1} = x_R. \]

Using the total differential \(\frac{du}{dt} = u_t + u_x \frac{dx}{dt} \) transforms the differential equation to the form

\[u_t = \frac{du}{dt} - u_x \frac{dx}{dt} = f(u, x, t), \quad x_L < x < x_R \]

Using central divided differences for the factor \(u_x \) leads to the system of ordinary differential equations in implicit form

\[\frac{dU_i}{dt} - \frac{(U_{i+1} - U_{i-1})}{(x_{i+1} - x_{i-1})} \frac{dx_i}{dt} = F_i, \quad t > t_0, \quad i = 1, \ldots, N \]

The terms \(U_i, F_i \) respectively represent the approximate solution to the partial differential equation and the value of \(f(u, x, t) \) at the point \((u, x, t) = (U_i, x_i(t), t) \). The truncation error from this approximation is second-order in the space variable \(x \). The above ordinary differential equations are underdetermined, so additional equations are added for determining the time-dependent grid points. These additional equations contain parameters that can be adjusted by the user. Often it will be necessary to modify these parameters to solve a difficult problem. For this purpose the following quantities are needed:

\[\Delta x_i = x_{i+1} - x_i, \quad n_i = \Delta x_i^{-1} \]
\[\mu_i = n_i - \kappa (\kappa + 1) (n_{i+1} - 2n_i + n_{i-1}), \quad 0 \leq i \leq N \]
\[n_{i-1} \equiv n_0, \quad n_{N+1} \equiv n_N \]

The values \(n_i \) are the so-called point concentration of the grid. The parameter \(\kappa \geq 0 \) denotes a spatial smoothing value. Now the grid points are defined implicitly so that

\[\frac{\mu_{i-1} + \tau \frac{du_{i-1}}{dt}}{M_{i-1}} = \frac{\mu_i + \tau \frac{du_i}{dt}}{M_i}, \quad 1 \leq i \leq N \]

The parameter \(\tau \geq 0 \) denotes a time-smoothing value. If the value \(\tau \) is chosen to be large, this results in a fixed spatial grid. Increasing \(\tau \) from its default value avoids the error condition where grid lines cross. The divisors are defined by
The value κ determines the level of clustering or spatial smoothing of the grid points. Decreasing κ from its default values also decreases the amount of spatial smoothing. The parameters M_i approximate arc length and help determine the shape of the grid or x_i distribution. The parameter τ prevents the grid movement from adjusting immediately to new values of the M_i, thereby avoiding oscillations in the grid that cause large relative errors in the solution. This is important when applied to solutions with steep gradients.

The discrete form of the differential equation and the smoothing equations are combined to yield the implicit system of differential equations

$$M^2_i = \alpha + NPDE^{-1} \sum_{j=1}^{NPDE} \left(\frac{U_{i+1}^j - U_i^j}{(\Delta x_i)^2} \right)^2$$

This is usually a stiff differential-algebraic system. It is solved using the integrator `imsl_f_dea_petzold_gear`. If `imsl_f_dea_petzold_gear` is needed during the evaluations of the differential equations or boundary conditions, it must be done in a separate thread to avoid possible problems with `imsl_f_pde_1d_mg`'s internal use of `imsl_f_dea_petzold_gear`. The only options for `imsl_f_dea_petzold_gear` set by `imsl_f_pde_1d_mg` are the Maximum BDF Order, and the absolute and relative error values, documented as `IMSL_MAX_BDF_ORDER`, and `IMSL_ATOL_RTOL_SCALARS`.
pde_1d_mg

Solves a system of one-dimensional time-dependent partial differential equations using a moving-grid interface.

Synopsis

```c
#include <imsl.h>

void imsl_f_pde_1d_mg_mgr (int task, void **state, ... , 0)

void imsl_f_pde_1d_mg (int npdes, int ngrids, float *t, float tend, float u[], float xl, float xr, void *state, void pde_systems(), void boundary_conditions(), ... , 0)
```

The void functions `imsl_d_pde_1d_mg_mgr` and `imsl_d_pde_1d_mg` are for double type arithmetic accuracy.

The function `imsl_f_pde_1d_mg_mgr` is used to initialize and reset the problem, and the function `imsl_f_pde_1d_mg` is the integrator. The descriptions of both functions are provided below.

NOTE: The integrator is provided with single or double precision arithmetic. We recommend using the double precision interface `imsl_d_pde_1d_mg`.

Required Arguments for `imsl_f_pde_1d_mg_mgr`

- `int task` (Input)
 - This function must be called with task set to `IMSL_PDE_INITIALIZE` to set up for solving a system and with `task` equal to `IMSL_PDE_RESET` to clean up after it has been solved. These values for `task` are defined in the include file, `imsl.h`.

- `void **state` (Input/Output)
 - The current state of the PDE solution is held in a structure pointed to by `state`. It cannot be directly manipulated.

Required Arguments for `imsl_f_pde_1d_mg`

- `int npdes` (Input)
 - The number of differential equations.

- `int ngrids` (Input)
 - The number of spatial grid/mesh points, including the boundary points x_L and x_R.
**float* `t` (Input/Output)

On input, `t` is the initial independent variable value. On output, `t` is replaced by `tend`, unless error conditions arise. This is first set to the value of the independent variable `t_0` where the integration of \(u_i \) begins. It is set to the value `tend` on return.

**float* `tend` (Input)

Mathematical value of `t` where the integration of \(u_i \) ends. Note: Starting values of `t < tend` imply integration in the forward direction, while values of `t > tend` imply integration in the backward direction. Either direction is permitted.

**float* `u[]` (Input/Output)

Array of size `npdes+1` by `ngrids`. On input, the first `npdes` rows contain initial values for all components of the system at the equally spaced grid of values. It is not required to define the grid values in the last row of `u`. On output `u[]` contains the approximate solution value \(U_i(x_j(tend), tend) \) at array location `u[(npdes*ngrids)+j]`. The grid value `x_j(tend)` is in location `u[(npdes*ngrids)+j]`. Normally the grid values are equally spaced as the integration starts. Variable grid values can be provided by defining them as output from the user function `initial_conditions` supplied by either `IMSL_INITIAL_CONDITIONS` or `IMSL_INITIAL_CONDITIONS_W_DATA` optional arguments.

**float* `xl` (Input)

Lower grid boundary, \(x_L\).

**float* `xr` (Input)

Upper grid boundary, \(x_R\).

**void* `state` (Input/Output)

The current state of the solution is held in a structure pointed to by `state`. It must be initialized by a call to `IMSL_INITIAL_CONDITIONS` supplied by either `IMSL_INITIAL_CONDITIONS_W_DATA` optional arguments.

**void* `pde_systems(float* t, float* x, int npdes, int ngrids, float* full_u, float* grid_u, float* dudx, float* c, float* q, float* r, int* ires)` (Input)

A user-supplied function to evaluate the differential equation, as expressed in Equation 2. Each application requires a function specifically designed for the task, and this function is normally written by the user of the integrator.

Evaluate the terms of the system of Equation 2. A default value of `m = 0` is assumed, but this can be changed to one of the choices, `m = 1, 2`. Use the optional arguments `IMSL_CART_COORDINATES, IMSL_CYL_COORDINATES, IMSL_SPH_COORDINATES` for the respective values `m = 0, 1, 2`. Return the values in the arrays as indicated:
If any of the functions cannot be evaluated, set \(\text{ires} = 3 \). Otherwise, do not change the value of \(\text{ires} \).

```c
void boundary_conditions(float t, float *beta, float *gamma, float *full_u, float *grid_u, float *dudx, int npdes, int grids, int left, int *ires) (Input)
User-supplied function to supply the boundary conditions, as expressed in Equation 2.
```

```c
u' = grid_u[j]
U = full_u
\frac{\partial u_j}{\partial x} = u'_x = dudx[j]
C[l][k] = C_{j,k}(x,t,u,u_x)
r[j] = r_j(x,t,u,u_x)
q[j] = q_j(x,t,u,u_x)
j,k = 0,...,NPDE - 1
```

The value \(x \in \{x_L, x_R\} \), and the flag \(\text{left} = 1 \) for \(x = x_L \). The flag has the value \(\text{left} = 0 \) for \(x = x_R \).

If any of the functions cannot be evaluated, set \(\text{ires} = 3 \). Otherwise, do not change the value of \(\text{ires} \).

Synopsis with Optional Arguments for imsl_f_pde_1d_mg_mgr

```c
#include <imsl.h>

void imsl_f_pde_1d_mg_mg(int task, void **state,

IMSL_CART_COORDINATES, or
IMSL_CYL_COORDINATES, or
IMSL_SPH_COORDINATES,
IMSL_TIME_SMOOTHING, float tau,
IMSL_SPATIAL_SMOOTHING, float kappa,
```
IMSL_MONITOR_REGULARIZING, float alpha,
IMSL_MAX_BDF_ORDER, int max_bdf_order,
IMSL_USER_FACTOR_SOLVE, int fac(), void sol(),
IMSL_USER_FACTOR_SOLVE_W_DATA, int fac(), void sol(), void data,
IMSL_INITIAL_CONDITIONS, void initial_conditions()
IMSL_INITIAL_CONDITIONS_W_DATA, void initial_conditions(), void data, 0)

Optional Arguments

IMSL_CART_COORDINATES, or
IMSL_CYL_COORDINATES, or
IMSL_SPH_COORDINATES
 IMSL_CART_COORDINATES specifies cartesian coordinates, where \(m = 0 \) in Equation 2.
 IMSL_CYL_COORDINATES specifies cylindrical or polar coordinates, where \(m = 1 \) in Equation 2.
 IMSL_SPH_COORDINATES specifies spherical coordinates, where \(m = 2 \) in Equation 2.
 Default: IMSL_CART_COORDINATES

IMSL_TIME_SMOOTHING, float tau, (Input)
 Resets the value of the parameter \(\tau \geq 0 \), described above.
 Default: \(\tau = 0 \).

IMSL_SPATIAL_SMOOTHING, float kappa, (Input)
 Resets the value of the parameter \(\kappa \geq 0 \), described above.
 Default: \(\kappa = 2 \).

IMSL_MONITOR_REGULARIZING, float alpha, (Input)
 Resets the value of the parameter \(\alpha \geq 0 \), described above.
 Default: \(\alpha = 0.01 \).

IMSL_MAX_BDF_ORDER, int max_bdf_order, (Input)
 Resets the maximum order for the \textit{bdf} formulas used in \texttt{imsl_f_dea_petzold_gear}. The new value can be any integer between 1 and 5. Some problems benefit by making this change. The default value of max_bdf_order was chosen because \texttt{imsl_f_dea_petzold_gear} may cycle on its selection of order and step-size with max_bdf_order higher than value 2.
 Default: max_bdf_order=2.

IMSL_USER_FACTOR_SOLVE, int fac(int neq, int iband, float *a), void sol(int neq, int iband, float *g, float *y) (Input)
 User-supplied functions to factor \(A \), and solve the system \(A \Delta y = \Delta g \). Use of this optional argument
allows for handling the factorization and solution steps in a problem-specific manner. If successful, \(\text{fac} \) should return 0, if unsuccessful, \(\text{fac} \) should return a non-zero value. See Example 5 - A Flame Propagation Model for sample usage of this optional argument.

\[\text{IMSL_USER_FACTOR_SOLVE_W_DATA, int fac(int neq, int iband, float*A, void*data), void sol(int neq, int iband, float*G, float*Y, void*data), void*data (Input)} \]

User-supplied functions to factor \(A \), and solve the system \(A \Delta y = \Delta g \). The argument \(data \) is a pointer to the data that is passed to the user-supplied function.

\[\text{IMSL_INITIAL_CONDITIONS, void initial_conditions(int npdes, int ngrids, float*u)} \]
(Input)

User-supplied function to supply the initial values for the system at the starting independent variable value \(t \). This function can also provide a non-uniform grid at the initial value. Here \(npdes \) is the number of differential equations, \(ngrids \) is the number of grid points, and \(u \) is an array of size \(npdes+1 \) by \(ngrids \), containing the approximate solution value \(U_j(x_j(tend), tend) \) in location \(u[i\times ngrids+j] \). The grid values are equally spaced on input, but can be updated as desired, provided the values are increasing. Update the grid values in array locations \(u[(npdes \times ngrids) + j] \), where \(0 \leq j \leq ngrids \).

\[\text{IMSL_INITIAL_CONDITIONS_W_DATA, void initial_conditions(int npdes, int ngrids, float*u, float*grid, void*data), void*data (Input)} \]

User-supplied function to supply the initial values for the system at the starting independent variable value \(t \). This function can also provide a non-uniform grid at the initial value. The argument \(data \) is a pointer to the data that is passed to the user-supplied function.

Synopsis with Optional Arguments for imsl_f_pde_1d_mg

```
#include <imsl.h>

void imsl_f_pde_1d_mg (int npdes, int ngrids, float*t, float tend, float u[], float xl, float xr, void*state, void pde_systems(), void boundary_conditions(),
                       IMSL_RELATIVE_TOLERANCE, float rtol,
                       IMSL_ABSOLUTE_TOLERANCE, float atol,
                       IMSL_PDE_SYS_W_DATA, void pde_systems(), void* data,
                       IMSL_BOUNDARY_COND_W_DATA, void boundary_conditions(), void* data,
                       0)
```
Optional Arguments

IMSL_RELATIVE_TOLERANCE, float rtol, (Input)
This option resets the value of the relative accuracy parameter used in
imsl_f_dea_petzold_gear.
Default: rtol=1.0E-2 for single precision, rtol=1.0E-4 for double precision.

IMSL_ABSOLUTE_TOLERANCE, float atol, (Input)
This option resets the value of the absolute accuracy parameter used in
imsl_f_dea_petzold_gear.
Default: atol=1E-2 for single precision, atol=1E-4 for double precision.

IMSL_PDE_SYS_W_DATA, void pde_systems(float t, float x, int npdes, int ngrids,
float *full_u, float *grid_u, float *dudx, float *c, float *q, float *r, int *ires, void *data),
void *data (Input)
User-supplied function to evaluate the differential equation, as expressed in Equation 2. The argument
data is a pointer to the data that is passed to the user-supplied function.

IMSL_BOUNDARY_COND_W_DATA, void boundary_conditions (float t, float *beta,
float *gamma, float *full_u, float *grid_u, float *dudx, int npdes, int ngrids, int left,
int *ires, void *data), void *data (Input)
User-supplied function to supply the boundary conditions, as expressed in Equation 2. The argument
data is a pointer to the data that is passed to the user-supplied function.

Examples

Remarks on the Examples

Due to its importance and the complexity of its interface, function imsl_f_pde_1d_mg is presented with sev-
eral examples. Many of the program features are exercised. The problems complete without any change to the
optional arguments, except where these changes are required to describe or to solve the problem.

In many applications the solution to a PDE is used as an auxiliary variable, perhaps as part of a larger design or
simulation process. The truncation error of the approximate solution is commensurate with piece-wise linear
interpolation on the grid of values, at each output point. To show that the solution is reasonable, a graphical dis-
play is revealing and helpful. We have not provided graphical output as part of our documentation, but users may
already have the Rogue Wave, Inc. product, PV–WAVE, which is not included with IMSL C Numerical Library. Exam-
iples 1 through 8 write results in files pde_ex0#.out that can be visualized with PV–WAVE. We provide a script
of commands, pde_1d_mg_plot.pro, for viewing the solutions. This is listed below. The grid of values and
each consecutive solution component is displayed in separate plotting windows. The script and data files written
by examples 1-8 on a SUN-SPARC system are in the directory for IMSL C Numerical Library examples. When exe-
cuting PV_WAVE, use the command line

pde_1d_mg_plot, filename='pde_ex0#.out'
to view the output of a particular example. The symbol ‘#’ will be one of the choices 1, 2, ..., 8. However, it is not necessary to have PV_WAVE installed to execute the examples.

To view the code, see Code for PV-WAVE Plotting.

Example 1 - Electrodynamics Model

This example is from Blom and Zegeling (1994). The system is

\[
\begin{align*}
 u_t &= \varepsilon pu_{xx} - g(u - v) \\
 v_t &= pv_{xx} + g(u - v),
\end{align*}
\]

where \(g(z) = \exp(\eta z / 3) - \exp(-2\eta z / 3) \)

\[0 \leq x \leq 1, 0 \leq t \leq 4\]

\[u_x = 0 \text{ and } v = 0 \text{ at } x = 0\]

\[u = 1 \text{ and } v_x = 0 \text{ at } x = 1\]

\[\varepsilon = 0.143, p = 0.1743, \eta = 17.19\]

We make the connection between the model problem statement and the example:

\[
\begin{align*}
 C &= I_2 \\
 m &= 0, R_1 &= \varepsilon pu_x, R_2 &= pv_x \\
 Q_1 &= g(u - v), Q_2 &= -Q_1 \\
 u &= 1 \text{ and } v = 0 \text{ at } t = 1
\end{align*}
\]

The boundary conditions are

\[
\begin{align*}
 \beta_1 &= 1, \beta_2 = 0, \gamma_1 = 0, \gamma_2 = v, \text{ at } x = x_L = 0 \\
 \beta_1 &= 0, \beta_2 = 1, \gamma_1 = u - 1, \gamma_2 = 0, \text{ at } x = x_R = 1
\end{align*}
\]

This is a non-linear problem with sharply changing conditions near \(t = 0 \). The default settings of integration parameters allow the problem to be solved. The use of \texttt{imsl_f_pde_1d_mg} requires two subroutines provided by the user to describe the differential equations, and boundary conditions.

```c
#include <stdio.h>
#include <math.h>
#include <imsl.h>

/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
                          double full_u[], double grid_u[], double dudx[], double *c,
                          double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[], double gamma[],
                                double full_u[], double grid_u[], double dudx[], int npdes,
                                int ngrids, int left, int *ires);

#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 2
```
#define NFRAMES 5
#define N 51
#define U(I_,J_) u[I_ * ngrids + J_]
int main ()
{
 char *state = NULL;
 int i, j;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout;
 double delta_t = 10.0, tend = 4.0;
 int npdes = NPDE, ngrids = N;
 double xl = 0.0, xr = 1.0;
 FILE *file1;

 file1 = fopen ("pde_ex01.out", "w");
imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
fprintf (file1, " %d	%d	%d", npdes, ngrids, NFRAMES);
fprintf (file1, "	%f	%f	%f	%f\n", xl, xr, t0, tend);

 /* initialize u */
initial_conditions (npdes, ngrids, u);
imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state, 0);
tout = 1e-3;
do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl, xr, state,
pde_systems, boundary_conditions, 0);

 fprintf (file1, "%f\n", tout);
for (i = 0; i < npdes + 1; i++)
 {
for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }

 t0 = tout;
tout = tout * delta_t;
tout = MIN (tout, tend);
 }
while (t0 < tend);
imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
undef MIN
undef NPDE
undef NFRAMES
undef N
undef U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]

int i;
for (i = 0; i < ngrids; i++)
{
 U (0, i) = 1.0;
 U (1, i) = 0.0;
}
#undef U
}

static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_ * npdes + J_]
 double z;
 static double eps = 0.143;
 static double eta = 17.19;
 static double pp = 0.1743;
 C (0, 0) = 1.0;
 C (0, 1) = 0.0;
 C (1, 0) = 0.0;
 C (1, 1) = 1.0;
 r[0] = pp * dudx[0] * eps;
 r[1] = pp * dudx[1];
 z = eta * (grid_u[0] - grid_u[1]) / 3.0;
 q[0] = exp (z) - exp (-2.0 * z);
 q[1] = -q[0];
 return;
#undef C
}

static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int ngrids, int npdes, int left, int *ires)
```c
if (left)
{
    beta[0] = 1.0;
    beta[1] = 0.0;
    gamma[0] = 0.0;
    gamma[1] = grid_u[1];
}
else
{
    beta[0] = 0.0;
    beta[1] = 1.0;
    gamma[0] = grid_u[0] - 1.0;
    gamma[1] = 0.0;
}
return;
```

Example 2 - Inviscid Flow on a Plate

This example is a first order system from Pennington and Berzins, (1994). The equations are

\[
\begin{align*}
\frac{du}{dt} &= -v_x \\
\frac{d^2 u}{dt^2} &= -v u_x + w_{xx} \\
\end{align*}
\]

\[w = u_x, \text{ implying that } \frac{d^2 u}{dt^2} = -v u_x + u_{xx}\]

Following elimination of \(w\), there remain \(NPDE = 2\) differential equations. The variable \(t\) is not time, but a second space variable. The integration goes from \(t = 0\) to \(t = 5\). It is necessary to truncate the variable \(x\) at a finite value, say \(x_{\text{max}} = x_R = 25\). In terms of the integrator, the system is defined by letting \(m = 0\) and

\[
C = \begin{bmatrix} C_{jk} \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}, R = \begin{bmatrix} -v \\ u_x \end{bmatrix}, Q = \begin{bmatrix} 0 \\ vu_x \end{bmatrix}
\]

The boundary conditions are satisfied by

\[
\beta = 0, \gamma = \begin{bmatrix} u - \exp(-20r) \\ v \end{bmatrix}, \text{ at } x = x_L
\]

\[
\beta = 0, \gamma = \begin{bmatrix} u - 1 \\ v_x \end{bmatrix}, \text{ at } x = x_R
\]

We use \(N = 10 + 51 = 61\) grid points and output the solution at steps of \(\Delta t = 0.1\).

This is a non-linear boundary layer problem with sharply changing conditions near \(t = 0\). The problem statement was modified so that boundary conditions are continuous near \(t = 0\). Without this change the underlying integration software, `imsl_f_dea_petzold_gear`, cannot solve the problem. The continuous blending function \(u - \exp(-20r)\) is arbitrary and artfully chosen. This is a mathematical change to the problem, required because
of the stated discontinuity at $t = 0$. Reverse communication is used for the problem data. No additional user-written subroutines are required when using reverse communication. We also have chosen 10 of the initial grid points to be concentrated near $X_1 = 0$, anticipating rapid change in the solution near that point. Optional changes are made to use a pure absolute error tolerance and non-zero time-smoothing.

```c
#include <stdio.h>
#include <math.h>
#include <imsl.h>

/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
                        double full_u[], double grid_u[],
                        double dudx[], double *c, double q[],
                        double r[], int *ires);
static void boundary_conditions (double t, double beta[],
                                double gamma[], double full_u[],
                                double grid_u[], double dudx[],
                                int npdes, int ngrids, int left,
                                int *ires);

#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 2
#define N1 10
#define N2 51
#define N (N1+N2)
#define U(I_,J_) u[I_*ngrids + J_]
FILE *file1;
int main ()
{
    char *state;
    int i, j;
    int nframes;
    double u[(NPDE + 1) * N];
    double t0 = 0.0, tout;
    double delta_t = 1e-1, tend = 5.0;
    int npdes = NPDE, ngrids = N;
    double xl = 0.0, xr = 25.0;
    double tau = 1.0e-3;
    double atol = 1e-2;
    double rtol = 0.0;

    file1 = fopen ("pde_ex02.out", "w");
imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
nframes = (int) ((tend + delta_t) / delta_t);
    fprintf (file1, "%d\t%d\t%d\n", npdes, ngrids, nframes);
    fprintf (file1, "%d\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);
```

imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_TIME_SMOOTHING, tau,
 IMSL_INITIAL_CONDITIONS, initial_conditions, 0);

 t0 = 0.0;
tout = delta_t;
do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions,
 IMSL_RELATIVE_TOLERANCE, rtol,
 IMSL_ABSOLUTE_TOLERANCE, atol, 0);

 t0 = tout;
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 }
 fprintf (file1, "\n");
 tout = tout + delta_t;
tout = MIN (tout, tend);
 }
while (t0 < tend);

 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
fclose (file1);

#define U(I_,J_) u[I_* ngrids + J_]

static void
initial_conditions (int npdes, int ngrids, double u[])
 {
#define U(I_,J_) u[I_* ngrids + J_]

 int i, j, i_, n1 = 10, n2 = 51, n;
double dx1, dx2;
double xl = 0.0, xr = 25.0;
n = n1 + n2;
for (i = 0; i < ngrids; i++)
{
 U (0, i) = 1.0;
 U (1, i) = 0.0;
 U (2, i) = 0.0;
}
dx1 = xr / n2;
dx2 = dx1 / n1;

/* grid */
for (i = 1; i <= n1; i++)
{
 i_ = i - 1;
 U (2, i_) = (i - 1) * dx2;
}
for (i = n1 + 1; i <= n; i++)
{
 i_ = i - 1;
 U (2, i_) = (i - n1) * dx1;
}
for (i = 0; i < npdes + 1; i++)
{
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
}
#endif
}

static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires)
{
#define C(I_, J_) c[I_ * npdes + J_]

double z;

 C (0, 0) = 1.0;
 C (1, 0) = 0.0;
 C (0, 1) = grid_u[0];
 C (1, 1) = 0.0;

 r[0] = -grid_u[1];
 r[1] = dudx[0];
q[0] = 0.0;
q[1] = grid_u[1] * dudx[0];
return;
#endif

static void boundary_conditions (double t, double beta[], double gamma[],
double full_u[], double grid_u[], double dudx[],
int npdes, int ngrids, int left, int *ires)
{
 double dif;

 beta[0] = 0.0;
 beta[1] = 0.0;
 if (left)
 {
 dif = exp (-20.0 * t);
 gamma[0] = grid_u[0] - dif;
 gamma[1] = grid_u[1];
 }
 else
 {
 gamma[0] = grid_u[0] - 1.0;
 gamma[1] = dudx[1];
 }
 return;
}

Example 3 - Population Dynamics

This example is from Pennington and Berzins (1994). The system is

\[
\begin{align*}
 u_t &= -u_x - I(t)u, \quad 0 \leq x \leq a = x_R, t \geq 0 \\
 I(t) &= \int_0^a u(x,t) \, dx \\
 u(x,0) &= \frac{\exp(-x)}{2 - \exp(-a)} \\
 u(0,t) &= g \left(\int_0^a b(x,I(t))u(x,t) \, dx, t \right), \text{ where} \\
 b(x,y) &= \frac{xye^{x}}{(y+1)^2}, \text{ and} \\
 g(z,t) &= \frac{4z(2 - 2e^{a} + e^{-t})^2}{(1 - e^{-a})(1 - (1+2a)e^{-2a})(1 - e^{-a} + e^{-t})}
\end{align*}
\]

This is a notable problem because it involves the unknown
\[u(x,t) = \frac{\exp(-x)}{1 - \exp(-a) + \exp(-t)} \]

across the entire domain. The software can solve the problem by introducing two dependent algebraic equations:

\[v_1(t) = \int_0^a u(x,t) \, dx, \]
\[v_2(t) = \int_0^a x \exp(-x) u(x,t) \, dx \]

This leads to the modified system

\[u_t = -u_x - v_1 u, \quad 0 \leq x \leq a, \quad t \geq 0 \]
\[u(0,t) = \frac{g(1/2)v_1v_2}{(v_1 + 1)^2} \]

In the interface to the evaluation of the differential equation and boundary conditions, it is necessary to evaluate the integrals, which are computed with the values of \(u(x,t) \) on the grid. The integrals are approximated using the trapezoid rule, commensurate with the truncation error in the integrator.

This is a non-linear integro-differential problem involving non-local conditions for the differential equation and boundary conditions. Access to evaluation of these conditions is provided using the optional arguments IMSL_PDE_SYS_W_DATA and IMSL_BOUNDARY_COND_W_DATA. Optional changes are made to use an absolute error tolerance and non-zero time-smoothing. The time-smoothing value \(\tau = 1 \) prevents grid lines from crossing.

```c
#include <stdio.h>
#include <math.h>
#include <imsl.h>
/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
                        double full_u[], double grid_u[],
                        double dudx[], double *c, double q[],
                        double r[], int *ires);
static void boundary_conditions (double t, double beta[],
                                 double gamma[], double full_u[],
                                 double grid_u[], double dudx[],
                                 int npdes, int ngrids, int left,
                                 int *ires);
static double fcn_g (double z, double t);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 101
#define U(I_,J_) u[I_ * ngrids + J_]
```
FILE *file1;
int main ()
{
 int i, j, nframes;
 double u[(NPDE + 1) * N], mid[N - 1];
 int npdes = NPDE, ngrids = N;
 double t0 = 0.0, tout;
 double delta_t = 1e-1, tend = 5.0, a = 5.0;
 char *state;
 double xl = 0.0, xr = 5.0;
 double *ptr_u;
 double tau = 1.0;
 double atol = 1e-2;
 double rtol = 0.0;

 file1 = fopen ("pde_ex03.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) (tend + delta_t) / delta_t;
 fprintf (file1, " %d	%d	%d", npdes, ngrids, nframes);
 fprintf (file1, "	%f	%f	%f	%f"
 , xl, xr, t0, tend);
 ptr_u = u;

 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_TIME_SMOOTHING, tau,
 IMSL_INITIAL_CONDITIONS, initial_conditions, 0);

 tout = delta_t;
 for (i = 0; i < npdes + 1; i++)
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions,
 IMSL_RELATIVE_TOLERANCE, rtol,
 IMSL_ABSOLUTE_TOLERANCE, atol, 0);

 t0 = tout;
 if (t0 <= tend)
 {
 fprintf (file1, "%f\n", t0);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
 }
 }
}

FILE *file1;
int main ()
{
tout = MIN (tout + delta_t, tend);
while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
 fclose (file1);
}

#undef MIN
#undef NPDE
#undef N
#undef XL
#undef XR
#undef U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
 #define U(I_,J_) u[I_ * ngrids + J_]
 #define XL 0.0
 #define XR 5.0

 int i, j;
 double dx, xi;

 dx = (XR - XL) / (ngrids - 1);
 for (i = 0; i < ngrids; i++)
 {
 U (0, i) = exp (-U (1, i)) / (2.0 - exp (-XR));
 }

 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
}

#undef U
#undef XL
#undef XR
}

static void
pde_systems (double t, double x, int npdes, int ngrids,
double full_u[], double grid_u[], double dudx[],
double *c, double q[], double r[], int *ires)
{
#define U(I_,J_) full_u[I_ * ngrids + J_]

double v1;

double sum = 0.0;
int i;

c[0] = 1.0;
r[0] = -1 * grid_u[0];

for (i = 0; i < ngrids - 1; i++)
{
 sum += (U (0, i) + U (0, i + 1)) * (U (1, i + 1) - U (1, i));
}

v1 = 0.5 * sum;
q[0] = v1 * grid_u[0];

return;
#undef U
}

static void
boundary_conditions (double t, double beta[], double gamma[],
double full_u[], double grid_u[], double dudx[],
int npdes, int ngrids, int left, int *ires)
{
#define U(I_,J_) full_u[I_ * ngrids + J_]

double v1, v2, mid;

double sum = 0.0;

double sum1 = 0.0, sum2 = 0.0, sum3 = 0.0, sum4 = 0.0;
int i;

for (i = 0; i < ngrids - 1; i++)
{
 sum += (U (0, i) + U (0, i + 1)) * (U (1, i + 1) - U (1, i));
 mid = 0.5 * (U (1, i) + U (1, i + 1));
 sum1 += mid * exp (-mid) *
 ((U (0, i) + U (0, i + 1)) * (U (1, i + 1) - U (1, i)));
}

if (left)
{
 v1 = 0.5 * sum;
 v2 = 0.5 * sum1;
 beta[0] = 0.0;
\[
\gamma[0] = \frac{\text{fcn}_g(1.0, t) \times v1 \times v2}{((v1 + 1.0) \times (v1 + 1.0)) - \text{grid}_u[0]}
\]

else
{
 beta[0] = 0.0;
 gamma[0] = dudx[0];
}
return;
#undef U
}

static double
fcn_g (double z, double t)
{
 double g, a = 5.0;
 g = 4.0 \times z \times (2.0 - 2.0 \times \exp(-a) + \exp(-t)) \times \\
 (2.0 - 2.0 \times \exp(-a) + \exp(-t));
 g = g / ((1.0 - \exp(-a)) \times (1.0 - (1.0 + 2.0 \times a) \times \\
 \exp(-2.0 \times a)) \times (1.0 - \exp(-a) + \exp(-t)));
 return g;
}

Example 4 - A Model in Cylindrical Coordinates

This example is from Blom and Zegeling (1994). The system models a reactor-diffusion problem:

\[
T_z = r^{-1} \frac{\partial}{\partial r} \left(\frac{\partial T}{\partial r} \right) + \gamma \exp \left(\frac{T}{1+\varepsilon T} \right)
\]

\[
T_r(0, z) = 0, \ T(1, z) = 0, \ z > 0
\]

\[
T(r, 0) = 0, \ 0 \leq r < 1
\]

\[
\beta = 10^{-4}, \gamma = 1, \varepsilon = 0.1
\]

The axial direction \(z\) is treated as a time coordinate. The radius \(r\) is treated as the single space variable.

This is a non-linear problem in cylindrical coordinates. Our example illustrates assigning \(m = 1\) in **Equation 2**. We provide the optional argument **IMSL_CYL_COORDINATES** that resets this value from its default, \(m = 0\).

#include <stdio.h>
#include <math.h>
#include <imsl.h>

/* prototypes */
static void initial_conditions (int npdes, int ngrids, double t[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double u[], double grid_u[], double dudx[], double *c,
double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires);

#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 41
#define T(I_,J_) t[I_* ngrids + J_]

int main()
{
 int i, j, ido;
 int nframes;
 double t[(NPDE + 1) * N];
 double z0 = 0.0, zout;
 double dx1, dx2, diff;
 double delta_z = 1e-1, zend = 1.0, zmax = 1.0;
 double beta = 1e-4, gamma = 1.0, eps = 1e-1;
 char *state;
 int npdes = NPDE, ngrids = N;
 double x1 = 0.0, xr = 1.0;
 FILE *file1;
 int m = 1;

 file1 = fopen("pde_ex04.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((zend + delta_z) / delta_z) - 1;
 fprintf (file1, "%d\t%d\t%d", npdes, N, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", x1, xr, z0, zend);

 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state, IMSL_CYL_COORDINATES, 0);
 initial_conditions (npdes, ngrids, t);

 zout = delta_z;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &z0, zout, t, x1,
 xr, state, pde_systems, boundary_conditions, 0);

 z0 = zout;
 if (z0 <= zend)
 {
 fprintf (file1, "%f\n", zout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f\n", t (i, j));
 if (((j + 1) % 4) == 0)
fprintf (file1, "\n");
}
fprintf (file1, "\n");
}

zout = MIN ((zout + delta_z), zend);
while (z0 < zend);

imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
fclose (file1);
#endif

static void
initial_conditions (int npdes, int ngrids, double t[]) {
#define T(I_, J_) t[I_ * ngrids + J_]
 int i;

 for (i = 0; i < ngrids; i++) {
 T (0, i) = 0.0;
 }
#endif

static void
pde_systems (double t, double x, int npdes, int ngrids, double u[],
 double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires) {
#define C(I_, J_) c[I_ * npdes + J_]
 static double beta = 01e-4, gamma = 1.0, eps = 1e-1;

 C (0, 0) = 1.0;

 r[0] = beta * dudx[0];
 q[0] = -1.0 * gamma * exp (grid_u[0] / (1.0 + eps * grid_u[0]));
 return;
#endif

static void
boundary_conditions (double t, double beta[], double gamma[],
 double u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
Example 5 - A Flame Propagation Model

This example is presented more fully in Verwer, et al., (1989). The system is a normalized problem relating mass density \(u(x, t) \) and temperature \(v(x, t) \):

\[
\begin{align*}
 u_t &= u_{xx} - uf(v) \\
 v_t &= v_{xx} + uf(v),
\end{align*}
\]

where \(f(z) = \gamma \exp(-\beta/z) \), \(\beta = 4, \gamma = 3.52 \times 10^6 \)

\(0 \leq x \leq 1, 0 \leq t \leq 0.006 \)

\(u(x,0) = 1, v(x,0) = 0.2 \)

\(u_x = v_x = 0, x = 0 \)

\(u_x = 0, v = \beta(t), x = 1 \), where

\(\beta(t) = 1.2, \text{ for } t \geq 2 \times 10^{-4}, \text{ and} \)

\(= 0.2 + 5 \times 10^3 t, \text{ for } 0 \leq t \leq 2 \times 10^{-4} \)

This is a non-linear problem. The example shows the model steps for replacing the banded solver in the software with one of the user’s choice. Following the computation of the matrix factorization in \texttt{imsl_lin_sol_gen_band} (see Chapter 1, \textit{Linear Systems}), we declare the system to be singular when the reciprocal of the condition number is smaller than the working precision. This choice is not suitable for all problems. Attention must be given to detecting a singularity when this option is used.
double u[], double grid_u[], double dudx[],
double *c, double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double u[],
 double grid_u[], double dudx[],
 int npdes, int ngrids, int left,
 int *ires);
static int fac (int neq, int iband, double *a);
static void sol (int neq, int iband, double *g, double *y);
static double fcn (double z);
int *ipvt = NULL;
double *factor = NULL;
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 2
#define N 40
#define NEQ ((NPDE+1)*N)
#define U(I_,J_) u[I_* ngrids + J_]

int main ()
{
 int i, j, nframes;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout;
 double delta_t = 1e-4, tend = 6e-3;
 char *state;
 int npdes = NPDE, ngrids = N;
 double xl = 0.0, xr = 1.0;
 FILE *file1;
 double work[NEQ], rcond;
 double xmax = 1.0, beta = 4.0, gamma = 3.52e6;
 int max_bdf_order = 5;

 file1 = fopen ("pde_ex05.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((tend + delta_t) / delta_t) - 1;
 fprintf (file1, "	%f	%f	%f	%f
", xl, xr, t0, tend);
 initial_conditions (npdes, ngrids, u);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_MAX_BDF_ORDER, max_bdf_order,
 IMSL_USER_FACTOR_SOLVE, fac, sol, 0);
 tout = delta_t;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions, 0);
 t0 = tout;
 if (t0 <= tend)
{ fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 }
}
tout = MIN ((tout + delta_t), tend);
}
while (t0 < tend);

imsl_d_pde_1d_mg mgr (IMSL_PDE_RESET, &state, 0);
fclose (file1);
if (factor != NULL)
{
 imsl_free (factor);
}
if (ipvt != NULL)
{
 imsl_free (ipvt);
}
}
#undef MIN
#undef U

static void
initial_conditions (int npdes, int ngrids, double u[])
{
 #define U(I_,J_) u[I_ * ngrids + J_]

 int i;

 for (i = 0; i < ngrids; i++)
 {
 U (0, i) = 1.0;
 U (1, i) = 2e-1;
 }

 #undef U
}
static void
pde_systems (double t, double x, int npdes, int ngrids, double u[],
 double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_* npdes + J_]

 C (0, 0) = 1.0;
 C (0, 1) = 0.0;
 C (1, 0) = 0.0;
 C (1, 1) = 1.0;
 r[0] = dudx[0];
 r[1] = dudx[1];

 q[0] = grid_u[0] * fcn (grid_u[1]);
 q[1] = -1.0 * q[0];
 return;
#undef C
}

static void
boundary_conditions (double t, double beta[], double gamma[],
 double u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{
 if (left)
 {
 beta[0] = 0.0;
 beta[1] = 0.0;
 gamma[0] = dudx[0];
 gamma[1] = dudx[1];
 }
 else
 {
 beta[0] = 1.0;
 gamma[0] = 0.0;
 beta[1] = 0.0;
 if (t >= 2e-4)
 {
 gamma[1] = 12e-1;
 }
 else
 {
 gamma[1] = 2e-1 + 5e3 * t;
 }
 gamma[1] -= grid_u[1];
 }
 return;
}

/* Factor the banded matrix. This is the same solver used
 * internally but that is not required. A user can substitute
* one of their own.
* Note: Allowing lin_sol_gen_band to allocate ipvt and factor
* variables, then use in sol function.
*
static int
fac (int neq, int iband, double *a)
{
 double rcond, panic_flag;
 int i, j;
 double b[NEQ];

 /* Free factor and pivot sequence if previously allocated. */
 if (factor != NULL)
 {
 imsl_free (factor);
 factor = NULL;
 }
 if (ipvt != NULL)
 {
 imsl_free (ipvt);
 ipvt = NULL;
 }

 imsl_d_lin_sol_gen_band (neq, a, iband, iband, b,
 IMSL_FACTOR, &ipvt, &factor,
 IMSL_FACTOR_ONLY, IMSL_CONDITION, &rcond, 0);
 panic_flag = 0;
 if (1.0 / rcond <= imsl_d_machine (4))
 {
 panic_flag = 3;
 return panic_flag;
 }
}

static void
sol (int neq, int iband, double *g, double *y)
{
 imsl_d_lin_sol_gen_band (neq, (double *) NULL, iband, iband, g,
 IMSL_SOLVE_ONLY,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_RETURN_USER, y, 0);
 return;
}

static double
fcn (double z)
{
 double beta = 4.0, gamma = 3.52e6;

 return gamma * exp (-1.0 * beta / z);
}
Example 6 - A ‘Hot Spot’ Model

This example is presented more fully in Verwer, *et al.*, (1989). The system is a normalized problem relating the temperature \(u(x,t) \), of a reactant in a chemical system. The formula for \(h(z) \) is equivalent to their example.

\[
\begin{align*}
 u_t &= u_{xx} + h(u), \\
 \text{where} \quad h(z) &= \frac{R}{\alpha_0} \left(1 + a - z\right) \exp\left(-\delta \left(1/z - 1\right)\right), \\
 a &= 1, \delta = 20, R = 5 \\
 0 \leq x \leq 1, 0 \leq t \leq 0.29 \\
 u(x,0) &= 1 \\
 u_x &= 0, x = 0 \\
 u &= 1, x = 1
\end{align*}
\]

This is a non-linear problem. The output shows a case where a rapidly changing front, or hot-spot, develops after a considerable way into the integration. This causes rapid change to the grid. An option sets the maximum order BDF formula from its default value of 2 to the theoretical stable maximum value of 5.

```c
#include <stdio.h>
#include <math.h>
#include <imsl.h>
/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
                        double full_u[], double grid_u[],
                        double dudx[], double *c, double q[],
                        double r[], int *ires);
static void boundary_conditions (double t, double beta[],
                                double gamma[], double full_u[],
                                double grid_u[], double dudx[],
                                int npdes, int ngrids, int left,
                                int *ires);
static double fcn_h (double z);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 80
#define U(I_,J_)     u[I_ * ngrids + J_]
int main ()
{
    int i, j, nframes;
    double u[(NPDE + 1) * N];
    double t0 = 0.0, tout;
    double delta_t = 1e-2, tend = 29e-2;
    double u0 = 1.0, u1 = 0.0, tdelta = 1e-1, tol = 29e-2;
    double a = 1.0, delta = 20.0, r = 5.0;
    char *state;
```
int npdes = NPDE, ngrids = N;
double xl = 0.0, xr = 1.0;
FILE *file1;
int max_bdf_order = 5;

file1 = fopen("pde_ex06.out", "w");
ims1_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
nframes = (int) ((tend + delta_t) / delta_t) - 1;
fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);

initial_conditions (npdes, ngrids, u);

ims1_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
IMSL_MAX_BDF_ORDER, max_bdf_order, 0);
tout = delta_t;
do {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions, 0);
 t0 = tout;
 if (t0 <= tend)
 {
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0) fprintf (file1, "\n");
 }
 }
 tout = MIN ((tout + delta_t), tend);
 }
 while (t0 < tend);
}
ims1_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
fclose (file1);
#define MIN
#define NPDE
#define N
#define U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]
 int i;

 for (i = 0; i < ngrids; i++)
 {
 U (0, i) = 1.0;
 }
#undef U
}

static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires)
{
 #define C(I_,J_) c[I_ * npdes + J_]

 c[0] = 1.0;
 r[0] = dudx[0];
 q[0] = -fcn_h (grid_u[0]);

 return;
#undef C
}

static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{
 if (left)
 {
 beta[0] = 0.0;
 gamma[0] = dudx[0];
 }
 else
 {
 beta[0] = 0.0;
 gamma[0] = grid_u[0] - 1.0;
 }
 return;
}

static double
fcn_h (double z)
{
 double a = 1.0, delta = 2e1, r = 5.0;

 return (r / (a * delta)) * (1.0 + a - z) *
 exp (-delta * (1.0 / z - 1.0));
}
Example 7 - Traveling Waves

This example is presented more fully in Verwer, et al., (1989). The system is a normalized problem relating the interaction of two waves, \(u(x, t) \) and \(v(x, t) \) moving in opposite directions. The waves meet and reduce in amplitude, due to the non-linear terms in the equation. Then they separate and travel onward, with reduced amplitude.

\[
\begin{align*}
\frac{u_t}{t} & = -u_x - 100uv, \\
\frac{v_t}{t} & = v_x - 100uv, \\
-0.5 & \leq x \leq 0.5, 0 \leq t \leq 0.5 \\
u(x, 0) & = 0.5 \left(1 + \cos(10\pi x) \right), x \in [-0.3, -0.1], \text{ and} \\
& = 0, \text{ otherwise,} \\
v(x, 0) & = 0.5 \left(1 + \cos(10\pi x) \right), x \in [0.1, 0.3], \text{ and} \\
& = 0, \text{ otherwise,} \\
u = v = 0 \text{ at both ends, } t \geq 0
\end{align*}
\]

This is a non-linear system of first order equations.

```c
#include <stdio.h>
#include <math.h>
#include <imsl.h>

/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
                       double full_u[], double grid_u[],
                       double dudx[], double *c, double q[],
                       double r[], int *ires);
static void boundary_conditions (double t, double beta[],
                                 double gamma[], double full_u[],
                                 double grid_u[], double dudx[],
                                 int npdes, int ngrids, int left,
                                 int *ires);

#define MIN(X,Y) ((X<Y)?X:Y)
#define NPDE 2
#define N 50
#define XL (-0.5)
#define XR 0.5
#define U(I_,J_) u[I_ * ngrids + J_]

FILE *file1;
int main ()
{
  int i, j, nframes;
  double u[(NPDE + 1) * N];
  double t0 = 0.0, tout;
  double delta_t = 5e-2, tend = 5e-1;
  char *state;
```
int npdes = NPDE, ngrids = N;
double xl = XL, xr = XR;
double tau = 1e-3;
double atol = 1e-3;
double rtol = 0.0;
int max_bdf_order = 3;

file1 = fopen ("pde_ex07.out", "w");
imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
nframes = (int) ((tend + delta_t) / delta_t);
fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
fprintf (file1, "\t%f\t%f\t%f\t%f", xl, xr, t0, tend);

imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_TIME_SMOOTHING, tau,
 IMSL_MAX_BDF_ORDER, max_bdf_order,
 IMSL_INITIAL_CONDITIONS, initial_conditions, 0);

t0 = t0;
if (t0 <= tend)
{
 fprintf (file1, "%f\n", t0);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 }
}

tout = MIN ((tout + delta_t), tend);
}
while (t0 < tend);

imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);

fclose (file1);
#undef MIN
#undef NPDE
#undef N
#undef XL
#undef XR
#undef U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]
#define XL -0.5
#define XR 0.5

int i, j;
 double _pi, pulse;
 double dx, xi;

 _pi = imsl_d_constant("pi",0);
 for (i = 0; i < ngrids; i++)
 {
 pulse = (0.5 * (1.0 + cos (10.0 * _pi * U (npdes, i))));
 U (0, i) = pulse;
 U (1, i) = pulse;
 }
 for (i = 0; i < ngrids; i++)
 {
 if ((U (npdes, i) < -3e-1) || (U (npdes, i) > -1e-1))
 {
 U (0, i) = 0.0;
 }
 if ((U (npdes, i) < 1e-1 || U (npdes, i) > 3e-1))
 {
 U (1, i) = 0.0;
 }
 }
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
undef XL
undef XR
undef U
}

static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires)
{
 #define C(I_,J_) c[I_ * npdes + J_]

 C (0, 0) = 1.0;
 C (0, 1) = 0.0;
 C (1, 0) = 0.0;
 C (1, 1) = 1.0;

 r[0] = -1.0 * grid_u[0];
 r[1] = grid_u[1];
 q[0] = 100.0 * grid_u[0] * grid_u[1];
 q[1] = q[0];
 return;
 #undef C
}

static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{

 beta[0] = 0.0;
 beta[1] = 0.0;
 gamma[0] = grid_u[0];
 gamma[1] = grid_u[1];

 return;
}

Example 8 - Black-Scholes

The value of a European “call option,” $c(s,t)$, with exercise price e and expiration date T, satisfies the “asset-or-nothing payoff” $c(s,T) = s, s \geq e; = 0, s < e.$ Prior to expiration $c(s,t)$ is estimated by the Black-Scholes differential equation

$$c_t + \frac{\sigma^2}{2}s^2c_{ss} + rsc_s - rc = c_t + \frac{\sigma^2}{2}(s^2c_s)_s + (r - \sigma^2)sc_s - rc = 0$$

The parameters in the model are the risk-free interest rate, r, and the stock volatility, σ. The boundary conditions are $c(0, t) = 0$ and $c(s, t) \approx 1, s \to \infty$. This development is described in Wilmott, et al. (1995), pages 41-57. There are explicit solutions for this equation based on the Normal Curve of Probability. The normal curve, and the solution itself, can be efficiently computed with the IMSL function imsl_f_normal_cdf, see Chapter 9, “Spe-
cial Functions." With numerical integration the equation itself or the payoff can be readily changed to include other formulas, \(c(s, T) \), and corresponding boundary conditions. We use
\[
e = 100, \ r = 0.08, \ T - t = 0.25, \ \sigma^2 = 0.04, \ s_L = 0 \text{ and } s_R = 150.
\]

This is a linear problem but with initial conditions that are discontinuous. It is necessary to use a positive time-smoothing value to prevent grid lines from crossing. We have used an absolute tolerance of \(10^{-3} \). In $US, this is one-tenth of a cent.

```c
#include <stdio.h>
#include <imsl.h>

/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
    double full_u[], double grid_u[], double dudx[], double *c,
    double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[], double gamma[],
    double full_u[], double grid_u[], double dudx[], int npdes,
    int ngrids, int left, int *ires);

#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 100
#define XL 0.0
#define XR 150.0
#define U(I_,J_) u[I_ * ngrids + J_]

int main ()
{
    int i, j, nframes;
    double u[(NPDE + 1) * N];
    double t0 = 0.0, tout, xval;
    double delta_t = 25e-3, tend = 25e-2;
    double xmax = 150.0;
    char *state;
    int npdes = NPDE, ngrids = N;
    double xl = XL, xr = XR;
    FILE *file1;
    double tau = 5e-3;
    double atol = 1e-2;
    double rtol = 0.0;
    int max_bdf_order = 5;

    file1 = fopen("pde_ex08.out", "w");
    imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
    nframes = (int) ((tend + delta_t) / delta_t);
    fprintf (file1, "%d\t%d\t%d\n", npdes, ngrids, nframes);
    fprintf (file1, "\t%f\t%f\t%f\n", xl, xr, t0, tend);

    initial_conditions (npdes, ngrids, u);
```
imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
imsl_Time_Smoothing, tau,
imsl_May_BDF_Order, max_bdf_order, 0);
tout = delta_t;
do
{
imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
xr, state, pde_systems, boundary_conditions,
imsl_Relative_Tolerance, rtol,
imsl_Absolute_Tolerance, atol, 0);

t0 = tout;
if (t0 <= tend)
{
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 }
 tout = MIN ((tout + delta_t), tend);
}
while (t0 < tend);
imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
fclose (file1);

#undef MIN
#undef NPDE
#undef N
#undef XL
#undef XR
#undef U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]
#define XL 0.0
#define XR 150.0
int i;
double dx, xi, xval, e = 100.0;

dx = (XR - XL) / (ngrids - 1);
for (i = 0; i < ngrids; i++)
{
 xi = XL + i * dx;
 if (xi <= e)
 {
 U (0, i) = 0.0;
 }
 else
 {
 U (0, i) = xi;
 }
}
#undef U
#undef XL
#undef XR
}
static void
pde_systems (double t, double x, int npdes, int ngrids,
double full_u[], double grid_u[], double dudx[], double *c,
double q[], double r[], int *ires)
{
 double sigsq, sigma = 2e-1, rr = 8e-2;
 sigsq = sigma * sigma;

c[0] = 1.0;
r[0] = dudx[0] * x * x * sigsq * 0.5;
q[0] = -(rr - sigsq) * x * dudx[0] + rr * grid_u[0];

 return;
}
static void
boundary_conditions (double t, double beta[], double gamma[],
double full_u[], double grid_u[], double dudx[],
int npdes, int ngrids, int left, int *ires)
{
 if (left)
 {
 beta[0] = 0.0;
 gamma[0] = grid_u[0];
 }
 else
 {
 beta[0] = 0.0;
 gamma[0] = dudx[0] - 1.0;
 }
 return;
}
Code for PV-WAVE Plotting

PRO PDE_1d_mg_plot, FILENAME = filename, PAUSE = pause
;
if keyword_set(FILENAME) then file = filename else file = "res.dat"
if keyword_set(PAUSE) then twait = pause else twait = .1
;
; Define floating point variables that will be read
; from the first line of the data file.
xl = 0D0
xr = 0D0
t0 = 0D0
tlast = 0D0
;
; Open the data file and read in the problem parameters.
openr, lun, filename, /get_lun
readf, lun, npde, np, nt, xl, xr, t0, tlast
;
; Define the arrays for the solutions and grid.
u = dblarr(nt, npde, np)
g = dblarr(nt, np)
times = dblarr(nt)
;
; Define a temporary array for reading in the data.
tmp = dblarr(np)
t_tmp = 0D0
;
; Read in the data.
for i = 0, nt-1 do begin ; For each step in time
readf, lun, t_tmp
 times(i) = t_tmp
for k = 0, npde-1 do begin ; For each PDE:
 rmf, lun, tmp
 u(i,k,*) = tmp ; Read in the components.
end

 rmf, lun, tmp
 g(i,*) = tmp ; Read in the grid.
end
;
; Close the data file and free the unit.
close, lun
free_lun, lun
;
; We now have all of the solutions and grids.
;
; Delete any window that is currently open.
while (!d.window NE -1) do WDELETE
;
; Open two windows for plotting the solutions
; and grid.
 window, 0, xsize = 550, ysize = 420
 window, 1, xsize = 550, ysize = 420
;
; Plot the grid.
 wset, 0
 plot, [xl, xr], [t0, tlast], /nodata, ystyle = 1, $
 title = "Grid Points", xtitle = "X", ytitle = "Time"
 for i = 0, np-1 do begin
 oplot, g(*, i), times, psym = -1
 end
;
; Plot the solution(s):
 wset, 1
 for k = 0, npde-1 do begin
 umin = min(u(*, k, *))
 umax = max(u(*, k, *))
 for i = 0, nt-1 do begin
 title = strcompress("U_"+string(k+1), /remove_all)+ $
 " at time "+string(times(i))
 plot, g(i, *), u(i, k, *), ystyle = 1, $
 title = title, xtitle = "X", $
 ytitle = strcompress("U_"+string(k+1), /remove_all), $
 xr = [xl, xr], yr = [umin, umax], $
 psym = -4
 wait, twait
 end
 end
end

Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = ".#".
Note: This function is deprecated and has been replaced by `imsl_f_modified_method_of_lines`. To view the deprecated documentation, see `pde_method_of_lines.pdf` on the Rogue Wave website. You can also access a local copy in your IMSL installation directory at `pdf\deprecated_routines\math\pde_method_of_lines.pdf`.
modified_method_of_lines

Solves a system of partial differential equations of the form \(u_t = f(x, t, u, u_x, u_{xx}) \) using the method of lines. The solution is represented with cubic Hermite polynomials.

Note: `imsl_f_modified_method_of_lines` replaces deprecated function `imsl_f_pde_method_of_lines`.

Synopsis

```c
#include <imsl.h>

void imsl_f_modified_method_of_lines_mgr (int task, void **state, ..., 0)

void imsl_f_modified_method_of_lines (int npdes, float *t, float tend, int nx,
    float xbreak[], float y[], void *state, void fcn_ut(), void fcn_bc())
```

The type `double` functions are `imsl_d_modified_method_of_lines_mgr` and `imsl_d_modified_method_of_lines`.

Required Arguments for `imsl_f_modified_method_of_lines_mgr`

- `int task` (Input)
 - This function must be called with task set to `IMSL_PDE_INITIALIZE` to set up memory and default values prior to solving a problem and with task equal to `IMSL_PDE_RESET` to clean up after it has solved.

- `void **state` (Input/Output)
 - The current state of the PDE solution is held in a structure pointed to by `state`. It cannot be directly manipulated.

Required Arguments for `imsl_f_modified_method_of_lines`

- `int npdes` (Input)
 - Number of differential equations.

- `float *t` (Input/Output)
 - Independent variable. On input, \(t \) supplies the initial time, \(t_0 \). On output, \(t \) is set to the value to which the integration has been updated. Normally, this new value is \(t_{\text{end}} \).

- `float tend` (Input)
 - Value of \(t = t_{\text{end}} \) at which the solution is desired.

- `int nx` (Input)
 - Number of mesh points or lines.
float xbreak[] (Input)
Array of length nx containing the breakpoints for the cubic Hermite splines used in the x discretization. The points in xbreak must be strictly increasing. The values xbreak[0] and xbreak[nx - 1] are the endpoints of the interval.

float y[] (Input/Output)
Array of length npdes by nx containing the solution. The array y contains the solution as $y[k,i] = u_k(x, tend)$ at $x = xbreak[i]$. On input, y contains the initial values. It must satisfy the boundary conditions. On output, y contains the computed solution.

void *state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by state. It must be initialized by a call to imsl_f_modified_method_of_lines_mgr. It cannot be directly manipulated.

void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[], float ut[])
User-supplied function to evaluate u_t.

 int npdes (Input)
 Number of equations.

 float x (Input)
 Space variable, x.

 float t (Input)
 Time variable, t.

 float u[] (Input)
 Array of length npdes containing the dependent values, u.

 float ux[] (Input)
 Array of length npdes containing the first derivatives, u_x.

 float uxx[] (Input)
 Array of length npdes containing the second derivative, u_{xx}.

 float ut[] (Output)
 Array of length npdes containing the computed derivatives u_t.

void fcn_bc(int npdes, float x, float t, float alpha[], float beta[], float gamma[])
User-supplied function to evaluate the boundary conditions. The boundary conditions accepted by imsl_f_modified_method_of_lines are
\[a_k u_k + \beta_k \frac{\partial u_k}{\partial x} = \gamma_k \]

NOTE: Users must supply the values \(\alpha_k, \beta_k, \) and \(\gamma_k \).

\begin{verbatim}
int npdes (Input)
 Number of equations.

float x (Input)
 Space variable, \(x \).

float t (Input)
 Time variable, \(t \).

float alpha[] (Output)
 Array of length npdes containing the \(\alpha_k \) values.

float beta[] (Output)
 Array of length npdes containing the \(\beta_k \) values.

float gamma[] (Output)
 Array of length npdes containing the values of \(\gamma_k \).
\end{verbatim}

Synopsis with Optional Arguments

\begin{verbatim}
#include <imsl.h>

void imsl_f_modified_method_of_lines_mgr (int task, void **state,
 IMSL_TOL, float tol,
 IMSL_HINIT, float hinit,
 IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[],
 IMSL_HTRIAL, float *htrial,
 IMSL_FCN_UT_W_DATA, void fcn_ut(), void *data,
 IMSL_FCN_BC_W_DATA, void fcn_bc(), void *data,
0)
\end{verbatim}
Optional Arguments

IMSL_TOL, float tol (Input)
Differential equation error tolerance. An attempt is made to control the local error in such a way that
the global relative error is proportional to tol.
Default: $tol = 100.0 \times \text{imsl}_f_\text{machine}(4)$

IMSL_HINIT, float hinit (Input)
Initial step size in the t integration. This value must be nonnegative. If hinit is zero, an initial step
size of $0.001 \times |t_{\text{end}} - t_0|$ will be arbitrarily used. The step will be applied in the direction of integra-
tion.
Default: $hinit = 0.0$

IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[] (Input/Output)
Supply the derivative values $u_i(x, t_0)$ in initial_deriv, an array of length npdes by nx. This
derivative information is input as

$$ \text{initial}_\text{deriv}[k,i] = \frac{\partial u_k}{\partial x}(x,t_0) \text{ at } x = x[i] $$

The array initial_deriv contains the derivative values as output:

$$ \text{initial}_\text{deriv}[k,i] = \frac{\partial u_k}{\partial x}(x, t_{\text{end}}) \text{ at } x = x[i] $$

Default: Derivatives are computed using cubic spline interpolation.

IMSL_HTRIAL, float *htrial (Output)
Return the current trial step size.

IMSL_FCN_UT_W_DATA, void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[],
float ut[], void *data), void *data (Input)
User-supplied function to evaluate u_i, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

IMSL_FCN_BC_W_DATA, void fcn_bc(int npdes, float x, float t, float alpha[], float beta[],
float gamma[], void *data), void *data (Input)
User-supplied function to evaluate the boundary conditions, which also accepts a pointer to data that
is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See
Passing Data to User-Supplied Functions in the introduction to this manual for more details.
Description

Let $M = npdes$, $N = nx$ and $x_i = xbreak(I)$. The function `imsl_f_modified_method_of_lines` uses the method of lines to solve the partial differential equation system

Let $M = npdes$, $N = nx$ and $x_i = xbreak(I)$. The function `imsl_f_modified_method_of_lines` uses the method of lines to solve the partial differential equation system

\[
\text{initial}_\text{deriv}[k,i] = \frac{\partial u_k}{\partial x}(x,t_0) \quad \text{at} \quad x = x[i]
\]

\[
\text{initial}_\text{deriv}[k,i] = \frac{\partial u_k}{\partial x}(x,\text{tend}) \quad \text{at} \quad x = x[i]
\]

\[
\frac{\partial u_k}{\partial t} = f_k \left(x, t, u_1, \ldots, u_M, \frac{\partial u_1}{\partial x}, \ldots, \frac{\partial u_M}{\partial x}, \frac{\partial^2 u_1}{\partial x^2}, \ldots, \frac{\partial^2 u_M}{\partial x^2}\right)
\]

with the initial conditions

\[
u_k = u_k(x,t) \quad \text{at} \quad t = t_0
\]

and the boundary conditions

for $k = 1, \ldots, M$.

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is expanded in the series

\[
\hat{u}_k(x,t) = \sum_{i=1}^{N} \left(a_{k,i}(t) \phi_i(x) + b_{k,i}(t) \psi_i(x) \right)
\]

where $\phi_i(x)$ and $\psi_i(x)$ are the standard basis functions for the cubic Hermite polynomials with the knots $x_1 < x_2 < \ldots < x_N$. These are piecewise cubic polynomials with continuous first derivatives. At the breakpoints, they satisfy

\[
\phi_i(x_j) = \delta_{ij} \quad \psi_i(x_j) = 0
\]

\[
\frac{d\phi_i}{dx}(x_j) = 0 \quad \frac{d\psi_i}{dx}(x_j) = \delta_{ij}
\]

According to the collocation method, the coefficients of the approximation are obtained so that the trial solution satisfies the differential equation at the two Gaussian points in each subinterval,

\[
p_{2j-1} = x_j + \frac{3 - \sqrt{3}}{6} (x_{j+1} - x_j)
\]

\[
p_{2j} = x_j + \frac{3 + \sqrt{3}}{6} (x_{j+1} + x_j)
\]

for $j = 1, \ldots, N$. The collocation approximation to the differential equation is
for $k = 1, \ldots, M$ and $j = 1, \ldots, 2(N - 1)$.

This is a system of $2MN$ ordinary differential equations in $2MN$ unknown coefficient functions, a_{ki} and b_{ki}.

This system can be written in the matrix–vector form as $Ac(t)/dt = F(t, c)$ with $c(t_0) = c_0$ where c is a vector of coefficients of length $2MN$ and c_0 holds the initial values of the coefficients. The last $2M$ equations are obtained from the boundary conditions.

If $\alpha_k = \beta_k = 0$, it is assumed that no boundary condition is desired for the k–th unknown at the left endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the endpoint. This is generally a useful feature for systems of first-order partial differential equations.

The input/output array Y contains the values of the a_{ki}. The initial values of the b_{ki} are obtained by using the IMSL cubic spline function $\text{imsl_f_cub_spline_interp_e_end}$ (Interpolation and Approximation) to construct functions

$$\hat{u}_k(x_i, t_0)$$

such that

$$d\hat{u}_k(x_i, t_0) = a_{ki}$$

The IMSL function $\text{imsl_f_cub_spline_value}$ (Interpolation and Approximation) is used to approximate the values

$$\hat{u}_k(x_i, t_0) = a_{ki}$$

$$\frac{d\hat{u}_k}{dx}(x_i, t_0) = b_{ki}$$

Optional argument $\text{IMSL_INITIAL_VALUE_DERIVATIVE}$ allows the user to provide the initial values of b_{ki}.

The order of matrix A is $2MN$ and its maximum bandwidth is $6M - 1$. The band structure of the Jacobian of F with respect to c is the same as the band structure of A. This system is solved using a modified version of $\text{imsl_f_ode_adams_gear}$. Numerical Jacobians are used exclusively. Gear’s BDF method is used as the default because the system is typically stiff. For more details, see Sewell (1982).

Four examples of PDEs are now presented that illustrate how users can interface their problems with IMSL PDE solving software. The examples are small and not indicative of the complexities that most practitioners will face in their applications. A set of seven sample application problems, some of them with more than one equation, is given in Sincovec and Madsen (1975). Two further examples are given in Madsen and Sincovec (1979).
Examples

Example 1

The normalized linear diffusion PDE, \(u_t = u_{xx}, \ 0 \leq x \leq 1, \ t > t_0 \), is solved. The initial values are \(t_0 = 0, \ u(x, t_0) = u_0 = 1 \). There is a “zero-flux” boundary condition at \(x = 1 \), namely \(u_x(1, t) = 0, \ (t > t_0) \). The boundary value of \(u(0, t) \) is abruptly changed from \(u_0 \) to the value 0, for \(t > 0 \).

When the boundary conditions are discontinuous, or incompatible with the initial conditions such as in this example, it may be important to use double precision.

```c
#include <imsl.h>
#include <stdio.h>

void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *, float *);

int main() {

    int npdes = 1, nx = 8, i, j, nstep = 10;
    float hinit, tol, t = 0.0, tend, xbreak[8], y[8];
    char title[50];
    void *state;

    /* Set breakpoints and initial conditions */
    for (i = 0; i < nx; i++) {
        xbreak[i] = (float) i / (float) (nx - 1);
        y[i] = 1.0;
    }

    /* Initialize the solver */
    tol = 10.e-4;
    hinit = 0.01 * tol;
    imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
                                         IMSL_TOL, tol,
                                         IMSL_HINIT, hinit,
                                         0);
    for (j = 1; j <= nstep; j++) {
        tend = (float) j / (float) nstep;
        tend *= tend;

        /* Solve the problem */
        imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
                                         state, fcnut, fcnbc);

        /* Print results at current t=tend */
```

void fcnut(int npdes, float x, float t, float *u, float *ux,
float *uxx, float *ut) {
/* Define the PDE */
*ut = *uxx;
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
float *gam) {
float delta = 0.09, u0 = 1.0, u1 = 0.1;
/* Define boundary conditions */
if (x == 0.0) {
/* These are for x = 0 */
*alpha = 1.0;
*beta = 0.0;
*gam = u1;
/* If in the boundary layer, compute nonzero gamma */
if (t <= delta)
 gam = u0 +(u1 - u0) t/delta;
} else {
/* These are for x = 1 */
*alpha = 0.0;
*beta = 1.0;
*gam = 0.0;
}

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.900</td>
<td>0.985</td>
<td>0.999</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.834</td>
<td>0.941</td>
<td>0.982</td>
<td>0.996</td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.04

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1003</td>
<td>0.4906</td>
<td>0.7304</td>
<td>0.8673</td>
<td>0.9395</td>
<td>0.9743</td>
</tr>
<tr>
<td>0.9891</td>
<td>0.9931</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.09

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.3145</td>
<td>0.5094</td>
<td>0.6702</td>
<td>0.7905</td>
<td>0.8709</td>
</tr>
<tr>
<td>0.9159</td>
<td>0.9303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.16

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.2571</td>
<td>0.4052</td>
<td>0.5361</td>
<td>0.6434</td>
<td>0.7228</td>
</tr>
<tr>
<td>0.7713</td>
<td>0.7876</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.25

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.2178</td>
<td>0.3295</td>
<td>0.4296</td>
<td>0.5129</td>
<td>0.5754</td>
</tr>
<tr>
<td>0.6142</td>
<td>0.6273</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.36

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.1852</td>
<td>0.2661</td>
<td>0.3387</td>
<td>0.3993</td>
<td>0.4449</td>
</tr>
<tr>
<td>0.4732</td>
<td>0.4827</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.49

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.1587</td>
<td>0.2144</td>
<td>0.2644</td>
<td>0.3061</td>
<td>0.3375</td>
</tr>
<tr>
<td>0.3570</td>
<td>0.3636</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.64

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.81
Example 2

Here, Problem C is solved from Sincovec and Madsen (1975). The equation is of diffusion-convection type with discontinuous coefficients. This problem illustrates a simple method for programming the evaluation routine for the derivative, \(u_t \). Note that the weak discontinuities at \(x = 0.5 \) are not evaluated in the expression for \(u_t \). The problem is defined as

\[
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x}
\left(D(x)\frac{\partial u}{\partial x}\right) - v(x)\frac{\partial u}{\partial x}
\]
\(x \in [0,1], t > 0 \)

\[
D(x) = \begin{cases} 5 & \text{if } 0 \leq x < 0.5 \\ 1 & \text{if } 0.5 \leq x \leq 1.0 \end{cases}
\]

\[
v(x) = \begin{cases} 1000.0 & \text{if } 0 \leq x < 0.5 \\ 1 & \text{if } 0.5 \leq x \leq 1.0 \end{cases}
\]

\[
u(x,0) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x > 0 \end{cases}
\]

\[
u(0,t) = 1, u(1,t) = 0
\]

#include <imsl.h>
#include <math.h>
#include <stdio.h>

void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *);

int main()
{
 int i, j, npdes = 1, nstep = 10, nx = 100;
 float hinit, t = 0.0, tend, tol, xbreak[100], y[100];
 char title[50];
 void *state;

 /* Set breakpoints and initial conditions */
for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 0.0;
}

y[0] = 1.0;

/* Initialize the solver */

tol = sqrt(imsl_f_machine(4));
hinit = 0.01*tol;
imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_HINIT, hinit,
 0);

for (j = 1; j <= nstep; j++) {
 tend = (float) j / (float) nstep;
 /* Solve the problem */
 imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);
}

/* Print results at t=tend */

sprintf(title, "solution at t = %4.2f", t);
imsl_f_write_matrix(title, npdes, nx, y, 0);
}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut) {
 /* Define the PDE */
 float d = 1.0, v = 1.0;

 if (x <= 0.5) {
 d = 5.0;
 v = 1000.0;
 }
 ut[0] = d*uxx[0] - v*ux[0];
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gam) {
 if (x == 0.0) {
 *alpha = 1.0;
 *beta = 0.0;
 *gam = 1.0;
 }
else {
 *alpha = 1.0;
 *beta = 0.0;
 *gam = 0.0;
}

Output

solution at t = 1.00

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>7</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>25</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>31</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>37</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>43</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>49</td>
<td>1.000</td>
<td>0.997</td>
<td>0.984</td>
<td>0.969</td>
<td>0.953</td>
<td>0.937</td>
</tr>
<tr>
<td>55</td>
<td>0.921</td>
<td>0.905</td>
<td>0.888</td>
<td>0.872</td>
<td>0.855</td>
<td>0.838</td>
</tr>
<tr>
<td>61</td>
<td>0.821</td>
<td>0.804</td>
<td>0.786</td>
<td>0.769</td>
<td>0.751</td>
<td>0.733</td>
</tr>
<tr>
<td>67</td>
<td>0.715</td>
<td>0.696</td>
<td>0.678</td>
<td>0.659</td>
<td>0.640</td>
<td>0.621</td>
</tr>
<tr>
<td>73</td>
<td>0.602</td>
<td>0.582</td>
<td>0.563</td>
<td>0.543</td>
<td>0.523</td>
<td>0.502</td>
</tr>
<tr>
<td>79</td>
<td>0.482</td>
<td>0.461</td>
<td>0.440</td>
<td>0.419</td>
<td>0.398</td>
<td>0.376</td>
</tr>
</tbody>
</table>
Example 3

In this example, using `imsl_f_modified_method_of_lines`, the linear normalized diffusion PDE \(u_t = u_{xx} \) is solved but with an optional use that provides values of the derivatives, \(u_x \), of the initial data. Due to errors in the numerical derivatives computed by spline interpolation, more precise derivative values are required when the initial data is \(u(x, 0) = 1 + \cos[(2n - 1)\pi x], \; n > 1 \). The boundary conditions are “zero flux” conditions \(u_x(0, t) = u_x(1, t) = 0 \) for \(t > 0 \).

This optional usage signals that the derivative of the initial data is passed by the user. The values \(u(x, \text{tend}) \) and \(u_x(x, \text{tend}) \) are output at the breakpoints with the optional usage.
#include <imsl.h>
#include <math.h>
#include <stdio.h>

void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *);

int main()
{
 int i, j, npdes = 1, nstep = 10, nx = 10;
 float arg, hinit, tol, pi, t = 0.0, tend = 0.0;
 float deriv[10], xbreak[10], y[10];
 char title[50];
 void *state;

 pi = imsl_f_constant("pi", 0);
 arg = 9.0 * pi;

 /* Set breakpoints and initial conditions */
 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 1.0 + cos(arg * xbreak[i]);
 deriv[i] = -arg * sin(arg * xbreak[i]);
 }

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));
 imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE, deriv,
 0);

 for (j = 1; j <= nstep; j++) {
 tend += 0.001;

 /* Solve the problem */
 imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Print results at every other t=tend */
 if (!(j % 2)) {
 sprintf(title, "\nsolution at t = %5.3f", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
 sprintf(title, "\nderivative at t = %5.3f", t);
 imsl_f_write_matrix(title, npdes, nx, deriv, 0);
 }
 }
}
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx, float *ut) {
 /* Define the PDE */
 *ut = *uxx;
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta, float *gam) {
 /* Define the boundary conditions */
 alpha[0] = 0.0;
 beta[0] = 1.0;
 gam[0] = 0.0;
}

Output

solution at t = 0.002

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.234</td>
<td>0.766</td>
<td>1.234</td>
<td>0.766</td>
<td>1.234</td>
<td>0.766</td>
</tr>
<tr>
<td>2</td>
<td>1.234</td>
<td>0.766</td>
<td>1.234</td>
<td>0.766</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

derivative at t = 0.002

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000e+000</td>
<td>8.983e-007</td>
<td>-3.682e-008</td>
<td>1.772e-006</td>
<td>4.368e-008</td>
<td>2.619e-006</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at t = 0.004

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.054</td>
<td>0.946</td>
<td>1.054</td>
<td>0.946</td>
<td>1.054</td>
<td>0.946</td>
</tr>
<tr>
<td>2</td>
<td>1.054</td>
<td>0.946</td>
<td>1.054</td>
<td>0.946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

derivative at t = 0.004

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000e+000</td>
<td>2.646e-007</td>
<td>4.763e-007</td>
<td>1.009e-006</td>
<td>-5.439e-007</td>
<td>-8.247e-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.142e-007</td>
<td>1.750e-006</td>
<td>-1.019e-006</td>
<td>4.300e-012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

solution at \(t = 0.006 \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1.012</td>
<td>0.988</td>
<td>1.012</td>
<td>0.988</td>
<td>1.012</td>
<td>0.988</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1.012</td>
<td>0.988</td>
<td>1.012</td>
<td>0.988</td>
<td></td>
</tr>
</tbody>
</table>

derivative at \(t = 0.006 \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>4.923e-007</td>
<td>4.082e-008</td>
<td>6.763e-007</td>
<td>-3.347e-007</td>
<td>-7.026e-007</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4.525e-007</td>
<td>3.456e-007</td>
<td>-5.008e-007</td>
<td>1.327e-012</td>
<td></td>
</tr>
</tbody>
</table>

solution at \(t = 0.008 \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1.003</td>
<td>0.997</td>
<td>1.003</td>
<td>0.997</td>
<td>1.003</td>
<td>0.997</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1.003</td>
<td>0.997</td>
<td>1.003</td>
<td>0.997</td>
<td></td>
</tr>
</tbody>
</table>

derivative at \(t = 0.008 \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>-1.323e-007</td>
<td>1.079e-006</td>
<td>2.271e-007</td>
<td>-7.651e-007</td>
<td>4.554e-007</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7.479e-007</td>
<td>-5.015e-009</td>
<td>-3.918e-007</td>
<td>2.261e-013</td>
<td></td>
</tr>
</tbody>
</table>

solution at \(t = 0.010 \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1.001</td>
<td>0.999</td>
<td>1.001</td>
<td>0.999</td>
<td>1.001</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1.001</td>
<td>0.999</td>
<td>1.001</td>
<td>0.999</td>
<td></td>
</tr>
</tbody>
</table>

derivative at \(t = 0.010 \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.000e+000</td>
<td>9.523e-008</td>
<td>1.043e-006</td>
<td>3.912e-007</td>
<td>-6.791e-007</td>
<td>2.734e-008</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4.506e-007</td>
<td>2.447e-007</td>
<td>-2.414e-008</td>
<td>-1.161e-015</td>
<td></td>
</tr>
</tbody>
</table>
Example 4

In this example, consider the linear normalized hyperbolic PDE, $u_{tt} = u_{xx}$, the “vibrating string” equation. This naturally leads to a system of first order PDEs. Define a new dependent variable $u_t = v$. Then, $v_t = u_{xx}$ is the second equation in the system. Take as initial data $u(x, 0) = \sin(\pi x)$ and $u_t(x, 0) = v(x, 0) = 0$. The ends of the string are fixed so $u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0$. The exact solution to this problem is $u(x, t) = \sin(\pi x) \cos(\pi t)$. Residuals are computed at the output values of t for $0 < t \leq 2$. Output is obtained at 200 steps in increments of 0.01.

Even though the sample code `imsl_f_modified_method_of_lines` gives satisfactory results for this PDE, users should be aware that for nonlinear problems, “shocks” can develop in the solution. The appearance of shocks may cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pp 488-490, for an introductory discussion of shocks in hyperbolic systems.
#include <imsl.h>
#include <math.h>
#include <stdio.h>

void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *, float *);

int main()
{
 int i, j, npdes = 2, nstep = 200, nx = 10;
 float error[10], erru = 0.0, err, hinit, pi, t = 0.0, tend = 0.0;
 float deriv[20], tol, y[20], xbreak[10];
 void *state;

 pi = imsl_f_constant("pi", 0);

 /* Set breakpoints and initial conditions */
 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = sin(pi * xbreak[i]);
 y[nx + i] = 0.0;
 deriv[i] = pi * cos(pi * xbreak[i]);
 deriv[nx + i] = 0.0;
 }

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));
 imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE, deriv,
 0);

 for (j = 1; j <= nstep; j++) {
 tend += 0.01;
 /* Solve the problem */

 imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Look at output at steps of 0.01 and compute errors */

 for (i = 0; i < nx; i++) {
 error[i] = y[i] - sin(pi * xbreak[i]) * cos(pi * tend);
 err = fabs(error[i]);
 if (err > erru) erru = err;
Output

Maximum error in \(u(x,t) = 5.757928e-003 \)

Fatal Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_REPEATED_ERR_TEST_FAILURE</td>
<td>After some initial success, the integration was halted by repeated error test failures.</td>
</tr>
<tr>
<td>IMSL_INTEGRATION_HALTED_1</td>
<td>Integration halted after failing to pass the error test, even after reducing the stepsize by a factor of 1.0E+10 to (H = #). (TOL = #) may be too small.</td>
</tr>
<tr>
<td>IMSL_INTEGRATION_HALTED_2</td>
<td>Integration halted after failing to achieve corrector convergence, even after reducing the stepsize by a factor of 1.0E+10 to (H = #). (TOL = #) may be too small.</td>
</tr>
<tr>
<td>IMSL_INTEGRATION_HALTED_3</td>
<td>After some initial success, the integration was halted by a test on (TOL = #).</td>
</tr>
<tr>
<td>IMSL_TOL_TOO_SMALL_OR_STIFF</td>
<td>On the next step (X+H) will equal (X), with (X = #) and (H = #). Either (TOL = #) is too small or the problem is stiff.</td>
</tr>
<tr>
<td>IMSL_STOP_USER_FCN</td>
<td>Request from user supplied function to stop algorithm. User flag = "#".</td>
</tr>
</tbody>
</table>
This function solves the generalized Feynman-Kac PDE on a rectangular grid using a finite element Galerkin method. Initial and boundary conditions are satisfied. The solution is represented by a series of C^2 Hermite quintic splines.

Synopsis

```c
#include <imsl.h>

void imsl_f_feynman_kac(int nxgrid, int ntgrid, int nlbcd, int nrbcd, float xgrid[], float tgrid[], void fcn_fkcfiv(), void fcn_fkbcp(), float y[], float y_prime[], ...), 0)
```

The type `double` function is `imsl_d_feynman_kac`.

Required Arguments

- `int nxgrid` (Input)
 Number of grid lines in the x-direction. `nxgrid` must be at least 2.

- `int ntgrid` (Input)
 Number of time points where an approximate solution is returned. The value `ntgrid` must be at least 1.

- `int nlbcd` (Input)
 Number of left boundary conditions. It is required that $1 \leq \text{nlbcd} \leq 3$.

- `int nrbcd` (Input)
 Number of right boundary conditions. It is required that $1 \leq \text{nrbcd} \leq 3$.

- `float xgrid[]` (Input)
 Array of length `nxgrid` containing the breakpoints for the Hermite quintic splines used in the x discretization. The points in `xgrid` must be strictly increasing. The values `xgrid[0]` and `xgrid[nxgrid-1]` are the endpoints of the interval.

- `float tgrid[]` (Input)
 Array of length `ntgrid` containing the set of time points (in time-remaining units) where an approximate solution is returned. The points in `tgrid` must be positive and strictly increasing.
void fcn_fkcfiv (float x, float t, int *iflag, float *value)

User-supplied function to compute the values of the coefficients $\sigma, \sigma', \mu, \kappa$ for the Feynman-Kac PDE and the initial data function $p(x)$, $x_{\text{min}} \leq x \leq x_{\text{max}}$.

float x (Input)
Space variable.

float t (Input)
Time variable.

int *iflag (Input/Output)
On entry, iflag indicates which coefficient or data function is to be computed. The following table shows which value has to be returned by fcn_fkcfiv for all possible values of iflag:

<table>
<thead>
<tr>
<th>iflag</th>
<th>Computed coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>$\sigma' = \frac{\partial \sigma(x,t)}{\partial x}$</td>
</tr>
<tr>
<td>0</td>
<td>$p(x)$</td>
</tr>
<tr>
<td>1</td>
<td>σ</td>
</tr>
<tr>
<td>2</td>
<td>μ</td>
</tr>
<tr>
<td>3</td>
<td>κ</td>
</tr>
</tbody>
</table>

For non-zero input values of iflag, note when a coefficient does not depend on t. This is done by setting iflag = 0 after the coefficient is defined. If there is time dependence, the value of iflag should not be changed. This action will usually yield a more efficient algorithm because some finite element matrices do not have to be reassembled for each t value.

float *value (Output)
Value of the coefficient or initial data function. Which value is computed depends on the input value for iflag, see description of iflag.

void fcn_fkbcp (int nbc, float t, int *iflag, float values[])
User-supplied function to define boundary values that the solution of the differential equation must satisfy. There are n_{lbc} conditions specified at the left end, x_{min}, and n_{rbc} conditions at the right end, x_{max}. The boundary conditions are

$$a(x,t)f + b(x,t)f_x + c(x,t)f_{xx} = d(x,t), \quad x = x_{\text{min}} \text{ or } x = x_{\text{max}}$$

int nbc (Input)
Number of boundary conditions. At x_{min}, nbc = n_{lbc}, at x_{max}, nbc = n_{rbc}.
float t (Input)
 Time point of the boundary conditions.

int *iflag (Input/Output)
 On entry, iflag indicates whether the coefficients for the left or right boundary conditions are
to be computed:

<table>
<thead>
<tr>
<th>iflag</th>
<th>Computed boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left end, x = x_{min}</td>
</tr>
<tr>
<td>0</td>
<td>Right end, x = x_{max}</td>
</tr>
</tbody>
</table>

If there is no time dependence for one of the boundaries then set iflag = 0 after the array
values is defined for either end point. This flag can avoid unneeded continued computation of
the finite element matrices.

float values[] (Output)
 Array of length 4 * max (n1bcd, nrbcd) containing the values of the boundary condition coeffi-
cients in its first 4*nbc locations. The coefficients for x_{min} are stored row-wise according to the
following scheme:

\[
\begin{pmatrix}
 a_1(x_{min}, t), b_1(x_{min}, t), c_1(x_{min}, t), d_1(x_{min}, t) \\
 a_{n1bcd}(x_{min}, t), b_{n1bcd}(x_{min}, t), c_{n1bcd}(x_{min}, t), d_{n1bcd}(x_{min}, t) \\
 \vdots \\
\end{pmatrix}
\]

The coefficients for x_{max} are stored similarly.

float y[] (Output)
 An array of size (ntgrid+1) by (3 * nxgrid) containing the coefficients of the Hermite representa-
tion of the approximate solution for the Feynman-Kac PDE at time points 0, tgrid[0], ..., tgrid[ntgrid-1]. The approximate solution is given by

\[
f(x,t) = \sum_{j=0}^{3*nxgrid-1} y_{ij} \beta_j(x)
\]

for

\[
t = tgrid[i-1], i = 1, ..., ntgrid
\]

The representation for the initial data at t = 0 is
The \((ntgrid + 1)\) by \((3 \times nxgrid)\) matrix

\[
\begin{pmatrix}
y_{ij}
\end{pmatrix}_{i=0,...,ntgrid, j=0,...,3\times nxgrid-1}
\]

is stored row-wise in array \(y\).

After the integration, use row \(i\) of array \(y\) as input argument \(coef\) in function

\texttt{imsl_f_feynman_kac_evaluate} to obtain an array of values for \(f(x, t)\) or its partials

\(f_x, f_{xx}, f_{xxx}\) at time point \(t=0, tgrid[i-1], i=1,...,ntgrid\).

The expressions for the basis functions \(\beta_j(x)\) are represented piece-wise and can be found in Hanson, R. (2008) Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements.

\texttt{float y_prime[] (Output)}

An array of size \((ntgrid + 1)\) by \((3 \times nxgrid)\) containing the first derivatives of \(y\) at time points 0, \(tgrid[0],...,tgrid[ntgrid - 1]\), i.e.

\[
f_t(x, \overline{t}) = \sum_{j=0}^{3\times nxgrid-1} y'_{ij} \beta_j(x)
\]

for

\[
\overline{t} = tgrid[i - 1], i = 1,...,ntgrid
\]

and

\[
f_t(x, \overline{t}) = \sum_{j=0}^{3\times nxgrid-1} y'_{0j} \beta_j(x) \quad \text{for} \quad \overline{t} = 0.
\]

The \((ntgrid + 1)\) by \((3 \times nxgrid)\) matrix

\[
\begin{pmatrix}
y'_{ij}
\end{pmatrix}_{i=0,...,ntgrid, j=0,...,3\times nxgrid-1}
\]

is stored row-wise in array \(y_prime\).

After the integration, use row \(i\) of array \(y_prime\) as input argument \(coef\) in function

\texttt{imsl_f_feynman_kac_evaluate} to obtain an array of values for the partials \(f_x, f_{xx}, f_{xxx}\) at time point \(t=tgrid[i-1], i=1,...,ntgrid\), and row 0 for the partials at \(t=0\).
Synopsis with Optional Arguments

```c
#include <imsl.h>

void imsl_f_feynman_kac(int nxgrid, int ntgrid, int nlbcd, int nrbcd, float xgrid[],
                       float tgrid[], void fcn_fkcfiv(), void fcn_fkbcp(), float y[], float y_prime[],
                       IMSL_FCN_FKCFIV_W_DATA, void fcn_fkcfiv(), void *data,
                       IMSL_FCN_FKBCP_W_DATA, void fcn_fkbcp(), void *data,
                       IMSL_FCN_INIT, void fcn_fkinit(),
                       IMSL_FCN_INIT_W_DATA, void fcn_fkinit(), void *data,
                       IMSL_FCN_FORCE, void fcn_fkforce(),
                       IMSL_FCN_FORCE_W_DATA, void fcn_fkforce(), void *data,
                       IMSL_ATOL_RTOL_SCALARS, float atol, float rtol,
                       IMSL_ATOL_RTOL ARRAYS, float atol[], float rtol[]
                       IMSL_NDEGREE, int ndeg,
                       IMSL_TDEPEND, int tdepend[],
                       IMSL_MAX_STEP, float max_stepsize,
                       IMSL_INITIAL STEPSIZE, float init_stepsize,
                       IMSL_MAX_NUMBER_STEPS, int max_steps,
                       IMSL_STEP_CONTROL, int step_control,
                       IMSL_MAX_BDF ORDER, int max_bdf_order,
                       IMSL_T BARRIER, float t_barrier,
                       IMSL_ISTATE, int istate[],
                       IMSL_EVALS, int nval[],
                       0)
```

Optional Arguments

IMSL_FCN_FKCFIV_W_DATA, void fcn_fkcfiv(float x, float t, int *iflag, float *value, void *data), void *data (Input)

User-supplied function to compute the values of the coefficients $\sigma, \sigma', \mu, \kappa$ for the Feynman-Kac PDE and the initial data function $p(x), x_{min} \leq x \leq x_{max}$.

This function also accepts a pointer to the object data supplied by the user.
IMSL_FCN_FKBCP_W_DATA, void fcn_fkbcp(int nbc, float t, int *iflag, float values[],
void *data), void *data (Input)
User-supplied function to define boundary values that the solution of the differential equation must
satisfy. This function also accepts a pointer to data supplied by the user.

IMSL_FCN_INIT, void fcn_fkinit(int nxgrid, int ntgrid, float xgrid[], float tgrid[],
float time, float yprime[], float y[], float atol[], float rtol[]) (Input)
User-supplied function for adjustment of initial data or as an opportunity for output during the inte-
gration steps. The solution values of the model parameters are presented in the arrays y and
yprime at the integration points time = 0, tgrid[j], j=0,....ntgrid-1. At the initial point,
integral least-squares estimates are made for representing the initial data \(p(x) \). If this is not satis-
factory, fcn_fkinit can change the contents of y[] to match data for any reason.

int nxgrid (Input)
Number of grid lines in the x-direction.

int ntgrid (Input)
Number of time points where an approximate solution is returned.

float xgrid[] (Input)
Vector of length nxgrid containing the breakpoints for the Hermite quintic splines used in the x
discretization.

float tgrid[] (Input)
Vector of length ntgrid containing the set of time points (in time-remaining units) where an
approximate solution is returned.

float time (Input)
Time variable.

float yprime[] (Input)
Vector of length 3*nxgrid containing the derivative of the coefficients of the Hermite quintic
spline at time point time.

float y[] (Input/Output)
Vector of length 3 \times nxgrid containing the coefficients of the Hermite quintic spline at time
point time.

float atol[] (Input/Output)
Array of length 3 \times nxgrid containing absolute error tolerances.

float rtol[] (Input/Output)
Array of length 3 \times nxgrid containing relative error tolerances.
User-supplied function for adjustment of initial data or as an opportunity for output during the integration steps which also accepts a pointer to data supplied by the user. For an explanation of the other arguments of function fcn_fkinit, see optional argument IMSL_FCN_INIT.

IMSL_FCNS_FORCE, void fcn_fkforce(int interval, int ndeg, int nxgrid, float y[], float time, float width, float xlocal[], float qw[], float u[], float phi[], float dphi[]) (Input)

Function fcn_fkforce is used in case there is a non-zero term \(\phi(f, x, t) \) in the Feynman-Kac differential equation. If function fcn_fkforce is not used, it is assumed that \(\phi(f, x, t) \) is identically zero.

int interval (Input)
 Index indicating the bounds \(xgrid[interval-1] \) and \(xgrid[interval] \) of the integration interval, \(1 \leq interval \leq nxgrid-1 \).

int ndeg (Input)
 The degree used for the Gauss-Legendre formulas.

int nxgrid (Input)
 Number of grid lines in the x-direction.

float y[] (Input)
 Vector of length \(3 \times nxgrid \) containing the coefficients of the Hermite quintic spline representing the solution of the Feynman-Kac equation at time point time.

float time (Input)
 Time variable.

float width (Input)
 The interval width, \(width = xgrid[interval] - xgrid[interval-1] \).

float xlocal[] (Input)
 Array of length \(ndeg \) containing the Gauss-Legendre points translated and normalized to the interval \([xgrid[interval-1], xgrid[interval]] \).

float qw[] (Input)
 Vector of length \(ndeg \) containing the Gauss-Legendre weights.

float u[] (Input)
 Array of dimension 12 by \(ndeg \) containing the basis function values that define \(\tilde{\beta}(x) \) at the Gauss-Legendre points \(xlocal \). Setting \(u_{[i+k \times ndeg]} := u[i+k] \) and \(x_i := xlocal[i] \), \(\tilde{\beta}(x_i) \) is defined as
\[\tilde{\beta}(x_i) = \left(\beta_{3 \ast (\text{interval} - 1)}(x_i), \ldots, \beta_{3 \ast (\text{interval} + 2)}(x_i) \right)^T \]

\[= \left(u_{0,i}, u_{1,i}, u_{2,i}, u_{6,i}, u_{7,i}, u_{8,i} \right)^T. \]

float phi[] (Output)

Vector of length 6 containing Gauss-Legendre approximations for the local contributions

\[\varphi_i = \int_{x_{\text{grid}[\text{interval}-1]}}^{x_{\text{grid}[\text{interval}+1]}} \Phi(f, x, t) \tilde{\beta}(x) \, dx, \]

where \(t = \) time and

\[\tilde{\beta}(x) = \left(\beta_{3 \ast (\text{interval} - 1)}(x), \ldots, \beta_{3 \ast (\text{interval} + 2)}(x) \right)^T \]

Vector phi contains elements

\[\text{phi}[i] = \text{width} \times \sum_{j=0}^{\text{ndegGL}-1} qw[j] \beta_i(x_j) \phi(f, x_{\text{local}[j]}, \text{time}) \]

for i = 0, ..., 5.

float dphi[] (Output)

Array of dimension 6 by 6 containing a Gauss-Legendre approximation for the Jacobian of the local contributions \(\varphi \), at \(t = \) time,

\[\frac{\partial \varphi_i}{\partial y} = \int_{x_{\text{grid}[\text{interval}-1]}}^{x_{\text{grid}[\text{interval}+1]}} \frac{\partial \Phi(f, x, t)}{\partial f} \tilde{\beta}(x) \tilde{\beta}^T(x) \, dx. \]

The approximation to this symmetric matrix is stored row-wise, i.e.

\[\text{dphi}[j + i \times 6] = \text{width} \times \sum_{k=0}^{\text{ndegGL}-1} qw[k] \beta_i(x_k) \beta_j(x_k) \left. \frac{\partial \Phi(f, x, t)}{\partial f} \right|_{x = x_{\text{local}[k]}, t = \text{time}} \]

for i, j = 0, ..., 5.

IMSL_FCN_FORCE_W_DATA

void fcn_fkforce(int interval, int ndeg, int nxgrid, float y[], float time, float width, float xlocal[], float qw[], float u[], float phi[], float dphi[], void *data, void *data (input))

Function fcn_fkforce is used in case there is a non-zero term \(\phi(f, x, t) \) in the Feynman-Kac differential equation. This function also accepts a data pointer to data supplied by the user. For an explanation of the other arguments of function fcn_fkforce, see optional argument IMSL_FCN_FORCE.

IMSL_ATOL_RTOL_SCALARS

float atol, **float** rtol (input)

Scalar values that apply to the error estimates of all components of the solution \(y \) in the differential equation solver SDASLX. See optional argument IMSL_ATOL_RTOL ARRAYS if separate tolerances are to be applied to each component of \(y \).
Default: atol and rtol are set to 10^{-3} in single precision and 10^{-5} in double precision.

IMSL_ATOL_RTOL ARRAYS, float atol[], float rtol[], (Input)

Componentwise tolerances are used for the computation of solution y in the differential equation solver SDASLX. Arguments atol and rtol are pointers to arrays of length $3 \times \text{nxgrid}$ to be used for the absolute and relative tolerance and to be applied to each component of the solution, y. See optional argument **IMSL_ATOL_RTOL_SCALARS** if scalar values of absolute and relative tolerances are to be applied to all components.

Default: All elements of atol and rtol are set to 10^{-3} in single precision and 10^{-5} in double precision.

IMSL_NDEGREE, int ndeg (Input)

The degree used for the Gauss-Legendre formulas for constructing the finite element matrices. It is required that $\text{ndeg} \geq 6$.

Default: $\text{ndeg} = 6$.

IMSL_TDEPEND, int tdepend[] (Output)

Vector of length 7 indicating time dependence of the coefficients, boundary conditions and function ϕ in the Feynman-Kac equation. If $tdepend[i] = 0$ then argument i is not time dependent, if $tdepend[i]=1$ then argument i is time dependent.

<table>
<thead>
<tr>
<th>i</th>
<th>Computed coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>σ'</td>
</tr>
<tr>
<td>1</td>
<td>σ</td>
</tr>
<tr>
<td>2</td>
<td>μ</td>
</tr>
<tr>
<td>3</td>
<td>κ</td>
</tr>
<tr>
<td>4</td>
<td>Left boundary conditions</td>
</tr>
<tr>
<td>5</td>
<td>Right boundary conditions</td>
</tr>
<tr>
<td>6</td>
<td>ϕ</td>
</tr>
</tbody>
</table>

IMSL_MAX_STEP, float max_stepsize (Input)

This is the maximum step size the integrator may take.

Default: $\text{max_stepsize} = \text{imsl_f_machine}(2)$, the largest possible machine number.

IMSL_INITIAL_STEPSIZE, float init_stepsize (Input)

The starting step size for the integration. Must be less than zero since the integration is internally done from $t=0$ to $t=tgrid[\text{ntgrid}-1]$ in a negative direction.

Default: $\text{init_stepsize} = -\epsilon$, where ϵ is the machine precision.
IMSL_MAX_NUMBER_STEPS, \(\text{int max_steps (Input)} \)
The maximum number of steps between each output point of the integration.
Default: maxsteps = 500000.

IMSL_STEP_CONTROL, \(\text{int step_control (Input)} \)
Indicates which step control algorithm is used for the integration. If \(\text{step_control} = 0 \), then the step control method of Söderlind is used. If \(\text{step_control} = 1 \), then the method used by the original Petzold code SASSL is used.
Default: step_control = 0.

IMSL_MAX_BDF_ORDER, \(\text{int max_bdf_order (Input)} \)
Maximum order of the backward differentiation formulas used in the integrator. It is required that \(1 \leq \text{max_bdf_order} \leq 5 \).
Default: max_bdf_order = 5.

IMSL_T_BARRIER, \(\text{float t_barrier (Input)} \)
This optional argument controls whether the code should integrate past a special point, \(t_barrier \), and then interpolate to get \(y \) and \(y' \) at the points in \(tgrid[] \). If this optional argument is present, the integrator assumes the equations either change on the alternate sides of \(t_barrier \) or they are undefined there. In this case, the code creeps up to \(t_barrier \) in the direction of integration. It is required that \(t_barrier \geq tgrid[ntgrid-1] \).
Default: \(t_barrier = tgrid[ntgrid-1] \).

IMSL_ISTATE, \(\text{int istate[] (Output)} \)
An array of length 7 whose entries flag the state of computation for the matrices and vectors required in the integration. For each entry, a zero indicates that no computation has been done or there is a time dependence. A one indicates that the entry has been computed and there is no time dependence. The istate entries are as follows:

<table>
<thead>
<tr>
<th>i</th>
<th>Entry in istate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Mass Matrix, (M)</td>
</tr>
<tr>
<td>1</td>
<td>Stiffness matrix, (N)</td>
</tr>
<tr>
<td>2</td>
<td>Bending matrix, (R)</td>
</tr>
<tr>
<td>3</td>
<td>Weighted mass, (K)</td>
</tr>
<tr>
<td>4</td>
<td>Left boundary conditions</td>
</tr>
<tr>
<td>5</td>
<td>Right-boundary conditions</td>
</tr>
<tr>
<td>6</td>
<td>Forcing term</td>
</tr>
</tbody>
</table>

Default: \(\text{istate}[i] = 0 \) for \(i = 0, \ldots, 6 \).

IMSL_EVALS, \(\text{int nval[] (Output)} \)
Array of length 3 summarizing the number of evaluations required during the integration.
Description

The generalized Feynman-Kac differential equation has the form

\[f_t + \mu(x, t)f_x + \frac{\sigma^2(x, t)}{2}f_{xx} - \kappa(x, t)f = \phi(f, x, t), \]

where the initial data satisfies \(f(x, T) = p(x) \). The derivatives are

\[f_t = \frac{\partial f}{\partial t} \]

The function `imsl_f_feynman_kac` uses a finite element Galerkin method over the rectangle

\[[x_{\text{min}}, x_{\text{max}}] \times [\hat{t}, \hat{T}] \]

in \((x, t)\) to compute the approximate solution. The interval \([x_{\text{min}}, x_{\text{max}}]\) is decomposed with a grid

\[(x_{\text{min}} =)x_1 < x_2 < \ldots < x_m (= x_{\text{max}}). \]

On each subinterval the solution is represented by

\[f(x, t) = f_i b_0(z) + f_{i+1}^{-} b_0(1 - z) + h_i f_i^+ b_1(z) - h_i f_{i+1}^- b_1(1 - z) \]
\[+ h_i^2 f_i^+ b_2(z) + h_i^2 f_{i+1}^- b_2(1 - z). \]

The values

\[f_i, f_i^+, f_i^-, f_{i+1}^+, f_{i+1}^-, f_{i+1}^+ \]

are time-dependent coefficients associated with each interval. The basis functions \(b_0, b_1, b_2 \) are given for

\[x \in [x_i, x_{i+1}], h_i = x_{i+1} - x_i, z = (x - x_i) / h_i, z \in [0, 1], \]

by
The Galerkin principle is then applied. Using the provided initial and boundary conditions leads to an Index 1 differential-algebraic equation for the time-dependent coefficients

\[f_i, f'_i, f''_i, f_{i+1}, f'_{i+1}, f''_{i+1} = y_i, y_{i+1}, y_{i+2}, \ldots, \]

\[i = 1, \ldots, m - 1 \]

This system is integrated using the variable order, variable step algorithm DDASLX/SDASLX noted in Hanson and Krogh, R. (2008) Solving Constrained Differential-Algebraic Systems Using Projections. Solution values and their time derivatives are returned at a grid preceding time \(T \), expressed in units of time remaining. For further details of deriving and solving the system see Hanson, R. (2008) Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements. To evaluate \(f \) or its partial derivatives at any time point in the grid, use the function \texttt{imsl_f_feynman_kac_evaluate}.

Examples

Example 1

The value of the American Option on a Vanilla Put can be no smaller than its European counterpart. That is due to the American Option providing the opportunity to exercise at any time prior to expiration. This example compares this difference – or premium value of the American Option – at two time values using the Black-Scholes model. The example is based on Wilmott et al. (1996, p. 176), and uses the non-linear forcing or weighting term described in Hanson, R. (2008), Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements, for evaluating the price of the American Option. The coefficients, payoff, boundary conditions and forcing term for American and European options are defined by the user functions \texttt{fkcfiv_put}, \texttt{fkbcp_put} and \texttt{fkforce_put}, respectively. One breakpoint is set exactly at the strike price.

The sets of parameters in the computation are:

1. Strike price \(K = \{10.0\} \).
2. Volatility \(\sigma = \{0.4\} \).
3. Times until expiration = \(\{1/4, 1/2\} \).
4. Interest rate \(r = 0.1 \).
5. \(x_{\text{min}} = 0.0, \quad x_{\text{max}} = 30.0 \).
6. \(nx = 61, \quad n = 3 \times nx = 183 \).

The payoff function is the “vanilla option”, \(p(x) = \max(K - x, 0) \).

```c
#include <imsl.h>
#include <stdio.h>
```

\[
\begin{align*}
 b_0(z) &= -6z^5 + 15z^4 - 10z^3 + 1 = (1 - z)^3(6z^2 + 3z + 1), \\
 b_1(z) &= -3z^5 + 8z^4 - 6z^3 + z = (1 - z)^3z(3z + 1), \\
 b_2(z) &= \frac{1}{2}(-z^5 + 3z^4 - 3z^3 + z^2) = \frac{1}{2}(1 - z)^3z^2.
\end{align*}
\]
#include <math.h>
#define max(A,B) ((A) >= (B) ? (A) : (B))
#define NXGRID 61
#define NTGRID 2
#define NV 9

void fkcfiv_put(float, float, int *, float *);
void fkbcp_put(int, float, int *, float[]);
void fkforce_put(int, int, int, float[], float, float[], float[], float[], float[], float[], float[], void *);

int main()
{

 /* Compute American Option Premium for Vanilla Put */
 /* The strike price */
 float KS = 10.0;

 /* The sigma value */
 float sigma = 0.4;

 /* Time values for the options */
 int nt = 2;
 float time[] = { 0.25, 0.5};

 /* Values of the underlying where evaluations are made */
 float xs[] = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0 };

 /* Value of the interest rate */
 float r = 0.1;

 /* Values of the min and max underlying values modeled */
 float x_min=0.0, x_max=30.0;

 /* Define parameters for the integration step. */
 int nint=NXGRID-1, n=3*NXGRID;
 float xgrid[NXGRID];
 float ye[(NTGRID+1)*3*NXGRID], yeprime[(NTGRID+1)*3*NXGRID];
 float ya[(NTGRID+1)*3*NXGRID], yaprime[(NTGRID+1)*3*NXGRID];
 float fe[NTGRID*NV], fa[NTGRID*NV];
 float dx;
 int i;
 int nlbcd = 2, nrbcd = 3;
 float atol = 0.2e-2;

 /* Array for user-defined data */
 float usr_data[3];

 /* Define an equally-spaced grid of points for the underlying price */

dx = (x_max-x_min)/((float)nint);
xgrid[0]=x_min;
xgrid[NXGRID-1]=x_max;

for (i=2; i<=NXGRID-1; i++) xgrid[i-1]=xgrid[i-2]+dx;

usr_data[0] = KS;
usr_data[1] = r;
usr_data[2] = atol;
imsl_f_feynman_kac(NXGRID, nt, nlbcd, nrbcd, xgrid, time, fkcfiv_put, fkbcp_put, ye, yeprime,
IMSL_ATOL_RTOL_SCALARS, 0.5e-2, 0.5e-2,
0);
imsl_f_feynman_kac(NXGRID, nt, nlbcd, nrbcd, xgrid, time, fkcfiv_put, fkbcp_put, ya, yaprime,
IMSL_FCN_FORCE_W_DATA, fkforce_put, usr_data,
IMSL_ATOL_RTOL_SCALARS, 0.5e-2, 0.5e-2,
0);

/* Evaluate solutions at vector of points XS(:,), at each
time value prior to expiration. */
for (i=0; i<nt; i++)
{
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &ye[(i+1)*n],
 IMSL_RETURN_USER, &fe[i*NV], 0);
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &ya[(i+1)*n],
 IMSL_RETURN_USER, &fa[i*NV], 0);
}

printf("\nAmerican Option Premium for Vanilla Put,
"3 and 6 Months Prior to Expiry\n");
printf("%7sNumber of equally spaced spline knots:%4d\n", " ",
 NXGRID);
printf("%7sNumber of unknowns:%4d\n", " ", n);
printf("%7sStrike=%6.2f, sigma=%5.2f, Interest Rate=%5.2f\n",
" ", KS,sigma,r);
printf("%7s%10s%20s%20s\n", " ", "Underlying","European","American");
for (i=0; i<NV; i++)
 printf("%7s%10.4f%10.4f%10.4f%10.4f\n", " ", xs[i], fe[i],
 fe[i+NV], fa[i], fa[i+NV]);

/* These functions define the coefficients, payoff, boundary conditions
and forcing term for American and European Options. */
void fkcfiv_put(float x, float tx, int *iflag, float *value)
{
 /* The sigma value */
 float sigma=0.4;

 /* Value of the interest rate and continuous dividend */
float strike_price=10.0, interest_rate=0.1, dividend=0.0;
float zero=0.0;

switch (*iflag)
{
 case 0:
 /* The payoff function */
 *value = max(strike_price - x, zero);
 break;
 case -1:
 /* The coefficient derivative d sigma/ dx */
 *value = sigma;
 break;
 case 1:
 /* The coefficient sigma(x) */
 *value = sigma*x;
 break;
 case 2:
 /* The coefficient mu(x) */
 *value = (interest_rate - dividend) * x;
 break;
 case 3:
 /* The coefficient kappa(x) */
 *value = interest_rate;
 break;
}
/* Note that there is no time dependence */
*iflag = 0;
return;

void fkbcp_put(int nbc, float tx, int *iflag, float val[])
{
 switch (*iflag)
 {
 case 1:
 val[0] = 0.0; val[1] = 1.0; val[2] = 0.0;
 val[3] = -1.0; val[4] = 0.0; val[5] = 0.0;
 val[6] = 1.0; val[7] = 0.0;
 break;
 case 2:
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = 0.0; val[4] = 0.0; val[5] = 1.0;
 val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 break;
 }
 /* Note no time dependence */
 *iflag = 0;
 return;
void fkforce_put(int interval, int ndeg, int nxgrid,
 float y[], float time, float width, float xlocal[],
 float qw[], float u[], float phi[], float dphi[],
 void *data_ptr)
{
 int i, j, k, l;
 const int local=6;
 float yl[6], bf[6];
 float value, strike_price, interest_rate, zero=0.0, one=1.0;
 float rt, mu;
 float *data = NULL;
 data = (float *) data_ptr;

 for (i=0; i<local; i++)
 {
 yl[i] = y[3*interval-3+i];
 phi[i] = zero;
 }

 strike_price = data[0];
 interest_rate = data[1];
 value = data[2];
 mu=2.0;

 /* This is the local definition of the forcing term */
 for (j=1; j<=local; j++)
 {
 for (l=1; l<=ndeg; l++)
 {
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+3*ndeg];
 bf[4] = u[(l-1)+4*ndeg];
 bf[5] = u[(l-1)+5*ndeg];

 rt = 0.0;
 for (k=0; k<local; k++)
 rt += yl[k]*bf[k];
 rt = value/(rt + value - (strike_price-xlocal[l-1]));
 phi[j-1] += qw[l-1] * bf[j-1] * pow(rt,mu);
 }
 }

 for (i=0; i<local; i++)
 phi[i] = -phi[i]*width*interest_rate*strike_price;

 /* This is the local derivative matrix for the forcing term */
 for (i=0; i<local*local; i++)

dphi[i] = zero;

for (j=1; j<=local; j++)
 for (i=1; i<=local; i++)
 for (l=1; l<=ndeg; l++)
 {
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+6*ndeg];
 bf[4] = u[(l-1)+7*ndeg];
 bf[5] = u[(l-1)+8*ndeg];

 rt = 0.0;
 for (k=0; k<local; k++)
 rt += yl[k]*bf[k];

 rt = one/(rt + value-(strike_price-xlocal[l-1]));
 dphi[i-1+(j-1)*local] += qw[l-1] * bf[i-1] * bf[j-1]
 * pow(rt, mu+1.0);
 }

for (i=0; i<local*local; i++)
 dphi[i] = mu * dphi[i] * width * pow(value, mu) *
 interest_rate * strike_price;

return;

Output

American Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry
Number of equally spaced spline knots: 61
Number of unknowns: 183
Strike= 10.00, sigma= 0.40, Interest Rate= 0.10

<table>
<thead>
<tr>
<th>Underlying</th>
<th>European</th>
<th>American</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>9.7534</td>
<td>9.5136</td>
</tr>
<tr>
<td>2.0000</td>
<td>7.7536</td>
<td>7.5138</td>
</tr>
<tr>
<td>4.0000</td>
<td>5.7537</td>
<td>5.5156</td>
</tr>
<tr>
<td>6.0000</td>
<td>3.7615</td>
<td>3.5683</td>
</tr>
<tr>
<td>8.0000</td>
<td>1.9070</td>
<td>1.9168</td>
</tr>
<tr>
<td>10.0000</td>
<td>0.6529</td>
<td>0.8548</td>
</tr>
<tr>
<td>12.0000</td>
<td>0.1632</td>
<td>0.3371</td>
</tr>
<tr>
<td>14.0000</td>
<td>0.0372</td>
<td>0.1270</td>
</tr>
<tr>
<td>16.0000</td>
<td>0.0088</td>
<td>0.0483</td>
</tr>
</tbody>
</table>

Example 2

In Beckers (1980) there is a model for a Stochastic Differential Equation of option pricing. The idea is a
“constant elasticity of variance diffusion (or CEV) class”
The Black-Scholes model is the limiting case \(\alpha \to 2 \). A numerical solution of this diffusion model yields the price of a call option. Various values of the strike price \(K \), time values, \(\sigma \) and power coefficient \(\alpha \) are used to evaluate the option price at values of the underlying price. The sets of parameters in the computation are:

1. power \(\alpha = \{2.0, 1.0, 0.0\} \).
2. strike price \(K = \{15.0, 20.0, 25.0\} \).
3. volatility \(\sigma = \{0.2, 0.3, 0.4\} \).
4. times until expiration = \(\{1/12, 4/12, 7/12\} \).
5. underlying prices = \(\{19.0, 20.0, 21.0\} \).
6. interest rate \(r = 0.05 \).
7. \(x_{\text{min}} = 0, x_{\text{max}} = 60 \).
8. \(nx = 121, \quad n = 3 \times nx = 363 \).

With this model the Feynman-Kac differential equation is defined by identifying:

\[
\begin{align*}
\alpha & = 2.0, 1.0, 0.0 \\
K & = 15.0, 20.0, 25.0 \\
\sigma & = 0.2, 0.3, 0.4 \\
x_{\text{min}} & = 0, x_{\text{max}} = 60 \\
nx & = 121, \quad n = 3 \times nx = 363
\end{align*}
\]

\[
dS = \mu S dt + \sigma S^\alpha dW, \quad 0 \leq \alpha < 2
\]

The payoff function is the "vanilla option", \(p(x) = \max(x - K, 0) \).

```c
#include <ims1.h>
#include <stdio.h>
#include <math.h>

#define max(A,B)  ((A) >= (B) ? (A) : (B))
#define NXGRID 121
#define NTGRID 3
#define NV 3

void fcn_fkcfiv(float, float, int *, float *, void *);
void fcn_fkbcp(int, float, int *, float[], void *);

int main()
{
```
/* Compute Constant Elasticity of Variance Model for Vanilla Call */

/* The set of strike prices */
float KS[] = { 15.0, 20.0, 25.0};

/* The set of sigma values */
float sigma[] = { 0.2, 0.3, 0.4};

/* The set of model diffusion powers */
float alpha[] = { 2.0, 1.0, 0.0};

/* Time values for the options */
int nt = 3;
float time[] = { 1.0/12.0, 4.0/12.0, 7.0/12.0 };

/* Values of the underlying where evaluations are made */
float xs[] = { 19.0, 20.0, 21.0};

/* Value of the interest rate and continuous dividend */
float r=0.05, dividend=0.0;

/* Values of the min and max underlying values modeled */
float x_min=0.0, x_max=60.0;

/* Define parameters for the integration step. */
int nint = NXGRID-1, n=3*NXGRID;
float xgrid[NXGRID], y[(NTGRID+1)*3*NXGRID];
float yprime[(NTGRID+1)*3*NXGRID], f[NTGRID*NV];
float dx;

/* Number of left/right boundary conditions */
int nlbcd = 3, nrbcd = 3;
float usr_data[6];

int i,i1,i2,i3,j;

/* Define equally-spaced grid of points for the underlying price */
dx = (x_max-x_min)/((float) nint);
xgrid[0] = x_min;
xgrid[NXGRID-1] = x_max;

for (i=2; i<=NXGRID-1; i++)
xgrid[i-1] = xgrid[i-2]+dx;

printf("%2sConstant Elasticity of Variance Model for Vanilla Call\n", " ");
printf("%7sInterest Rate:%7.3f\tContinuous Dividend:%7.3f\n", " ", r, dividend);
printf("%7sMinimum and Maximum Prices of Underlying:%7.2f%7.2f\n", " ", x_min, x_max);
printf("%7sNumber of equally spaced spline knots:%4d \n", " ", NXGRID-1);
printf("%7sNumber of unknowns:%4d\n", " ", n);
printf("%7sTime in Years Prior to Expiration:%7.4f%7.4f%7.4f\n", " ", time[0], time[1], time[2]);
printf("%7sOption valued at Underlying Prices:%7.2f%7.2f%7.2f\n", " ", xs[0], xs[1], xs[2]);

for (i1=1; i1<=3; i1++) /* Loop over power */
 for (i2=1; i2<=3; i2++) /* Loop over volatility */
 for (i3=1; i3<=3; i3++) /* Loop over strike price */
 {
 /* Pass data through into evaluation functions. */
 usr_data[0] = KS[i3-1];
 usr_data[1] = x_max;
 usr_data[2] = sigma[i2-1];
 usr_data[3] = alpha[i1-1];
 usr_data[4] = r;
 usr_data[5] = dividend;

 imsl_f_feynman_kac(NXGRID, nt, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, y, yprime,
 IMSL_FCN_FKCFIV_W_DATA, fcn_fkcfiv, usr_data,
 IMSL_FCN_FKBCP_W_DATA, fcn_fkbcp, usr_data, 0);

 /* Evaluate solution at vector of points xs, at each time */
 Value prior to expiration. */
 for (i=0; i<NTGRID; i++)
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs,
 &y[(i+1)*n], IMSL_RETURN_USER, &f[i*NV], 0);

 printf("%2sStrike=%5.2f, Sigma=%5.2f, Alpha=%5.2f\n",
 " ", KS[i3-1], sigma[i2-1], alpha[i1-1]);

 for (i=0; i<NV; i++)
 {
 printf("%23sCall Option Values%2s", " ", " ");
 for (j=0; j<nt; j++) printf("%7.4f ", f[j*NV+i]);
 printf("\n");
 }
 printf("\n");
 }

void fcn_fkcfiv(float x, float tx, int *iflag, float *value,
 void *data_ptr)
{
 float sigma, strike_price, interest_rate;
 float alpha, dividend, zero=0.0, half=0.5;
 float *data = NULL;
data = (float *)data_ptr;

strike_price = data[0];
sigma = data[2];
alpha = data[3];
interest_rate = data[4];
dividend = data[5];

switch (*iflag)
{
 case 0:
 /* The payoff function */
 *value = max(x - strike_price, zero);
 break;

 case -1:
 /* The coefficient derivative d sigma/ dx */
 *value = half * alpha * sigma * pow(x, alpha*half-1.0);
 break;

 case 1:
 /* The coefficient sigma(x) */
 *value = sigma * pow(x, alpha*half);
 break;

 case 2:
 /* The coefficient mu(x) */
 *value = (interest_rate - dividend) * x;
 break;

 case 3:
 /* The coefficient kappa(x) */
 *value = interest_rate;
 break;
}
data = NULL;

/* Note that there is no time dependence */
*iflag = 0;

return;
}

void fcn_fkbcp(int nbc, float tx, int *iflag, float val[],
 void *data_ptr)
{
 float x_max, df, interest_rate, strike_price;
 float *data = NULL;
data = (float *)data_ptr;

strike_price = data[0];
x_max = data[1];
interest_rate = data[4];

switch (*iflag)
{
 case 1:
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = 0.0; val[4] = 0.0; val[5] = 1.0;
 val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 /* Note no time dependence at left end */
 *iflag = 0;
 break;
 case 2:
 df = exp(interest_rate*tx);
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = x_max - df*strike_price; val[4] = 0.0;
 val[8] = 0.0; val[9] = 0.0; val[10] = 1.0;
 val[11] = 0.0;
 break;
}

data = NULL;
return;
}

Output

Constant Elasticity of Variance Model for Vanilla Call

Interest Rate: 0.050 Continuous Dividend: 0.000
Minimum and Maximum Prices of Underlying: 0.00 60.00
Number of equally spaced spline knots: 120
Number of unknowns: 363

Time in Years Prior to Expiration: 0.0833 0.3333 0.5833
Option valued at Underlying Prices: 19.00 20.00 21.00

Strike=15.00, Sigma= 0.20, Alpha= 2.00
Call Option Values 4.0624 4.2577 4.4730
Call Option Values 5.0624 5.2507 5.4491
Call Option Values 6.0624 6.2487 6.4386

Strike=20.00, Sigma= 0.20, Alpha= 2.00
Call Option Values 0.1310 0.5956 0.9699
| Strike=25.00, Sigma= 0.20, Alpha= 2.00 | Call Option Values | 0.5028 | 1.0889 | 1.5100 |
| Call Option Values | 1.1979 | 1.7485 | 2.1751 |

Strike=15.00, Sigma= 0.30, Alpha= 2.00	Call Option Values	0.0000	0.0113	0.0742
Call Option Values	0.0000	0.0372	0.1614	
Call Option Values	0.0007	0.1025	0.3132	

Strike=20.00, Sigma= 0.30, Alpha= 2.00	Call Option Values	4.0637	4.3399	4.6623
Call Option Values	5.0626	5.2945	5.5788	
Call Option Values	6.0624	6.2709	6.5241	

Strike=25.00, Sigma= 0.30, Alpha= 2.00	Call Option Values	0.0000	0.0113	0.0742
Call Option Values	0.0000	0.0372	0.1614	
Call Option Values	0.0007	0.1025	0.3132	

Strike=15.00, Sigma= 0.40, Alpha= 2.00	Call Option Values	4.0759	4.5136	4.9673
Call Option Values	5.0664	5.4199	5.8321	
Call Option Values	6.0635	6.3577	6.7294	

Strike=20.00, Sigma= 0.40, Alpha= 2.00	Call Option Values	0.5116	1.4645	2.1286
Call Option Values	0.9623	1.9957	2.6944	
Call Option Values	1.5815	2.6110	3.3230	

Strike=25.00, Sigma= 0.40, Alpha= 2.00	Call Option Values	0.0083	0.3288	0.7790
Call Option Values	0.0285	0.5169	1.0657	
Call Option Values	0.0813	0.7688	1.4103	

Strike=15.00, Sigma= 0.20, Alpha= 1.00	Call Option Values	4.0624	4.2479	4.4311
Call Option Values	5.0624	5.2479	5.4311	
Call Option Values	6.0624	6.2479	6.4311	

Strike=20.00, Sigma= 0.20, Alpha= 1.00	Call Option Values	0.0000	0.0241	0.1061
Call Option Values	0.1498	0.4102	0.6483	
Call Option Values	1.0832	1.3313	1.5772	

<p>| Strike=25.00, Sigma= 0.20, Alpha= 1.00 | Call Option Values | 0.0000 | -0.0000 | 0.0000 |
| Call Option Values | 0.0000 | 0.0000 | 0.0000 |</p>
<table>
<thead>
<tr>
<th>Strike = 15.00, Sigma = 0.30, Alpha = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 20.00, Sigma = 0.30, Alpha = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>4.0624</td>
</tr>
<tr>
<td>4.2477</td>
</tr>
<tr>
<td>4.4310</td>
</tr>
<tr>
<td>5.0624</td>
</tr>
<tr>
<td>5.2477</td>
</tr>
<tr>
<td>5.4310</td>
</tr>
<tr>
<td>6.0624</td>
</tr>
<tr>
<td>6.2477</td>
</tr>
<tr>
<td>6.4310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 25.00, Sigma = 0.30, Alpha = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 15.00, Sigma = 0.40, Alpha = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>4.0624</td>
</tr>
<tr>
<td>4.2479</td>
</tr>
<tr>
<td>4.4312</td>
</tr>
<tr>
<td>5.0624</td>
</tr>
<tr>
<td>5.2479</td>
</tr>
<tr>
<td>5.4312</td>
</tr>
<tr>
<td>6.0624</td>
</tr>
<tr>
<td>6.2479</td>
</tr>
<tr>
<td>6.4312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 20.00, Sigma = 0.40, Alpha = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>0.0072</td>
</tr>
<tr>
<td>0.1556</td>
</tr>
<tr>
<td>0.3445</td>
</tr>
<tr>
<td>0.2501</td>
</tr>
<tr>
<td>0.5919</td>
</tr>
<tr>
<td>0.8720</td>
</tr>
<tr>
<td>1.0867</td>
</tr>
<tr>
<td>1.3783</td>
</tr>
<tr>
<td>1.6577</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 25.00, Sigma = 0.40, Alpha = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 15.00, Sigma = 0.20, Alpha = 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>4.0625</td>
</tr>
<tr>
<td>4.2479</td>
</tr>
<tr>
<td>4.4311</td>
</tr>
<tr>
<td>5.0625</td>
</tr>
<tr>
<td>5.2479</td>
</tr>
<tr>
<td>5.4312</td>
</tr>
<tr>
<td>6.0623</td>
</tr>
<tr>
<td>6.2479</td>
</tr>
<tr>
<td>6.4312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 20.00, Sigma = 0.20, Alpha = 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>0.0001</td>
</tr>
<tr>
<td>0.0001</td>
</tr>
<tr>
<td>0.0002</td>
</tr>
<tr>
<td>0.0816</td>
</tr>
<tr>
<td>0.3316</td>
</tr>
<tr>
<td>0.5748</td>
</tr>
<tr>
<td>1.0818</td>
</tr>
<tr>
<td>1.3308</td>
</tr>
<tr>
<td>1.5748</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 25.00, Sigma = 0.20, Alpha = 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike = 15.00, Sigma = 0.30, Alpha = 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Option Values</td>
</tr>
<tr>
<td>4.0624</td>
</tr>
<tr>
<td>4.2479</td>
</tr>
<tr>
<td>4.4311</td>
</tr>
<tr>
<td>5.0625</td>
</tr>
<tr>
<td>5.2479</td>
</tr>
<tr>
<td>5.4311</td>
</tr>
<tr>
<td>6.0623</td>
</tr>
<tr>
<td>6.2479</td>
</tr>
<tr>
<td>6.4311</td>
</tr>
</tbody>
</table>
Example 3

This example evaluates the price of a European Option using two payoff strategies: *Cash-or-Nothing* and *Vertical Spread*. In the first case the payoff function is

\[
p(x) = \begin{cases}
0, & x \leq K \\
B, & x > K
\end{cases}
\]

The value \(B \) is regarded as the bet on the asset price, see Wilmott et al. (1995, p. 39-40). The second case has the payoff function

\[
p(x) = \max(x - K_1) - \max(x - K_2), \quad K_2 > K_1
\]

Both problems use the same boundary conditions. Each case requires a separate integration of the Black-Scholes differential equation, but only the payoff function evaluation differs in each case. The sets of parameters in the computation are:

1. Strike and bet prices \(K_1 = \{10.0\}, K_2 = \{15.0\}, \) and \(B = \{2.0\} \).
2. Volatility \(\sigma = \{0.4\} \).
3. Times until expiration = \{1/4, 1/2\}.
4. Interest rate \(r = 0.1 \).
5. \(x_{\min} = 0, x_{\max} = 30 \).
6. \(nx = 61, n = 3 \times nx = 183. \)

```c
#include <ims1.h>
#include <stdio.h>
#include <math.h>

#define max(A,B)  ((A) >= (B) ? (A) : (B))
#define NXGRID  61
#define NTGRID  2
#define NV      12

void fkcfiv_call(float, float, int *, float *, void *);
void fkbcpc_call(int, float, int *, float[], void *);

int main()
{
  int i;
  /* The strike price */
  float KS1 = 10.0;
  /* The spread value */
  float KS2 = 15.0;
  /* The Bet for the Cash-or-Nothing Call */
  float bet = 2.0;
  /* The sigma value */
  float sigma = 0.4;

  /* Time values for the options */
  int nt = 2;
  float time[] = {0.25, 0.5};

  /* Values of the underlying where evaluations are made */
  float xs[NV];

  /* Value of the interest rate and continuous dividend */
  float r = 0.1, dividend=0.0;

  /* Values of the min and max underlying values modeled */
  float x_min=0.0, x_max=30.0;

  /* Define parameters for the integration step. */
  int nint=NXGRID-1, n=3*NXGRID;

  float xgrid[NXGRID];
  float yb[(NTGRID+1)*3*NXGRID], ybprime[(NTGRID+1)*3*NXGRID];
  float yv[(NTGRID+1)*3*NXGRID], yvprime[(NTGRID+1)*3*NXGRID];
  float fb[NTGRID*NV], fv[NTGRID*NV];
  float dx;

  /* Number of left/right boundary conditions. */
  int nlbcd = 3, nrbcdf 2
```
/* Structure for the evaluation functions. */
struct {
 int idope[1];
 float rdope[7];
} usr_data;

/* Define an equally-spaced grid of points for the underlying price */
dx = (x_max-x_min)/((float)(nint));
xgrid[0]=x_min;
xgrid[NXGRID-1]=x_max;
for (i=2; i<=NXGRID-1; i++)
 xgrid[i-1] = xgrid[i-2]+dx;

for (i=1; i<=NV; i++)
 xs[i-1] = 2.0+(i-1)*2.0;

usr_data.rdope[0] = KS1;
usr_data.rdope[1] = bet;
usr_data.rdope[2] = KS2;
usr_data.rdope[3] = x_max;
usr_data.rdope[4] = sigma;
usr_data.rdope[5] = r;
usr_data.rdope[6] = dividend;

/* Flag the difference in payoff functions */
/* 1 for the Bet, 2 for the Vertical Spread */
usr_data.idope[0] = 1;

imsl_f_feynman_kac(NXGRID, NTGRID, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, yb, ybprime,
 IMSL_FCN_FKCFIV_W_DATA, fkcfiv_call, &usr_data,
 IMSL_FCN_FKBCP_W_DATA, fkbcp_call, &usr_data,
 0);

usr_data.idope[0] = 2;

imsl_f_feynman_kac(NXGRID, NTGRID, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, yb, ybprime,
 IMSL_FCN_FKCFIV_W_DATA, fkcfiv_call, &usr_data,
 IMSL_FCN_FKBCP_W_DATA, fkbcp_call, &usr_data,
 0);

/* Evaluate solutions at vector of points XS(:,), at each time value prior to expiration. */
for (i=0; i<NTGRID; i++)
{
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &yb[(i+1)*n],
 IMSL_RETURN_USER, &fb[i*NV], 0);
imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &yv[(i+1)*n],
 IMSL_RETURN_USER, &fv[i*NV], 0);
}

printf("%2sEuropean Option Value for A Bet\n", " ");
printf("%3sand a Vertical Spread, 3 and 6 Months Prior to Expiry\n",
 " ");
printf("%5sNumber of equally spaced spline knots:%4d\n", " ",
 NXGRID);
printf("%5sNumber of unknowns:%4d\n", " ", n);
printf("%5sStrike=%5.2f, Sigma=%5.2f, Interest Rate=%5.2f\n",
 " ", KS1, sigma, r);
printf("%5sBet=%5.2f, Spread Value=%5.2f\n",
 " ", bet, KS2);
for (i=0; i<NV; i++)
 printf("%8s%9.4f%9.4f%9.4f%9.4f\n", " ", xs[i], fb[i],
 fb[i+NV], fv[i], fv[i+NV]);
}

/* These functions define the coefficients, payoff, boundary conditions
 and forcing term for American and European Options. */

void fkcfiv_call(float x, float tx, int *iflag, float *value,
 void *data_ptr)
{
 float sigma, strike_price, interest_rate;
 float spread, bet, dividend, zero=0.0;
 float *data_real = NULL;
 int *data_int = NULL;

 struct struct_data {
 int idope[1];
 float rdope[7];
 };

 struct struct_data *data = NULL;

 data = data_ptr;

 data_real = data->rdope;
 data_int = data->idope;

 strike_price = data_real[0];
 bet = data_real[1];
 spread = data_real[2];
 sigma = data_real[4];
 interest_rate = data_real[5];
 dividend = data_real[6];

 switch (*iflag)
\{

 case 0:
 /* The payoff function - Use flag passed to decide which */
 switch (data_int[0])
 {
 case 1:
 /* After reaching the strike price the payoff jumps
 from zero to the bet value. */
 *value = zero;
 if (x > strike_price) *value = bet;
 break;
 case 2:
 /* Function is zero up to strike price.
 Then linear between strike price and spread.
 Then has constant value Spread-Strike Price after
 the value Spread. */
 *value = max(x-strike_price, zero) - max(x-spread, zero);
 break;
 }
 break;

case -1:
 /* The coefficient derivative d sigma/ dx */
 *value = sigma;
 break;

case 1:
 /* The coefficient sigma(x) */
 *value = sigma*x;
 break;

case 2:
 /* The coefficient mu(x) */
 *value = (interest_rate - dividend)*x;
 break;

case 3:
 /* The coefficient kappa(x) */
 *value = interest_rate;
 break;
}
/* Note that there is no time dependence */
*iflag = 0;

data_real = NULL;
data_int = NULL;
data = NULL;

return;
\}
```c
void fkbcp_call(int nbc, float tx, int *iflag, float val[],
    void *data_ptr)
{
    float strike_price, spread, bet, interest_rate, df;
    int *data_int = NULL;
    float *data_real = NULL;

    struct struct_data {
        int idope[1];
        float rdope[7];
    };

    struct struct_data *data = NULL;
    data = data_ptr;
    data_int = data->idope;
    data_real = data->rdope;
    strike_price = data_real[0];
    bet = data_real[1];
    spread = data_real[2];
    interest_rate = data_real[5];

    switch (*iflag)
    {
    case 1:
        val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
        val[3] = 0.0; val[4] = 0.0; val[5] = 1.0;
        val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
        val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
        /* Note no time dependence in case (1) for IFLAG */
        *iflag = 0;
        break;
    case 2:
        /* This is the discount factor using the risk-free
           interest rate */
        df = exp(interest_rate*tx);
        /* Use flag passed to decide on boundary condition */
        switch (data_int[0])
        {
        case 1:
            val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
            val[3] = bet*df;
            break;
        case 2:
            val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
            val[3] = (spread-strike_price)*df;
            break;
        }
    }
```
val[4] = 0.0; val[5] = 1.0; val[6] = 0.0;
val[7] = 0.0; val[8] = 0.0; val[9] = 0.0;
val[10] = 1.0; val[11] = 0.0;
break;
}
data_real = NULL;
data_int = NULL;
data = NULL;
return;
}

Output

European Option Value for A Bet
and a Vertical Spread, 3 and 6 Months Prior to Expiry
Number of equally spaced spline knots: 61
Number of unknowns: 183
Strike=10.00, Sigma= 0.40, Interest Rate= 0.10
Bet= 2.00, Spread Value=15.00

<table>
<thead>
<tr>
<th>Underlying</th>
<th>A Bet</th>
<th>Vertical Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4.0000</td>
<td>0.0000</td>
<td>0.0014</td>
</tr>
<tr>
<td>6.0000</td>
<td>0.0110</td>
<td>0.0722</td>
</tr>
<tr>
<td>8.0000</td>
<td>0.2690</td>
<td>0.4304</td>
</tr>
<tr>
<td>10.0000</td>
<td>0.9948</td>
<td>0.9781</td>
</tr>
<tr>
<td>12.0000</td>
<td>1.6095</td>
<td>1.4287</td>
</tr>
<tr>
<td>14.0000</td>
<td>1.8654</td>
<td>1.6924</td>
</tr>
<tr>
<td>16.0000</td>
<td>1.9337</td>
<td>1.8177</td>
</tr>
<tr>
<td>18.0000</td>
<td>1.9476</td>
<td>1.8700</td>
</tr>
<tr>
<td>20.0000</td>
<td>1.9501</td>
<td>1.8903</td>
</tr>
<tr>
<td>22.0000</td>
<td>1.9505</td>
<td>1.8979</td>
</tr>
<tr>
<td>24.0000</td>
<td>1.9506</td>
<td>1.9007</td>
</tr>
</tbody>
</table>

Example 4

This example evaluates the price of a convertible bond. Here, convertibility means that the bond may, at any time
of the holder's choosing, be converted to a multiple of the specified asset. Thus a convertible bond with price \(x \)
returns an amount \(K \) at time \(T \) unless the owner has converted the bond to \(vx, v \geq 1 \), units of the asset at
some time prior to \(T \). This definition, the differential equation and boundary conditions are given in Chapter 18
of Wilmott et al. (1996). Using a constant interest rate and volatility factor, the parameters and boundary conditions are:

1. Bond face value \(K = \{1\} \), conversion factor \(v = 1.125 \)
2. Volatility \(\sigma = \{0.25\} \)
3. Times until expiration = \(\{1/2, 1\} \)
4. Interest rate $r = 0.1$, dividend $D = 0.02$

5. $x_{\text{min}} = 0$, $x_{\text{max}} = 4$

6. $n_x = 61$, $n = 3 \times n_x = 183$

7. Boundary conditions $f(0,t) = K \exp(-r(T-t)), f(x_{\text{max}},t) = v x_{\text{max}}$

8. Terminal data $f(x, T) = \max(K, v x)$

9. Constraint for bond holder $f(x, t) \geq v x$

Note that the error tolerance is set to a pure absolute error of value 10^{-3}. The free boundary constraint $f(x, t) \geq v x$ is achieved by use of a non-linear forcing term in the function $f_{\text{force}}_{\text{cbond}}$. The terminal conditions are provided with the user function $f_{\text{init}}_{\text{cbond}}$.

```c
#include <ims1.h>
#include <stdio.h>
#include <math.h>

#define max(A,B)  ((A) >= (B) ? (A) : (B))
#define NXGRID 61
#define NTGRID 2
#define NV 13

void fkcfiv_cbond(float, float, int *, float *, void *);
void fkbcp_cbond(int, float, int *, float[], void *);
void fkforce_cbond(int, int, int, float[], float, float,
                     float[], float[], float[], float[], float[], void *);
void fkinit_cbond(int, int, float[], float[], float,
                   float[], float[], float[], float[], float[], void *);

int main()
{
    int i;
    /* Compute value of a Convertible Bond */

    /* The face value */
    float KS = 1.0e0;

    /* The sigma or volatility value */
    float sigma = 0.25e0;

    /* Time values for the options */
    float time[] = { 0.5, 1.0};

    /* Values of the underlying where evaluation are made */
    float xs[NV];

    /* Value of the interest rate, continuous dividend and factor */
    float r = 0.1, dividend=0.02, factor = 1.125;
```
/* Values of the min and max underlying values modeled */
float x_min = 0.0, x_max = 4.0;

/* Define parameters for the integration step. */
int nint = NXGRID-1, n = 3*NXGRID;

float xgrid[NXGRID];
float y[(NTGRID+1)*3*NXGRID], yprime[(NTGRID+1)*3*NXGRID];
float f[(NTGRID+1)*NV], dx;

/* Array for user-defined data */
float usr_data[8];
float atol;

/* Number of left/right boundary conditions. */
int nlbcd = 3, nrbcd = 3;

/* Define an equally-spaced grid of points for the underlying price */
dx = (x_max-x_min)/((float) nint);
xgrid[0] = x_min;
xgrid[NXGRID-1] = x_max;

for (i=2; i<=NXGRID-1; i++) xgrid[i-1] = xgrid[i-2] + dx;
for (i=1; i<=NV; i++) xs[i-1] = (i-1)*0.25;

/* Pass the data for evaluation */
usr_data[0] = KS;
usr_data[1] = x_max;
usr_data[2] = sigma;
usr_data[3] = r;
usr_data[4] = dividend;
usr_data[5] = factor;

/* Use a pure absolute error tolerance for the integration */
atol = 1.0e-3;
usr_data[6] = atol;

/* Compute value of convertible bond */
imsl_f_feynman_kac(NXGRID, NTGRID, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, y, yprime,
 IMSL_FCN_FKCFIV_W_DATA, fkcfiv_cbond, usr_data,
 IMSL_FCN_FKBCP_W_DATA, fkbcp_cbond, usr_data,
 IMSL_FCN_INIT_W_DATA, fkinit_cbond, usr_data,
 IMSL_FCN_FORCE_W_DATA, fkforce_cbond, usr_data,
 IMSL_ATOL_RTOL_SCALARS, 1.0e-3, 0.0e0, 0);
Evaluate and display solutions at vector of points XS(:,)
* at each time value prior to expiration.

for (i=0; i<=NTGRID; i++)
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &y[i*n],
 IMSL_RETURN_USER, &f[i*NV], 0);

printf("Convertible Bond Value, 0+, 6 and 12 Months Prior "
 "to Expiry\n", " ");
printf("Number of equally spaced spline knots:%4d\n", " ",
 NXGRID);
printf("Number of unknowns:%4d\n", " ",n);
printf("Strike=%5.2f, Sigma=%5.2f\n", " ", KS, sigma);
printf("Interest Rate=%5.2f, Dividend=%5.2f, Factor=%6.3f\n\n",
 " ", r, dividend, factor);
printf("%15s%18s
", "Underlying", "Bond Value");
for (i=0; i<NV; i++)
 printf("%7s%8.4f%8.4f%8.4f%8.4f
", xs[i], f[i], f[i+NV], f[i+2*NV]);

These functions define the coefficients, payoff, boundary conditions
* and forcing term.

void fkcfiv_cbond(float x, float tx, int *iflag, float *value,
 void *data_ptr)
{
 float sigma, strike_price, interest_rate;
 float dividend, factor, zero=0.0;
 float *data = NULL;

 data = (float *) data_ptr;

 strike_price = data[0];
 sigma = data[2];
 interest_rate = data[3];
 dividend = data[4];
 factor = data[5];

 switch(*iflag)
 {
 case 0:
 /* The payoff function - */
 *value = max(factor * x, strike_price);
 break;
 case -1:
/* The coefficient derivative d sigma/ dx */
*value = sigma;
break;
case 1:
/* The coefficient sigma(x) */
*value = sigma*x;
break;
case 2:
/* The coefficient mu(x) */
*value = (interest_rate - dividend) * x;
break;
case 3:
/* The coefficient kappa(x) */
*value = interest_rate;
break;
}
/* Note that there is no time dependence */
*iflag = 0;
}

void fkbcp_cbond(int nbc, float tx, int *iflag, float val[],
 void *data_ptr)
{
float interest_rate, strike_price, dp, factor, x_max;
float *data = NULL;

data = (float *) data_ptr;
switch (*iflag)
{
case 1:
 strike_price = data[0];
 interest_rate = data[3];
 dp = strike_price * exp(tx*interest_rate);
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 break;

case 2:
 x_max = data[1];
 factor = data[5];
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[6] = 0.0; val[7] = factor; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 /* Note no time dependence */
 *iflag = 0;
 break;
}
return;
}

void fkforce_cbond(int interval, int ndeg, int nxgrid, float y[],
 float time, float width, float xlocal[], float qw[],
 float u[], float phi[], float dphi[], void *data_ptr)
{
 int i, j, k, l;
 const int local=6;

 float yl[6], bf[6];
 float value, strike_price, interest_rate, zero=0.e0;
 float one=1.0e0, rt, mu, factor;

 float *data = NULL;

 data = (float *) data_ptr;

 for (i=0; i<local; i++)
 {
 yl[i] = y[3*interval-3+i];
 phi[i] = zero;
 }

 for (i=0; i<local*local; i++)
 dphi[i] = zero;

 value = data[6];
 strike_price = data[0];
 interest_rate = data[3];
 factor = data[5];

 mu = 2.0;

 /*
 * This is the local definition of the forcing term -
 * It "forces" the constraint f >= factor*x.
 */
 for (j=1; j<=local; j++)
 for (l=1; l<=ndeg; l++)
 {
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+6*ndeg];
 bf[4] = u[(l-1)+7*ndeg];
 bf[5] = u[(l-1)+8*ndeg];

 rt = 0.0;
 for (k=0; k<local; k++)
 rt += yl[k]*bf[k];
rt = value/(rt + value - factor * xlocal[l-1]);
phi[j-1] += qw[l-1] * bf[j-1] * pow(rt,mu);
}

for (i=0; i<local; i++)
phi[i] = -phi[i]*width*factor*strike_price;

/*
 * This is the local derivative matrix for the forcing term
 */
for (j=1; j<=local; j++)
for (i=1; i<=local; i++)
for (l=1; l<=ndeg; l++)
{
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+6*ndeg];
 bf[4] = u[(l-1)+7*ndeg];
 bf[5] = u[(l-1)+8*ndeg];

 rt = 0.0;
 for (k=0; k<local; k++) rt += yl[k]*bf[k];

 rt = one/(rt + value - factor * xlocal[l-1]);
 dphi[i-1+(j-1)*local] += qw[l-1] * bf[i-1] *
 bf[j-1] * pow(value*rt, mu) * rt;
}

for (i=0; i<local*local; i++)
 dphi[i] = -mu * dphi[i] * width * factor * strike_price;

return;
}

void fkinit_cbond(int nxgrid, int ntgrid, float xgrid[], float tgrid[],
 float time, float yprime[], float y[], float atol[],
 float rtol[], void *data_ptr)
{
 int i;
 float *data = NULL;

 data = (float *) data_ptr;

 if (time == 0.0)
 {
 /* Set initial data precisely. */
 for (i=1; i<=nxgrid; i++)
 {
 if (xgrid[i-1] * data[5] < data[0])
 }
\{
 y[3*i-3] = data[0];
 y[3*i-2] = 0.0;
 y[3*i-1] = 0.0;
\}
else
\{
 y[3*i-3] = xgrid[i-1] * data[5];
 y[3*i-2] = data[5];
 y[3*i-1] = 0.0;
\}

return;
\}

Output

Convertible Bond Value, 0+, 6 and 12 Months Prior to Expiry
Number of equally spaced spline knots: 61
Number of unknowns: 183
Strike= 1.00, Sigma= 0.25
Interest Rate= 0.10, Dividend= 0.02, Factor= 1.125

<table>
<thead>
<tr>
<th>Underlying</th>
<th>Bond Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>1.0000 0.9512 0.9048</td>
</tr>
<tr>
<td>0.2500</td>
<td>1.0000 0.9512 0.9049</td>
</tr>
<tr>
<td>0.5000</td>
<td>1.0000 0.9513 0.9065</td>
</tr>
<tr>
<td>0.7500</td>
<td>1.0000 0.9737 0.9605</td>
</tr>
<tr>
<td>1.0000</td>
<td>1.1250 1.1416 1.1464</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.4063 1.4117 1.4121</td>
</tr>
<tr>
<td>1.5000</td>
<td>1.6875 1.6922 1.6922</td>
</tr>
<tr>
<td>1.7500</td>
<td>1.9688 1.9731 1.9731</td>
</tr>
<tr>
<td>2.0000</td>
<td>2.2500 2.2540 2.2540</td>
</tr>
<tr>
<td>2.2500</td>
<td>2.5312 2.5349 2.5349</td>
</tr>
<tr>
<td>2.5000</td>
<td>2.8125 2.8160 2.8160</td>
</tr>
<tr>
<td>2.7500</td>
<td>3.0938 3.0970 3.0970</td>
</tr>
<tr>
<td>3.0000</td>
<td>3.3750 3.3781 3.3781</td>
</tr>
</tbody>
</table>

Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "]".
Computes the value of a Hermite quintic spline or the value of one of its derivatives. In particular, computes solutions to the Feynman-Kac PDE handled by function \texttt{imsl_f_feynman_kac}.

Synopsis

```c
#include <imsl.h>

float* imsl\_f\_feynman\_kac\_evaluate (int \textit{nw}, int \textit{m}, float breakpoints[], float \textit{w}[],
float \textit{coef}[],..., 0)
```

The type \texttt{double} function is \texttt{imsl_d_feynman_kac_evaluate}.

Required Arguments

- \texttt{int \textit{nw} (Input)}
 - Length of the array containing the evaluation points of the spline.

- \texttt{int \textit{m} (Input)}
 - Number of breakpoints for the Hermite quintic spline interpolation. It is required that \textit{m} \(\geq 2 \). When applied to \texttt{imsl_f_feynman_kac}, \textit{m} is identical to argument \texttt{nxgrid}.

- \texttt{float breakpoints[]} (Input)
 - Array of length \textit{m} containing the breakpoints for the Hermite quintic spline interpolation. The breakpoints must be in strictly increasing order. When applied to \texttt{imsl_f_feynman_kac}, \texttt{breakpoints[]} is identical to array \texttt{xgrid[]}.

- \texttt{float \textit{w}[]} (Input)
 - Vector of length \textit{nw} containing the evaluation points for the spline. It is required that \texttt{breakpoints[0] \leq \textit{w}[i] \leq \text{breakpoints[m\textendash}1]} for \texttt{i=0,...,\textit{nw}-1}.

- \texttt{float \textit{coef}[]} (Input)
 - Vector of length \(3\times \textit{m} \) containing the coefficients of the Hermite quintic spline.
 - When applied to \texttt{imsl_f_feynman_kac}, this vector is one of the rows of output arrays \texttt{y} or \texttt{y_prime} related to the spline coefficients at time points \texttt{t=tgrid[j], j=1,...,ntgrid}.

Return Value

A pointer to an array of length \textit{nw} containing the values of the Hermite quintic spline or one of its derivatives at the evaluation points in array \texttt{w}[]. If no values can be computed, then \texttt{NULL} is returned.
Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_feynman_kac_evaluate(int nw, int m, float breakpoints[], float w[], float coef[],
IMSL_DERIV, int deriv,
IMSL_RETURN_USER, float value[],
0)
```

Optional Arguments

IMSL_DERIV, int deriv (Input)

Let \(d = \text{deriv} \) and let \(H(w) \) be the given Hermite quintic spline. Then, this option produces the \(d \)-th derivative of \(H(w) \) at \(w, H^d(w) \). It is required that \(\text{deriv} = 0, 1, 2 \) or \(3 \).

Default: \(\text{deriv} = 0 \).

IMSL_RETURN_USER, float value[] (Output)

A user defined array of length \(nw \) to receive the \(d \)-th derivative of \(H(x) \) at the evaluation points in \(w[] \). When using this option, the return value of the function is NULL.

Description

The Hermite quintic spline interpolation is done over the composite interval \([x_{\min}, x_{\max}]\), where

\[-\text{breakpoints}[i-1] = x_i, \text{ are given by } (x_{\min} = x_1 < x_2 < \ldots < x_m = x_{\max}).\]

The Hermite quintic spline function is constructed using three primary functions, defined by

\[
b_0(z) = -6z^5 + 15z^4 - 10z^3 + 1 = (1 - z)^3(6z^2 + 3z + 1),
\]

\[
b_1(z) = -3z^5 + 8z^4 - 6z^3 + z = (1 - z)^3z(3z + 1),
\]

\[
b_2(z) = \frac{1}{2}(-z^5 + 3z^4 - 3z^3 + z^2) = \frac{1}{2}(1 - z)^3z^2.
\]

For each

\[x \in [x_i, x_{i+1}], h_i = x_{i+1} - x_i, z_i = (x - x_i) / h_i, i = 1, \ldots, m - 1,\]

the spline is locally defined by

\[
H(x) = y_{3i-2}b_0(z) + y_{3i+1}b_0(1 - z) + h_iy_{3i-1}b_1(z)
- h_iy_{3i+2}b_1(1 - z) + h_i^2y_{3i+3}b_2(z) + h_i^2y_{3i+3}b_2(1 - z),
\]

where
are the values of a given twice continuously differentiable function f and its first two derivatives at the breakpoints.

The approximating function $H(x)$ is twice continuously differentiable on $[x_{\min}, x_{\max}]$, whereas the third derivative is in general only continuous within the interior of the intervals $[x_i, x_{i+1}]$. From the local representation of $H(x)$ it follows that

$$H(x_i) = f(x_i) = y_{3i-2}, \quad H'(x_i) = f'(x_i) = y_{3i-1}, \quad H''(x_i) = y_{3i}, \quad i = 1, \ldots, m$$

The spline coefficients $y_{i}, i = 1, \ldots, 3m$, are stored as successive triplets in array $\text{coef}[]$. For a given $w \in [x_{\min}, x_{\max}]$, function $\text{imsl_f_feynman_kac_evaluate}$ uses the information in $\text{coef}[]$ together with the values of b_0, b_1, b_2 and its derivatives at w to compute $H^{(d)}(w), d = 0, \ldots, 3$ using the local representation on the particular subinterval containing w.

Example

Consider function $f(x) = x^5$, a polynomial of degree 5, on the interval $[-1, 1]$ with breakpoints ± 1. Then, the end derivative values are

$$y_1 = f(-1) = -1, \quad y_2 = f'(-1) = 5, \quad y_3 = f''(-1) = -20$$

and

$$y_4 = f(1) = 1, \quad y_5 = f'(1) = 5, \quad y_6 = f''(1) = 20$$

Since the Hermite quintic interpolates all polynomials up to degree 5 exactly, the spline interpolation on $[-1, 1]$ must agree with the exact function value up to rounding errors.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

/* Define function */
#define F(x) pow(x, 5.0)

int main()
{
    int i;
    int nw = 7;
    int m = 2;
    float breakpoints[] = { -1.0, 1.0 };
    ```
```c
float w[] = { -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75 };  
float coef[] = { -1.0, 5.0, -20.0, 1.0, 5.0, 20.0 };  
float *result = NULL;  

result = imsl_f_feynman_kac_evaluate(nw, m, breakpoints, w, coef, 0);  

/* Print results */  
printf(" x F(x) Interpolant Error\n\n");  
for (i=0; i<=6; i++)  
    printf(" %6.3f %10.3f %10.3f %10.7f\n", w[i], F(w[i]), result[i], fabs(F(w[i])-result[i]));  
}
```

Output

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.75</td>
<td>-0.237</td>
<td>-0.237</td>
<td>0.0000000</td>
</tr>
<tr>
<td>-0.500</td>
<td>-0.031</td>
<td>-0.031</td>
<td>0.0000000</td>
</tr>
<tr>
<td>-0.250</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.0000000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>0.250</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0000000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.031</td>
<td>0.031</td>
<td>0.0000000</td>
</tr>
<tr>
<td>0.750</td>
<td>0.237</td>
<td>0.237</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>
Solves Poisson's or Helmholtz's equation on a two-dimensional rectangle using a fast Poisson solver based on the HODIE finite-difference scheme on a uniform mesh.

Synopsis

```c
#include <imsl.h>

float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float coeff_u, int nx, int ny, float ax, float bx, float ay, float by, imsl_bc_type bc_type[], ..., 0)
```

The type `double` function is `imsl_d_fast_poisson_2d`.

Required Arguments

- **float rhs_pde (float x, float y)**
 - User-supplied function to evaluate the right-hand side of the partial differential equation at x and y.

- **float rhs_bc(imsl_pde_side side, float x, float y)**
 - User-supplied function to evaluate the right-hand side of the boundary conditions, on side `side`, at x and y. The value of `side` will be one of the following: `IMSL_RIGHT`, `IMSL_BOTTOM`, `IMSL_LEFT`, or `IMSL_TOP`.

- **float coeff_u (Input)**
 - Value of the coefficient of `u` in the differential equation.

- **int nx (Input)**
 - Number of grid lines in the x-direction. `nx` must be at least 4. See the Description section for further restrictions on `nx`.

- **int ny (Input)**
 - Number of grid lines in the y-direction. `ny` must be at least 4. See the Description section for further restrictions on `ny`.

- **float ax (Input)**
 - The value of x along the left side of the domain.

- **float bx (Input)**
 - The value of x along the right side of the domain.
The value of \(y \) along the bottom of the domain.

The value of \(y \) along the top of the domain.

Array of size 4 indicating the type of boundary condition on each side of the domain or that the solution is periodic. The sides are numbered as follows:

<table>
<thead>
<tr>
<th>Side</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_RIGHT_SIDE</td>
<td>(x = bx)</td>
</tr>
<tr>
<td>IMSL_BOTTOM_SIDE</td>
<td>(y = ay)</td>
</tr>
<tr>
<td>IMSL_LEFT_SIDE</td>
<td>(x = ax)</td>
</tr>
<tr>
<td>IMSL_TOP_SIDE</td>
<td>(y = by)</td>
</tr>
</tbody>
</table>

The three possible boundary condition types are as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_DIRICHLET_BC</td>
<td>Value of (u) is given.</td>
</tr>
<tr>
<td>IMSL_NEUMANN_BC</td>
<td>Value of (\frac{du}{dx}) is given (on the right or left sides) or (\frac{du}{dy}) (on the bottom or top of the domain).</td>
</tr>
<tr>
<td>IMSL_PERIODIC_BC</td>
<td>Periodic</td>
</tr>
</tbody>
</table>

Return Value

An array of size \(nx \) by \(ny \) containing the solution at the grid points.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_fast_poisson_2d(float rhs_pde(), float rhs_bc(), float coeff_u, int nx, int ny, float ax, float bx, float ay, float by, Imsl_bc_type bc_type[],
IMSL_RETURN_USER, float u_user[],
IMSL_ORDER, int order,
IMSL_RHS_PDE_W_DATA, float rhs_pde(), void *data,
IMSL_RHS_BC_W_DATA, float rhs_bc(), void *data,
0)
```
Optional Arguments

IMSL_RETURN_USER, float u_user[] (Output)
User-supplied array of size nx by ny containing the solution at the grid points.

IMSL_ORDER, int order (Input)
Order of accuracy of the finite-difference approximation. It can be either 2 or 4.
Default: order = 4

IMSL_RHS_PDE_W_DATA, float rhs_pde (float x, float y, void *data), void *data, (Input)
User-supplied function to evaluate the right-hand side of the partial differential equation at x and y, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_RHS_BC_W_DATA, float rhs_bc (Imsl_pde_side side, float x, float y, void *data), void *data, (Input)
User-supplied function to evaluate right-hand side of the boundary conditions, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

Let c = coeff_u, ax = ax, bx = bx, ay = ay, by = by, nx = nx and ny = ny.

 IMSL_f_fast_poisson_2d is based on the code HFFT2D by Boisvert (1984). It solves the equation

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + cu = p \]

on the rectangular domain \((a_x, b_x) \times (a_y, b_y)\) with a user-specified combination of Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic boundary conditions. The sides are numbered clockwise, starting with the right side.
When $c = 0$ and only Neumann or periodic boundary conditions are prescribed, then any constant may be added to the solution to obtain another solution to the problem. In this case, the solution of minimum ∞-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-difference approximation of the continuous equation. The resulting system of linear algebraic equations is solved using fast Fourier transform techniques. The algorithm relies on the fact that $n_x - 1$ is highly composite (the product of small primes). For details of the algorithm, see Boisvert (1984). If $n_x - 1$ is highly composite then the execution time of `imsl_f_fast_poisson_2d` is proportional to $n_x n_y \log_2 n_x$. If evaluations of $p(x, y)$ are inexpensive, then the difference in running time between order $= 2$ and order $= 4$ is small.

The grid spacing is the distance between the (uniformly spaced) grid lines. It is given by the formulas $h_x = (b_x - a_x)/(n_x - 1)$ and $h_y = (b_y - a_y)/(n_y - 1)$. The grid spacings in the x and y directions must be the same, i.e., n_x and n_y must be such that h_x is equal to h_y. Also, as noted above, n_x and n_y must be at least 4. To increase the speed of the fast Fourier transform, $n_x - 1$ should be the product of small primes. Good choices are 17, 33, and 65.

If $-\text{coeff}_u$ is nearly equal to an eigenvalue of the Laplacian with homogeneous boundary conditions, then the computed solution might have large errors.

On some platforms, `imsl_f_fast_poisson_2d` can evaluate the user-supplied function fcn in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Example

In this example, the equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + 3u = -2\sin(x + 2y) + 16e^{2x+3y}$$

with the boundary conditions
\[\frac{du}{dy} = 2\cos(x + 2y) + 3e^{2x+3y} \]
on the bottom side and
\[u = \sin(x + 2y) + e^{2x+3y} \]
on the other three sides is solved. The domain is the rectangle \([0, \frac{1}{4}] \times [0, \frac{1}{2}]\). The output of
\texttt{imsl_f_fast_poisson_2d} is a 17 \times 33 table of values. The functions \texttt{imsl_f_spline_2d_value} are
used to print a different table of values.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
  float          rhs_pde(float, float);
  float          rhs_bc(Imsl_pde_side, float, float);
  int            nx = 17;
  int            nxtabl = 5;
  int            ny = 33;
  int            nytabl = 5;
  int            i;
  int            j;
  Imsl_f_spline *sp;
  Imsl_bc_type   bc_type[4];
  float          ax, ay, bx, by;
  float          x, y, xdata[17], ydata[33];
  float          coefu, *u;
  float          u_table;
  float          abs_error;

  imsl_omp_options(      
    IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,   
    0);

  /* Set rectangle size */
  ax = 0.0;
  bx = 0.25;
  ay = 0.0;
  by = 0.50;

  /* Set boundary conditions */
  bc_type[IMSL_RIGHT_SIDE] = IMSL_DIRICHLET_BC;
  bc_type[IMSL_BOTTOM_SIDE] = IMSL_NEUMANN_BC;
  bc_type[IMSL_LEFT_SIDE] = IMSL_DIRICHLET_BC;
  bc_type[IMSL_TOP_SIDE] = IMSL_DIRICHLET_BC;
```

/* Coefficient of u */
cofu = 3.0;

/* Solve the PDE */
u = imsl_f_fast_poisson_2d(rhs_pde, rhs_bc, cofu, nx, ny,
ax, bx, ay, by, bc_type,
0);

/* Set up for interpolation */
for (i = 0; i < nx; i++)
xdata[i] = ax + (bx - ax) * (float) i / (float) (nx - 1);
for (i = 0; i < ny; i++)
ydata[i] = ay + (by - ay) * (float) i / (float) (ny - 1);

/* Compute interpolant */
sp = imsl_f_spline_2d_interp(nx, xdata, ny, ydata, u,
0);

printf(" x y u error\n\n");
for (i = 0; i < nxtabl; i++)
for (j = 0; j < nytabl; j++) {
x = ax + (bx - ax) * (float) j / (float) (nxtabl - 1);
y = ay + (by - ay) * (float) i / (float) (nytabl - 1);
 u_table = imsl_f_spline_2d_value(x, y, sp,
0);
 abs_error = fabs(u_table - sin(x + 2.0 * y) -
 exp(2.0 * x + 3.0 * y));

 /* Print computed answer and absolute on
 nxtabl by nytabl grid */
 printf(" %6.4f %6.4f %6.4f %8.2e\n",
x, y, u_table, abs_error);

}

float rhs_pde(float x, float y)
{
 /* Define the right side of the PDE */
 return (-2.0 * sin(x + 2.0 * y) + 16.0 * exp(2.0 * x + 3.0 * y));
}

float rhs_bc(Imsl_pde_side side, float x, float y)
{
 /* Define the boundary conditions */
 if (side == IMSL_BOTTOM_SIDE)
 return (2.0 * cos(x + 2.0 * y) + 3.0 * exp(2.0 * x + 3.0 * y));
 else
 return (sin(x + 2.0 * y) + exp(2.0 * x + 3.0 * y));
}
Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>u</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.00e+00</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.0000</td>
<td>1.1956</td>
<td>5.12e-06</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.0000</td>
<td>1.4087</td>
<td>7.19e-06</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.0000</td>
<td>1.6414</td>
<td>5.10e-06</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.0000</td>
<td>1.8961</td>
<td>8.67e-08</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.1250</td>
<td>1.7024</td>
<td>1.73e-07</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.1250</td>
<td>1.9562</td>
<td>6.39e-06</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.1250</td>
<td>2.2345</td>
<td>9.50e-06</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.1250</td>
<td>2.5407</td>
<td>6.36e-06</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.1250</td>
<td>2.8783</td>
<td>1.66e-07</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.2500</td>
<td>2.5964</td>
<td>2.60e-07</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.2500</td>
<td>2.9322</td>
<td>9.25e-06</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.2500</td>
<td>3.3034</td>
<td>1.34e-05</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.2500</td>
<td>3.7148</td>
<td>9.27e-06</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.2500</td>
<td>4.1720</td>
<td>9.40e-08</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.3750</td>
<td>3.7619</td>
<td>4.84e-07</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.3750</td>
<td>4.2163</td>
<td>9.16e-06</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.3750</td>
<td>4.7226</td>
<td>1.36e-05</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.3750</td>
<td>5.2878</td>
<td>9.44e-06</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.3750</td>
<td>5.9199</td>
<td>5.72e-07</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.5000</td>
<td>5.3232</td>
<td>5.93e-07</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.5000</td>
<td>5.9520</td>
<td>9.84e-07</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.5000</td>
<td>6.6569</td>
<td>1.34e-06</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5000</td>
<td>7.4483</td>
<td>4.55e-07</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.5000</td>
<td>8.3380</td>
<td>2.27e-06</td>
</tr>
</tbody>
</table>

Fatal Errors

IMSL_STOP_USER_FCN

Request from user supplied function to stop algorithm.

User flag = "#".
Chapter 6 Transforms

Functions

Real Trigonometric FFTs
- Real FFT fft_real 702
- Real FFT initialization fft_real_init 707

Complex Exponential FFTs
- Complex FFT fft_complex 710
- Complex FFT initialization fft_complex_init 714

Real Sine and Cosine FFTs
- Fourier cosine transform fft_cosine 717
- Fourier cosine transform initialization fft_cosine_init 720
- Fourier sine transform fft_sine 723
- Fourier sine transform initialization fft_sine_init 726

Two-Dimensional FFTs
- Complex two-dimensional FFT fft_2d_complex 729

Convolution and Correlation
- Real convolution/correlation convolution 736
- Complex convolution/correlation convolution (complex) 744

Laplace Transform
- Approximate inverse Laplace transform of a complex function inverse_laplace 751
Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed efficiently. The straightforward method for computing the Fourier transform takes approximately n^2 operations where n is the number of points in the transform, while the FFT (which computes the same values) takes approximately $n \log n$ operations. It uses the system’s high performance library for the computation, if available. The algorithms in this chapter are modeled on the Cooley-Tukey (1965) algorithm. Hence, these functions are most efficient for integers that are highly composite; that is, integers that are a product of small primes.

For the two functions `imsl_f_fft_real` and `imsl_c_fft_complex` there is a corresponding initialization function. Use these functions only when repeatedly transforming sequences of the same length. In this situation, the initialization function computes the initial setup once. Subsequently, the user calls the corresponding main function with the appropriate option. This may result in substantial computational savings. For more information on the use of these functions, consult the documentation under the appropriate function name.

In addition to the one-dimensional transformations described above, we also provide a complex two-dimensional FFT and its inverse.

Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the continuous Fourier transform. Recall that the continuous Fourier transform is defined (Brigham 1974) as

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i \omega t} dt$$

We begin by making the following approximation:

$$\hat{f}(\omega) \approx \int_{-T/2}^{T/2} f(t) e^{-2\pi i \omega t} dt$$

$$= \int_0^T f(t-T/2) e^{-2\pi i \omega (t-T/2)} dt$$

$$= e^{\pi i \omega T} \int_0^T f(t-T/2) e^{-2\pi i \omega t} dt$$

If we approximate the last integral using the rectangle rule with spacing $h = T/n$, we have

$$\hat{f}(\omega) \approx e^{\pi i \omega T} h \sum_{k=0}^{n-1} e^{-2\pi i \omega kh} f(kh-T/2)$$

Finally, setting $\omega = j/T$ for $j = 0, \ldots, n-1$ yields
\[f\left(\frac{j}{T}\right) \approx e^{\pi ij \frac{1}{h}} \sum_{k=0}^{n-1} e^{-2\pi ijk/n} f\left(kh - T/2\right) = (-1)^j \sum_{k=0}^{n-1} e^{-2\pi ijk/n} f_k \]

where the vector \(f^h = (f(-T/2), \ldots, f((n-1)h - T/2))\). Thus, after scaling the components by \((-1)^h\), the discrete Fourier transform, as computed in \texttt{imsl_c_fft_complex} (with input \(f^h\)) is related to an approximation of the continuous Fourier transform by the above formula.

If the function \(f\) is expressed as a C function, then the continuous Fourier transform

\[\hat{f} \]

can be approximated using the IMSL function \texttt{imsl_f_int_fcn_fourier} (Quadrature).
Computes the real discrete Fourier transform of a real sequence.

Synopsis

```c
#include <imsl.h>

float *imsl_f_fft_real(int n, float p[], ..., 0)
```

The type `double` function is `imsl_d_fft_real`.

Required Arguments

- `int n` (Input)
 - Length of the sequence to be transformed.
- `float p[]` (Input)
 - Array with `n` components containing the periodic sequence.

Return Value

A pointer to the transformed sequence. To release this space, use `imsl_free`. If no value can be computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_fft_real(int n, float p[],

  IMSL_BACKWARD,
  IMSL_PARAMS, float params[],
  IMSL_RETURN_USER, float q[],
  0)
```
Optional Arguments

IMSL_BACKWARD
Compute the backward transform. If IMSL_BACKWARD is used, the return value of the function is the backward transformed sequence.

IMSL_PARAMS, float params [] (Input)
Pointer returned by a previous call to imsl_f_fft_real_init. If imsl_f_fft_real is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once.

IMSL_RETURN_USER, float q [] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and imsl_f_fft_real returns q. The array q must be at least n long.

Description

The function imsl_f_fft_real computes the discrete Fourier transform of a real vector of size n. It uses the system's high performance library for the computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm, which is most efficient when n is a product of small prime factors. If n satisfies this condition, then the computational effort is proportional to n log n. The Cooley-Tukey algorithm is based on the real FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

By default, imsl_f_fft_real computes the forward transform. If n is even, then the forward transform is

\[
q_{2m-1} = \sum_{k=0}^{n-1} p_k \cos \frac{2\pi km}{n} \quad m = 1, \ldots, n/2
\]

\[
q_{2m} = -\sum_{k=0}^{n-1} p_k \sin \frac{2\pi km}{n} \quad m = 1, \ldots, n/2 - 1
\]

\[
q_0 = \sum_{k=0}^{n-1} p_k
\]

If n is odd, q_m is defined as above for m from 1 to (n - 1)/2.

Let f be a real valued function of time. Suppose we sample f at n equally spaced time intervals of length \(\Delta\) seconds starting at time \(t_0\). That is, we have

\[
p_i = f(t_0 + i\Delta) \quad i = 0, 1, \ldots, n - 1
\]

We will assume that n is odd for the remainder of this discussion. The function imsl_f_fft_real treats this sequence as if it were periodic of period n. In particular, it assumes that \(f(t_0) = f(t_0 + n\Delta)\). Hence, the period of the function is assumed to be \(T = n\Delta\). We can invert the above transform for p as follows:
This formula is very revealing. It can be interpreted in the following manner. The coefficients \(q \) produced by \texttt{imsl_f_fft_real} determine an interpolating trigonometric polynomial to the data. That is, if we define

\[
g(t) = \frac{1}{n} \left[q_0 + 2 \sum_{k=0}^{(n-3)/2} q_{2k+1} \cos \frac{2\pi (k+1)(t-t_0)}{n \Delta} - 2 \sum_{k=0}^{(n-3)/2} q_{2k+2} \sin \frac{2\pi (k+1)(t-t_0)}{n \Delta} \right]
\]

then we have

\[
f(t_0 + i \Delta) = g(t_0 + i \Delta)
\]

Now suppose we want to discover the dominant frequencies, forming the vector \(P \) of length \((n+1)/2\) as follows:

\[
P_0 := |q_0|\]
\[
P_k := \sqrt{q_{2k-1}^2 + q_{2k}^2} \quad k = 1, 2, \ldots, (n-1)/2
\]

These numbers correspond to the energy in the spectrum of the signal. In particular, \(P_k \) corresponds to the energy level at frequency

\[
k \frac{T}{n} = k \frac{T}{n \Delta} \quad k = 0, 1, \ldots, \frac{n-1}{2}
\]

Furthermore, note that there are only \((n+1)/2 \approx T/(2\Delta)\) resolvable frequencies when \(n \) observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete sampling of a continuous signal. Similar relations hold for the case when \(n \) is even.

If the optional argument \texttt{IMSL_BACKWARD} is specified, then the backward transform is computed. If \(n \) is even, then the backward transform is

\[
q_m = p_0 + (-1)^m p_{n-1} + 2 \sum_{k=0}^{n/2-2} p_{2k+1} \cos \frac{2\pi (k+1)m}{n \Delta} - 2 \sum_{k=0}^{n/2-2} p_{2k+2} \sin \frac{2\pi (k+1)m}{n \Delta}
\]

If \(n \) is odd,

\[
q_m = p_0 + 2 \sum_{k=0}^{(n-3)/2} p_{2k+1} \cos \frac{2\pi (k+1)m}{n \Delta} - 2 \sum_{k=0}^{(n-3)/2} p_{2k+2} \sin \frac{2\pi (k+1)m}{n \Delta}
\]

The backward Fourier transform is the unnormalized inverse of the forward Fourier transform.
Examples

Example 1
In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered. The Fourier series is a vector with all components zero except at the appropriate frequency where it has an n.

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>

int main()
{
    int        k, n = 7;
    float      two_pi = 2*imsl_f_constant("pi", 0);
    float      p[7], *q;
    /* Fill q with a pure exponential signal */
    for (k = 0; k < n; k++)
        p[k] = cos(k*two_pi/n);
    q = imsl_f_fft_real (n, p, 0);
    printf("       index     p       q
    ");
    for (k = 0; k < n; k++)
        printf("%11d%10.2f%10.2f
", k, p[k], q[k]);
}
```

Output

```
       index     p       q
 0     1.00     0.00
 1     0.62     3.50
 2    -0.22     0.00
 3    -0.90    -0.00
 4    -0.90    -0.00
 5    -0.22     0.00
 6     0.62    -0.00
```

Example 2
This example computes the Fourier transform of the vector x, where $x_j = (-1)^j$ for $j = 0$ to $n - 1$. The backward transform of this vector is now computed by using the optional argument IMSL_BACKWARD. Note that $s = nx$, that is, $s_j = (-1)^j n$, for $j = 0$ to $n - 1$.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    ...
```
int k, n = 7;
float *q, *s, x[7];

/* Fill data vector */
x[0] = 1.0;
for (k = 1; k<n; k++)
 x[k] = -x[k-1];

/* Compute the forward transform of x */
q = imsl_f_fft_real (n, x, 0);

/* Compute the backward transform of x */
s = imsl_f_fft_real (n, q,
 IMSL_BACKWARD, 0);

printf("index x q s\n");
for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f\n", k, x[k], q[k], s[k]);

Output

index x q s
0 1.00 1.00 7.00
1 -1.00 1.00 -7.00
2 1.00 0.48 7.00
3 -1.00 1.00 -7.00
4 1.00 1.25 7.00
5 -1.00 1.00 -7.00
6 1.00 4.38 7.00
Computes the parameters for \texttt{imsl_f_fft_real}.

Synopsis

```c
#include <imsl.h>

float *imsl\_f\_fft\_real\_init (int n)
```

The type \texttt{double} function is \texttt{imsl_d_fft_real_init}.

Required Arguments

- \texttt{int n} (Input)
 - Length of the sequence to be transformed.

Return Value

A pointer to the internal parameter vector that can then be used by \texttt{imsl_f_fft_real} when the optional argument \texttt{IMSL_PARAMS} is specified. To release this space, use \texttt{imsl_free}. If no value can be computed, then NULL is returned.

Description

The function \texttt{imsl_f_fft_real_init} should be used when many calls are to be made to \texttt{imsl_f_fft_real} without changing the sequence length \texttt{n}. This function computes the parameters that are necessary for the real Fourier transform.

It uses the system’s high performance library for the computation, if available. Otherwise, the function \texttt{imsl_f_fft_real_init} is based on the routine RFFTI in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example computes three distinct real FFTs by calling \texttt{imsl_f_fft_real_init} once and then calling \texttt{imsl_f_fft_real} three times.
#include <imsl.h>
#include <math.h>
#include <stdio.h>

int main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 float p[7], *q, *work;
 work = imsl_f_fft_real_init (n);
 for (j = 0; j < 3; j++){
 /* Fill p with a pure sinusoidal signal */
 for (k = 0; k < n; k++)
 p[k] = cos(k*two_pi*j/n);

 q = imsl_f_fft_real (n, p,
 IMSL_PARAMS, work, 0);

 printf(" index p q
 %11d%10.2f%10.2f\n", k, p[k], q[k]);
 }
}

Output

index p q
0 1.00 7.00
1 1.00 0.00
2 1.00 0.00
3 1.00 0.00
4 1.00 0.00
5 1.00 -0.00
6 1.00 0.00

index p q
0 1.00 0.00
1 0.62 3.50
2 -0.22 0.00
3 -0.90 -0.00
4 -0.90 -0.00
5 -0.22 0.00
6 0.62 -0.00

index p q
0 1.00 -0.00
1 -0.22 0.00
2 -0.90 -0.00
3 0.62 3.50
4 0.62 -0.00
5 -0.90 0.00
Computes the complex discrete Fourier transform of a complex sequence.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_fft_complex(int n, f_complex p[], ..., 0)
```

The type `d_complex` function is `imsl_z_fft_complex`.

Required Arguments

- `int n` (Input)
 - Length of the sequence to be transformed.
- `f_complex p[]` (Input)
 - Array with `n` components containing the periodic sequence.

Return Value

If no optional arguments are used, `imsl_c_fft_complex` returns a pointer to the transformed sequence. To release this space, use `imsl_free`. If no value can be computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_fft_complex(int n, f_complex p[],

  IMSL_BACKWARD,
  IMSL_PARAMS, float params[],
  IMSL_RETURN_USER, f_complex q[],
  0)
```
Optional Arguments

IMSL_BACKWARD
Compute the backward transform. If IMSL_BACKWARD is used, the return value of the function is the backward transformed sequence.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_c_fft_complex_init. If imsl_c_fft_complex is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once.

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and imsl_c_fft_complex returns q. The array q must be of length at least n.

Description

The function imsl_c_fft_complex computes the discrete Fourier transform of a real vector of size n. It uses the system's high performance library for the computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm, which is most efficient when n is a product of small prime factors. If n satisfies this condition, then the computational effort is proportional to \(n \log n\). The Cooley-Tukey algorithm is based on the complex FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

By default, imsl_c_fft_complex computes the forward transform below.

\[
q_j = \sum_{m=0}^{n-1} p_m e^{-2\pi jm/n}
\]

Note that we can invert the Fourier transform as follows below.

\[
p_m = \frac{1}{n} \sum_{j=0}^{n-1} q_j e^{2\pi jm/n}
\]

This formula reveals the fact that, after properly normalizing the Fourier coefficients, you have the coefficients for a trigonometric interpolating polynomial to the data.

If the option IMSL_BACKWARD is selected, then the following computation is performed.

\[
q_j = \sum_{m=0}^{n-1} p_m e^{2\pi jm/n}
\]

Furthermore, the relation between the forward and backward transforms is that they are unnormalized inverses of each other. That is, the following code fragment begins with a vector \(p\) and concludes with a vector \(p_2 = np\).

q = imsl_c_fft_complex(n, p, 0);
p2 = imsl_c_fft_complex(n, q, IMSL_BACKWARD, 0);

Examples

Example 1
This example inputs a pure exponential data vector and recovers its Fourier series, which is a vector with all components zero except at the appropriate frequency where it has an n.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int k, n = 7;
    float two_pi = 2*imsl_f_constant("pi", 0);
    f_complex p[7], *q, z;

    /* Fill p with a pure exponential signal */
    for (k = 0; k < n; k++) {
        z.re = 0.;
        z.im = k*two_pi/n;
        p[k] = imsl_c_exp(z);
    }
    q = imsl_c_fft_complex (n, p, 0);

    printf("       index   p.re     p.im     q.re     q.im\n");
    for (k = 0; k < n; k++)
        printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im, q[k].re, q[k].im);
}
```

Output

```
index   p.re     p.im     q.re     q.im
0     1.00     0.00     0.00     0.00
1     0.62     0.78     7.00     0.00
2    -0.22     0.97    -0.00     0.00
3    -0.90     0.43    -0.00     0.00
4    -0.90    -0.43     0.00    -0.00
5    -0.22    -0.97     0.00    -0.00
6     0.62    -0.78     0.00     0.00
```

Example 2
The backward transform is used to recover the original sequence. Notice that the forward transform followed by the backward transform multiplies the entries in the original sequence by the length of the sequence.
#include <imsl.h>
#include <stdio.h>

int main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[7], *q, *pp;

 /* Fill p with an increasing signal */
 for (k = 0; k < n; k++) {
 p[k].re = (float) k;
 p[k].im = 0.;
 }

 q = imsl_c_fft_complex (n, p, 0);
 pp = imsl_c_fft_complex (n, q,
 IMSL_BACKWARD,
 0);

 printf(" index p.re p.im pp.re pp.im \\
 \n");
 for (k = 0; k < n; k++)
 {
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im, pp[k].re , pp[k].im);
 }
}

Output

<table>
<thead>
<tr>
<th>index</th>
<th>p.re</th>
<th>p.im</th>
<th>pp.re</th>
<th>pp.im</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.00</td>
<td>7.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.00</td>
<td>14.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.00</td>
<td>21.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>0.00</td>
<td>28.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>0.00</td>
<td>35.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
<td>0.00</td>
<td>42.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
fft_complex_init

Computes the parameters for imsl_c_fft_complex.

Synopsis

#include <imsl.h>

float *imsl_c_fft_complex_init(int n)

The type double function is imsl_z_fft_complex_init.

Required Arguments

int n (Input)
Length of the sequence to be transformed.

Return Value

A pointer to the internal parameter vector that can then be used by imsl_c_fft_complex when the optional argument IMSL_PARAMS is specified. To release this space, use imsl_free. If no value can be computed, then NULL is returned.

Description

The routine imsl_c_fft_complex_init should be used when many calls are to be made to imsl_c_fft_complex without changing the sequence length n. This routine computes constants which are necessary for the real Fourier transform.

It uses the system's high performance library for the computation, if available. Otherwise, the function imsl_c_fft_complex_init is based on the routine CFFTI in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example computes three distinct complex FFTs by calling imsl_c_fft_complex_init once, then calling imsl_c_fft_complex 3 times.
#include <imsl.h>
#include <stdio.h>

int main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0), *work;
 f_complex p[7], *q, z;
 work = imsl_c_fft_complex_init (n);
 for (j = 0; j < 3; j++) {
 /* Fill p with a pure exponential signal */
 for (k = 0; k < n; k++) {
 z.re = 0.;
 z.im = k*two_pi*j/n;
 p[k] = imsl_c_exp(z);
 }
 q = imsl_c_fft_complex (n, p,
 IMSL_PARAMS, work, 0);
 printf("\n index p.re p.im q.re q.im\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 q[k].re, q[k].im);
 }
}

Output

index p.re p.im q.re q.im
0 1.00 0.00 7.00 0.00
1 1.00 0.00 0.00 0.00
2 1.00 0.00 0.00 0.00
3 1.00 0.00 0.00 0.00
4 1.00 0.00 0.00 0.00
5 1.00 0.00 0.00 0.00
6 1.00 0.00 0.00 0.00

index p.re p.im q.re q.im
0 1.00 0.00 0.00 0.00
1 0.62 0.78 7.00 0.00
2 -0.22 0.97 -0.00 0.00
3 -0.90 0.43 -0.00 0.00
4 -0.90 -0.43 0.00 -0.00
5 -0.22 -0.97 0.00 -0.00
6 0.62 -0.78 0.00 0.00

index p.re p.im q.re q.im
0 1.00 0.00 0.00 0.00
1 -0.22 0.97 0.00 0.00
<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-0.90</td>
<td>-0.43</td>
<td>7.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.62</td>
<td>-0.78</td>
<td>-0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.62</td>
<td>0.78</td>
<td>-0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.90</td>
<td>0.43</td>
<td>-0.00</td>
<td>-0.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.22</td>
<td>-0.97</td>
<td>0.00</td>
<td>-0.00</td>
<td></td>
</tr>
</tbody>
</table>
Computes the discrete Fourier cosine transformation of an even sequence.

Synopsis

```c
#include <imsl.h>

float *imsl_f_fft_cosine(int n, float p[], ... , 0)
```

The type `double` procedure is `imsl_d_fft_cosine`.

Required Arguments

- `int n` (Input)
 Length of the sequence to be transformed. It must be greater than 1.

- `float p[]` (Input)
 Array of size `n` containing the sequence to be transformed.

Return Value

A pointer to the transformed sequence. To release this space, use `imsl_free`. If no solution was computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_fft_cosine(int n, float p[],
IMSL_RETURN_USER, float q[],
IMSL_PARAMS, float params[],
0)
```
Optional Arguments

IMSL_RETURN_USER, float q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and imsl_f_fft_cosine returns q. The length of array must be at least n.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_cosine_init. If imsl_f_fft_cosine is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once.
Default: Initializing parameters computed each time imsl_f_fft_cosine is entered

Description

The function imsl_f_fft_cosine computes the discrete Fourier cosine transform of a real vector of size N. It uses the system's high performance library for the computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N − 1 is a product of small prime factors. If N satisfies this condition, then the computational effort is proportional to N log N. Specifically, given an N-vector p, imsl_f_fft_cosine returns in q

\[q_m = 2 \sum_{n=1}^{N-2} p_n \sin \left(\frac{mn\pi}{N-1} \right) + s_0 + s_{N-1}(-1)^m \]

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. The Cooley-Tukey algorithm is based on the cosine FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example inputs a pure cosine wave as a data vector and recovers its Fourier cosine series, which is a vector with all components zero, except n − 1 at the appropriate frequency.

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>

int main()
{
    int n = 7;
    int i;
    float p[7];
    float *q;
    float pi;

    pi = imsl_f_constant("pi", 0);
```
/* Fill p with a pure cosine wave */

for (i=0; i<n; i++)
 p[i] = cos((float)(i)*pi/(float)(n-1));

q = imsl_f_fft_cosine (n, p, 0);

printf (" index p q\n");
for (i=0; i<n; i++)
 printf("%1d %5.2f %5.2f\n", i, p[i], q[i]);
}

Output

<table>
<thead>
<tr>
<th>index</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.87</td>
<td>6.00</td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>-0.50</td>
<td>-0.00</td>
</tr>
<tr>
<td>5</td>
<td>-0.87</td>
<td>-0.00</td>
</tr>
<tr>
<td>6</td>
<td>-1.00</td>
<td>-0.00</td>
</tr>
</tbody>
</table>
Computes the parameters needed for `imsl_f_fft_cosine`.

Synopsis

```c
#include <imsl.h>

float *imsl_f_fft_cosine_init(int n)
```

The type `double` procedure is `imsl_d_fft_cosine_init`.

Required Arguments

```plaintext
int n (Input)
Length of the sequence to be transformed. It must be greater than 1.
```

Return Value

A pointer to the internal parameter vector that can then be used by `imsl_f_fft_cosine` when the optional argument `IMSL_PARAMS` is specified. To release this space, use `imsl_free`. If no solution was computed, then NULL is returned.

Description

The function `imsl_f_fft_cosine_init` should be used when many calls must be made to `imsl_f_fft_cosine` without changing the sequence length `n`. It uses the system's high performance library for the computation, if available. Otherwise, the function `imsl_f_fft_cosine_init` is based on the routine COSTI in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example computes three distinct sine FFTs by calling `imsl_f_fft_cosine_init` once, then calling `imsl_f_fft_cosine` three times. The internal parameter initialization in `imsl_f_fft_cosine` is now skipped.
#include <imsl.h>
#include <math.h>
#include <stdio.h>

int main()
{
 int n = 7;
 int i, k;
 float p[7];
 float q[7];
 float pi;
 float *params;

 pi = imsl_f_constant("pi", 0);

 /* Compute parameters for transform of
 length n */

 params = imsl_f_fft_cosine_init (n);

 /* Different frequencies of the same
 wave will be transformed */

 for (k=0; k<3; k++)
 {
 printf("\n");

 /* Fill p with a pure cosine wave */

 for (i=0; i<n; i++)
 p[i] = cos((float)((k+1)*i)*pi/(float)(n-1));

 /* Compute the transform of p */

 imsl_f_fft_cosine (n, p,
 IMSL_PARAMS, params,
 IMSL_RETURN_USER, q,
 0);

 printf (" index	 p	 q
");
 for (i=0; i<n; i++)
 printf("%1d%5.2f%5.2f\n", i, p[i], q[i]);
 }
}

Output

<table>
<thead>
<tr>
<th>index</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>index</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.50</td>
<td>-0.00</td>
</tr>
<tr>
<td>2</td>
<td>-0.50</td>
<td>6.00</td>
</tr>
<tr>
<td>3</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>-0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
<td>-0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>1</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>-1.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>6.00</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>6</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Computes the discrete Fourier sine transformation of an odd sequence.

Synopsis

```c
#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[], ... , 0)
```

The type `double` procedure is `imsl_d_fft_sine`.

Required Arguments

- `int n` (Input)
 - Length of the sequence to be transformed. It must be greater than 1.

- `float p[]` (Input)
 - Array of size `n` containing the sequence to be transformed.

Return Value

A pointer to the transformed sequence. To release this space, use `imsl_free`. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[],
IMSL_RETURN_USER, float q[],
IMSL_PARAMS, float params[],
0)
```
Optional Arguments

IMSL_RETURN_USER, float q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and imsl_f_fft_sine returns q. The array must be of length at least n + 1.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_sine_init. If imsl_f_fft_sine is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once. Default: Initializing parameters computed each time imsl_f_fft_sine is entered

Description

The function imsl_f_fft_sine computes the discrete Fourier sine transform of a real vector of size N. It uses the system's high performance library for the computation, if available. Otherwise, the method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 is a product of small prime factors. If N satisfies this condition, then the computational effort is proportional to N log N. Specifically, given an N-vector p, imsl_f_fft_sine returns in q

\[q_m = 2 \sum_{n=0}^{N-1} p_n \sin \left(\frac{(m + 1)(n + 1) \pi}{N + 1} \right) \]

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The Cooley-Tukey algorithm is based on the sine FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example inputs a pure sine wave as a data vector and recovers its Fourier sine series, which is a vector with all components zero, except n at the appropriate frequency.

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>

int main()
{
    int           n = 7;
    int           i;
    float         p[7];
    float         *q;
    float         pi;

    pi = imsl_f_constant("pi", 0);
    /* fill p with a pure sine wave */
for (i=0; i<n; i++)
    p[i] = sin((float)(i+1)*pi/(float)(n+1));

q = imsl_f_fft_sine (n, p, 0);

printf("     index   p       q
");
for (i=0; i<n; i++)
    printf("%1d   %5.2f   %5.2f
", i, p[i], q[i]);

Output

index   p       q
0   0.38   8.00
1   0.71   0.00
2   0.92   0.00
3   1.00   0.00
4   0.92   0.00
5   0.71   0.00
6   0.38   0.00
fft_sine_init

**Synopsis**

```c
#include <imsl.h>

float *imsl_f_fft_sine_init(int n)
```

The type `double` procedure is `imsl_d_fft_sine_init`.

**Required Arguments**

- `int n` (Input)
  - Length of the sequence to be transformed. It must be greater than 1.

**Return Value**

A pointer to the internal parameter vector that can then be used by `imsl_f_fft_sine` when the optional argument `IMSL_PARAMS` is specified. To release this space, use `imsl_free`. If no solution was computed, then NULL is returned.

**Description**

The function `imsl_f_fft_sine_init` should be used when many calls must be made to `imsl_f_fft_sine` without changing the sequence length `n`. It uses the system's high performance library for the computation, if available. Otherwise, the function `imsl_f_fft_sine_init` is based on the routine `SINTI` in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

**Example**

This example computes three distinct sine FFTs by calling `imsl_f_fft_sine_init` once, then calling `imsl_f_fft_sine_init` three times. The internal parameter initialization in `imsl_f_fft_sine` is now skipped.
#include <imsl.h>
#include <math.h>
#include <stdio.h>

int main()
{
    int n = 7;
    int i, k;
    float p[7];
    float q[7];
    float pi;
    float *params;

    pi = imsl_f_constant("pi", 0);

    /* Compute parameters for transform of length n */
    params = imsl_f_fft_sine_init(n);

    /* Different frequencies of the same wave will be transformed */
    for (k=0; k<3; k++)
    {
        printf("\n");

        /* Fill p with a pure sine wave */
        for (i=0; i<n; i++)
            p[i] = sin((float)((k+1)*(i+1))*pi/(float)(n+1));

        /* Compute the transform of p */
        imsl_f_fft_sine(n, p,
                        IMSL_PARAMS, params,
                        IMSL_RETURN_USER, q,
                        0);

        printf("%1d %5.2f %5.2f\n", i, p[i], q[i]);
    }
}

Output

<table>
<thead>
<tr>
<th>index</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.38</td>
<td>8.00</td>
</tr>
<tr>
<td>index</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.92</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.92</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.38</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.92</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.38</td>
<td>8.00</td>
</tr>
<tr>
<td>4</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>-0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>-0.71</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.92</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>-0.38</td>
<td>8.00</td>
</tr>
<tr>
<td>3</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>-0.38</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.92</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Computes the complex discrete two-dimensional Fourier transform of a complex two-dimensional array.

**Synopsis**

```c
#include <imsl.h>

f_complex *imsl_c_fft_2d_complex(int n, int m, f_complex p[], ...); 0)
```

The type `d_complex` function is `imsl_z_fft_2d_complex`.

**Required Arguments**

- `int n` (Input)
  - Number of rows in the two-dimensional transform.
- `int m` (Input)
  - Number of columns in the two-dimensional transform.
- `f_complex p[]` (Input)
  - Two-dimensional array of size \( n \times m \) containing the sequence that is to be transformed.

**Return Value**

A pointer to the transformed array. To release this space, use `imsl_free`. If no value can be computed, then `NULL` is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

f_complex *imsl_c_fft_2d_complex(int n, int m, f_complex p[],

IMSL_P_COL_DIM, int p_col_dim,
IMSL_BACKWARD,
IMSL_RETURN_USER, f_complex q[]),
```

Optional Arguments

IMSL_P_COL_DIM, int p_col_dim (Input)
The column dimension of p.
Default: p_col_dim = m

IMSL_BACKWARD
Compute the backward transform. If IMSL_BACKWARD is used, the return value of the function is
the backward transformed sequence.

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the
solution, and imsl_c_fft_2d_complex returns q. The array must be of length at least n × m.

IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of q.
Default: q_col_dim = m

Description

The function imsl_c_fft_2d_complex computes the discrete Fourier transform of a two-dimensional com-
plex array of size n × m. It uses the system’s high performance library for the computation, if available. Otherwise,
the method used is a variant of the Cooley-Tukey algorithm, which is most efficient when both n and m are a prod-
uct of small prime factors. If n and m satisfy this condition, then the computational effort is proportional to nm log
nm. The Cooley-Tukey algorithm is based on the complex FFT in FFTPACK, which was developed by Paul Swarz-
trauber at the National Center for Atmospheric Research.

By default, imsl_c_fft_2d_complex computes the forward transform below.

\[ q_{jk} = \sum_{s=0}^{n-1} \sum_{t=0}^{m-1} p_{st} e^{-2\pi ijs/n} e^{-2\pi ikt/m} \]

Note that we can invert the Fourier transform as follows.

\[ p_{jk} = \frac{1}{nm} \sum_{s=0}^{n-1} \sum_{t=0}^{m-1} q_{st} e^{2\pi ijs/n} e^{2\pi ikt/m} \]

This formula reveals the fact that, after properly normalizing the Fourier coefficients, you have the coefficients for
a trigonometric interpolating polynomial to the data. The function imsl_c_fft_2d_complex is based on the
complex FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.
If the option IMSL_BACKWARD is selected, then the following computation is performed.

\[ p_{jk} = \sum_{s=0}^{n-1} \sum_{t=0}^{m-1} q_{st} e^{2\pi ijs/n} e^{2\pi ikt/m} \]

The relation between the forward and backward transforms is that they are unnormalized inverses of each other. That is, the following code fragment begins with a vector \( p \) and concludes with a vector \( p_2 = nmp. \)

\[
q = \text{imsl\_c\_fft\_2d\_complex}(n, m, p, 0);
p2 = \text{imsl\_c\_fft\_2d\_complex}(n, m, q, IMSL\_BACKWARD, 0);
\]

Examples

Example 1

This example computes the Fourier transform of the pure frequency input for a 5 \( \times \) 4 array

\[ p_{st} = e^{2\pi 2s/n} e^{2\pi it/4} \]

for 0 \( \leq n \leq 4 \) and 0 \( \leq m \leq 3 \). The result, \( p = q \), has all zeros except in the [2][3] position.

```c
#include <imsl.h>

int main()
{
 int s, t, n = 5, m = 4;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[5][4], *q, z, w;

 /* Fill p with a pure exponential signal */
 for (s = 0; s < n; s++) {
 z.re = 0.;
 z.im = s*two_pi*2./n;
 for (t = 0; t < m; t++) {
 w.re = 0.;
 w.im = t*two_pi*3./m;
 p[s][t] = imsl_c_mul(imsl_c_exp(z), imsl_c_exp(w));
 }
 }

 q = imsl_c_fft_2d_complex (n, m, (f_complex*)p, 0);
 /* Write the input */
 imsl_c_write_matrix ("The input matrix is ", 5, 4, (f_complex*)p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO,
 0);
 imsl_c_write_matrix ("The output matrix is ", 5, 4, q,
 IMSL_ROW_NUMBER_ZERO,
 0);
}
```
Output

The input matrix is

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(1.000, 0.000)</td>
<td>(0.000, -1.000)</td>
</tr>
<tr>
<td>1</td>
<td>(-0.809, 0.588)</td>
<td>(0.588, 0.809)</td>
</tr>
<tr>
<td>2</td>
<td>(0.309, -0.951)</td>
<td>(-0.951, -0.309)</td>
</tr>
<tr>
<td>3</td>
<td>(0.309, 0.951)</td>
<td>(0.951, -0.309)</td>
</tr>
<tr>
<td>4</td>
<td>(-0.809, -0.588)</td>
<td>(-0.588, 0.809)</td>
</tr>
</tbody>
</table>

The output matrix is

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-0, 0)</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>1</td>
<td>(0, 0)</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>2</td>
<td>(0, 0)</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>3</td>
<td>(0, 0)</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>4</td>
<td>(0, 0)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

Example 2

This example uses the backward transform to recover the original sequence. Notice that the forward transform followed by the backward transform multiplies the entries in the original sequence by the product of the lengths of the two dimensions.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int s, t, n = 5, m = 4;
 f_complex p[5][4], *q, *p2;
 /* Fill p with a pure exponential signal */
for (s = 0; s < n; s++) {
 for (t = 0; t < m; t++){
 p[s][t].re = s + 5*t;
 p[s][t].im = 0.0;
 }
} /* Forward transform */
q = imsl_c_fft_2d_complex (n, m, (f_complex*)p, 0); /* Backward transform */
p2 = imsl_c_fft_2d_complex (n, m, q,
 IMSL_BACKWARD, 0); /* Write the input */
imsl_c_write_matrix ("The input matrix is ", 5, 4, (f_complex*)p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
imsl_c_write_matrix ("The output matrix is ", 5, 4, p2,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
}
Output

The input matrix is

\[
\begin{array}{cccc}
0 & 1 \\
0 (& 0, & 0) & (5, & 0) \\
1 (& 1, & 0) & (6, & 0) \\
2 (& 2, & 0) & (7, & 0) \\
3 (& 3, & 0) & (8, & 0) \\
4 (& 4, & 0) & (9, & 0) \\
2 & 3 \\
0 (& 10, & 0) & (15, & 0) \\
1 (& 11, & 0) & (16, & 0) \\
2 (& 12, & 0) & (17, & 0) \\
3 (& 13, & 0) & (18, & 0) \\
4 (& 14, & 0) & (19, & 0) \\
\end{array}
\]

The output matrix is

\[
\begin{array}{cccc}
0 & 1 \\
0 (& 0, & 0) & (100, & 0) \\
1 (& 20, & 0) & (120, & 0) \\
2 (& 40, & 0) & (140, & 0) \\
3 (& 60, & 0) & (160, & 0) \\
4 (& 80, & 0) & (180, & 0) \\
2 & 3 \\
0 (& 200, & 0) & (300, & 0) \\
1 (& 220, & 0) & (320, & 0) \\
2 (& 240, & 0) & (340, & 0) \\
3 (& 260, & 0) & (360, & 0) \\
4 (& 280, & 0) & (380, & 0) \\
\end{array}
\]

Warning Errors

- **IMSL_CUFFT_PLAN_ERROR**: An error was encountered setting up the problem using the CUDA Toolkit algorithm. Using the IMSL CPU algorithm instead.

- **IMSL_CUFFT_COPY_TO_GPU**: An error was encountered copying the data from the CPU to the GPU. Using the IMSL CPU algorithm instead.

- **IMSL_CUFFT_ERROR**: An error was encountered executing the problem on the GPU. Using the IMSL CPU algorithm instead.

- **IMSL_CUFFT_COPY_TO_CPU**: An error was encountered copying the data from the GPU to the CPU. Using the IMSL CPU algorithm instead.

- **IMSL_CUFFT_FREE**: An error was encountered when freeing memory from the GPU. Using the IMSL CPU algorithm instead.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_CUFFT_ALLOCATION</td>
<td>An error was encountered allocating memory on the GPU. Using the IMSL CPU algorithm instead.</td>
</tr>
<tr>
<td>IMSL_CUDA_OUT_OF_MEMORY_2</td>
<td>An error was encountered allocating memory required by the CUDA implementation with "m" = # and "n" = #. Using the IMSL CPU algorithm instead.</td>
</tr>
</tbody>
</table>
Computes the convolution, and optionally, the correlation of two real vectors.

Synopsis

```c
#include <imsl.h>

float *imsl_f_convolution(int nx, float x[], int ny, float y[], int *nz, ...); 0)
```

The type `double` function is `imsl_d_convolution`.

Required Arguments

- `int nx` (Input)
 Length of the vector `x`.
- `float x[]` (Input)
 Real vector of length `nx`.
- `int ny` (Input)
 Length of the vector `y`.
- `float y[]` (Input)
 Real vector of length `ny`.
- `int *nz` (Output)
 Length of the output vector.

Return Value

A pointer to an array of length `nz` containing the convolution of `x` and `y`. To release this space, use `imsl_free`. If no zeros are computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_convolution(int nx, float x[], int ny, float y[], int *nz,
                          IMSL_PERIODIC,
                          IMSL_CORRELATION,
                          IMSL_FIRST_CALL, 0)
```
Optional Arguments

IMSL_PERIODIC
The input is periodic.

IMSL_CORRELATION
Return the correlation of x and y.

IMSL_FIRST_CALL
If the function is called multiple times with the same nx and ny, select this option on the first call.

IMSL_CONTINUE_CALL
If the function is called multiple times with the same nx and ny, select this option on intermediate calls.

IMSL_LAST_CALL
If the function is called multiple times with the same nx and ny, select this option on the final call.

IMSL_RETURN_USER, float z [] (Output)
User-supplied array of length at least nz containing the convolution or correlation of x and y.

IMSL_Z_TRANS, float **$zhat$ (Output)
Address of a pointer to an array of length at least nz containing on output the discrete Fourier transform of z.

IMSL_Z_TRANS_USER, float $zhat$ [] (Output)
User-supplied array of length at least nz containing on output the discrete Fourier transform of z.

Description

The function *imsl_f_convolution*, by default, computes the discrete convolution of two sequences x and y. More precisely, let n_x be the length of x, and n_y denote the length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC must be selected. We set

$$n_z = \max \{n_y, n_x\},$$

and we pad out the shorter vector with zeros. Then, we compute
where the index on \(x \) is interpreted as a positive number between 1 and \(n_z \), modulo \(n_z \).

The technique used to compute the \(z \)'s is based on the fact that the (complex discrete) Fourier transform maps convolution into multiplication. Thus, the Fourier transform of \(z \) is given by

\[
\hat{z}(n) = \hat{x}(n) \hat{y}(n)
\]

where the following equation is true.

\[
\hat{z}(n) = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)/(n-1)n_z}
\]

The technique used here to compute the convolution is to take the discrete Fourier transform of \(x \) and \(y \), multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that \(n_z \) is the product of small primes if option IMSL_PERIODIC is selected. If \(n_z \) is a product of small primes, then the computational effort will be proportional to \(n_z \log(n_z) \). If option IMSL_PERIODIC is not selected, then a good value is chosen for \(n_z \) so that the Fourier transforms are efficient and \(n_z \geq n_x + n_y - 1 \). This will mean that both vectors will be padded with zeros.

We point out that no complex transforms of \(x \) or \(y \) are taken since both sequences are real, and real transforms can simulate the complex transform above. Such a strategy is six times faster and requires less space than when using the complex transform.

Optionally, the function imsl_f_convolution computes the discrete correlation of two sequences \(x \) and \(y \). More precisely, let \(n \) be the length of \(x \) and \(y \). If a circular correlation is desired, then option IMSL_PERIODIC must be selected. We set (on output)

\[
n_z = n \quad \text{if IMSL_PERIODIC is chosen}
\]

\[
(n_z = 2^\alpha 3^\beta 5^\gamma \geq 2n - 1) \quad \text{if IMSL_PERIODIC is not chosen}
\]

where \(\alpha, \beta, \) and \(\gamma \) are nonnegative integers yielding the smallest number of the type \(2^\alpha 3^\beta 5^\gamma \) satisfying the inequality. Once \(n_z \) is determined, we pad out the vectors with zeros. Then, we compute

\[
z_i = \sum_{j=1}^{n_z} x_{i+j-1} y_j
\]

where the index on \(x \) is interpreted as a positive number between one and \(n_z \), modulo \(n_z \). Note that this means that

\[
z_{n_z-k}
\]

contains the correlation of \(x(k-1) \) with \(y \) as \(k = 0, 1, \ldots, n_z/2 \). Thus, if \(x(k-1) = y(k) \) for all \(k \), then we would expect
to be the largest component of \(z \). The technique used to compute the \(z \)'s is based on the fact that the (complex discrete) Fourier transform maps correlation into multiplication. Thus, the Fourier transform of \(z \) is given by

\[
\hat{z}_j = \hat{x}_j \overline{y}_j
\]

where the following equation is true.

\[
\hat{z}_j = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)(j-1) / n_z}
\]

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform of \(x \) and the conjugate of the discrete Fourier transform of \(y \), multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that \(n_z \) is the product of small primes if \texttt{IMSL_PERIODIC} is selected. If \(n_z \) is the product of small primes, then the computational effort will be proportional to \(n_z \log(n_z) \). If \texttt{IMSL_PERIODIC} is not chosen, then a good value is chosen for \(n_z \) so that the Fourier transforms are efficient and \(n_z \geq 2n - 1 \). This will mean that both vectors will be padded with zeros.

We point out that no complex transforms of \(x \) or \(y \) are taken since both sequences are real, and real transforms can simulate the complex transform above. Such a strategy is six times faster and requires less space than when using the complex transform.

Examples

Example 1

This example computes a nonperiodic convolution. The idea here is that you can compute a moving average of the type found in digital filtering using this function. The averaging operator in this case is especially simple and is given by averaging five consecutive points in the sequence. We try to recover the values of an exponential function contaminated by noise. The large error for the last value has to do with the fact that the convolution is averaging the zeros in the "pad" rather than the function values. Notice that the signal size is 100, but only reports the errors at 10 points.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NFLTR 5
#define NY    100
/* Define function */
#define F1(A)  exp(A)

int main()
{
    int i, k, nz;
```
float fltr[NFLTR], fltrer, origer, totall1, total2, twopi, x, y[NY], *z, *noise;

/* Set up the filter */
for (i = 0; i < NFLTR; i++)
 fltr[i] = 0.2;

/* Set up y-vector for the nonperiodic case. */

twopi = 2.0*imsl_f_constant("Pi", 0);
imsl_random_seed_set(1234579);
noise = imsl_f_random_uniform(NY, 0);

for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 y[i] = F1(x) + 0.5 * noise[i] - 0.25;
}

/* Call the convolution routine for the nonperiodic case. */
z = imsl_f_convolution(NFLTR, fltr, NY, y, &nz, 0);

/* Call test routines to check z & zhat here. Print results */
printf("\n Nonperiodic Case\n");
printf(" x F1(x) Original Error\n"
 Filtered Error\n");
total1 = 0.0;
total2 = 0.0;

for (i = 0; i < NY; i++) {
 if (i >= NY-2)
 k = i - NY + 2;
 else
 k = i + 2;
 x = (float)(i) / (float) (NY - 1);
 origer = fabs(y[i] - F1(x));
 fltrer = fabs(z[i+2] - F1(x));
 if ((i % 11) == 0) {
 printf("%10.4f%13.4f%18.4f%18.4f\n", x, F1(x), origer, fltrer);
 }
 total1 += origer;
 total2 += fltrer;
}

printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));
Output

Nonperiodic Case

<table>
<thead>
<tr>
<th>x</th>
<th>F1(x)</th>
<th>Original Error</th>
<th>Filtered Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0811</td>
<td>0.3523</td>
</tr>
<tr>
<td>0.1111</td>
<td>1.1175</td>
<td>0.0226</td>
<td>0.0754</td>
</tr>
<tr>
<td>0.2222</td>
<td>1.2488</td>
<td>0.1526</td>
<td>0.0488</td>
</tr>
<tr>
<td>0.3333</td>
<td>1.3956</td>
<td>0.0959</td>
<td>0.0161</td>
</tr>
<tr>
<td>0.4444</td>
<td>1.5596</td>
<td>0.1747</td>
<td>0.0276</td>
</tr>
<tr>
<td>0.5556</td>
<td>1.7429</td>
<td>0.1035</td>
<td>0.0250</td>
</tr>
<tr>
<td>0.6667</td>
<td>1.9477</td>
<td>0.0402</td>
<td>0.0562</td>
</tr>
<tr>
<td>0.7778</td>
<td>2.1766</td>
<td>0.0673</td>
<td>0.0835</td>
</tr>
<tr>
<td>0.8889</td>
<td>2.4324</td>
<td>0.1044</td>
<td>0.0050</td>
</tr>
<tr>
<td>1.0000</td>
<td>2.7183</td>
<td>0.0154</td>
<td>1.1255</td>
</tr>
</tbody>
</table>

Average absolute error before filter: 0.12481
Average absolute error after filter: 0.06785

Example 2

This example computes both a periodic correlation between two distinct signals \(x \) and \(y \). There are 100 equally spaced points on the interval \([0, 2\pi]\) and \(f_1(x) = \sin(x) \). Define \(x \) and \(y \) as follows:

\[
x_i = f_1 \left(\frac{2\pi i}{n-1} \right) \quad i = 0, \ldots, n-1
\]

\[
y_i = f_1 \left(\frac{2\pi i}{n-1} + \frac{\pi}{2} \right) \quad i = 0, \ldots, n-1
\]

Note that the maximum value of \(z \) (the correlation of \(x \) with) occurs at \(i = 25 \), which corresponds to the offset.
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define N 100
/* Define function */
#define F1(A) sin(A)

int main()
{
 int i, k, nz;
 float pi, max, x[N], y[N], *z, xnorm, ynorm;

 /* Set up y-vector for the nonperiodic case. */
 pi = imsl_f_constant("Pi", 0);
 for (i = 0; i < N; i++) {
 x[i] = F1(2.0*pi*(float)(i) / (N-1));
 y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
 }

 /* Call the correlation function for the nonperiodic case. */
 z = imsl_f_convolution(N, x, N, y, &nz,
 IMSL_CORRELATION,
 IMSL_PERIODIC,
 0);

 xnorm = imsl_f_vector_norm (N, x, 0);
 ynorm = imsl_f_vector_norm (N, y, 0);
 for (i = 0; i < N; i++) {
 z[i] /= xnorm*ynorm;
 }

 max = z[0];
 k = 0;
 for (i = 1; i < N; i++) {
 if (max < z[i]) {
 max = z[i];
 k = i;
 }
 }

 printf("The element of Z with the largest normalized\n");
 printf("value is Z(%2d).\n", k);
 printf("The normalized value of Z(%2d) is %6.3f\n", k, z[k]);
}

Output

The element of Z with the largest normalized
value is \(Z(25) \).
The normalized value of \(Z(25) \) is 1.000
convolution (complex)

Computes the convolution, and optionally, the correlation of two complex vectors.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_convolution(int nx, f_complex x[], int ny, f_complex y[], int *nz, ...); 0
```

The type `double` function is `imsl_d_convolution`.

Required Arguments

- `int nx` (Input)
 - Length of the vector `x`.

- `f_complex x[]` (Input)
 - Real vector of length `nx`.

- `int ny` (Input)
 - Length of the vector `y`.

- `f_complex y[]` (Input)
 - Real vector of length `ny`.

- `int *nz` (Output)
 - Length of the output vector.

Return Value

A pointer to an array of length `nz` containing the convolution of `x` and `y`. To release this space, use `imsl_free`. If no zeros are computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_convolution(int nx, f_complex x[], int ny, f_complex y[], int *nz,

IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
```

...
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, f_complex z[],
IMSL_Z_TRANS, f_complex **zhat
IMSL_Z_TRANS_USER, f_complex *zhat,
0)

Optional Arguments

IMSL_PERIODIC
The input is periodic.

IMSL_CORRELATION
Return the correlation of x and y.

IMSL_FIRST_CALL
If the function is called multiple times with the same nx and ny, select this option on the first call.

IMSL_CONTINUE_CALL
If the function is called multiple times with the same nx and ny, select this option on intermediate calls.

IMSL_LAST_CALL
If the function is called multiple times with the same nx and ny, select this option on the final call.

IMSL_RETURN_USER, f_complex z[] (Output)
User-supplied array of length at least nz containing the convolution or correlation of x and y.

IMSL_Z_TRANS, f_complex **zhat[] (Output)
Address of a pointer to an array of length at least nz containing on output the discrete Fourier transform of z.

IMSL_Z_TRANS_USER, f_complex zhat[] (Output)
User-supplied array of length at least nz containing on output the discrete Fourier transform of z.

Description

The function imsl_c_convolution, by default, computes the discrete convolution of two sequences x and y. More precisely, let nx be the length of x, and ny denote the length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC must be selected. We set

\[n_z = \max\{n_y, n_x\} \]

and we pad out the shorter vector with zeros. Then, we compute
where the index on x is interpreted as a positive number between 1 and n_z, modulo n_z.

The technique used to compute the z_i's is based on the fact that the (complex discrete) Fourier transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

$$\hat{z}(n) = \hat{x}(n)\hat{y}(n)$$

where the following equation is true.

$$\hat{z}(n) = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)X(n-1)y n_z}$$

The technique used here to compute the convolution is to take the discrete Fourier transform of x and y, multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that n_z is the product of small primes if option IMSL_PERIODIC is selected. If n_z is a product of small primes, then the computational effort will be proportional to $n_z \log (n_z)$. If option IMSL_PERIODIC is not selected, then a good value is chosen for n_z so that the Fourier transforms are efficient and $n_z \geq n_x + n_y - 1$. This will mean that both vectors will be padded with zeros.

Optionally, the function `imsl_c_convolution` computes the discrete correlation of two sequences x and y. More precisely, let n be the length of x and y. If a circular correlation is desired, then option IMSL_PERIODIC must be selected. We set (on output)

$$n_z = n \quad \text{if IMSL_PERIODIC is chosen}$$

$$n_z = 2^\alpha 3^\beta 5^\gamma \geq 2n - 1 \quad \text{if IMSL_PERIODIC is not chosen}$$

where α, β, and γ are nonnegative integers yielding the smallest number of the type $2^\alpha 3^\beta 5^\gamma$ satisfying the inequality. Once n_z is determined, we pad out the vectors with zeros. Then, we compute

$$z_i = \sum_{j=1}^{n_z} x_{i-j+1}y_j$$

where the index on x is interpreted as a positive number between one and n_z, modulo n_z. Note that this means that

$$z_{n_z-k}$$

contains the correlation of $x (k - 1)$ with y as $k = 0, 1, ..., n_z/2$. Thus, if $x(k - 1) = y(k)$ for all k, then we would expect
to be the largest component of $\mathbb{R}z$. The technique used to compute the $z_i's$ is based on the fact that the (complex discrete) Fourier transform maps correlation into multiplication.

Thus, the Fourier transform of z is given by

$$\hat{z}_j = x_j \overline{y}_j$$

where the following equation is true.

$$\hat{z}_j = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)(j-1)/n_z}$$

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform of x and the conjugate of the discrete Fourier transform of y, multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that n_z is the product of small primes if IMSL_PERIODIC is selected. If n_z is the product of small primes, then the computational effort will be proportional to $n_z \log (n_z)$. If IMSL_PERIODIC is not chosen, then a good value is chosen for n_z so that the Fourier transforms are efficient and $n_z \geq 2n - 1$. This will mean that both vectors will be padded with zeros.

No complex transforms of x or y are taken since both sequences are real, and real transforms can simulate the complex transform above. Such a strategy is six times faster and requires less space than when using the complex transform.

Examples

Example 1

This example computes a nonperiodic convolution. The purpose is to compute a moving average of the type found in digital filtering. The averaging operator in this case is especially simple and is given by averaging five consecutive points in the sequence. We try to recover the values of an exponential function contaminated by noise. The large error for the last value has to do with the fact that the convolution is averaging the zeros in the "pad" rather than the function values. Notice that the signal size is 100, but only report the errors at ten points.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NFLTR 5
#define NY 100

#define F1(A) (imsl_c_mul(imsl_cf_convert(exp(A),0.0), \
             imsl_cf_convert(cos(A),sin(A)))

int main()
```
int i, nz;
float x, twopi, total1, total2, *noise, origer, fltrer;

/* Set up the filter */
for (i = 0; i < NFLTR; i++) fltr[i] = imsl_cf_convert(0.2, 0.0);

/* Set up y-vector for the periodic case */
twopi = 2.0*imsl_f_constant("Pi", 0);
imsl_random_seed_set(1234579);
n = imsl_f_random_uniform(2*NY, 0);
for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 temp = imsl_cf_convert(0.5*noise[i]-0.25, 0.5*noise[NY+i]-0.25);
 y[i] = imsl_c_add(F1(x), temp);
}

/* Call the convolution routine for the periodic case */
z = imsl_c_convolution(NFLTR, fltr, NY, y, &nz, 0);

/* Print results */
printf(" Periodic Case\n");
printf(" x F1(x) Original Error Filtered Error\n");

for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 origer = imsl_c_abs(imsl_c_sub(y[i], F1(x)));
 fltrer = imsl_c_abs(imsl_c_sub(z[i+2], F1(x)));
 if ((i % 11) == 0)
 printf(" %10.4f (%6.4f,%6.4f) %12.4f %15.4f\n", x, (F1(x)).re, (F1(x)).im, origer, fltrer);
 total1 += origer;
 total2 += fltrer;
}

printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));

Output

Periodic Case
 x F1(x) Original Error Filtered Error
Example 2

This example computes both a periodic correlation between two distinct signals x and y. There are 100 equally spaced points on the interval $[0, 2\pi]$ and $f_1(x) = \cos(x) + i \sin(x)$. Define x and y as follows:

$$x_i = f_1 \left(\frac{2\pi(i-1)}{n-1} \right) \quad i = 1, \ldots, n$$
$$y_i = f_1 \left(\frac{2\pi(i-1) + \frac{\pi}{2}}{n-1} \right) \quad i = 1, \ldots, n$$

Note that the maximum value of z (the correlation of x with y) occurs at $i = 25$, which corresponds to the offset.

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>
#define N   100

/* Define function */
#define F1(A)  imsl_cf_convert(cos(A),sin(A))

int main()
{
    int i, k, nz;
    float zreal[4*N], pi, max, xnorm, ynorm, sumx, sumy;
    f_complex x[N], y[N], *z;

    /* Set up y-vector for the nonperiodic case */
    pi = imsl_f_constant("Pi", 0);

    for (i = 0; i < N; i++) {
        x[i] = F1(2.0*pi*(float)(i) / (N-1));
        y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
    }

    /* Call the correlation function for the nonperiodic case */
```
\texttt{z = imsl_c_convolution(N, x, N, y, &nz,}
\texttt{ IMSL_CORRELATION, IMSL_PERIODIC,0);}

\texttt{sumx = sumy = 0.0;}
\texttt{for (i = 0; i < N; i++) {}
 \texttt{sumx += imsl_c_abs(imsl_c_mul(x[i], x[i]));}
 \texttt{sumy += imsl_c_abs(imsl_c_mul(y[i], y[i]));}
}

\texttt{xnorm = sqrt((sumx));}
\texttt{ynorm = sqrt((sumy));}
\texttt{for (i = 0; i < N; i++) {
 \texttt{zreal[i] = (z[i].re/(xnorm*ynorm));}
}}

\texttt{max = zreal[0];}
\texttt{k = 0;}
\texttt{for (i = 1; i < N; i++) {
 \texttt{if (max < zreal[i]) {
 \texttt{max = zreal[i];}
 \texttt{k = i;}
 }}
}

\texttt{printf("The element of Z with the largest normalized\n"};
\texttt{printf("value is Z(\%2d).\n", k);}
\texttt{printf("The normalized value of Z(\%2d) is \%6.3f\n", k, zreal[k]);}

\textbf{Output}

The element of Z with the largest normalized value is Z(25).
The normalized value of Z(25) is 1.000
inverse_laplace

Computes the inverse Laplace transform of a complex function.

Synopsis

```
#include <imsl.h>

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float t[], ... , 0)
```

The type double procedure is imsl_d_inverse_laplace.

Required Arguments

```
f_complex fcn (f_complex z) (Input)
    User-supplied function for which the inverse Laplace transform will be computed.

float sigma0 (Input)
    An estimate for the maximum of the real parts of the singularities of fcn. If unknown, set sigma0 = 0.0.

int n (Input)
    The number of points at which the inverse Laplace transform is desired.

float t[] (Input)
    Array of size n containing the points at which the inverse Laplace transform is desired.
```

Return Value

A pointer to the array of length n whose i-th component contains the approximate value of the inverse Laplace transform at the point t[i]. To release this space, use imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float t[],
                                IMSL_RETURN_USER, float x[],
                                IMSL_PSEUDO_ACCURACY, float pseudo_accuracy,
                                IMSL_FIRST_LAGUERRE_PARAMETER, float sigma,
                                IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue,
```
IMSL_MAXIMUM_COEFFICIENTS, int mtop,
IMSL_ERROR_EST, float *error_est,
IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est,
IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est,
IMSL_CONDITION_ERROR_EST, float *cond_error_est,
IMSL_DECAY_FUNCTION_COEFFICIENT, float *k,
IMSL_DECAY_FUNCTION_BASE, float *r,
IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs,
IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs,
IMSL_UNDER_OVERFLOW_INDICATORS, imsl_laplace_flow **indicators,
IMSL_FCN_W_DATA, f_complex fcn(), void *data,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the approximate value of the inverse Laplace transform.

IMSL_PSEUDO_ACCURACY, float pseudo_accuracy (Input)
The required absolute uniform pseudo accuracy for the coefficients and inverse Laplace transform values.
Default: pseudo_accuracy = $\sqrt{\epsilon}$, where ϵ is machine epsilon

IMSL_FIRST_LAGUERE_PARAMETER, float sigma (Input)
The first parameter of the Laguerre expansion. If sigma is not greater than sigma0, it is reset to sigma0 + 0.7.
Default: sigma = sigma0 + 0.7

IMSL_SECOND_LAGUERE_PARAMETER, float bvalue (Input)
The second parameter of the Laguerre expansion. If bvalue is less than 2.0*(sigma - sigma0), it is reset to 2.5*(sigma - sigma0).
Default: bvalue = 2.5*(sigma - sigma0)

IMSL_MAXIMUM_COEFFICIENTS, int mtop (Input)
An upper limit on the number of coefficients to be computed in the Laguerre expansion. Argument mtop must be a multiple of four.
Default: mtop = 1024
IMSL_ERROR_EST, float *error_est (Output)
Overall estimate of the pseudo error,
disc_error_est + trunc_error_est + cond_error_est. See the Description section for
details.

IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est (Output)
Estimate of the pseudo discretization error.

IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est (Output)
Estimate of the pseudo truncation error.

IMSL_CONDITION_ERROR_EST, float *cond_error_est (Output)
Estimate of the pseudo condition error on the basis of minimal noise levels in the function values.

IMSL_DECAY_FUNCTION_COEFFICIENT, float *k (Output)
The coefficient of the decay function. See the Description section for details.

IMSL_DECAY_FUNCTION_BASE, float *r (Output)
The base of the decay function. See the Description section for details.

IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs (Output)
The logarithm of the largest coefficient in the decay function. See the Description section for
details.

IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs (Output)
The logarithm of the smallest nonzero coefficient in the decay function. See the Description
section for details.

IMSL_UNDER_OVERFLOW_INDICATORS, imsl_laplace_flow **indicators (Output)
The address of a pointer initialized by imsl_f_inverse_laplace to point to an array of length
n containing the overflow/underflow indicators for the computed approximate inverse Laplace
transform. For the ith point at which the transform is computed, indicators[i] signifies the following:

<table>
<thead>
<tr>
<th>indicators[i]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NORMAL_TERMINATION</td>
<td>Normal termination.</td>
</tr>
<tr>
<td>IMSL_TOO_LARGE</td>
<td>The value of the inverse Laplace transform is too large to be representable. This component of the result is set to NaN.</td>
</tr>
<tr>
<td>IMSL_TOO_SMALL</td>
<td>The value of the inverse Laplace transform is found to be too small to be representable. This component of the result is set to 0.0.</td>
</tr>
<tr>
<td>IMSL_TOO_LARGE_BEFORE_EXPANSION</td>
<td>The value of the inverse Laplace transform is estimated to be too large, even before the series expansion, to be representable. This component of the result is set to NaN.</td>
</tr>
<tr>
<td>IMSL_TOO_SMALL_BEFORE_EXPANSION</td>
<td>The value of the inverse Laplace transform is estimated to be too small, even before the series expansion, to be representable. This component of the result is set to 0.0.</td>
</tr>
</tbody>
</table>
IMSL_FCN_W_DATA, f_complex fcn(f_complex z, void *data), void *data, (Input)
User supplied function for which the inverse Laplace transform will be computed, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

Description
The function imsl_f_inverse_laplace computes the inverse Laplace transform of a complex-valued func-
tion. Recall that if f is a function that vanishes on the negative real axis, then the Laplace transform of f is defined
by

$$L[f](s) = \int_0^\infty e^{-sx} f(x) \, dx$$

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks’ method (see Weeks
(1966)) due to Garbow et al. (1988). This method is suitable when f has continuous derivatives of all orders on $[0,\infty)$. In particular, given a complex-valued function $F(s) = L[f](s)$, f can be expanded in a Laguerre series whose
coefficients are determined by F. This is fully described in Garbow et al. (1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations $g(t)$ to $f(t)$ satisfying

$$\left| \frac{g(t) - f(t)}{e^{\sigma t}} \right| < \epsilon$$

where $\epsilon = \text{pseudo_accuracy}$ and $\sigma = \text{sigma} > \text{sigma0}$. The expression on the left is called the pseudo error. An estimate of the pseudo error in available in error_est.

The first step in the method is to transform F to ϕ where

$$\phi(z) = \frac{b}{1-z} F\left(\frac{1}{1-z} - \frac{b}{2} + \sigma \right)$$

Then, if f is smooth, it is known that ϕ is analytic in the unit disc of the complex plane and hence has a Taylor
series expansion

$$\phi(z) = \sum_{s=0}^{\infty} a_s z^s$$

which converges for all z whose absolute value is less than the radius of convergence R_c. This number is esti-
imated in r, obtained through the optional argument IMSL_DECAY_FUNCTION_BASE. Using optional
argument IMSL_DECAY_FUNCTION_COEFFICIENT, the smallest number K is estimated which satisfies

$$|a_s| < \frac{K}{R^s}$$

for all $R < R_c$.

\[\text{RogueWave}\]
The coefficients of the Taylor series for ϕ can be used to expand f in a Laguerre series

$$f(t) = e^{\sigma t} \sum_{s=0}^{\infty} a_s e^{-bs/2} L_s(bt)$$

On some platforms, `imsl_f_inverse_laplace` can evaluate the user-supplied function `fcn` in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Examples

Example 1

This example computes the inverse Laplace transform of the function $(s - 1)^{-2}$, and prints the computed approximation, true transform value, and difference at five points. The correct inverse transform is xe^t. FromAbramowitz and Stegun (1964).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
  f_complex f(f_complex);
  int n = 5;
  float t[5];
  float true_inverse[5];
  float relative_diff[5];
  int i;
  float *inverse;

  imsl_omp_options(
    IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
    0);

  /* Initialize t and compute inverse */
  for (i=0; i<n; i++)
    t[i] = (float)i + 0.5;

  inverse = imsl_f_inverse_laplace(f, 1.5, n, t,
    0);

  /* Compute true inverse, relative difference */
  for (i=0; i<n; i++) {
    true_inverse[i] = t[i]*exp(t[i]);
    relative_diff[i] = fabs(inverse[i] - true_inverse[i])/
      true_inverse[i];
  }

  // Print results
  for (i=0; i<n; i++)
    printf("t = \%.2f, \(xe^t\) = \%.2f, \text{ relative difference} = \%.2f\n", t[i], true_inverse[i], relative_diff[i]);
}
```
```c
f_complex f(f_complex s)
{
    /* Return 1/(s-1)**2 */
    f_complex one = {1.0, 0.0};
    return (imsl_c_div(one,
                  imsl_c_mul(imsl_c_sub(s, one), imsl_c_sub(s, one))));
}
```

Output

<table>
<thead>
<tr>
<th>t</th>
<th>f_inv</th>
<th>true</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.824</td>
<td>0.824</td>
<td>1.5e-05</td>
</tr>
<tr>
<td>1.5</td>
<td>6.722</td>
<td>6.723</td>
<td>1.0e-05</td>
</tr>
<tr>
<td>2.5</td>
<td>30.456</td>
<td>30.456</td>
<td>5.6e-07</td>
</tr>
<tr>
<td>3.5</td>
<td>115.906</td>
<td>115.904</td>
<td>1.8e-05</td>
</tr>
<tr>
<td>4.5</td>
<td>405.054</td>
<td>405.077</td>
<td>5.8e-05</td>
</tr>
</tbody>
</table>

Example 2

This example computes the inverse Laplace transform of the function $e^{-1/s}$, and prints the computed approximation, true transform value, and difference at five points. Additionally, the inverse is returned in user-supplied space, and a required accuracy for the inverse transform values is specified. The correct inverse transform is

$$J_0\left(2\sqrt{x}\right)$$

from Abramowitz and Stegun (1964).
```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
    f_complex f(f_complex);
    int n = 5;
    int i;
    float t[5];
    float true_inverse[5];
    float relative_diff[5];
    float inverse[5];
    Imsl_laplace_flow *indicators;

    /* Initialize t and compute inverse */
    for (i=0; i<n; i++)
        t[i] = (float)i + 0.5;

    imsl_f_inverse_laplace(f, 0.0, n, t,
        IMSL_PSEUDO_ACCURACY, 1.0e-6,
        IMSL_UNDER_OVERFLOW_INDICATORS, &indicators,
        IMSL_RETURN_USER, inverse,
        0);

    /* Compute true inverse, relative difference */
    for (i=0; i<n; i++)
    {
        true_inverse[i] = imsl_f_bessel_J0(2.0*sqrt(t[i]));
        relative_diff[i] = fabs((inverse[i] - true_inverse[i])/
            true_inverse[i]);
    }

    /* Print results, noting if any results overflowed or underflowed */
    printf("%d  T  f_inv  true  diff\n");
    for (i=0; i<n; i++)
    {
        if (indicators[i] == IMSL_NORMAL_TERMINATION)
            printf("%6.1f %7.3f %7.3f %6.1e\n", t[i], inverse[i], true_inverse[i],
                relative_diff[i]);
        else
            printf("Overflow or underflow noted.\n");
    }

    f_complex f(f_complex s)
    {
        /* Return (1/s)(exp(-1/s) */
        f_complex one = {1.0, 0.0};
    }
}
```
f_complex s_inverse;

s_inverse = imsl_c_div(one, s);
return (imsl_c_mul(s_inverse, imsl_c_exp(imsl_c_neg(s_inverse))));

Output

<table>
<thead>
<tr>
<th>T</th>
<th>f_inv</th>
<th>true</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.559</td>
<td>0.559</td>
<td>2.1e-07</td>
</tr>
<tr>
<td>1.5</td>
<td>-0.023</td>
<td>-0.023</td>
<td>8.5e-06</td>
</tr>
<tr>
<td>2.5</td>
<td>-0.310</td>
<td>-0.310</td>
<td>9.6e-08</td>
</tr>
<tr>
<td>3.5</td>
<td>-0.401</td>
<td>-0.401</td>
<td>7.4e-08</td>
</tr>
<tr>
<td>4.5</td>
<td>-0.370</td>
<td>-0.370</td>
<td>6.4e-07</td>
</tr>
</tbody>
</table>

Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
Chapter 7 Nonlinear Equations

Functions

Zeros of a Polynomial
- Real coefficients using Jenkins-Traub method: zeros_poly 761
- Complex coefficients using Jenkins-Traub method: zeros_poly (complex) 764

Zero(s) of a Function
- Zeros of a real univariate function: zero_univariate 767
- Real zeros of a real function: zeros_function 771

Root of a System of Equations
- Powell's hybrid method: zeros_sys_eqn 777
Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$

where $a_n \neq 0$. The function `imsl_f_zeros_poly` finds zeros of a polynomial with real coefficients using the Jenkins-Traub method.

Zeros of a Function

The function `imsl_f_zeros_function` finds the real zeros of a real, continuous, univariate function. It uses a meta-algorithm based on partitioning the interval using a low-discrepancy sequence and a combination of Müller's method and Brent's method. This algorithm can find roots without requiring the user to bracket the root in an interval over which the function changes sign, as required by Brent's method, or give good guesses for the roots, as required by Müller's method.

The function `imsl_f_zero_univariate` finds a real zero of a real, continuous, univariate function. It uses an algorithm attributed to Dr. Fred T. Krogh, JPL, 1972. Tests have shown this algorithm to require fewer function evaluations, on average, than a number of other algorithms for finding a zero of a continuous function.

Root of System of Equations

A system of equations can be stated as follows:

$$f_i(x) = 0, \text{ for } i = 1, 2, \ldots, n$$

where $x \in \mathbb{R}^n$, and $f_i: \mathbb{R}^n \rightarrow \mathbb{R}$. The function `imsl_f_zeros_sys_eqn` uses a modified hybrid method due to M.J.D. Powell to find the zero of a system of nonlinear equations.
zeros_poly

Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub, three-stage algorithm.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_f_zeros_poly(int ndeg, float coef[], ...); 0
```

The type `d_complex` function is `imsl_d_zeros_poly`.

Required Arguments

- `int ndeg` (Input)
 Degree of the polynomial.

- `float coef[]` (Input)
 Array with `ndeg + 1` components containing the coefficients of the polynomial in increasing order by degree. The polynomial is `coef[n] z^n + coef[n - 1] z^{n-1} + ... + coef[0]`, where `n = ndeg`.

Return Value

A pointer to the complex array of zeros of the polynomial. To release this space, use `imsl_free`. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_f_zeros_poly(int ndeg, float coef[],
IMSL_RETURN_USER, f_complex root[],
0)
```

Optional Arguments

- `IMSL_RETURN_USER, f_complex root[]` (Output)
 Array with `ndeg` components containing the zeros of the polynomial.
Description

The function imsl_f_zeros_poly computes the n zeros of the polynomial

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$

where the coefficients a_i for $i = 0, 1, \ldots, n$ are real and n is the degree of the polynomial.

The function imsl_f_zeros_poly uses the Jenkins-Traub, three-stage algorithm (Jenkins and Traub 1970; Jenkins 1975). The zeros are computed one at a time for real zeros or two at a time for a complex conjugate pair. As the zeros are found, the real zero, or quadratic factor, is removed by polynomial deflation.

Examples

Example 1

This example finds the zeros of the third-degree polynomial

$$p(z) = z^3 - 3z^2 + 4z - 2$$

where z is a complex variable.

```c
#include <imsl.h>
#define NDEG 3

int main()
{
    f_complex      *zeros;
    static float   coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};

    zeros = imsl_f_zeros_poly(NDEG, coeff, 0);
    imsl_c_write_matrix ("The complex zeros found are", 1, 3, zeros, 0);
}
```

Output

```
The complex zeros found are
( 1, 2, 3 )
( 0, 1, 1 )
( 1, 1, -1 )
```

Example 2

The same problem is solved with the return option.
#include <imsl.h>

#define NDEG 3

int main()
{
 f_complex zeros[3];
 static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};

 imsl_f_zeros_poly(NDEG, coeff,
 IMSL_RETURN_USER, zeros, 0);

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

The complex zeros found are

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 0</td>
<td>1, 1</td>
<td>1, -1</td>
</tr>
</tbody>
</table>

Warning Errors

IMSL_ZERO_COEFF
The first several coefficients of the polynomial are equal to zero. Several of the last roots will be set to machine infinity to compensate for this problem.

IMSL_FEWER_ZEROS_FOUND
Fewer than \(n_{deg} \) zeros were found. The root vector will contain the value for machine infinity in the locations that do not contain zeros.
zeros_poly (complex)

Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub, three-stage algorithm.

Synopsis

```
#include <imsl.h>

f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[], ..., 0)
```

The type d_complex function is imsl_z_zeros_poly.

Required Arguments

- `int ndeg` (Input)
 Degree of the polynomial.

- `f_complex coef[]` (Input)
 Array with `ndeg` + 1 components containing the coefficients of the polynomial in increasing order by degree. The degree of the polynomial is

\[\text{coef}[n] z^n + \text{coef}[n-1] z^{n-1} + ... + \text{coef}[0] \]

where \(n = \text{ndeg} \).

Return Value

A pointer to the complex array of zeros of the polynomial. To release this space, use imsl_free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[],
                           IMSL_RETURN_USER, f_complex root[],
                           0)
```

Optional Arguments

- `IMSL_RETURN_USER, f_complex root[]` (Output)
 Array with `ndeg` components containing the zeros of the polynomial.
Description

The function `imsl_c_zeros_poly` computes the \(n \) zeros of the polynomial

\[
p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0
\]

where the coefficients \(a_i \) for \(i = 0, 1, \ldots, n \) are complex and \(n \) is the degree of the polynomial.

The function `imsl_c_zeros_poly` uses the Jenkins-Traub, three-stage complex algorithm (Jenkins and Traub 1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As each zero is found, the polynomial is deflated to one of lower degree.

Examples

Example 1

This example finds the zeros of the third-degree polynomial

\[
p(z) = z^3 - (3 + 6i) z^2 - (8 - 12i) z + 10
\]

where \(z \) is a complex variable.

```c
#include <imsl.h>

#define NDEG 3

int main()
{
    f_complex      *zeros;
    f_complex coeff[NDEG + 1] = { {10.0, 0.0},
                                  {-8.0, 12.0},
                                  {-3.0, -6.0},
                                  { 1.0, 0.0} };

    zeros = imsl_c_zeros_poly(NDEG, coeff, 0);

    imsl_c_write_matrix ("The complex zeros found are", 1, 3,
                         zeros, 0);
}
```

Output

```
The complex zeros found are

( 1, 1 ) ( 1, 2 ) ( 1, 3 )
```

Example 2

The same problem is solved with the return option.
#include <imsl.h>

#define NDEG 3

int main()
{
 f_complex zeros[3];
 f_complex coeff[NDEG + 1] = {{10.0, 0.0},
 {-8.0, 12.0},
 {-3.0, -6.0},
 {1.0, 0.0}};

 imsl_c_zeros_poly(NDEG, coeff, IMSL_RETURN_USER, zeros, 0);

 imsl_c_write_matrix("The complex zeros found are", 1, 3, zeros, 0);
}

Output

The complex zeros found are

 1 2 3
(1, 1) (1, 2) (1, 3)

Warning Errors

IMSL_ZERO_COEFF
The first several coefficients of the polynomial are equal to zero. Several of the last roots will be set to machine infinity to compensate for this problem.

IMSL_FEWER_ZEROS_FOUND
Fewer than \texttt{NDEG} zeros were found. The root vector will contain the value for machine infinity in the locations that do not contain zeros.
zero_univariate

Finds a zero of a real univariate function.

Synopsis

```c
#include <imsl.h>

void imsl_f_zero_univariate (float fcn (), float *a, float *b, ..., 0)
```

The type `double` function is `imsl_d_zero_univariate`.

Required Arguments

- `float fcn (float x)` (Input/Output)
 User-supplied function to compute the value of the function of which the zero will be found.

 Arguments
 - `float x` (Input)
 The point at which the function is evaluated.

 Return Value
 - The computed function value at the point `x`.

- `float *a` (Input/Output)
 See `b`.

- `float *b` (Input/Output)
 Two points at which the user-supplied function can be evaluated.
 On input, if `fcn (a)` and `fcn (b)` are of opposite sign, the zero will be found in the interval `[a, b]` and on output `b` will contain the value of `x` at which `fcn (x) = 0`. If `fcn (a) \times fcn (b) > 0`, and `a ≠ b` then a search along the `x` number line is initiated for a point at which there is a sign change and `|b – a|` will be used in setting the step size for the initial search. If `a = b` on entry then the search is started as described in the description section below.
 On output, `b` is the abscissa at which `|fcn (x)|` had the smallest value. If `fcn (b) ≠ 0` on output, `a` will contain the nearest abscissa to output `b` at which `fcn (x)` was evaluated and found to have the opposite sign from `fcn (b)`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void imsl_f_zero_univariate (float fcn (), float *a, float *b, ...
```
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_ERR_TOL, float err_tol,
IMSL_MAX_EVALS, int maxfn,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)

float fcn (float x, void *data) (Input)
User supplied function to compute the value of the function of which the zero will be found, which also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Arguments

float x (Input)
The point at which the function is evaluated.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value

The computed function value at the point x.

IMSL_ERR_TOL, float err_tol (Input)
Error tolerance. If err_tol > 0.0, the zero is to be isolated to an interval of length less than err_tol. If err_tol < 0.0, an x is desired for which | fcn(x) | is ≤ | err_tol |. If err_tol = 0.0, the iteration continues until the zero of fcn(x) is isolated as accurately as possible.
Default: err_tol = 0.0

IMSL_MAX_EVALS, int maxfn (Input)
An upper bound on the number of function evaluations required for convergence. Set maxfn to 0 if the number of function evaluations is to be unbounded.
Default: maxfn = 0

IMSL_N_EVALS, int *n_evals (Output)
The actual number of function evaluations used.
Description

The function `imsl_f_zero_univariate` is based on the JPL Library routine `SZERO`. The algorithm used is attributed to Dr. Fred T. Krogh, JPL, 1972. Tests have shown `imsl_f_zero_univariate` to require fewer function evaluations, on average, than a number of other algorithms for finding a zero of a continuous function. Let \(f \) be a continuous univariate function. `imsl_f_zero_univariate` will accept any two points \(a \) and \(b \) and initiate a search on the number line for an \(x \) such that \(f(x) = 0 \) when there is no sign difference between \(f(a) \) and \(f(b) \). In either case, \(b \) is updated with a new value on each successive iteration. The algorithm description follows.

When \(f(a) \times f(b) > 0 \) at the initial point, iterates for \(x \) are generated according to the formula \(x = x_{\text{min}} + (x_{\text{min}} - x_{\text{max}}) \times \phi \), where the subscript “\(\text{min} \)” is associated with the \((f,x)\) pair that has the smallest value for \(|f| \), the subscript “\(\text{max} \)” is associated with the \((f,x)\) pair that has the largest value for \(|f| \), and \(\phi \) is 8 if \(r = f_{\text{min}} / (f_{\text{max}} - f_{\text{min}}) \geq 8 \), else \(\phi = \max(k/4, r) \), where \(k \) is a count of the number of iterations that have been taken without finding \(f \)'s with opposite signs. If \(a \) and \(b \) have the same value initially, then the next \(x \) is a distance \(0.008 + |x_{\text{min}}|/4 \) from \(x_{\text{min}} \) taken toward 0. (If \(a = b = 0 \), the next \(x \) is -.008.)

Let \(x_1 \) and \(x_2 \) denote the first two \(x \) values that give \(f \) values with different signs. Let \(\alpha < \beta \) be the two values of \(x \) that bracket the zero as tightly as is known. Thus \(\alpha = x_1 \) or \(\alpha = x_2 \) and \(\beta \) is the other when computing \(x_3 \). The next point, \(x_3 \), is generated by treating \(x \) as the linear function \(q(f) \) that interpolates the points \((f(x_1), x_1)\) and \((f(x_2), x_2)\), and then computing \(x_3 = q(0) \), subject to the condition that \(\alpha + \varepsilon \leq x_3 \leq \beta - \varepsilon \), where \(\varepsilon = 0.875 \times \max(\text{err_tol}, \text{machine_precision}) \). (This condition on \(x_3 \) with updated values for \(\alpha \) and \(\beta \) is also applied to future iterates.)

Let \(x_4, x_5, \ldots, x_m \) denote the abscissae on the following iterations. Let \(a = x_m, b = x_{m-1}, \) and \(c = x_{m-2} \). Either \(\alpha \) or \(\beta \) (defined as above) will coincide with \(a \), and \(\beta \) will frequently coincide with either \(b \) or \(c \). Let \(p(x) \) be the quadratic polynomial in \(x \) that passes through the values of \(f \) evaluated at \(a, b, \) and \(c \). Let \(q(f) \) be the quadratic polynomial in \(f \) that passes through the points \((f(a), a), (f(b), b), \) and \(f(c), c \).

Let \(\zeta = \alpha \) or \(\beta \), selected so that \(\zeta \neq a \). If the sign of \(f \) has changed in the last 4 iterations and \(p'(\zeta) \times q'(f(\zeta)) \) and \(p'(\zeta) \times q'(f(\zeta)) \) are both in the interval \([1/4, 4]\), then \(\varepsilon \) is set to \(q(0) \). (Note that if \(p \) is replaced by \(f \) and \(q \) is replaced by \(x \), then both products have the value 1.) Otherwise \(\varepsilon \) is set to \(a - (a - \zeta) / (\phi(1 + \phi)) \), where \(\phi \) is selected based on past behavior and is such that \(0 < \phi \). If the sign of \(f() \) does not change for an extended period, \(\phi \) gets large.

Example

This example finds a zero of the function

\[
 f(x) = x^2 + x - 2
\]

in the interval \([-10.0, 0.0]\).

```c
#include <imsl.h>
#include <stdio.h>
```
float fcn (float x);

int main() {
 int n_evals;
 float a=-10.0, b=0.0;

 imsl_f_zero_univariate(fcn, &a, &b, IMSL_N_EVALS, &n_evals, 0);

 printf("The best approximation to the zero of f is");
 printf(" equal to %6.3f\n", b);
 printf("The number of function evaluations required");
 printf(" was %d\n", n_evals);
}

float fcn (float x) {
 return x*x + x - 2.0;
}

Output
The best approximation to the zero of f is equal to -2.0
The number of function evaluations required was 10

Fatal Errors

IMSL_ERROR_TOL_NOT_SATISFIED The error tolerance criteria was not satisfied. "b" con-
tains the abscissa at which \(| fcn (x) |" had the
smallest value.

IMSL_DISCONTINUITY_IDENTIFIED Apparently "fcn" has a discontinuity between
"a" = # and "b" = #. No zero has been identified.

IMSL_ZERO_NOT_FOUND "fcn (a) * fcn (b)" > 0 where "a" = # and "b" = #, but
the algorithm is unable to identify function values with
opposite signs.

IMSL_MAX_FCN_EVAL_EXCEEDED The maximum number of function evaluations,
"maxfn" = #, has been exceeded.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-

rithm.
User flag = "#".
zeros_function

Finds the real zeros of a real, continuous, univariate function.

Synopsis

```c
#include <imsl.h>

float *imsl_f_zeros_function (float fcn(), ..., 0)
```

The type `double` function is `imsl_d_zeros_function`.

Required Arguments

```c
float fcn (float x) (Input/Output)
```

User-supplied function to compute the value of the function of which the zeros will be found.

Argument

```c
float x (Input)
```

The point at which the function is evaluated.

Return Value

The computed function value at the point `x`.

Return Value

A pointer to an array containing the zeros of the function. The zeros are in increasing order. If fewer than the requested number of zeros were found, the final entries are set to NaN. To release this space, use `imsl_free`. If there is a fatal error, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_zeros_function (float fcn(),
                               IMSL_NUM_ROOTS, int num_roots,
                               IMSL_FCN_W_DATA, float fcn(), void *data,
                               IMSL_NUM_ROOTS_FOUND, int *num_roots_found,
                               IMSL_N_EVALS, int *n_evals,
                               IMSL_BOUND, float a, float b,
```

Required Arguments

- `IMSL_NUM_ROOTS`: An integer specifying the requested number of zeros to be found.
- `IMSL_FCN_W_DATA`: A pointer to the user-supplied function that computes the value of the function.
- `IMSL_NUM_ROOTS_FOUND`: A pointer to an integer that will contain the number of zeros found.
- `IMSL_N_EVALS`: A pointer to an integer that will contain the number of function evaluations performed.
- `IMSL_BOUND`: A float array specifying the bounds for the search for zeros.

Optional Arguments

- `int num_roots`: The requested number of zeros to be found.
- `void *data`: Additional data that can be passed to the user-supplied function.
- `float a`: The lower bound of the search interval.
- `float b`: The upper bound of the search interval.
IMSL_MAX_EVALS, int max_evals,
IMSL_XGUESS, float xguess[],
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_X, float err_x,
IMSL_TOLERANCE_MULLER, float tolerance_muller,
IMSL_MIN_SEPARATION, float min_separation,
IMSL_XSCALE, float xscale,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments

IMSL_NUM_ROOTS, int num_roots (Input)
The number of zeros to be found.
 Default: num_roots = 1.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to compute the value of the function of which the zeros will be found, which
also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Func-
tions in the introduction to this manual for more details.

Arguments

float x (Input)
The point at which the function is evaluated.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value

The computed function value at the point x.

IMSL_NUM_ROOTS_FOUND, int *num_roots_found (Output)
The number of zeros actually found.

IMSL_N_EVALS, int *n_evals (Output)
The actual number of function evaluations used.

IMSL_BOUND, float a, float b (Input)
The closed interval in which to search for the roots. The function must be defined for all values in this
interval.
 Default: The search for the roots is not bounded.
IMSL_MAX_EVALS, int max_evals (Input)

The maximum number of function evaluations allowed. Once this limit is reached, the roots found are returned.
Default: max_evals = 100

IMSL_XGUESS, float xguess[] (Input)

Array with num_roots components containing initial guesses for the zeros. If a bound on the zeros is also given, the guesses must satisfy the bound condition.

IMSL_ERR_ABS, float err_abs (Input)

A convergence criterion. A root is accepted if the absolute value of the function at the point is less than or equal to err_abs.
Default: err_abs = 100 ε, where ε is the machine precision.

IMSL_ERR_X, float err_x (Input)

A convergence criterion. A root is accepted if it is bracketed within an interval of length err_x.
Default: err_x = 100 ε / xscale, where ε is the machine precision.

IMSL_TOLERANCE_MULLER, float tolerance_muller (Input)

Müller's method is started if, during refinement, a point is found for which the absolute value of the function is less than tolerance_muller and the point is not near an already discovered root. If tolerance_muller is less than or equal to zero Müller's method is never used.
Default: tolerance_muller = ε / err_abs, where ε is the machine precision. With the default value of err_abs, this equals 0.01.

IMSL_MIN_SEPARATION, float min_separation (Input)

The minimum separation between accepted roots. If two points both satisfy the convergence criteria, but are within min_separation of each other, only one of the roots is accepted.
Default: min_separation = ε^{1/2} / xscale, where ε is the machine precision.

IMSL_XSCALE, float xscale (Input)

The scaling in the x-coordinate. The absolute value of the roots divided by xscale should be about one.
Default: xscale = 1.0

IMSL_RETURN_USER, float x[] (Output)

Array with num_root components containing the computed zeros.

Description

The function imsl_f_zeros_function computes num_roots real zeros of a real, continuous, univariate function. The search for the zeros of the function can be limited to a specified interval, or extended over the entire real line. The code is generally more efficient if an interval is specified. The user supplied function must return valid results for all values in the specified interval. If no interval is given, the user-supplied function must return valid results for all real numbers.
The function has two convergence criteria. The first criterion accepts a root, \(x \), if

\[
|f(x)| \leq \tau
\]

where \(\tau = \text{err}_x \).

The second criterion accepts a root if it is known to be inside of an interval of length at most \(\text{err}_\text{abs} \).

A root is accepted if it satisfies either criteria and is not within \(\text{min}_\text{separation} \) of another accepted root.

If initial guesses for the roots are given, Müller’s method (Müller 1956) is used for each of these guesses. For each guess, the Müller iteration is stopped if the next step would be outside of the bound, if given. The iteration is also stopped if it cannot make further progress in finding a root.

If no guess for the zeros were given, or if Müller’s method with the guesses did not find the requested number of roots, a meta-algorithm, combining Müller’s and Brent’s methods, is used. Müller’s method is used primarily to find the roots of functions, such as \(f(x) = x^2 \), where the function does not cross the \(y=0 \) line. Brent’s method is used to find other types of roots.

The meta-algorithm successively refines the interval using a one-dimensional Faure low-discrepancy sequence. If the optional argument \text{IMSL_BOUND} is used to specify a bounded interval, \([a,b]\), the Faure sequence is scaled from \((0,1)\) to \((a,b)\).

If no bound on the function’s domain is given, the entire real line must be searched for roots. In this case the Faure sequence is scaled from \((0,1)\) to \((-\infty, +\infty)\) using the mapping

\[
h(u) = \text{xscale} \cdot \tan(\pi (u - 1/2))
\]

where \text{xscale} is given by the optional argument \text{IMSL_XSCALE}.

At each step of the iteration the next point in the Faure sequence is added to the list of breakpoints defining the subintervals. Call the points \(x_0=a, x_1=b, x_2, x_3, \ldots \). The new point, \(x_s \) splits an existing subinterval, \([x_p, x_q]\).

The function is evaluated at \(x_s \). If its value is small enough, specifically if

\[
|f(x_s)| < \text{tolerance}_\text{muller}
\]

then Müller’s method is used with \(x_p, x_q \) and \(x_s \) as starting values. If a root is found, it is added to the list of roots. If more roots are required, the new Faure point is used.

If Müller’s method did not find a root using the new point, the function value at the point is compared with the function values at the endpoints of the subinterval it divides. If \(f(x_p)f(x_s) < 0 \) and no root has previously been found in \([x_p, x_s]\) then Brent’s method is used to find a root in this interval. Similarly, if the function changes sign over the interval \([x_s, x_q]\), and a root has not already been found in the subinterval, Brent’s method is used there.
Examples

Example 1
This example finds a real zero of the function.

\[f(x) = e^x - 3 \]

```c
#include <imsl.h>
#include <math.h>
#include <stdio.h>

float          fcn(float x);

int main()
{
  float      *x;
  x = imsl_f_zeros_function (fcn, 0);
  printf("fcn(%6.3f) = %12.3e\n",
         x[0], fcn(x[0]));
}

float fcn(float x)
{
  return exp(x) - 3.0;
}
```

Output

```
fcn( 1.099) = -6.378e-006
```

Example 2
This example finds two real zeros of function

\[f(x) = e^{-x}\sqrt{x} - 0.3 \]

on the interval [0,20].

```c
#include <imsl.h>
#include <math.h>

float          fcn(float x);

int main()
{
  float      *x;
```
```c
int n_found;

x = imsl_f_zeros_function (fcn,
    IMSL_NUM_ROOTS, 2,
    IMSL_BOUND, 0.0, 20.0,
    IMSL_NUM_ROOTS_FOUND, &n_found,
    0);

imsl_f_write_matrix ("x", 1, n_found, x, 0);
```

```c
float fcn(float x)
{
    return sqrt(x)*exp(-x) - 0.3;
}
```

Output

```
  x
  1  2
  0.113 1.356
```

Warning Errors

- **IMSL_ZEROS_MAX_EVALS_EXCEEDED**
 - The maximum number of function evaluations allowed has been exceeded. Any zeros found are returned.

Fatal Errors

- **IMSL_STOP_USER_FCN**
 - Request from user supplied function to stop algorithm.
 - User flag = "#".
zeros_sys_eqn

Solves a system of \(n \) nonlinear equations \(f(x) = 0 \) using a modified Powell hybrid algorithm.

Synopsis

```c
#include <imsl.h>

float *imsl_f_zeros_sys_eqn (void fcn(), int n, ..., 0)
```

The type `double` function is `imsl_d_zeros_sys_eqn`.

Required Arguments

```c
void fcn (int n, float x[], float f[]) (Input/Output)
```
User-supplied function to evaluate the system of equations to be solved, where \(n \) is the size of \(x \) and \(f \), \(x \) is the point at which the functions are evaluated, and \(f \) contains the computed function values at the point \(x \).

```c
int n (Input)
```
The number of equations to be solved and the number of unknowns.

Return Value

A pointer to the vector \(x \) that is a solution of the system of equations. To release this space, use `imsl_free`. If no solution can be computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_zeros_sys_eqn (void fcn(), int n,
  IMSL_XGUESS, float xguess[],
  IMSL_JACOBIAN, void jacobian(),
  IMSL_ERR_REL, float err_rel,
  IMSL_MAX_ITN, int max_itn,
  IMSL_RETURN_USER, float x[],
  IMSL_FNORM, float *fnorm,
  IMSL_FCN_W_DATA, void fcn(), void *data,
```

RogueWave
Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
 Array with \(n \) components containing the initial estimate of the root.
 Default: \(xguess = 0 \)

IMSL_JACOBIAN, void jacobian (int \(n \), float \(x[] \), float \(fjac[] \)) (Input/Output)
 User-supplied function to evaluate the Jacobian, where \(n \) is the number of components in \(x \), \(x \) is the
 point at which the Jacobian is evaluated, and \(fjac \) is the computed \(n \times n \) Jacobian matrix at the
 point \(x \). Note that each derivative \(\frac{\partial f_i}{\partial x_j} \) should be returned in \(fjac[(i-1)\times n+j-1] \).

IMSL_ERR_REL, float err_rel (Input)
 Stopping criterion. The root is accepted if the relative error between two successive approximations
 to this root is less than \(err_rel \).
 Default: \(err_rel = \sqrt{\varepsilon} \) where \(\varepsilon \) is the machine precision

IMSL_MAX_ITN, int max_itn (Input)
 The maximum allowable number of iterations.
 Default: \(max_itn = 200 \)

IMSL_RETURN_USER, float \(x[] \) (Output)
 Array with \(n \) components containing the best estimate of the root found by \(f_zeros_sys_eqn \).

IMSL_FCN_W_DATA, float *fnorm (Output)
 Scalar with the value
 \[f_1^2 + \ldots + f_n^2 \]
 at the point \(x \).

IMSL_FCN_W_DATA, void fcn (int \(n \), float \(x[] \), float \(f[] \), void *data), void *data (Input)
 User supplied function to evaluate the system of equations to be solved, which also accepts a pointer
 to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied
 function. See Passing Data to User-Supplied Functions in the introduction to this manual for more
 details.

IMSL_JACOBIAN_W_DATA, void jacobian (int \(m \), int \(n \), float \(x[] \), float \(fjac[] \),
 int \(fjac_col_dim \), void *data), void *data (Input)
 User supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied
 by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
 Data to User-Supplied Functions in the introduction to this manual for more details.
Description

The function `imsl_f_zeros_sys_eqn` is based on the MINPACK subroutine HYBRDJ, which uses a modification of the hybrid algorithm due to M.J.D. Powell. This algorithm is a variation of Newton’s method, which takes precautions to avoid undesirable large steps or increasing residuals. For further description, see Moré et al. (1980).

Examples

Example 1

The following 2×2 system of nonlinear equations

\[
\begin{align*}
 f_1(x) &= x_1 + x_2 - 3 \\
 f_2(x) &= x_1^2 + x_2^2 - 9
\end{align*}
\]

is solved.

```c
#include <imsl.h>
#include <stdio.h>

#define N 2

void fcn(int, float[], float[]);

int main()
{
  float *x;

  x = imsl_f_zeros_sys_eqn(fcn, N, 0);
  imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
}

void fcn(int n, float x[], float f[])
{
  f[0] = x[0] + x[1] - 3.0;
  f[1] = x[0]*x[0] + x[1]*x[1] - 9.0;
}
```

Output

The solution to the system is

\[
\begin{bmatrix}
 1 & 2 \\
 0 & 3
\end{bmatrix}
\]
Example 2

The following 3×3 system of nonlinear equations

\[
\begin{align*}
 f_1(x) &= x_1 + e^{x_1} - 1 + (x_2 + x_3)^2 - 27 \\
 f_2(x) &= e^{x_2} / x_1 + x_3^2 - 10 \\
 f_3(x) &= x_3 + \sin(x_2 - 2) + x_2^2 - 7
\end{align*}
\]

is solved with the initial guess $(4.0, 4.0, 4.0)$.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define N 3

void fcn(int n, float x[], float f[]);

int main()
{
    int        maxitn = 100;
    float      *x, err_rel = 0.0001, fnorm;
    float      xguess[N] = {4.0, 4.0, 4.0};
    
    x = imsl_f_zeros_sys_eqn(fcn, N, 
                            IMSL_ERR_REL, err_rel, 
                            IMSL_MAX_ITN, maxitn, 
                            IMSL_XGUESS, xguess, 
                            IMSL_FNORM, &fnorm, 
                            0);
    
    imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
    printf("\nwith fnorm = %5.4f\n", fnorm);
}

void fcn(int n, float x[], float f[])
{
    f[0] = x[0] + exp(x[0] - 1.0) + (x[1] + x[2]) * (x[1] + x[2]) - 27.0;
}
```

Output

The solution to the system is

\[
\begin{align*}
 &1 & 2 & 3 \\
 &1 & 2 & 3 \\
\end{align*}
\]

with fnorm = 0.0000
Warning Errors

- **IMSL_TOO_MANY_FCN_EVALS**: The number of function evaluations has exceeded `max_itn`. A new initial guess may be tried.

- **IMSL_NO_BETTER_POINT**: Argument `err_rel` is too small. No further improvement in the approximate solution is possible.

- **IMSL_NO_PROGRESS**: The iteration has not made good progress. A new initial guess may be tried.

Fatal Errors

- **IMSL_STOP_USER_FCN**: Request from user supplied function to stop algorithm. User flag = "#".
Functions

Unconstrained Minimization

Univariate Function
Using function values only .. min_uncon 787
Using function and first derivative values. min_uncon_deriv 792
Finds the minimum point of a nonsmooth function
of a single value ... min_uncon_golden 797

Multivariate Function
Using quasi-Newton method .. min_uncon_multivar 801
Finds the minimum of a nonsmooth function using a direct search
polytope algorithm ... min_uncon_polytope 809

Nonlinear Least Squares
Using Levenberg-Marquardt algorithm nonlin_least_squares 814

Linearly Constrained Minimization
Reads an MPS file containing a linear programming
problem or a quadratic programming problem read_mps 825
Solves a linear programming problem linear_programming 834
Dense linear programming .. lin_prog 841
Quadratic programming .. quadratic_prog 847
Sparse linear programming .. sparse_lin_prog 853
Sparse quadratic programming sparse_quadratic_prog 867
Minimizes a general objective function min_con_gen_lin 882
Nonlinear least-squares
with simple bounds on the variables bounded_least_squares 890

Nonlinearly Constrained Minimization
Using a sequential equality constrained QP method constrained_nlp 899

Service Routines
Divided-finite difference Jacobian jacobian 908
Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \) is continuous and has derivatives of all orders required by the algorithms. The functions for unconstrained minimization are grouped into three categories: univariate functions, multivariate functions, and nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function \texttt{imsl_f_min_uncon_multivar}. The default is to use a finite-difference approximation of the gradient of \(f(x) \). Here, the gradient is defined to be the vector

\[
\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right]
\]

However, when the exact gradient can be easily provided, the keyword \texttt{IMSL_GRAD} should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The most common application of the function is the nonlinear data-fitting problem where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function may have many local minima. Try different initial points and intervals to obtain a better local solution.

Double-precision arithmetic is recommended for the functions when the user provides only the function values.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

\[
\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad A_1 x = b_1 \quad A_2 x \leq b_2
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \), \(A_1 \) and \(A_2 \) are coefficient matrices, and \(b_1 \) and \(b_2 \) are vectors. If \(f(x) \) is linear, then the problem is a linear programming problem. If \(f(x) \) is quadratic, the problem is a quadratic programming problem.
The function \texttt{imsl_f_linear_programming} uses an active set strategy to solve linear programming problems, and is intended as a replacement for the function \texttt{imsl_f_lin_prog}. The two functions have similar interfaces, which should help facilitate migration from \texttt{imsl_f_lin_prog} to \texttt{imsl_f_linear_programming}. In general, the function \texttt{imsl_f_linear_programming} should be expected to perform more efficiently than \texttt{imsl_f_lin_prog}. Both \texttt{imsl_f_linear_programming} and \texttt{imsl_f_lin_prog} are intended for use with small- to medium-sized linear programming problems. No sparsity is assumed since the coefficients are stored in full matrix form.

Function \texttt{imsl_d_sparse_lin_prog} uses an infeasible primal-dual interior-point method to solve sparse linear programming problems of all sizes. The constraint matrix is stored in sparse coordinate storage format.

The function \texttt{imsl_f_quadratic_prog} is designed to solve convex quadratic programming problems using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then \texttt{imsl_f_quadratic_prog} modifies it to be positive definite. In this case, output should be interpreted with care because the problem has been changed slightly. Here, the Hessian of $f(x)$ is defined to be the $n \times n$ matrix

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2}{\partial x_i \partial x_j} f(x) \end{bmatrix}$$

Function \texttt{imsl_d_sparse_quadratic_prog} uses an infeasible primal-dual interior-point method to solve sparse convex quadratic programming problems of all sizes. The constraint matrix and the Hessian are stored in sparse coordinate storage format.

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to $g_i(x) = 0$ for $i = 1, 2, ... m_1$

$g_i(x) \geq 0$ for $i = m_1 + 1, ... m$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$, for $i = 1, 2, ..., m$.

The function \texttt{imsl_f_constrained_nlp} uses a sequential equality constrained quadratic programming algorithm to solve this problem. A more complete discussion of this algorithm can be found in the documentation.
Return Values from User-Supplied Functions

All values returned by user-supplied functions must be valid real numbers. It is the user's responsibility to check that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

```c
#include <imsl.h>
#include <math.h>
void fcn(int, int, float[], float[]);
void main()
{
    int m=3, n=1;
    float *result, fx[3];
    float xguess[]={1.0};
    result = imsl_f_nonlin_least_squares(fcn, m, n, IMSL_XGUESS, xguess, 0);
    fcn(m, n, result, fx);
    /* Print results */
    imsl_f_write_matrix("The solution is", 1, 1, result, 0);
    imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
} /* End of main */

void fcn(int m, int n, float x[], float f[])
{
    int i;
    float y[3] = {2.0, 4.0, 3.0};
    float t[3] = {1.0, 2.0, 3.0};
    for (i=0; i<m; i++)
    {
        /* check for x=0
         * do not want to return infinity to nonlin_least_squares */
        if (x[0] == 0.0) {
            f[i] = 10000.;
        } else {
            f[i] = t[i]/x[0] - y[i];
        }
    }
} /* End of function */
```
Find the minimum point of a smooth function \(f(x) \) of a single variable using only function evaluations.

Synopsis

```c
#include <imsl.h>

float imsl_f_min_uncon(float fcn(), float a, float b, ..., 0)
```

The type `double function` is `imsl_d_min_uncon`.

Required Arguments

- `float fcn(float x)` (Input/Output)
 - User-supplied function to compute the value of the function to be minimized where \(x \) is the point at which the function is evaluated, and \(fcn \) is the computed function value at the point \(x \).

- `float a` (Input)
 - The lower endpoint of the interval in which the minimum point of \(fcn \) is to be located.

- `float b` (Input)
 - The upper endpoint of the interval in which the minimum point of \(fcn \) is to be located.

Return Value

The point at which a minimum value of \(fcn \) is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_min_uncon(float fcn(), float a, float b,
    IMSL_XGUESS, float xguess,
    IMSL_STEP, float step,
    IMSL_ERR_ABS, float err_abs,
    IMSL_MAX_FCN, int max_fcn,
    IMSL_FCN_W_DATA, float fcn(), void *data,
    0)
```
Optional Arguments

IMSL_XGUESS, float xguess (Input)
An initial guess of the minimum point of f_{cn}.
Default: $x_{\text{guess}} = (a + b)/2$

IMSL_STEP, float step (Input)
An order of magnitude estimate of the required change in x.
Default: step = 1.0

IMSL_ERR_ABS, float err_abs (Input)
The required absolute accuracy in the final value of x. On a normal return, there are points on either side of x within a distance err_abs at which f_{cn} is no less than f_{cn} at x.
Default: $\text{err_abs} = 0.0001$

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FCN_W_DATA, float $f_{cn}(\text{float } x, \text{ void } *\text{data}), \text{ void } *\text{data},$ (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function imsl_f_min_uncon uses a safeguarded quadratic interpolation method to find a minimum point of a univariate function. Both the code and the underlying algorithm are based on the subroutine ZXLSF written by M.J.D. Powell at the University of Cambridge.

The function imsl_f_min_uncon finds the least value of a univariate function, f, which is specified by the function f_{cn}. Other required data are two points a and b that define an interval for finding a minimum point from an initial estimate of the solution, x_0 where $x_0 = x_{\text{guess}}$. The algorithm begins the search by moving from x_0 to $x = x_0 + s$ where $s = \text{step}$ is an estimate of the required change in x and may be positive or negative. The first two function evaluations indicate the direction to the minimum point and the search strides out along this direction until a bracket on a minimum point is found or until x reaches one of the endpoints a or b. During this stage, the step length increases by a factor of between two and nine per function evaluation. The factor depends on the position of the minimum point that is predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we have three points,

$$x_1, x_2, x_3, \text{ with } x_1 < x_2 < x_3, f(x_1) \geq f(x_2), \text{ and } f(x_2) \leq f(x_3).$$
There are three main rules in the technique for choosing the new x from these three points. They are (i) the estimate of the minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance parameter η, which depends on the closeness of f to a quadratic, and (iii) whether x_2 is near the center of the range between x_1 and x_3 or is relatively close to an end of this range. In outline, the new value of x is as near as possible to the predicted minimum point, subject to being at least ϵ from x_2, and subject to being in the longer interval between x_1 and x_2, or x_2 and x_3, when x_2 is particularly close to x_1 or x_3.

The algorithm is intended to provide fast convergence when f has a positive and continuous second derivative at the minimum. Also, the algorithm avoids gross inefficiencies in pathological cases, such as

$$f(x) = x + 1.001|x|$$

The algorithm can automatically make ϵ large in the pathological cases. In this case, it is usual for a new value of x to be at the midpoint of the longer interval that is adjacent to the least-calculated function value. The midpoint strategy is used frequently when changes to f are dominated by computer rounding errors, which will almost certainly happen if the user requests an accuracy that is less than the square root of the machine precision. In such cases, the subroutine claims to have achieved the required accuracy if it decides that there is a local minimum point within distance δ of x, where $\delta = \text{err_abs}$, even though the rounding errors in f may cause the existence of other local minimum points nearby. This difficulty is inevitable in minimization routines that use only function values, so high precision arithmetic is recommended.

Examples

Example 1

A minimum point of $f(x) = e^x - 5x$ is found.

```c
#include <imsl.h>
#include <math.h>

float          fcn(float);

int main ()
{
    float a = -100.0;
    float b = 100.0;
    float fx, x;

    x = imsl_f_min_uncon (fcn, a, b, 0);
    fx = fcn(x);

    printf ("The solution is: %8.4f\n", x);
    printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

float fcn(float x)
{
    
    
```
return exp(x) - 5.0*x;
}

Output

The solution is: 1.6094
The function evaluated at the solution is: -3.0472

Example 2

A minimum point of \(f(x) = x(x^3 - 1) + 10 \) is found with an initial guess \(x_0 = 3 \).

```c
#include <imsl.h>

float fcn(float);

int main ()
{
    int      max_fcn = 50;
    float    a      = -10.0;
    float    b      = 10.0;
    float    xguess =  3.0;
    float    step   =  0.1;
    float    err_abs =  0.001;
    float    fx, x;

    x = imsl_f_min_uncon (fcn, a, b,
                           IMSL_XGUESS, xguess,
                           IMSL_STEP, step,
                           IMSL_ERR_ABS, err_abs,
                           IMSL_MAX_FCN, max_fcn,
                           0);

    fx = fcn(x);
    printf ("The solution is: %8.4f\n", x);
    printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

float fcn(float x)
{
    return x*(x*x*x-1.0) + 10.0;
}

**Output**

The solution is: 0.6298
The function evaluated at the solution is: 9.5275
Warning Errors

- **IMSL_MIN_AT_BOUND**
  - The final value of \( x \) is at a bound.

- **IMSL_NO_MORE_PROGRESS**
  - Computer rounding errors prevent further refinement of \( x \).

- **IMSL_TOO_MANY_FCN_EVAL**
  - Maximum number of function evaluations exceeded.

Fatal Errors

- **IMSL_STOP_USER_FCN**
  - Request from user supplied function to stop algorithm.
  - User flag = "#".
min_uncon_deriv

Finds the minimum point of a smooth function \( f(x) \) of a single variable using both function and first derivative evaluations.

Synopsis

```c
#include <imsl.h>

float imsl_f_min_uncon_deriv(float fcn(), float grad(), float a, float b, ...)
```

The type `double` function is `imsl_d_min_uncon_deriv`.

Required Arguments

- `float fcn (float x)` (Input/Output)
  - User-supplied function to compute the value of the function to be minimized where \( x \) is the point at which the function is evaluated, and \( fcn \) is the computed function value at the point \( x \).

- `float grad (float x)` (Input/Output)
  - User-supplied function to compute the first derivative of the function where \( x \) is the point at which the derivative is evaluated, and \( grad \) is the computed value of the derivative at the point \( x \).

- `float a` (Input)
  - The lower endpoint of the interval in which the minimum point of \( fcn \) is to be located.

- `float b` (Input)
  - The upper endpoint of the interval in which the minimum point of \( fcn \) is to be located.

Return Value

The point at which a minimum value of \( fcn \) is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_min_uncon_deriv(float fcn(), float grad(), float a, float b,
 IMSL_XGUESS, float xguess,
 IMSL_ERR_REL, float err_rel,
 IMSL_GRAD_TOL, float grad_tol,
 IMSL_MAX_FCN, int max_fcn,
```

- `IMSL_XGUESS, float xguess`,
- `IMSL_ERR_REL, float err_rel`,
- `IMSL_GRAD_TOL, float grad_tol`,
- `IMSL_MAX_FCN, int max_fcn`,
IMSL_FVALUE, float *fvalue,
IMSL_GVALUE, float *gvalue,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GRADIENT_W_DATA, float grad(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess (Input)
An initial guess of the minimum point of fcn.
Default: xguess = (a + b)/2

IMSL_ERR_REL, float err_rel (Input)
The required relative accuracy in the final value of x. This is the first stopping criterion. On a normal
return, the solution x is in an interval that contains a local minimum and is less than or equal to max
(1.0, |x|) * err_rel. When the given err_rel is less than zero,
\[ \sqrt{\varepsilon} \]
is used as err_rel where \( \varepsilon \) is the machine precision.
Default: err_rel = \( \sqrt{\varepsilon} \)

IMSL_GRAD_TOL, float grad_tol (Input)
The derivative tolerance used to decide if the current point is a local minimum. This is the second
stopping criterion. x is returned as a solution when grad is less than or equal to grad_tol.
grad_tol should be nonnegative; otherwise, zero would be used.
Default: grad_tol = \( \sqrt{\varepsilon} \) where \( \varepsilon \) is the machine precision

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FVALUE, float *fvalue (Output)
The function value at point x.

IMSL_GVALUE, float *gvalue (Output)
The derivative value at point x.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.
This function computes the first derivative of the function, which also accepts a pointer to data that is supplied by the user. The data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

**Description**

The function `f_min_uncon_deriv` uses a descent method with either the secant method or cubic interpolation to find a minimum point of a univariate function. It starts with an initial guess and two endpoints. If any of the three points is a local minimum point and has least function value, the function terminates with a solution. Otherwise, the point with least function value will be used as the starting point.

From the starting point, say $x_c$, the function value $f_c = f(x_c)$, the derivative value $g_c = g(x_c)$, and a new point $x_n$ defined by $x_n = x_c - g_c$ are computed. The function $f_n = f(x_n)$, and the derivative $g_n = g(x_n)$ are then evaluated. If either $f_n \geq f_c$ or $g_n$ has the opposite sign of $g_c$, then there exists a minimum point between $x_c$ and $x_n$, and an initial interval is obtained. Otherwise, since $x_c$ is kept as the point that has lowest function value, an interchange between $x_n$ and $x_c$ is performed. The secant method is then used to get a new point

$$x_s = x_c - g_c \left( \frac{g_n - g_c}{x_n - x_c} \right)$$

Let $x_n = x_s$, and repeat this process until an interval containing a minimum is found or one of the convergence criteria is satisfied. The convergence criteria are as follows:

**Criterion 1:** $|x_c - x_n| \leq \varepsilon_c$

**Criterion 2:** $|g_c| \leq \varepsilon_g$

where $\varepsilon_c = \max \{1.0, |x_c|\} \varepsilon$, $\varepsilon$ is an error tolerance, and $\varepsilon_g$ is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. Function and derivative are then evaluated at that point, and accordingly a smaller interval that contains a minimum point is chosen. A safeguarded method is used to ensure that the interval be reduced by at least a fraction of the previous interval. Another cubic interpolation is then performed, and this function is repeated until one of the stopping criteria is met.

**Examples**

**Example 1**

In this example, a minimum point of $f(x) = e^x - 5x$ is found.

```c
#include <imsl.h>
#include <math.h>
```
float fcn(float); float deriv(float);

int main ()
{
    float a = -10.0;
    float b = 10.0;
    float fx, gx, x;

    x = imsl_f_min_uncon_deriv (fcn, deriv, a, b, 0);
    fx = fcn(x);
    gx = deriv(x);

    printf ("The solution is: %7.3f\n", x);
    printf ("The function evaluated at the solution is: %9.3f\n", fx);
    printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}

float fcn(float x)
{
    return exp(x) - 5.0*(x);
}

float deriv (float x)
{
    return exp(x) - 5.0;
}

Output
The solution is:   1.609
The function evaluated at the solution is:    -3.047
The derivative evaluated at the solution is:  -0.001

Example 2
A minimum point of \(f(x) = x(x^3 - 1) + 10\) is found with an initial guess \(x_0 = 3\).
float b = 10.0;
float xguess = 3.0;
float fx, gx, x;

x = imsl_f_min_uncon_deriv (fcn, deriv, a, b,
    IMSL_XGUESS, xguess,
    IMSL_MAX_FCN, max_fcn,
    IMSL_FVALUE, &fx,
    IMSL_GVALUE, &gx,
    0);
printf ("The solution is: %7.3f\n", x);
printf ("The function evaluated at the solution is: %7.3f\n", fx);
printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}

float fcn(float x)
{
    return x*(x*x*x-1) + 10.0;
}

float deriv(float x)
{
    return 4.0*(x*x*x) - 1.0;
}

Output
The solution is: 0.630
The function evaluated at the solution is: 9.528
The derivative evaluated at the solution is: 0.000

Warning Errors

IMSL_MIN_AT_LOWERBOUND The final value of x is at the lower bound.
IMSL_MIN_AT_UPPERBOUND The final value of x is at the upper bound.
IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations exceeded.

Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = ".".
min_uncon_golden

Finds the minimum point of a nonsmooth function of a single variable using the golden section search method.

Synopsis

#include <imsl.h>

float imsl_f_min_uncon_golden (float fcn (), float a, float b, ... , 0)

The type double function is imsl_d_min_uncon_golden.

Required Arguments

float fcn (float x)(Input)
User-supplied function, \( f(x) \), to be minimized.

float x (Input)
The point at which the function is evaluated.

Return Value
The computed function value at the point \( x \).

float a (Input)
The lower endpoint of the interval in which the minimum of \( f \) is to be located.

float b (Input)
The upper endpoint of the interval in which the minimum of \( f \) is to be located.

Return Value
The approximate minimum point of the function \( f \) on the original interval \([a, b]\). If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_min_uncon_golden (float fcn (), float a, float b,

IMSL_TOLERANCE, float tol,
IMSL_FCN_W_DATA, float fcn (), void *data,
IMSL_LOWER_ENDPOINT, float *lower,
Optional Arguments

IMSL_TOLERANCE, \texttt{float} tol (Input)
The allowable length of the final subinterval containing the minimum point.
Default: \( \texttt{tol} = \sqrt{\varepsilon} \), where \( \varepsilon \) is the machine precision.

IMSL_FCN_W_DATA, \texttt{float} fcn (\texttt{float} \( x \), \texttt{void} *data), \texttt{void} *data (Input)
\texttt{float} fcn (\texttt{float} \( x \), \texttt{void} *data)
User-supplied function, \( f(x) \), to be minimized, which also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

\textbf{Arguments}

\texttt{float} \( x \) (Input)
The point at which the function is evaluated.

\texttt{void} *data (Input)
A pointer to the data to be passed to the user-supplied function.

\textbf{Return Value}
The computed function value at the point \( x \).

\texttt{void} data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_LOWER_ENDPOINT, \texttt{float} *lower (Output)
The lower endpoint of the interval in which the minimum of \( f \) is located.

IMSL_UPPER_ENDPOINT, \texttt{float} *upper (Output)
The upper endpoint of the interval in which the minimum of \( f \) is located.

Description

The function imsl\_f\_min\_uncon\_golden uses the \textit{golden section search} technique to compute to the desired accuracy the independent variable value that minimizes a function of one independent variable, where a known finite interval contains the minimum and where the function is unimodal in the same known finite interval.

Let \( \tau = \texttt{tol} \). The number of iterations required to compute the minimizing value to accuracy \( \tau \) is the greatest integer less than or equal to
where $a$ and $b$ define the interval and

$$c = \left(3 - \sqrt{5}\right) / 2$$

The first two test points are $v_1$ and $v_2$ that are defined as

$v_1 = a + c(b - a), \text{ and } v_2 = b - c(b - a)$

If $f(v_1) < f(v_2)$, then the minimizing value is in the interval $(a, v_2)$. In this case, $b \leftarrow v_2$, $v_2 \leftarrow v_1$, and $v_1 \leftarrow a + c(b - a)$. If $f(v_1) \geq f(v_2)$, the minimizing value is in $(v_1, b)$. In this case, $a \leftarrow v_1$, $v_1 \leftarrow v_2$, and $v_2 \leftarrow b - c(b - a)$.

The algorithm continues in an analogous manner where only one new test point is computed at each step. This process continues until the desired accuracy $\tau$ is achieved. The point, $\text{xmin}$, producing the minimum value for the current iteration is returned.

Mathematically, the algorithm always produces the minimizing value to the desired accuracy, however, numerical problems may be encountered. If $f$ is too flat in part of the region of interest, the function may appear to be constant to the computer in that region. The user may rectify the problem by relaxing the requirement on $\tau$, modifying (scaling, etc.) the form of $f$ or executing the program in a higher precision.

**Remarks**

1. On exit from `imsl_f_min_uncon_golden` without any error messages, the following conditions hold:

   \[(\text{upper} - \text{lower}) \leq \text{tol}\]

   \[
   \begin{align*}
   \text{lower} & \leq \text{xmin} \text{ and } \text{xmin} \leq \text{upper} \\
   f(\text{xmin}) & \leq f(\text{lower}) \text{ and } f(\text{xmin}) \leq f(\text{upper})
   \end{align*}
   \]

2. On exit from `imsl_f_min_uncon_golden` with `IMSL_NOT_UNIMODAL` error, the following conditions hold:

   \[
   \begin{align*}
   \text{lower} & \leq \text{xmin} \text{ and } \text{xmin} \leq \text{upper} \\
   f(\text{xmin}) & \geq f(\text{lower}) \text{ and } f(\text{xmin}) \geq f(\text{upper}) \text{ (only one equality can hold)}
   \end{align*}
   \]

Further analysis of the function $f$ is necessary in order to determine whether it is not unimodal in the mathematical sense or whether it appears to be not unimodal to the routine due to rounding errors, in which case the lower, upper, and xmin returned may be acceptable.

**Example**

A minimum point of $3x^2 - 2x + 4$ is found.

```c
#include <imsl.h>
#include <stdio.h>
float fcn(float);
```
```c
int main () {
 float a = 0.0e0, b = 5.0e0, tol = 1.0e-3, lower,
 upper, xmin, fx;
 xmin = imsl_f_min_uncon_golden (fcn, a, b,
 IMSL_TOLERANCE, tol,
 IMSL_LOWER_ENDPOINT, &lower,
 IMSL_UPPER_ENDPOINT, &upper,
 0);
 fx = fcn(xmin);
 printf ("The minimum is at: %8.3f\n", xmin);
 printf ("The function value is: %8.3f\n", fx);
 printf ("The final interval is: (%8.3f, %8.3f)\n", lower, upper);
}

float fcn(float x) {
 return 3.0e0*x*x - 2.0e0*x + 4.0e0;
}
```

**Output**

```
The minimum is at: 0.333
The function value is: 3.667
The final interval is: (0.333, 0.334)
```
Minimizes a function \( f(x) \) of \( n \) variables using a quasi-Newton method.

**Synopsis**

```c
#include <imsl.h>

float *imsl_f_min_uncon_multivar (float fcn(), int n, ... , 0)
```

The type `double` function is `imsl_d_min_uncon_multivar`.

**Required Arguments**

- `float fcn (int n, float x[])(Input/Output)`
  User-supplied function to evaluate the function to be minimized where \( n \) is the size of \( x \), \( x \) is the point at which the function is evaluated, and \( fcn \) is the computed function value at the point \( x \).

- `int n (Input)`
  Number of variables.

**Return Value**

A pointer to the minimum point \( x \) of the function. To release this space, use `imsl_free`. If no solution can be computed, then NULL is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

float *imsl_f_min_uncon_multivar (float fcn(), int n,
 IMSL_XGUESS, float xguess[],
 IMSL_GRAD, void grad(),
 IMSL_, float xscale[],
 IMSL_FSCALE, float fscale,
 IMSL_GRAD_TOL, float grad_tol,
```

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess of the computed solution.
Default: xguess = 0

IMSL_GRAD, void grad (int n, float x[], float g[]) (Input/Output)
User-supplied function to compute the gradient at the point x where n is the size of x, x is the point at which the gradient is evaluated, and g is the computed gradient at the point x.

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables. xscale is used mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more details.
Default: xscale[] = 1.0

IMSL_FSCALE, float fscale (Input)
Scalar containing the function scaling. fscale is used mainly in scaling the gradient. See keyword IMSL_GRAD_TOL for more details.
Default: fscale = 1.0

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is calculated as
\[
\frac{|g_i| \cdot \max \left(\frac{|x_i|}{1/s_i}, 1/s_i \right)}{\max \left(\|f(x)\|, f_s\right)}
\]

where \(g = \nabla f(x), s = x\text{scale},\) and \(f_s = f\text{scale}.

Default: \(\text{grad\_tol} = \sqrt{\epsilon}, \sqrt[3]{\epsilon}\) in double where \(\epsilon\) is the machine precision.

IMSL_STEP_TOL, \textbf{float} \text{step\_tol} (Input)
Scaled step tolerance. The \(i\)-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{|x_i - y_i|}{\max \left(\|x_i\|, 1/s_i\right)}
\]
where \(s = x\text{scale}.
Default: \(\text{step\_tol} = \epsilon^{2/3}\)

IMSL_MAX_STEP, \textbf{float} \text{max\_step} (Input)
Maximum allowable step size.
Default: \(\text{max\_step} = 1000 \max (\epsilon_1, \epsilon_2)\) where,
\[
\epsilon_1 = \sqrt{\sum_{i=1}^{n} (s_i t_i)^2}
\]
\[
\epsilon_2 = \|s\|^2, s = x\text{scale},\) and \(t = x\text{guess}.

IMSL_GOOD_DIGIT, \textbf{int} \text{ndigit} (Input)
Number of good digits in the function. The default is machine dependent.

IMSL_MAX_ITN, \textbf{int} \text{max\_itn} (Input)
Maximum number of iterations.
Default: \(\text{max\_itn} = 100\)

IMSL_MAX_FCN, \textbf{int} \text{max\_fcn} (Input)
Maximum number of function evaluations.
Default: \(\text{max\_fcn} = 400\)

IMSL_MAX_GRAD, \textbf{int} \text{max\_grad} (Input)
Maximum number of gradient evaluations.
Default: \(\text{max\_grad} = 400\)

IMSL_INIT_HESSIAN, \textbf{int} \text{ihe\_ss} (Input)
Hessian initialization parameter. If \text{ihe\_ss} is zero, the Hessian is initialized to the identity matrix; otherwise, it is initialized to a diagonal matrix containing
The function \( f_{\text{min}_\text{uncon}_\text{multivar}} \) uses a quasi-Newton method to find the minimum of a function \( f(x) \) of \( n \) variables. The problem is stated as follows:

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

Given a starting point \( x_0 \), the search direction is computed according to the formula

\[
d = -B^{-1}g_c
\]

where \( B \) is a positive definite approximation of the Hessian, and \( g_c \) is the gradient evaluated at \( x_c \). A line search is then used to find a new point

\[
x_n = x_c + \lambda d, \lambda > 0
\]

such that

\[
f(x_n) \leq f(x_c) + a g^T d, a \in (0, 0.5)
\]

Finally, the optimality condition \( \|g(x)\| \leq \varepsilon \) is checked where \( \varepsilon \) is a gradient tolerance.

When optimality is not achieved, \( B \) is updated according to the BFGS formula
\[ B \leftarrow B - \frac{Bss^TB}{s^Ts} + \frac{yy^T}{y^Ts} \]

where \( s = x_n - x_c \) and \( y = g_n - g_c \). Another search direction is then computed to begin the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for \texttt{imsl\_f\_min\_uncon\_multivar} occurs when the norm of the gradient is less than the given gradient tolerance \texttt{grad\_tol}. The second stopping criterion for \texttt{imsl\_f\_min\_uncon\_multivar} occurs when the scaled distance between the last two steps is less than the step tolerance \texttt{step\_tol}.

Since by default, a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended; the keyword \texttt{IMSL\_GRAD} should be used to provide more accurate gradient evaluation.

On some platforms, \texttt{imsl\_f\_min\_uncon\_multivar} can evaluate the user-supplied functions \texttt{fcn} and \texttt{grad} in parallel. This is done only if the function \texttt{imsl\_omp\_options} is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

![Figure 8.6 — Plot of the Rosenbrock Function](image-url)
Examples

**Example 1**

The function

\[ f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \]

is minimized. In the following plot, the solid circle marks the minimum.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 int i, n = 2;
 float *result, fx;
 static float rosbrk(int, float[]);

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Minimize Rosenbrock function */

 result = imsl_f_min_uncon_multivar(rosbrk, n, 0);
 fx = rosbrk(n, result);

 /* Print results */

 printf(" The solution is ");
 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf(" The function value is %8.3f\n", fx);
 /* end of main */
}

static float rosbrk(int n, float x[])
{
 float f1, f2;

 f1 = x[1] - x[0]*x[0];
 f2 = 1.0 - x[0];

 return 100.0 * f1 * f1 + f2 * f2;
 /* end of function */
}
```

**Output**

The solution is 1.000 1.000

The function value is 0.000
Example 2

The function

\[ f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \]

is minimized with the initial guess \( x = (-1.2, 1.0) \). The initial guess is marked with an open circle in Plot of the Rosenbrock Function.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 int i, n=2;
 float *result, fx;
 float rosbrk(int, float[]);
 void rosgrd(int, float[], float[]);
 static float xguess[2] = {-1.2e0, 1.0e0};
 static float grad_tol = .0001;

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Minimize Rosenbrock function using initial guesses of -1.2 and 1.0 */
 result = imsl_f_min_uncon_multivar(rosbrk, n, IMSL_XGUESS, xguess,
 IMSL_GRAD, rosgrd, IMSL_GRAD_TOL, grad_tol,
 IMSL_FVALUE, &fx, 0);

 /* Print results */
 printf(" The solution is ");
 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf("\n\n The function value is %8.3f\n", fx);
} /* End of main */

static float rosbrk(int n, float x[])
{
 float f1, f2;

 f1 = x[1] - x[0]*x[0];
 f2 = 1.0e0 - x[0];

 return 100.0 * f1 * f1 + f2 * f2;
} /* End of function */

static void rosgrd(int n, float x[], float g[])
{

\[g[0] = -400.0 \times (x[1]-x[0] \times x[0]) \times x[0] - 2.0 \times (1.0-x[0]) ; \]
\[g[1] = 200.0 \times (x[1]-x[0] \times x[0]) ; \]

} /* End of function */

Output

The solution is 1.000 1.000

The function value is 0.000

Informational Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_STEP_TOLERANCE</td>
<td>Scaled step tolerance satisfied. The current point may be an approximate local solution, but it is also possible that the algorithm is making very slow progress and is not near a solution, or that step_tol is too big.</td>
</tr>
</tbody>
</table>

Warning Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_TOO_MANY_ITN</td>
<td>Maximum number of iterations exceeded.</td>
</tr>
<tr>
<td>IMSL_TOO_MANY_FCN_EVAL</td>
<td>Maximum number of function evaluations exceeded.</td>
</tr>
<tr>
<td>IMSL_TOO_MANY_GRAD_EVAL</td>
<td>Maximum number of gradient evaluations exceeded.</td>
</tr>
<tr>
<td>IMSL_UNBOUNDED</td>
<td>Five consecutive steps have been taken with the maximum step length.</td>
</tr>
<tr>
<td>IMSL_NO_FURTHER_PROGESS</td>
<td>The last global step failed to locate a lower point than the current x value.</td>
</tr>
</tbody>
</table>

Fatal Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_FALSE_CONVERGENCE</td>
<td>False convergence—The iterates appear to be converging to a noncritical point. Possibly incorrect gradient information is used, or the function is discontinuous, or the other stopping tolerances are too tight.</td>
</tr>
<tr>
<td>IMSL_STOP_USER_FCN</td>
<td>Request from user supplied function to stop algorithm. User flag = "#".</td>
</tr>
</tbody>
</table>
min_uncon_polytope

Minimizes a function of \(n \) variables using a direct search polytope algorithm.

Synopsis

\[
\text{#include <ims1.h>}
\]

\[
float *\text{imsl_f_min_uncon_polytope (void fcn(), int n, ...), 0}
\]

The type \textit{double} function is \texttt{imsl_d_min_uncon_polytope}.

Required Arguments

\[
\text{void fcn (int n, float x[], float *f) (Input)}
\]

User-supplied function to evaluate the function to be minimized.

\begin{itemize}
\item \textit{int} \(n \) (Input) \hfill \text{Length of \(x \).}
\item \textit{float} \(x[] \) (Input) \hfill \text{Array of length \(n \) at which point the function is evaluated.}
\item \textit{float} *\(f \) (Output) \hfill \text{The computed function value at the point \(x \).}
\end{itemize}

\[
\text{int} \ n \ (\text{Input})
\]

Dimension of the problem.

Return Value

An array of length \(n \) containing the best estimate of the minimum found. To release this space, use \texttt{imsl_free}. If no solution was computed, then \texttt{NULL} is returned.

Synopsis with Optional Arguments

\[
\text{#include <ims1.h>}
\]

\[
float *\text{imsl_f_min_uncon_polytope (void fcn(), int n,}
\]

IMSL_XGUESS, \texttt{float xguess[]},

IMSL_TOLERANCE, \texttt{float ftol},
IMSL_MAX_FCN, int *maxfcn,
IMSL_SIDE_LENGTH, float *s,
IMSL_FVALUE, float *fvalue,
IMSL_RETURN_USER, float x[],
IMSL_FCN_W_DATA, void fcn(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
An array of length \(n \) which contains an initial guess to the minimum.
Default: \(xguess = 0.0 \)

IMSL_TOLERANCE, float ftol (Input)
The error tolerance used is based on two convergence criteria.

- **First convergence criterion**: The algorithm stops when a relative error in the function values is
 less than \(\text{ftol} \), i.e. when
 \[(\text{fcn}(\text{worst}) - \text{fcn}(\text{best})) < \text{ftol} \times (1 + \text{fabs}(\text{fcn}(\text{best}))\] where
 \(\text{fcn}(\text{worst}) \) and \(\text{fcn}(\text{best}) \) are the function values of the current worst and best points, respectively.

- **Second convergence criterion**: The algorithm stops when the standard deviation of the func-
 tion values at the \(n + 1 \) current points is less than \(\text{ftol} \).

If the routine terminates prematurely, try again with a smaller value for \(\text{ftol} \).
Default: \(\text{ftol} = 1.e-5 \) in single precision and \(1.e-10 \) in double precision.

IMSL_MAX_FCN, int *maxfcn (Input/Output)
On input, maximum allowed number of function evaluations. On output, actual number of function
evaluations needed.
Default: \(\text{maxfcn} = 300 \)

IMSL_SIDE_LENGTH, float *s (Input/Output)
On input, real scalar containing the length of each side of the initial simplex. If no reasonable infor-
ma\(\text{tion about s is known, s could be set to a number less than or equal to zero and} \)
\text{imsl_f_min_uncon_polytope} will generate the starting simplex from the initial guess with a
random number generator. On output, the average distance from the final vertices to their centroid;
see Remark 2.
Default: \(s = 0.0 \)

IMSL_FVALUE, float *fvalue (Output)
Function value at the computed solution.

IMSL_RETURN_USER, float x[] (Output)
Array with \(n \) components containing the computed solution.
IMSL_FCN_W_DATA, void fcn (int n, float x[], float *f, void *data), void *data (Input)
User supplied function to evaluate the function to be minimized, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description

The routine IMSL_F_MIN_UNCON_POLYTOPE uses the polytope algorithm to find a minimum point of a function \(f(x) \) of \(n \) variables. The polytope method is based on function comparison; no smoothness is assumed. It starts with \(n + 1 \) points \(x_1, x_2, \ldots, x_{n+1} \). At each iteration, a new point is generated to replace the worst point \(x_j \), which has the largest function value among these \(n + 1 \) points. The new point is constructed by the following formula:

\[
x_k = c + \alpha(c - x_j)
\]

where

\[
c = \frac{1}{n+1} \sum_{i \neq j} x_i
\]

and \(\alpha \) (\(\alpha > 0 \)) is the reflection coefficient.

When \(x_k \) is a best point, that is \(f(x_k) \leq f(x_i) \) for \(i = 1, \ldots, n + 1 \), an expansion point is computed \(x_e = c + \beta(x_k - c) \) where \(\beta (\beta > 1) \) is called the expansion coefficient. If the new point is a worst point, then the polytope would be contracted to get a better new point. If the contraction step is unsuccessful, the polytope is shrunk by moving the vertices halfway toward the current best point. This procedure is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

\[
f_{\text{worst}} - f_{\text{best}} \leq \varepsilon_f (1 + |f_{\text{best}}|)
\]

Criterion 2:

\[
\sqrt{\frac{1}{n+1} \sum_{i=1}^{n+1} (f_i - \bar{f})^2} \leq \varepsilon_f
\]

where \(f_i = f(x_i) \), \(\bar{f} = f(x_j) \), \(\varepsilon_f \) is a given tolerance and

\[
\bar{f} = \frac{\sum_{j=1}^{n+1} f_j}{n+1}
\]

For a complete description, see Nelder and Mead (1965) or Gill et al. (1981).
Remarks

1. Since `imsl_f_min_uncon_polytope` uses only function value information at each step to determine a new approximate minimum, it could be quite inefficient on smooth problems compared to other methods, such as those implemented in routine `imsl_f_min_uncon_multivar` that takes into account derivative information at each iteration. Hence, routine `imsl_f_min_uncon_polytope` should be used only as a last resort. Briefly, a set of $n + 1$ points in an n-dimensional space is called a simplex. The minimization process iterates by replacing the point with the largest function value with a new point with a smaller function value. The iteration continues until all the points cluster sufficiently close to a minimum.

2. The value returned in s is useful for assessing the flatness of the function near the computed minimum. The larger its value for a given value of $ftol$, the flatter the function tends to be in the neighborhood of the returned point.

Example

The function

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

is minimized and the solution is printed.

```c
#include <imsl.h>
#include <stdio.h>

void fcn(int n, float x[], float *f);

#define N 2
int main() {
    float xguess[N] = {-1.2, 1.0};
    float *x, fvalue;
    float ftol = 1.0e-7, s = 1.0;
    
    x = imsl_f_min_uncon_polytope(fcn, N,
        IMSL_XGUESS, xguess,
        IMSL_TOLERANCE, ftol,
        IMSL_FVALUE, &fvalue,
        IMSL_SIDE_LENGTH, &s,
        0);
    
    printf("The best estimate for the minimum value of the\n");
    printf("function is x = (%4.2f, %4.2f) with\n", x[0], x[1]);
    printf("function value fvalue = %12.6e\n", fvalue);
}
```
void fcn(int n, float x[], float *f)
{
 float t1, t2;
 t1 = x[0]*x[0]-x[1];
 t2 = 1.0-x[0];
 *f = 100.0*t1*t1 + t2*t2;
}

Output

The best estimate for the minimum value of the
function is $x = (1.00, 1.00)$ with
function value $fvalue = 2.126065e-007$

Fatal Errors

- **IMSL_FCN_EVAL_EXCEEDED_MAXFCN**
 Maximum number of function evaluations exceeded.

- **IMSL_STOP_USER_FCN**
 Request from user supplied function to stop algorithm. User flag = "#".
nonlin_least_squares

Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm.

Synopsis

```c
#include <imsl.h>

float *imsl_f_nonlin_least_squares (void fcn(), int m, int n, ..., 0)
```

The type `double` function is `imsl_d_nonlin_least_squares`.

Required Arguments

- `void fcn (int m, int n, float x[], float f[])` (Input/Output)
 User-supplied function to evaluate the function that defines the least-squares problem where `x` is a vector of length `n` at which point the function is evaluated, and `f` is a vector of length `m` containing the function values at point `x`.

- `int m` (Input)
 Number of functions.

- `int n` (Input)
 Number of variables where `n ≤ m`.

Return Value

A pointer to the solution `x` of the nonlinear least-squares problem. To release this space, use `imsl_free`. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_nonlin_least_squares (void fcn(), int m, int n,
  IMSL_XGUESS, float xguess[],
  IMSL_JACOBIAN, void jacobian(),
```

IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_TOLERANCE, float tolerance,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_RANK, int *rank,
IMSL_JTJ_INVERSE, float **jtj_inv,
IMSL_JTJ_INVERSE_USER, float jtj_inv[],
IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data, 0)
Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[], int fjac_col_dim) (Input)
User-supplied function to compute the Jacobian where x is a vector of length n at which point the
Jacobian is evaluated, fjac is the computed m x n Jacobian at the point x, and fjac_col_dim is the
column dimension of fjac.
Note that each derivative \(\frac{\partial f_i}{\partial x_j} \) should be returned in fjac[(i-1)*fjac_col_dim+j-1]

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables. xscale is used mainly in
scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and
IMSL_STEP_TOL for more detail.
Default: xscale[] = 1.

IMSL_FSSCALE, float fscale[] (Input)
Array with m components containing the diagonal scaling matrix for the functions. The i-th compo-
nent of fscale is a positive scalar specifying the reciprocal magnitude of the i-th component
function of the problem.
Default: fscale[] = 1.

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is calculated as

\[
\frac{|g_i| \cdot \max\left(|x_i|, 1 / s_i\right)}{\frac{1}{2} \|F(x)\|^2 / 2}
\]

where \(g = \nabla F(x) \), \(s = \text{xscale} \), and

\[
\|F(x)\|^2 = \sum_{i=1}^{m} f(x)^2
\]

Default: grad_tol = \(\sqrt{\varepsilon} \)

\(\sqrt{\varepsilon} \) in double where \(\varepsilon \) is the machine precision.

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two points x and y is com-
puted as
\[
\frac{|x_i - y_i|}{\max(|x_i|, 1/s_i)}
\]

where \(s = \text{xscale}\).

Default: \(\text{step_tol} = \varepsilon^{2/3}\) where \(\varepsilon\) is the machine precision.

IMSL_REL_FCN_TOL, float \(\text{rfcn_tol}\) (Input)
Relative function tolerance.
Default: \(\text{rfcn_tol} = \max(10^{-10}, \varepsilon^{2/3})\) in double, where \(\varepsilon\) is the machine precision.

IMSL_ABS_FCN_TOL, float \(\text{afcn_tol}\) (Input)
Absolute function tolerance.
Default: \(\text{afcn_tol} = \max(10^{-20}, \varepsilon^2)\) in double, where \(\varepsilon\) is the machine precision.

IMSL_MAX_STEP, float \(\text{max_step}\) (Input)
Maximum allowable step size.
Default: \(\text{max_step} = 1000 \max(\varepsilon_1, \varepsilon_2)\) where,

\[
\varepsilon_1 = \left(\sum_{i=1}^{n} (s_i t_i)^2\right)^{1/2}, \varepsilon_2 = \|s\|_2
\]

\(s = \text{xscale}\), and \(t = \text{xguess}\)

IMSL_INIT_TRUST_REGION, float \(\text{trust_region}\) (Input)
Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSL_GOOD_DIGIT, int \(\text{ndigit}\) (Input)
Number of good digits in the function.
Default: machine dependent.

IMSL_MAX_ITN, int \(\text{max_itn}\) (Input)
Maximum number of iterations.
Default: \(\text{max_itn} = 100\).

IMSL_MAX_FCN, int \(\text{max_fcn}\) (Input)
Maximum number of function evaluations.
Default: \(\text{max_fcn} = 400\).

IMSL_MAX_JACOBIAN, int \(\text{max_jacobian}\) (Input)
Maximum number of Jacobian evaluations.
Default: \(\text{max_jacobian} = 400\).

IMSL_INTERN_SCALE
Internal variable scaling option. With this option, the values for \(\text{xscale}\) are set internally.
IMSL_TOLERANCE, float *tolerance* (Input)

The tolerance used in determining linear dependence for the computation of the inverse of \(J^T J \). For **imsl_f_nonlin_least_squares**, if **IMSL_JACOBIAN** is specified, then
\[
tolerance = 100 \times \text{imsl_f_machin}(4)
\]

is the default. Otherwise, the square root of
\[
\text{imsl_f_machin}(4)
\]

is the default. For **imsl_d_nonlin_least_squares**, if **IMSL_JACOBIAN** is specified, then
\[
tolerance = 100 \times \text{imsl_d_machin}(4)
\]

is the default. Otherwise, the square root of
\[
\text{imsl_d_machin}(4)
\]

is the default. See **imsl_f_machin**.

IMSL_RETURN_USER, float *x*[] (Output)

Array with \(n \) components containing the computed solution.

IMSL_FVEC, float **fvec** (Output)

The address of a pointer to a real array of length \(m \) containing the residuals at the approximate solution. On return, the necessary space is allocated by **imsl_f_nonlin_least_squares**. Typically,
float *fvec* is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)

A user-allocated array of size \(m \) containing the residuals at the approximate solution.

IMSL_FJAC, float **fjac** (Output)

The address of a pointer to an array of size \(m \times n \) containing the Jacobian at the approximate solution. On return, the necessary space is allocated by **imsl_f_nonlin_least_squares**. Typically,
float *fjac* is declared, and &fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)

A user-allocated array of size \(m \times n \) containing the Jacobian at the approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)

The column dimension of fjac.

Default: fjac_col_dim = \(n \)

IMSL_RANK, int *rank* (Output)

The rank of the Jacobian is returned in *rank.

IMSL_JTJ_INVERSE, float **jtj_inv** (Output)

The address of a pointer to an array of size \(n \times n \) containing the inverse matrix of \(J^T J \) where the \(J \) is the final Jacobian. If \(J^T J \) is singular, the inverse is a symmetric \(g_2 \) inverse of \(J^T J \). (See **imsl_f_lin_sol_nonnegdef** in Chapter 1, “Linear Systems,” for a discussion of generalized inverses and definition of the \(g_2 \) inverse.) On return, the necessary space is allocated by
imsl_f_nonlin_least_squares.

IMSL_JTJ_INVERSE_USER, float jtj_inv[] (Output)

A user-allocated array of size \(n \times n \) containing the inverse matrix of \(J^T J \) where the \(J \) is the Jacobian at the solution.
IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim (Input)
The column dimension of jtj_inv.
Default: jtj_inv_col_dim = n

IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data), void *data (Input)
User supplied function to evaluate the function that defines the least-squares problem, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float fjac[],
int fjac_col_dim, void *data), void *data (Input)
User supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_nonlin_least_squares is based on the MINPACK routine LMDER by Moré et al.
(1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least-squares problems. The problem
is stated as follows:

\[
\min \frac{1}{2} F(x)^T F(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2
\]

where \(m \geq n \), \(F : \mathbb{R}^n \rightarrow \mathbb{R}^m \), and \(f(x) \) is the \(i \)-th component function of \(F(x) \). From a current point, the algorithm
uses the trust region approach,

\[
\min_{x \in \mathbb{R}^n} \| F(x_c) + J(x_c) (x_n - x_c) \|_2
\]

subject to \(\|x_n - x_c\|_2 \leq \delta_c \)

to get a new point \(x_n \), which is computed as

\[
x_n = x_c - (J(x_c)^T f(x_c) + \mu_c I)^{-1} J(x_c)^T F(x_c)
\]

where \(\mu_c = 0 \) if \(\delta_c \geq \| (J(x_c)^T f(x_c))^{-1} f(x_c)^T F(x_c) \|_2 \) and \(\mu_c > 0 \), otherwise. The value \(\mu_c \) is defined by the function. The
vector and matrix \(F(x_c) \) and \(f(x_c) \) are the function values and the Jacobian evaluated at the current point \(x_c \), respectively. This function is repeated until the stopping criteria are satisfied.

The first stopping criterion for imsl_f_nonlin_least_squares occurs when the norm of the function is
less than the absolute function tolerance afcn_tol. The second stopping criterion occurs when the norm of
the scaled gradient is less than the given gradient tolerance grad_tol. The third stopping criterion for
imsl_f_nonlin_least_squares occurs when the scaled distance between the last two steps is less than the step tolerance step_tol. For more details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

![Figure 8.7 — Plot of the Nonlinear Fit](image)

On some platforms, imsl_f_nonlin_least_squares can evaluate the user-supplied functions fcn and jacobian in parallel. This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Examples

Example 1

In this example, the nonlinear data-fitting problem found in Dennis and Schnabel (1983, p. 225),

\[
\min \frac{1}{2} \sum_{i=1}^{3} f_i(x)^2
\]

where

\[f_i(x) = e^{tx} - y_i \]

is solved with the data \(t = (1, 2, 3) \) and \(y = (2, 4, 3) \).

```c
#include <stdio.h>
```
#include <imsl.h>
#include <math.h>

void fcn(int, int, float[], float[]);

int main()
{
 int m=3, n=1;
 float *result, fx[3];

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

 result = imsl_f_nonlin_least_squares(fcn, m, n, 0);
 fcn(m, n, result, fx);

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Print results */
 imsl_f_write_matrix("The solution is", 1, 1, result, 0);
 imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
}

void fcn(int m, int n, float x[], float f[])
{
 int i;
 float y[3] = {2.0, 4.0, 3.0};
 float t[3] = {1.0, 2.0, 3.0};

 for (i=0; i<m; i++)
 f[i] = exp(x[0]*t[i]) - y[i];

 /* End of function */

Output

The solution is
 0.4401

 The function values are
 1 2 3
 -0.447 -1.589 0.744

Example 2

In this example, imsl_f_nonlin_least_squares is first invoked to fit the following nonlinear regression model discussed by Neter et al. (1983, pp. 475-478):
\[y_i = \theta_1 e^{\theta_2 x_i} + \epsilon_i \quad i = 1, 2, \ldots, 15 \]

where the \(\epsilon_i \)'s are independently distributed each normal with mean zero and variance \(\sigma^2 \). The estimate of \(\sigma^2 \) is then computed as

\[s^2 = \frac{\sum_{i=1}^{15} \epsilon_i^2}{15 - \text{rank}(J)} \]

where \(\epsilon_i \) is the \(i \)-th residual and \(J \) is the Jacobian. The estimated asymptotic variance-covariance matrix of \(\hat{\theta}_1 \) and \(\hat{\theta}_2 \) is computed as

\[\text{est.asy.var}(\hat{\theta}) = s^2 (J^T J)^{-1} \]

Finally, the diagonal elements of this matrix are used together with \texttt{imsl_f_t_inverse_cdf} (see Chapter 9, Special Functions) to compute 95% confidence intervals on \(\theta_1 \) and \(\theta_2 \).

```c
#include <math.h>
#include <imsl.h>

void exampl(int, int, float[], float[]);

int main()
{
    int i, j, m=15, n=2, rank;
    float a, *result, e[15], jtj_inv[4], s2, dfe;
    char *fmt="%12.5e";
    static float xguess[2] = {60.0, -0.03};
    static float grad_tol = 1.0e-3;
    imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

    result = imsl_f_nonlin_least_squares(exampl, m, n,
        IMSL_XGUESS, xguess,
        IMSL_GRAD_TOL, grad_tol,
        IMSL_FVEC_USER, e,
        IMSL_RANK, &rank,
        IMSL_JTJ_INVERSE_USER, jtj_inv, 0);
    dfe = (float) (m - rank);
    s2 = 0.0;
    for (i=0; i<m; i++)
        s2 += e[i] * e[i];
    s2 = s2 / dfe;
    j = n * n;
    for (i=0; i<j; i++)
        jtj_inv[i] = s2 * jtj_inv[i];
}```
/* Print results */

imsl_f_write_matrix (      
   "Estimated Asymptotic Variance-Covariance Matrix",  
   2, 2, jtj_inv, IMSL_WRITE_FORMAT, fmt, 0);  
printf(" \n         95% Confidence Intervals \n ");  
printf("  Estimate Lower Limit Upper Limit \n ");  
for (i=0; i<n; i++) {  
   j = i * (n+1);  
   a = imsl_f_t_inverse_cdf (0.975, dfe) * sqrt(jtj_inv[j]);  
   printf(" %10.3f %12.3f %12.3f \n", result[i],  
       result[i] - a, result[i] + a);  
}

void exampl(int m, int n, float x[], float f[])  
{  
   int i;  
   float y[15] = { 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,  
                   18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0 };  
   float xdata[15] = { 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,  
                        34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0 };  

   for (i=0; i<m; i++)  
      f[i] = y[i] - x[0]*exp(x[1]*xdata[i]);  
}

/* End of main */

Output

Estimated Asymptotic Variance-Covariance Matrix
   1   2
 1 2.17524e+00 -1.80141e-03
 2 -1.80141e-03  2.97216e-06

95% Confidence Intervals
Estimated Lower Limit Upper Limit
 58.608  55.422  61.795
 -0.040  -0.043  -0.036
Informational Errors

IMSL_STEP_TOLERANCE

Scaled step tolerance satisfied. The current point may be an approximate local solution, but it is also possible that the algorithm is making very slow progress and is not near a solution, or that step_tol is too big.

Warning Errors

IMSL_LITTLE_FCN_CHANGE

Both the actual and predicted relative reductions in the function are less than or equal to the relative function tolerance.

IMSL_TOO_MANY_ITN

Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL

Maximum number of function evaluations exceeded.

IMSL_TOO_MANY_JACOBIAN_EVAL

Maximum number of Jacobian evaluations exceeded.

IMSL_UNBOUNDED

Five consecutive steps have been taken with the maximum step length.

Fatal Errors

IMSL_FALSE_CONVERGE

The iterates appear to be converging to a noncritical point.

IMSL_STOP_USER_FCN

Request from user supplied function to stop algorithm.
User flag = ".#."
**read_mps**

Reads an MPS file containing a linear programming problem or a quadratic programming problem.

**Synopsis**

```c
#include <imsl.h>

imsl_f_mps *imsl_f_read_mps(char *filename, ... , 0)
void imsl_f_mps_free(imsl_f_mps *mps)
```

The type `double` function is `imsl_d_read_mps`.

**Required Argument**

`char *filename` *(Input)*

Name of the MPS file to be read. It may be NULL if the optional argument `IMSL_FILE` is used.

**Return Value**

A pointer to a structure containing the data read from the MPS file. To release this space use `imsl_f_mps_free`.

The returned structure contains the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>char * filename</code></td>
<td>Name of the MPS file.</td>
</tr>
<tr>
<td><code>char name[9]</code></td>
<td>Name of the problem.</td>
</tr>
<tr>
<td><code>int nrows</code></td>
<td>Number of rows in the constraint matrix.</td>
</tr>
<tr>
<td><code>int ncolumns</code></td>
<td>Number of columns in the constraint matrix. This is also the number of</td>
</tr>
<tr>
<td></td>
<td>variables.</td>
</tr>
<tr>
<td><code>int nonzero</code></td>
<td>Number of non-zeros in the constraint matrix.</td>
</tr>
<tr>
<td><code>int nhessian</code></td>
<td>Number of non-zeros in the Hessian matrix. If zero, then there is no</td>
</tr>
<tr>
<td></td>
<td>Hessian matrix.</td>
</tr>
<tr>
<td><code>int ninteger</code></td>
<td>Number of variables required to be integer. This includes binary</td>
</tr>
<tr>
<td></td>
<td>variables.</td>
</tr>
<tr>
<td><code>int nbinary</code></td>
<td>Number of variables required to be binary (0 or 1).</td>
</tr>
<tr>
<td><code>float * objective</code></td>
<td>A float array of length <code>ncolumns</code> containing the objective vector.</td>
</tr>
<tr>
<td><code>imsl_f_sparse_elem * constraint</code></td>
<td>A <code>imsl_f_sparse_elem</code> array of length <code>nonzeros</code> containing the</td>
</tr>
<tr>
<td></td>
<td>sparse matrix representation of the constraint matrix. See below for</td>
</tr>
<tr>
<td></td>
<td>details.</td>
</tr>
</tbody>
</table>
This structure stores the constraint and Hessian matrices in a simple sparse matrix format. For each non-zero element in the matrix, a row index, a column index and a value are given. The following code fragment expands the sparse constraint matrix in the structure pointed to by mps into a dense matrix:

```c
/* allocate a matrix */
int nr = mps->nrows;
int nc = mps->ncolumns;
float* matrix = (float*)calloc(nr*nc, sizeof(float));

/* expand the sparse matrix */
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>imsl_f_sparse_elem* hessian</code></td>
<td>A <code>imsl_f_sparse_elem</code> array of length nhessian containing the sparse matrix representation of the Hessian matrix. If nhessian is zero, then this field is NULL.</td>
</tr>
<tr>
<td><code>float* lower_range</code></td>
<td>A float array of length nrows containing the lower constraint bounds. If a constraint is unbounded below, the corresponding entry in lower_range is set to negative_infinity, defined below.</td>
</tr>
<tr>
<td><code>float* upper_range</code></td>
<td>A float array of length nrows containing the upper constraint bounds. If a constraint is unbounded above, the corresponding entry in upper_range is set to positive_infinity, defined below.</td>
</tr>
<tr>
<td><code>float* lower_bound</code></td>
<td>A float array of length ncolumns containing the lower variable bounds. If a variable is unbounded below, the corresponding entry in lower_bound is set to negative_infinity, defined below.</td>
</tr>
<tr>
<td><code>float* upper_bound</code></td>
<td>A float array of length ncolumns containing the upper variable bounds. If a variable is unbounded above, the corresponding entry in upper_bound is set to positive_infinity, defined below.</td>
</tr>
<tr>
<td><code>int* variable_type</code></td>
<td>An int array of length ncolumns containing the type of each variable. Variable types are:</td>
</tr>
<tr>
<td>0</td>
<td>Continuous</td>
</tr>
<tr>
<td>1</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>Binary (0 or 1)</td>
</tr>
<tr>
<td>4</td>
<td>Semicontinuous</td>
</tr>
<tr>
<td><code>char name_objective[9]</code></td>
<td>Name of the set in ROWS used for the objective row.</td>
</tr>
<tr>
<td><code>char name_rhs[9]</code></td>
<td>Name of the RHS set used.</td>
</tr>
<tr>
<td><code>char name_ranges[9]</code></td>
<td>Name of the RANGES set used or the empty string if no RANGES section in the file.</td>
</tr>
<tr>
<td><code>char name_bounds[9]</code></td>
<td>Name of the BOUNDS set used or the empty string if no BOUNDS section in the file.</td>
</tr>
<tr>
<td><code>char** name_row</code></td>
<td>Array of length nrows containing the row names. The name of the i-th constraint row is name_row[i].</td>
</tr>
<tr>
<td><code>char** name_column</code></td>
<td>Array of length ncolumns containing the column names. The name of the i-th column and variable is name_column[i].</td>
</tr>
<tr>
<td><code>float negative_infinity</code></td>
<td>Value used for a constraint or bound upper limit when the constraint or bound is unbounded above. This can be set using an optional argument. Default is 1.0e+30.</td>
</tr>
<tr>
<td><code>float objective_constant</code></td>
<td>Value of the constant in the objective.</td>
</tr>
</tbody>
</table>
for (k =0; k < mps->nonzeros; k++) {
    i =mps->constraint[k].row;
    j =mps->constraint[k].col;
    matrix[nc*i+j] =mps->constraint[k].val;
}

**Synopsis with Optional Arguments**

```
#include <imsl.h>

imsl_f_mps *imsl_f_read_mps(char *filename,
 IMSL_FILE, FILE *file,
 IMSL_NAME_OBJECTIVE, char *name_objective,
 IMSL_NAME_RHS, char *name_rhs,
 IMSL_NAME_RANGES, char *name_ranges,
 IMSL_NAME_BOUNDS, char *name_bounds,
 IMSL_POSITIVE_INFINITY, float positive_infinity,
 IMSL_NEGATIVE_INFINITY, float negative_infinity,
 0)
```

**Optional Arguments**

- **IMSL_FILE, FILE *file, (Input)**
  Handle for MPS file. The file is read but not closed. This option overrides the filename required argument.

- **IMSL_NAME_OBJECTIVE, char *name_Ojective (Input)**
  Name of the set in ROWS used for the objective row. An MPS file can contain multiple objective function sets.
  By default, the first objective function set in the MPS file is used. This name is case sensitive.

- **IMSL_NAME_RHS, char *name_rhs (Input)**
  Name of the RHS set to be used. An MPS file can contain multiple RHS sets.
  By default, the first RHS set in the MPS file is used. This name is case sensitive.

- **IMSL_NAME_RANGES, char *name_ranges (Input)**
  Name of the RANGES set to be used. An MPS file can contain multiple RANGES sets.
  By default, the first RANGES set in the MPS file is used. This name is case sensitive.

- **IMSL_NAME_BOUNDS, char *name_bounds (Input)**
  Name of the BOUNDS set to be used. An MPS file can contain multiple BOUNDS sets.
  By default, the first BOUNDS set in the MPS file is used. This name is case sensitive.
IMSL_POSITIVE_INFINITY, float positive_infinity (Input)
Value used for a constraint or bound upper limit when the constraint or bound is unbounded above.
Default: 1.0e+30.

IMSL_NEGATIVE_INFINITY, float negative_infinity (Input)
Value used for a constraint or bound lower limit when the constraint or bound is unbounded below.
Default: -1.0e+30.

**Description**

An MPS file defines a linear or quadratic programming problem.

A linear programming problem is assumed to have the form:

\[
\begin{aligned}
& \min_{x \in \mathbb{R}^n} c^T x \\
& b_l \leq Ax \leq b_u \\
& x_l \leq x \leq x_u
\end{aligned}
\]

A quadratic programming problem is assumed to have the form:

\[
\begin{aligned}
& \min_{x} \frac{1}{2} x^T Q x + c^T x \\
& b_l \leq Ax \leq b_u \\
& x_l \leq x \leq x_u
\end{aligned}
\]

The following table maps this notation into the fields in the structure returned by the reader:

<table>
<thead>
<tr>
<th>C</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Constraint</td>
</tr>
<tr>
<td>Q</td>
<td>Hessian</td>
</tr>
<tr>
<td>b_l</td>
<td>lower_range</td>
</tr>
<tr>
<td>b_u</td>
<td>upper_range</td>
</tr>
<tr>
<td>x_l</td>
<td>lower_bound</td>
</tr>
<tr>
<td>x_u</td>
<td>upper_bound</td>
</tr>
</tbody>
</table>

If the MPS file specifies an equality constraint or bound, the corresponding lower and upper values in the returned structure will be exactly equal.

The problem formulation assumes that the constraints and bounds are two-sided. If a particular constraint or bound has no lower limit, then the corresponding entry in the structure is set to -1.0e+30. If the upper limit is missing, then the corresponding entry in the structure is set to +1.0e+30.
MPS File Format

There is some variability in the MPS format. This section describes the MPS format accepted by this reader.

An MPS file consists of a number of sections. Each section begins with a name in column 1. With the exception of the NAME section, the rest of this line is ignored. Lines with a ‘*’ or ‘$’ in column 1 are considered comment lines and are ignored.

The body of each section consists of lines divided into fields, as follows:

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Columns</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-3</td>
<td>Indicator</td>
</tr>
<tr>
<td>2</td>
<td>5-12</td>
<td>Name</td>
</tr>
<tr>
<td>3</td>
<td>15-22</td>
<td>Name</td>
</tr>
<tr>
<td>4</td>
<td>25-36</td>
<td>Value</td>
</tr>
<tr>
<td>5</td>
<td>40-47</td>
<td>Name</td>
</tr>
<tr>
<td>6</td>
<td>50-61</td>
<td>Value</td>
</tr>
</tbody>
</table>

The format limits MPS names to 8 characters and values to 12 characters. The names in fields 2, 3 and 5 are case sensitive. Leading and trailing blanks are ignored, but internal spaces are significant.

The sections in an MPS file are as follows:

- NAME
- ROWS
- COLUMNS
- RHS
- RANGES (optional)
- BOUNDS (optional)
- QUADRATIC (optional)
- ENDATA

Sections must occur in the above order.

MPS keywords (defined by the user in MPS data files), section names and indicator values, are case insensitive. Row, column and set names are case sensitive.

**NAME Section**

The NAME section contains the single line. A problem name can occur anywhere on the line after NAME and before columns 62. The problem name is truncated to 8 characters.
ROWS Section

The ROWS section defines the name and type for each row. Field 1 contains the row type and field 2 contains the row name. Row type values are not case sensitive. Row names are case sensitive. The following row types are allowed:

<table>
<thead>
<tr>
<th>Row Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Equality Constraint.</td>
</tr>
<tr>
<td>L</td>
<td>Less than or equal constraint.</td>
</tr>
<tr>
<td>G</td>
<td>Greater than or equal constraint.</td>
</tr>
<tr>
<td>N</td>
<td>Objective or a free row.</td>
</tr>
</tbody>
</table>

COLUMNS Section

The COLUMNS section defines the nonzero entries in the objective and the constraint matrix. The row names here must have been defined in the ROWS section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Column name.</td>
</tr>
<tr>
<td>3</td>
<td>Row name.</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose row and column are given by fields.</td>
</tr>
<tr>
<td>5</td>
<td>Row name.</td>
</tr>
<tr>
<td>6</td>
<td>Value for the entry whose row and column are given by fields 5 and 2.</td>
</tr>
</tbody>
</table>

NOTE: Fields 5 and 6 are optional.

The COLUMNS section can also contain markers. These are indicated by the name ‘MARKER’ (with the quotes) in field 3 and the marker type in field 4 or 5.

Marker type ‘INTORG’ (with the quotes) begins an integer group. The marker type ‘INTEND’ (with the quotes) ends this group. The variables corresponding to the columns defined within this group are required to be integer.

RHS Section

The RHS section defines the right-hand side of the constraints. An MPS file can contain more than one RHS set, distinguished by the RHS set name. The row names here must be defined in the ROWS section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RHS set name.</td>
</tr>
<tr>
<td>3</td>
<td>Row name.</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose set and row are given by fields 2 and 3.</td>
</tr>
</tbody>
</table>
If the row name is identical with the name of the objective, then the negative of the value in field 6 is the constant in the objective function.

NOTE: Fields 5 and 6 are optional.

### RANGES Section

The optional RANGES section defines two-sided constraints. An MPS file can contain more than one range set, distinguished by the range set name. The row names here must have been defined in the ROWS section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Range set name.</td>
</tr>
<tr>
<td>3</td>
<td>Row name.</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose set and row are given by fields 2 and 3.</td>
</tr>
<tr>
<td>5</td>
<td>Row name.</td>
</tr>
<tr>
<td>6</td>
<td>Value for the entry whose set and row are given by fields 2 and 5.</td>
</tr>
</tbody>
</table>

NOTE: Fields 5 and 6 are optional.

Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints. The two-sided constraint for row $i$ depends on the range value, $r_i$, defined in this section. The right-hand side value, $b_i$, is defined in the RHS section. The two-sided constraints for row $i$ are given in the following table:

<table>
<thead>
<tr>
<th>Row Type</th>
<th>Lower Constraint</th>
<th>Upper Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>$b_i$</td>
<td>$b_i +</td>
</tr>
<tr>
<td>L</td>
<td>$b_i -</td>
<td>r_i</td>
</tr>
<tr>
<td>E</td>
<td>$b_i + \min(0, r_i)$</td>
<td>$b_i + \max(0, r_i)$</td>
</tr>
</tbody>
</table>

### BOUNDS Section

The optional BOUNDS section defines bounds on the variables. By default, the bounds are $0 \leq x_i \leq \infty$. The bounds can also be used to indicate that a variable must be an integer.

More than one bound can be set for a single variable. For example, to set $2 \leq x_i \leq 6$ use a LO bound with value 2 to set $2 \leq x_i$, and an UP bound with value 6 to add the condition $x_i \leq 6$. 
An MPS file can contain more than one bounds set, distinguished by the bound set name.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bounds type.</td>
</tr>
<tr>
<td>2</td>
<td>Bounds set name.</td>
</tr>
<tr>
<td>3</td>
<td>Column name.</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose set and column are given by fields 2 and 3.</td>
</tr>
<tr>
<td>5</td>
<td>Column name.</td>
</tr>
<tr>
<td>6</td>
<td>Value for the entry whose set and column are given by fields 2 and 5.</td>
</tr>
</tbody>
</table>

**NOTE:** Fields 5 and 6 are optional.

The bound types are as follows. Here \( b_j \) are the bound values defined in this section, the \( x_i \) are the variables, and \( I \) is the set of integers.

<table>
<thead>
<tr>
<th>Bounded Type</th>
<th>Definition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>Lower bound</td>
<td>( b_j \leq x_i )</td>
</tr>
<tr>
<td>UP</td>
<td>Upper bound</td>
<td>( x_i \leq b_i )</td>
</tr>
<tr>
<td>FX</td>
<td>Fixed variable</td>
<td>( x_i = b_i )</td>
</tr>
<tr>
<td>FR</td>
<td>Free variable</td>
<td>( -\infty \leq x_i \leq \infty )</td>
</tr>
<tr>
<td>MI</td>
<td>Lower bound is minus infinity</td>
<td>( -\infty \leq x_i )</td>
</tr>
<tr>
<td>PL</td>
<td>Upper bound is positive infinity</td>
<td>( x_i \leq \infty )</td>
</tr>
<tr>
<td>BV</td>
<td>Binary variable (variable must be 0 or 1).</td>
<td>( x_i \in {0, 1} )</td>
</tr>
<tr>
<td>UI</td>
<td>Upper bound and integer</td>
<td>( x_i \leq b_i ) and ( x_i \in I )</td>
</tr>
<tr>
<td>LI</td>
<td>Lower bound and integer</td>
<td>( b_i \leq x_i ) and ( x_i \in I )</td>
</tr>
<tr>
<td>SC</td>
<td>Semicontinuous</td>
<td>0 or ( b_i \leq x_i )</td>
</tr>
</tbody>
</table>

The bound type names are not case sensitive.

If the bound type is UP or UI and \( b_j < 0 \) then the lower bound is set to \(-\infty\).
**QUADRATIC Section**

The optional QUADRATIC section defines the Hessian for quadratic programming problems. The names HESSIAN, QUADS, QUADOBJ, QSECTION and QMATRIX are also recognized as beginning the QUADRATIC section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Column name.</td>
</tr>
<tr>
<td>3</td>
<td>Column name</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose row and column are given by fields 2 and 3.</td>
</tr>
<tr>
<td>5</td>
<td>Column name.</td>
</tr>
<tr>
<td>6</td>
<td>Value for the entry whose row and column are given by fields 2 and 4.</td>
</tr>
</tbody>
</table>

**NOTE:** Fields 5 and 6 are optional.

**ENDATA Section**

The ENDATA section ends the MPS file.
linear_programming

Solves a linear programming problem.

**NOTE:** For double precision, the function `lin_prog` has generally been superseded by the function `linear_programming`. Function `lin_prog` remains in place to ensure compatibility of existing calls.

**Synopsis**

```c
#include <imsl.h>

double *imsl_d_linear_programming(int m, int n, double a[], double b[], double c[], ... , 0)
```

**Required Arguments**

- `int m` (Input)
  - Number of constraints.
- `int n` (Input)
  - Number of variables.
- `double a[]` (Input)
  - Array of size $m \times n$ containing a matrix with coefficients of the $m$ constraints.
- `double b[]` (Input)
  - Array with $m$ components containing the right-hand side of the constraints; if there are limits on both sides of the constraints, then $b$ contains the lower limit of the constraints.
- `double c[]` (Input)
  - Array with $n$ components containing the coefficients of the objective function.

**Return Value**

A pointer to the solution $x$ of the linear programming problem. To release this space, use `imsl_free`. If no solution can be computed, then `NULL` is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

double *imsl_d_linear_programming(int m, int n, double a[], double b[], double c[],
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_UPPER_LIMIT, double bu[],
 ... , 0)
```
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, double xlb[],
IMSL_UPPER_BOUND, double xub[],
IMSL_REFINEMENT,
IMSL_EXTENDED_REFINEMENT,
IMSL_OBJ, double *obj,
IMSL_RETURN_USER, double x[],
IMSL_DUAL, double **y,
IMSL_DUAL_USER, double y[],
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_UPPER_LIMIT, double bu[] (Input)
Array with m components containing the upper limit of the constraints that have both the lower and
the upper bounds. If no such constraint exists, then bu is not needed.

IMSL_CONSTR_TYPE, int irtype[] (Input)
Array with m components indicating the types of general constraints in the matrix a. Let
\( r_i = a_{i1}x_1 + \ldots + a_{in}x_n \). Then, the value of irtype[i] signifies the following:

<table>
<thead>
<tr>
<th>irtype[i]</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>( r_i = b_i )</td>
</tr>
<tr>
<td>1</td>
<td>( r_i \leq b_i )</td>
</tr>
<tr>
<td>2</td>
<td>( r_i \geq b_i )</td>
</tr>
<tr>
<td>3</td>
<td>( b_i \leq r_i \leq b_i )</td>
</tr>
<tr>
<td>4</td>
<td>Ignore this constraint</td>
</tr>
</tbody>
</table>

Default: irtype = 0

IMSL_LOWER_BOUND, double xlb[] (Input)
Array with n components containing the lower bound on the variables. If there is no lower bound on
a variable, then \( 10^{30} \) should be set as the lower bound.
Default: xlb = 0
IMSL_UPPER_BOUND, double xub[] (Input)
Array with \( n \) components containing the upper bound on the variables. If there is no upper bound on
a variable, then \(-10^{30}\) should be set as the upper bound.
Default: no upper bound

IMSL_REFINEMENT (Input)
The coefficient matrices and other data are saved at the beginning of the computation. When fin-
ished this data together with the solution obtained is checked for consistency. If the discrepancy is
too large, the solution process is restarted using the problem data just after processing the equali-
ties, but with the final \( x \) values and final active set.
Default: Refinement is not performed.

IMSL_EXTENDED_REFINEMENT (Input)
This is similar to IMSL_REFINEMENT, except it iterates until there is a sign that no further progress
is possible (recommended if all the accuracy possible is desired).
Default: Extended refinement is not performed.

IMSL_OBJ, double *obj (Output)
Optimal value of the objective function.

IMSL_ITERATION_COUNT, int *iterations (Output)
Number of iterations.

IMSL_RETURN_USER, double x[] (Output)
Array with \( n \) components containing the primal solution.

IMSL_DUAL, double **y (Output)
The address of a pointer \( y \) to an array with \( m \) components containing the dual solution. On return,
the necessary space is allocated by imsl_d_linear_programming. Typically, double *y is
declared, and &y is used as an argument.

IMSL_DUAL_USER, double y[] (Output)
A user-allocated array of size \( m \). On return, \( y \) contains the dual solution.

Description
The function imsl_d_linear_programming uses an active set strategy to solve linear programming prob-
lems, i.e., problems of the form

\[
\begin{align*}
\min \ c^T x & \quad \text{subject to} \quad b_l \leq A x \leq b_u \\
& \quad x_l \leq x \leq x_u
\end{align*}
\]

where \( c \) is the objective coefficient vector, \( A \) is the coefficient matrix, and the vectors \( b_l, b_u, x_l, \) and \( x_u \) are the lower and upper bounds on the constraints and the variables, respectively.
Examples

Example 1

The linear programming problem in the standard form

\[ \begin{align*}
\min f(x) &= -x_1 - 3x_2 \\
\text{subject to} & \quad x_1 + x_2 + x_3 = 1.5 \\
& \quad x_1 + x_2 - x_4 = 0.5 \\
& \quad x_1 + x_5 = 1.0 \\
& \quad x_2 + x_6 = 1.0 \\
& \quad x_i \geq 0, \text{ for } i = 1, \ldots, 6
\end{align*} \]

is solved.

```c
#include <imsl.h>

int main()
{
 int m = 4;
 int n = 6;
 double a[6] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 0.0, 1.0, 0.0,
 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
 double b[4] = {1.5, 0.5, 1.0, 1.0};
 double c[6] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
 double *x;

 // Solve the LP problem *
 x = imsl_d_linear_programming (m, n, a, b, c, 0);
 // Print x *
 imsl_d_write_matrix ("x", 1, 6, x, 0);
}
```

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Example 2

This example demonstrates how the function `imsl_d_read_mps` can be used together with `imsl_d_linear_programming` to solve a linear programming problem defined in an MPS file. The MPS file used in this example is an `uncompressed` version of the file `afiro`, available from http://www.netlib.org/lp/data/. This example also demonstrates the use of the optional argument `IMSL_REFINEMENT` to activate iterative refinement in `imsl_d_linear_programming`. 
```c
#include <stdio.h>
#include <malloc.h>
#include <imsl.h>

int main() {
 #define A(I, J) a[(I)*problem->ncolumns+J]
 Imsl_d_mps* problem;
 int i, j, k, *irtype;

 /* Read the MPS file. */
 problem = imsl_d_read_mps("afiro", 0);

 /* Setup constraint type array. */
 irtype = (int*) malloc(problem->nrows*sizeof(int));
 for (i = 0; i < problem->nrows; i++)
 irtype[i] = 3;

 /* Setup the constraint matrix. */
 a = (double*) calloc(problem->nrows*problem->ncolumns*sizeof(double),
 sizeof(double));
 for (k = 0; k < problem->nonzeros; k++) {
 i = problem->constraint[k].row;
 j = problem->constraint[k].col;
 A(i, j) = problem->constraint[k].val;
 }

 /* Setup constraint bounds. */
 bl = (double*) malloc(problem->nrows*sizeof(double));
 bu = (double*) malloc(problem->nrows*sizeof(double));
 for (i = 0; i < problem->nrows; i++) {
 bl[i] = problem->lower_range[i];
 bu[i] = problem->upper_range[i];
 }

 /* Setup variable bounds. Be sure to account for how unbounded variables should be set. */
 xlb = (double*) malloc(problem->ncolumns*sizeof(double));
 xub = (double*) malloc(problem->ncolumns*sizeof(double));
 for (i = 0; i < problem->ncolumns; i++) {
 xlb[i] = (problem->lower_bound[i] == problem->negative_infinity) ?
 1.0e30 : problem->lower_bound[i];
 xub[i] = (problem->upper_bound[i] == problem->positive_infinity) ?
 -1.0e30 : problem->upper_bound[i];
 }

 /* Solve the LP problem. */
 x = imsl_d_linear_programming(problem->nrows, problem->ncolumns,
 a, bl, problem->objective,
 IMSL_UPPER_LIMIT, bu,
```

This code appears to be a C program implementing a linear programming solver using the IMSL (Insignia Mathematics Library) library. It includes the header files for necessary functions and variables, and is structured to read an MPS (Mathematical Programming System) file, set up constraint and variable bounds, and solve the linear programming problem. The program constructs arrays to hold the constraint coefficients, bounds, and variables, and uses these to solve the LP problem with a predefined solver function from the IMSL library.
IMSL_CONSTR_TYPE, irtype,
IMSL_LOWER_BOUND, xlb,
IMSL_UPPER_BOUND, xub,
IMSL_REFINEMENT,
IMSL_OBJ, &objective,
0);
30  20.1
31  156.5
32  0.0

Note Errors

IMSL_MULTIPLE_SOLUTIONS  Multiple solutions giving essentially the same minimum exist.

Warning Errors

IMSL_SOME_CONSTRAINTS_DISCARDED  Some constraints were ignored or discarded because they were too linearly dependent on other active constraints.

IMSL_ALL_CONSTRAINTS_NOT_SATISFIED  All constraints are not satisfied. If a feasible solution is possible then try using refinement by supplying optional argument IMSL_REFINEMENT.

IMSL_CYCLING_OCCURRING  The algorithm appears to be cycling. Using refinement may help.

Fatal Errors

IMSL_PROB_UNBOUNDED  The problem is unbounded.

IMSL_PIVOT_NOT_FOUND  An acceptable pivot could not be found.
lin_prog

Solves a linear programming problem using the revised simplex algorithm.

**NOTE:** For double precision, the function `lin_prog` has generally been superseded by the function `linear_programming`. Function `lin_prog` remains in place to ensure compatibility of existing calls.

## Synopsis

```c
#include <imsl.h>

float *imsl_f_lin_prog (int m, int n, float a[], float b[], float c[], ..., 0)
```

The type `double` function is `imsl_d_lin_prog`.

### Required Arguments

- `int m` (Input)
  - Number of constraints.
- `int n` (Input)
  - Number of variables.
- `float a[]` (Input)
  - Array of size $m \times n$ containing a matrix with coefficients of the $m$ constraints.
- `float b[]` (Input)
  - Array with $m$ components containing the right-hand side of the constraints; if there are limits on both sides of the constraints, then $b$ contains the lower limit of the constraints.
- `float c[]` (Input)
  - Array with $n$ components containing the coefficients of the objective function.

### Return Value

A pointer to the solution $x$ of the linear programming problem. To release this space, use `imsl_free`. If no solution can be computed, then `NULL` is returned.

## Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_lin_prog (int m, int n, float a[], float b[], float c[],
```


IMSL_A_COL_DIM, int a_col_dim,
IMSL_UPPER_LIMIT, float bu[],
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, float xlb[],
IMSL_UPPER_BOUND, float xub[],
IMSL_MAX_ITN, int max_itn,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_UPPER_LIMIT, float bu[] (Input)
Array with m components containing the upper limit of the constraints that have both the lower and
the upper bounds. If no such constraint exists, then bu is not needed.

IMSL_CONSTR_TYPE, int irtype[] (Input)
Array with m components indicating the types of general constraints in the matrix a. Let
\( r_i = a_{i1}x_1 + \ldots + a_{in}x_n \). Then, the value of irtype(i) signifies the following:

<table>
<thead>
<tr>
<th>irtype(i)</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>( r_i = b_i )</td>
</tr>
<tr>
<td>1</td>
<td>( r_i \leq bu_i )</td>
</tr>
<tr>
<td>2</td>
<td>( r_i \geq b_i )</td>
</tr>
<tr>
<td>3</td>
<td>( b_i \leq r_i \leq bu_i )</td>
</tr>
</tbody>
</table>

Default: irtype = 0
IMSL_LOWER_BOUND, float xlb[] (Input)
Array with n components containing the lower bound on the variables. If there is no lower bound on a variable, then $10^{30}$ should be set as the lower bound.
Default: $xlb = 0$

IMSL_UPPER_BOUND, float xub[] (Input)
Array with n components containing the upper bound on the variables. If there is no upper bound on a variable, then $-10^{30}$ should be set as the upper bound.
Default: $xub = \infty$

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: $max_{itn} = 10000$

IMSL_OBJ, float *obj (Output)
Optimal value of the objective function.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the primal solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with m components containing the dual solution. On return, the necessary space is allocated by imsl_f_lin_prog. Typically, float *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array of size m. On return, y contains the dual solution.

IMSL_USE_UPDATED_LP_ALGORITHM (Input)
Calls the function imsl_d_linear_programming to solve the problem. If this optional argument is present, then the optional argument IMSL_MAX_ITN is ignored. This optional argument is only valid in double precision.

Description

The function imsl_f_lin_prog uses a revised simplex method to solve linear programming problems, i.e., problems of the form

$$\min_{x \in \mathbb{R}^n} c^T x \quad \text{subject to} \quad b_l \leq A x \leq b_u, \quad x_l \leq x \leq x_u$$

where $c$ is the objective coefficient vector, $A$ is the coefficient matrix, and the vectors $b_l$, $b_u$, $x_l$, and $x_u$ are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).
Examples

Example 1

The linear programming problem in the standard form

\[
\begin{align*}
\min f(x) &= -x_1 - 3x_2 \\
\text{subject to} & \quad x_1 + x_2 + x_3 = 1.5 \\
& \quad x_1 + x_2 - x_4 = 0.5 \\
& \quad x_1 + x_5 = 1.0 \\
& \quad x_2 + x_6 = 1.0 \\
& \quad x_i \geq 0, \text{ for } i = 1, \ldots, 6
\end{align*}
\]

is solved.

#include <imsl.h>

int main()
{
    int m = 4;
    int n = 6;
    float a[ ] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.0,
                  1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
                  1.0, 0.0, 0.0, 0.0, 1.0, 0.0,
                  0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
    float b[ ] = {1.5, 0.5, 1.0, 1.0};
    float c[ ] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
    float *x;

    /* Solve the LP problem */
    x = imsl_f_lin_prog (m, n, a, b, c, 0);

    /* Print x */
    imsl_f_write_matrix ("x", 1, 6, x, 0);
}

Output

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Example 2

The linear programming problem in the previous example can be formulated as follows:
This problem can be solved more efficiently.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int irtype[] = {3};
 int m = 1;
 int n = 2;
 float xub[] = {1.0, 1.0};
 float a[] = {1.0, 1.0};
 float b[] = {0.5};
 float bu[] = {1.5};
 float c[] = {-1.0, -3.0};
 float d[1];
 float obj, *x;

 /* Solve the LP problem */
 x = imsl_f_lin_prog (m, n, a, b, c,
 IMSL_UPPER_LIMIT, bu,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_UPPER_BOUND, xub,
 IMSL_DUAL_USER, d,
 IMSL_OBJ, &obj,
 0);

 /* Print x */
 imsl_f_write_matrix ("x", 1, 2, x,
 0);

 /* Print d */
 imsl_f_write_matrix ("d", 1, 1, d,
 0);
 printf("\n obj = %g \n", obj);
}
```

Output

```
X
 1 2
0.5 1.0

D
```

$$\min f(x) = -x_1 - 3x_2$$

subject to  

\begin{align*} 
0.5 \leq x_1 + x_2 & \leq 1.5 \\
0 \leq x_1 & \leq 1.0 \\
0 \leq x_2 & \leq 1.0 
\end{align*}$$
Warning Errors

IMSL_PROB_UNBOUNDED
The problem is unbounded.

IMSL_TOO_MANY_ITN
Maximum number of iterations exceeded.

IMSL_PROB_INFEASIBLE
The problem is infeasible.

Fatal Errors

IMSL_NUMERIC_DIFFICULTY
Numerical difficulty occurred (moved to a vertex that is poorly conditioned). If float is currently being used, using double precision may help.

IMSL_BOUNDS_INCONSISTENT
The bounds are inconsistent.
Solves a quadratic programming problem subject to linear equality or inequality constraints.

**Synopsis**

```c
#include <imsl.h>

float *imsl_f_quadratic_prog(int m, int n, int meq, float a[], float b[], float g[], float h[], ...,
0)
```

The type `double` function is `imsl_d_quadratic_prog`.

**Required Arguments**

- `int m` (Input)
  - The number of linear constraints.
- `int n` (Input)
  - The number of variables.
- `int meq` (Input)
  - The number of linear equality constraints.
- `float a[]` (Input)
  - Array of size $m \times n$ containing the equality constraints in the first $meq$ rows, followed by the inequality constraints.
- `float b[]` (Input)
  - Array with $m$ components containing right-hand sides of the linear constraints.
- `float g[]` (Input)
  - Array with $n$ components containing the coefficients of the linear term of the objective function.
- `float h[]` (Input)
  - Array of size $n \times n$ containing the Hessian matrix of the objective function. It must be symmetric positive definite. If $h$ is not positive definite, the algorithm attempts to solve the QP problem with $h$ replaced by $h + \text{diag}^* I$ such that $h + \text{diag}^* I$ is positive definite.
Return Value

A pointer to the solution $x$ of the QP problem. To release this space, use imsl_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_quadratic_prog(int m, int n, int meq, float a[], float b[], float g[], float h[],
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_MAX_ITN, int max_itn,
 IMSL_TOLERANCE, float small,
 IMSL_H_COL_DIM, int h_col_dim,
 IMSL_RETURN_USER, float x[],
 IMSL_DUAL, float **y,
 IMSL_DUAL_USER, float y[],
 IMSL_ADD_TO_DIAG_H, float *diag,
 IMSL_OBJ, float *obj,
 0)
```

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
Leading dimension of $A$ exactly as specified in the dimension statement of the calling program.
Default: $a_{col} \dim = n$

IMSL_H_COL_DIM, int h_col_dim (Input)
Leading dimension of $h$ exactly as specified in the dimension statement of the calling program.
Default: $n_{col} \dim = n$

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations. If $max_{itn}$ is set to 0, the iteration count is unbounded.
Default: $max_{itn} = 100000$
IMSL_TOLERANCE, float small (Input)
This constant is used in the determination of the positive definiteness of the Hessian H. small is also used for the convergence criteria of a constraint violation.
Default: small = 10.0 × machine precision for single precision, and 1000.0 × machine precision for double precision.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with m components containing the Lagrange multiplier estimates. On return, the necessary space is allocated by imsl_f_quadratic_prog. Typically, float *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array with m components. On return, y contains the Lagrange multiplier estimates.

IMSL_ADD_TO_DIAG_H, float *diag (Output)
Scalar equal to the multiple of the identity matrix added to h to give a positive definite matrix.

IMSL_OBJ, float *obj (Output)
The optimal object function found.

Description
The function imsl_f_quadratic_prog is based on M.J.D. Powell's implementation of the Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP problems subject to general linear equality/inequality constraints (Goldfarb and Idnani 1983); i.e., problems of the form

\[
\min_{x \in \mathbb{R}^n} g^T x + \frac{1}{2} x^T H x \\
\text{subject to} \quad A_1 x = b_1 \\
\quad A_2 x \geq b_2
\]

given the vectors \( b_1, b_2, \) and \( g, \) and the matrices \( H, A_1, \) and \( A_2. \) H is required to be positive definite. In this case, a unique \( x \) solves the problem or the constraints are inconsistent. If \( H \) is not positive definite, a positive definite perturbation of \( H \) is used in place of \( H. \) For more details, see Powell (1983, 1985).

If a perturbation of \( H, H + \alpha I, \) is used in the QP problem, then \( H + \alpha I \) also should be used in the definition of the Lagrange multipliers.
Examples

Example 1

The quadratic programming problem

\[
\begin{align*}
\min & \quad f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 2x_2x_3 - 2x_4x_5 - 2x_1 \\
\text{subject to} & \quad x_1 + x_2 + x_3 + x_4 + x_5 = 5 \\
& \quad x_3 - 2x_4 - 2x_5 = -3
\end{align*}
\]

is solved.

```c
#include <imsl.h>

int main()
{
 int m = 2;
 int n = 5;
 int meq = 2;
 float *x;
 float h[] = {2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0,-2.0, 0.0, 0.0,
 0.0,-2.0, 2.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 2.0,-2.0,
 0.0, 0.0, 0.0,-2.0, 2.0};
 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,-2.0,-2.0};
 float b[] = {5.0, -3.0};
 float g[] = {-2.0, 0.0, 0.0, 0.0, 0.0};
 /* Solve the QP problem */
 x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 5, x, 0);
}
```

Output

\[
X
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1
\end{array}
\]

Example 2

Another quadratic programming problem
\[
\min f(x) = x_1^2 + x_2^2 + x_3^2 \quad \text{subject to} \quad x_1 + 2x_2 - x_3 = 4 \\
\quad x_1 - x_2 + x_3 = -2
\]

is solved.

```c
#include <imsl.h>

float h[] = {2.0, 0.0, 0.0,
 0.0, 2.0, 0.0,
 0.0, 0.0, 2.0};
float a[] = {1.0, 2.0, -1.0,
 1.0, -1.0, 1.0};
float b[] = {4.0, -2.0};
float g[] = {0.0, 0.0, 0.0};
int main()
{
 int m = 2;
 int n = 3;
 int meq = 2;
 float obj;
 float d[2];
 float *x;

 /* Solve the QP problem */
 x = imsl_f_quadratic_prog(m, n, meq, a, b, g, h,
 IMSL_OBJ, &obj,
 IMSL_DUAL_USER, d,
 0);

 /* Print x */
 imsl_f_write_matrix("x", 1, 3, x, 0);

 /* Print d */
 imsl_f_write_matrix("d", 1, 2, d, 0);
 printf("\n obj = %g \n", obj);
}
```

Output

\[
x
\begin{array}{ccc}
1 & 2 & 3 \\
0.286 & 1.429 & -0.857
\end{array}
\]

\[
d
\begin{array}{cc}
1 & 2 \\
1.143 & -0.571
\end{array}
\]

obj = 2.85714
Warning Errors

IMSL_NO_MORE_PROGRESS

Due to the effect of computer rounding error, a change in the variables fail to improve the objective function value; usually the solution is close to optimum.

Fatal Errors

IMSL_SYSTEM_INCONSISTENT

The system of equations is inconsistent. There is no solution.
sparse_lin_prog

Solves a sparse linear programming problem by an infeasible primal-dual interior-point method.

**NOTE:** Function `sparse_lin_prog` is available in double precision only.

**Synopsis**

```c
#include <imsl.h>

double *imsl_d_sparse_lin_prog(int m, int n, int nza, imsl_d_sparse_elem a[], double b[],
 double c[], ..., 0)
```

**Required Arguments**

- `int m` (Input)
  Number of constraints.

- `int n` (Input)
  Number of variables.

- `int nza` (Input)
  Number of nonzero entries in the constraint matrix $A$.

- `imsl_d_sparse_elem a[]` (Input)
  An array of length $nza$ containing the location and value of each nonzero coefficient in the constraint matrix $A$.

- `double b[]` (Input)
  An array of length $m$ containing the right-hand side of the constraints. If there are limits on both sides of the constraints, then $b$ contains the lower limit of the constraints.

- `double c[]` (Input)
  An array of length $n$ containing the coefficients of the objective function.

**Return Value**

A pointer to an array of length $n$ containing the solution $x$ of the linear programming problem. To release this space, use `imsl_free`. If no solution can be computed, then `NULL` is returned.
Synopsis with Optional Arguments

```c
#include <imsl.h>

double *imsl_d_sparse_lin_prog(int m, int n, int nza, Imsl_d_sparse_elem a[], double b[],
 double c[]),
IMSL_CONSTR_TYPE, int irtype[],
IMSL_UPPER_LIMIT, double bu[],
IMSL_LOWER_BOUND, double xlb[],
IMSL_UPPER_BOUND, double xub[],
IMSL_OBJ_CONSTANT, double c0,
IMSL_PREORDERING, int preorder,
IMSL_MAX_ITERATIONS, int max_iterations,
IMSL_OPT_TOL, double opt_tol,
IMSL_PRINF_TOL, double prinf_tol,
IMSL_DLINF_TOL, double dlinf_tol,
IMSL_PRINT, int iprint,
IMSL_FROM, int presolve,
IMSL_CS_FORMAT, int a_colptr[], int a_rowind[], double a_values[],
IMSL_TERMINATION_STATUS, int *status,
IMSL_OBJ, double *obj,
IMSL_ITERATION_COUNT, int *iterations,
IMSL_DUAL, double **y,
IMSL_DUAL_USER, double y[],
IMSL_PRIMAL_INFEAS, double *err_b, double *err_u,
IMSL_DUAL_INFEAS, double *err_c,
IMSL_CP_RATIO_SMALL, double *cp_smallest,
IMSL_CP_RATIO_LARGEST, double *cp_largest,
IMSL_RETURN_USER, double x[],
0)
```
Optional Arguments

**IMSL_CONSTR_TYPE, int irtype[]** (Input)

An array of length \( m \) containing the types of general constraints in the matrix \( A \). Let \( r_i = a_{i1} x_1 + \ldots + a_{in} x_n \). Then, the value of \( \text{irtype}[i] \) signifies the following:

<table>
<thead>
<tr>
<th>( \text{irtype}[i] )</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>( r_i = b_i )</td>
</tr>
<tr>
<td>1</td>
<td>( r_i \leq b_i )</td>
</tr>
<tr>
<td>2</td>
<td>( r_i \geq b_i )</td>
</tr>
<tr>
<td>3</td>
<td>( b_i \leq r_i \leq bu_i )</td>
</tr>
<tr>
<td>4</td>
<td>Ignore this constraint</td>
</tr>
</tbody>
</table>

Note that \( \text{irtype}[i] = 3 \) should only be used for constraints \( i \) with both a finite lower and a finite upper bound. For one-sided constraints, use \( \text{irtype}[i] = 1 \) or \( \text{irtype}[i] = 2 \). For free constraints, use \( \text{irtype}[i] = 4 \).

Default: \( \text{irtype} = 0 \)

**IMSL_UPPER_LIMIT, double bu[]** (Input)

Array of length \( m \) containing the upper limit of the constraints that have both a lower and an upper bound. If such a constraint exists, then optional argument IMSL_CONSTR_TYPE must be used to define the type of the constraints. If \( \text{irtype}[i] \neq 3 \), i.e., if constraint \( i \) is not two-sided, then the corresponding entry in \( bu \), \( bu[i] \), is ignored.

Default: None of the constraints has an upper bound.

**IMSL_LOWER_BOUND, double xlb[]** (Input)

An array of length \( n \) containing the lower bound on the variables. If there is no lower bound on a variable, then \(-10^{30}\) should be set as the lower bound.

Default: \( xlb = 0 \).

**IMSL_UPPER_BOUND, double xub[]** (Input)

An array of length \( n \) containing the upper bound on the variables. If there is no upper bound on a variable, then \(10^{30}\) should be set as the upper bound.

Default: None of the variables has an upper bound.

**IMSL_OBJ_CONSTANT, double c0** (Input)

Value of the constant term in the objective function.

Default: \( c0 = 0 \).
IMSL_PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal equations or augmented system matrix.

<table>
<thead>
<tr>
<th>preorder</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A variant of the MDO algorithm using pivotal cliques.</td>
</tr>
<tr>
<td>1</td>
<td>A variant of George and Liu's Quotient Minimum Degree algorithm.</td>
</tr>
</tbody>
</table>

Default: preorder = 0.

IMSL_MAX_ITERATIONS, int max_iterations (Input)
The maximum number of iterations allowed for the primal-dual solver.
Default: max_iterations = 200.

IMSL_OPT_TOL, double opt_tol (Input)
The relative optimality tolerance.
Default: opt_tol = 1.0e-10.

IMSL_PRINF_TOL, double prinf_tol (Input)
The primal infeasibility tolerance.
Default: prinf_tol = 1.0e-8.

IMSL_DLINF_TOL, double dlinf_tol (Input)
The dual infeasibility tolerance.
Default: dlinf_tol = 1.0e-8.

IMSL_PRINT, int iprint (Input)
Printing option.

<table>
<thead>
<tr>
<th>iprint</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printing is performed.</td>
</tr>
<tr>
<td>1</td>
<td>Prints statistics on the LP problem and the solution process.</td>
</tr>
</tbody>
</table>

Default: iprint = 0.

IMSL_PRESOLVE, int presolve (Input)
Presolve the LP problem in order to reduce the problem size or to detect infeasibility or unboundedness of the problem. Depending on the number of presolve techniques used, different presolve levels can be chosen:

<table>
<thead>
<tr>
<th>presolve</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No presolving.</td>
</tr>
<tr>
<td>1</td>
<td>Eliminate singleton rows</td>
</tr>
<tr>
<td>presolve</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>In addition to 1, eliminate redundant (and forcing) rows.</td>
</tr>
<tr>
<td>3</td>
<td>In addition to 1 and 2, eliminate dominated variables.</td>
</tr>
<tr>
<td>4</td>
<td>In addition to 1, 2, and 3, eliminate singleton columns.</td>
</tr>
<tr>
<td>5</td>
<td>In addition to 1, 2, 3, and 4, eliminate doubleton rows.</td>
</tr>
<tr>
<td>6</td>
<td>In addition to 1, 2, 3, 4, and 5, eliminate aggregate columns.</td>
</tr>
</tbody>
</table>

Default: presolve = 0.

**IMSL_CSC_FORMAT, int a_colptr[], int a_rowind[], double a_values[]** (Input)
Accept the constraint matrix A in Harwell-Boeing format. See (Compressed Sparse Column (CSC Format) in the Introduction to this manual for a discussion of this storage scheme.

If this optional argument is used, then required argument a is ignored.

**IMSL_TERMINATION_STATUS, int *status** (Output)
The termination status for the problem.

<table>
<thead>
<tr>
<th>status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Optimal solution found.</td>
</tr>
<tr>
<td>1</td>
<td>The problem is primal infeasible (or dual unbounded).</td>
</tr>
<tr>
<td>2</td>
<td>The problem is primal unbounded (or dual infeasible).</td>
</tr>
<tr>
<td>3</td>
<td>Suboptimal solution found (accuracy problems).</td>
</tr>
<tr>
<td>4</td>
<td>Iterations limit max_iterations exceeded.</td>
</tr>
<tr>
<td>5</td>
<td>An error outside of the solution phase of the algorithm, e.g. a user input or a memory allocation error.</td>
</tr>
</tbody>
</table>

**IMSL_OBJ, double *obj** (Output)
Optimal value of the objective function.

**IMSL_ITERATION_COUNT, int *iterations** (Output)
The number of iterations required by the primal-dual solver.

**IMSL_DUAL, double **y** (Output)
The address of a pointer y to an internally allocated array of length m containing the dual solution.

**IMSL_DUAL_USER, double y[]** (Output)
A user-allocated array of length m containing the dual solution.

**IMSL_PRIMAL_INFEAS, double *err_b, double *err_u** (Output)
The violation of the primal constraints, described by err_b, the primal infeasibility of the solution, \( \| x + s - u \| \), and by err_u, the violation of the variable bounds, \( \| b - Ax \| \).
IMSL_DUAL_INFEAS, double *err_c (Output)
The violation of the dual constraints, described by err_c, the dual infeasibility of the solution,
$$\|c - A^T y - z + w\|.$$  

IMSL_CP_RATIO_SMALLEST, double *cp_smallest (Output)
The ratio of the smallest complementarity product to the average.

IMSL_CP_RATIO_LARGEST, double *cp_largest (Output)
The ratio of the largest complementarity product to the average.

IMSL_RETURN_USER, double x[] (Output)
A user-allocated array of length n containing the primal solution.

Description

The function `imsl_d_sparse_lin_prog` uses an infeasible primal-dual interior-point method to solve linear programming problems, i.e., problems of the form

$$\min \ c^T x \quad \text{subject to} \quad b_l \leq A x \leq b_u, \quad x_l \leq x \leq x_u$$

where $c$ is the objective coefficient vector, $A$ is the coefficient matrix, and the vectors $b_l$, $b_u$, $x_l$, and $x_u$ are the lower and upper bounds on the constraints and the variables, respectively.

Internally, `imsl_d_sparse_lin_prog` transforms the problem given by the user into a simpler form that is computationally more tractable. After redefining the notation, the new form reads

$$\min \ c^T x \quad \text{subject to} \quad A x = b$$

$$x_i + s_i = u_i, \quad x_p, s_i \geq 0, \quad i \in I_u$$

$$x_j \geq 0, \quad j \in I_s$$

Here, $I_u \cup I_s = \{1, \ldots, n\}$ is a partition of the index set $\{1, \ldots, n\}$ into upper bounded and standard variables.

In order to simplify the description, it is assumed in the following that the problem above contains only variables with upper bounds, i.e. is of the form

$$\begin{align*}
(P) \quad & \min \ c^T x \quad \text{subject to} \quad A x = b, \\
& x + s = u, \\
& x, s \geq 0
\end{align*}$$

The corresponding dual problem is then
\[ (D) \quad \max b^T y - u^T w \quad \text{subject to} \quad A^T y + z - w = c, \ 
z, w \geq 0 \]

The Karush-Kuhn-Tucker (KKT) optimality conditions for (P) and (D) are
\begin{align*}
Ax &= b, \quad (1.1) \\
x + s &= u, \quad (1.2) \\
A^T y + z - w &= c, \quad (1.3) \\
XZe &= 0, \quad (1.4) \\
SWe &= 0, \quad (1.5) \\
x, z, s, w &\geq 0, \quad (1.6)
\end{align*}

where \( X = \text{diag}(x) \), \( Z = \text{diag}(z) \), \( S = \text{diag}(s) \), \( W = \text{diag}(w) \) are diagonal matrices and \( e = (1, \ldots, 1)^T \) is a vector of ones.

Function `ims1_d_sparse_lin_prog`, like all infeasible interior-point methods, generates a sequence
\[ (x_k, s_k, y_k, z_k, w_k), \quad k = 0, 1, \ldots \]
of iterates, that satisfy \( (x_k, s_k, y_k, z_k, w_k) > 0 \) for all \( k \), but are in general not feasible, i.e. the linear constraints (1.1)-(1.3) are only satisfied in the limiting case \( k \to \infty \).

The barrier parameter \( \mu \), defined by
\[ \mu = \frac{x^T z + s^T w}{2n} \]
measures how good the complementarity conditions (1.4), (1.5) are satisfied.

Mehrotra's predictor-corrector algorithm is a variant of Newton's method applied to the KKT conditions (1.1)-(1.5). Function `ims1_d_sparse_lin_prog` uses a modified version of this algorithm to compute the iterates \( (x_k, s_k, y_k, z_k, w_k) \). In every step of the algorithm, the search direction vector
\[ A = (Ax, As, Ay, Az, Aw) \]
is decomposed into two parts, \( A = A_a + A_c^\omega \), where \( A_a \) and \( A_c^\omega \) denote the affine-scaling and the weighted centering component, respectively. Here,\[ A_c^\omega = (\omega_p Ax_c, \omega_p As_c, \omega_D Ay_c, \omega_D Az_c, \omega_D Aw_c) \]
where \( \omega_p \) and \( \omega_D \) denote the primal and dual corrector weights, respectively.
The vectors $A_d$ and $A_c := \left( A x_c, A s_c, A y_c, A z_c, A w_c \right)$ are determined by solving the linear system

$$
\begin{bmatrix}
A & 0 & 0 & 0 & 0 \\
I & 0 & I & 0 & 0 \\
0 & A^T & 0 & I & -I \\
Z & 0 & 0 & X & 0 \\
0 & 0 & W & 0 & S
\end{bmatrix}
\begin{bmatrix}
A x \\
A y \\
A s \\
A z \\
A w
\end{bmatrix}
= 
\begin{bmatrix}
r_b \\
r_u \\
r_c \\
r_xz \\
r_ws
\end{bmatrix}
$$

for two different right-hand sides.

For $A_d$, the right-hand side is defined as

$$
\left( r_b, r_u, r_c, r_xz, r_ws \right) = \left( b - Ax, u - x - s, c - A^T y - z + w, -XZe, -WSw \right).
$$

Here, $r_b$ and $r_u$ are the violations of the primal constraints and $r_c$ defines the violations of the dual constraints.

The resulting direction $A_d$ is the pure Newton step applied to the system (1.1)-(1.5).

In order to obtain the corrector direction $A_c$, the maximum stepsizes $a_p$ in the primal and $a_d$ in the dual space preserving nonnegativity of $(x, s)$ and $(z, w)$ respectively, are determined, and the predicted complementarity gap,

$$
g_a = \left( x + a_p A x_a \right)^T \left( z + a_d A z_a \right) + \left( s + a_p A s_a \right)^T \left( w + a_d A w_a \right)
$$

is computed. It is then used to determine the barrier parameter

$$
\hat{\mu} = \left( \frac{g_a}{g} \right)^2 \frac{g_a}{2n},
$$

where $g = x^T z + s^T w$ denotes the current complementarity gap.

The direction $A_c$ is then computed by choosing

$$
\left( r_b, r_u, r_c, r_xz, r_ws \right) = \left( 0, 0, 0, \hat{\mu} e - A X_a A Z_a e, \hat{\mu} e - A W_a A S_a e \right)
$$

as the right-hand side in the linear system (2).

Function `imsl_dSparseLinProg` now uses a line search to find the optimal weight $\hat{\omega} = \left( \hat{\omega}_p, \hat{\omega}_d \right)$ that maximizes the stepsizes $(a_p, a_d)$ in the primal and dual directions of $A = A_d + A_c^w$, respectively.
A new iterate is then computed using a step reduction factor \( a_0 = 0.99995 \):

\[
(x_{k+1}, s_{k+1}, y_{k+1}, z_{k+1}, w_{k+1}) = (x_k, s_k, y_k, z_k, w_k) + a_0 \left( a_p A x, a_p A s, a_D A y, a_D A z, a_D A w \right)
\]

In addition to the weighted Mehrotra predictor-corrector, \texttt{imsl_d_sparse_lin_prog} also uses multiple centrality correctors to enlarge the primal-dual stepsizes per iteration step and to reduce the overall number of iterations required to solve an LP problem. The maximum number of centrality corrections depends on the ratio of the factorization and solve efforts for system (2) and is therefore problem dependent. For a detailed description of multiple centrality correctors, refer to Gondzio (1994).

The linear system (2) can be reduced to more compact forms, the augmented system (AS)

\[
\begin{bmatrix}
\Theta^{-1} & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix} =
\begin{bmatrix}
r
\end{bmatrix} \tag{3}
\]

or further by elimination of \( \Delta x \) to the normal equations (NE) system

\[
A \Theta A^T \Delta y = A \Theta r + h, \quad \tag{4}
\]

where

\[
\Theta = (X^{-1} Z + S^{-1} W)^{-1}, \quad r = r_c - X^{-1} r_x + S^{-1} r_w - S^{-1} W r_w, \quad h = r_b.
\]

The matrix on the left-hand side of (3), which is symmetric indefinite, can be transformed into a symmetric quasidefinite matrix by regularization. Since these types of matrices allow for a Cholesky-like factorization, the resulting linear system can be solved easily for \( \Delta x, \Delta y \) by triangular substitutions. For more information on the regularization technique, see Altman and Gondzio (1998). For the NE system, matrix \( A \Theta A^T \) is positive definite, and therefore a sparse Cholesky algorithm can be used to factor \( A \Theta A^T \) and solve the system for \( \Delta y \) by triangular substitutions with the Cholesky factor \( L \).

In function \texttt{imsl_d_sparse_lin_prog}, both approaches are implemented. The AS approach is chosen if \( A \) contains dense columns, if there are a considerable number of columns in \( A \) that are much denser than the remaining ones or if there are many more rows than columns in the structural part of \( A \). Otherwise, the NE approach is selected.

Function \texttt{imsl_d_sparse_lin_prog} stops with optimal termination status if the current iterate satisfies the following three conditions:

\[
\frac{\mu}{1 + 0.5 \left( |c^T x| + |b^T y - u^T w| \right)} \leq \text{opt\_tol}
\]

\[
\frac{\| (b - A x x + s - u) \|}{1 + \| (b, u) \|} \leq \text{prinf\_tol}, \quad \text{and} \quad \frac{\| c - A^T y - z + w \|}{1 + \| c \|} \leq \text{dlinf\_tol},
\]

where \( \text{prinf\_tol}, \text{dlinf\_tol} \) and \( \text{opt\_tol} \) are primal infeasibility, dual infeasibility and optimality tolerances, respectively. The default value is 1.0e-10 for \( \text{opt\_tol} \) and 1.0e-8 for the two other tolerances.

**Examples**

**Example 1**

The linear programming problem

\[
\begin{align*}
\min f(x) &= 2x_1 - 8x_2 + 3x_3 \\
\text{subject to} & \quad x_1 + 3x_2 \leq 3 \\
& \quad 2x_2 + 3x_3 \leq 6 \\
& \quad x_1 + x_2 + x_3 \geq 2 \\
& \quad -1 \leq x_1 \leq 5 \\
& \quad 0 \leq x_2 \leq 7 \\
& \quad 0 \leq x_3 \leq 9
\end{align*}
\]

is solved.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int m = 3, n = 3, nza = 7;
 double obj, *x = NULL;

 Imsl_d_sparse_elem a[] = { 0, 0, 1.0,
 0, 1, 3.0,
 0, 1, 2.0,
 1, 2, 3.0,
 2, 0, 1.0,
 2, 1, 1.0,
 2, 2, 1.0 };

double b[] = { 3.0, 6.0, 2.0 };
 double c[] = { 2.0, -8.0, 3.0 };
 double xlb[] = { -1.0, 0.0, 0.0 };
 double xub[] = { 5.0, 7.0, 9.0 };
 int irtype[] = { 1, 1, 2 };

 x = imsl_d_sparse_lin_prog(m, n, nza, a, b, c,
 IMLCONSTR_TYPE, irtype,
 IMSLOWER_BOUND, xlb,
 IMSUPPER_BOUND, xub,
 IMSOBJ, &obj,
 0);
```
```c
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
 Imsl_d_mps *problem;
 int i, m, n, *irtype, nza;
 double *x, objective, *bl, *bu, *xlb, *xub;
 Imsl_d_sparse_elem *a = NULL;

 /* Read the MPS file. */
 problem = imsl_d_read_mps("afiro", 0);

 m = problem->nrows;
 n = problem->ncolumns;

 /* Setup the constraint matrix. */
 nza = problem->nonzeros;
 a = problem->constraint;

 /* Setup constraint bounds and constraint type array. */
 irtype = (int*) malloc(m*sizeof(int));
 bl = (double*) malloc(m*sizeof(double));
 bu = (double*) malloc(m*sizeof(double));
```

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-0.375</td>
<td>1.125</td>
<td>1.250</td>
</tr>
</tbody>
</table>

Objective: -6.000000

Example 2

This example demonstrates how the function `imsl_d_read_mps` can be used with `imsl_d_sparse_lin_prog` to solve a linear programming problem defined in an MPS file. The MPS file used in this example is an uncompressed version of the file 'afiro', available from http://www.netlib.org/lp/data/.
for (i = 0; i < m; i++) {
    if (problem->lower_range[i] == problem->negative_infinity &&
        problem->upper_range[i] == problem->positive_infinity)
    {
        bl[i] = problem->negative_infinity;
        bu[i] = problem->positive_infinity;
        irtype[i] = 4;
    }
    else if (problem->lower_range[i] == problem->negative_infinity)
    {
        irtype[i] = 1;
        bl[i] = problem->upper_range[i];
        bu[i] = problem->positive_infinity;
    }
    else if (problem->upper_range[i] == problem->positive_infinity)
    {
        irtype[i] = 2;
        bl[i] = problem->lower_range[i];
        bu[i] = problem->positive_infinity;
    }
    else
    {
        if (problem->lower_range[i] == problem->upper_range[i])
        {
            irtype[i] = 0;
            bl[i] = problem->lower_range[i];
            bu[i] = problem->positive_infinity;
        }
        else
        {
            irtype[i] = 3;
            bl[i] = problem->lower_range[i];
            bu[i] = problem->upper_range[i];
        }
    }
}

/*
 * Set up variable bounds. Be sure to account for
 * how unbounded variables should be set.
 */
xb = (double*) calloc(n*sizeof(double));
xub = (double*) calloc(n*sizeof(double));
for (i = 0; i < n; i++) {
    xlb[i] = (problem->lower_bound[i] == problem->negative_infinity)?
        -1.0e30:problem->lower_bound[i];
    xub[i] = (problem->upper_bound[i] == problem->positive_infinity)?
        1.0e30:problem->upper_bound[i];
}

/
* Solve the LP problem.
* /
  x = imsl_d_sparse_lin_prog(m, n, nza, 
a, bl, problem->objective,
  IMSL_UPPER_LIMIT, bu, 
  IMSL_CONSTR_TYPE, irtype, 
  IMSL_LOWER_BOUND, xlb, 
  IMSL_UPPER_BOUND, xub, 
  IMSL_OBJ, &objective, 
  IMSL_PRESOLVE, 6, 
  0);

  printf("Problem Name: %s\n", problem->name);
  printf("objective  : %15.10e\n", objective);
  imsl_d_write_matrix("Solution", 1, n, x, 0);

  /*
   * Free memory.
   */
  imsl_d_mps_free(problem);
  free(irtype);
  free(bl);
  free(bu);
  free(xlb);
  free(xub);
  imsl_free(x);
}

Output

Problem Name: AFIRO
objective  : -4.6475314284e+002

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>80.0</td>
<td>25.5</td>
<td>54.5</td>
<td>84.8</td>
<td>65.4</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>18.2</td>
<td>47.2</td>
<td>69.4</td>
<td>500.0</td>
<td>475.9</td>
<td>24.1</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>0.0</td>
<td>215.0</td>
<td>141.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>339.9</td>
<td>242.3</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.9</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Warning Errors

IMSL_ALL_FEAS_SOLS_OPTIMAL
The coefficients of the objective function are all equal to zero. Every feasible solution is also optimal.

IMSL_SUBOPTIMAL_SOL_FOUND
A suboptimal solution was found after # iterations.

IMSL_MAX_ITERATIONS_REACHED_1
The maximum number of iterations was reached. The best answer will be returned. "#"=# was used, a larger value may help complete the algorithm.

Fatal Errors

IMSL_PRIMAL_UNBOUNDED
The primal problem is unbounded.

IMSL_PRIMAL_INFEASIBLE
The primal problem is infeasible.

IMSL_DUAL_INFEASIBLE
The dual problem is infeasible.

IMSL_INIT_SOL_INFEASIBLE
The initial solution for the one-row linear program is infeasible.

IMSL_PROB_UNBOUNDED
The problem is unbounded.

IMSL_DIAG_WEIGHT_TOO_SMALL
The diagonal element #\[#\]=# of the diagonal weight matrix # is too small.

IMSL_CHOL_FAC_ACCURACY
The Cholesky factorization failed because of accuracy problems.
sparse_quadratic_prog

Solves a sparse convex quadratic programming problem by an infeasible primal-dual interior-point method.

**NOTE:** Function sparse_quadratic_prog is available in double precision only.

**Synopsis**

```c
#include <imsl.h>

double *imsl_d_sparse_quadratic_prog(int m, int n, int nza, int nzq, Imsl_d_sparse_elem a[],
 double b[], double c[], Imsl_d_sparse_elem q[], ..., 0)
```

**Required Arguments**

- `int m` (Input)
  Number of constraints.

- `int n` (Input)
  Number of variables.

- `int nza` (Input)
  Number of nonzero entries in constraint matrix $A$.

- `int nzq` (Input)
  Number of nonzero entries in the lower triangular part of the matrix $Q$ of the objective function.

- `Imsl_d_sparse_elem a[]` (Input)
  An array of length $nza$ containing the location and value of each nonzero coefficient in the constraint matrix $A$.

- `double b[]` (Input)
  An array of length $m$ containing the right-hand side of the constraints; if there are limits on both sides of the constraints, then $b$ contains the lower limit of the constraints.

- `double c[]` (Input)
  An array of length $n$ containing the coefficients of the linear term of the objective function.

- `Imsl_d_sparse_elem q[]` (Input)
  Array of length $nzq$ containing the location and value of each nonzero coefficient in the lower triangular part of the matrix $Q$ of the objective function. The matrix must be symmetric positive semidefinite.
Return Value

A pointer to an array of length \( n \) containing the solution \( x \) of the convex QP problem. To release this space, use `imsl_free`. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

double *imsl_d_sparse_quadratic_prog(int m, int n, int nzA, int nzQ, Imsl_d_sparse_elem a[],
 double b[], double c[], Imsl_d_sparse_elem q[],
 IMSL_CONSTR_TYPE, int irtype[],
 IMSL_UPPER_LIMIT, double bu[],
 IMSL_LOWER_BOUND, double xlB[],
 IMSL_UPPER_BOUND, double xUB[],
 IMSL_OBJ_CONSTANT, double c0,
 IMSL_PREORDERING, int preorder,
 IMSL_MAX_ITERATIONS, int max_iterations,
 IMSL_OPT_TOL, double opt_tol,
 IMSL_PRINF_TOL, double prinf_tol,
 IMSL_DLINF_TOL, double dlinf_tol,
 IMSL_PRINT, int iprint,
 IMSL_PRESOLVE, int presolve,
 IMSL_CSC_FORMAT, int a_colptr[], int a_rowind[], double a_values[],
 int q_colptr[], int q_rowind[], double q_values[],
 IMSL_TERMINATION_STATUS, int *status,
 IMSL_OBJ, double *obj,
 IMSL_ITERATION_COUNT, int *iterations,
 IMSL_DUAL, double **y,
 IMSL_DUAL_USER, double y[],
 IMSL_PRIMAL_INFEAS, double *err_b, double *err_u,
 IMSL_DUAL_INFEAS, double *err_c,
```
IMSL_CP_RATIO_SMALLEST, double *cp_smallest,
IMSL_CP_RATIO_LARGEST, double *cp_largest,
IMSL_RETURN_USER, double x[],
0)

Optional Arguments

IMSL_CONSTR_TYPE, int irtype[] (Input)

An array of length m indicating the types of general constraints in the matrix A. Let
\( r_i = a_{i1}x_1 + ... + a_{in}x_n \). Then, the value of irtype[i] signifies the following:

<table>
<thead>
<tr>
<th>irtype[i]</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>( r_i = b_i )</td>
</tr>
<tr>
<td>1</td>
<td>( r_i \leq b_i )</td>
</tr>
<tr>
<td>2</td>
<td>( r_i \geq b_i )</td>
</tr>
<tr>
<td>3</td>
<td>( b_l \leq r_i \leq b_u )</td>
</tr>
<tr>
<td>4</td>
<td>Ignore this constraint</td>
</tr>
</tbody>
</table>

Note that irtype[i] = 3 should only be used for constraints i with both finite lower and finite upper bound. For one-sided constraints, use irtype[i] = 1 or irtype[i] = 2. For free constraints, use irtype[i] = 4.
Default: irtype = 0
IMSL_UPPER_LIMIT, double bu[] (Input)
An array of length m containing the upper limit of the constraints that have both a lower and an upper bound. If such a constraint exists, then optional argument IMSL_CONSTR_TYPE must be used to define the type of constraints. If irttype[i] ≠ 3, i.e. if constraint i is not two-sided, then the corresponding entry in bu, bu[i], is ignored.
Default: None of the constraints has an upper bound.

IMSL_LOWER_BOUND, double xlb[] (Input)
An array of length n containing the lower bound on the variables. If there is no lower bound on a variable, then \(-10^{30}\) should be set as the lower bound.
Default: xlb = 0.

IMSL_UPPER_BOUND, double xub[] (Input)
An array of length n containing the upper bound on the variables. If there is no upper bound on a variable, then \(10^{30}\) should be set as the upper bound.
Default: None of the variables has an upper bound.

IMSL_OBJ_CONSTANT, double c0 (Input)
Value of the constant term in the objective function.
Default: c0 = 0.

IMSL_PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal equations or augmented system matrix:

<table>
<thead>
<tr>
<th>preorder</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A variant of the MDO algorithm using pivotal cliques.</td>
</tr>
<tr>
<td>1</td>
<td>A variant of George and Liu's Quotient Minimum Degree algorithm.</td>
</tr>
</tbody>
</table>

Default: preorder = 0.

IMSL_MAX_ITERATIONS, int max_iterations (Input)
The maximum number of iterations allowed for the primal-dual solver.
Default: max_iterations = 200.

IMSL_OPT_TOL, double opt_tol (Input)
Relative optimality tolerance.
Default: opt_tol = 1.0e-10.

IMSL_PRINF_TOL, double prinf_tol (Input)
The primal infeasibility tolerance.
Default: prinf_tol = 1.0e-8.
IMSL_DLINF_TOL, double dlinf_tol (Input)
   The dual infeasibility tolerance.
   Default: dlinf_tol = 1.0e-8.

IMSL_PRINT, int iprint (Input)
   Printing option.

<table>
<thead>
<tr>
<th>iprint</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printing is performed.</td>
</tr>
<tr>
<td>1</td>
<td>Prints statistics on the QP problem and the solution process.</td>
</tr>
</tbody>
</table>

Default: iprint = 0.

IMSL_PRESOLVE, int presolve (Input)
   Presolve the QP problem in order to reduce the problem size or to detect infeasibility or unboundedness of the problem. Depending on the number of presolve techniques used different presolve levels can be chosen:

<table>
<thead>
<tr>
<th>presolve</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No presolving.</td>
</tr>
<tr>
<td>1</td>
<td>Eliminate singleton rows</td>
</tr>
<tr>
<td>2</td>
<td>Additionally to 1, eliminate redundant (and forcing) rows.</td>
</tr>
<tr>
<td>3</td>
<td>Additionally to 2, eliminate dominated variables.</td>
</tr>
<tr>
<td>4</td>
<td>Additionally to 3, eliminate singleton columns.</td>
</tr>
<tr>
<td>5</td>
<td>Additionally to 4, eliminate doubleton rows.</td>
</tr>
<tr>
<td>6</td>
<td>Additionally to 5, eliminate aggregate columns.</td>
</tr>
</tbody>
</table>

Default: presolve = 0.

IMSL_CSC_FORMAT, int a_colptr[], int a_rowind[], double a_values[], int q_colptr[], int q_rowind[], double q_values[] (Input)
   Accept the constraint matrix $A$ (via vectors a_colptr, a_rowind and a_values) and the matrix $Q$ of the objective function (via vectors q_colptr, q_rowind and q_values) in Harwell-Boeing format. See (Compressed Sparse Column (CSC) Format) in the Introduction to this manual for a discussion of this storage scheme.

   If this optional argument is used, then required arguments a and q are ignored.
**IMSL TERMINATION_STATUS**, `int *status` (Output)
The termination status for the problem.

<table>
<thead>
<tr>
<th>status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Optimal solution found.</td>
</tr>
<tr>
<td>1</td>
<td>The problem is primal infeasible (or dual unbounded).</td>
</tr>
<tr>
<td>2</td>
<td>The problem is primal unbounded (or dual infeasible).</td>
</tr>
<tr>
<td>3</td>
<td>Suboptimal solution found (accuracy problems).</td>
</tr>
<tr>
<td>4</td>
<td>Iterations limit <code>max_iterations</code> exceeded.</td>
</tr>
<tr>
<td>5</td>
<td>An error outside of the solution phase of the algorithm, e.g. a user input or a memory allocation error.</td>
</tr>
</tbody>
</table>

**IMSL_OBJ**, `double *obj` (Output)
Optimal value of the objective function.

**IMSL_ITERATION_COUNT**, `int *iterations` (Output)
The number of iterations required by the primal-dual solver.

**IMSL_DUAL**, `double **y` (Output)
The address of a pointer `y` to an internally allocated array of length `m` containing the dual solution.

**IMSL_DUAL_USER**, `double y[]` (Output)
A user-allocated array of size `m` containing the dual solution.

**IMSL_PRIMAL_INFEAS**, `double *err_b`, `double *err_u` (Output)
The violation of the primal constraints, described by `err_b`, the primal infeasibility of the solution, and by `err_u`, the violation of the variable bounds.

**IMSL_DUAL_INFEAS**, `double *err_c` (Output)
The violation of the dual constraints, described by `err_c`, the dual infeasibility of the solution.

**IMSL_CP_RATIO_SMALLEST**, `double *cp_smallest` (Output)
The ratio of the smallest complementarity product to the average.

**IMSL_CP_RATIO_LARGEST**, `double *cp_largest` (Output)
The ratio of the largest complementarity product to the average.

**IMSL_RETURN_USER**, `double x[]` (Output)
A user-allocated array of length `n` containing the primal solution.

**Description**

The function `imsl_d_sparse_quadratic_prog` uses an infeasible primal-dual interior-point method to solve convex quadratic programming problems, i.e., problems of the form
\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad c^T x + \frac{1}{2} x^T Q x \\
\text{subject to} & \quad b_l \leq A x \leq b_u \\
& \quad x_l \leq x \leq x_u
\end{align*}
\]

where \( c \) is the objective coefficient vector, \( Q \) is the symmetric positive semidefinite coefficient matrix, \( A \) is the constraint matrix and the vectors \( b_l, b_u, x_l, \) and \( x_u \) are the lower and upper bounds on the constraints and the variables, respectively.

Internally, \texttt{imsl\_d\_sparse\_quadratic\_prog} transforms the problem given by the user into a simpler form that is computationally more tractable. After redefining the notation, the new form reads

\[
\begin{align*}
\min & \quad c^T x + \frac{1}{2} x^T Q x \\
\text{subject to} & \quad A x = b \\
& \quad x_i + s_i = u_i, \quad x_i s_i \geq 0, \quad i \in I_u \\
& \quad x_i \geq 0, \quad j \in I_s.
\end{align*}
\]

Here, \( I_u \cup I_s = \{1, \ldots, n\} \) is a partition of the index set \( \{1, \ldots, n\} \) into upper bounded and standard variables.

In order to simplify the description it is assumed in the following that the problem above contains only variables with upper bounds, i.e. is of the form

\[
\begin{align*}
\min & \quad c^T x + \frac{1}{2} x^T Q x \\
\text{(P)} \quad & \quad A x = b, \\
& \quad x + s = u, \\
& \quad x, s \geq 0
\end{align*}
\]

The corresponding dual problem is then

\[
\begin{align*}
\max & \quad b^T y - u^T w - \frac{1}{2} x^T Q x \\
\text{(D)} \quad & \quad A^T y + z - w - Q x = c, \\
& \quad x, z, w \geq 0
\end{align*}
\]
The Karush-Kuhn-Tucker (KKT) optimality conditions for (P) and (D) are

\[
\begin{align*}
Ax &= b, \quad (1.1) \\
x + s &= u, \quad (1.2) \\
A^T y + z - w - Qx &= c, \quad (1.3) \\
XZe &= 0, \quad (1.4) \\
SWe &= 0, \quad (1.5) \\
x, z, s, w &\geq 0, \quad (1.6)
\end{align*}
\]

where \( X = \text{diag}(x) \), \( Z = \text{diag}(z) \), \( S = \text{diag}(s) \), \( W = \text{diag}(w) \) are diagonal matrices and \( e = (1, \ldots, 1)^T \) is a vector of ones.

Function \texttt{imsl\_d\_sparse\_quadratic\_prog}, like all infeasible interior point methods, generates a sequence

\[
\left( x_k, s_k, y_k, z_k, w_k \right), \quad k = 0, 1, \ldots
\]

of iterates, that satisfy \( \left( x_k, s_k, y_k, z_k, w_k \right) > 0 \) for all \( k \), but are in general not feasible, i.e. the linear constraints (1.1)-(1.3) are only satisfied in the limiting case \( k \to \infty \).

The barrier parameter \( \mu \), defined by

\[
\mu = \frac{x^T z + s^T w}{2n}
\]

measures how good the complementarity conditions (1.4), (1.5) are satisfied.

Mehrotra’s predictor-corrector algorithm is a variant of Newton’s method applied to the KKT conditions (1.1)-(1.5). Function \texttt{imsl\_d\_sparse\_quadratic\_prog} uses a modified version of this algorithm to compute the iterates \( \left( x_k, s_k, y_k, z_k, w_k \right) \). In every step of the algorithm, the search direction vector

\[
A: = \left( Ax, As, Ay, Az, Aw \right)
\]

is decomposed into two parts, \( A = A_a + A_{c}^\omega \), where \( A_a \) and \( A_{c}^\omega \) denote the affine-scaling and a weighted centering component, respectively. Here,

\[
A_{c}^\omega: = \omega \left( Ax_c, As_c, Ay_c, Az_c, Aw_c \right)
\]

where the scalar \( \omega \) denotes the corrector weight.

The vectors \( A_a \) and \( A_{c}: = \left( Ax_c, As_c, Ay_c, Az_c, Aw_c \right) \) are determined by solving the linear system.

\[
\Delta := \Delta x, \Delta s, \Delta y, \Delta z, \Delta w
\]

\[
\omega \Delta x_c, \omega \Delta s_c, \omega \Delta y_c, \omega \Delta z_c, \omega \Delta w_c
\]
Sparse Quadratic Programming

Chapter 8 Optimization

For two different right-hand sides.

For \( A \alpha \) the right-hand side is defined as

\[
\begin{pmatrix}
A & 0 & 0 & 0 & 0 \\
I & 0 & I & 0 & 0 \\
-Q & A^T & 0 & I & -I \\
X & 0 & X & 0 & 0 \\
0 & 0 & W & 0 & S
\end{pmatrix}
\begin{pmatrix}
\Delta x \\
\Delta y \\
\Delta s \\
\Delta z \\
\Delta w
\end{pmatrix}
= \begin{pmatrix}
r_b \\
r_u \\
r_c \\
r_{xz} \\
r_{sw}
\end{pmatrix}
\tag{2}
\]

for two different right-hand sides.

In order to obtain the corrector direction \( \alpha c \), the maximum stepsizes \( a_\alpha \) in the primal and dual space preserving nonnegativity of \( (x, s, z, w) \), is determined and the predicted complementarity gap

\[
g_a = \left( x + a_\alpha Ax_a \right)^T \left( z + a_\alpha Az_a \right) + \left( s + a_\alpha As_a \right)^T \left( w + a_\alpha Aw_a \right)
\]

is computed. It is then used to determine the barrier parameter

\[
\hat{\mu} = \left( \frac{g_a}{g} \right)^2 \frac{g_a}{2n},
\]

where \( g = x^T z + s^T w \) denotes the current complementarity gap.

The direction \( \alpha c \) is then computed by choosing

\[
\begin{pmatrix}
r_b \\
r_u \\
r_c \\
r_{xz} \\
r_{sw}
\end{pmatrix} = \begin{pmatrix}
0, 0, 0, \hat{\mu} e - \Delta X_a \Delta Z_a e, \hat{\mu} e - \Delta W_a \Delta S_a e
\end{pmatrix}
\]

as the right-hand side in the linear system \( \tag{2} \).

Function \texttt{imsl\_d\_sparse\_quadratic\_prog} now uses a linesearch to find the optimal weight \( \hat{\omega} \) that maximizes the stepsizes \( \alpha PD \) in the primal and dual direction of \( A = A_\alpha + A_\omega \).

A new iterate is then computed using a step reduction factor \( a_\alpha = 0.99995 \):

\[
\begin{pmatrix}
x_{k+1} \\
s_{k+1} \\
y_{k+1} \\
z_{k+1} \\
w_{k+1}
\end{pmatrix} = \begin{pmatrix}
x_k \\
s_k \\
y_k \\
z_k \\
w_k
\end{pmatrix} + a_\alpha a_{PD} \left( Ax, As, Ay, Az, Aw \right)
\]

In addition to the weighted Mehrotra predictor-corrector, \texttt{imsl\_d\_sparse\_quadratic\_prog} also uses multiple centrality correctors to enlarge the primal-dual stepsizes per iteration step and to reduce the overall number of iterations required to solve a QP problem. The maximum number of centrality corrections depends on the ratio of the factorization and solve efforts for system \( \tag{2} \) and is therefore problem dependent. For a detailed description of multiple centrality correctors, refer to Gondzio(1994).

The linear system \( \tag{2} \) can be reduced to more compact forms, the augmented system \( \tag{AS} \).
or further by elimination of $\Delta x$ to the normal equations (NE) system

$$
A \left( Q + \Theta^{-1} \right)^{-1} A^T \Delta y = A \left( Q + \Theta^{-1} \right)^{-1} r + h,
$$

where

$$
\Theta = \left( X^{-1} Z + S^{-1} W \right)^{-1},
$$

$$
r = r_c - X^{-1} r_x + S^{-1} r_w - S^{-1} W r_u, h = r_b.
$$

The matrix on the left-hand side of (3), which is symmetric indefinite, can be transformed into a symmetric quasidifinite matrix by regularization. Since these types of matrices allow for a Cholesky-like factorization, the resulting linear system can be solved easily for $(\Delta x, \Delta y)$ by triangular substitutions. For more information on the regularization technique, see Altman and Gondzio (1998). For the NE system, matrix $A \left( Q + \Theta^{-1} \right) A^T$ is positive definite, and therefore a sparse Cholesky algorithm can be used to factor $A \left( Q + \Theta^{-1} \right) A^T$ and solve the system for $\Delta y$ by triangular substitutions with the Cholesky factor $L$.

In function `imsl_d_sparse_quadratic_prog`, both approaches are implemented. The AS approach is chosen if $A$ contains dense columns, if there is a considerable number of columns in $A$ that are much denser than the remaining ones or if there are many more rows than columns in the structural part of $A$. Otherwise, the NE approach is selected.

Function `imsl_d_sparse_quadratic_prog` stops with optimal termination status if the current iterate satisfies the following three conditions:

$$
\frac{\mu}{1 + 0.5 \left( |c^T x| + |b^T y - u^T w - 0.5 x^T Q x| \right)} \leq \text{opt}\_\text{tol},
$$

$$
\frac{\|(b - Ax, x - u)\|}{1 + \|(b, u)\|} \leq \text{print}\_\text{tol}, \text{ and }
$$

$$
\frac{\|c - A^T y - z + w + Q x\|}{1 + \|c\|} \leq \text{dlinf}\_\text{tol},
$$

where `prinf_tol`, `dlinf_tol` and `opt_tol` are primal infeasibility, dual infeasibility and optimality tolerances, respectively. The default value is 1.0e-10 for `opt_tol` and 1.0e-8 for the two other tolerances.

Function `imsl_d_sparse_quadratic_prog` is based on the code HOPDM developed by Jacek Gondzio et al., see the HOPDM User’s Guide (1995).

**Examples**

**Example 1**

The convex quadratic programming problem

$$
- Q - \Theta^{-1} A^T x = r
$$
\[ \min f(x) = 10x_1 + 3x_3 + 0.5(2x_1^2 + 32x_2^2 + 4x_3^2 - 8x_1x_2) \]

subject to

\[ \begin{align*}
2x_1 + x_2 - 8x_3 & \geq 0 \\
2x_1 + 3x_2 & \leq 6 \\
0 & \leq x_1 \leq 7 \\
-3 & \leq x_2 \leq 2 \\
-5 & \leq x_3 \leq 20
\end{align*} \]

is solved.

#include <imsl.h>
#include <stdio.h>

int main()
{
    int m = 2, n = 3, nza = 5, nzq = 4;
    Imsl_d_sparse_elem a[] = { 0, 0, 2.0, 
                               0, 1, 1.0, 
                               0, 2, -8.0, 
                               1, 0, 2.0, 
                               1, 1, 3.0 };

double b[] = { 0.0, 6.0 }; 
    double c[] = { 10.0, 0.0, 3.0 };

double xlb[] = { 0.0, -3.0, -5.0 }; 
    double xub[] = { 7.0, 2.0, 20.0 };

    int irtype[] = { 2, 1 };
    double *x = NULL;
    double obj;

    x = imsl_d_sparse_quadratic_prog(m, n, nza, nzq, a, b, c, q, 
                                       IMSL_CONSTR_TYPE, irtype, 
                                       IMSL_LOWER_BOUND, xlb, 
                                       IMSL_UPPER_BOUND, xub, 
                                       IMSL_OBJ, &obj, 0);

    imsl_d_write_matrix("x", 1, n, x, 0);
    printf("\nObjective: %lf\n", obj);
}
Output

<table>
<thead>
<tr>
<th></th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

Objective: -1.125000

Example 2

This example demonstrates how the function `imsl_d_read_mps` can be used with `imsl_d_sparse_quadratic_prog` to solve a convex quadratic programming problem defined in an MPS file. The MPS file used in this example is the file `qafiro`, available from the QP problems collection QPDATA2 on István Maros’ home page under http://www.doc.ic.ac.uk/~im/#DATA/.

```c
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
 Imsl_d_mps *problem;
 int i, m, n, *irtypen, nza, nzq;
 double *x, objective, *bl, *bu, *xlb, *xub;
 Imsl_d_sparse_elem *a = NULL, *q = NULL;

 // Read the QPS file. */
 problem = imsl_d_read_mps("QAFIRO.QPS", 0);

 m = problem->nrows;
 n = problem->ncolumns;

 /*
 * Setup the constraint matrix.
 */
 nza = problem->nonzeros;
 a = problem->constraint;

 /*
 * Setup the Hessian.
 */
 nzq = problem->nhessian;
 q = problem->hessian;

 /*
 * Setup constraint bounds and constraint type array.
 */
 irtypen = (int*) malloc(m*sizeof(int));
 bl = (double*) malloc(m*sizeof(double));
 bu = (double*) malloc(m*sizeof(double));
    ```
for (i = 0; i < m; i++) {
    if (problem->lower_range[i] == problem->negative_infinity &&
        problem->upper_range[i] == problem->positive_infinity)
    {
        bl[i] = problem->negative_infinity;
        bu[i] = problem->positive_infinity;
        irtype[i] = 4;
    }
    else if (problem->lower_range[i] == problem->negative_infinity)
    {
        irtype[i] = 1;
        bl[i] = problem->upper_range[i];
        bu[i] = problem->positive_infinity;
    }
    else if (problem->upper_range[i] == problem->positive_infinity)
    {
        irtype[i] = 2;
        bl[i] = problem->lower_range[i];
        bu[i] = problem->positive_infinity;
    }
    else
    {
        if (problem->lower_range[i] == problem->upper_range[i])
        {
            irtype[i] = 0;
            bl[i] = problem->lower_range[i];
            bu[i] = problem->positive_infinity;
        }
        else
        {
            irtype[i] = 3;
            bl[i] = problem->lower_range[i];
            bu[i] = problem->upper_range[i];
        }
    }
}

/*
 * Set up variable bounds. Be sure to account for
 * how unbounded variables should be set.
 */
xlbl = (double*) malloc(n*sizeof(double));
xub = (double*) malloc(n*sizeof(double));

for (i = 0; i < n; i++) {
    xlb[i] = (problem->lower_bound[i] == problem->negative_infinity)?
        -1.0e30:problem->lower_bound[i];
    xub[i] = (problem->upper_bound[i] == problem->positive_infinity)?
        1.0e30:problem->upper_bound[i];
}
/ * Solve the QP problem. */
 x = imsl_d_sparse_quadratic_prog(m, n, nza, nzq,
    a, bl, problem->objective, q,
    IMSL_UPPER_LIMIT, bu,
    IMSL_CONSTR_TYPE, irtype,
    IMSL_LOWER_BOUND, xlb,
    IMSL_UPPER_BOUND, xub,
    IMSL_OBJ, &objective,
    IMSL_PRESOLVE, 6,
    0);

  /*
  * Output results. */
  */
  printf("Problem Name: %s\n", problem->name);
  printf("objective : %15.10e\n", objective);
  imsl_d_write_matrix("Solution", 1, n, x, 0);

  /*
  * Free memory. */
  */
  imsl_d_mps_free(problem);
  free(irtype);
  free(bl);
  free(bu);
  free(xlb);
  free(xub);
  imsl_free(x);
Output

Problem Name: AFIRO

objective : -1.5907817909e+000

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.38</td>
<td>0.00</td>
<td>0.38</td>
<td>0.40</td>
<td>65.17</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>0.00</td>
<td>65.17</td>
<td>69.08</td>
<td>3.49</td>
<td>3.37</td>
<td>0.11</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>0.00</td>
<td>1.50</td>
<td>12.69</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.41</td>
<td>33.72</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.46</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning Errors

IMSL_SUBOPTIMAL_SOL_FOUND
A suboptimal solution was found after #iterations.

IMSL_MAX_ITERATIONS_REACHED_1
The maximum number of iterations was reached. The best answer will be returned. “#”=#was used, a larger value may help complete the algorithm.

Fatal Errors

IMSL_PRIMAL_UNBOUNDED
The primal problem is unbounded.

IMSL_PRIMAL_INFEASIBLE
The primal problem is infeasible.

IMSL_DUAL_INFEASIBLE
The dual problem is infeasible.

IMSL_INIT_SOL_INFEASIBLE
The initial solution for the one-row linear program is infeasible.

IMSL_PROB_UNBOUNDED
The problem is unbounded.

IMSL_DIAG_WEIGHT_TOO_SMALL
The diagonal element #[#]=#of the diagonal weight matrix #is too small.

IMSL_CHOL_FAC_ACCURACY
The Cholesky factorization failed because of accuracy problems.
Minimizes a general objective function subject to linear equality/inequality constraints.

Synopsis

```c
#include <imsl.h>

float *imsl_f_min_con_gen_lin(void fcn, int nvar, int ncon, int neq, float a[], float b[],
 float xlb[], float xub[], ..., 0)
```

The type `double` function is `imsl_d_min_con_gen_lin`.

Required Arguments

- **void fcn (int n, float x[], float *f) (Input/Output)**
  User-supplied function to evaluate the function to be minimized. Argument `x` is a vector of length `n` at which point the function is evaluated, and `f` contains the function value at `x`.

- **int nvar (Input)**
  Number of variables.

- **int ncon (Input)**
  Number of linear constraints (excluding simple bounds).

- **int neq (Input)**
  Number of linear equality constraints.

- **float a[] (Input)**
  Array of size `ncon × nvar` containing the equality constraint gradients in the first `neq` rows followed by the inequality constraint gradients.

- **float b[] (Input)**
  Array of size `ncon` containing the right-hand sides of the linear constraints. Specifically, the constraints on the variables `x_i`, `i = 0, nvar - 1`, are `a_k,0 x_0 + ... + a_k,nvar-1 x_{nvar-1} = b_k`, `k = 0, ..., neq - 1` and `a_k,0 x_0 + ... + a_k,nvar-1 x_{nvar-1} ≤ b_k`, `k = neq, ..., ncon - 1`. Note that the data that define the equality constraints come before the data of the inequalities.
float xlb[] (Input)
Array of length nvar containing the lower bounds on the variables; choose a very large negative value if a component should be unbounded below or set xub[i] = xub[i] to freeze the i-th variable. Specifically, these simple bounds are xlb[i] ≤ x_i for i = 1, ..., nvar.

float xub[] (Input)
Array of length nvar containing the upper bounds on the variables; choose a very large positive value if a component should be unbounded above. Specifically, these simple bounds are x_i ≤ xub[i], for i = 1, nvar.

Return Value
A pointer to the solution x. To release this space, use imsl_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int a, float b, float xlb[],
float xub[],
IMSL_XGUESS, float xguess[],
IMSL_GRADIENT, void gradient(),
IMSL_MAX_FCN, int max_fcn,
IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact,
IMSL_ACTIVE_CONSTRAINTS, int **iact,
IMSL_ACTIVE_CONSTRAINTS, int *iact_user,
IMSL_LAGRANGE_MULTIPLIERS, float **lagrange,
IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user,
IMSL_TOLERANCE, float tolerance,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void gradient(), void *data,
0)
Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with \( n \) components containing an initial guess.
Default: \( xguess = 0 \)

IMSL_GRADIENT, void gradient (int \( n \), float \( x[] \), float \( g[] \)) (Input)
User-supplied function to compute the gradient at the point \( x \), where \( x \) is a vector of length \( n \), and \( g \) is the vector of length \( n \) containing the values of the gradient of the objective function.

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: \( max_fcn = 400 \)

IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact (Output)
Final number of active constraints.

IMSL_ACTIVE_CONSTRAINTS, int **iact (Output)
The address of a pointer to an int, which on exit, points to an array containing the \( nact \) indices of the final active constraints.

IMSL_ACTIVE_CONSTRAINTS_USER, int \times iact_user (Output)
A user-supplied array of length at least \( ncon + 2 \) containing the indices of the final active constraints in the first \( nact \) locations.

IMSL_LAGRANGE_MULTIPLIERS, float **lagrange (Output)
The address of a pointer, which on exit, points to an array containing the Lagrange multiplier estimates of the final active constraints in the first \( nact \) locations.

IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user (Output)
A user-supplied array of length at least \( nvar \) containing the Lagrange multiplier estimates of the final active constraints in the first \( nact \) locations.

IMSL_TOLERANCE, float tolerance (Input)
The nonnegative tolerance on the first order conditions at the calculated solution.
Default: \( tolerance = \sqrt{\varepsilon} \), where \( \varepsilon \) is machine epsilon

IMSL_OBJ, float *obj (Output)
The value of the objective function.

IMSL_RETURN_USER, float \( x[] \) (Output)
User-supplied array with \( nvar \) components containing the computed solution.
IMSL_FCN_W_DATA, void fcn (int n, float x[], float *f, void *data), void *data (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

IMSL_GRADIENT_W_DATA, void gradient (int n, float x[], float g[], void *data), void *data (Input)
User-supplied function to compute the gradient at the point x, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description

The function imsl_f_min_con_gen_lin is based on M.J.D. Powell’s TOLMIN, which solves linearly con-
strained optimization problems, i.e., problems of the form

$$\min f(x)$$

subject to

$$A_1 x = b_1$$
$$A_2 x \leq b_2$$
$$x_l \leq x \leq z_u$$

given the vectors $b_1$, $b_2$, $x_l$, and $z_u$ and the matrices $A_1$ and $A_2$.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality con-
straints are consistent, the method will revise $x^0$, the initial guess, to satisfy

$$A_1 x = b_1$$

Next, $x^0$ is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of
quadratic programming subproblems to minimize the sum of the constraint or bound violations.
Now, for each iteration with a feasible $x^k$, let $J_k$ be the set of indices of inequality constraints that have small residuals. Here, the simple bounds are treated as inequality constraints. Let $I_k$ be the set of indices of active constraints. The following quadratic programming problem

$$
\min f(x^k) + d^T \nabla f(x^k) + \frac{1}{2} d^T B^k d 
$$

subject to

$$
a_j d = 0, \ j \in I_k 
$$

$$
a_j d \leq 0, \ j \in J_k 
$$

is solved to get $(d^k, \lambda^k)$ where $a_j$ is a row vector representing either a constraint in $A_1$ or $A_2$ or a bound constraint on $x$. In the latter case, the $a_j = e_i$ for the bound constraint $x_i \leq (x_u)_i$ and $a_j = -e_i$ for the constraint $-x_i \leq (x_l)_i$. Here, $e_i$ is a vector with 1 as the $i$-th component, and zeros elsewhere. Variables $\lambda^k$ are the Lagrange multipliers, and $B^k$ is a positive definite approximation to the second derivative $\nabla^2 f(x^k)$.

After the search direction $d^k$ is obtained, a line search is performed to locate a better point. The new point $x^{k+1} = x^k + \alpha^k d^k$ has to satisfy the conditions

$$
f(x^k + \alpha^k d^k) \leq f(x^k) + 0.1 \alpha^k (d^k)^T \nabla f(x^k) 
$$

and

$$
(d^k)^T \nabla f(x^k + \alpha^k d^k) \geq 0.7 (d^k)^T \nabla f(x^k) 
$$

The main idea in forming the set $J_k$ is that, if any of the equality constraints restricts the step-length $\alpha^k$, then its index is not in $J_k$. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation $B^k$ is updated by the BFGS formula, if the condition

$$
(d^k)^T \nabla f(x^k + \alpha^k d^k) - \nabla f(x^k) > 0 
$$

holds. Let $x^k \leftarrow x^{k+1}$, and start another iteration.

The iteration repeats until the stopping criterion

$$
\| \nabla f(x^k) - A^k \lambda^K \|_2 \leq \tau 
$$

is satisfied. Here $\tau$ is the supplied tolerance. For more details, see Powell (1988, 1989).

Since a finite difference method is used to approximate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a non-critical point. In such cases, high precision arithmetic is recommended. Also, if the gradient can be easily provided, the option IMSL_GRADIENT should be used.
On some platforms, `imsl_f_min_con_gen_lin` can evaluate the user-supplied functions `fcn` and gradient in parallel. This is done only if the function `imsl_omp_options` is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Examples

Example 1

In this example, the problem

\[
\min f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 2x_2x_3 - 2x_4x_5 - 2x_1
\]

subject to
\[
\begin{align*}
    x_1 + x_2 + x_3 + x_4 + x_5 &= 5 \\
    x_3 - 2x_4 - 2x_5 &= -3 \\
    0 &\leq x \leq 10
\end{align*}
\]

is solved.

```c
#include <imsl.h>

int main()
{
 void fcn(int, float *, float *);
 int neq = 2;
 int ncon = 2;
 int nvar = 5;

 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, -2.0};
 float b[] = {5.0, -3.0};
 float xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};
 float xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};
 float *x;

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 x = imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub, 0);

 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
}

void fcn(int n, float *x, float *f)
{
 - 2.0*x[1]*x[2] - 2.0*x[3]*x[4] - 2.0*x[0];
}
```
Example 2

In this example, the problem from Schittkowski (1987) is solved with an initial guess of \( x_0 = 10, x_1 = 10 \) and \( x_2 = 10 \).

\[
\begin{align*}
\text{min } f(x) &= -x_0 x_1 x_2 \\
\text{subject to } & \\
-x_0 - 2x_1 - 2x_2 & \leq 0 \\
x_0 + 2x_1 + 2x_2 & \leq 72 \\
0 \leq x_0 & \leq 20 \\
0 \leq x_1 & \leq 11 \\
0 \leq x_2 & \leq 42
\end{align*}
\]

is solved with an initial guess of \( x_0 = 10, x_1 = 10 \) and \( x_2 = 10 \).

```c
#include <imsl.h>

int main()
{
 void fcn(int, float *, float *);
 void grad(int, float *, float *);
 int neq = 0;
 int ncon = 2;
 int nvar = 3;
 int lda = 2;
 float obj, x[3];
 float a[] = {-1.0, -2.0, -2.0, 1.0, 2.0, 2.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {20.0, 11.0, 42.0};
 float xguess[] = {10.0, 10.0, 10.0};
 float b[] = {0.0, 72.0};

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

 imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
 IMSL_GRADIENT, grad,
 IMSL_XGUESS, xguess,
 IMSL_OBJ, &obj,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
}
```
printf("Objective value = %f\n", obj);
}

void fcn(int n, float *x, float *f)
{
    *f = -x[0] * x[1] * x[2];
}

void grad(int n, float *x, float *g)
{
    g[0] = -x[1]*x[2];
    g[1] = -x[0]*x[2];
    g[2] = -x[0]*x[1];
}

**Output**

<table>
<thead>
<tr>
<th>Solution</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Objective value = -3300.000000

**Fatal Errors**

IMSL_STOP_USER_FCN  
Request from user supplied function to stop algorithm.
User flag = ".#".
bounded_least_squares

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm.

Synopsis

```c
#include <imsl.h>
float *imsl_f_bounded_least_squares(void fcn(), int m, int n, int ibtype, float xlb[],
float xub[], ..., 0)
```

The type `double` function is `imsl_d_bounded_least_squares`.

Required Arguments

- **void fcn (int m, int n, float x[], float f[])(Input/Output)**
  User-supplied function to evaluate the function that defines the least-squares problem where `x` is a vector of length `n` at which point the function is evaluated, and `f` is a vector of length `m` containing the function values at point `x`.

- **int m (Input)**
  Number of functions.

- **int n (Input)**
  Number of variables where `n ≤ m`.

- **int ibtype (Input)**
  Scalar indicating the types of bounds on the variables.

<table>
<thead>
<tr>
<th>ibtype</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User will supply all the bounds.</td>
</tr>
<tr>
<td>1</td>
<td>All variables are nonnegative</td>
</tr>
<tr>
<td>2</td>
<td>All variables are nonpositive.</td>
</tr>
<tr>
<td>3</td>
<td>User supplies only the bounds on 1st variable, all other variables will have the same bounds</td>
</tr>
</tbody>
</table>
**float** xlb[] (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)
If there is no lower bound on a variable, then the corresponding xlb value should be set to $-10^6$.

**float** xub[] (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3)
If there is no upper bound on a variable, then the corresponding xub value should be set to $10^6$.

**Return Value**
A pointer to the solution $x$ of the nonlinear least-squares problem. To release this space, use imsl_free. If no solution can be computed, then NULL is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

float *imsl_f_bounded_least_squares(void fcn(), int m, int n, int ibtype, float xlb[],
 float xub[],
 IMSL_XGUESS, float xguess[],
 IMSL_JACOBIAN, void jacobian(),
 IMSL_XSCALE, float xscale[],
 IMSL_FSCALE, float fscale[],
 IMSL_GRAD_TOL, float grad_tol,
 IMSL_STEP_TOL, float step_tol,
 IMSL_REL_FCN_TOL, float rfcn_tol,
 IMSL_ABS_FCN_TOL, float afcn_tol,
 IMSL_MAX_STEP, float max_step,
 IMSL_INIT_TRUST_REGION, float trust_region,
 IMSL_GOOD_DIGIT, int ndigit,
 IMSL_MAX_ITN, int max_itn,
 IMSL_MAX_FCN, int max_fcn,
 IMSL_MAX_JACOBIAN, int max_jacobian,
```

IMSL_INTERN_SCALE,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with \( n \) components containing an initial guess.
Default: \( xguess = 0 \)

IMSL_JACOBIAN, void jacobian (int \( m \), int \( n \), float x[], float fjac[], int fjac_col_dim) (Input)
User-supplied function to compute the Jacobian where \( x \) is a vector of length \( n \) at which point the
Jacobian is evaluated, \( fjac \) is the computed \( m \times n \) Jacobian at the point \( x \), and \( fjac_col_dim \) is
the column dimension of \( fjac \). Note that each partial derivative \( \partial f_i / \partial x_j \) should be returned in
\( fjac[(i-1)\times fjac_col_dim+j-1] \).

IMSL_XSCALE, float xscale[] (Input)
Array with \( n \) components containing the scaling vector for the variables. Argument \( xscale \) is used
mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL
and IMSL_STEP_TOL for more details.
Default: \( xscale[] = 1 \)

IMSL_FSCALE, float fscale[] (Input)
Array with \( m \) components containing the diagonal scaling matrix for the functions. The \( i \)-th compo-
nent of \( fscale \) is a positive scalar specifying the reciprocal magnitude of the \( i \)-th component
function of the problem.
Default: \( fscale[] = 1 \)

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance.
The second bounded_least_squares stopping criterion occurs when
\[
\max_{i=1}^{n} |g_{si}(x)| \leq \text{grad\_tol}
\]

where \(g_{si}(x)\) is component \(i\) of the scaled gradient of \(F\) at \(x\), defined as:

\[
g_{si}(x) = \frac{|g_i(x)| \cdot \max\left(|x_i|, 1/s_i\right)}{\frac{1}{2} \|F(x)\|^2}
\]

\[
g_i(x) = f_{si}^{2} \cdot \nabla_i \left[ \frac{1}{2} \|F(x)\|^2 \right] = f_{si}^{2} \cdot \left( J^T F \right)_i
\]

\[
\|F(x)\|^2 = \sum_{j=1}^{m} f_j(x)^2
\]

and where \(J\) is the Jacobian matrix for \(m\)-component function vector \(R(x)\) with \(n\)-component argument \(x\) with \(J_j = \nabla f_j(x)\), \(s_i = x\text{scale}[i-1]\), and \(f_{si} = f\text{scale}[i-1]\).

Default: \(\text{grad\_tol} = \sqrt{\epsilon}, \frac{1}{\sqrt{\epsilon}}\) in double where \(\epsilon\) is the machine precision.

**IMSL\_STEP\_TOL**, float *step\_tol* (Input)

Scaled step tolerance.

The third bounded\_least\_squares stopping criterion occurs when

\[
\max_{i=1}^{n} [\Delta x_i] \leq \text{step\_tol}, \text{where:}
\]

\(x\) and \(y\), and \(s = x\text{scale}\).

Default: \(\text{step\_tol} = \epsilon^{2/3}\), where \(\epsilon\) is the machine precision.

**IMSL\_REL\_FCN\_TOL**, float *rfcn\_tol* (Input)

Relative function tolerance.

Default: \(\text{rfcn\_tol} = \max(10^{-10}, \epsilon^{2/3}), \max(10^{-20}, \epsilon^{2/3})\) in double, where \(\epsilon\) is the machine precision.

**IMSL\_ABS\_FCN\_TOL**, float *afcn\_tol* (Input)

Absolute function tolerance.

The first bounded\_least\_squares stopping criterion occurs when objective function

\[
\frac{1}{2} \|F(x)\|^2 \leq \text{afcn\_tol}.
\]

Default: \(\text{afcn\_tol} = \max(10^{-20}, \epsilon^2), \max(10^{-40}, \epsilon^2)\) in double, where \(\epsilon\) is the machine precision.

**IMSL\_MAX\_STEP**, float *max\_step* (Input)

Maximum allowable step size.

Default: \(\text{max\_step} = 1000 \max(\epsilon_1, \epsilon_2)\), where

\[
\epsilon_1 = \left( \sum_{i=1}^{n} s_i t_i^2 \right)^{1/2}, \epsilon_2 = \|s\|_2
\]

for \(s = x\text{scale}\) and \(t = x\text{guess}\).
IMSL_INIT_TRUST_REGION, float trust_region (Input)
   Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSL_GOOD_DIGIT, int ndigit (Input)
   Number of good digits in the function.
   Default: machine dependent

IMSL_MAX_ITN, int max_itn (Input)
   Maximum number of iterations.
   Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
   Maximum number of function evaluations.
   Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian (Input)
   Maximum number of Jacobian evaluations.
   Default: max_jacobian = 400

IMSL_INTERN_SCALE
   Internal variable scaling option. With this option, the values for xscale are set internally.

IMSL_RETURN_USER, float x[] (Output)
   Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
   The address of a pointer to a real array of length m containing the residuals at the approximate solution.
   On return, the necessary space is allocated by imsl_f_bounded_least_squares.
   Typically, float *fvec is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)
   A user-allocated array of size m containing the residuals at the approximate solution.

IMSL_FJAC, float **fjac (Output)
   The address of a pointer to an array of size m x n containing the Jacobian at the approximate solution.
   On return, the necessary space is allocated by imsl_f_bounded_least_squares.
   Typically, float *fjac is declared, and &fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)
   A user-allocated array of size m x n containing the Jacobian at the approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
   The column dimension of fjac.
   Default: fjac_col_dim = n
IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data), void *data, (Input)
User-supplied function to evaluate the function that defines the least-squares problem, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float fjac[], int fjac_col_dim, void *data), void *data, (Input)
User-supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_bounded_least_squares uses a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear least-squares problems subject to simple bounds on the variables. The problem is stated as follows:

\[
\min \frac{1}{2} F(x)^T F(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2
\]

subject to \( l \leq x \leq u \)

where \( m \geq n, F : \mathbb{R}^n \rightarrow \mathbb{R}^m \), and \( f_i(x) \) is the \( i \)-th component function of \( F(x) \). From a given starting point, an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a “free variable” if it is not in the active set. The routine then computes the search direction for the free variables according to the formula

\[
d = -(J^T J + \mu I)^{-1} J^T F
\]

where \( \mu \) is the Levenberg-Marquardt parameter, \( F = F(x) \), and \( J \) is the Jacobian with respect to the free variables. The search direction for the variables in IA is set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality conditions are checked. The conditions are

\[
\|g(x_i)\| \leq \varepsilon, \ l_i < x_i < u_i \\
g(x_i) < 0, \ x_i = u_i \\
g(x_i) > 0, \ x_i = l_i
\]

where \( \varepsilon \) is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see Gill and Murray (1976).
The first stopping criterion for \texttt{imsl\_f\_bounded\_least\_squares} occurs when the norm of the function is less than the absolute function tolerance. The second stopping criterion occurs when the norm of the scaled gradient is less than the scaled gradient tolerance. The third stopping criterion occurs when the scaled distance between the last two steps is less than the step tolerance. See options \texttt{IMSL\_ABS\_FCN\_TOL}, \texttt{IMSL\_GRAD\_TOL}, and \texttt{IMSL\_STEP\_TOL} for details.

Since a finite-difference method is used to estimate the Jacobian for some single-precision calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a noncritical point. In such cases, high-precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided, the option \texttt{IMSL\_JACOBIAN} should be used.

On some platforms, \texttt{imsl\_f\_bounded\_least\_squares} can evaluate the user-supplied functions \( fcn \) and \( jacobian \) in parallel. This is done only if the function \texttt{imsl\_omp\_options} is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

\section*{Examples}

\subsection*{Example 1}

In this example, the nonlinear least-squares problem

\[
\min \frac{1}{2} \sum_{i=0}^{1} f_i(x)^2 \\
-2 \leq x_0 \leq 0.5 \\
-1 \leq x_1 \leq 2
\]

where

\[
f_0(x) = 10 \left( x_1 - x_0^2 \right) \quad \text{and} \quad f_1(x) = (1 - x_0)
\]

is solved with an initial guess \((-1.2, 1.0)\).

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define M 2
#define N 2
#define LDFJAC 2

int main()
{
 void rosbck(int, int, float *, float *);
 int ibtype = 0;
```
float xlb[N] = {-2.0, -1.0};
float xub[N] = {0.5, 2.0};
float *x;

x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub, 0);

printf("x[0] = %f\n", x[0]);
printf("x[1] = %f\n", x[1]);
}

void rosbck (int m, int n, float *x, float *f)
{
   f[0] = 10.0*(x[1] - x[0]*x[0]);
   f[1] = 1.0 - x[0];
}

Example 2

This example solves the nonlinear least-squares problem

\[
\min_{x} \frac{1}{2} \sum_{i=0}^{1} f_i(x)^2
\]

\[-2 \leq x_0 \leq 0.5\]
\[-1 \leq x_1 \leq 2\]

where

\[f_0(x) = 10(x_1 - x_0^2) \quad \text{and} \quad f_1(x) = (1 - x_0)\]

This time, an initial guess (-1.2, 1.0) is supplied, as well as the analytic Jacobian. The residual at the approximate solution is returned.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define M 2
#define N 2
#define LDFJAC 2

int main()
{
   void rosbck(int, int, float *, float *);
   void jacobian(int, int, float *, float *, int);
   int ibtype = 0;
   float xlb[N] = {-2.0, -1.0};
   float xub[N] = {0.5, 2.0};
   float xguess[N] = {-1.2, 1.0};
float *fvec;
float *x;

x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,
IMSL_JACOBIAN, jacobian,
IMSL_XGUESS, xguess,
IMSL_FVEC, &fvec,
0);

printf("x[0] = %f
", x[0]);
printf("x[1] = %f\n", x[1]);
printf("fvec[0] = %f\n", fvec[0]);
printf("fvec[1] = %f\n", fvec[1]);
}

void rosbck (int m, int n, float *x, float *f)
{
    f[0] = 10.0*(x[1] - x[0]*x[0]);
    f[1] = 1.0 - x[0];
}

void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)
{
    fjac[0] = -20.0*x[0];
    fjac[1] = 10.0;
    fjac[2] = -1.0;
    fjac[3] = 0.0;
}

Output

x[0] = 0.500000
x[1] = 0.250000

fvec[0] = 0.000000
fvec[1] = 0.500000

Fatal Errors

IMSL_STOP_USER_FCN
Request from user supplied function to stop algorithm.
User flag = ";".
constrained_nlp

Solves a general nonlinear programming problem using a sequential equality constrained quadratic programming method.

Synopsis

```c
#include <imsl.h>

float *imsl_f_constrained_nlp(void fcn(), int m, int meq, int n, int ibtype, float xlb[],
float xub[], ..., 0)
```

The type `double` function is `imsl_d_constrained_nlp`.

Required Arguments

```c
void fcn(int n, float x[], int iact, float *result, int *ierr)(Input)
```
User supplied function to evaluate the objective function and constraints at a given point.

- `int n` (Input)
  Number of variables.

- `float x[]` (Input)
  The point at which the objective function or a constraint is evaluated.

- `int iact` (Input)
  Integer indicating whether evaluation of the function is requested or evaluation of a constraint is requested. If `iact` is zero, then an objective function evaluation is requested. If `iact` is nonzero then the value of `iact` indicates the index of the constraint to evaluate. `iact = 1 to meq` for equality constraints and `iact = meq + 1 to m` for inequality constraints.

- `float result[]` (Output)
  If `iact` is zero, then `result` is the computed objective function at the point `x`. If `iact` is nonzero, then `result` is the requested constraint value at the point `x`.

- `int *ierr` (Output)
  Address of an integer. On input `ierr` is set to 0. If an error or other undesirable condition occurs during evaluation, then `ierr` should be set to 1. Setting `ierr` to 1 will result in the step size being reduced and the step being tried again. (If `ierr` is set to 1 for `xguess`, then an error is issued.)
**int m (Input)**
- Total number of constraints.

**int meq (Input)**
- Number of equality constraints.

**int n (Input)**
- Number of variables.

**int ibtype (Input)**
- Scalar indicating the types of bounds on variables.

<table>
<thead>
<tr>
<th>ibtype</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User will supply all the bounds.</td>
</tr>
<tr>
<td>1</td>
<td>All variables are nonnegative.</td>
</tr>
<tr>
<td>2</td>
<td>All variables are nonpositive.</td>
</tr>
<tr>
<td>3</td>
<td>User supplies only the bounds on first variable, all other variables will have the same bounds.</td>
</tr>
</tbody>
</table>

**float xlb[] (Input, Output, or Input/Output)**
- Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value should be set to IMSL_f_machine(8).

**float xub[] (Input, Output, or Input/Output)**
- Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value should be set to IMSL_f_machine(7).

**Return Value**
- A pointer to the solution \( x \) of the nonlinear programming problem. To release this space, use free. If no solution can be computed, then NULL is returned.

**Synopsis with Optional Arguments**

```c
#include <imsl.h>

float *imsl_f_constrained_nlp(void fcn(), int m, int meq, int n, int ibtype, float xlb[],
 float xub[],
 IMSL_GRADIENT, void grad(),
```


IMSL_PRINT, int iprint,
IMSL_XGUESS, float xguess[],
IMSL_ITMAX, int itmax,
IMSL_TAU0, float tau0,
IMSL_DEL0, float del0,
IMSL_SMALLW, float smallw,
IMSL_DELMIN, float delmin,
IMSL_SCFMAX, float scfmax,
IMSL_RETURN_USER, float x[],
IMSL_OBJ, float *obj,
IMSL_DIFFTYPE, int difftype,
IMSL_XSCALE, float xscale[],
IMSL_EPSDIF, float epsdif,
IMSL_EPSFCN, float epsfcn,
IMSL_TAUBND, float taubnd,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
0)

Optional Arguments

IMSL_GRADIENT, void grad(int n, float x[], int iact, float result[]) (Input)
User-supplied function to evaluate the gradients at a given point where

Arguments

 int n (Input)
    Number of variables.

 float x[] (Input)
    The point at which the gradient of the objective function or gradient of a constraint is evaluated
**int iact (Input)**

Integer indicating whether evaluation of the function gradient is requested or evaluation of a constraint gradient is requested. If `iact` is zero, then an objective function gradient evaluation is requested. If `iact` is nonzero then the value of `iact` indicates the index of the constraint gradient to evaluate: `iact = 1` to `meq` for equality constraints and `iact = meq + 1` to `m` for inequality constraints.

**float result[] (Output)**

If `iact` is zero, then `result` is the computed gradient of the objective function at the point `x`. If `iact` is nonzero, then `result` is the computed gradient of the requested constraint value at the point `x`.

**IMSL_PRINT, int iprint (Input)**

Parameter indicating the desired output level. (Input)

<table>
<thead>
<tr>
<th>iprint</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output printed.</td>
</tr>
<tr>
<td>1</td>
<td>One line of intermediate results is printed in each iteration.</td>
</tr>
<tr>
<td>2</td>
<td>Lines of intermediate results summarizing the most important data for each step are printed.</td>
</tr>
<tr>
<td>3</td>
<td>Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking and etc are printed.</td>
</tr>
<tr>
<td>4</td>
<td>Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking, the gradients in the working set, the quasi-Newton updated and etc are printed.</td>
</tr>
</tbody>
</table>

Default: `iprint = 0`.

**IMSL_XGUESS, float xguess[] (Input)**

Array of length `n` containing an initial guess of the solution.

Default: `xguess = X`, (with the smallest value of `||x||_2`) that satisfies the bounds.

**IMSL_ITMAX, int itmax (Input)**

Maximum number of iterations allowed.

Default: `itmax = 200`.

**IMSL_TAU0, float tau0 (Input)**

A universal bound describing how much the unscaled penalty-term may deviate from zero.

`imsl_f_constrained_nlp` assumes that within the region described by
all functions may be evaluated safely. The initial guess, however, may violate these requirements. In that case an initial feasibility improvement phase is run by `imsl_f_constrained_nlp` until such a point is found. A small $\tau_0$ diminishes the efficiency of `imsl_f_constrained_nlp`, because the iterates then will follow the boundary of the feasible set closely. Conversely, a large $\tau_0$ may degrade the reliability of the code.

Default $\tau_0 = 1.0$.

**IMSL_DEL0, float del0 (Input)**
In the initial phase of minimization a constraint is considered binding if

$$
\frac{g_i(x)}{\max \left( 1, \| \nabla g_i(x) \| \right)} \leq \text{del0} \quad i = M_e + 1, \ldots, M
$$

Good values are between .01 and 1.0. If $\text{del0}$ is chosen too small then identification of the correct set of binding constraints may be delayed. Contrary, if $\text{del0}$ is too large, then the method will often escape to the full regularized SQP method, using individual slack variables for any active constraint, which is quite costly. For well-scaled problems $\text{del0} = 1.0$ is reasonable.

Default: $\text{del0} = 0.5 \times \tau_0$

**IMSL_SMALLW, float smallw (Input)**
Scalar containing the error allowed in the multipliers. For example, a negative multiplier of an inequality constraint is accepted (as zero) if its absolute value is less than $\text{smallw}$.

Default: $\text{smallw} = \exp(2 \log(\text{eps}/3))$ where $\text{eps}$ is the machine precision.

**IMSL_DELMIN, float delmin (Input)**
Scalar which defines allowable constraint violations of the final accepted result. Constraints are satisfied if $|g_i(x)| \leq \text{delmin}$ for equality constraints, and $g_i(x) \geq (-\text{delmin})$ for equality constraints.

Default: $\text{delmin} = \min(1.0 \times \text{del0}, \max(\text{epsdif}, \max(1.0e-6 \times \text{del0}, \text{smallw})))$

**IMSL_SCFMAX, float scfmax (Input)**
Scalar containing the bound for the internal automatic scaling of the objective function. (Input)

Default: $\text{scfmax} = 1.0e4$

**IMSL_RETURN_USER, float x[] (Output)**
A user allocated array of length $n$ containing the solution $x$.

**IMSL_OBJ, float *obj (Output)**
Scalar containing the value of the objective function at the computed solution.

**IMSL_LAGRANGE_MULTIPLIERS, float **lagrange (Output)**
The address of a pointer, which on exit, points to an array containing the Lagrange multiplier estimates of the constraints.
**IMSL_LAGRANGE_MULTIPLIERS_USER**, float lagrange_user[] (Output)
A user-supplied array of length ncon containing the Lagrange multiplier estimates of the constraints.

**IMSL_CONSTRAINT_RESIDUALS**, float **const_res** (Output)
The address of a pointer, which on exit, points to an array containing the constraints residuals.

**IMSL_CONSTRAINT_RESIDUALS_USER**, float const_res_user[] (Output)
A user-supplied array of length ncon containing the constraint residuals.

**IMSL_FCN_W_DATA**, void fcn(int n, float x[], int iact, float *result, int *ierr, void *data), void *data, (Input)
User supplied function to evaluate the objective function and constraints at a given point, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See **Passing Data to User-Supplied Functions** in the introduction to this manual for more details.

**IMSL_GRADIENT_W_DATA**, void grad(int n, float x[], int iact, float result[], void *data), void *data, (Input)
User-supplied function to evaluate the gradients at a given point, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See **Passing Data to User-Supplied Functions** in the introduction to this manual for more details.

**IMSL_DIFFTYPE**, int difftype (Input)
Type of numerical differentiation to be used.
Default: difftype = 1

<table>
<thead>
<tr>
<th>difftype</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use a forward difference quotient with discretization stepsize 0.1(epsfcn)^{1/2} componentwise relative.</td>
</tr>
<tr>
<td>2</td>
<td>Use the symmetric difference quotient with discretization stepsize 0.1(epsfcn)^{1/3} componentwise relative.</td>
</tr>
<tr>
<td>3</td>
<td>Use the sixth order approximation computing a Richardson extrapolation of three symmetric difference quotient values. This uses a discretization stepsize 0.01(epsfcn)^{1/7}.</td>
</tr>
</tbody>
</table>

**IMSL_XSCALE**, float xscale[] (Input)
Vector of length n setting the internal scaling of the variables. The initial value given and the objective function and gradient evaluations however are always in the original unscaled variables. The first internal variable is obtained by dividing values x[i] by xscale[i]. In the absence of other information, set all entries to 1.0.
Default: xscale[] = 1.0.

**Note**: The following optional arguments are valid only if **IMSL_GRADIENT** is not supplied.
**IMSL_EPSDIF**, float `epsdif (Input)`
Relative precision in gradients.
Default: `epsdif = \(\varepsilon\)` where \(\varepsilon\) is the machine precision.

**IMSL_EPSFCN**, float `epsfcn (Input)`
Relative precision of the function evaluation routine.
Default: `epsfcn = \(\varepsilon\)` where \(\varepsilon\) is the machine precision.

**IMSL_TAUBND**, float `taubnd (Input)`
Amount by which bounds may be violated during numerical differentiation. Bounds are violated by `taubnd` (at most) only if a variable is on a bound and finite differences are taken for gradient evaluations.
Default: `taubnd = 1.0`

**Description**

The function `constrained_nlp` provides an interface to a licensed version of subroutine DONLP2, a code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic programming method with an active set technique, and an alternative usage of a fully regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in the "working sets"). It uses a slightly modified version of the Pantoja-Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved Armijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in the following two papers:


The problem is stated as follows:

\[
\min_{x \in \mathbb{R}^n} f(x) \\
\text{subject to } \quad g_j(x) = 0, \text{ for } j = 1, \ldots, m_e \\
\quad g_j(x) \geq 0, \text{ for } j = m_e + 1, \ldots, m \\
\quad x_l \leq x \leq x_u
\]

Although default values are provided for optional input arguments, it may be necessary to adjust these values for some problems. Through the use of optional arguments, `imsl_f_constrained_nlp` allows for several parameters of the algorithm to be adjusted to account for specific characteristics of problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies for maximizing the performance of the algorithm. The DONLP2 Users Guide is available in the "help" subdirectory of the main IMSL product installation directory. In addition, the following are a number of guidelines to consider when using `imsl_f_constrained_nlp`.
• A good initial starting point is very problem specific and should be provided by the calling program whenever possible. See optional argument IMSL_XGUESS.

• Gradient approximation methods can have an effect on the success of imsl_f_constrained_nlp. Selecting a higher order approximation method may be necessary for some problems. See optional argument IMSL_DIFFTYPE.

• If a two sided constraint \( l_i \leq g_i(x) \leq u_i \) is transformed into two constraints \( g_{2i}(x) \geq 0 \) and \( g_{2i+1}(x) \geq 0 \), then choose \( \text{del0} < \frac{1}{2} (u_i - l_i) / \max\{1, \| \nabla g_i(x) \| \} \), or at least try to provide an estimate for that value. This will increase the efficiency of the algorithm. See optional argument IMSL_DEL0.

• The parameter ierr provided in the interface to the user supplied function fcn can be very useful in cases when evaluation is requested at a point that is not possible or reasonable. For example, if evaluation at the requested point would result in a floating point exception, then setting ierr to 1 and returning without performing the evaluation will avoid the exception. imsl_f_constrained_nlp will then reduce the stepsize and try the step again. Note, if ierr is set to 1 for the initial guess, then an error is issued.

On some platforms, constrained_nlp can evaluate the user-supplied functions fcn and grad in parallel. This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

Example

The problem

\[
\begin{align*}
\text{min } F(x) &= (x_1 - 2)^2 + (x_2 - 1)^2 \\
\text{subject to } g_1(x) &= x_1 - 2x_2 + 1 = 0 \\
g_2(x) &= -x_1^2 / 4 - x_2^2 + 1 \geq 0
\end{align*}
\]

is solved.

#include "imsl.h"
#define M 2
#define ME 1
#define N 2
void grad(int n, float x[], int iact, float result[]);
void fcn(int n, float x[], int iact, float *result, int *ierr);

int main()
{
    int ibtype = 0;
    float *x, ans[2];
    static float xlb[N], xub[N];

    imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
    xlb[0] = xlb[1] = imsl_f_machine(8);
```c
xub[0] = xub[1] = imsl_f_machine(7);
x = imsl_f_constrained_nlp(fcn, M, ME, N, ibtype, xlb, xub, 0);
imsl_f_write_matrix ("The solution is", 1, N, x, 0);
}

/* Himmelblau problem 1 */
void fcn(int n, float x[], int iact, float *result, int *ierr)
{
 float tmp1, tmp2;
 tmp1 = x[0] - 2.0e0;
 tmp2 = x[1] - 1.0e0;
 switch (iact) {
 case 0:
 *result = tmp1 * tmp1 + tmp2 * tmp2;
 break;
 case 1:
 *result = x[0] - 2.0e0 * x[1] + 1.0e0;
 break;
 case 2:
 *result = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;
 break;
 default: ;
 break;
 }
 *ierr = 0;
 return;
}

Output

The solution is
 1 2
0.8229 0.9114

Fatal Errors

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
```
jacobian

Approximates the Jacobian of \( m \) functions in \( n \) unknowns using divided differences.

Synopsis

```c
#include <imsl.h>

void imsl_f_jacobian (void fcn (), int m, int n, float y[], float f[], float fjac[], ... , 0);
```

The type `double` function is `imsl_d_jacobian`.

Required Arguments

```c
void fcn (int indx, float y[], float f[]) (Input/Output)
```

User-supplied function to compute the value of the function whose Jacobian is to be calculated using divided differences and/or the value of the analytic derivative of that function.

**Required Arguments**

```c
int indx (Input)
```

Index of the variable whose derivative is to be computed. `imsl_f_jacobian` sets this argument to the index of the variable whose derivative is being computed. In those cases where finite differencing and direct analytic computation are combined to calculate a derivative (see optional argument `IMSL_ACCUMULATE`), `imsl_f_jacobian` makes an extra call to `fcn` (with argument `indx` negative) each time the derivative with respect to variable `indx` is calculated, in order to calculate the analytic component of that derivative. Note that `indx` runs from 1 to \( n \), where \( n \) is the number of variables.

```c
float y[] (Input)
```

Array of length \( n \) containing the point at which the function is to be computed.

```c
float f[] (Output)
```

Array of length \( m \), where \( m \) is the number of functions to be evaluated at point \( y \), containing the function values at point \( y \). Normally, the user returns the values of the functions evaluated at point \( y \) in \( f \). However, when the function can be broken into two parts, a part which is known analytically and a part to be differenced, \( fcn \) is called by `imsl_f_jacobian` once with `indx` positive for the portion to be differenced and again with `indx` negative for the portion which is known analytically. In the case where optional argument `IMSL_ACCUMULATE` has been specified by the user, `fcn` must be written to handle the known analytic portion separately from the part to be differenced. (See Example 4 for an example where `IMSL_ACCUMULATE` is used.)

```c
int m (Input)
```

The number of equations.
int n (Input)
The number of variables.

float y[] (Input)
Array of length n containing the point at which the Jacobian is to be evaluated.

float f[] (Output)
Array of length m containing the function values at point y.

float fjac[] (Input/Output)
m by n array which, on output, contains the estimated Jacobian. Note that if optional argument 
IMSL_METHOD, method, is used, then for each variable i for which method[i] is set to 
IMSL_DD_SKIP, array elements fjac[j=0,...,m-1][i] are input arguments and must be set 
to the analytic derivatives with respect to variable i prior to calling imsl_f_jacobian. (See 
description of optional argument IMSL_METHOD and Example 3 below).

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_jacobian (void fcn(), int m, int n, float y[], float f[], float fjac[], 
   IMSL_YSCALE, float scale[], 
   IMSL_METHOD, int method[], 
   IMSL_ACCUMULATE, 
   IMSL_FACTOR, float factor[], 
   IMSL_ISTATUS, int istatus[], 
   IMSL_FCN_W_DATA, void fcn_w_data(), 
   void *data, 
   0);

Optional Arguments
IMSL_YSCALE, float scale[] (Input)
An array of length n containing the diagonal scaling matrix for the variables. scale can also be used 
to provide appropriate signs for the increments. If the user sets scale[0] to 0.0, then differencing 
increment del_j (for variable j = 1,...,n) is set to \( \sigma_j \cdot |y[j-1]| \cdot \text{factor}[j-1] \). Otherwise, del_j is 
set to \( \sigma_j \cdot |scale[j-1]| \cdot \text{factor}[j-1] \). (See the discussion of optional argument 
IMSL_FACTOR below for more information about the calculation of del_j.)
Default: scale[i=0,...,n-1] = 1.0.
**IMSL_METHOD, int method[]** (Input)

An array of length \( n \) containing the methods used to compute the derivatives. \( \text{method}[i] \) is the method to be used for variable \( i \). \( \text{method}[i] \) can be one of the values in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_DD_ONE_SIDED</td>
<td>Indicates one-sided differences.</td>
</tr>
<tr>
<td>IMSL_DD_CENTRAL</td>
<td>Indicates central differences.</td>
</tr>
<tr>
<td>IMSL_DD_SKIP</td>
<td>Indicates that the user has set the input Jacobian ( \text{fjac}[j=0,\ldots,m-1][i] ) to the exact analytic derivative of the function with respect to variable ( i ) at point ( y[i] ), and that the calculation of the divided difference approximation is to be skipped.</td>
</tr>
</tbody>
</table>

See Example 2 and Example 3 below for demonstrations of how this optional argument is used.

Note that if (and only if) IMSL_DD_SKIP is specified for a variable \( i \), the required array elements \( \text{fjac}[j=0,\ldots,m-1][i] \) must be set to the analytic derivatives with respect to variable \( i \) prior to calling imsl_f_jacobian. See Example 3 below.

Default: If optional argument IMSL_METHOD is not used, then one-sided differences are used for all variables.

**IMSL_ACCUMULATE** (Input)

Indicates that divided differences are to be accumulated with a Jacobian value previously initialized by the user with analytically calculated components of the derivatives via a call to \( fcn \) using negative values of \( fcn \) argument \( \text{indx} \). See the description of \( \text{indx} \) above and Example 4 below.

**IMSL_FACTOR, float factor[]** (Input)

An array of length \( n \) containing the percentage factor for differencing.

For each divided difference for variable \( j = 1, \ldots, n \), the differencing increment used is \( \text{del}_j \). (See the Description below for a discussion of the differencing methods.) The value of \( \text{del}_j \) is computed as follows: If \( \text{scale}[0] \) has been set to 0.0 (see the description of optional argument IMSL_YSCALE above), define \( y_{aj} = |y[j-1]| \) and \( \sigma_j = 1 \). Otherwise, if \( \text{scale}[j-1] \{<, >\} 0 \), define \( y_{aj} = |\text{scale}[j-1]| \) and \( \sigma_j = \{-1, 1\} \). Finally, compute \( \text{del}_j = \sigma_j y_{aj} \text{factor}[j-1] \).

By changing the sign of \( \text{scale}[j-1] \), the difference \( \text{del}_j \) can have any desired orientation, such as staying within bounds on variable \( j \). For central differences, a reduced factor is used for \( \text{del}_j \) that normally results in relative errors as small as \( \epsilon^{2/3} \), where \( \epsilon = \) machine precision = \( \text{imsl_f_machine}(4), \text{imsl_d_machine}(4) \) for \{single, double\} precision. The elements of \( \text{factor} \) must be such that: \( \epsilon^{3/4} \leq \text{factor}[j-1] \leq 0.1 \).

Default: All elements of \( \text{factor} \) are set to \( \epsilon^{1/2} \).
IMSL_ISTATUS, int istatus[] (Output)
Array of length 10 containing status information that might prove useful to a user wanting to gain better control over the differencing parameters. This information can often be ignored. The following table describes the diagnostic information that is returned in each of the entries of array istatus[]:

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The number of times a function evaluation was computed.</td>
</tr>
<tr>
<td>1</td>
<td>The number of columns in which three attempts were made to increase a percentage factor for differencing (i.e., a component in the factor array) but the computed ( \text{del}_j ) (for ( j = 1, \ldots, n )) remained unacceptably small relative to ( y[j-1] ) or scale([j-1]). In such cases the percentage factor is set to the square root of machine precision.</td>
</tr>
<tr>
<td>2</td>
<td>The number of columns in which the computed ( \text{del}_j ) was zero to machine precision because ( y[j-1] ) or scale([j-1]) was zero. In such cases ( \text{del}_j ) is set to the square root of machine precision.</td>
</tr>
<tr>
<td>3</td>
<td>The number of Jacobian columns that had to be recomputed because the largest difference formed in the column was close to zero relative to scale, where ( scale = \max \left(</td>
</tr>
<tr>
<td>4</td>
<td>The number of columns whose largest difference is close to zero relative to scale after the column has been recomputed.</td>
</tr>
<tr>
<td>5</td>
<td>The number of times scale information was not available for use in the round-off and truncation error tests. This occurs when ( \min \left(</td>
</tr>
<tr>
<td>6</td>
<td>The number of times the increment for differencing (( \text{del}_j )) was computed and had to be increased because (scale([j-1]) + del([j]) - scale([j-1])) was too small relative to ( y[j-1] ) or scale([j-1]).</td>
</tr>
<tr>
<td>7</td>
<td>The number of times a component of the factor array was reduced because changes in function values were large and excess truncation error was suspected. ( index = 8 ) gives the last column in which this occurred.</td>
</tr>
</tbody>
</table>
**IMSL_FCN_W_DATA**, **void fcn_w_data()**, **void *data []** (Input/Output)

User supplied function whose Jacobian is being calculated, and which can also accept a pointer to data that is supplied by the user. `data` is a pointer to the data to be passed to the user-supplied function. See Example 4 for a demonstration of how this optional argument is used and Passing Data to User-Supplied Functions in the “Introduction” chapter for more details on the use of `IMSL_FCN_W_DATA`.

**Description**

The function `imsl_f_jacobian` computes the Jacobian matrix for a function $f(y)$ with $m$ components and $n$ independent variables. `imsl_f_jacobian` uses divided finite differences to compute the Jacobian. This function is designed for use in numerical methods for solving nonlinear problems where a Jacobian is evaluated repeatedly at neighboring arguments. For example, this occurs in a Gauss-Newton method for solving non-linear least squares problems, or in a non-linear optimization method.

`imsl_f_jacobian` is suited for applications where the Jacobian is a dense matrix. All cases $m < n$, $m = n$, or $m > n$ are allowed. Both one-sided and central divided differences can be used.

The design allows for computation of derivatives in a variety of contexts. Note that a gradient should be considered as the special case with $m = 1$, $n \geq 1$. A derivative of a single function of one variable is the case $m = 1$, $n = 1$. Any non-linear solving routine that optionally requests a Jacobian or gradient can use `imsl_f_jacobian`. This should be considered if there are special properties or scaling issues associated with $f(y)$. Use the optional argument `IMSL_METHOD` to specify different differencing options for numerical differentiation. These can be combined with some analytic subexpressions or other known relationships.

Two divided differences methods are implemented in `imsl_f_jacobian` for computing the Jacobian: **one-sided** and **central** differences.

One-sided differences are computed:

$$\frac{\partial f_i(y)}{\partial y_j} = \frac{f_i(y + \text{del}_j e_j) - f_i(y)}{\text{del}_j}$$

using values of the independent variables at the Jacobian evaluation point $y = \{ y_j, j=1,...,n \}$ and differenced points $y + \text{del}_j e_j$, where the $e_j, j=1,...,n$ are the unit coordinate vectors.

Central differences are computed:
\[
\frac{\partial f_i(y)}{\partial y_j} = \frac{f_i(y + \delta e_j) - f_i(y - \delta e_j)}{2 \delta e_j}
\]

The value for each difference \( \delta e_j \) depends on the variable \( y_j \), the differencing method, and the scaling for that variable. This difference is computed internally. See `IMSL_FACTOR` for computational details. \( f(y) \) is evaluated with user-supplied argument `fcn`, where index \( j \), variable \( y \), and output \( f = f_i(y) \) are arguments to `fcn`.

There are five examples provided that illustrate various ways to use `imsl_f_jacobian`. For a discussion of the expected errors for the difference methods, see Ralston (1965).

Function `imsl_f_jacobian` is based upon the Fortran 77 program SJACG, which was designed and programmed by D. A. Salane, Sandia Labs (1986) and modified by R. J. Hanson, Rice University (June, 2002) with advice from F. T. Krogh. See Salane (1986).

**Examples**

**Example 1**

In this example, the Jacobian matrix of

\[
\begin{align*}
  f_1(x) &= x_1 x_2 - 2 \\
  f_2(x) &= x_1 - x_1 x_2 + 1
\end{align*}
\]

is estimated by the finite-difference method at the point \((1.0, 1.0)\).

```c
#include <imsl.h>
#include <stdio.h>

void fcn(int, float*, float*);

int main()
{
 int n = 2, m = 2;
 float fjac[4], y[2], f[2];
 char *fmt="%14.5e";

 y[0] = 1.0;
 y[1] = 1.0;

 /* Calculate and print
 * Jacobian one-sided difference approximation: */
 imsl_f_jacobian (fcn, m, n, y, f, fjac, 0);

 imsl_f_write_matrix ("The Jacobian is:", m, n, fjac,
 IMSL_WRITE_FORMAT, fmt, 0);
}
```
void fcn(int indx, float y[], float f[])
{
    f[0] = y[0]*y[1] - 2.0;
    f[1] = y[0] - y[0]*y[1] + 1.0;
}

Output

The Jacobian is:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000e+000</td>
</tr>
<tr>
<td>2</td>
<td>0.00000e+000</td>
</tr>
</tbody>
</table>

Example 2

A simple use of imsl_f_jacobian is shown. The gradient of the function

\[ f(y_1, y_2) = a \exp(by_1) + cy_1y_2^2 \]

is required for values

\[ a = 2.5e6, b = 3.4, c = 4.5, y_1 = 2.1, y_2 = 3.2 \]

The analytic gradient of this function is:

\[ \text{grad}(f) = [ab \exp(by_1) + cy_1^2y_2^2, 2cy_1y_2] \]

Note that the comparison of the Jacobian estimates using one-sided and central differences with the exact analytic Jacobian results given in this example demonstrates the increased accuracy afforded by use of central differences. However, these estimates require up to twice as many function calculations as do the one-sided differences estimates for Jacobians with a large number of variables.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

void fcn(int, float*, float*);

void fcn_drv(float*, float*);

int main()
{
    int n = 2, m = 1, j;
    int method[2];
    float fjac[2], y[2], f[1], scale[2];
    char *fmt="%14.5e";

    y[0] = 2.1;
    y[1] = 3.2;
    scale[0] = 1.0;
scale[1] = 8000.0;

/* Use one-sided and central differences
 * to approximate gradient and print results: */

for (j = 0; j <= 1; j++) {
if (j == 0) {
    method[0] = IMSL_DD_ONE_SIDED;
    method[1] = IMSL_DD_ONE_SIDED;
} else {
    method[0] = IMSL_DD_CENTRAL;
    method[1] = IMSL_DD_CENTRAL;
}

imsl_f_jacobian (fcn, m, n, y, f, fjac,
    IMSL_YSCALE, scale,
    IMSL_METHOD, method,
    0);

if (j == 0) {
    imsl_f_write_matrix ("One-Sided Jacobian:",
        m, n, fjac, IMSL_WRITE_FORMAT, fmt, 0);
} else {
    imsl_f_write_matrix ("Central Jacobian:",
        m, n, fjac, IMSL_WRITE_FORMAT, fmt, 0);
}
}

/* Calculate analytic Jacobian: */

fcn_drv (y, fjac);
imsl_f_write_matrix ("Analytic Jacobian:",
    m, n, fjac, IMSL_WRITE_FORMAT, fmt, 0);
}

void fcn(int indx, float y[], float f[])
{
    float a, b, c;

    a = 2500000.;
    b = 3.4;
    c = 4.5;

    f[0] = a * exp (b * y[0]) + c * y[0] * y[1] * y[1];
}

void fcn_drv(float y[], float fjac[])
{
    float a, b, c;

    a = 2500000.;
\[
\begin{align*}
&b = 3.4; \\
&c = 4.5; \\
&fjac[0] = a \times b \times \exp(b \times y[0]) + c \times y[1] \times y[1]; \\
&fjac[1] = 2 \times c \times y[0] \times y[1]; \\
\end{align*}
\]

Output

One-Sided Jacobian:

\[
\begin{array}{cc}
1 & 2 \\
1.07285e+010 & 9.26819e+001
\end{array}
\]

Central Jacobian:

\[
\begin{array}{cc}
1 & 2 \\
1.07225e+010 & 6.17690e+001
\end{array}
\]

Analytic Jacobian:

\[
\begin{array}{cc}
1 & 2 \\
1.07221e+010 & 6.04800e+001
\end{array}
\]

Example 3

This example uses the same data as in Example 2. Here we assume that the second component of the gradient is analytically known. Therefore only the first gradient component needs numerical approximation. The input value IMSL_DD_SKIP of array element method[1] specifies that numerical differentiation with respect to \(y_2\) is skipped.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

void fcn(int, float*, float*);

int main()
{
 int n = 2, m = 1;
 int method[2];
 float fjac[2], y[2], f[1], scale[2];
 char *fmt="%14.5e";

 y[0] = 2.1;
 y[1] = 3.2;
 scale[0] = 1.0;
 scale[1] = 8000.0;

/* One-sided differences for fjac[0]: */

 method[0] = IMSL_DD_ONE_SIDED;
}
```
/* Set method[1] to skip differencing for fjac[1] and initialize it to analytic derivative: */

    method[1] = IMSL_DD_SKIP;
fjac[1] = 2.0 * 4.5 * y[0] * y[1];

/* Get Gradient approximation: */

    imsl_f_jacobian (fcn, m, n, y, f, fjac,
                      IMSL_YSCALE, scale,
                      IMSL_METHOD, method,
                      0);

/* Print results: */

    imsl_f_write_matrix ("The Jacobian is:", m, n, fjac,
                         IMSL_WRITE_FORMAT, fmt, 0);
}

void fcn(int indx, float y[], float f[])
{
    float a, b, c;
    a = 2500000.;
    b = 3.4;
    c = 4.5;

    f[0] = a * exp (b * y[0]) + c * y[0] * y[1] * y[1];
}

Output

The Jacobian is:

    1              2
    1.07285e+010   6.04800e+001

Example 4

This example uses the same data as in Example 2, computing the Jacobian (gradient) of the function:

    f(y_1, y_2) = a \exp(by_1) + cy_2^2

For this example, the analytic derivative of the second term with respect to \( y_1 \), \( cy_2^2 \), is provided by the user (in the example, see case  -1: within the user-provided function \( fcn \)). This leaves only the first term, \( a \exp(by_1) \), to be evaluated in order to use direct differencing to calculate the first partial (see case  1: within the user-provided function \( fcn \)). Also, since the first term does not depend on the second variable, \( y_2 \), it can be left out of the function evaluation when computing the partial with respect to \( y_2 \) using differencing methods, potentially avoiding cancellation errors (see case  2: within the user-provided function \( fcn \)). Since the code does not specify the
analytic derivative with respect to $y_2$ for either of the two terms of $f(y_1, y_2)$, $f_0$ returns $f_0 = 0$ for case -2. The use of optional argument IMSL_ACCUMULATE thereby allows imsl_f_jacobian to use these facts to obtain greater accuracy using a minimum number of computations of the exponential function.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

void fcn_w_data(int, float*, float*, void*);

int main()
{
 int n = 2, m = 1;
 float fjac[2], y[2], f[1], scale[2];
 char *fmt="%14.5e";

 float rdata[3];

 y[0] = 2.1;
 y[1] = 3.2;
 scale[0] = 1.0;
 scale[1] = 8000.0;

 /* Set up to pass extra information to the function: */

 rdata[0] = 2500000.0;
 rdata[1] = 3.4;
 rdata[2] = 4.5;

 /* Use optional argument IMSL_ACCUMULATE so that the
 * user can specify which function components are to be
 * used for divided difference approximation of
 * derivatives and which are to be replaced with exact
 * analytically calculated derivatives. Both components
 * are set to the default one-sided differences method.
 *
 * Calculate and print Jacobian approximation: */

 imsl_f_jacobian (NULL, m, n, y, f, fjac,
 IMSL_YSCALE, scale,
 IMSL_ACCUMULATE,
 IMSL_FCN_W_DATA, fcn_w_data, (void*) rdata, 0);

 imsl_f_write_matrix ("The Jacobian is:", m, n, fjac,
 IMSL_WRITE_FORMAT, fmt, 0);
}

void fcn_w_data(int indx, float y[], float f[],
 void* data)
{ float a, b, c;
 float *rdata = (float*) data;

 a = rdata[0];
 b = rdata[1];
 c = rdata[2];

 /* Handle both the differenced part and the part that is
 * known analytically for each dependent variable: */

 switch (indx) {
 case 1:
 f[0] = a * exp(b * y[0]);
 break;
 case -1:
 f[0] = c * y[1] * y[1];
 break;
 case 2:
 f[0] = c * y[0] * y[1] * y[1];
 break;
 case -2:
 f[0] = 0.;
 break;
 }
}

Output

The Jacobian is:

\[
\begin{array}{cc}
1 & 2 \\
1.07285e+010 & 6.04862e+001 \\
\end{array}
\]

Example 5

This example uses CNL function `imsl_f_bounded_least_squares` to solve the nonlinear least-squares problem:

\[
\begin{align*}
\min \frac{1}{2} \sum_{i=0}^{1} f_i(x)^2 \\
-2 \leq x_0 \leq 0.5 \\
-1 \leq x_1 \leq 2
\end{align*}
\]

where: \(f_0(x) = 10(x_1-x_0^2) \), \(f_1(x) = 1-x_0 \), an initial guess \((-1.2, 1.0)\) is supplied, and the residual at the approximate solution is returned. This example is identical to Example 2 of `imsl_f_bounded_least_squares`, except that Example 2 uses an analytic Jacobian, and this example uses `imsl_f_jacobian` to approximate the Jacobian using the default one-sided differences.
Note that the function vector whose sum of squares is to be minimized, \texttt{rosbck}, is supplied directly (as a required argument) to \texttt{imsl_f_bounded_least_squares} and indirectly to \texttt{imsl_f_jacobian}, wrapped in function \texttt{fcn}. Function \texttt{fcn} is supplied to \texttt{imsl_f_jacobian} via optional argument \texttt{IMSL_FCN_W_DATA}, \texttt{fcn}, (void*) \texttt{idata}. \texttt{imsl_f_jacobian} is called from within function \texttt{jacobian} which is passed to \texttt{imsl_f_bounded_least_squares} via optional argument \texttt{IMSL_JACOBIAN}, \texttt{jacobian}.

Also note that the array size parameters \texttt{m} and \texttt{n} are passed to function \texttt{rosbck} (which is wrapped in function \texttt{fcn} for use by \texttt{imsl_f_jacobian}) via integer array \texttt{idata}, which is specified in the optional argument \texttt{IMSL_FCN_W_DATA}, \texttt{fcn}, (void*) \texttt{idata}. This is an example of how to pass necessary integer data to \texttt{imsl_f_jacobian} required argument function \texttt{fcn} using \texttt{IMSL_FCN_W_DATA}; an example of passing real data using \texttt{IMSL_FCN_W_DATA} is given in Example 4 above.

Example 5 demonstrates how \texttt{imsl_f_jacobian} can be used to supply estimates of the Jacobian matrix that are necessary for solving many optimization problems when the function to be minimized is complex and its Jacobian cannot be calculated analytically.

```c
#include <imsl.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

#define M 2
#define N 2
#define LDFJAC 2

void rosbck(int m, int n, float *x, float *f);
void jacobian(int m, int n, float *x, float *fjac, int fjac_col_dim);
void fcn(int indx, float *x, float *f, void* data);

void main()
{
    int ibtype = 0;
    float xlb[N] = {-2.0, -1.0};
    float xub[N] = {0.5, 2.0};
    float xguess[N] = {-1.2, 1.0};
    float *fvec;
    float *x;

    x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,
        IMSL_JACOBIAN, jacobian,
        IMSL_XGUESS, xguess,
        IMSL_FVEC, &fvec,
        0);

    printf("x[0] = %f\n", x[0]);
    printf("x[1] = %f\n", x[1]);
    printf("fvec[0] = %f\n", fvec[0]);
    printf("fvec[1] = %f\n", fvec[1]);
}
```
void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}

void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)
{
 int idata[2];
 float *f = NULL;
 f = (float*)malloc(m*sizeof(float));
 idata[0] = m;
 idata[1] = n;

 imsl_f_jacobian(NULL, m, n, x, f, fjac,
 IMSL_FCN_W_DATA, fcn, (void*) idata, 0);
 if (f) free(f);
}

void fcn (int indx, float *x, float *f, void* data)
{
 int *idata = (int*) data;
 int m = idata[0];
 int n = idata[1];

 rosbck (m, n, x, f);
}

Output

x[0] = 0.500000
x[1] = 0.250000

fvec[0] = 0.000000
fvec[1] = 0.500000
Functions

Error and Gamma Functions

Error Functions
- Evaluates error function: erf 929
- Evaluates complementary error function: erfc 931
- Evaluates exponentially error function: erfce 934
- Evaluates scaled function: erfe 936
- Evaluates inverse error function: erf_inverse 938
- Evaluates inverse complementary error function: erfc_inverse 941
- Evaluates beta function: beta 944
- Evaluates logarithmic beta function: log_beta 947
- Evaluates incomplete beta function: betaIncomplete 949

Gamma Functions
- Evaluates gamma function: gamma 951
- Evaluates logarithmic gamma function: log_gamma 954
- Evaluates incomplete gamma function: gammaIncomplete 957

Psi Function
- Evaluates the derivative of the log gamma function: psi 960
- Evaluates the real psi1 function, ψ1(x): psi1 962

Bessel Functions
- Evaluates function J0: bessel_J0 964
- Evaluates function J1: bessel_J1 967
- Evaluates function Jn: bessel_Jx 969
- Evaluates function Y0: bessel_Y0 972
- Evaluates function Y1: bessel_Y1 975
- Evaluates function Yv: bessel_Yx 977
- Evaluates function I0: bessel_I0 979
<table>
<thead>
<tr>
<th>Function Description</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates function $e^{-</td>
<td>x</td>
<td>}\text{I}_0(x)$</td>
</tr>
<tr>
<td>Evaluates function I_1</td>
<td><code>bessel_I1</code></td>
<td>983</td>
</tr>
<tr>
<td>Evaluates function $e^{-</td>
<td>x</td>
<td>}\text{I}_1(x)$</td>
</tr>
<tr>
<td>Evaluates function I_v</td>
<td><code>bessel_Ix</code></td>
<td>987</td>
</tr>
<tr>
<td>Evaluates function K_0</td>
<td><code>bessel_K0</code></td>
<td>989</td>
</tr>
<tr>
<td>Evaluates function $e^{</td>
<td>x</td>
<td>}\text{K}_0(x)$</td>
</tr>
<tr>
<td>Evaluates function K_1</td>
<td><code>bessel_K1</code></td>
<td>993</td>
</tr>
<tr>
<td>Evaluates function $e^{</td>
<td>x</td>
<td>}\text{K}_1(x)$</td>
</tr>
<tr>
<td>Evaluates function K_v</td>
<td><code>bessel_Kx</code></td>
<td>997</td>
</tr>
</tbody>
</table>

Elliptic Integrals

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates complete elliptic integral of the first kind</td>
<td><code>elliptic_integral_K</code></td>
<td>999</td>
</tr>
<tr>
<td>Evaluates complete elliptic integral of the second kind</td>
<td><code>elliptic_integral_E</code></td>
<td>1001</td>
</tr>
<tr>
<td>Evaluates Carlson's elliptic integral of the first kind</td>
<td><code>elliptic_integral_RF</code></td>
<td>1003</td>
</tr>
<tr>
<td>Evaluates Carlson's elliptic integral of the second kind</td>
<td><code>elliptic_integral_RD</code></td>
<td>1005</td>
</tr>
<tr>
<td>Evaluates Carlson's elliptic integral of the third kind</td>
<td><code>elliptic_integral_RJ</code></td>
<td>1007</td>
</tr>
<tr>
<td>Evaluates special case of Carlson's elliptic integral</td>
<td><code>elliptic_integral_RC</code></td>
<td>1009</td>
</tr>
</tbody>
</table>

Fresnel Integrals

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates cosine Fresnel integral</td>
<td><code>fresnel_integral_C</code></td>
<td>1011</td>
</tr>
<tr>
<td>Evaluates sine Fresnel integral</td>
<td><code>fresnel_integral_S</code></td>
<td>1013</td>
</tr>
</tbody>
</table>

Airy Functions

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates Airy function</td>
<td><code>airy_Ai</code></td>
<td>1015</td>
</tr>
<tr>
<td>Evaluates Airy function of the second kind</td>
<td><code>airy_Bi</code></td>
<td>1017</td>
</tr>
<tr>
<td>Evaluates derivative of the Airy function</td>
<td><code>airy_Ai_derivative</code></td>
<td>1019</td>
</tr>
<tr>
<td>Evaluates derivative of the Airy function of the second kind</td>
<td><code>airy_Bi_derivative</code></td>
<td>1021</td>
</tr>
</tbody>
</table>

Kelvin Functions

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates Kelvin function ber of the first kind order 0</td>
<td><code>kelvin_ber0</code></td>
<td>1023</td>
</tr>
<tr>
<td>Evaluates Kelvin function bei of the first kind order 0</td>
<td><code>kelvin_bei0</code></td>
<td>1025</td>
</tr>
<tr>
<td>Evaluates Kelvin function ker of the second kind order 0</td>
<td><code>kelvin_ker0</code></td>
<td>1027</td>
</tr>
<tr>
<td>Evaluates Kelvin function kei of the second kind order 0</td>
<td><code>kelvin_kei0</code></td>
<td>1029</td>
</tr>
<tr>
<td>Evaluates derivative of the Kelvin function ber</td>
<td><code>kelvin_ber0_derivative</code></td>
<td>1031</td>
</tr>
<tr>
<td>Evaluates derivative of the Kelvin function bei</td>
<td><code>kelvin_bei0_derivative</code></td>
<td>1033</td>
</tr>
<tr>
<td>Evaluates derivative of the Kelvin function ker</td>
<td><code>kelvin_ker0_derivative</code></td>
<td>1035</td>
</tr>
<tr>
<td>Evaluates derivative of the Kelvin function kei</td>
<td><code>kelvin_kei0_derivative</code></td>
<td>1037</td>
</tr>
</tbody>
</table>

Statistical Functions

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates normal (Gaussian) distribution function</td>
<td><code>normal_cdf</code></td>
<td>1039</td>
</tr>
<tr>
<td>Evaluates inverse normal distribution function</td>
<td><code>normal_inverse_cdf</code></td>
<td>1041</td>
</tr>
<tr>
<td>Evaluates chi-squared distribution function</td>
<td><code>chi_squared_cdf</code></td>
<td>1043</td>
</tr>
<tr>
<td>Evaluates Inverse chi-squared distribution function</td>
<td><code>chi_squared_inverse_cdf</code></td>
<td>1046</td>
</tr>
<tr>
<td>Evaluates F distribution function</td>
<td><code>F_cdf</code></td>
<td>1048</td>
</tr>
<tr>
<td>Evaluates inverse F distribution function</td>
<td><code>F_inverse_cdf</code></td>
<td>1050</td>
</tr>
<tr>
<td>Evaluates student's t distribution function</td>
<td><code>t_cdf</code></td>
<td>1052</td>
</tr>
<tr>
<td>Evaluates inverse of the Student's t distribution function</td>
<td><code>t_inverse_cdf</code></td>
<td>1055</td>
</tr>
<tr>
<td>Evaluates gamma distribution function</td>
<td><code>gamma_cdf</code></td>
<td>1057</td>
</tr>
<tr>
<td>Evaluates binomial distribution function</td>
<td><code>binomial_cdf</code></td>
<td>1059</td>
</tr>
<tr>
<td>Evaluates hypergeometric distribution function</td>
<td><code>hypergeometric_cdf</code></td>
<td>1061</td>
</tr>
</tbody>
</table>
Evaluates Poisson distribution function poisson_cdf 1063
Evaluates beta distribution function beta_cdf 1065
Evaluates inverse beta distribution function beta_inverse_cdf 1067
Evaluates bivariate normal distribution function bivariate_normal_cdf 1069

Basic Financial Functions

- Evaluates cumulative interest cumulative_interest 1071
- Evaluates cumulative principal cumulative_principal 1073
- Evaluates depreciation using the fixed-declining method depreciation_db 1075
- Evaluates depreciation using the double-declining method ... depreciation_ddb 1078
- Evaluates depreciation using the straight-line method depreciation_sln 1081
- Evaluates depreciation using the sum-of-years digits method . depreciation_syd 1083
- Evaluates depreciation using the variable declining method . depreciation_vdb 1085
- Evaluates and converts fractional price to decimal price dollar_decimal 1088
- Evaluates and converts decimal price to fractional price dollar_fraction 1090
- Evaluates effective rate .. effective_rate 1092
- Evaluates future value .. future_value 1094
- Evaluates future value considering a schedule of compound interest rates future_value_schedule 1096
- Evaluates interest payment interest_payment 1098
- Evaluates interest rate ... interest_rate_annuity 1100
- Evaluates internal rate of return internal_rate_of_return 1103
- Evaluates internal rate of return for a schedule of cash flowsinternal_rate_schedule 1105
- Evaluates modified internal rate modified_internal_rate 1108
- Evaluates net present value net_present_value 1110
- Evaluates nominal rate ... nominal_rate 1112
- Evaluates number of periods number_of_periods 1114
- Evaluates periodic payment payment 1116
- Evaluates present value .. present_value 1118
- Evaluates present value for a schedule of cash flows.... present_value_schedule 1120
- Evaluates the payment for a principal principal_payment 1122

Bond Functions

- Evaluates accrued interest at maturity accr_interest_maturity 1124
- Evaluates accrued interest periodically accr_interest_periodic 1126
- Evaluates bond-equivalent yield bond_equivalent_yield 1129
- Evaluates convexity .. convexity 1131
- Evaluates days in coupon period coupon_days 1134
- Evaluates number of coupons coupon_number 1136
- Evaluates days before settlement days_before_settlement 1138
- Evaluates days to next coupon date days_to_next_coupon 1140
- Evaluates depreciation per accounting period depreciation_amordegrc 1142
- Evaluates depreciation ... depreciation_amorlinc 1144
- Evaluates discount price ... discount_price 1146
- Evaluates discount rate .. discount_rate 1148
- Evaluates yield for a discounted security discount_yield 1150
- Evaluates duration ... duration 1152
- Evaluates the interest rate of a security interest_rate_security 1155
- Evaluates Macauley duration modified_duration 1157
Evaluates next coupon date .. next_coupon_date 1159
Evaluates previous coupon date previous_coupon_date 1161
Evaluates price per $100 face value periodically price 1163
Evaluates price per $100 face value at maturity price_maturity 1166
Evaluates amount received at maturity received_maturity 1169
Evaluates Treasury bill's price treasury_bill_price 1171
Evaluates Treasury bill's yield treasury_bill_yield 1173
Evaluates year fraction .. year_fraction 1175
Evaluates yield at maturity yield_maturity 1177
Evaluates yield periodically yield_periodic 1180
Usage Notes

Users can perform financial computations by using pre-defined data types. Most of the financial functions require one or more of the following:

- Date
- \textit{Number} of payments per year
- A \textit{variable} to indicate when payments are due
- Day \textit{count} basis

IMSL C Math Library provides the identifiers for the input, \textit{frequency}, to indicate the number of payments for each year. The identifiers are \texttt{IMSL_ANNUAL}, \texttt{IMSL_SEMIANNUAL}, and \texttt{IMSL_QUARTERLY}.

<table>
<thead>
<tr>
<th>Identifier (frequency)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{IMSL_ANNUAL}</td>
<td>One payment per year (Annual payment)</td>
</tr>
<tr>
<td>\texttt{IMSL_SEMIANNUAL}</td>
<td>Two payments per year (Semi-annual payment)</td>
</tr>
<tr>
<td>\texttt{IMSL_QUARTERLY}</td>
<td>Four payments per year (Quarterly payment)</td>
</tr>
</tbody>
</table>

IMSL C Math Library provides the identifiers for the input, \textit{when}, to indicate when payments are due. The identifiers are \texttt{IMSL_AT_END_OF_PERIOD}, \texttt{IMSL_AT_BEGINNING_OF_PERIOD}.

<table>
<thead>
<tr>
<th>Identifier (when)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{IMSL_AT_END_OF_PERIOD}</td>
<td>Payments are due at the end of the period</td>
</tr>
<tr>
<td>\texttt{IMSL_AT_BEGINNING_OF_PERIOD}</td>
<td>Payments are due at the beginning of the period</td>
</tr>
</tbody>
</table>

IMSL C Math Library provides the identifiers for the input, \textit{basis}, to indicate the type of day count basis. Day count basis is the method for computing the number of days between two dates. The identifiers are \texttt{IMSL_DAY_CNT_BASIS_NASD}, \texttt{IMSL_DAY_CNT_BASIS_ACTUALACTUAL}, \texttt{IMSL_DAY_CNT_BASIS_ACTUAL360}, \texttt{IMSL_DAY_CNT_BASIS_ACTUAL365}, and \texttt{IMSL_DAY_CNT_BASIS_30E360}.

<table>
<thead>
<tr>
<th>Identifier (basis)</th>
<th>Day count basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{IMSL_DAY_CNT_BASIS_NASD}</td>
<td>US (NASDAQ) 30/360</td>
</tr>
<tr>
<td>\texttt{IMSL_DAY_CNT_BASIS_ACTUALACTUAL}</td>
<td>Actual/Actual</td>
</tr>
<tr>
<td>\texttt{IMSL_DAY_CNT_BASIS_ACTUAL360}</td>
<td>Actual/360</td>
</tr>
<tr>
<td>\texttt{IMSL_DAY_CNT_BASIS_ACTUAL365}</td>
<td>Actual/365</td>
</tr>
<tr>
<td>\texttt{IMSL_DAY_CNT_BASIS_30E360}</td>
<td>European 30/360</td>
</tr>
</tbody>
</table>

The structure `tm` is declared within `<time.h>` as follows:

```c
struct tm {
    int tm_sec;
    int tm_min;
    int tm_hour;
    int tm_mday;
    int tm_mon;
    int tm_year;
    int tm_wday;
    int tm_yday;
    int tm_isdst;
};
```

For example, to declare a variable to represent Jan 1, 2001, use the following code segment:

```c
struct tm date;
date.tm_year = 101;
date.tm_mon = 0;
date.tm_mday = 1;
```

NOTE: IMSL C Math Library only uses the `tm_year`, `tm_mon`, and `tm_mday` fields in structure `tm`.

Additional Information

In preparing the finance and bond functions we incorporated standards used by *SIA Standard Securities Calculation Methods*.

More detailed information on finance and bond functionality can be found in the following manuals:

- *Microsoft Excel 5, Worksheet Function Reference*.

erf

Evaluates the real error function erf(x).

Synopsis

```c
#include <imsl.h>

float imsl_f_erf (float x)
```

The type `double` procedure is `imsl_d_erf`.

Required Arguments

`float x` (Input)
Point at which the error function is to be evaluated.

Return Value

The value of the error function erf(x).

Description

The error function erf(x) is defined to be

\[
erf(x) = \frac{2}{(\pi)^{1/2}} \int_0^x e^{-t^2} dt
\]

All values of x are legal.
Example

Evaluate the error function at $x = 1/2$.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float      x = 0.5;
    float      ans;

    ans = imsl_f_erf(x);
    printf("erf(%f) = %f\n", x, ans);
}
```

Output

$erf(0.500000) = 0.520500$
erfc

Evaluates the real complementary error function erfc(x).

Synopsis

```c
#include <imsl.h>

float imsl_f_erfc (float x)
```

The type double procedure is imsl_d_erfc.

Required Arguments

`float x` (Input)

Point at which the complementary error function is to be evaluated.

Return Value

The value of the complementary error function erfc(x).

Description

The complementary error function erfc(x) is defined to be

\[\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt \]

The argument \(x \) must not be so large that the result underflows. Approximately, \(x \) should be less than

\[\left[-\ln\left(\sqrt{\pi} \, s \right) \right]^{1/2} \]

where \(s \) is the smallest representable floating-point number.
Example

Evaluate the error function at $x = 1/2$.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float      x = 0.5;
    float      ans;

    ans = imsl_f_erfc(x);
    printf("erfc(\%f) = \%f\n", x, ans);
}
```

Output

```
erfc(0.500000) = 0.479500
```
Alert Errors

IMSL_LARGE_ARG_UNDERFLOW

The argument x is so large that the result underflows.
erfce

Evaluates the exponentially scaled complementary error function.

Synopsis

```c
#include <imsl.h>

float imsl_f_erfce (float x)
```

The type `double` function is `imsl_d_erfce`.

Required Arguments

- `float x` (Input)
 - Argument for which the function value is desired.

Return Value

Exponentially scaled complementary error function value.

Description

Function `imsl_f_erfce` computes

\[e^{x^2} \text{erfc}(x) \]

where \(\text{erfc}(x) \) is the complementary error function. See `imsl_f_erfc` for its definition.

To prevent the answer from underflowing, \(x \) must be greater than

\[x_{\min} = -\sqrt{\ln\left(\frac{b}{2}\right)} \]

where \(b = \text{imsl_f_machine}(2) \) is the largest representable floating-point number. For more information, see the description for `imsl_f_machine`.
Example

In this example, imsl_f_erf ce(1.0) is computed and printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float value, x;

    x = 1.0;
    value = imsl_f_erf ce(x);
    printf("erf ce(%.3f) = %.3f \n", x, value);
}
```

Output

erf ce(1.000) = 0.428
erfe

Evaluates a scaled function related to erfc(z).

Synopsis

```c
#include <imsl.h>

f_complex imsl_c_erfe (f_complex z)
```

The type `double complex` function is `imsl_z_erfe`.

Required Arguments

- `f_complex z` (Input)
 Complex argument for which the function value is desired.

Return Value

Complex scaled function value related to erfc(z).

Description

Function `imsl_c_erfe` is defined to be

\[e^{-z^2} \text{erfc}(-iz) = -i e^{-z^2} \frac{2}{\sqrt{\pi}} \int_z^\infty e^{-t^2} dt \]

Let \(b = \text{imsl_f_machine}(2) \) be the largest floating-point number. The argument \(z \) must satisfy

\[|z| \leq \sqrt{b} \]

or else the value returned is zero. If the argument \(z \) does not satisfy

\[(\mathbb{I}z)^2 - (\mathbb{R}z)^2 \leq \log b, \]

then \(b \) is returned. All other arguments are legal (Gautschi 1969, 1970).

For more information, see the description for `imsl_f_machine`.

Example

In this example, `imsl_c_erfe(2.5 + 2.5i)` is computed and printed.
#include <imsl.h>
#include <stdio.h>

int main()
{
 f_complex value, z;
 z = imsl Cf_convert(2.5, 2.5);
 value = imsl_c_erfe(z);
 printf("erfe(%2.3f + %2.3fi) = %2.3f + %2.3fi \n",
z.re, z.im, value.re, value.im);
}

Output

erfe(2.500 + 2.500i) = 0.117 + 0.108i
erf_inverse

Evaluates the real inverse error function \(\text{erf}^{-1}(x) \).

Synopsis

```c
#include <imsl.h>

float imsl_f_erf_inverse (float x)
```

The type **double** procedure is `imsl_d_erf_inverse`.

Required Arguments

- `float x` (Input)
 - Point at which the inverse error function is to be evaluated. It must be between \(-1\) and \(1\).

Return Value

The value of the inverse error function \(\text{erf}^{-1}(x) \).

Description

The inverse error function \(\text{erf}^{-1}(x) \) is such that \(x = \text{erf}(y) \), where

\[
\text{erf}(y) = \frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-t^2} dt
\]

The inverse error function is defined only for \(-1 < x < 1\).
Example

Evaluate the inverse error function at $x = 1/2$.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.5;
    float ans;

    ans = imsl_f_erfc_inverse(x);
    printf("inverse erfc(%f) = %f\n", x, ans);
}
```

Output

inverse erf(0.500000) = 0.476936
Warning Errors

IMSL_LARGE_ABS_ARG_WARN

The answer is less accurate than half precision because |x| is too large.

Fatal Errors

IMSL_REAL_OUT_OF_RANGE

The inverse error function is defined only for $-1 < x < 1$.
erfc_inverse

Evaluates the real inverse complementary error function \(\text{erfc}^{-1}(x) \).

Synopsis

```c
#include <imsl.h>

float imsl_f_erfc_inverse (float x)
```

The type `double` procedure is `imsl_d_erfc_inverse`.

Required Arguments

- **float x** (Input)

 Point at which the inverse complementary error function is to be evaluated. The argument \(x \) must be in the range \(0 < x < 2 \).

Return Value

The value of the inverse complementary error function.

Description

The inverse complementary error function \(y = \text{erfc}^{-1}(x) \) is such that \(x = \text{erfc}(y) \) where
Example
Evaluate the inverse complementary error function at \(x = 1/2 \).

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.5;
    float ans;

    ans = imsl_f_erf_inverse(x);
    printf("inverse erf(%f) = %f\n", x, ans);
}
```

Output
inverse erfc(0.500000) = 0.476936
Alert Errors

IMSL_LARGE_ARG_UNDERFLOW

The argument x must not be so large that the result underflows. Very approximately, x should be less than

$$2 - \sqrt{\varepsilon / (4\pi)}$$

where ε is the machine precision.

Warning Errors

IMSL_LARGE_ARG_WARN

$|x|$ should be less than $1 / \sqrt{\varepsilon}$ where ε is the machine precision, to prevent the answer from being less accurate than half precision.

Fatal Errors

IMSL_ERF_ALGORITHM

The algorithm failed to converge.

IMSL_SMALL_ARG_OVERFLOW

The computation of $e^{x^2} \text{erfc} \ x$ must not overflow.

IMSL_REAL_OUT_OF_RANGE

The function is defined only for $0 < x < 2$.
beta

Evaluates the real beta function $\beta(x, y)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_beta (float x, float y)
```

The type `double` procedure is `imsl_d_beta`.

Required Arguments

- `float x` (Input)
 Point at which the beta function is to be evaluated. It must be positive.

- `float y` (Input)
 Point at which the beta function is to be evaluated. It must be positive.

Return Value

The value of the beta function $\beta(x, y)$. If no result can be computed, NaN is returned.

Description

The beta function, $\beta(x, y)$, is defined to be

$$
\beta(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)} = \int_0^1 t^{x-1} (1 - t)^{y-1} dt
$$

The beta function requires that $x > 0$ and $y > 0$. It underflows for large arguments.
Example

Evaluate the beta function $\beta(0.5, 0.2)$.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.5;
    float y = 0.2;
    float ans;

    ans = imsl_f_beta(x, y);
    printf("beta(%f,%f) = %f\n", x, y, ans);
}
```

Output

$\beta(0.500000,0.200000) = 6.268653$
Alert Errors

IMSL_BETA_UNDERFLOW

The arguments must not be so large that the result underflows.

Fatal Errors

IMSL_ZERO_ARG_OVERFLOW

One of the arguments is so close to zero that the result overflows.
log_beta

Evaluates the logarithm of the real beta function \(\ln \beta(x, y) \).

Synopsis

```
#include <imsl.h>

float imsl_f_log_beta (float x, float y)
```

The type `double` procedure is `imsl_d_log_beta`.

Required Arguments

- `float x` (Input)
 - Point at which the logarithm of the beta function is to be evaluated. It must be positive.

- `float y` (Input)
 - Point at which the logarithm of the beta function is to be evaluated. It must be positive.

Return Value

The value of the logarithm of the beta function \(\beta(x, y) \).

Description

The beta function, \(\beta(x, y) \), is defined to be

\[
\beta(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)} = \int_0^1 t^{x-1} (1 - t)^{y-1} dt
\]

and `imsl_f_log_beta` returns \(\ln \beta(x, y) \).

The logarithm of the beta function requires that \(x > 0 \) and \(y > 0 \). It can overflow for very large arguments.

Example

Evaluate the log of the beta function \(\ln \beta(0.5, 0.2) \).

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.5;
    ...
}
```
float y = 0.2;
float ans;

ans = imsl_f_log_beta(x, y);
printf("log beta(%f,%f) = %f\n", x, y, ans);
}

Output

log beta(0.500000,0.200000) = 1.835562

Warning Errors

IMSL_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one precision because the expression $-x/(x + y)$ is too close to -1.
beta_incomplete

Evaluates the real regularized incomplete beta function.

Synopsis

```c
#include <imsl.h>

float imsl_f_beta_incomplete (float x, float a, float b)
```

The type `double` function is `imsl_d_beta_incomplete`.

Required Arguments

- `float x` (Input)
 - Argument at which the regularized incomplete beta function is to be evaluated.

- `float a` (Input)
 - First shape parameter.

- `float b` (Input)
 - Second shape parameter.

Return Value

The value of the regularized incomplete beta function.

Description

The regularized incomplete beta function $I_x(a, b)$ is defined

$$I_x(a, b) = \frac{B_x(a, b)}{B(a, b)}$$

where

$$B_x(a, b) = \int_0^x t^{a-1}(1-t)^{b-1}dt$$

is the incomplete beta function,

$$B(a, b) = B_1(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}$$

is the (complete) beta function, and $\Gamma(a)$ is the gamma function.
The regularized incomplete beta function \texttt{imsl_f_beta_incomplete}(x, a, b) is identical to the beta probability distribution function \texttt{imsl_f_beta_cdf}(x, a, b) which represents the probability that a beta random variable X with shape parameters a and b takes on a value less than or equal to x. The regularized incomplete beta function requires that $0 \leq x \leq 1$, $a > 0$, and $b > 0$ and it underflows for sufficiently small x and large a. This underflow is not reported as an error. Instead, the value zero is returned.

Example

Suppose X is a beta random variable with shape parameters 12 and 12 (X has a symmetric distribution). This example finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float    p, a, b, x;

    a = 12.0;
    b = 12.0;
    x = 0.6;
    p = imsl_f_beta_incomplete(x, a, b);
    printf("The probability that X is less than \%3.1f is \%6.4f\n", x, p);

    x = 0.5;
    p -= imsl_f_beta_incomplete(x, a, b);
    printf("The probability that X is between \%3.1f and\%, x);
    printf(" \%0.6 is \%6.4f\n", p);
}
```

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
Evaluates the real gamma function $\Gamma(x)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_gamma (float x)
```

The type `double` procedure is `imsl_d_gamma`.

Required Arguments

- `float x` (Input)
 - Point at which the gamma function is to be evaluated.

Return Value

The value of the gamma function $\Gamma(x)$.

Description

The gamma function, $\Gamma(x)$, is defined to be

$$
\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt
$$

For $x < 0$, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows for $x << 0$ and overflows for large x. It also overflows for values near negative integers.
Example

In this example, $\Gamma(1.5)$ is computed and printed.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float   x = 1.5;
    float   ans;

    ans = imsl_f_gamma(x);
    printf("Gamma(%f) = %f\n", x, ans);
}
```

Output

Gamma(1.500000) = 0.886227
Alert Errors

IMSL_SMALL_ARG_UNDERFLOW

The argument x must be large enough that $\Gamma(x)$ does not underflow. The underflow limit occurs first for arguments close to large negative half integers. Even though other arguments away from these half integers may yield machine-representable values of $\Gamma(x)$, such arguments are considered illegal. Users who need such values should use the $\log\Gamma(x)$ function `imsl_f_log_gamma`.

Warning Errors

IMSL_NEAR_NEG_INT_WARN

The result is accurate to less than one-half precision because x is too close to a negative integer.

Fatal Errors

IMSL_ZERO_ARG_OVERFLOW

The argument for the gamma function is too close to zero.

IMSL_NEAR_NEG_INT_FATAL

The argument for the function is too close to a negative integer.

IMSL_LARGE_ARG_OVERFLOW

The function overflows because x is too large.

IMSL_CANNOT_FIND_XMIN

The algorithm used to find x_{min} failed. This error should never occur.

IMSL_CANNOT_FIND_XMAX

The algorithm used to find x_{max} failed. This error should never occur.
log Gamma

Evaluates the logarithm of the absolute value of the gamma function $\log |\Gamma(x)|$.

Synopsis

```c
#include <ims1.h>

float imsl_f_log_gamma (float x)
```

The type `double` procedure is `imsl_d_log_gamma`.

Required Arguments

```c
float x (Input)
```

Point at which the logarithm of the absolute value of the gamma function is to be evaluated.

Return Value

The value of the logarithm of gamma function, $\log |\Gamma(x)|$.

Description

The logarithm of the absolute value of the gamma function $\log |\Gamma(x)|$ is computed.
Example

In this example, \(\log |\Gamma(3.5)| \) is computed and printed.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float x = 3.5;
    float ans;
    
    ans = imsl_f_log_gamma(x);
    printf("log gamma(%f) = %f\n", x, ans);
}
```

Output

\[\log \gamma(3.500000) = 1.200974 \]
Warning Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NEAR_NEG_INT_WARN</td>
<td>The result is accurate to less than one-half precision because (x) is too close to a negative integer.</td>
</tr>
</tbody>
</table>

Fatal Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NEGATIVE_INTEGER</td>
<td>The argument for the function cannot be a negative integer.</td>
</tr>
<tr>
<td>IMSL_NEAR_NEG_INT_FATAL</td>
<td>The argument for the function is too close to a negative integer.</td>
</tr>
<tr>
<td>IMSL_LARGE_ABS_ARG_OVERFLOW</td>
<td>(</td>
</tr>
</tbody>
</table>
gamma_incomplete

Evaluates the incomplete gamma function \(\gamma(a, x) \).

Synopsis

```c
#include <imsl.h>

float imsl_f_gamma_incomplete (float a, float x)
```

The type `double` procedure is `imsl_d_gamma_incomplete`.

Required Arguments

- `float a` (Input)
 Parameter of the incomplete gamma function is to be evaluated. It must be positive.

- `float x` (Input)
 Point at which the incomplete gamma function is to be evaluated. It must be nonnegative.

Return Value

The value of the incomplete gamma function \(\gamma(a, x) \).

Description

The incomplete gamma function, \(\gamma(a, x) \), is defined to be

\[
\gamma(a, x) = \int_0^x t^{a-1} e^{-t} dt \quad \text{for } x > 0
\]

The incomplete gamma function is defined only for \(a > 0 \). Although \(\gamma(a, x) \) is well defined for \(x > -\infty \), this algorithm does not calculate \(\gamma(a, x) \) for negative \(x \). For large \(a \) and sufficiently large \(x \), \(\gamma(a, x) \) may overflow. \(\gamma(a, x) \) is bounded by \(\Gamma(a) \), and users may find this bound a useful guide in determining legal values for \(a \).
Example

Evaluate the incomplete gamma function at $a = 1$ and $x = 3$.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float x = 3.0;
    float a = 1.0;
    float ans;

    ans = imsl_f_gamma_incomplete(a, x);
    printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}
```

Output

```
incomplete gamma(1.000000,3.000000) = 0.950213
```
Fatal Errors

IMSL_NO_CONV_200_TS_TERMS
The function did not converge in 200 terms of Taylor series.

IMSL_NO_CONV_200_CF_TERMS
The function did not converge in 200 terms of the continued fraction.
psi

Evaluates the derivative of the log gamma function.

Synopsis

```c
#include <imsl.h>

float imsl_f_psi (float x)
```

The type `double` function is `imsl_d_psi`.

Required Arguments

- `float x` (Input)
 Argument at which the function is to be evaluated.

Return Values

The value of the derivative of the log gamma function at `x`. NaN is returned if an error occurs.

Description

The `psi` function, also called the digamma function, is defined to be

\[
\psi(x) = \frac{d}{dx} \ln \Gamma(x)
\]

See `imsl_f_gamma` for the definition of \(\Gamma(x) \).

The argument `x` must not be exactly zero or a negative integer, or \(\psi(x) \) is undefined. Also, `x` must not be too close to a negative integer such that the accuracy of the result is less than half precision. If no value can be computed, then NaN is returned.

Example

In this example, \(\psi(1.915) \) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main(){
    float x=1.915, ans;
```
ans=imsl_f_psi(x);
printf("psi(%f) = %f
", x, ans);
}

Output

psi(1.915000) = 0.366452

Warning Errors

- **IMSL_NEAR_NEG_INT_WARN**
 The result is accurate to less than one-half precision because “x” is too close to a negative integer.
psi1

Evaluates the second derivative of the log gamma function.

Synopsis

\texttt{#include <imsl.h>}
\texttt{float imsl_f_psi1 (float x)}

The type \texttt{double} function is \texttt{imsl_d_psi1}.

Required Arguments

\texttt{float x} (Input)
\texttt{Argument at which the function is to be evaluated.}

Return Value

The value of the second derivative of the log gamma function at \texttt{x}. NaN is returned if an error occurs.

Description

The \texttt{psi1} function, also called the trigamma function, is defined to be

\[\psi_1(x) = \frac{d^2}{dx^2} \ln \Gamma(x) \]

See \texttt{imsl_f_gamma} for the definition of \(\Gamma(x) \).

The argument \texttt{x} must not be exactly zero or a negative integer, or \(\psi_1(x) \) is undefined. Also, \texttt{x} must not be too close to a negative integer such that the accuracy of the result is less than half precision.

Example

In this example, \(\psi_1(1.915) \) is evaluated.

\texttt{#include <imsl.h>}
\texttt{#include <stdio.h>}
\texttt{int main()}{
\texttt{ float x=1.915, ans;}
\texttt{ ans=imsl_f_psi1(x);}
\begin{verbatim}
 printf("psi1(%f) = %f\n", x, ans);
}
\end{verbatim}

\textbf{Output}

psi1(1.915000) = 0.681164

\textbf{Warning Errors}

\begin{verbatim}
 IMSL_NEAR_NEG_INT_WARN
 The result is accurate to less than one-half precision because "x" is too close to a negative integer.
\end{verbatim}
bessel_J0

Evaluates the real Bessel function of the first kind of order zero \(J_0(x) \).

Synopsis

\[
\text{#include } \texttt{imsl.h}\\
\textbf{float} \text{ imsl_f_bessel_J0 (float x)}
\]

The type \textbf{double} procedure is \textit{imsl_d_bessel_J0}.

Required Arguments

\textbf{float} \textit{x} (Input)

Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

\[
J_0(x) = \int_0^\pi \cos(x \sin \theta) d\theta
\]

If no solution can be computed, NaN is returned.

Description

Because the Bessel function \(J_0(x) \) is oscillatory, its computation becomes inaccurate as \(|x|\) increases.
Example

The Bessel function $J_0(1.5)$ is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.5;
    float ans;
    
    ans = imsl_f_bessel_J0(x);
    printf("J0(%.f) = %.f\n", x, ans);
}
```

Output

$J_0(1.500000) = 0.511828$
Warning Errors

- **IMSL_LARGE_ABS_ARG_WARN**
 - $|x|$ should be less than $1 / \sqrt{\varepsilon}$ where ε is the machine precision, to prevent the answer from being less accurate than half precision.

Fatal Errors

- **IMSL_LARGE_ABS_ARG_FATAL**
 - $|x|$ should be less than $1 / \varepsilon$ where ε is the machine precision for the answer to have any precision.
bessel_J1

Evaluates the real Bessel function of the first kind of order one \(J_1(x) \).

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_J1 (float x)
```

The type `double` procedure is `imsl_d_bessel_J1`.

Required Arguments

- `float x` (Input)
 - Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

\[
J_1(x) = \frac{1}{\pi} \int_0^\pi \cos(x \sin \theta - \theta) d\theta
\]

If no solution can be computed, NaN is returned.

Description

Because the Bessel function \(J_1(x) \) is oscillatory, its computation becomes inaccurate as \(|x|\) increases.

Example

The Bessel function \(J_1(1.5) \) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.5;
    float ans;

    ans = imsl_f_bessel_J1(x);
    printf("J1(%.1f) = %.1f\n", x, ans);
}
```
Output

\[J_1(1.500000) = 0.557937 \]

Alert Errors

IMSL_SMALL_ABS_ARG_UNDERFLOW

To prevent \(J_1(x) \) from underflowing, either \(x \) must be zero, or \(|x| > 2s \) where \(s \) is the smallest representable positive number.

Warning Errors

IMSL_LARGE_ABS_ARG_WARN

\(|x| \) should be less than \(1 / \sqrt{\varepsilon} \) where \(\varepsilon \) is the machine precision to prevent the answer from being less accurate than half precision.

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL

\(|x| \) should be less than \(1/\varepsilon \) where \(\varepsilon \) is the machine precision for the answer to have any precision.
bessel_Jx

Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n, ..., 0)
```

The type `d_complex` function is `imsl_z_bessel_Jx`.

Required Arguments

- `float xnu` (Input)
 The lowest order desired. The argument `xnu` must be greater than \(-\frac{1}{2}\).
- `f_complex z` (Input)
 Argument for which the sequence of Bessel functions is to be evaluated.
- `int n` (Input)
 Number of elements in the sequence.

Return Value

A pointer to the `n` values of the function through the series. Element `i` contains the value of the Bessel function of order `xnu + i` for `i = 0, ..., n - 1`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n, 
    IMSL_RETURN_USER, f_complex bessel[], 
    0)
```

Optional Arguments

- `IMSL_RETURN_USER, f_complex bessel[]` (Output)
 Store the sequence of Bessel functions in the user-provided array `bessel[]`.
Description

The Bessel function $J_v(z)$ is defined to be

$$J_v(z) = \frac{1}{\pi} \int_0^\pi \cos \left(z \sin \theta - v \theta \right) d\theta - \frac{\sin(v\pi)}{\pi} \int_0^\infty e^z \sinh t - vt \, dt$$

for $|\arg z| < \frac{\pi}{2}$

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987). This code computes $J_v(z)$ from the modified Bessel function $I_v(z)$, using the following relation, with $\rho = e^{i\pi/2}$:

$$Y_v(z) = \begin{cases}
\rho I_v(z/\rho) & \text{for } -\pi/2 < \arg z \leq \pi \\
\rho^3 I_v(\rho^3 z) & \text{for } -\pi < \arg z \leq \pi/2
\end{cases}$$

Example

In this example, $J_{0.3+n-1}(1.2 + 0.5i)$, $v = 1, ..., 4$ is computed and printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int        n = 4;
    int        i;
    float      xnu = 0.3;
    static f_complex   z = {1.2, 0.5};
    f_complex *sequence;

    sequence = imsl_c_bessel_Jx(xnu, z, n, 0);

    for (i = 0; i < n; i++)
        printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
               xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}
```

Output

I sub 0.30 ((1.20,0.50)) = (0.774,-0.107)
I sub 1.30 ((1.20,0.50)) = (0.400,0.159)
I sub 2.30 ((1.20,0.50)) = (0.087,0.092)
I sub 3.30 ((1.20,0.50)) = (0.008,0.024)
Fatal Errors

IMSL_BESSEL_CONT_FRAC

Continued fractions have failed to converge. The double precision version of this function provides the most accurate solution.
bessel_Y0

Evaluates the real Bessel function of the second kind of order zero $Y_0(x)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_Y0 (float x)
```

The type `double` procedure is `imsl_d_bessel_Y0`.

Required Arguments

- `float x` (Input)
 Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$Y_0(x) = \frac{1}{\pi} \int_0^\pi \sin(x \sin \theta) d\theta - \frac{2}{\pi} \int_0^\infty e^{-xt} \sin(xt) dt$$

If no solution can be computed, NaN is returned.

Description

This function is sometimes called the Neumann function, $N_0(x)$, or Weber's function.

Since $Y_0(x)$ is complex for negative x and is undefined at $x = 0$, `imsl_f_bessel_Y0` is defined only for $x > 0$. Because the Bessel function $Y_0(x)$ is oscillatory, its computation becomes inaccurate as x increases.
Example

The Bessel function $Y_0(1.5)$ is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.5;
    float ans;

    ans = imsl_f_bessel_Y0(x);
    printf("Y0(%f) = %f\n", x, ans);
}
```

Output

$Y_0(1.500000) = 0.382449$
Warning Errors

IMSL_LARGE_ABS_ARG_WARN

$|x|$ should be less than $1 / \sqrt{\varepsilon}$ where ε is the machine precision to prevent the answer from being less accurate than half precision.

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL

$|x|$ should be less than $1/\varepsilon$ where ε is the machine precision for the answer to have any precision.
bessel_Y1

Evaluates the real Bessel function of the second kind of order one $Y_1(x)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_Y1 (float x)
```

The type `double` procedure is `imsl_d_bessel_Y1`.

Required Arguments

- `float x` (Input)

 Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$Y_1(x) = -\frac{1}{\pi} \int_0^\pi \sin(\theta - xsin\theta) d\theta - \frac{1}{\pi} \int_0^{\infty} \{e^t - e^{-t}\} e^{-z \sinh t} dt$$

If no solution can be computed, then NaN is returned.

Description

This function is sometimes called the Neumann function, $N_1(x)$, or Weber's function.

Since $Y_1(x)$ is complex for negative x and is undefined at $x = 0$, `imsl_f_bessel_Y1` is defined only for $x > 0$. Because the Bessel function $Y_1(x)$ is oscillatory, its computation becomes inaccurate as x increases.

Example

The Bessel function $Y_1(1.5)$ is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.5;
    float ans;
```
ans = imsl_f_bessel_Y1(x);
printf("Y1(\%f\) = \%f\n", x, ans);
}

Output

Y1(1.500000) = -0.412309

Warning Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than $1/\sqrt{\epsilon}$ where ϵ is the machine precision to prevent the answer from being less accurate than half precision.

Fatal Errors

IMSL_SMALL_ARG_OVERFLOW The argument x must be large enough ($x > \max(1/b, s)$ where s is the smallest representable positive number and b is the largest representable number) that $Y_1(x)$ does not overflow.

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than $1/\epsilon$ where ϵ is the machine precision for the answer to have any precision.
bessel_Yx

Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n, ...) 0)
```

The type `d_complex` function is `imsl_z_bessel_Yx`.

Required Arguments

- `float xnu` (Input)
 - The lowest order desired. The argument `xnu` must be greater than $-1/2$.
- `f_complex z` (Input)
 - Argument for which the sequence of Bessel functions is to be evaluated.
- `int n` (Input)
 - Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element i contains the value of the Bessel function of order $xnu + i$ for $i = 0, ..., n - 1$.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],

0)
```

Optional Arguments

- `IMSL_RETURN_USER, f_complex bessel[]` (Output)
 - Store the sequence of Bessel functions in the user-provided array `bessel[]`.
Description

The Bessel function $Y_v(z)$ is defined to be

$$Y_v(z) = \frac{1}{\pi} \int_0^\pi \sin(z \sin \theta - v \theta) d\theta - \frac{1}{\pi} \int_0^{\pi} \left[e^{ivt} + e^{-ivt} \cos(v \pi) \right] e^{-z \sinh t} dt$$

for $\left| \arg z \right| < \frac{\pi}{2}$

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987). This code computes $Y_v(z)$ from the modified Bessel functions $I_v(z)$ and $K_v(z)$, using the following relation:

$$Y_v\left(ze^{\pi i/2}\right) = e^{(v+1)\pi i/2} I_v(z) - \frac{2}{\pi} e^{-v\pi i/2} K_v(z) \quad \text{for} \quad -\pi < \arg z \leq \frac{\pi}{2}$$

Example

In this example, $Y_{0.3+n}((1.2 + 0.5i), v = 1, ..., 4$ is computed and printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int n = 4;
    int i;
    float xnu = 0.3;
    static f_complex z = {1.2, 0.5};
    f_complex *sequence;

    sequence = imsl_c_bessel_Yx(xnu, z, n, 0);

    for (i = 0; i < n; i++)
        printf("Y sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
               xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}
```

Output

Y sub 0.30 ((1.20,0.50)) =(-0.013,0.380)
Y sub 1.30 ((1.20,0.50)) =(-0.716,0.338)
Y sub 2.30 ((1.20,0.50)) =(-1.048,0.795)
Y sub 3.30 ((1.20,0.50)) =(-1.625,3.684)
bessel_I0

Evaluates the real modified Bessel function of the first kind of order zero $I_0(x)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_I0 (float x)
```

The type `double` procedure is `imsl_d_bessel_I0`.

Required Arguments

- `float x` (Input)
 - Point at which the modified Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$I_0(x) = \frac{1}{\pi} \int_0^\pi \cosh(x \cos \theta) d\theta$$

If no solution can be computed, NaN is returned.

Description

For large $|x|$, `imsl_f_bessel_I0` will overflow.
Example

The Bessel function $I_0(1.5)$ is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.5;
    float ans;

    ans = imsl_f_bessel_I0(x);
    printf("I0(%f) = %f\n", x, ans);
}
```

Output

$I0(1.500000) = 1.646723$

Fatal Errors

```
IMSL_LARGE_ABS_ARG_FATAL
```

The absolute value of x must not be so large that $e^{|x|}$ overflows.
bessel_exp_I0

Evaluates the exponentially scaled modified Bessel function of the first kind of order zero.

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_exp_I0 (float x)
```

The type double function is imsl_d_bessel_exp_I0.

Required Arguments

- `float x` (Input)
 - Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^{-|x|} I_0(x)$. If no solution can be computed, NaN is returned.

Description

The Bessel function $I_0(x)$ is defined to be

$$I_0(x) = \frac{1}{\pi} \int_0^\pi \cosh(x \cos \theta) d\theta$$

Example

The expression $e^{-4.5} I_0(4.5)$ is computed directly by calling imsl_f_bessel_exp_I0 and indirectly by calling imsl_f_bessel_I0. The absolute difference is printed. For large x, the internal scaling provided by imsl_f_bessel_exp_I0 avoids overflow that may occur in imsl_f_bessel_I0.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
    float x = 4.5;
    float ans;
    float error;
    ```
ans = imsl_f_bessel_exp_I0 (x);
printf("(e**(-4.5))I0(4.5) = %f\n\n", ans);

error = fabs(ans - (exp(-x)*imsl_f_bessel_I0(x)));
printf ("Error = %e\n", error);
}

Output

(e**(-4.5))I0(4.5) = 0.194198

Error = 4.898845e-09
bessel_I1

Evaluates the real modified Bessel function of the first kind of order one \(I_1(x) \).

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_I1(float x)
```

The type `double` procedure is `imsl_d_bessel_I1`.

Required Arguments

- `float x` (Input)

Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

\[
I_1(x) = \frac{1}{\pi} \int_0^\pi e^x \cos \theta \cos \theta d\theta
\]

If no solution can be computed, NaN is returned.

Description

For large \(|x|\), `imsl_f_bessel_I1` will overflow. It will underflow near zero.

Example

The Bessel function \(I_1(1.5) \) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.5;
    float ans;
    
    ans = imsl_f_bessel_I1(x);
    printf("I1(%.1f) = %.1f\n", x, ans);
}
```
Output

\[I_1(1.500000) = 0.981666 \]

Alert Errors

\texttt{IMSL_SMALL_ABS_ARG_UNDERFLOW} \hspace{1cm} The argument should not be so close to zero that \(I_1(x) \approx x/2 \) underflows.

Fatal Errors

\texttt{IMSL_LARGE_ABS_ARG_FATAL} \hspace{1cm} The absolute value of \(x \) must not be so large that \(e^{|x|} \) overflows.
bessel_exp_I1

Evaluates the exponentially scaled modified Bessel function of the first kind of order one.

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_exp_I1 (float x)
```

The type `double` function is `imsl_d_bessel_exp_I1`.

Required Arguments

- `float x` (Input)
 Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^{-|x|} I_1(x)$. If no solution can be computed, NaN is returned.

Description

The function `imsl_f_bessel_I1` underflows if $|x| / 2$ underflows. The Bessel function $I_1(x)$ is defined to be

$$I_1(x) = \frac{1}{\pi} \int_0^\pi e^{x \cos \theta} \cos \theta d\theta$$

Example

The expression $e^{-4.5} I_0(4.5)$ is computed directly by calling `imsl_f_bessel_exp_I1` and in-directly by calling `imsl_f_bessel_I1`. The absolute difference is printed. For large x, the internal scaling provided by `imsl_f_bessel_exp_I1` avoids overflow that may occur in `imsl_f_bessel_I1`.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
    float x = 4.5;
    float ans;
    float error;
```
ans = imsl_f_bessel_exp_I1 (x);
printf("(e**(-4.5))I1(4.5) = %f\n\n", ans);

error = fabs(ans - (exp(-x)*imsl_f_bessel_I1(x)));
printf("Error = %e\n", error);
}

Output

\[(e^{**(-4.5)})I1(4.5) = 0.170959\]

Error = 1.469216e-09
bessel_Ix

Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n, ... , 0)
```

The type `d_complex` function is `imsl_z_bessel_Ix`.

Required Arguments

- `float xnu` (Input)
 - The lowest order desired. Argument `xnu` must be greater than $-1/2$.

- `f_complex z` (Input)
 - Argument for which the sequence of Bessel functions is to be evaluated.

- `int n` (Input)
 - Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element i contains the value of the Bessel function of order $xnu + i$ for $i = 0, ..., n - 1$.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],

0)
```

Optional Arguments

- `IMSL_RETURN_USER, f_complex bessel[]` (Output)
 - Store the sequence of Bessel functions in the user-provided array `bessel[]`.
Description

The Bessel function $I_v(z)$ is defined to be

$$I_v(z) = e^{-v\pi i/2} J_v \left(z e^{\pi i/2} \right) \quad \text{for} \quad -\pi < \arg z \leq \frac{\pi}{2}$$

For large arguments, z, Temme's (1975) algorithm is used to find $I_v(z)$. The $I_v(z)$ values are recurred upward (if this is stable). This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be accurate.

For moderate and small arguments, Miller's method is used.

Example

In this example, $J_{0.3+n-1}(1.2 + 0.5i)$, $\nu = 1, \ldots, 4$ is computed and printed.

```c
#include <imsl.h>
#include<stdio.h>

int main()
{
    int        n = 4;
    int        i;
    float      xnu = 0.3;
    static f_complex   z = {1.2, 0.5};
    f_complex *sequence;

    sequence = imsl_c_bessel_Ix(xnu, z, n, 0);

    for (i = 0; i < n; i++)
        printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n", 
               xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}
```

Output

I sub 0.30 ((1.20,0.50)) = (1.163,0.396)
I sub 1.30 ((1.20,0.50)) = (0.447,0.332)
I sub 2.30 ((1.20,0.50)) = (0.082,0.127)
I sub 3.30 ((1.20,0.50)) = (0.006,0.029)
bessel_K0

Evaluates the real modified Bessel function of the second kind of order zero $K_0(x)$.

Synopsis

#include <imsl.h>

float imsl_f_bessel_K0 (float x)

The type double procedure is imsl_d_bessel_K0.

Required Arguments

float x (Input)
Point at which the modified Bessel function is to be evaluated. It must be positive.

Return Value

The value of the modified Bessel function

$$K_0(x) = \int_0^{\infty} \cos(x \sinh t) dt$$

If no solution can be computed, then NaN is returned.

Description

Since $K_0(x)$ is complex for negative x and is undefined at $x = 0$, imsl_f_bessel_K0 is defined only for $x > 0$. For large x, imsl_f_bessel_K0 will underflow.
Example

The Bessel function $K_0(1.5)$ is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.5;
    float ans;

    ans = imsl_f_bessel_K0(x);
    printf("K0(%f) = %f\n", x, ans);
}
```

Output

$K0(1.500000) = 0.213806$

Alert Errors

`IMSL_LARGE_ARG_UNDERFLOW` The argument x must not be so large that the result, approximately equal to $\sqrt{\pi} / \left(2x\right) e^{-x}$, underflows.
bessel_exp_K0

Evaluates the exponentially scaled modified Bessel function of the second kind of order zero.

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_exp_K0 (float x)
```

The type `double` function is `imsl_d_bessel_exp_K0`.

Required Arguments

- `float x` (Input)
 - Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^x K_0(x)$. If no solution can be computed, NaN is returned.

Description

The argument must be greater than zero for the result to be defined. The Bessel function $K_0(x)$ is defined to be

$$K_0(x) = \int_0^\infty \cos(x \sinh t) \, dt$$

Example

The expression

$$K_0(x) = \int_0^\infty \cos(x \sinh t) \, dt$$
$\sqrt{e} K_0(0.5)$

is computed directly by calling `imsl_f_bessel_exp_K0` and indirectly by calling `imsl_f_bessel_K0`. The absolute difference is printed. For large x, the internal scaling provided by `imsl_f_bessel_exp_K0` avoids underflow that may occur in `imsl_f_bessel_K0`.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
    float  x = 0.5;
    float  ans;
    float  error;

    ans = imsl_f_bessel_exp_K0 (x);
    printf("(e**0.5)K0(0.5) = %f\n\n", ans);

    error = fabs(ans - (exp(x)*imsl_f_bessel_K0(x)));
    printf ("Error = %e\n", error);
}
```

Output

$\sqrt{e} K_0(0.5) = 1.524109$

Error = 2.028498e-08
bessel_K1

Evaluates the real modified Bessel function of the second kind of order one $K_1(x)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_bessel_K1 (float x)
```

The type `double` procedure is `imsl_d_bessel_K1`.

Required Arguments

- `float x` (Input)

 Point at which the Bessel function is to be evaluated. It must be positive.

Return Value

The value of the Bessel function

$$K_1(x) = \int_0^\infty \sin(xs\sinh t) \sinh t \, dt$$

If no solution can be computed, NaN is returned.

Description

Since $K_1(x)$ is complex for negative x and is undefined at $x = 0$, `imsl_f_bessel_K1` is defined only for $x > 0$. For large x, `imsl_f_bessel_K1` will underflow. See Figure 9-12 for a graph of $K_1(x)$.

Example

The Bessel function $K_1(1.5)$ is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
  float x = 1.5;
  float ans;

  ans = imsl_f_bessel_K1(x);
}```
\begin{verbatim}
    printf("K1(\%f) = \%f\n", x, ans);
}
\end{verbatim}

**Output**

\[ K1(1.500000) = 0.277388 \]

**Alert Errors**

**IMSL_LARGE_ARG_UNDERFLOW**

The argument \( x \) must not be so large that the result, approximately equal to \( \sqrt{\pi / (2x)} e^{-x} \), underflows.

**Fatal Errors**

**IMSL_SMALL_ARG_OVERFLOW**

The argument \( x \) must be large enough \((x > \max(1/b, s))\) where \( s \) is the smallest representable positive number and \( b \) is the largest representable number) that \( K_1(x) \) does not overflow.
bessel_exp_K1

Evaluates the exponentially scaled modified Bessel function of the second kind of order one.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_K1 (float x)

The type double function is imsl_d_bessel_exp_K1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^x K_1(x)$. If no solution can be computed, NaN is returned.

Description

The result

$$\text{imsl}_f\_\text{bessel}_\exp\_\text{K1} = e^x K_1(x) \approx \frac{1}{x}$$

overflows if $x$ is too close to zero. The definition of the Bessel function

$$K_1(x) = \int_0^{\infty} \sin(xs) \sinh t \sinh t \, dt$$

Example

The expression

$$\sqrt{e} K_1(0.5)$$

is computed directly by calling imsl_f_bessel_exp_K1 and indirectly by calling imsl_f_bessel_K1. The absolute difference is printed. For large $x$, the internal scaling provided by imsl_f_bessel_exp_K1 avoids underflow that may occur in imsl_f_bessel_K1.
```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main()
{
 float x = 0.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_K1 (x);
 printf("(e**0.5)K1(0.5) = %f\n\n", ans);

 error = fabs(ans - (exp(x)*imsl_f_bessel_K1(x)));
 printf("Error = %e\n", error);
}

Output

(e**0.5)K1(0.5) = 2.731010

Error = 5.890406e-08
bessel_Kx

Evaluates a sequence of modified Bessel functions of the second kind with real order and complex arguments.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Kx (float xnu, f_complex z, int n, ..., 0)
```

The type `d_complex` function is `imsl_z_bessel_Jx`.

Required Arguments

- `float` `xnu` (Input)
 The lowest order desired. The argument `xnu` must be greater than \(-\frac{1}{2}\).

- `f_complex` `z` (Input)
 Argument for which the sequence of Bessel functions is to be evaluated.

- `int` `n` (Input)
 Number of elements in the sequence.

Return Value

A pointer to the `n` values of the function through the series. Element `i` contains the value of the Bessel function of order `xnu + i` for `i = 0, ..., n - 1`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

f_complex *imsl_c_bessel_Kx (float xnu, f_complex z, int n,
                           IMSL_RETURN_USER, f_complex bessel[],
                           0)
```

Optional Arguments

- `IMSL_RETURN_USER, f_complex` `bessel[]` (Output)
 Store the sequence of Bessel functions in the user-provided array `bessel[]`.
Description

The Bessel function $K_v(z)$ is defined to be

$$K_v(z) = \frac{\pi}{2} e^{\pi i/2} \left[i J_v\left(ze^{\pi i/2}\right) - Y_v\left(ze^{\pi i/2}\right) \right] \text{ for } -\pi < \arg z \leq \frac{\pi}{2}$$

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For moderate or large arguments, z, Temme’s (1975) algorithm is used to find $K_v(z)$. This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be accurate. For small z, a Neumann series is used to compute $K_v(z)$. Upward recurrence of the $K_v(z)$ is always stable.

Example

In this example, $K_{0.3+n-1}(1.2 + 0.5i)$, $v = 1, \ldots, 4$ is computed and printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int n = 4;
    int i;
    float xnu = 0.3;
    static f_complex z = {1.2, 0.5};
    f_complex *sequence;

    sequence = imsl_c_bessel_Kx(xnu, z, n, 0);

    for (i = 0; i < n; i++)
        printf("K sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
            xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}
```

Output

K sub 0.30 ((1.20,0.50)) = (0.246,-0.200)
K sub 1.30 ((1.20,0.50)) = (0.336,-0.362)
K sub 2.30 ((1.20,0.50)) = (0.587,-1.126)
K sub 3.30 ((1.20,0.50)) = (0.719,-4.839)
elliptic_integral_K

Evaluates the complete elliptic integral of the kind $K(x)$.

Synopsis

```
#include <imsl.h>

float imsl_f_elliptic_integral_K (float x)
```

The type double function is imsl_d_elliptic_integral_K.

Required Arguments

```
float x (Input)
Argument for which the function value is desired.
```

Return Value

The complete elliptic integral $K(x)$.

Description

The complete elliptic integral of the first kind is defined to be

$$
K(x) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - x \sin^2 \theta}} \text{ for } 0 \leq x < 1
$$

The argument x must satisfy $0 \leq x < 1$; otherwise, imsl_f_elliptic_integral_K returns imsl_f_machine(2), the largest representable floating-point number. For more information, see the description for machine (float).

The function $K(x)$ is computed using the routine imsl_f_elliptic_integral_RF and the relation $K(x) = R_2(0, 1 - x, 1)$.

Example

The integral $K(0)$ is evaluated.

```
#include <imsl.h>
#include <stdio.h>

int main()
{

```
float x = 0.0;
float ans;

x = imsl_f_elliptic_integral_K (x);
printf ("K(0.0) = \%f\n", x);
}

Output

K(0.0) = 1.570796
elliptic_integral_E

Evaluates the complete elliptic integral of the second kind $E(x)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_elliptic_integral_E (float x)
```

The type `double` function is `imsl_d_elliptic_integral_E`.

Required Arguments

- `float x` (Input)
 - Argument for which the function value is desired.

Return Value

The complete elliptic integral $E(x)$.

Description

The complete elliptic integral of the second kind is defined to be

$$E(x) = \int_0^{\pi/2} \left(1 - x \sin^2 \theta\right)^{1/2} d\theta \text{ for } 0 \leq x < 1$$

The argument x must satisfy $0 \leq x < 1$; otherwise, `imsl_f_elliptic_integral_E` returns `imsl_f_machine(2)`, the largest representable floating-point number. For more information, see the description for `imsl_f_machine`.

The function $E(x)$ is computed using the routine `imsl_f_elliptic_integral_RF` and `imsl_f_elliptic_integral_RD`. The computation is done using the relation

$$E(x) = RF(0, 1 - x, 1) - \frac{x}{3} RD(0, 1 - x, 1)$$

Example

The integral $E(0.33)$ is evaluated.


```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.33;
    float ans;

    x = imsl_f_elliptic_integral_E(x);
    printf("E(0.33) = %f\n", x);
}
```

Output

E(0.33) = 1.431832
elliptic_integral_RF

Evaluates Carlson's elliptic integral of the first kind \(R_F(x, y, z) \).

Synopsis

```c
#include <ims1.h>

float imsl_f_elliptic_integral_RF (float x, float y, float z)
```

The type `double` function is `imsl_d_elliptic_integral_RF`.

Required Arguments

- **float x** (Input)
 - First variable of the incomplete elliptic integral. It must be nonnegative.

- **float y** (Input)
 - Second variable of the incomplete elliptic integral. It must be nonnegative.

- **float z** (Input)
 - Third variable of the incomplete elliptic integral. It must be nonnegative.

Return Value

The complete elliptic integral \(R_F(x, y, z) \)

Description

Carlson's elliptic integral of the first kind is defined to be

\[
R_F(x, y, z) = \frac{1}{2} \int_0^\infty \frac{dt}{(t+x)(t+y)(t+z)^{1/2}}
\]

The arguments must be nonnegative and less than or equal to \(b/5 \). In addition, \(x + y, x + z, \) and \(y + z \) must be greater than or equal to \(5s \). Should any of these conditions fail, `imsl_f_elliptic_integral_RF` is set to \(b \). Here, \(b = \text{imsl_f_machine}(2) \) is the largest and \(s = \text{imsl_f_machine}(1) \) is the smallest representable number. For more information, see the description for `imsl_f_machine`.

The function `imsl_f_elliptic_integral_RF` is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).
Example

The integral $R_F(0, 1, 2)$ is computed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.0;
    float y = 1.0;
    float z = 2.0;
    float ans;

    x = imsl_f_elliptic_integral_RF (x, y, z);
    printf("RF(0, 1, 2) = %f\n", x);
}
```

Output

RF(0, 1, 2) = 1.311029
elliptic_integral_RD

Evaluates Carlson’s elliptic integral of the second kind \(R_D(x, y, z) \).

Synopsis

```c
#include <imsl.h>

float imsl_f_elliptic_integral_RD(float x, float y, float z)
```

The type `double` function is `imsl_d_elliptic_integral_RD`.

Required Arguments

- **float x** (Input)
 - First variable of the incomplete elliptic integral. It must be nonnegative.
- **float y** (Input)
 - Second variable of the incomplete elliptic integral. It must be nonnegative.
- **float z** (Input)
 - Third variable of the incomplete elliptic integral. It must be positive.

Return Value

The complete elliptic integral \(R_D(x, y, z) \)

Description

Carlson’s elliptic integral of the first kind is defined to be

\[
R_D(x, y, z) = \frac{3}{2} \int_0^\infty \frac{dt}{\left[(t + x)(t + y)(t + z) \right]^{3/2}}
\]

The arguments must be nonnegative and less than or equal to \(0.69(\ln \varepsilon)^{1/9} s^{-2/3} \) where \(\varepsilon = \text{imsl}_\text{f}_\text{machine}(4) \) is the machine precision, \(s = \text{imsl}_\text{f}_\text{machine}(1) \) is the smallest representable positive number. Furthermore, \(x + y \) and \(z \) must be greater than \(\max(3s^{2/3}, 3/b^{2/3}) \), where \(b = \text{imsl}_\text{f}_\text{machine}(2) \) is the largest floating point number. If any of these conditions are false, then `imsl_f_elliptic_integral_RD` returns \(b \). For more information, see the description for `imsl_f_machine`.

The function `imsl_f_elliptic_integral_RD` is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).
Example

The integral $R_D(0, 2, 1)$ is computed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
  float x = 0.0;
  float y = 2.0;
  float z = 1.0;
  float ans;

  x = imsl_f_elliptic_integral_RD (x, y, z);
  printf ("RD(0, 2, 1) = %f\n", x);
}
```

Output

$RD(0, 2, 1) = 1.797210$
elliptic_integral_RJ

Evaluates Carlson's elliptic integral of the third kind $R_J (x, y, z, \rho)$.

Synopsis

```c
#include <imsl.h>

float imsl_f_elliptic_integral_RJ (float x, float y, float z, float rho)
```

The type double function is imsl_d_elliptic_integral_RJ.

Required Arguments

- **float x (Input)**
 - First variable of the incomplete elliptic integral. It must be nonnegative.
- **float y (Input)**
 - Second variable of the incomplete elliptic integral. It must be nonnegative.
- **float z (Input)**
 - Third variable of the incomplete elliptic integral. It must be positive.
- **float rho (Input)**
 - Fourth variable of the incomplete elliptic integral. It must be positive.

Return Value

The complete elliptic integral $R_J (x, y, z, \rho)$.

Description

Carlson's elliptic integral of the third kind is defined to be

$$
R_J(x,y,z,\rho) = \frac{3}{2} \int_0^\infty \frac{dt}{(t+x)(t+y)(t+z)(t+\rho)^{1/2}}
$$

The arguments must be nonnegative. In addition, $x + y, x + z, y + z$ and ρ must be greater than or equal to $(5s)^{1/3}$ and less than or equal to $0.3(b/5)^{1/3}$, where $s = \text{imsl_f_machine}(1)$ is the smallest representable floating-point number. Should any of these conditions fail, imsl_f_elliptic_integral_RJ is set to $b = \text{imsl_f_machine}(2)$, the largest floating-point number. For more information, see the description for imsl_f_machine.
The function \texttt{imsl_f_elliptic_integral_RJ} is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

The integral \(R_J(2, 3, 4, 5) \) is computed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 2.0;
    float y = 3.0;
    float z = 4.0;
    float rho = 5.0;
    float ans;

    x = imsl\_f\_elliptic\_integral\_RJ (x, y, z, rho);
    printf("RJ(2, 3, 4, 5) = %f\n", x);
}
```

Output

\(RJ(2, 3, 4, 5) = 0.142976 \)
elliptic_integral_RC

Evaluates an elementary integral from which inverse circular functions, logarithms and inverse hyperbolic functions can be computed.

Synopsis

```c
#include <imsl.h>

float imsl_f_elliptic_integral_RC(float x, float y)
```

The type `double` function is `imsl_d_elliptic_integral_RC`.

Required Arguments

- **float** `x` (Input)
 First variable of the incomplete elliptic integral. It must be nonnegative and must satisfy the conditions given below.

- **float** `y` (Input)
 Second variable of the incomplete elliptic integral. It must be positive and must satisfy the conditions given below.

Return Value

The elliptic integral \(R_C(x, y) \).

Description

Carlson's elliptic integral of the third kind is defined to be

\[
R_C(x, y) = \frac{1}{2} \int_0^\infty \frac{dt}{(t + x)(t + y)^{1/2}}
\]

The argument \(x \) must be nonnegative, \(y \) must be positive, and \(x + y \) must be less than or equal to \(b/5 \) and greater than or equal to \(s \). If any of these conditions are false, the `imsl_f_elliptic_integral_RC` is set to \(b \).

Here, \(b = \text{imsl_f_machine}(2) \) is the largest and \(s = \text{imsl_f_-machine}(1) \) is the smallest representable floating-point number. For more information, see the description for `imsl_f_machine`.

The function `imsl_f_elliptic_integral_RC` is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).
Example

The integral $R_C(2.25, 2)$ is computed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 2.25;
    float y = 2.0;
    float ans;

    x = imsl_f_elliptic_integral_RC (x, y);
    printf("RC(2.25, 2.0) = %f\n", x);
}
```

Output

$RC(2.25, 2.0) = 0.693147$
fresnel_integral_C

Evaluates the cosine Fresnel integral.

Synopsis

```
#include <imsl.h>

float imsl_f_fresnel_integral_C (float x)
```

The type `double` function is imsl_d_fresnel_integral_C.

Required Arguments

```
float x (Input)
Argument for which the function value is desired.
```

Return Value

The cosine Fresnel integral.

Description

The cosine Fresnel integral is defined to be

\[
C(x) = \int_0^x \cos\left(\frac{\pi}{2} t^2\right) dt
\]

Example

The Fresnel integral \(C(1.75) \) is evaluated.

```
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.75;
    float ans;

    x = imsl_f_fresnel_integral_C (x);
    printf ("C(1.75) = %f\n", x);
}
```
Output

C(1.75) = 0.321935
fresnel_integral_S

Evaluates the sine Fresnel integral.

Synopsis

```
#include <imsl.h>

float imsl_f_fresnel_integral_S (float x)
```

The type `double` function is `imsl_d_fresnel_integral_S`.

Required Arguments

- `float x` (Input)
 - Argument for which the function value is desired.

Return Value

The sine Fresnel integral.

Description

The sine Fresnel integral is defined to be

\[
S(x) = \int_0^x \sin\left(\frac{\pi}{2} t^2\right) dt
\]

Example

The Fresnel integral \(S(1.75) \) is evaluated.

```
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 1.75;
    float ans;

    x = imsl_f_fresnel_integral_S (x);
    printf ("S(1.75) = %f\n", x);
}
```
Output
\[S(1.75) = 0.499385 \]
airy_Ai

Evaluates the Airy function.

Synopsis

```c
#include <imsl.h>

float imsl_f_airy_Ai (float x)
```

The type `double` function is `imsl_d_airy_Ai`.

Required Arguments

- `float x` (Input)

 Argument for which the function value is desired.

Return Value

The Airy function evaluated at `x`, $\text{Ai}(x)$.

Description

The airy function $\text{Ai}(x)$ is defined to be

$$
\text{Ai}(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(x t + \frac{1}{3} t^3\right) dt = \sqrt{\frac{x}{3\pi}} K_{1/3}\left(\frac{2}{3} x^{3/2}\right)
$$

The Bessel function $K_v(x)$ is defined in `bessel_exp_K0`.

If $x < -1.31 \varepsilon^{2/3}$, then the answer will have no precision. If $x < -1.31 \varepsilon^{1/3}$, the answer will be less accurate than half precision. Here $\varepsilon = \text{imsl_f_machine}(4)$ is the machine precision.

Finally, x should be less than x_{max} so the answer does not underflow. Very approximately, $x_{\text{max}} = (-1.5 \ln s)^{2/3}$, where $s = \text{imsl_f_machine}(1)$, the smallest representable positive number.

For more information, see the description for `imsl_f_machine`.
Example

In this example, $Ai(-4.9)$ is evaluated.

```c
#include <ims1.h>
#include <stdio.h>

int main()
{
    float x = -4.9;
    float ans;

    x = imsl_f_airy_Ai (x);

    printf("Ai(-4.9) = %f\n", x);
}
```

Output

$Ai(-4.9) = 0.374536$
airy_Bi

Evaluates the Airy function of the second kind.

Synopsis

```
#include <imsl.h>

float imsl_f_airy_Bi (float x)
```

The type `double` function is `imsl_d_airy_Bi`.

Required Arguments

```
float x (Input)
Argument for which the function value is desired.
```

Return Value

The Airy function of the second kind evaluated at x, $Bi(x)$.

Description

The airy function $Bi(x)$ is defined to be

$$
Bi(x) = \frac{1}{\pi} \int_0^\infty \exp\left(xt - \frac{1}{3} t^3 \right) dt + \frac{1}{\pi} \int_0^\infty \sin\left(xt + \frac{1}{3} t^3 \right) dt
$$

It can also be expressed in terms of modified Bessel functions of the first kind, $I_v(x)$, and Bessel functions of the first kind $J_v(x)$ (see `bessel_Ix` and `bessel_Jx`):

$$
Bi(x) = \sqrt{\frac{x}{3}} \left[I_{-1/3} \left(\frac{2}{3} x^{3/2} \right) + I_{1/3} \left(\frac{2}{3} x^{3/2} \right) \right] \text{ for } x > 0
$$

and

$$
Bi(x) = \sqrt{-\frac{x}{3}} \left[J_{-1/3} \left(\frac{2}{3} |x|^{3/2} \right) - J_{1/3} \left(\frac{2}{3} |x|^{3/2} \right) \right] \text{ for } x < 0
$$

Let $\varepsilon = \text{imsl_f_machine}(4)$, the machine precision. If $x < -1.31\varepsilon^{-2/3}$, then the answer will have no precision. If $x < -1.31\varepsilon^{-1/3}$, the answer will be less accurate than half precision. In addition, x should not be so large that $\exp[(2/3)x^{3/2}]$ overflows. For more information, see the description for `imsl_f_machine`.
Example

In this example, Bi(-4.9) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = -4.9;
    float ans;

    x = imsl_f_airy_Bi (x);

    printf("Bi(-4.9) = %f\n", x);
}
```

Output

Bi(-4.9) = -0.057747
airy_Ai_derivative

Evaluates the derivative of the Airy function.

Synopsis

```
#include <imsl.h>

float imsl_f_airy_Ai_derivative (float x)
```

The type `double` function is `imsl_d_airy_Ai_derivative`.

Required Arguments

- `float x` (Input)

 Argument for which the function value is desired.

Return Value

The derivative of the Airy function.

Description

The airy function \(\text{Ai}'(x) \) is defined to be the derivative of the Airy function, \(\text{Ai}(x) \). If \(x < -1.31 \varepsilon^{1/3} \), then the answer will have no precision. If \(x < -1.31 \varepsilon^{1/3} \), the answer will be less accurate than half precision. Here \(\varepsilon = \text{imsl_f_machine}(4) \) is the machine precision. Finally, \(x \) should be less than \(x_{\text{max}} \) so that the answer does not underflow. Very approximately, \(x_{\text{max}} = \{-1.51 \ln s\} \), where \(s = \text{imsl_f_machine}(1) \), the smallest representable positive number. For more information, see the description for \(\text{imsl_f_machine} \).

Example

In this example, \(\text{Ai}'(-4.9) \) is evaluated.

```
#include <imsl.h>
#include <stdio.h>

int main()
{
  float x = -4.9;
  float ans;

  x = imsl_f_airy_Ai_derivative (x);

  printf ("Ai'(-4.9) = %f\n", x);
}
```
Output

$Ai'(-4.9) = 0.146958$
airy_Bi_derivative

Evaluates the derivative of the Airy function of the second kind.

Synopsis

```c
#include <imsl.h>

float imsl_f_airy_Bi_derivative (float x)
```

The type `double` function is `imsl_d_airy_Bi_derivative`.

Required Arguments

`float x` (Input)

Argument for which the function value is desired.

Return Value

The derivative of the Airy function of the second kind.

Description

The airy function \(Bi'(x) \) is defined to be the derivative of the Airy function of the second kind, \(Bi(x) \). If \(x < -1.31 \varepsilon^{2/3} \), then the answer will have no precision. If \(x < -1.31 \varepsilon^{-1/3} \), the answer will be less accurate than half precision. Here \(\varepsilon = imsl_f_machine(4) \) is the machine precision. In addition, \(x \) should not be so large that \(\exp((2/3)x^{3/2}) \) overflows. For more information, see the description for `imsl_f_machine`.

Example

In this example, \(Bi'(-4.9) \) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = -4.9;
    float ans;

    x = imsl_f_airy_Bi_derivative (x);
    printf ("Bi'(-4.9) = %f\n", x);
}
```
Output

$B_i'(-4.9) = 0.827219$
kelvin_ber0

Evaluates the Kelvin function of the first kind, \(\text{ber} \), of order zero.

Synopsis

```c
#include <imsl.h>

float imsl_f_kelvin_ber0 (float x)
```

The type `double` function is `imsl_d_kelvin_ber0`.

Required Arguments

- `float x` (Input)

 Argument for which the function value is desired.

Return Value

The Kelvin function of the first kind, \(\text{ber} \), of order zero evaluated at \(x \).

Description

The Kelvin function \(\text{ber}_0(x) \) is defined to be
\[
\Re J_0(xe^{3\pi i/4}).
\]
The Bessel function \(J_0(x) \) is defined

\[
J_0(x) = \frac{1}{\pi} \int_0^\pi \cos(x \sin\theta) d\theta
\]

The function `imsl_f_kelvin_ber0` is based on the work of Burgoyne (1963).

Example

In this example, \(\text{ber}_0(0.4) \) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.4;
    float ans;

    x = imsl_f_kelvin_ber0 (x);
    printf("ber0(0.4) = %f\n", x);
}
```
Output

ber0(0.4) = 0.999600
kelvin_bei0

Evaluates the Kelvin function of the first kind, bei, of order zero.

Synopsis

```c
#include <imsl.h>

float imsl_f_kelvin_bei0 (float x)
```

The type double function is `imsl_d_kelvin_bei0`.

Required Arguments

- **float x** (Input)
 - Argument for which the function value is desired.

Return Value

The Kelvin function of the first kind, bei, of order zero evaluated at `x`.

Description

The Kelvin function bei\(_0(x)\) is defined to be \(J_0(xe^{3\pi/4})\). The Bessel function \(J_0(x)\) is defined

\[
J_0(x) = \frac{1}{\pi} \int_0^\pi \cos(xs\sin \theta) \, d\theta
\]

The function `imsl_f_kelvin_bei0` is based on the work of Burgoyne (1963).

In `imsl_f_kelvin_bei0`, `x` must be less than 119.

Example

In this example, \(\text{bei}\(_0(0.4)\)\) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
  float x = 0.4;
  float ans;
```

```c
```
\begin{verbatim}
x = imsl_f_kelvin_bei0 (x);
printf ("bei0(0.4) = \%f\n", x);
\end{verbatim}

\textbf{Output}

\begin{verbatim}
bei0(0.4) = 0.039998
\end{verbatim}
kelvin_ker0

Evaluates the Kelvin function of the second kind, ker, of order zero.

Synopsis

```c
#include <imsl.h>

float imsl_f_kelvin_ker0 (float x)
```

The type `double` function is `imsl_d_kelvin_ker0`.

Required Arguments

- `float x (Input)`
 - Argument for which the function value is desired.

Return Value

The Kelvin function of the second kind, ker, of order zero evaluated at x.

Description

The modified Kelvin function \(k_0(x) \) is defined to be \(\Re K_0(xe^{\pi/4}) \). The Bessel function \(K_0(x) \) is defined

\[
K_0(x) = \int_0^\infty \cos(x \sin t) \, dt
\]

The function `imsl_f_kelvin_ker0` is based on the work of Burgoyne (1963). If \(x < 0 \), NaN (Not a Number) is returned. If \(x \geq 119 \), then zero is returned.

Example

In this example, \(k_0(0.4) \) is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.4;
    float ans;

    x = imsl_f_kelvin_ker0 (x);
}
```
printf("ker0(0.4) = %f\n", x);
}

Output

ker0(0.4) = 1.062624
kelvin_kei0

Evaluates the Kelvin function of the second kind, kei, of order zero.

Synopsis

```
#include <imsl.h>

float imsl_f_kelvin_kei0 (float x)
```

The type `double` function is `imsl_d_kelvin_kei0`.

Required Arguments

- `float x` (Input)
 - Argument for which the function value is desired.

Return Value

The Kelvin function of the second kind, kei, of order zero evaluated at \(x \).

Description

The modified Kelvin function \(\text{kei}_0(x) \) is defined to be \(3K_0(xe^{\pi/4}) \). The Bessel function \(K_0(x) \) is defined

\[
K_0(x) = \int_0^{\infty} \cos(x \sin t) \, dt
\]

The function `imsl_f_kelvin_kei0` is based on the work of Burgoyne (1963). If \(x < 0 \), NaN (Not a Number) is returned. If \(x \geq 119 \), zero is returned.

Example

In this example, \(\text{kei}_0(0.4) \) is evaluated.

```
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.4;
    float ans;

    x = imsl_f_kelvin_kei0 (x);
```
```c
printf("kei0(0.4) = %f\n", x);
}
```

Output

\[\text{kei0}(0.4) = -0.703800 \]
kelvin_ber0_derivative

Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Synopsis

```c
#include <imsl.h>

float imsl_f_kelvin_ber0_derivative (float x)
```

The type `double` function is `imsl_d_kelvin_ber0_derivative`.

Required Arguments

- `float x` (Input)
 - Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the first kind, ber, of order zero evaluated at `x`.

Description

The function $\text{ber}_0'(x)$ is defined to be

$$
\frac{d}{dx}\text{ber}_0(x)
$$

The function `imsl_f_kelvin_ber0_derivative` is based on the work of Burgoyne (1963). If $|x| > 119$, NaN is returned.

Example

In this example, $\text{ber}_0'(0.6)$ is evaluated.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.6;
    float ans;
    x = imsl_f_kelvin_ber0_derivative (x);
    // Further code...
}
```
printf("ber0'(0.6) = \%f\n", x);
}

Output

ber0'(0.6) = -0.013498
kelvin_beio_derivative

Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Synopsis

```c
#include <ims1.h>

float imsl_f_kelvin_beio_derivative (float x)
```

The type `double` function is `imsl_d_kelvin_beio_derivative`.

Required Arguments

- `float x` (Input)

 Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the first kind, bei, of order zero evaluated at `x`.

Description

The function $\text{bei}_0'(x)$ is defined to be

$$
\frac{d}{dx}\text{bei}_0(x)
$$

The function `imsl_f_kelvin_beio_derivative` is based on the work of Burgoyne (1963). If $|x| > 119$, NaN is returned.

Example

In this example, $\text{bei}_0'(0.6)$ is evaluated.

```c
#include <ims1.h>
#include <stdio.h>

int main()
{
  float x = 0.6;
  float ans;

  x = imsl_f_kelvin_beio_derivative (x);
  printf ("bei0'(0.6) = %f\n", x);
}
```
Output

\[\text{bei}0'(0.6) = 0.299798 \]
kelvin_ker0_derivative

Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Synopsis

```
#include <imsl.h>

float imsl_f_kelvin_ker0_derivative (float x)
```

The type `double` function is `imsl_d_kelvin_ker0_derivative`.

Required Arguments

- `float x` (Input)
 Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the second kind, `ker`, of order zero evaluated at `x`.

Description

The function `ker_0'(x)` is defined to be

\[
\frac{d}{dx} \text{ker}_0(x)
\]

The function `imsl_f_kelvin_ker0_derivative` is based on the work of Burgoyne (1963). If `x < 0`, NaN (Not a Number) is returned. If `x \geq 119`, zero is returned.

Example

In this example, `ker_0'(0.6)` is evaluated.

```
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.6;
    float ans;

    x = imsl_f_kelvin_ker0_derivative (x);
    printf ("ker_0'(0.6) = %f\n", x);
```
Output

\[\text{ker}_0'(0.6) = -1.456538 \]
kelvin_kei0_derivative

Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Synopsis

```
#include <imsl.h>

float imsl_f_kelvin_kei0_derivative (float x)
```

The type `double` function is `imsl_d_kelvin_kei0_derivative`.

Required Arguments

```
float x (Input)
Argument for which the function value is desired.
```

Return Value

The derivative of the Kelvin function of the second kind, kei, of order zero evaluated at x.

Description

The function \(\text{kei}_0'(x) \) is defined to be

\[
\frac{d}{dx}\text{kei}_0(x)
\]

The function `imsl_f_kelvin_kei0_derivative` is based on the work of Burgoyne (1963).

If \(x < 0 \), NaN (Not a Number) is returned. If \(x \geq 119 \), zero is returned.

Example

In this example, \(\text{kei}_0'(0.6) \) is evaluated.

```
#include <imsl.h>
#include <stdio.h>

int main()
{
    float x = 0.6;
    float ans;

    x = imsl_f_kelvin_kei0_derivative (x);
```
printf("kei0'(0.6) = %f\n", x);
}

Output

kei0'(0.6) = 0.348164
normal_cdf

Evaluates the standard normal (Gaussian) distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_normal_cdf (float x)
```

The type `double` function is `imsl_d_normal_cdf`.

Required Arguments

- **float x** (Input)

 Point at which the normal distribution function is to be evaluated.

Return Value

The probability that a normal random variable takes a value less than or equal to `x`.

Description

The function `imsl_f_normal_cdf` evaluates the distribution function, \(\Phi \), of a standard normal (Gaussian) random variable; that is,

\[
\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt
\]

The value of the distribution function at the point `x` is the probability that the random variable takes a value less than or equal to `x`.

The standard normal distribution (for which `imsl_f_normal_cdf` is the distribution function) has mean of 0 and variance of 1. The probability that a normal random variable with mean \(\mu \) and variance \(\sigma^2 \) is less than \(y \) is given by `imsl_f_normal_cdf` evaluated at \((y - \mu) / \sigma \).

\(\Phi(x) \) is evaluated by use of the complementary error function, `imsl_f_erfc`. The relationship is:
Example

Suppose \(X \) is a normal random variable with mean 100 and variance 225. This example finds the probability that \(X \) is less than 90 and the probability that \(X \) is between 105 and 110.

```c
#include <imsl.h>

int main()
{
    float      p, x1, x2;

    x1 = (90.0-100.0)/15.0;
    p  = imsl_f_normal_cdf(x1);
    printf("The probability that X is less than 90 is %6.4f\n", p);

    x1 = (105.0-100.0)/15.0;
    x2 = (110.0-100.0)/15.0;
    p = imsl_f_normal_cdf(x2) - imsl_f_normal_cdf(x1);
    printf("The probability that X is between 105 and 110 is %6.4f\n", p);
}
```

Output

The probability that \(X \) is less than 90 is 0.2525

The probability that \(X \) is between 105 and 110 is 0.1169
normal_inverse_cdf

Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_normal_inverse_cdf (float p)
```

The type `double` procedure is `imsl_d_normal_inverse_cdf`.

Required Arguments

- `float p` (Input)
 Probability for which the inverse of the normal distribution function is to be evaluated. The argument `p` must be in the open interval (0.0, 1.0).

Return Value

The inverse of the normal distribution function evaluated at `p`. The probability that a standard normal random variable takes a value less than or equal to `imsl_f_normal_inverse_cdf` is `p`.

Description

The function `imsl_f_normal_inverse_cdf` evaluates the inverse of the distribution function, Φ, of a standard normal (Gaussian) random variable; that is, $\text{imsl_f_normal_inverse_cdf}(p) = \Phi^{-1}(p)$ where

$$
\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt
$$

The value of the distribution function at the point x is the probability that the random variable takes a value less than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.

The function `imsl_f_normal_inverse_cdf(p)` is evaluated by use of minimax rational-function approximations for the inverse of the error function. General descriptions of these approximations are given in Hart et al. (1968) and Strecok (1968). The rational functions used in `imsl_f_normal_inverse_cdf` are described by Kinnucan and Kuki (1968).

Example

This example computes the point such that the probability is 0.9 that a standard normal random variable is less than or equal to this point.
#include <imsl.h>

int main()
{
 float x;
 float p = 0.9;

 x = imsl_f_normal_inverse_cdf(p);
 printf("The 90th percentile of a standard normal is %6.4f.\n", x);
}

Output

The 90th percentile of a standard normal is 1.2816.
chi_squared_cdf

Evaluates the chi-squared cumulative distribution function (CDF).

Synopsis

```c
#include <imsl.h>

float imsl_f_chi_squared_cdf (float chi_squared, float df)
```

The type double function is `imsl_d_chi_squared_cdf`.

Required Arguments

- `float chi_squared` (Input)
 - Argument for which the chi-squared distribution function is to be evaluated.

- `float df` (Input)
 - Number of degrees of freedom of the chi-squared distribution. Argument df must be greater than 0.

Return Value

The probability \(p \) that a chi-squared random variable takes a value less than or equal to \(\text{chi}_\text{squared} \).

Description

Function `imsl_f_chi_squared_cdf` evaluates the distribution function, \(F(x, \nu) \), of a chi-squared random variable \(x = \text{chi}_\text{squared} \) with \(\nu = \text{df} \) degrees of freedom, where:

\[
F(x, \nu) = \frac{1}{2^\nu/2 \Gamma(\nu/2)} \int_0^x e^{-t/2} t^{\nu/2-1} dt
\]

and \(\Gamma(\cdot) \) is the gamma function. The value of the distribution function at the point \(x \) is the probability that the random variable takes a value less than or equal to \(x \).

For \(\nu > \nu_{\text{max}} = 1.\text{e}7 \), `imsl_f_chi_squared_cdf` uses the Wilson-Hilferty approximation (Abramowitz and Stegun [A&S] 1964, Equation 26.4.17) for \(p \) in terms of the normal CDF, which is evaluated using function `imsl_f_normal_cdf`.

For \(\nu \leq \nu_{\text{max}} \), `imsl_f_chi_squared_cdf` uses series expansions to evaluate \(p \): for \(x < \nu \), `imsl_f_chi_squared_cdf` calculates \(p \) using A&S series 6.5.29, and for \(x \geq \nu \), `imsl_f_chi_squared_cdf` calculates \(p \) using the continued fraction expansion of the incomplete gamma function given in A&S equation 6.5.31.
Example

Suppose X is a chi-squared random variable with two degrees of freedom. In this example, we find the probability that X is less than 0.15 and the probability that X is greater than 3.0.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float  chi_squared = 0.15, df = 2.0, p;

    p  = imsl_f_chi_squared_cdf(chi_squared, df);
    printf("The probability that chi-squared with %1.0f df is less than %4.2f is %5.4f\n", df, chi_squared, p);

    chi_squared = 3.0;
    p  = 1.0 - imsl_f_chi_squared_cdf(chi_squared, df);
    printf("The probability that chi-squared with %1.0f df is greater than %3.1f is %5.4f\n", df, chi_squared, p);
}
```
Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Informational Errors

IMSL_ARG_LESS_THAN_ZERO

Since "chi_squared" = #is less than zero, the distribution function is zero at "chi_squared."

Alert Errors

IMSL_NORMAL_UNDERFLOW

Using the normal distribution for large degrees of freedom, underflow would have occurred.
chi_squared_inverse_cdf

Evaluates the inverse of the chi-squared distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_chi_squared_inverse_cdf (float p, float df)
```

The type `double` function is `imsl_d_chi_squared_inverse_cdf`.

Required Arguments

- **float** `p` (Input)
 - Probability for which the inverse of the chi-squared distribution function is to be evaluated. The argument `p` must be in the open interval (0.0, 1.0).

- **float** `df` (Input)
 - Number of degrees of freedom of the chi-squared distribution. The argument `df` must be greater than 0.

Return Value

The inverse of the chi-squared distribution function evaluated at `p`. The probability that a chi-squared random variable takes a value less than or equal to `imsl_f_chi_squared_inverse_cdf(p, df)` is `p`.

Description

The function `imsl_f_chi_squared_inverse_cdf` evaluates the inverse distribution function of a chi-squared random variable with \(\nu = df \) and with probability `p`. That is, it determines \(x = imsl_f_chi_squared_inverse_cdf(p, df) \) such that

\[
p = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^x e^{-t/2} t^{\nu/2-1} \, dt
\]

where \(\Gamma(\cdot) \) is the gamma function. The probability that the random variable takes a value less than or equal to `x` is `p`.

For \(\nu < 40 \), `imsl_f_chi_squared_inverse_cdf` uses bisection (if \(\nu \leq 2 \) or \(p > 0.98 \)) or regula falsi to find the point at which the chi-squared distribution function is equal to `p`. The distribution function is evaluated using function `imsl_f_chi_squared_cdf`.
For $40 \leq \nu < 100$, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.18) to the normal distribution is used. The function `imsl_f_normal_cdf` is used to evaluate the inverse of the normal distribution function. For $\nu \geq 100$, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.

Example

In this example, the 99-th percentage point is calculated for a chi-squared random variable with two degrees of freedom. The same calculation is made for a similar variable with 64 degrees of freedom.

```c
#include <imsl.h>
#include <stdio.h>

int main ()
{
    float      df, x;
    float      p = 0.99;

    df = 2.0;
    x = imsl_f_chi_squared_inverse_cdf(p, df);
    printf("For p = .99 with 2 df, x = %7.3f.\n", x);

    df = 64.0;
    x = imsl_f_chi_squared_inverse_cdf(p,df);
    printf("For p = .99 with 64 df, x = %7.3f.\n", x);
}
```

Output

For $p = .99$ with 64 df, $x = 93.217$.

Warning Errors

- **IMSL_UNABLE_TO_BRACKET_VALUE2**

 Unable to bracket the value of the inverse chi-squared at "$p = #,$ with "$df = #.$

- **IMSL_CHI_2_INV_CDF_CONVERGENCE**

 The value of the inverse chi-squared could not be found within a specified number of iterations. An approximation for `imsl_f_chi_squared_inverse_cdf` is returned.
F_cdf

Evaluates the F distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_F_cdf (float f, float df_denominator, float df_numerator)
```

The type double function is imsl_d_F_cdf.

Required Arguments

- **float f (Input)**
 Point at which the F distribution function is to be evaluated.

- **float df_numerator (Input)**
 The numerator degrees of freedom. The argument df_numerator must be positive.

- **float df_denominator (Input)**
 The denominator degrees of freedom. The argument df_denominator must be positive.

Return Value

The probability that an F random variable takes a value less than or equal to the input point, f.

Description

The function imsl_f_F_cdf evaluates the distribution function of a Snedecor's F random variable with df_numerator and df_denominator. The function is evaluated by making a transformation to a beta random variable and then by evaluating the incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom and Y = (ν1 X)/(ν2 + ν1 X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2.

The function imsl_f_F_cdf also uses a relationship between F random variables that can be expressed as follows:

\[F_F(f, ν_1, ν_2) = 1 - F_F(1/f, ν_2, ν_1) \]

where \(F_F \) is the distribution function for an F random variable.
Example

This example finds the probability that an F random variable with one numerator and one denominator degree of freedom is greater than 648.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float      p;
    float      F = 648.0;
    float      df_numerator = 1.0;
    float      df_denominator = 1.0;

    p = 1.0 - imsl_f_F_cdf(F,df_numerator, df_denominator);
    printf("The probability that an F(1,1) variate, \n    is greater than 648 is\", p);
}
```

Output

The probability that an $F(1,1)$ variate is greater than 648 is 0.0250.
F_inverse_cdf

Evaluates the inverse of the F distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_F_inverse_cdf (float p, float df_numerator, float df_denominator)
```

The type double procedure is imsl_d_F_inverse_cdf.

Required Arguments

- **float** p (Input)
 - Probability for which the inverse of the F distribution function is to be evaluated. The argument p must be in the open interval (0.0, 1.0).

- **float** df_numerator (Input)
 - Numerator degrees of freedom. Argument df_numerator must be positive.

- **float** df_denominator (Input)
 - Denominator degrees of freedom. Argument df_denominator must be positive.

Return Value

The value of the inverse of the F distribution function evaluated at p. The probability that an F random variable takes a value less than or equal to imsl_f_F_inverse_cdf is p.

Description

The function imsl_f_F_inverse_cdf evaluates the inverse distribution function of a Snedecor’s F random variable with $v_1 = df_numerator$ numerator degrees of freedom and $v_2 = df_denominator$ denominator degrees of freedom. The function is evaluated by making a transformation to a beta random variable and then by evaluating the inverse of an incomplete beta function. If X is an F variate with v_1 and v_2 degrees of freedom and $Y = (v_1/X)/(v_2 + v_1 X)$, then Y is a beta variate with parameters $p = v_1/2$ and $q = v_2/2$. If $P \leq 0.5$, imsl_f_F_inverse_cdf uses this relationship directly; otherwise, it also uses a relationship between F random variables that can be expressed as follows:

$$F_T(f, v_1, v_2) = 1 - F_T(1/f, v_2, v_1)$$
Example

In this example, the 99-th percentage point is calculated for an F random variable with seven degrees of freedom. The same calculation is made for a similar variable with one degree of freedom.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float df_denominator = 1.0;
    float df_numerator = 7.0;
    float f;
    float p = 0.99;

    f = imsl_f_F_inverse_cdf(p, df_numerator, df_denominator);
    printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}
```

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_F_INVERSE_OVERFLOW</td>
<td>Function <code>imsl_f_F_inverse_cdf</code> is set to machine infinity since overflow would occur upon modifying the inverse value for the F distribution with the result obtained from the inverse beta distribution.</td>
</tr>
</tbody>
</table>
Evaluates the Student’s t cumulative distribution function (CDF).

Synopsis

```c
#include <imsl.h>

float imsl_f_t_cdf (float t, float df)
```

The type `double` function is `imsl_d_t_cdf`.

Required Arguments

- **float t (Input)**
 - Argument for which the Student’s t cumulative distribution function is to be evaluated.
- **float df (Input)**
 - Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value

The probability that a Student’s t random variable takes a value less than or equal to the input t.

Description

Function `imsl_f_t_cdf` evaluates the cumulative distribution function of a Student’s t random variable with $\nu = df$ degrees of freedom. If $t^2 \geq \nu$, the following identity relating the Student’s t cumulative distribution function $TCDF(t, \nu)$ to the incomplete beta ratio function $I_x(a, b)$ is used:

$$TCDF(t \leq 0, \nu) = \frac{1}{2} I_x \left(\frac{\nu}{2}, \frac{1}{2}\right)$$

where

$$x = \frac{\nu}{t^2 + \nu}$$
If \(t^2 < \nu \), the solution space is partitioned into four algorithms as follows: If \(\nu \geq 64 \) and \(t^2 / \nu \leq 0.1 \), a Cornish-Fisher expansion is used to evaluate the distribution function. If \(\nu < 64 \) and an integer and \(|t| < 2.0\), a trigonometric series is used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some rearrangement). If \(\nu < 64 \) and an integer and \(|t| > 2.0\), a series given by Hill (1970) that converges well for large values of \(t \) is used. For the remaining \(t^2 < \nu \) cases, \(\text{TCDF}(t, \nu) \) is calculated using the identity:

\[
TCDF(t, \nu) = I_x \left(\frac{\nu}{2}, \frac{\nu}{2} \right)
\]

where

\[
x = \frac{t + \sqrt{t^2 + \nu}}{2\sqrt{t^2 + \nu}}
\]

Figure 9.23 — Plot of \(F_t(t, 6.0) \)

Example

This example finds the probability that a \(t \) random variable with 6 degrees of freedom is greater in absolute value than 2.447. The fact that \(t \) is symmetric about 0 is used.

```c
#include <imsl.h>
#include <stdio.h>
```
```c
int main ()
{
    float  t = 2.447, df = 6.0, p;

    p = 2.0*imsl_f_t_cdf(-t,df);
    printf("Pr(|t(%1.0f)| > %5.3f) = %6.4f\n", df, t, p);
}
```

Output

$Pr(|t(6)| > 2.447) = 0.0500$
t_inverse_cdf

Evaluates the inverse of the Student’s t distribution function.

Synopsis

#include <imsl.h>

float imsl_f_t_inverse_cdf (float p, float df)

The type double function is imsl_d_t_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the Student’s t distribution function is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value

The inverse of the Student’s t distribution function evaluated at p. The probability that a Student’s t random variable takes a value less than or equal to imsl_f_t_inverse_cdf is p.

Description

The function imsl_f_t_inverse_cdf evaluates the inverse distribution function of a Student’s t random variable with $\nu = df$ degrees of freedom. If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between 1 and 2, the relationship of a t to a beta random variable is exploited, and the inverse of the beta distribution is used to evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values of ν greater than 2, Hill’s algorithm inverts an integrated expansion in $1/(1 + t^2/\nu)$ of the t density. For larger values, an asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Example

This example finds the 0.05 critical value for a two-sided t test with six degrees of freedom.

#include <imsl.h>

int main()
{

float df = 6.0;
float p = 0.975;
float t;

t = imsl_f_t_inverse_cdf(p,df);
printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}

Output
The two-sided t(6) 0.05 critical value is 2.447

Informational Errors

IMSL_OVERFLOW

Function imsl_f_t_inverse_cdf is set to machine infinity since overflow would occur upon modifying the inverse value for the \textit{F} distribution with the result obtained from the inverse beta distribution.
gamma_cdf

Evaluates the gamma distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_gamma_cdf (float x, float a)
```

The type `double` procedure is `imsl_d_gamma_cdf`.

Required Arguments

- **float x (Input)**
 - Argument for which the gamma distribution function is to be evaluated.
- **float a (Input)**
 - The shape parameter of the gamma distribution. This parameter must be positive.

Return Value

The probability that a gamma random variable takes a value less than or equal to `x`.

Description

The function `imsl_f_gamma_cdf` evaluates the distribution function, \(F \), of a gamma random variable with shape parameter \(a \), that is,

\[
F(x) = \frac{1}{\Gamma(a)} \int_0^x e^{-t} t^{a-1} dt
\]

where \(\Gamma(\cdot) \) is the gamma function. (The gamma function is the integral from zero to infinity of the same integrand as above). The value of the distribution function at the point \(x \) is the probability that the random variable takes a value less than or equal to \(x \).

The gamma distribution is often defined as a two-parameter distribution with a scale parameter \(b \) (which must be positive) or even as a three-parameter distribution in which the third parameter \(c \) is a location parameter.

In the most general case, the probability density function over \((c, \infty)\) is
\[f(t) = \frac{1}{b^a \Gamma(a)} e^{-(t-c)/b} (x-c)^{a-1} \]

If \(T \) is such a random variable with parameters \(a, b, \) and \(c, \) the probability that \(T \leq t_0 \) can be obtained from \texttt{imsl_f_gamma_cdf} by setting \(x = (t_0 - c)/b. \)

If \(x \) is less than \(a \) or if \(x \) is less than or equal to 1.0, \texttt{imsl_f_gamma_cdf} uses a series expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz and Stegun 1964.)

Example

Let \(X \) be a gamma random variable with a shape parameter of four. (In this case, it has an Erlang distribution since the shape parameter is an integer.) This example finds the probability that \(X \) is less than 0.5 and the probability that \(X \) is between 0.5 and 1.0.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float      p, x;
    float      a = 4.0;

    x = 0.5;
    p = imsl_f_gamma_cdf(x,a);
    printf("The probability that X is less than 0.5 is %6.4f\n", p);

    x = 1.0;
    p = imsl_f_gamma_cdf(x,a) - p;
    printf("The probability that X is between 0.5 and 1.0 is %6.4f\n", p);
}
```

Output

The probability that \(X \) is less than 0.5 is 0.0018
The probability that \(X \) is between 0.5 and 1.0 is 0.0172

Informational Errors

- **IMSL_LESS_THAN_ZERO**
 The input argument, \(x \), is less than zero.

Fatal Errors

- **IMSL_X_AND_A_TOO_LARGE**
 The function overflows because \(x \) and \(a \) are too large.
binomial_cdf

Evaluates the binomial distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_binomial_cdf (int k, int n, float p)
```

The type `double` procedure is `imsl_d_binomial_cdf`.

Required Arguments

- `int k` (Input)
 - Argument for which the binomial distribution function is to be evaluated.
- `int n` (Input)
 - Number of Bernoulli trials.
- `float p` (Input)
 - Probability of success on each trial.

Return Value

The probability that \(k \) or fewer successes occur in \(n \) independent Bernoulli trials, each of which has a probability \(p \) of success.

Description

The function `imsl_f_binomial_cdf` evaluates the distribution function of a binomial random variable with parameters \(n \) and \(p \). It does this by summing probabilities of the random variable taking on the specific values in its range. These probabilities are computed by the recursive relationship

\[
Pr(X = j) = \frac{(n+1-j)p}{j(1-p)} Pr(X = j-1)
\]

To avoid the possibility of underflow, the probabilities are computed forward from zero if \(k \) is not greater than \(n \times p \); otherwise, they are computed backward from \(n \). The smallest positive machine number, \(\varepsilon \), is used as the starting value for summing the probabilities, which are rescaled by \((1 - p)^n \varepsilon\) if forward computation is performed and by \(p^n \varepsilon\) if backward computation is done.

For the special case of \(p \) is zero, `imsl_f_binomial_cdf` is set to 1; and for the case \(p \) is 1, `imsl_f_binomial_cdf` is set to 1 if \(k = n \) and is set to zero otherwise.
Example

Suppose X is a binomial random variable with an $n = 5$ and a $p = 0.95$. This example finds the probability that X is less than or equal to three.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int        k = 3;
    int        n = 5;
    float      p = 0.95;
    float      pr;

    pr = imsl_f_binomial_cdf(k,n,p);
    printf("Pr(x <= 3) = %6.4f\n", pr);
}
```

Output

Pr(x <= 3) = 0.0226

Informational Errors

- **IMSL_LESS_THAN_ZERO**
 - The input argument, k, is less than zero.

- **IMSL_GREATER_THAN_N**
 - The input argument, k, is greater than the number of Bernoulli trials, n.
hypergeometric_cdf

Evaluates the hypergeometric distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_hypergeometric_cdf (int k, int n, int m, int l)
```

The type `double` procedure is `imsl_d_hypergeometric_cdf`.

Required Arguments

- `int k` (Input)
 - Argument for which the hypergeometric distribution function is to be evaluated.

- `int n` (Input)
 - Sample size `n` must be greater than or equal to `k`.

- `int m` (Input)
 - Number of defectives in the lot.

- `int l` (Input)
 - Lot size `l` must be greater than or equal to `n` and `m`.

Return Value

The probability that `k` or fewer defectives occur in a sample of size `n` drawn from a lot of size `l` that contains `m` defectives.

Description

The function `imsl_f_hypergeometric_cdf` evaluates the distribution function of a hypergeometric random variable with parameters `n`, `l`, and `m`. The hypergeometric random variable `x` can be thought of as the number of items of a given type in a random sample of size `n` that is drawn without replacement from a population of size `l` containing `m` items of this type. The probability function is

\[
\Pr(x = j) = \frac{\binom{m}{j} \binom{l-m}{n-j}}{\binom{l}{n}} \quad \text{for } j = i, i+1, \ldots, \min(n,m)
\]

where \(i = \max(0, n - l + m) \).
If \(k \) is greater than or equal to \(i \) and less than or equal to \(\min(n, m) \), \texttt{imsl_f_hypergeometric_cdf} sums the terms in this expression for \(j \) going from \(i \) up to \(k \). Otherwise, 0 or 1 is returned, as appropriate.

To avoid rounding in the accumulation, \texttt{imsl_f_hypergeometric_cdf} performs the summation differently, depending on whether \(k \) is greater than the mode of the distribution, which is the greatest integer in \((m + 1) (n + 1)/(l + 2)\).

Example

Suppose \(X \) is a hypergeometric random variable with \(n = 100, l = 1000, \) and \(m = 70 \). This example evaluates the distribution function at 7.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int        k = 7;
    int        l = 1000;
    int        m = 70;
    int        n = 100;
    float      p;

    p = imsl_f_hypergeometric_cdf(k,n,m,l);
    printf("Pr (x <= 7) = %6.4f\n", p);
}
```

Output

\[Pr (x <= 7) = 0.599 \]

Informational Errors

- \texttt{IMSL_LESS__THAN_ZERO} \hspace{1cm} The input argument, \(k \), is less than zero.
- \texttt{IMSL_K_GREATER_THAN_N} \hspace{1cm} The input argument, \(k \), is greater than the sample size.

Fatal Errors

- \texttt{IMSL_LOT_SIZE_TOO_SMALL} \hspace{1cm} Lot size must be greater than or equal to \(n \) and \(m \).
poisson_cdf

Evaluates the Poisson distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_poisson_cdf (int k, float theta)
```

The type `double` function is `imsl_d_poisson_cdf`.

Required Arguments

- `int k` (Input)
 - Argument for which the Poisson distribution function is to be evaluated.
- `float theta` (Input)
 - Mean of the Poisson distribution. Argument `theta` must be positive.

Return Value

The probability that a Poisson random variable takes a value less than or equal to `k`.

Description

The function `imsl_f_poisson_cdf` evaluates the distribution function of a Poisson random variable with parameter `theta`. The mean of the Poisson random variable, `theta`, must be positive. The probability function (with \(\theta = \theta_{\text{theta}} \)) is

\[
f(x) = e^{-\theta} \frac{\theta^x}{x!}, \text{ for } x = 0, 1, 2, \ldots
\]

The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed. The function `imsl_f_poisson_cdf` uses the recursive relationship

\[
f(x + 1) = f(x) \frac{q}{x + 1}, \text{ for } x = 0, 1, 2, \ldots, k - 1
\]

with \(f(0) = e^{-q} \).
Example

Suppose X is a Poisson random variable with $\theta = 10$. This example evaluates the probability that $X \leq 7$.

```c
#include <imsl.h>

int main()
{
    int        k = 7;
    float      theta = 10.0;
    float      p;

    p = imsl_f_poisson_cdf(k, theta);
    printf("Pr(x <= 7) = %6.4f\n", p);
}
```

Output

$Pr(x \leq 7) = 0.2202$

Informational Errors

`IMSL_LESS_THAN_ZERO` The input argument, k, is less than zero.
beta_cdf

Evaluates the beta probability distribution function.

Synopsis

```
#include <imsl.h>

float imsl_f_beta_cdf (float x, float pin, float qin)
```

The type double function is imsl_d_beta_cdf.

Required Arguments

- **float x** (Input)
 - Argument for which the beta probability distribution function is to be evaluated.

- **float pin** (Input)
 - First beta distribution parameter. Argument pin must be positive.

- **float qin** (Input)
 - Second beta distribution parameter. Argument qin must be positive.

Return Value

The probability that a beta random variable takes on a value less than or equal to \(x \).

Description

Function imsl_f_beta_cdf evaluates the distribution function of a beta random variable with parameters pin and qin. This function is sometimes called the incomplete beta ratio and with \(p = \) pin and \(q = qin \), is denoted by \(I_x (p, q) \). It is given by

\[
I_x (p, q) = \int_0^x t^{p-1} (1 - t)^{q-1} dt
\]

where \(\Gamma(\cdot) \) is the gamma function. The value of the distribution function by \(I_x (p, q) \) is the probability that the random variable takes a value less than or equal to \(x \).

The integral in the expression above is called the incomplete beta function and is denoted by \(\beta_x (p, q) \). The constant in the expression is the reciprocal of the beta function (the incomplete function evaluated at one) and is denoted by \(\beta(p, q) \).

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) This example finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float p, pin, qin, x;

    pin = 12.0;
    qin = 12.0;
    x = 0.6;
    p = imsl_f_beta_cdf(x, pin, qin);
    printf(" The probability that X is less than 0.6 is %6.4f\n", p);

    x = 0.5;
    p -= imsl_f_beta_cdf(x, pin, qin);
    printf(" The probability that X is between 0.5 and 0.6 is %6.4f\n", p);
}
```

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
beta_inverse_cdf

Evaluates the inverse of the beta distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_beta_inverse_cdf (float p, float pin, float qin)
```

The type `double` function is `imsl_d_beta_inverse_cdf`.

Required Arguments

- `float p` (Input)
 Probability for which the inverse of the beta distribution function is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

- `float pin` (Input)
 First beta distribution parameter. Argument pin must be positive.

- `float qin` (Input)
 Second beta distribution parameter. Argument qin must be positive.

Return Value

Function `imsl_f_beta_inverse_cdf` evaluates the inverse distribution function of a beta random variable with parameters pin and qin.

Description

With $P = p$, $p = pin$, and $q = qin$, function `imsl_f_beta_inverse_cdf` returns x such that

$$
P = \frac{\Gamma(p + q)}{\Gamma(p)\Gamma(q)} \int_0^x t^{p-1}(1-t)^{q-1}dt
$$

where $\Gamma(\cdot)$ is the gamma function. The probability that the random variable takes a value less than or equal to x is P.

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) This example finds the value x such that the probability that $X \leq x$ is 0.9.
```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float p, pin, qin, x;

    pin = 12.0;
    qin = 12.0;
    p  = 0.9;
    x  = imsl_f_beta_inverse_cdf(p, pin, qin);
    printf(" X is less than %6.4f with probability 0.9.\n", x);
}

Output

X is less than 0.6299 with probability 0.9.
```
bivariate_normal_cdf

Evaluates the bivariate normal distribution function.

Synopsis

```c
#include <imsl.h>

float imsl_f_bivariate_normal_cdf (float x, float y, float rho)
```

The type `double` function is `imsl_d_bivariate_normal_cdf`.

Required Arguments

- `float x` (Input)
 The \(x\)-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

- `float y` (Input)
 The \(y\)-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

- `float rho` (Input)
 Correlation coefficient.

Return Value

The probability that a bivariate normal random variable with correlation \(\rho\) takes a value less than or equal to \(x\) and less than or equal to \(y\).

Description

Function `imsl_f_bivariate_normal_cdf` evaluates the distribution function \(F\) of a bivariate normal distribution with means of zero, variances of one, and correlation of \(\rho\); that is, with \(p = \rho\), and \(|p| < 1\),

\[
F(x, y) = \frac{1}{2\pi\sqrt{1 - \rho^2}} \int_{-\infty}^{x} \int_{-\infty}^{y} \exp \left(-\frac{u^2 - 2\rho uv + v^2}{2(1 - \rho^2)} \right) dvdu
\]

To determine the probability that \(U \leq u_0\) and \(V \leq v_0\), where \((U, V)^T\) is a bivariate normal random variable with mean \(\mu = (\mu_U, \mu_V)^T\) and variance-covariance matrix...
transform \((U, V)^T\) to a vector with zero means and unit variances. The input to
\texttt{imsl_f_bivariate_normal_cdf} would be \(X = (u_0 - \mu_U)/\sigma_U, Y = (v_0 - \mu_V)/\sigma_V,\) and \(\rho = \sigma_{UV}/(\sigma_U\sigma_V)\).

Function \texttt{imsl_f_bivariate_normal_cdf} uses the method of Owen (1962, 1965). Computation of
Owen's T-function is based on code by M. Patefield and D. Tandy (2000). For \(|\rho| = 1,\) the distribution function is
computed based on the univariate statistic, \(Z = \min(x, y),\) and on the normal distribution function
\texttt{imsl_f_normal_cdf}, which can be found in Chapter 11 of the IMSL C Numerical Stat Library, "Probability
Distribution Functions and Inverses."

Example

Suppose \((X, Y)\) is a bivariate normal random variable with mean \((0, 0)\) and variance-covariance matrix

\[
\begin{pmatrix}
1.0 & 0.9 \\
0.9 & 1.0
\end{pmatrix}
\]

This example finds the probability that \(X\) is less than \(-2.0\) and \(Y\) is less than \(0.0\).

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    float       p, rho, x, y;
    x = -2.0;
    y = 0.0;
    rho = 0.9;
    p = imsl_f_bivariate_normal_cdf(x, y, rho);
    printf(" The probability that X is less than \(-2.0\)" \\
           " and Y is less than 0.0 is %6.4f\n", p);
}
```

Output

The probability that \(X\) is less than \(-2.0\) and \(Y\) is less than \(0.0\) is 0.0228
cumulative_interest

Evaluates the cumulative interest paid between two periods.

Synopsis

```c
#include <imsl.h>

float imsl_f_cumulative_interest (float rate, int n_periods, float present_value, 
                                   int start, int end, int when)
```

The type `double` function is `imsl_d_cumulative_interest`.

Required Arguments

- `float rate` (Input)
 - Interest rate.

- `int n_periods` (Input)
 - Total number of payment periods. `n_periods` cannot be less than or equal to 0.

- `float present_value` (Input)
 - The current value of a stream of future payments, after discounting the payments using some interest rate.

- `int start` (Input)
 - Starting period in the calculation. `start` cannot be less than 1; or greater than `end`.

- `int end` (Input)
 - Ending period in the calculation.

- `int when` (Input)
 - Time in each period when the payment is made, either `IMSL_AT_END_OF_PERIOD` or `IMSL_AT_BEGINNING_OF_PERIOD`. For a more detailed discussion on `when` see the Usage Notes section of this chapter.

Return Value

The cumulative interest paid between the first period and the last period. If no result can be computed, NaN is returned.

Description

Function `imsl_f_cumulative_interest` evaluates the cumulative interest paid between the first period and the last period.
It is computed using the following:

\[\sum_{i=start}^{end} \text{interest}_i \]

where \text{interest}_i is computed from \text{imsl_f_interest_payment} for the \(i\)-th period.

Example

In this example, \text{imsl_f_cumulative_interest} computes the total interest paid for the first year of a 30-year $200,000 loan with an annual interest rate of 7.25\%. The payment is made at the end of each month.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float rate = 0.0725 / 12;
    int n_periods = 12 * 30;
    float present_value = 200000;
    int start = 1;
    int end = 12;
    float total;

    total = imsl_f_cumulative_interest (rate, n_periods, present_value, 
                                        start, end, IMSL_AT_END_OF_PERIOD);

    printf("First year interest = $%.2f.\n", total);
}
```

Output

First year interest = $-14436.52.
cumulative_principal

Evaluates the cumulative principal paid between two periods.

Synopsis

```c
#include <imsl.h>

float imsl_f_cumulative_principal (float rate, int n_periods, float present_value,
     int start, int end, int when)
```

The type `double` function is `imsl_d_cumulative_principal`.

Required Arguments

- `float rate` (Input)
 Interest rate.

- `int n_periods` (Input)
 Total number of payment periods. `n_periods` cannot be less than or equal to 0.

- `float present_value` (Input)
 The current value of a stream of future payments, after discounting the payments using some interest rate.

- `int start` (Input)
 Starting period in the calculation. `start` cannot be less than 1; or greater than `end`.

- `int end` (Input)
 Ending period in the calculation.

- `int when` (Input)
 Time in each period when the payment is made, either `IMSL_AT_END_OF_PERIOD` or `IMSL_AT_BEGINNING_OF_PERIOD`. For a more detailed discussion on `when` see the Usage Notes section of this chapter.

Return Value

The cumulative principal paid between the first period and the last period. If no result can be computed, NaN is returned.
Description

Function `imsl_f_cumulative_principal` evaluates the cumulative principal paid between the first period and the last period.

It is computed using the following:

\[\sum_{i=\text{start}}^{\text{end}} \text{principal}_i \]

where \(\text{principal}_i \) is computed from `imsl_f_principal_payment` for the \(i \)-th period.

Example

In this example, `imsl_f_cumulative_principal` computes the total principal paid for the first year of a 30-year $200,000 loan with an annual interest rate of 7.25%. The payment is made at the end of each month.

```c
#include <stdio.h>
#include <imsl.h>

int main () {
    float rate = 0.0725 / 12;
    int n_periods = 12 * 30;
    float present_value = 200000;
    int start = 1;
    int end = 12;
    float total;

    total = imsl_f_cumulative_principal (rate, n_periods, present_value, start, end, IMSL_AT_END_OF_PERIOD);

    printf("First year principal = $%.2f.\n", total);
}
```

Output

First year principal = $-1935.73.
depreciation_db

Evaluates the depreciation of an asset using the fixed-declining balance method.

Synopsis

```c
#include <imsl.h>

float imsl_f_depreciation_db (float cost, float salvage, int life, int period, int month)
```

The type `double` function is `imsl_d_depreciation_db`.

Required Arguments

- `float cost` (Input)
 Initial value of the asset.

- `float salvage` (Input)
 The value of an asset at the end of its depreciation period.

- `int life` (Input)
 Number of periods over which the asset is being depreciated.

- `int period` (Input)
 Period for which the depreciation is to be computed. `period` cannot be less than or equal to 0, and cannot be greater than `life` + 1.

- `int month` (Input)
 Number of months in the first year. `month` cannot be greater than 12 or less than 1.

Return Value

The depreciation of an asset for a specified period using the fixed-declining balance method. If no result can be computed, NaN is returned.
Description

Function imsl_f_depreciation_db computes the depreciation of an asset for a specified period using the fixed-declining balance method. Routine imsl_f_depreciation_db varies depending on the specified value for the argument period, see table below.

<table>
<thead>
<tr>
<th>period</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>period = 1</td>
<td>(\text{cost} \times \text{rate} \times \frac{\text{month}}{12})</td>
</tr>
<tr>
<td>period = life</td>
<td>((\text{cost} - \text{total depreciation from periods}) \times \text{rate} \times \frac{12 - \text{month}}{12})</td>
</tr>
<tr>
<td>period other than 1 or life</td>
<td>((\text{cost} - \text{total depreciation from prior periods}) \times \text{rate})</td>
</tr>
</tbody>
</table>

where

\[
\text{rate} = 1 - \left(\frac{\text{salvage}}{\text{cost}}\right)^\left(\frac{1}{\text{life}}\right)
\]

NOTE: rate is rounded to three decimal places.

Example

In this example, imsl_f_depreciation_db computes the depreciation of an asset, which costs $2,500 initially, a useful life of 3 periods and a salvage value of $500, for each period.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float cost = 2500;
    float salvage = 500;
    int life = 3;
    int month = 6;
    float db;
    int period;

    for (period = 1; period <= life + 1; period++)
    {
        db = imsl_f_depreciation_db (cost, salvage, life, period, month);
    }
}
printf ("For period %i, db = $%.2f.\n", period, db);
}

**Output**

For period 1, db = $518.75.
For period 2, db = $822.22.
For period 3, db = $481.00.
For period 4, db = $140.69.
depreciation_ddb

Evaluates the depreciation of an asset using the double-declining balance method.

Synopsis

```
#include <imsl.h>

float imsl_f_depreciation_ddb (float cost, float salvage, int life, int period,
 float factor)
```

The type `double` function is `imsl_d_depreciation_ddb`.

Required Arguments

- `float cost` (Input)
  Initial value of the asset.
- `float salvage` (Input)
  The value of an asset at the end of its depreciation period.
- `int life` (Input)
  Number of periods over which the asset is being depreciated.
- `int period` (Input)
  Period for which the depreciation is to be computed. `period` cannot be greater than `life`.
- `float factor` (Input)
  Rate at which the balance declines. `factor` must be positive.

Return Value

The depreciation of an asset using the double-declining balance method for a period specified by the user. If no result can be computed, NaN is returned.

Description

Function `imsl_f_depreciation_ddb` computes the depreciation of an asset using the double-declining balance method for a specified period.

It is computed using the following:
Example

In this example, imsl_f_depreciation_ddb computes the depreciation of an asset, which costs $2,500 initially, lasts 24 periods and a salvage value of $500, for each period.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 float cost = 2500;
 float salvage = 500;
 float factor = 2;
 int life = 24;
 int period;
 float ddb;

 for (period = 1; period <= life; period++)
 {
 ddb = imsl_f_depreciation_ddb (cost, salvage, life, period, factor);
 printf ("For period %i, ddb = $%.2f\n", period, ddb);
 }
}
```

Output

For period 1, ddb = $208.33.
For period 2, ddb = $190.97.
For period 3, ddb = $175.06.
For period 4, ddb = $160.47.
For period 5, ddb = $147.10.
For period 6, ddb = $134.84.
For period 7, ddb = $123.60.
For period 8, ddb = $113.30.
For period 9, ddb = $103.86.
For period 10, ddb = $95.21.
For period 11, ddb = $87.27.
For period 12, ddb = $80.00.
For period 13, ddb = $73.33.
For period 14, ddb = $67.22.
For period 15, ddb = $61.62.
For period 16, ddb = $56.48.
For period 17, ddb = $51.78.
For period 18, ddb = $47.46.
For period 19, ddb = $22.09.
For period 20, ddb = $0.00.
For period 21, ddb = $0.00.
For period 22, ddb = $0.00.
For period 23, ddb = $0.00.
For period 24, ddb = $0.00.
depreciation_sln

Evaluates the depreciation of an asset using the straight-line method.

Synopsis

```c
#include <imsl.h>

float imsl_f_depreciation_sln (float cost, float salvage, int life)
```

The type `double` function is `imsl_d_depreciation_sln`.

Required Arguments

- `float cost` (Input)
  - Initial value of the asset.
- `float salvage` (Input)
  - The value of an asset at the end of its depreciation period.
- `int life` (Input)
  - Number of periods over which the asset is being depreciated.

Return Value

The straight line depreciation of an asset for its life. If no result can be computed, NaN is returned.

Description

Function `imsl_f_depreciation_sln` computes the straight line depreciation of an asset for its life.

It is computed using the following:

\[
\frac{(\text{cost} - \text{salvage})}{\text{life}}
\]

Example

In this example, `imsl_f_depreciation_sln` computes the depreciation of an asset, which costs $2,500 initially, lasts 24 periods and a salvage value of $500.

```c
#include <stdio.h>
#include <imsl.h>
```
int main()
{
    float cost = 2500;
    float salvage = 500;
    int life = 24;
    float depreciation_sln;

    depreciation_sln = imsl_f_depreciation_sln (cost, salvage, life);
    printf("The straight line depreciation of the asset for one ");
    printf("period is $%.2f\n", depreciation_sln);
}

Output

The straight line depreciation of the asset for one period is $83.33.
depreciation_syd

Evaluates the depreciation of an asset using the sum-of-years digits method.

Synopsis

```c
#include <imsl.h>

float imsl_f_depreciation_syd (float cost, float salvage, int life, int period)
```

The type `double` function is `imsl_d_depreciation_syd`.

Required Arguments

- `float cost` (Input)
  Initial value of the asset.

- `float salvage` (Input)
  The value of an asset at the end of its depreciation period.

- `int life` (Input)
  Number of periods over which the asset is being depreciated.

- `int period` (Input)
  Period for which the depreciation is to be computed. `period` cannot be greater than `life`.

Return Value

The sum-of-years digits depreciation of an asset for a specified period. If no result can be computed, NaN is returned.

Description

Function `imsl_f_depreciation_syd` computes the sum-of-years digits depreciation of an asset for a specified period.

It is computed using the following:

\[
(cost - salvage) \cdot \left( \frac{period}{life + 1} \right) \cdot \frac{(life)}{2}
\]
Example

In this example, imsl_f_depreciation_syd computes the depreciation of an asset, which costs $25,000 initially, lasts 15 years and a salvage value of $5,000, for the 14th year.

```
#include <stdio.h>
#include <imsl.h>

int main()
{
 float cost = 25000;
 float salvage = 5000;
 int life = 15;
 int period = 14;
 float depreciation_syd;

 depreciation_syd = imsl_f_depreciation_syd (cost, salvage, life, period);
 printf ("The depreciation allowance for the 14th year is $%.2f.\n", depreciation_syd);
}
```

Output

The depreciation allowance for the 14th year is $333.33.
depreciation_vdb

Evaluates the depreciation of an asset for any given period using the variable-declining balance method.

Synopsis

```c
#include <imsl.h>

float imsl_f_depreciation_vdb (float cost, float salvage, int life, int start, int end,
 float factor, int sln)
```

The type `double` function is `imsl_d_depreciation_vdb`.

Required Arguments

- **float cost** (Input)
  - Initial value of the asset.

- **float salvage** (Input)
  - The value of an asset at the end of its depreciation period.

- **int life** (Input)
  - Number of periods over which the asset is being depreciated.

- **int start** (Input)
  - Starting period in the calculation. `start` cannot be less than 1; or greater than `end`.

- **int end** (Input)
  - Final period for the calculation. `end` cannot be greater than `life`.

- **float factor** (Input)
  - Rate at which the balance declines. `factor` must be positive.

- **int sln** (Input)
  - If equal to zero, do not switch to straight-line depreciation even when the depreciation is greater than the declining balance calculation.

Return Value

The depreciation of an asset for any given period, including partial periods, using the variable-declining balance method. If no result can be computed, NaN is returned.
Description

Function imsl_f_depreciation_vdb computes the depreciation of an asset for any given period using the variable-declining balance method using the following:

\[
\text{if } s\text{l}n = 0 \\
\sum_{i = \text{start} + 1}^{\text{end}} \text{ddb}_i \\
\text{if } s\text{l}n \neq 0 \\
A + \sum_{i = k}^{\text{end}} \frac{\text{cost} - A - \text{salvage}}{\text{end} - k + 1}
\]

where \( \text{ddb}_i \) is computed from imsl_f_depreciation_ddb for the \( i \)-th period. \( k \) is the first period where straight line depreciation is greater than the depreciation using the double-declining balance method.

\[
A = \sum_{i = \text{start} + 1}^{k - 1} \text{ddb}_i
\]

Example

In this example, imsl_f_depreciation_vdb computes the depreciation of an asset between the 10\(^{th}\) and 15\(^{th}\) year, which costs $25,000 initially, lasts 15 years and has a salvage value of $5,000.

```c
#include <stdio.h>
#include <imsl.h>

int main() {
 float cost = 25000;
 float salvage = 5000;
 int life = 15;
 int start = 10;
 int end = 15;
 float factor = 2.;
 int sln = 0;
 float vdb;

 vdb = imsl_f_depreciation_vdb (cost, salvage, life, start, end, factor, sln);
 printf ("The depreciation allowance between the 10th and 15th ");
 printf ("year is $%.2f.\n", vdb);
}
```
Output

The depreciation allowance between the 10th and 15th year is $976.69.
dollar_decimal

Converts a fractional price to a decimal price.

Synopsis

```c
#include <imsl.h>

float imsl_f_dollar_decimal (float fractional_dollar, int fraction)
```

The type `double` function is `imsl_d_dollar_decimal`.

Required Arguments

- `float fractional_dollar` (Input)
  Whole number of dollars plus the numerator, as the fractional part.

- `int fraction` (Input)
  Denominator of the fractional dollar. `fraction` must be positive.

Return Value

The dollar price expressed as a decimal number. The dollar price is the whole number part of fractional-dollar plus its decimal part divided by `fraction`. If no result can be computed, NaN is returned.

Description

Function `imsl_f_dollar_decimal` converts a dollar price, expressed as a fraction, into a dollar price, expressed as a decimal number.

It is computed using the following:

\[
\text{idollar} + \left\lfloor \frac{\text{fractional\_dollar} - \text{idollar}}{\text{fraction}} \right\rfloor \times 10^{(\text{ifrac}+1)}
\]

where `idollar` is the integer part of `fractional_dollar`, and `ifrac` is the integer part of \(\log(fraction)\).
Example

In this example, `imsl_f_dollar_decimal` converts $1 1/4 to $1.25.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{

 float fractional_dollar = 1.1;
 int fraction = 4;
 float dollardec;

 dollardec = imsl_f_dollar_decimal (fractional_dollar, fraction);
 printf ("The fractional dollar $1 1/4 = $%.2f.\n", dollardec);
}
```

Output

The fractional dollar $1 1/4 =$1.25.
dollar_fraction

Converts a decimal price to a fractional price.

Synopsis

```c
#include <imsl.h>

float imsl_f_dollar_fraction (float decimal_dollar, int fraction)
```

The type `double` function is `imsl_d_dollar_fraction`.

Required Arguments

- `float decimal_dollar` (Input)
  - Dollar price expressed as a decimal number.

- `int fraction` (Input)
  - Denominator of the fractional dollar. `fraction` must be positive.

Return Value

The dollar price expressed as a fraction. The numerator is the decimal part of the return value. If no result can be computed, NaN is returned.

Description

Function `imsl_f_dollar_fraction` converts a dollar price, expressed as a decimal number, into a dollar price, expressed as a fractional price. If no result can be computed, NaN is returned.

It can be found by solving the following:

\[ idollar + \frac{\lfloor decimal_dollar - idollar \rfloor}{10^{(ifrac+1)} / fraction} \]

where `idollar` is the integer part of the `decimal_dollar`, and `ifrac` is the integer part of \( \log(fraction) \).

Example

In this example, `imsl_f_dollar_fraction` converts $1.25 to $1 1/4.
```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 int numerator, fraction = 4;
 float dollarfrc, decimal_dollar = 1.25;

 dollarfrc = imsl_f_dollar_fraction(decimal_dollar, fraction);
 numerator = dollarfrc*10.-(int)dollarfrc)*10;
 printf("The decimal dollar $1.25 as a "
 "fractional dollar = $%i %i/%i.\n",
 (int)dollarfrc, numerator, fraction);
}

Output
The decimal dollar $1.25 as a fractional dollar = $1 1/4.
effective_rate

Evaluates the effective annual interest rate.

Synopsis

```c
#include <imsl.h>

float imsl_f_effective_rate (float nominal_rate, int n_periods)
```

The type `double` function is `imsl_d_effective_rate`.

Required Arguments

- `float nominal_rate` (Input)

 The interest rate as stated on the face of a security.

- `int n_periods` (Input)

 Number of compounding periods per year.

Return Value

The effective annual interest rate. If no result can be computed, NaN is returned.

Description

Function `imsl_f_effective_rate` computes the continuously-compounded interest rate equivalent to a given periodically-compounded interest rate. The nominal interest rate is the periodically-compounded interest rate as stated on the face of a security.

It can found by solving the following:

\[
\left(1 + \frac{\text{nominal_rate}}{\text{n_periods}} \right)^{\text{n_periods}} \quad - \quad 1
\]

Example

In this example, `imsl_f_effective_rate` computes the effective annual interest rate of the nominal interest rate, 6%, compounded quarterly.
```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float nominal_rate = 0.06;
    int n_periods = 4;
    float effective_rate;

    effective_rate = imsl_f_effective_rate (nominal_rate, n_periods);
    printf ("The effective rate of the nominal rate, 6.0\%, ",
            effective_rate * 100.);
    printf ("compounded quarterly is %.2f\%.\n", effective_rate * 100.);
}

Output

The effective rate of the nominal rate, 6.0\%, compounded quarterly is 6.14\%.
```
future_value

Evaluates the future value of an investment.

Synopsis

```c
#include <imsl.h>

float imsl_f_future_value (float rate, int n_periods, float payment,
                          float present_value, int when)
```

The type `double` function is `imsl_d_future_value`.

Required Arguments

- `float rate` (Input)
 - Interest rate.
- `int n_periods` (Input)
 - Total number of payment periods.
- `float payment` (Input)
 - Payment made in each period.
- `float present_value` (Input)
 - The current value of a stream of future payments, after discounting the payments using some interest rate.
- `int when` (Input)
 - Time in each period when the payment is made, either `IMSL_AT_END_OF_PERIOD` or `IMSL_AT_BEGINNING_OF_PERIOD`. For a more detailed discussion on `when` see the Usage Notes section of this chapter.

Return Value

The future value of an investment. If no result can be computed, NaN is returned.

Description

Function `imsl_f_future_value` computes the future value of an investment. The future value is the value, at some time in the future, of a current amount and a stream of payments.

It can be found by solving the following:
If $rate = 0$

$$present_value + (payment)(n_{periods}) + future_value = 0$$

If $rate \neq 0$

$$present_value(1 + rate)^{n_{periods}} +$$

$$payment\left[1 + rate(when)\right]\left(1 + rate\right)^{n_{periods}} - 1 + future_value = 0$$

Example

In this example, `imsl_f_future_value` computes the value of $30,000 payment made annually at the beginning of each year for the next 20 years with an annual interest rate of 5%.

```c
#include <imsl.h>
#include <stdio.h>

int main ()
{
    float rate = .05;
    int n_periods = 20;
    float payment = -30000.00;
    float present_value = -30000.00;
    int when = IMSL_AT_BEGINNING_OF_PERIOD;
    float future_value;

    future_value = imsl_f_future_value (rate, n_periods, payment, present_value, when);
    printf ("After 20 years, the value of the investments ");
    printf ("$\%.2f\n", future_value);
}
```

Output

After 20 years, the value of the investments will be $1121176.63.
future_value_schedule

Evaluates the future value of an initial principal taking into consideration a schedule of compound interest rates.

Synopsis

```c
#include <imsl.h>

float imsl_f_future_value_schedule (float principal, int count, float schedule[])
```

The type `double` function is `imsl_d_future_value_schedule`.

Required Arguments

- `float principal` (Input)
 Principal or present value.
- `int count` (Input)
 Number of interest rates in `schedule`.
- `float schedule[]` (Input)
 Array of size `count` of interest rates to apply.

Return Value

The future value of an initial principal after applying a schedule of compound interest rates. If no result can be computed, NaN is returned.

Description

Function `imsl_f_future_value_schedule` computes the future value of an initial principal after applying a schedule of compound interest rates.

It is computed using the following:

\[
\sum_{i=1}^{count} \left(principal \times schedule_i \right)
\]

where `schedule_i` = interest rate at the i-th period.

Example

In this example, `imsl_f_future_value_schedule` computes the value of a $10,000 investment after 5 years with interest rates of 5%, 5.1%, 5.2%, 5.3% and 5.4%, respectively.
#include <stdio.h>
#include <imsl.h>

int main()
{
 float principal = 10000.0;
 float schedule[5] = { .050, .051, .052, .053, .054 };
 float fvschedule;

 fvschedule = imsl_f_future_value_schedule (principal, 5, schedule);
 printf ("After 5 years the $10,000 investment will have grown ");
 printf ("to $%.2f.\n", fvschedule);
}

Output

After 5 years the $10,000 investment will have grown to $12884.77.
interest_payment

Evaluates the interest payment for an investment for a given period.

Synopsis

```c
#include <imsl.h>

float imsl_f_interest_payment (float rate, int period, int n_periods,
                            float present_value, float future_value, int when)
```

The type `double` function is `imsl_d_interest_payment`.

Required Arguments

- `float rate` (Input)
 - Interest rate.
- `int period` (Input)
 - Payment period.
- `int n_periods` (Input)
 - Total number of periods.
- `float present_value` (Input)
 - The current value of a stream of future payments, after discounting the payments using some interest rate.
- `float future_value` (Input)
 - The value, at some time in the future, of a current amount and a stream of payments.
- `int when` (Input)
 - Time in each period when the payment is made, either `IMSL_AT_END_OF_PERIOD` or `IMSL_AT_BEGINNING_OF_PERIOD`. For a more detailed discussion on see the Usage Notes section of this chapter.

Return Value

The interest payment for an investment for a given period. If no result can be computed, NaN is returned.

Description

Function `imsl_f_interest_payment` computes the interest payment for an investment for a given period.
It is computed using the following:

\[
\{ \text{present} _\text{value}(1 + rate)^{n _\text{periods} - 1} + \text{payment} (1 + rate \times when) \left[\frac{(1 + rate)^{n _\text{periods} - 1}}{rate} \right] } \right\} / rate
\]

Example

In this example, `imsl_f_interest_payment` computes the interest payment for the second year of a 25-year $100,000 loan with an annual interest rate of 8%. The payment is made at the end of each period.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float rate = .08;
    int period = 2;
    int n_periods = 25;
    float present_value = 100000.00;
    float future_value = 0.0;
    int when = IMSL_AT_END_OF_PERIOD;
    float interest_payment;

    interest_payment = imsl_f_interest_payment (rate, period, n_periods, present_value, future_value, when);
    printf ("The interest due the second year on the $100,000 loan is $%.2f\n", interest_payment);
}
```

Output

The interest due the second year on the $100,000 loan is $-7890.57.
interest_rate_annuity

Evaluates the interest rate per period of an annuity.

Synopsis

```c
#include <imsl.h>

float imsl_f_interest_rate_annuity (int n_periods, float payment,
                                    float present_value, float future_value, int when,..., 0)
```

The type `double` function is `imsl_d_interest_rate_annuity`.

Required Arguments

- **int n_periods (Input)**
 Total number of periods.

- **float payment (Input)**
 Payment made each period.

- **float present_value (Input)**
 The current value of a stream of future payments, after discounting the payments using some interest rate.

- **float future_value (Input)**
 The value, at some time in the future, of a current amount and a stream of payments.

- **int when (Input)**
 Time in each period when the payment is made, either `IMSL_AT_END_OF_PERIOD` or `IMSL_AT_BEGINNING_OF_PERIOD`. For a more detailed discussion on `when` see the Usage Notes section of this chapter.

Return Value

The interest rate per period of an annuity. If no result can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
```
float imsl_f_interest_rate_annuity (int n_periods, float payment,
float present_value, float future_value, int when,
IMSL_XGUESS, float guess,
IMSL_HIGHEST, float max,
0)

Optional Arguments

IMSL_XGUESS, float guess (Input)
Initial guess at the interest rate.

IMSL_HIGHEST, float max (Input)
Maximum value of the interest rate allowed.
Default: 1.0 (100%)

Description

Function `imsl_f_interest_rate_annuity` computes the interest rate per period of an annuity. An annuity is a security that pays a fixed amount at equally spaced intervals.

It can be found by solving the following:

If \(rate = 0 \)

\[
\text{present}_\text{value} + \left(\text{payment} \right) \left(n_\text{periods} \right) + \text{future}_\text{value} = 0
\]

If \(rate \neq 0 \)

\[
\text{present}_\text{value} \left(1 + rate \right)^{n_\text{periods}} + \\
\text{payment} \left[1 + rate \left(when \right) \right] \left(\frac{1 + rate}{rate} \right)^{n_\text{periods}} - 1 + \text{future}_\text{value} = 0
\]

Example

In this example, `imsl_f_interest_rate_annuity` computes the interest rate of a $20,000 loan that requires 70 payments of $350 each to pay off.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float rate;
    int n_periods = 70;
    float payment = -350.;
    float present_value = 20000;
    float future_value = 0.;

```
int when = IMSL_AT_BEGINNING_OF_PERIOD;

rate = imsl_f_interest_rate_annuity (n_periods, payment, present_value,
future_value, when, 0) * 12;
printf ("The computed interest rate on the loan is ");
printf ("%.2f\%
", rate * 100.);
}

Output
The computed interest rate on the loan is 7.35%.
internal_rate_of_return

Evaluates the internal rate of return for a schedule of cash flows.

Synopsis

```
#include <imsl.h>

float imsl_f_internal_rate_of_return (int count, float values[], ..., 0)
```

The type `double` function is `imsl_d_internal_rate_of_return`.

Required Arguments

- `int count` (Input)
 - Number of cash flows in `values`. `count` must be greater than one.
- `float values[]` (Input)
 - Array of size `count` of cash flows which occur at regular intervals, which includes the initial investment.

Return Value

The internal rate of return for a schedule of cash flows. If no result can be computed, NaN is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

float imsl_f_internal_rate_of_return (int count, float values[],

  IMSL_XGUESS, float guess,

  IMSL_HIGHEST, float max,

  0)
```

Optional Arguments

- `IMSL_XGUESS, float guess` (Input)
 - Initial guess at the internal rate of return.
- `IMSL_HIGHEST, float max` (Input)
 - Maximum value of the internal rate of return allowed.
 - Default: 1.0 (100%).
Description

Function imsl_f_internal_rate_of_return computes the internal rate of return for a schedule of cash flows. The internal rate of return is the interest rate such that a stream of payments has a net present value of zero.

It is found by solving the following:

\[0 = \sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^i} \]

where \(\text{value}_i\) = the \(i\)-th cash flow, \(\text{rate}\) is the internal rate of return.

Example

In this example, imsl_f_internal_rate_of_return computes the internal rate of return for nine cash flows, -$800, $800, $800, $600, $600, $800, $800, $700 and $3,000, with an initial investment of $4,500.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float values[] = { -4500., -800., 800., 800., 600.,
                      600., 800., 800., 700., 3000. };
    float internal_rate;

    internal_rate = imsl_f_internal_rate_of_return (10, values, 0);
    printf ("After 9 years, the internal rate of return on the ");
    printf ("cows is %.2f\%.n", internal_rate * 100.);
}
```

Output

After 9 years, the internal rate of return on the cows is 7.21%.
internal_rate_schedule

Evaluates the internal rate of return for a schedule of cash flows. It is not necessary that the cash flows be periodic.

Synopsis

```c
#include <imsl.h>

float imsl_f_internal_rate_schedule (int count, float values[], struct tm dates[], ..., 0)
```

The type `double` function is `imsl_d_internal_rate_schedule`.

Required Arguments

- **int count** (Input)
 Number of cash flows in `values`. `count` must be greater than one.
- **float values[]** (Input)
 Array of size `count` of cash flows, which includes the initial investment.
- **struct tm dates[]** (Input)
 Array of size `count` of dates cash flows are made see the Usage Notes section of this chapter.

Return Value

The internal rate of return for a schedule of cash flows that is not necessarily periodic. If no result can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_internal_rate_schedule (int count, float values[], struct tm dates[], 
                                      IMSL_XGUESS, float guess, 
                                      IMSL_HIGHEST, float max, 
                                      0)
```
Optional Arguments

IMSL_XGUESS, float guess (Input)
Initial guess at the internal rate of return.

IMSL_HIGHEST, float max (Input)
Maximum value of the internal rate of return allowed.
Default: 1.0 (100%)

Description

Function imsl_f_internal_rate_schedule computes the internal rate of return for a schedule of cash flows that is not necessarily periodic. The internal rate such that the stream of payments has a net present value of zero.

It can be found by solving the following:

\[
0 = \sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^{(d_i - d_1) / 365}}
\]

In the equation above, \(d_i\) represents the \(i\)-th payment date. \(d_1\) represents the 1st payment date. \(\text{value}_i\) represents the \(i\)-th cash flow. \(\text{rate}\) is the internal rate of return.

Example

In this example, imsl_f_internal_rate_schedule computes the internal rate of return for nine cash flows, -$800, $800, $800, $600, $600, $800, $800, $700 and $3,000, with an initial investment of $4,500.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float values[10] = { -4500., -800., 800., 800., 600., 600.,
                        800., 800., 700., 3000. };
    struct tm dates[10];
    float xirr;

    dates[0].tm_year = 98; dates[0].tm_mon = 0; dates[0].tm_mday = 1;
    dates[1].tm_year = 98; dates[1].tm_mon = 9; dates[1].tm_mday = 1;
    dates[2].tm_year = 99; dates[2].tm_mon = 4; dates[2].tm_mday = 5;
    dates[3].tm_year = 100; dates[3].tm_mon = 4; dates[3].tm_mday = 5;
    dates[4].tm_year = 101; dates[4].tm_mon = 5; dates[4].tm_mday = 1;
    dates[5].tm_year = 102; dates[5].tm_mon = 6; dates[5].tm_mday = 1;
    dates[6].tm_year = 103; dates[6].tm_mon = 7; dates[6].tm_mday = 30;
    dates[7].tm_year = 104; dates[7].tm_mon = 8; dates[7].tm_mday = 15;
    dates[8].tm_year = 105; dates[8].tm_mon = 9; dates[8].tm_mday = 15;
    // Call imsl_f_internal_rate_schedule
    xirr = imsl_f_internal_rate_schedule(values, dates, 10);
}```
After approximately 9 years, the internal rate of return on the cows is 7.69%.
modified_internal_rate

Evaluates the modified internal rate of return for a schedule of periodic cash flows.

Synopsis

```c
#include <imsl.h>

float imsl_f_modified_internal_rate (int count, float values[], float finance_rate,
 float reinvest_rate)
```

The type `double` function is `imsl_d_modified_internal_rate`.

Required Arguments

- `int count` (Input)
  - Number of cash flows in `values` and `count` must greater than one.

- `float values[]` (Input)
  - Array of size `count` of cash flows.

- `float finance_rate` (Input)
  - Interest paid on the money borrowed.

- `float reinvest_rate` (Input)
  - Interest rate received on the cash flows.

Return Value

The modified internal rate of return for a schedule of periodic cash flows. If no result can be computed, NaN is returned.

Description

Function `imsl_f_modified_internal_rate` computes the modified internal rate of return for a schedule of periodic cash flows. The modified internal rate of return differs from the ordinary internal rate of return in assuming that the cash flows are reinvested at the cost of capital, not at the internal rate of return.

The modified internal rate of return also eliminates the multiple rates of return problem.

It is computed using the following:
where \( pnpv \) is calculated from `imsl_f_net_present_value` for positive values in `values` using `reinvest_rate`, and where \( nnpv \) is calculated from `imsl_f_net_present_value` for negative values in `values` using `finance_rate`.

**Example**

In this example, `imsl_f_modified_internal_rate` computes the modified internal rate of return for an investment of $4,500 with cash flows of -$800, $800, $800, $600, $600, $800, $800, $700 and $3,000 for 9 years.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 float value[] = { -4500., -800., 800., 800., 600., 600., 800.,
 800., 700., 3000. };
 float finance_rate = .08;
 float reinvest_rate = .055;
 float mirr;
 mirr = imsl_f_modified_internal_rate (10, value, finance_rate,
 reinvest_rate);
 printf ("After 9 years, the modified internal rate of return ");
 printf ("on the cows is %.2f\%%.\n", mirr * 100.);
}
```

**Output**

After 9 years, the modified internal rate of return on the cows is 6.66%.
net_present_value

Evaluates the net present value of a stream of unequal periodic cash flows, which are subject to a given discount rate.

Synopsis

```c
#include <imsl.h>

float imsl_f_net_present_value (float rate, int count, float values[])
```

The type `double` function is `imsl_d_net_present_value`.

Required Arguments

- `float rate` (Input)
  - Interest rate per period.
- `int count` (Input)
  - Number of cash flows in `values`.
- `float values[]` (Input)
  - Array of size `count` of equally-spaced cash flows.

Return Value

The net present value of an investment. If no result can be computed, NaN is returned.

Description

Function `imsl_f_net_present_value` computes the net present value of an investment. Net present value is the current value of a stream of payments, after discounting the payments using some interest rate.

It is found by solving the following:

\[
\sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^i}
\]

where `value_i` = the `i`-th cash flow.

Example

In this example, `imsl_f_net_present_value` computes the net present value of a $10 million prize paid in 20 years ($500,000 per year) with an annual interest rate of 6%.
#include <stdio.h>
#include <imsl.h>

int main()
{
    float rate = 0.06;
    int count = 20;
    float value[20];
    float net_present_value;
    int i;

    for (i = 0; i < count; i++)
        value[i] = 500000.;

    net_present_value = imsl_f_net_present_value (rate, count, value);

    printf ("The net present value of the $10 million prize is $%.2f.\n", net_present_value);
}

Output

The net present value of the $10 million prize is $5734963.00.
nominal_rate

Evaluates the nominal annual interest rate.

Synopsis

```c
#include <imsl.h>

float imsl_f_nominal_rate (float effective_rate, int n_periods)
```

The type `double` function is `imsl_d_nominal_rate`.

Required Arguments

- `float effective_rate` (Input)
  - The amount of interest that would be charged if the interest was paid in a single lump sum at the end of the loan.

- `int n_periods` (Input)
  - Number of compounding periods per year.

Return Value

The nominal annual interest rate. If no result can be computed, NaN is returned.

Description

Function `imsl_f_nominal_rate` computes the nominal annual interest rate. The nominal interest rate is the interest rate as stated on the face of a security.

It is computed using the following:

\[
\left[ \left( 1 + \text{effective\_rate} \right)^{\frac{1}{\text{n\_periods}}} - 1 \right] \times \text{n\_periods}
\]

Example

In this example, `imsl_f_nominal_rate` computes the nominal annual interest rate of the effective interest rate, 6.14%, compounded quarterly.
#include <stdio.h>
#include <imsl.h>

int main()
{
    double effective_rate = .0614;
    int n_periods = 4;
    double nominal_rate;

    nominal_rate = imsl_d_nominal_rate (effective_rate, n_periods);
    printf ("The nominal rate of the effective rate, 6.14\%, \n");
    printf ("compounded quarterly is %.2f\%.n", nominal_rate * 100.);
}

**Output**

The nominal rate of the effective rate, 6.14%,
compounded quarterly is 6.00%.
number_of_periods

Evaluates the number of periods for an investment for which periodic and constant payments are made and the interest rate is constant.

Synopsis

```c
#include <imsl.h>

float imsl_f_number_of_periods (float rate, float payment, float present_value,
 float future_value, int when)
```

The type `double` function is `imsl_d_number_of_periods`.

Required Arguments

- `float rate` (Input)
  Interest rate on the investment.

- `float payment` (Input)
  Payment made on the investment.

- `float present_value` (Input)
  The current value of a stream of future payments, after discounting the payments using some interest rate.

- `float future_value` (Input)
  The value, at some time in the future, of a current amount and a stream of payments.

- `int when` (Input)
  Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage Notes section of this chapter.

Return Value

The number of periods for an investment.

Description

Function `imsl_f_number_of_periods` computes the number of periods for an investment based on periodic, constant payment and a constant interest rate.
It can be found by solving the following:

If \( \text{rate} = 0 \)

\[
present\_value + (payment)(n\_periods) + future\_value = 0
\]

If \( \text{rate} \neq 0 \)

\[
present\_value (1 + rate)^{n\_periods} + \frac{payment[1 + rate(when)](1 + rate)^{n\_periods}}{rate} - 1 + future\_value = 0
\]

**Example**

In this example, `imsl_f_number_of_periods` computes the number of periods needed to pay off a $20,000 loan with a monthly payment of $350 and an annual interest rate of 7.25%. The payment is made at the beginning of each period.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 float rate = 0.0725 / 12;
 float payment = -350.0;
 float present_value = 20000;
 float future_value = 0.;
 int when = IMSL_AT_BEGINNING_OF_PERIOD;
 float number_of_periods;

 number_of_periods = imsl_f_number_of_periods (rate, payment,
 present_value, future_value, when);

 printf("Number of payment periods = %f\n", number_of_periods);
}
```

**Output**

Number of payment periods = 70.
payment

Evaluates the periodic payment for an investment.

Synopsis

```c
#include <imsl.h>

float imsl_f_payment (float rate, int n_periods, float present_value,
 float future_value, int when)
```

The type `double` function is `imsl_d_payment`.

Required Arguments

- `float rate` (Input)
  - Interest rate.

- `int n_periods` (Input)
  - Total number of periods.

- `float present_value` (Input)
  - The current value of a stream of future payments, after discounting the payments using some interest rate.

- `float future_value` (Input)
  - The value, at some time in the future, of a current amount and a stream of payments.

- `int when` (Input)
  - Time in each period when the payment is made, either `IMSL_AT_END_OF_PERIOD` or `IMSL_AT_BEGINNING_OF_PERIOD`. For a more detailed discussion on when see the Usage Notes section of this chapter.

Return Value

The periodic payment for an investment. If no result can be computed, NaN is returned.

Description

Function `imsl_f_payment` computes the periodic payment for an investment.
It can be found by solving the following:

If rate = 0

\[
present\_value + (payment)(n\_periods) + future\_value = 0
\]

If rate ≠ 0

\[
present\_value \left(1 + rate\right)^{n\_periods} + \\
payment \left[1 + rate\left(when\right)\right] \frac{(1 + rate)^{n\_periods} - 1}{rate} + future\_value = 0
\]

Example

In this example, `imsl_f_payment` computes the periodic payment of a 25-year $100,000 loan with an annual interest rate of 8%. The payment is made at the end of each period.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 float rate = .08;
 int n_periods = 25;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float payment;

 payment = imsl_f_payment (rate, n_periods, present_value, future_value, when);
 printf ("The payment due each year on the $100,000 loan is $%.2f.\n", payment);
}
```

Output

The payment due each year on the $100,000 loan is $-9367.88.
present_value

Evaluates the net present value of a stream of equal periodic cash flows, which are subject to a given discount rate.

Synopsis

```c
#include <imsl.h>

float imsl_f_present_value (float rate, int n_periods, float payment,
 float future_value, int when)
```

The type `double` function is `imsl_d_present_value`.

Required Arguments

- `float rate` (Input)
  Interest rate.

- `int n_periods` (Input)
  Total number of periods.

- `float payment` (Input)
  Payment made in each period.

- `float future_value` (Input)
  The value, at some time in the future, of a current amount and a stream of payments.

- `int when` (Input)
  Time in each period when the payment is made, either `IMSL_AT_END_OF_PERIOD` or `IMSL_AT_BEGINNING_OF_PERIOD`. For a more detailed discussion on `when` see the Usage Notes section of this chapter.

Return Value

The present value of an investment. If no result can be computed, NaN is returned.

Description

Function `imsl_f_present_value` computes the present value of an investment.
It can be found by solving the following:

If rate $= 0$

$$present\_value + (payment)(n\_periods) + future\_value = 0$$

If rate $\neq 0$

$$present\_value(1 + rate)^{n\_periods} +$$

$$payment\left\{1 + rate \left(\frac{n\_periods}{rate}\right) - 1\right\} + future\_value = 0$$

**Example**

In this example, `imsl_f_present_value` computes the present value of 20 payments of $500,000 per payment ($10 million) with an annual interest rate of 6%. The payment is made at the end of each period.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 float rate = 0.06;
 float payment = 500000.;
 float future_value = 0.;
 int n_periods = 20;
 int when = IMSL_AT_END_OF_PERIOD;
 float present_value;

 present_value = imsl_f_present_value (rate, n_periods, payment,
 future_value, when);

 printf ("The present value of the $10 million prize is ");
 printf ("$%.2f.\n", present_value);
}
```

**Output**

The present value of the $10 million prize is $-5734961.00.
present_value_schedule

Evaluates the present value for a schedule of cash flows. It is not necessary that the cash flows be periodic.

Synopsis

```c
#include <ims1.h>

float imsl_f_present_value_schedule (float rate, int count, float values[], struct tm dates[])
```

The type `double` function is `imsl_d_present_value_schedule`.

Required Arguments

- `float rate` (Input)
  - Interest rate.
- `int count` (Input)
  - Number of cash flows in `values` or number of dates in `dates`.
- `float values[]` (Input)
  - Array of size `count` of cash flows.
- `struct tm dates[]` (Input)
  - Array of size `count` of dates cash flows are made. For a more detailed discussion on dates see the Usage Notes section of this chapter.

Return Value

The present value for a schedule of cash flows that is not necessarily periodic. If no result can be computed, NaN is returned.

Description

Function `imsl_f_present_value_schedule` computes the present value for a schedule of cash flows that is not necessarily periodic.

It can be found by solving the following:
\[
\sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^{(d_i - d_1)/365}}
\]

In the equation above, \(d_i\) represents the \(i\)-th payment date, \(d_1\) represents the 1st payment date, and \(\text{value}_i\) represents the \(i\)-th cash flow.

**Example**

In this example, \texttt{imsl\_f\_present\_value\_schedule} computes the present value of 3 payments, $1,000, $2,000 and $1,000, with an interest rate of 5% made on January 3, 1997, January 3, 1999 and January 3, 2000.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 float rate = 0.05;
 float values[3] = { 1000.0, 2000.0, 1000.0 };
 struct tm dates[3];
 float xnpv;

 dates[0].tm_year = 97; dates[0].tm_mon = 0; dates[0].tm_mday = 3;
 dates[1].tm_year = 99; dates[1].tm_mon = 0; dates[1].tm_mday = 3;
 dates[2].tm_year = 100; dates[2].tm_mon = 0; dates[2].tm_mday = 3;

 xnpv = imsl_f_present_value_schedule (rate, 3, values, dates);
 printf ("The present value of the cash flows is $%.2f.\n", xnpv);
}
```

**Output**

The present value of the cash flows is $3677.90.
principal_payment

Evaluates the payment on the principal for a specified period.

Synopsis

#include <imsl.h>

float imsl_f_principal_payment (float rate, int period, int n_periods,
                                    float present_value, float future_value, int when)

The type double function is imsl_d_principal_payment.

Required Arguments

float rate (Input)
   Interest rate.

int period (Input)
   Payment period.

int n_periods (Input)
   Total number of periods.

float present_value (Input)
   The current value of a stream of future payments, after discounting the payments using some interest rate.

float future_value (Input)
   The value, at some time in the future, of a current amount and a stream of payments.

int when (Input)
   Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage Notes section of this chapter.

Return Value

The payment on the principal for a given period. If no result can be computed, NaN is returned.

Description

Function imsl_f_principal_payment computes the payment on the principal for a given period.

It is computed using the following:
where \( \text{payment}_i \) is computed from \text{imsl}_f\_payment for the \( i \)-th period, \( \text{interest}_i \) is calculated from \text{imsl}_f\_interest\_payment for the \( i \)-th period.

**Example**

In this example, \text{imsl}_f\_principal\_payment computes the principal paid for the first year on a 30-year $100,000 loan with an annual interest rate of 8%. The payment is made at the end of each year.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 float rate = .08;
 int period = 1;
 int n_periods = 30;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float principal;

 principal = \text{imsl}_f_principal_payment (rate, period, n_periods, present_value, future_value, when);
 printf ("The payment on the principal for the first year of \n");
 printf ("the $100,000 loan is $%.2f.\n", principal);
}
```

**Output**

The payment on the principal for the first year of the $100,000 loan is $-882.74.
accr_interest_maturity

Evaluates the interest which has accrued on a security that pays interest at maturity.

Synopsis

```c
#include <imsl.h>

float imsl_f_accr_interest_maturity (struct tm issue, struct tm maturity,
 float coupon_rate, float par_value, int basis)
```

The type `double` function is `imsl_d_accr_interest_maturity`.

Required Arguments

- **struct tm issue** (Input)
  The date on which interest starts accruing. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm maturity** (Input)
  The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **float coupon_rate** (Input)
  Annual interest rate set forth on the face of the security; the coupon rate.

- **float par_value** (Input)
  Nominal or face value of the security used to calculate interest payments.

- **int basis** (Input)
  The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ActualActual`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_Actual360`, `IMSL_DAY_CNT_BASIS_Actual365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

The interest which has accrued on a security that pays interest at maturity. If no result can be computed, NaN is returned.
Description

Function imsl_f_accr_interest_maturity computes the accrued interest for a security that pays interest at maturity:

\[
\left( \frac{par\_value \times rate}{par\_value \times rate + 1} \right) \left( \frac{A}{D} \right)
\]

In the above equation, \( A \) represents the number of days starting at issue date to maturity date and \( D \) represents the annual basis.

Example

In this example, imsl_f_accr_interest_maturity computes the accrued interest for a security that pays interest at maturity using the US (NASD) 30/360 day count method. The security has a par value of $1,000, the issue date of October 1, 2000, the maturity date of November 3, 2000, and a coupon rate of 6%.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm issue, maturity;
 float rate = .06;
 float par = 1000.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float accrintm;

 issue.tm_year = 100;
 issue.tm_mon = 9;
 issue.tm_mday = 1;

 maturity.tm_year = 100;
 maturity.tm_mon = 10;
 maturity.tm_mday = 3;

 accrintm = imsl_f_accr_interest_maturity (issue, maturity, rate, par, basis);

 printf ("The accrued interest is $%.2f.\n", accrintm);
}
```

Output

The accrued interest is $5.33.
accr_interest_periodic

Evaluates the interest which has accrued on a security that pays interest periodically.

Synopsis

```
#include <imsl.h>

float imsl_f_accr_interest_periodic (struct tm issue, struct tm first_coupon,
 struct tm settlement, float coupon_rate, float par_value, int frequency, int basis)
```

The type `double` function is `imsl_d_accr_interest_periodic`.

Required Arguments

- `struct tm issue` (Input)
  The date on which interest starts accruing. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm first_coupon` (Input)
  First date on which an interest payment is due on the security (e.g. the coupon date). For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm settlement` (Input)
  The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float coupon_rate` (Input)
  Annual interest rate set forth on the face of the security; the coupon rate.

- `float par_value` (Input)
  Nominal or face value of the security used to calculate interest payments.

- `int frequency` (Input)
  Frequency of the interest payments. It should be one of `IMSL_ANNUAL`, `IMSL_SEMIANNUAL` or `IMSL_QUARTERLY`. For a more detailed discussion on `frequency` see the Usage Notes section of this chapter.

- `int basis` (Input)
  The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`,...
Return Value

The accrued interest for a security that pays periodic interest. If no result can be computed, NaN is returned.

Description

Function `imsl_f_accr_interest_periodic` computes the accrued interest for a security that pays periodic interest.

In the equation below, $A_i$ represents the number of days which have accrued for the $i$-th quasi-coupon period within the odd period. (The quasi-coupon periods are periods obtained by extending the series of equal payment periods to before or after the actual payment periods.) $NC$ represents the number of quasi-coupon periods within the odd period, rounded to the next highest integer. (The odd period is a period between payments that differs from the usual equally spaced periods at which payments are made.) $NL_i$ represents the length of the normal $i$-th quasi-coupon period within the odd period. $NL_i$ is expressed in days.

Function `imsl_f_accr_interest_periodic` can be found by solving the following:

$$
(par\_value) \left(\frac{rate}{frequency} \sum_{i=1}^{NC} \left(\frac{A_i}{NL_i}\right)\right)
$$

Example

In this example, `imsl_f_accr_interest_periodic` computes the accrued interest for a security that pays periodic interest using the US (NASD) 30/360 day count method. The security has a par value of $1,000, the issue date of October 1, 1999, the settlement date of November 3, 1999, the first coupon date of March 31, 2000, and a coupon rate of 6%.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm issue, first_coupon, settlement;
 float rate = .06;
 float par = 1000.;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float accrint;
```
issue.tm_year = 99;
issue.tm_mon = 9;
issue.tm_mday = 1;

first_coupon.tm_year = 100;
first_coupon.tm_mon = 2;
first_coupon.tm_mday = 31;

settlement.tm_year = 99;
settlement.tm_mon = 10;
settlement.tm_mday = 3;

acrint = imsl_f_accr_interest_periodic (issue, first_coupon,
                                          settlement, rate, par, frequency, basis);

printf ("The accrued interest is $%.2f.\n", acrint);
}

Output

The accrued interest is $5.33.
bond_equivalent_yield

Evaluates the bond-equivalent yield of a Treasury bill.

Synopsis

```c
#include <imsl.h>

float imsl_f_bond_equivalent_yield (struct tm settlement, struct tm maturity,
 float discount_rate)
```

The type `double` function is `imsl_d_bond_equivalent_yield`.

Required Arguments

- `struct tm settlement` (Input)
  - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
  - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float discount_rate` (Input)
  - The interest rate implied when a security is sold for less than its value at maturity in lieu of interest payments.

Return Value

The bond-equivalent yield of a Treasury bill. If no result can be computed, NaN is returned.

Description

Function `imsl_f_bond_equivalent_yield` computes the bond-equivalent yield for a Treasury bill. It is computed using the following:

$$
\begin{align*}
\text{if } DSM & \leq 182 \\
& \quad \frac{365 \cdot \text{discount rate}}{360 - \text{discount rate} \cdot DSM} \\
\text{otherwise,}
\end{align*}
$$

otherwise,
In the above equation, $DSM$ represents the number of days starting at settlement date to maturity date.

**Example**

In this example, `imsl_f_bond_equivalent_yield` computes the bond-equivalent yield for a Treasury bill with the settlement date of July 1, 1999, the maturity date of July 1, 2000, and discount rate of 5% at the issue date.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float yield;

 settlement.tm_year = 99;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 100;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 yield = imsl_f_bond_equivalent_yield (settlement, maturity, discount);
 printf ("The bond-equivalent yield for the T-bill is %.2f\%.n", yield * 100.);
}
```

**Output**

The bond-equivalent yield for the T-bill is 5.29%.
convexity

Evaluates the convexity for a security.

Synopsis

```c
#include <imsl.h>

float imsl_f_convexity (struct tm settlement, struct tm maturity, float coupon_rate,
 float yield, int frequency, int basis)
```

The type `double` function is `imsl_d_convexity`.

Required Arguments

- `struct tm settlement` (Input)
  - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
  - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float coupon_rate` (Input)
  - Annual interest rate set forth on the face of the security; the coupon rate.

- `float yield` (Input)
  - Annual yield of the security.

- `int frequency` (Input)
  - Frequency of the interest payments. It should be one of `IMSL_ANNUAL`, `IMSL_SEMIANNUAL` or `IMSL_QUARTERLY`. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- `int basis` (Input)
  - The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

The convexity for a security. If no result can be computed, NaN is returned.
Description

Function `imsl_f_convexity` computes the convexity for a security. Convexity is the sensitivity of the duration of a security to changes in yield.

It is computed using the following:

\[
\frac{1}{(q^{* frequency})^2} \left\{ \sum_{t=1}^{n} t(t+1) \left( \frac{rate}{frequency} \right) q^{-t} + n(n+1)q^{-n} \right\} \\
\left( \sum_{t=1}^{n} \left( \frac{rate}{frequency} \right) q^{-t} + q^{-n} \right)
\]

where \( n \) is calculated from `imsl_coupon_number`, and \( q = 1 + \frac{yield}{frequency} \).

Example

In this example, `imsl_f_convexity` computes the convexity for a security with the settlement date of July 1, 1990, and maturity date of July 1, 2000, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float convexity;

 settlement.tm_year = 90;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 100;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 convexity = imsl_f_convexity (settlement, maturity,
 coupon, yield, frequency, basis);

 printf ("The convexity of the bond with ");
 printf ("semiannual interest payments is %.4f.\n", convexity);
}
```
Output

The convexity of the bond with semiannual interest payments is 59.4050.
coupon_days

Evaluates the number of days in the coupon period containing the settlement date.

Synopsis

```c
#include <imsl.h>

float imsl_f_coupon_days (struct tm settlement, struct tm maturity, int frequency, int basis)
```

The type `double` function is `imsl_d_coupon_days`.

Required Arguments

- **struct tm settlement** (Input)
  - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm maturity** (Input)
  - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **int frequency** (Input)
  - Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- **int basis** (Input)
  - The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage Notes section of this chapter.

Return Value

The number of days in the coupon period which contains the settlement date. If no result can be computed, NaN is returned.
Description

Function `imsl_f_coupon_days` computes the number of days in the coupon period that contains the settlement date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol. 1, pages 17-35.

Example

In this example, `imsl_f_coupon_days` computes the number of days in the coupon period of a bond with the settlement date of November 11, 1996, and the maturity date of March 1, 2009, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float coupdays;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 coupdays = imsl_f_coupon_days (settlement, maturity, frequency, basis);
 printf ("The number of days in the coupon period that contains the settlement date is %.2f.\n", coupdays);
}
```

Output

The number of days in the coupon period that contains the settlement date is 182.50.
coupon_number

Evaluates the number of coupons payable between the settlement date and the maturity date.

Synopsis

```c
#include <imsl.h>

int imsl_coupon_number (struct tm settlement, struct tm maturity, int frequency, int basis)
```

Required Arguments

- `struct tm settlement` (Input)
  The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
  The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `int frequency` (Input)
  Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- `int basis` (Input)
  The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on see the Usage Notes section of this chapter.

Return Value

The number of coupons payable between the settlement date and the maturity date.

Description

Function `imsl_coupon_number` computes the number of coupons payable between the settlement date and the maturity date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol. 1, pages 17-35.
Example

In this example, \texttt{imsl\_coupon\_number} computes the number of coupons payable with the settlement date of November 11, 1996, and the maturity date of March 1, 2009, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_Actual365;
 int coupnum;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 coupnum = imsl_coupon_number (settlement, maturity, frequency, basis);
 printf ("The number of coupons payable between the
");
 printf ("settlement date and the maturity date is %d.\n", coupnum);
}
```

Output

The number of coupons payable between the settlement date and the maturity date is 25.
days_before_settlement

Evaluates the number of days starting with the beginning of the coupon period and ending with the settlement date.

Synopsis

```
#include <imsl.h>

int imsl_days_before_settlement (struct tm settlement, struct tm maturity, int frequency, int basis)
```

Required Arguments

- `struct tm settlement` (Input)
  The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
  The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on see the Usage Notes section of this chapter.

- `int frequency` (Input)
  Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- `int basis` (Input)
  The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

The number of days in the period starting with the beginning of the coupon period and ending with the settlement date.
Description

Function imsl_days_before_settlement computes the number of days from the beginning of the coupon period to the settlement date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol. 1, pages 17-35.

Example

In this example, imsl_days_before_settlement computes the number of days from the beginning of the coupon period to November 11, 1996, of a bond with the maturity date of March 1, 2009, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int days;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 days = imsl_days_before_settlement (settlement, maturity,
 frequency, basis);

 printf ("The number of days from the beginning of the
 coupon period to the settlement date is %d.\n", days);
}
```

Output

The number of days from the beginning of the coupon period to the settlement date is 71.
days_to_next_coupon

Evaluates the number of days starting with the settlement date and ending with the next coupon date.

Synopsis

```c
#include <imsl.h>

int imsl_days_to_next_coupon (struct tm settlement, struct tm maturity,
 int frequency, int basis)
```

Required Arguments

- `struct tm settlement` (Input)
  The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
  The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `int frequency` (Input)
  Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- `int basis` (Input)
  The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E36. For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

The number of days starting with the settlement date and ending with the next coupon date.

Description

Function `imsl_days_to_next_coupon` computes the number of days from the settlement date to the next coupon date. For a good discussion on day count basis, see SIA Standard Securities Calculation Methods 1993, vol. 1, pp. 17-35.
Example

In this example, `imsl_days_to_next_coupon` computes the number of days from November 11, 1996, to the next coupon date of a bond with the maturity date of March 1, 2009, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int days;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 days = imsl_days_to_next_coupon (settlement, maturity, frequency, basis);
 printf ("The number of days from the settlement date to ");
 printf ("the next coupon date is %d.\n", days);
}
```

Output

The number of days from the settlement date to the next coupon date is 110.
depreciation_amordegrc

Evaluates the depreciation for each accounting period. During the evaluation of the function a depreciation coefficient based on the asset life is applied.

Synopsis

```c
#include <imsl.h>

float imsl_f_depreciation_amordegrc (float cost, struct tm issue,
 struct tm first_period, float salvage, int period, float rate, int basis)
```

The type `double` function is `imsl_d_depreciation_amordegrc`.

Required Arguments

- `float` `cost` (Input)
  Initial value of the asset.

- `struct tm` `issue` (Input)
  The date on which interest starts accruing. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm` `first_period` (Input)
  Date of the end of the first period. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float` `salvage` (Input)
  The value of an asset at the end of its depreciation period.

- `int` `period` (Input)
  Depreciation for the accounting period to be computed.

- `float` `rate` (Input)
  Depreciation rate.

- `int` `basis` (Input)
  The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E36`. For a more detailed discussion see the Usage Notes section of this chapter.
Return Value

The depreciation for each accounting period. If no result can be computed, NaN is returned.

Description

Function `imsl_f_depreciation_amordegrc` computes the depreciation for each accounting period. This function is similar to `depreciation_amorlinc`. However, in this function a depreciation coefficient based on the asset life is applied during the evaluation of the function.

Example

In this example, `imsl_f_depreciation_amordegrc` computes the depreciation for the second accounting period using the US (NASD) 30/360 day count method. The security has the issue date of November 1, 1999, end of first period of November 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm issue, first_period;
 float cost = 2400.;
 float salvage = 300.;
 int period = 2;
 float rate = .15;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float amordegrc;

 issue.tm_year = 99;
 issue.tm_mon = 10;
 issue.tm_mday = 1;

 first_period.tm_year = 100;
 first_period.tm_mon = 10;
 first_period.tm_mday = 30;

 amordegrc = imsl_f_depreciation_amordegrc (cost, issue, first_period,
 salvage, period, rate, basis);

 printf ("The depreciation for the second accounting period ");
 printf ("is $%.2f\n", amordegrc);
}
```

Output

The depreciation for the second accounting period is $335.00.
depreciation_amorlinc

Evaluates the depreciation for each accounting period. This function is similar to depreciation_amordegrc, except that depreciation_amordegrc has a depreciation coefficient that is applied during the evaluation that is based on the asset life.

Synopsis

```c
#include <imsl.h>

float imsl_f_depreciation_amorlinc (float cost, struct tm issue,
 struct tm first_period, float salvage, int period, float rate, int basis)
```

The type `double` function is imsl_d_depreciation_amordegrc.

Required Arguments

- `float cost` (Input)
  Initial value of the asset.

- `struct tm issue` (Input)
  The date on which interest starts accruing. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm first_period` (Input)
  Date of the end of the first period. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float salvage` (Input)
  The value of an asset at the end of its depreciation period.

- `int period` (Input)
  Depreciation for the accounting period to be computed.

- `float rate` (Input)
  Depreciation rate.

- `int basis` (Input)
  The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E36. For a more detailed discussion see the Usage Notes section of this chapter.
Return Value

The depreciation for each accounting period. If no result can be computed, NaN is returned.

Description

Function imsl_f_depreciation_amorlinc computes the depreciation for each accounting period.

Example

In this example, imsl_f_depreciation_amorlinc computes the depreciation for the second accounting period using the US (NASD) 30/360 day count method. The security has the issue date of November 1, 1999, end of first period of November 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm issue, first_period;
 float cost = 2400.;
 float salvage = 300.;
 int period = 2;
 float rate = .15;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float amorlinc;

 issue.tm_year = 99;
 issue.tm_mon = 10;
 issue.tm_mday = 1;

 first_period.tm_year = 100;
 first_period.tm_mon = 10;
 first_period.tm_mday = 30;

 amorlinc = imsl_f_depreciation_amorlinc (cost, issue, first_period,
 salvage, period, rate, basis);
 printf ("The depreciation for the second accounting period ");
 printf ("is $%.2f.\n", amorlinc);
}
```

Output

The depreciation for the second accounting period is $360.00.
discount_price

Evaluates the price of a security sold for less than its face value.

Synopsis

```c
#include <imsl.h>

float imsl_f_discount_price (struct tm settlement, struct tm maturity,
 float discount_rate, float redemption, int basis)
```

The type `double` function is `imsl_d_discount_price`.

Required Arguments

- **struct tm settlement** (Input)
  - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm maturity** (Input)
  - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion see the Usage Notes section of this chapter.

- **float discount_rate** (Input)
  - The interest rate implied when a security is sold for less than its value at maturity in lieu of interest payments.

- **float redemption** (Input)
  - Redemption value per $100 face value of the security.

- **int basis** (Input)
  - The method for computing the number of days between two dates. It should be one of
    - `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`
    - `IMSL_DAY_CNT_BASIS_NASD`
    - `IMSL_DAY_CNT_BASIS_ACTUAL360`
    - `IMSL_DAY_CNT_BASIS_ACTUAL365`
    - `IMSL_DAY_CNT_BASIS_30E360`
    For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

The price per face value for a discounted security. If no result can be computed, NaN is returned.

Description

Function `imsl_f_discount_price` computes the price per $100 face value of a discounted security.
It is computed using the following:

\[
redemption - (\text{discount\_rate}) \left[ redemption \left( \frac{DSM}{B} \right) \right]
\]

In the equation above, \(DSM\) represents the number of days starting at the settlement date and ending with the maturity date. \(B\) represents the number of days in a year based on the annual basis.

Example

In this example, \text{imsl\_f\_discount\_price} computes the price of the discounted bond with the settlement date of July 1, 2000, and maturity date of July 1, 2001, at the discount rate of 5% using the US (NASD) 30/360 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float redemption = 100.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float price;

 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 price = imsl_f_discount_price (settlement, maturity, discount,
 redemption, basis);

 printf ("The price of the discounted bond is $%.2f.\n", price);
}
```

Output

The price of the discounted bond is $95.00.
discount_rate

evaluates the interest rate implied when a security is sold for less than its value at maturity in lieu of interest payments.

Synopsis

```c
#include <imsl.h>

float imsl_f_discount_rate (struct tm settlement, struct tm maturity, float price,
 float redemption, int basis)
```

The type double function is imsl_d_discount_rate.

Required Arguments

- `struct tm` settlement (Input)
  - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm` maturity (Input)
  - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float` price (Input)
  - Price per $100 face value of the security.

- `float` redemption (Input)
  - Redemption value per $100 face value of the security.

- `int` basis (Input)
  - The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360, For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

- The discount rate for a security. If no result can be computed, NaN is returned.
Description

Function `imsl_f_discount_rate` computes the discount rate for a security. The discount rate is the interest rate implied when a security is sold for less than its value at maturity in lieu of interest payments.

It is computed using the following:

\[
\left( \frac{\text{redemption} - \text{price}}{\text{price}} \right) \left( \frac{B}{DSM} \right)
\]

In the equation above, \( B \) represents the number of days in a year based on the annual basis and \( DSM \) represents the number of days starting with the settlement date and ending with the maturity date.

Example

In this example, `imsl_f_discount_rate` computes the discount rate of a security which is selling at $97.975 with the settlement date of February 15, 2000, and maturity date of June 10, 2000, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 float price = 97.975;
 float redemption = 100.;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float rate;

 settlement.tm_year = 100;
 settlement.tm_mon = 1;
 settlement.tm_mday = 15;

 maturity.tm_year = 100;
 maturity.tm_mon = 5;
 maturity.tm_mday = 10;

 rate = imsl_f_discount_rate (settlement, maturity, price,
 redemption, basis);

 printf ("The discount rate for the security is %.2f\%\n", rate * 100.);
}
```

Output

The discount rate for the security is 6.37\%.
discount_yield

Evaluates the annual yield of a discounted security.

Synopsis

```c
#include <imsl.h>

float imsl_f_discount_yield (struct tm settlement, struct tm maturity, float price,
 float redemption, int basis)
```

The type `double` function is `imsl_d_discount_yield`.

Required Arguments

- `struct tm settlement` (Input)
  The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
  The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on see the Usage Notes section of this chapter.

- `float price` (Input)
  Price per $100 face value of the security.

- `float redemption` (Input)
  Redemption value per $100 face value of the security.

- `int basis` (Input)
  The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed see the Usage Notes section of this chapter.

Return Value

The annual yield for a discounted security. If no result can be computed, NaN is returned.

Description

Function `imsl_f_discount_yield` computes the annual yield for a discounted security.

It is computed using the following:

```c
```
\[
\left( \frac{\text{redemption} - \text{price}}{\text{price}} \right) \left( \frac{B}{\text{DSM}} \right)
\]

In the equation above, \( B \) represents the number of days in a year based on the annual basis, and \( \text{DSM} \) represents the number of days starting with the settlement date and ending with the maturity date.

**Example**

In this example, `imsl_f_discount_yield` computes the annual yield for a discounted security which is selling at $95.40663 with the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the US (NASD) 30/360 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 float price = 95.40663;
 float redemption = 105.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yielddisc;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 yielddisc = imsl_f_discount_yield (settlement, maturity,
 price, redemption, basis);
 printf ("The yield on the discounted bond is ");
 printf ("%.2f%%.\n", yielddisc * 100.);
}
```

**Output**

The yield on the discounted bond is 1.01%.
duration

Evaluates the annual duration of a security where the security has periodic interest payments.

Synopsis

```c
#include <imsl.h>

float imsl_f_duration (struct tm settlement, struct tm maturity, float coupon_rate,
 float yield, int frequency, int basis)
```

The type `double` function is `imsl_d_duration`.

Required Arguments

- `struct tm settlement` (Input)
  The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
  The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float coupon_rate` (Input)
  Annual interest rate set forth on the face of the security; the coupon rate.

- `float yield` (Input)
  Annual yield of the security.

- `int frequency` (Input)
  Frequency of the interest payments. It should be one of `IMSL_ANNUAL`, `IMSL_SEMIANNUAL` or `IMSL_QUARTERLY`. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- `int basis` (Input)
  The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

The annual duration of a security with periodic interest payments. If no result can be computed, NaN is returned.
Description

Function *imsl_f_duration* computes the Macaulay's duration of a security with periodic interest payments. The Macaulay's duration is the weighted-average time to the payments, where the weights are the present value of the payments.

It is computed using the following:

\[
\frac{DSC \times 100}{(1 + \frac{yield}{freq})^{N-1+\frac{DSC}{E}}} + \sum_{k=1}^{N} \left( \frac{100 \times coupon \_ rate}{freq \times \left(1 + \frac{yield}{freq}\right)^{k-1+\frac{DSC}{E}}} \right) \times \left( k - 1 + \frac{DSC}{E} \right) \times \frac{1}{freq}
\]

\[
\frac{100}{(1 + \frac{yield}{freq})^{N-1+\frac{DSC}{E}}} + \sum_{k=1}^{N} \left( \frac{100 \times coupon \_ rate}{freq \times \left(1 + \frac{yield}{freq}\right)^{k-1+\frac{DSC}{E}}} \right)
\]

In the equation above, DSC represents the number of days starting with the settlement date and ending with the next coupon date. E represents the number of days within the coupon period. N represents the number of coupons payable from the settlement date to the maturity date. freq represents the frequency of the coupon payments annually.

Example

In this example, *imsl_f_duration* computes the annual duration of a security with the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float duration;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 duration = imsl_f_duration (settlement, maturity, coupon, yield, frequency, basis);
}```
printf ("The annual duration of the bond with ");
printf ("semiannual interest payments is %.4f.\n", duration);
}

Output

The annual duration of the bond with semiannual interest payments is 7.0420.
interest_rate_security

Evaluates the interest rate of a fully invested security.

Synopsis

```c
#include <imsl.h>

float imsl_f_interest_rate_security (struct tm settlement, struct tm maturity,
                                      float investment, float redemption, int basis)
```

The type `double` function is `imsl_d_interest_rate_security`.

Required Arguments

- `struct tm settlement` (Input)
 - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
 - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float investment` (Input)
 - The total amount one has invested in the security.

- `float redemption` (Input)
 - Amount to be received at maturity.

- `int basis` (Input)
 - The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion see the Usage Notes section of this chapter.

Return Value

The interest rate for a fully invested security. If no result can be computed, NaN is returned.

Description

Function `imsl_f_interest_rate_security` computes the interest rate for a fully invested security.

It is computed using the following:
In the equation above, \(B \) represents the number of days in a year based on the annual basis, and \(DSM \) represents the number of days in the period starting with the settlement date and ending with the maturity date.

Example

In this example, `imsl_f_interest_rate_security` computes the interest rate of a $7,000 investment with the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the Actual/365 day count method. The total amount received at the end of the investment is $10,000.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity;
    float investment = 7000.;
    float redemption = 10000.;
    int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
    float intrate;
    settlement.tm_year = 95;
    settlement.tm_mon = 6;
    settlement.tm_mday = 1;
    maturity.tm_year = 105;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;
    intrate = imsl_f_interest_rate_security(settlement, maturity, investment, redemption, basis);
    printf("The interest rate of the bond is %.2f\%%.\n", intrate * 100.);
}
```

Output

The interest rate of the bond is 4.28\%.
modified_duration

Evaluates the modified Macauley duration of a security.

Synopsis

```c
#include <imsl.h>

float imsl_f_modified_duration (struct tm settlement, struct tm maturity,
     float coupon_rate, float yield, int frequency, int basis)
```

The type `double` function is `imsl_d_modified_duration`.

Required Arguments

- `struct tm settlement` (Input)
 - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
 - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float coupon_rate` (Input)
 - Annual interest rate set forth on the face of the security; the coupon rate.

- `float yield` (Input)
 - Annual yield of the security.

- `int frequency` (Input)
 - Frequency of the interest payments. It should be one of `IMSL_ANNUAL`, `IMSL_SEMIANNUAL` or `IMSL_QUARTERLY`. For a more detailed discussion on `frequency` see the Usage Notes section of this chapter.

- `int basis` (Input)
 - The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion on `basis` see the Usage Notes section of this chapter.

Return Value

The modified Macauley duration of a security is returned. The security has an assumed par value of $100. If no result can be computed, NaN is returned.
Description

Function imsl_f_modified_duration computes the modified Macauley duration for a security with an assumed par value of $100.

It is computed using the following:

\[
\frac{\text{duration}}{1 + \left(\frac{\text{yield}}{\text{frequency}} \right)}
\]

where \(\text{duration} \) is calculated from \(\text{imsl_f_duration} \).

Example

In this example, \(\text{imsl_f_modified_duration} \) computes the modified Macauley duration of a security with the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity;
    float coupon = .075;
    float yield = .09;
    int frequency = IMSL_SEMIANNUAL;
    int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
    float mduration;

    settlement.tm_year = 95;
    settlement.tm_mon = 6;
    settlement.tm_mday = 1;

    maturity.tm_year = 105;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;

    mduration = imsl_f_modified_duration (settlement, maturity,
                                          coupon, yield, frequency, basis);

    printf ("The modified Macauley duration of the bond with\n"
            "semiannual interest payments is \%.4f.\n", mduration);
}
```

Output

The modified Macauley duration of the bond with semiannual interest payments is 6.7387.
next_coupon_date

Evaluates the first coupon date which follows the settlement date.

Synopsis

```c
#include <imsl.h>

struct tm imsl_next_coupon_date (struct tm settlement, struct tm maturity, int frequency, int basis)
```

Required Arguments

- **struct tm settlement (Input)**
 The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm maturity (Input)**
 The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **int frequency (Input)**
 Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- **int basis (Input)**
 The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage Notes section of this chapter.

Return Value

The first coupon date which follows the settlement date.

Description

Function `imsl_next_coupon_date` computes the next coupon date after the settlement date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol 1, pages 17-35.
Example

In this example, `imsl_next_coupon_date` computes the next coupon date of a bond with the settlement date of November 11, 1996, and the maturity date of March 1, 2009, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity, date;
    int frequency = IMSL_SEMIANNUAL;
    int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;

    settlement.tm_year = 96;
    settlement.tm_mon = 10;
    settlement.tm_mday = 11;
    maturity.tm_year = 109;
    maturity.tm_mon = 2;
    maturity.tm_mday = 1;

    date = imsl_next_coupon_date (settlement, maturity, frequency, basis);
    printf ("The next coupon date after the settlement date is %s %d, %d.\n", month[settlement.tm_mon], settlement.tm_mday, settlement.tm_year+1900);
}
```

Output

The next coupon date after the settlement date is March 1, 1997.
previous_coupon_date

Evaluates the coupon date which immediately precedes the settlement date.

Synopsis

```c
#include <imsl.h>

struct tm imsl_previous_coupon_date (struct tm settlement, struct tm maturity, int frequency, int basis)
```

Required Arguments

- **struct tm settlement (Input)**

 The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm maturity (Input)**

 The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **int frequency (Input)**

 Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- **int basis (Input)**

 The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage Notes section of this chapter.

Return Value

The coupon date which immediately precedes the settlement date.

Description

Function imsl_previous_coupon_date computes the coupon date which immediately precedes the settlement date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol 1, pages 17-35.
Example

In this example, `imsl_previous_coupon_date` computes the previous coupon date of a bond with the settlement date of November 11, 1986, and the maturity date of March 1, 1999, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity, date;
    char* month[] = { "January", "February", "March", "April", "May", 
                     "June", "July", "August", "September", 
                     "October", "November", "December" };
    int frequency = IMSL_SEMIANNUAL;
    int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;

    settlement.tm_year = 96;
    settlement.tm_mon = 10;
    settlement.tm_mday = 11;

    maturity.tm_year = 109;
    maturity.tm_mon = 2;
    maturity.tm_mday = 1;

    date = imsl_previous_coupon_date (settlement, maturity, frequency, basis);
            
    printf ("The previous coupon date before the settlement ");
    printf ("The previous coupon date before the settlement ");
    printf ("date is %s %d, %d.\n", month[date.tm_mon], date.tm_mday, 
            date.tm_year+1900);
}
```

Output

The previous coupon date before the settlement date is September 1, 1996.
price

Evaluates the price, per $100 face value, of a security that pays periodic interest.

Synopsis

```c
#include <imsl.h>

float imsl_f_price (struct tm settlement, struct tm maturity, float rate, float yield,
                      float redemption, int frequency, int basis)
```

The type `double` function is `imsl_d_price`.

Required Arguments

- **struct tm** `settlement` (Input)
 - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm** `maturity` (Input)
 - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **float** `rate` (Input)
 - Annual interest rate set forth on the face of the security; the coupon rate.

- **float** `yield` (Input)
 - Annual yield of the security.

- **float** `redemption` (Input)
 - Redemption value per $100 face value of the security.

- **int** `frequency` (Input)
 - Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- **int** `basis` (Input)
 - The method for computing the number of days between two dates. It should be one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage Notes section of this chapter.
Return Value

The price per $100 face value of a security that pays periodic interest. If no result can be computed, NaN is returned.

Description

Function \texttt{imsl_f_price} computes the price per $100 face value of a security that pays periodic interest. It is computed using the following:

\[
\frac{\text{redemption}}{\left(1 + \frac{\text{yield}}{\text{freq}}\right)^{N - 1 + \frac{DSC}{E}}} + \left[\sum_{k=1}^{N} \frac{100 \times \frac{\text{rate}}{\text{freq}}}{\left(1 + \frac{\text{yield}}{\text{freq}}\right)^{k - 1 + \frac{DSC}{E}}} \right] - \left(100 \times \frac{\text{rate}}{\text{freq}} \times \frac{A}{E}\right)
\]

In the above equation, \(DSC\) represents the number of days in the period starting with the settlement date and ending with the next coupon date. \(E\) represents the number of days within the coupon period. \(N\) represents the number of coupons payable in the timeframe from the settlement date to the redemption date. \(A\) represents the number of days in the timeframe starting with the beginning of coupon period and ending with the settlement date.

Example

In this example, \texttt{imsl_f_price} computes the price of a bond that pays coupon every six months with the settlement of July 1, 1995, the maturity date of July 1, 2005, a annual rate of 6\%, annual yield of 7\% and redemption value of $105 using the US (NASD) 30/360 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity;
    float rate = .06;
    float yield = .07;
    float redemption = 105.;
    int frequency = IMSL_SEMIANNUAL;
    int basis = IMSL_DAY_CNT_BASIS_NASD;
    float price;

    settlement.tm_year = 95;
    settlement.tm_mon = 6;
    settlement.tm_mday = 1;

    maturity.tm_year = 105;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;

    // Compute the price using the function
    // and output the result
}
```
price = imsl_f_price (settlement, maturity, rate, yield,
 redemption, frequency, basis);
 printf ("The price of the bond is $%.2f.\n", price);
}

Output

The price of the bond is $95.41.
price_maturity

Evaluates the price, per $100 face value, of a security that pays interest at maturity.

Synopsis

```c
#include <imsl.h>

float imsl_f_price_maturity(struct tm settlement, struct tm maturity, struct tm issue, float rate, float yield, int basis)
```

The type `double` function is `imsl_d_price_maturity`.

Required Arguments

- **struct tm settlement** (Input)
 The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm maturity** (Input)
 The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion see the Usage Notes section of this chapter.

- **struct tm issue** (Input)
 The date on which interest starts accruing. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **float rate** (Input)
 Annual interest rate set forth on the face of the security; the coupon rate.

- **float yield** (Input)
 Annual yield of the security.

- **int basis** (Input)
 The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_actual365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion on basis see the Usage Notes section of this chapter.

Return Value

The price per $100 face value of a security that pays interest at maturity. If no result can be computed, NaN is returned.
Description

Function `imsl_f_price_maturity` computes the price per $100 face value of a security that pays interest at maturity.

It is computed using the following:

\[
\left[\frac{100 + \left(\frac{DIM}{B} * rate * 100\right)}{1 + \left(\frac{DSM}{B} * yield\right)}\right] - \left(\frac{A}{B} * rate * 100\right)
\]

In the equation above, \(B \) represents the number of days in a year based on the annual basis. \(DSM \) represents the number of days in the period starting with the settlement date and ending with the maturity date. \(DIM \) represents the number of days in the period starting with the issue date and ending with the maturity date. \(A \) represents the number of days in the period starting with the issue date and ending with the settlement date.

Example

In this example, `imsl_f_price_maturity` computes the price at maturity of a security with the settlement date of August 1, 2000, maturity date of July 1, 2001 and issue date of July 1, 2000, using the US (NASD) 30/360 day count method. The security has 5% annual yield and 5% interest rate at the date of issue.

```c
#include <stdio.h>
#include <imsl.h>

#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity, issue;
    float rate = .05;
    float yield = .05;
    int basis = IMSL_DAY_CNT_BASIS_NASD;
    float pricemat;

    settlement.tm_year = 100;
    settlement.tm_mon = 7;
    settlement.tm_mday = 1;

    maturity.tm_year = 101;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;

    issue.tm_year = 100;
    issue.tm_mon = 6;
    issue.tm_mday = 1;

    pricemat = imsl_d_price_maturity (settlement, maturity, issue,
```
The price of the bond is $99.98.

Output
The price of the bond is $99.98.
received_maturity

Evaluates the amount one receives when a fully invested security reaches the maturity date.

Synopsis

```c
#include <imsl.h>

float imsl_f_received_maturity (struct tm settlement, struct tm maturity,
                 float investment, float discount_rate, int basis)
```

The type `double` function is `imsl_d_received_maturity`.

Required Arguments

- **struct tm settlement** (Input)
 The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm maturity** (Input)
 The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **float investment** (Input)
 The total amount one has invested in the security.

- **float discount_rate** (Input)
 The interest rate implied when a security is sold for less than its value at maturity in lieu of interest payments.

- **int basis** (Input)
 The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion on basis see the Usage Notes section of this chapter.

Return Value

The amount one receives when a fully invested security reaches its maturity date. If no result can be computed, NaN is returned.
Description

Function `imsl_f_received_maturity` computes the amount received at maturity for a fully invested security.

It is computed using the following:

\[
\text{investment} \times \frac{1 - (\text{discount_rate} \times \frac{\text{DIM}}{B})}{\text{investment}}
\]

In the equation above, \(B \) represents the number of days in a year based on the annual basis, and \(\text{DIM} \) represents the number of days in the period starting with the issue date and ending with the maturity date.

Example

In this example, `imsl_f_received_maturity` computes the amount received of a $7,000 investment with the settlement date of July 1, 1995, maturity date of July 1, 2005 and discount rate of 6%, using the Actual/365 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity;
    float investment = 7000.;
    float discount = .06;
    int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
    float received;

    settlement.tm_year = 95;
    settlement.tm_mon = 6;
    settlement.tm_mday = 1;

    maturity.tm_year = 105;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;

    received = imsl_f_received_maturity (settlement, maturity,
                                         investment, discount, basis);
    printf ("The amount received at maturity for the ", received);
    printf ("bond is $%.2f\n", received);
}
```

Output

The amount received at maturity for the bond is $17521.60.
treasury_bill_price

Evaluates the price per $100 face value of a Treasury bill.

Synopsis

```c
#include <imsl.h>

float imsl_f_treasury_bill_price (struct tm settlement, struct tm maturity, 
                                  float discount_rate)
```

The type `double` function is `imsl_d_treasury_bill_price`.

Required Arguments

- **struct tm** settlement (Input)
 The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **struct tm** maturity (Input)
 The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- **float** discount_rate (Input)
 The interest rate implied when a security is sold for less than its value at maturity in lieu of interest payments.

Return Value

The price per $100 face value of a Treasury bill. If no result can be computed, NaN is returned.

Description

Function `imsl_f_treasury_bill_price` computes the price per $100 face value for a Treasury bill.

It is computed using the following:

\[
100 \left(1 - \frac{discount_rate \times DSM}{360} \right)
\]

In the equation above, `DSM` represents the number of days in the period starting with the settlement date and ending with the maturity date (any maturity date that is more than one calendar year after the settlement date is excluded).
Example

In this example, `imsl_f_treasury_bill_price` computes the price for a Treasury bill with the settlement date of July 1, 2000, the maturity date of July 1, 2001, and a discount rate of 5% at the issue date.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity;
    float discount = .05;
    float price;

    settlement.tm_year = 100;
    settlement.tm_mon = 6;
    settlement.tm_mday = 1;
    maturity.tm_year = 101;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;

    price = imsl_f_treasury_bill_price (settlement, maturity, discount);
    printf("The price per $100 face value for the T-bill is $%.2f.
", price);
}
```

Output

The price per $100 face value for the T-bill is $94.93.
Evaluates the yield of a Treasury bill.

Synopsis

```c
#include <imsl.h>

float imsl_f_treasury_bill_yield (struct tm settlement, struct tm maturity, float price)
```

The type `double` function is `imsl_d_treasury_bill_yield`.

Required Arguments

- `struct tm settlement` (Input)
 The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
 The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float price` (Input)
 Price per $100 face value of the Treasury bill.

Return Value

The yield for a Treasury bill. If no result can be computed, NaN is returned.

Description

Function `imsl_f_treasury_bill_yield` computes the yield for a Treasury bill.

It is computed using the following:

\[
\left(\frac{100 - \text{price}}{\text{price}} \right) \left(\frac{360}{\text{DSM}} \right)
\]

In the equation above, DSM represents the number of days in the period starting with the settlement date and ending with the maturity date (any maturity date that is more than one calendar year after the settlement date is excluded).
Example

In this example, imsl_f_treasury_bill_yield computes the yield for a Treasury bill with the settlement date of July 1, 2000, the maturity date of July 1, 2001, and priced at $94.93.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity;
    float price = 94.93;
    float yield;

    settlement.tm_year = 100;
    settlement.tm_mon = 6;
    settlement.tm_mday = 1;

    maturity.tm_year = 101;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;

    yield = imsl_f_treasury_bill_yield (settlement, maturity, price);
    printf ("The yield for the T-bill is %.2f\n", yield * 100.);
}
```

Output

The yield for the T-bill is 5.27%.
year_fraction

Evaluates the fraction of a year represented by the number of whole days between two dates.

Synopsis

```c
#include <imsl.h>

float imsl_f_year_fraction (struct tm start, struct tm end, int basis)
```

The type `double` function is `imsl_d_year_fraction`.

Required Arguments

- `struct tm start` (Input)
 Initial date. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm end` (Input)
 Ending date. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `int basis` (Input)
 The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion on `basis` see the Usage Notes section of this chapter.

Return Value

The fraction of a year represented by the number of whole days between two dates. If no result can be computed, NaN is returned.

Description

Function `imsl_f_year_fraction` computes the fraction of the year.

It is computed using the following:

\[
\frac{A}{D}
\]

where \(A \) = the number of days from `start` to `end`, \(D \) = annual basis.
Example

In this example, `imsl_f_year_fraction` computes the year fraction between August 1, 2000, and July 1, 2001, using the NASD day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm start, end;
    int basis = IMSL_DAY_CNT_BASIS_NASD;
    float yearfrac;

    start.tm_year = 100;
    start.tm_mon = 7;
    start.tm_mday = 1;

    end.tm_year = 101;
    end.tm_mon = 6;
    end.tm_mday = 1;

    yearfrac = imsl_f_year_fraction (start, end, basis);
    printf ("The year fraction of the 30/360 period is %f.\n", yearfrac);
}
```

Output

The year fraction of the 30/360 period is 0.916667.
yield_maturity

Evaluates the annual yield of a security that pays interest at maturity.

Synopsis

```c
#include <imsl.h>

float imsl_f_yield_maturity (struct tm settlement, struct tm maturity, struct tm issue,
                      float rate, float price, int basis)
```

The type `double` function is `imsl_d_yield_maturity`.

Required Arguments

- `struct tm settlement` (Input)
 - The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity` (Input)
 - The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm issue` (Input)
 - The date on which interest starts accruing. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float rate` (Input)
 - Interest rate at date of issue of the security.

- `float price` (Input)
 - Price per $100 face value of the security.

- `int basis` (Input)
 - The method for computing the number of days between two dates. It should be one of
 `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`,
 `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or
 `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion on basis see the Usage Notes section of this chapter.

Return Value

The annual yield of a security that pays interest at maturity. If no result can be computed, NaN is returned.
Description

Function imsl_f_yield_maturity computes the annual yield of a security that pays interest at maturity. It is computed using the following:

\[
\left\{ \left[1 + \left(\frac{DIM}{B} \right) \cdot rate \right] - \left[\frac{price}{100} + \left(\frac{A}{B} \right) \cdot rate \right] \right\} \cdot \left(\frac{B}{DSM} \right)
\]

In the equation above, \(DIM\) represents the number of days in the period starting with the issue date and ending with the maturity date. \(DSM\) represents the number of days in the period starting with the settlement date and ending with the maturity date. \(A\) represents the number of days in the period starting with the issue date and ending with the settlement date. \(B\) represents the number of days in a year based on the annual basis.

Example

In this example, imsl_f_yield_maturity computes the annual yield of a security that pays interest at maturity which is selling at $95.40663 with the settlement date of August 1, 2000, the issue date of July 1, 2000, the maturity date of July 1, 2010, and the interest rate of 6% at the issue using the US (NASD) 30/360 day count method.

#include <stdio.h>
#include <imsl.h>

int main()
{
 struct tm settlement, maturity, issue;
 float rate = .06;
 float price = 95.40663;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yieldmat;

 settlement.tm_year = 100;
 settlement.tm_mon = 7;
 settlement.tm_mday = 1;

 maturity.tm_year = 110;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 issue.tm_year = 100;
 issue.tm_mon = 6;
 issue.tm_mday = 1;

 yieldmat = imsl_f_yield_maturity (settlement, maturity, issue,
 rate, price, basis);
 printf ("The yield on a bond which pays at maturity is ");
 printf ("%.2f\%%.n", yieldmat * 100.);
Output

The yield on a bond which pays at maturity is 6.74%.
yield_periodic

Evaluates the yield of a security that pays periodic interest.

Synopsis

```c
#include <imsl.h>

float imsl_f_yield_periodic (struct tm settlement, struct tm maturity,
                          float coupon_rate, float price, float redemption, int frequency, int basis, ..., 0)
```

The type `double` function is `imsl_d_yield_periodic`.

Required Arguments

- `struct tm settlement (Input)`
 The date on which payment is made to settle a trade. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `struct tm maturity (Input)`
 The date on which the bond comes due, and principal and accrued interest are paid. For a more detailed discussion on dates see the Usage Notes section of this chapter.

- `float coupon_rate (Input)`
 Annual coupon rate.

- `float price (Input)`
 Price per $100 face value of the security.

- `float redemption (Input)`
 Redemption value per $100 face value of the security.

- `int frequency (Input)`
 Frequency of the interest payments. It should be one of `IMSL_ANNUAL`, `IMSL_SEMIANNUAL` or `IMSL_QUARTERLY`. For a more detailed discussion on frequency see the Usage Notes section of this chapter.

- `int basis (Input)`
 The method for computing the number of days between two dates. It should be one of `IMSL_DAY_CNT_BASIS_ACTUALACTUAL`, `IMSL_DAY_CNT_BASIS_NASD`, `IMSL_DAY_CNT_BASIS_ACTUAL360`, `IMSL_DAY_CNT_BASIS_ACTUAL365`, or `IMSL_DAY_CNT_BASIS_30E360`. For a more detailed discussion on basis see the Usage Notes section of this chapter.
Return Value
The yield of a security that pays interest periodically. If no result can be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_yield_periodic (struct tm settlement, struct tm maturity,
    float coupon_rate, float price, float redemption, int frequency, int basis,
    IMSL_XGUESS, float guess,
    IMSL_HIGHEST, float max,
    0)
```

Optional Arguments

- **IMSL_XGUESS, float guess (Input)**
 Initial guess at the internal rate of return.

- **IMSL_HIGHEST, float max (Input)**
 Maximum value of the yield.
 Default: 1.0 (100%)

Description

Function `imsl_f_yield_periodic` computes the yield of a security that pays periodic interest. If there is one coupon period use the following:

\[
\left\{ \frac{\text{redemption}}{100} + \frac{\text{coupon rate}}{\text{freq}} \right\} - \left\{ \frac{\text{price}}{100} + (\frac{A}{E} * \frac{\text{coupon rate}}{\text{freq}}) \right\} \left(\frac{\text{freq} * E}{\text{DSR}} \right)
\]

In the equation above, \(\text{DSR} \) represents the number of days in the period starting with the settlement date and ending with the redemption date. \(E \) represents the number of days within the coupon period. \(A \) represents the number of days in the period starting with the beginning of coupon period and ending with the settlement date.

If there is more than one coupon period use the following:
In the equation above, DSC represents the number of days in the period from the settlement to the next coupon date. E represents the number of days within the coupon period. N represents the number of coupons payable in the period starting with the settlement date and ending with the redemption date. A represents the number of days in the period starting with the beginning of the coupon period and ending with the settlement date.

Example

In this example, `imsl_f_yield_periodic` computes yield of a security which is selling at 95.40663 with the settlement date of July 1, 1985, the maturity date of July 1, 1995, and the coupon rate of 6% at the issue using the US (NASD) 30/360 day count method.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    struct tm settlement, maturity;
    float coupon_rate = .06;
    float price = 95.40663;
    float redemption = 105.;
    int frequency = IMSL_SEMIANNUAL;
    int basis = IMSL_DAY_CNT_BASIS_NASD;
    float yield;

    settlement.tm_year = 100;
    settlement.tm_mon = 6;
    settlement.tm_mday = 1;

    maturity.tm_year = 110;
    maturity.tm_mon = 6;
    maturity.tm_mday = 1;

    yield = imsl_f_yield_periodic (settlement, maturity, coupon_rate, price, redemption, frequency, basis, 0);
    printf ("The yield of the bond is %.2f\%.\n", yield * 100.);
}
```

Output

The yield of the bond is 7.00%.
Functions

Statistics
Univariate summary statistics .. simple_statistics 1186
One-way frequency table ... table_oneway 1192
Chi-squared one-sample goodness-of-fit test chi_squared_test 1197
Correlation .. covariances 1207
Multiple linear regression ... regression 1214
Polynomial regression .. poly_regression 1223
Numerical ranking ... ranks 1232

Random Numbers
Retrieves the current value of the seed random_seed_get 1240
Initialize a random seed .. random_seed_set 1242
Selects the uniform (0, 1) generator random_option 1243
Generates pseudorandom numbers random_uniform 1244
Generates pseudorandom normal numbers random_normal 1247
Generates pseudorandom Poisson numbers random_poisson 1249
Generates pseudorandom gamma numbers random_gamma 1251
Generates pseudorandom beta ... random_beta 1254
Generates pseudorandom standard exponential random_exponential 1257

Low-discrepancy sequence
Generates a shuffled Faure sequence faure_next_point 1259
Usage Notes

Statistics

The functions in this section can be used to compute some common univariate summary statistics, perform a one-sample goodness-of-fit test, produce measures of correlation, perform multiple and polynomial regression analysis, and compute ranks (or a transformation of the ranks, such as normal or exponential scores). See the IMSL C Stat Library for a more extensive collection of statistical functions and detailed descriptions.

Overview of Random Number Generation

“Random Numbers” describes functions for the generation of random numbers and of random samples and permutations. These functions are useful for applications in Monte Carlo or simulation studies. Before using any of the random number generators, the generator must be initialized by selecting a seed or starting value. This can be done by calling the function `imsl_random_seed_set`. If the user does not select a seed, one is generated using the system clock. A seed needs to be selected only once in a program, unless two or more separate streams of random numbers are maintained. There are other utility functions in this chapter for selecting the form of the basic generator, for restarting simulations, and for maintaining separate simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates,” “deviates,” and “variates” are used interchangeably. The phrase “pseudorandom” is sometimes used to emphasize that the numbers generated are really not “random,” since they result from a deterministic process. The usefulness of pseudorandom numbers is derived from the similarity, in a statistical sense, of samples of the pseudorandom numbers to samples of observations from the specified distributions. In short, while the pseudorandom numbers are completely deterministic and repeatable, they simulate the realizations of independent and identically distributed random variables.

The Basic Uniform Generator

The random number generators in this chapter section use a multiplicative congruential method. The form of the generator is

\[x_i = cx_{i-1} \mod (2^{31} - 1). \]

Each \(x_i \) is then scaled into the unit interval (0,1). If the multiplier, \(c \), is a primitive root modulo \(2^{31} - 1 \) (which is a prime), then the generator will have a maximal period of \(2^{31} - 2 \). There are several other considerations, however. See Knuth (1981) for a good general discussion. The possible values for \(c \) in the IMSL generators are 16807, 397204094, and 950706376. The selection is made by the function `imsl_random_option`. The choice of 16807 will result in the fastest execution time, but other evidence suggests that the performance of 950706376 is best among these three choices (Fishman and Moore 1982). If no selection is made explicitly, the functions use the multiplier 16807, which has been in use for some time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function `imsl_f_random_uniform`. This function is portable in the sense that, given the same seed, it produces the same sequence in all computer/compiler environments.
Shuffled Generators

The user also can select a shuffled version of these generators using `imsl_random_option`. The shuffled generators use a scheme due to Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) numbers resulting from the simple multiplicative congruential generator. Then, for each x_i from the simple generator, the low-order bits of x_i are used to select a random integer, j, from 1 to 128. The j-th entry in the table is then delivered as the random number, and x_i, after being scaled into the unit interval, is inserted into the j-th position in the table. This scheme is similar to that of Bays and Durham (1976), and their analysis is applicable to this scheme as well.

Setting the Seed

The seed of the generator can be set in `imsl_random_seed_set` and can be retrieved by `imsl_random_seed_get`. Prior to invoking any generator in this section, the user can call `imsl_random_seed_set` to initialize the seed, which is an integer variable with a value between 1 and 2147483647. If it is not initialized by `imsl_random_seed_set`, a random seed is obtained from the system clock. Once it is initialized, the seed need not be set again.

If the user wishes to restart a simulation, by `imsl_random_seed_get` can be used to obtain the final seed value of one run to be used as the starting value in a subsequent run. Also, if two simultaneous random number streams are desired in one run, `imsl_random_seed_set` and by `imsl_random_seed_get` can be used before and after the invocations of the generators in each stream.
simple_statistics

Computes basic univariate statistics.

Synopsis

```c
#include <imsl.h>

float *imsl_f_simple_statistics (int n_observations, int _variables, float x[], ... 0)
```

The type `double` procedure is `imsl_d_simple_statistics`.

Required Arguments

- `int n_observations` (Input)
 The number of observations.
- `int n_variables` (Input)
 The number of variables.
- `float x[]` (Input)
 Array of size `n_observations` × `n_variables` containing the data matrix.

Return Value

A pointer to a matrix containing some simple statistics for each of the columns in `x`. If `MEDIAN` and `MEDIAN_AND_SCALE` are not used as optional arguments, the size of the matrix is 14 by `n_variables`. The columns of this matrix correspond to the columns of `x` and the rows contain the following statistics:

<table>
<thead>
<tr>
<th>Row</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>the mean</td>
</tr>
<tr>
<td>1</td>
<td>the variance</td>
</tr>
<tr>
<td>2</td>
<td>the standard deviation</td>
</tr>
<tr>
<td>3</td>
<td>the coefficient of skewness</td>
</tr>
<tr>
<td>4</td>
<td>the coefficient of excess (kurtosis)</td>
</tr>
<tr>
<td>5</td>
<td>the minimum value</td>
</tr>
<tr>
<td>6</td>
<td>the maximum value</td>
</tr>
<tr>
<td>7</td>
<td>the range</td>
</tr>
<tr>
<td>8</td>
<td>the coefficient of variation (when defined)</td>
</tr>
<tr>
<td></td>
<td>If the coefficient of variation is not defined, zero is returned.</td>
</tr>
<tr>
<td>9</td>
<td>the number of observations (the counts)</td>
</tr>
</tbody>
</table>
Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_simple_statistics (int n_observations, int n_variables, float x[],
                                 IMSL_CONFIDENCE_MEANS, float confidence_means,
                                 IMSL_CONFIDENCE_VARIANCES, float confidence_variances,
                                 IMSL_X_COL_DIM, int x_col_dim,
                                 IMSL_STAT_COL_DIM, int stat_col_dim,
                                 IMSL_MEDIAN,
                                 IMSL_MEDIAN_AND_SCALE,
                                 IMSL_RETURN_USER, float simple_statistics[],
                                 0)
```

Optional Arguments

- **IMSL_CONFIDENCE_MEANS, float confidence_means (Input)**
 The confidence level for a two-sided interval estimate of the means (assuming normality) in percent. Argument `confidence_means` must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level `c`, set `confidence_means = 100.0 - 2(100 - c)`. If `IMSL_CONFIDENCE_MEANS` is not specified, a 95 percent confidence interval is computed.

- **IMSL_CONFIDENCE_VARIANCES, float confidence_variances (Input)**
 The confidence level for a two-sided interval estimate of the variances (assuming normality) in percent. The confidence intervals are symmetric in probability (rather than in length). For a one-sided confidence interval with confidence level `c`, set `confidence_means = 100.0 - 2(100 - c)`. If `IMSL_CONFIDENCE_VARIANCES` is not specified, a 95 percent confidence interval is computed.

<table>
<thead>
<tr>
<th>Row</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a lower confidence limit for the mean (assuming normality) The default is a 95 percent confidence interval.</td>
</tr>
<tr>
<td>11</td>
<td>an upper confidence limit for the mean (assuming normality)</td>
</tr>
<tr>
<td>12</td>
<td>a lower confidence limit for the variance (assuming normality) The default is a 95 percent confidence interval.</td>
</tr>
<tr>
<td>13</td>
<td>an upper confidence limit for the variance (assuming normality)</td>
</tr>
</tbody>
</table>
IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: $x_{\text{col_dim}} = n_{\text{variables}}$

IMSL_STAT_COL_DIM, int stat_col_dim (Input)
The column dimension of the returned value array, or if IMSL_RETURN_USER is specified, the column dimension of array simple_statistics.
Default: $\text{stat_col_dim} = n_{\text{variables}}$

IMSL_MEDIAN, or
IMSL_MEDIAN_AND_SCALE
Exactly one of these optional arguments can be specified in order to indicate the additional simple robust statistics to be computed. If IMSL_MEDIAN is specified, the medians are computed and stored in one additional row (row number 14) in the returned matrix of simple statistics. If IMSL_MEDIAN_AND_SCALE is specified, the medians, the medians of the absolute deviations from the medians, and a simple robust estimate of scale are computed, then stored in three additional rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

IMSL_RETURN_USER, float simple_statistics[] (Output)
Store the matrix of statistics in the user-provided array simple_statistics. If neither IMSL_MEDIAN nor IMSL_MEDIAN_AND_SCALE is specified, the matrix is 14 by $n_{\text{variables}}$. If IMSL_MEDIAN is specified, the matrix is 15 by $n_{\text{variables}}$. If IMSL_MEDIAN_AND_SCALE is specified, the matrix is 17 by $n_{\text{variables}}$.

Description
For the data in each column of x, imsl_f_simple_statistics computes the sample mean, variance, minimum, maximum, and other basic statistics. It also computes confidence intervals for the mean and variance (under the hypothesis that the sample is from a normal population).

The definitions of some of the statistics are given below in terms of a single variable x of which the i-th datum is x_i.
Mean

\[\bar{x} = \frac{\sum x_i}{n} \]

Variance

\[s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} \]

Skewness

\[\frac{\sum (x_i - \bar{x})^3 / n}{\left[\sum (x_i - \bar{x})^2 / n \right]^{3/2}} \]

Excess or Kurtosis

\[\frac{\sum (x_i - \bar{x})^4 / n}{\left[\sum (x_i - \bar{x})^2 / n \right]^{2}} - 3 \]

Minimum

\[x_{\text{min}} = \min(x_i) \]

Maximum

\[x_{\text{max}} = \max(x_i) \]

Range

\[x_{\text{max}} - x_{\text{min}} \]

Coefficient of Variation

\[s / \bar{x} \text{ for } \bar{x} \neq 0 \]
Median

\[\text{median} \{ x_i \} = \begin{cases} \text{middle } x_i \text{ after sorting if } n \text{ is odd} \\ \text{average of middle two } x_i\text{'s if } n \text{ is even} \end{cases} \]

Median Absolute Deviation

\[\text{MAD} = \text{median} \{ |x_i - \text{median} \{ x_j \} | \} \]

Simple Robust Estimate of Scale

\[\text{MAD} / \varphi^{-1}(3/4) \]

where \(\varphi^{-1}(3/4) \approx 0.6745 \) is the inverse of the standard normal distribution function evaluated at 3/4. This standardizes MAD in order to make the scale estimate consistent at the normal distribution for estimating the standard deviation (Huber 1981, pp. 107-108).

Example

This example uses data from Draper and Smith (1981). There are five variables and 13 observations.

```c
#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 13

int main()
{
    float *simple_statistics;
    float x[] = {7., 26., 6., 60., 78.5, 
                 1., 29., 15., 52., 74.3, 
                 11., 56., 8., 20., 104.3, 
                 11., 31., 8., 47., 87.6, 
                 7., 52., 6., 33., 95.9, 
                 11., 55., 9., 22., 109.2, 
                 3., 71., 17., 6., 102.7, 
                 1., 31., 22., 44., 72.5, 
                 2., 54., 18., 22., 93.1, 
                 21., 47., 4., 26., 115.9, 
                 1., 40., 23., 34., 83.8, 
                 11., 66., 9., 12., 113.3, 
                 10., 68., 8., 12., 109.4};
    char *row_labels[] = {"means", "variances", "std. dev", "skewness", "kurtosis", "minima", "maxima", "ranges", "C.V.", "counts", "lower mean", "upper mean", "lower var", "upper var");
```
simple_statistics = imsl_f_simple_statistics(N_OBSERVATIONS, N_VARIABLES, x, 0);

imsl_f_write_matrix("* * * Statistics * * *
", 14, N_VARIABLES, simple_statistics,
 IMSL_ROW_LABELS, row_labels,
 IMSL_WRITE_FORMAT, "%7.3f",
 0);

}
table_oneway

Tallies observations into a one-way frequency table.

Synopsis

```
#include <imsl.h>

float *imsl_f_table_oneway (int n_observations, float x[], int n_intervals, ... , 0)
```

The type double function is imsl_d_table_oneway.

Required Arguments

- `int n_observations (Input)`
 Number of observations.

- `float x[] (Input)`
 Array of length n_observations containing the observations.

- `int n_intervals (Input)`
 Number of intervals (bins).

Return Value

Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_table_oneway (int n_observations, float x[], int n_intervals,
                           IMSL_DATA_BOUNDS, float *minimum, float *maximum,
                           IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound,
                           IMSL_CUTPOINTS, float cutpoints[],
                           IMSL_CLASS_MARKS, float class_marks[],
                           IMSL_RETURN_USER, float table_oneway[],
                           0)
```
Optional Arguments

IMSL_DATA_BOUNDS, float *minimum, float *maximum (Output)
 or
IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)
 or
IMSL_CUTPOINTS, float cutpoints[] (Input)
 or
IMSL_CLASS_MARKS, float class_marks[] (Input)

None, or exactly one, of these four optional arguments can be specified in order to define the intervals or bins for the one-way table. If none is specified, or if IMSL_DATA_BOUNDS is specified, n_intervals, intervals of equal length, are used with the initial interval starting with the minimum value in x and the last interval ending with the maximum value in x. The initial interval is closed on the left and right. The remaining intervals are open on the left and closed on the right. When IMSL_DATA_BOUNDS is explicitly specified, the minimum and maximum values in x are output in minimum and maximum. With this option, each interval is of (maximum−minimum)/n_intervals length. If IMSL_KNOWN_BOUNDS is specified, two semi-infinite intervals are used as the initial and last interval. The initial interval is closed on the right and includes lower_bound as its right endpoint. The last interval is open on the left and includes all values greater than upper_bound. The remaining n_intervals−2 intervals are each of length

$$\frac{\text{upper_bound} - \text{lower_bound}}{n_intervals - 2}$$

and are open on the left and closed on the right. Argument n_intervals must be greater than or equal to three for this option. If IMSL_CLASS_MARKS is specified, equally spaced class marks in ascending order must be provided in the array class_marks of length n_intervals. The class marks are the midpoints of each of the n_intervals, and each interval is taken to have length class_marks[1]−class_marks[0]. The argument n_intervals must be greater than or equal to two for this option. If IMSL_CUTPOINTS is specified, cutpoints (boundaries) must be provided in the array cutpoints of length n_intervals−1. This option allows unequal interval lengths. The initial interval is closed on the right and includes the initial cutpoint as its right endpoint. The last interval is open on the left and includes all values greater than the last cutpoint. The remaining n_intervals−2 intervals are open on the left and closed on the right. The argument n_interval must be greater than or equal to three for this option.

IMSL_RETURN_USER, float table[] (Output)
 Counts are stored in the user-supplied array table of length n_intervals.
Examples

Example 1

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981). They are the measurements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years.

```c
#include <imsl.h>

int main()
{
int    n_intervals=10;
int    n_observations=30;
float  *table;
float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
       2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
       0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
       1.89, 0.90, 2.05};

  table = imsl_f_table_oneway (n_observations, x, n_intervals, 0);
  imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
}
```

Output

```
Counts
1      2      3      4      5      6
4      8      5      5      3      1
7      8      9      10
3      0      0      1
```

Example 2

This example selects `IMSL_KNOWN_BOUNDS` and sets `lower_bound = 0.5` and `upper_bound = 4.5` so that the eight interior intervals each have width \((4.5 - 0.5)/(10 - 2) = 0.5\). The 10 intervals are \((\sim 0.5], (0.5, 1.0], ..., (4.0, 5], and (4.5, \infty]\).

```c
#include <imsl.h>

int main()
{
int    n_observations=30;
int    n_intervals=10;
float  *table;
float  lower_bound=0.5, upper_bound=4.5;
float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
       2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
       0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
       1.89, 0.90, 2.05};

  table = imsl_f_table_oneway (n_observations, x, n_intervals,
      IMSL_KNOWN_BOUNDS, lower_bound,
      upper_bound, b, c, d);
```
```
upper_bound, 0);  
imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
}

Output

Counts
1  2  3  4  5  6
2  7  6  6  4  2
7  8  9  10
2  0  0  1

Example 3
This example inputs 10 class marks 0.25, 0.75, 1.25, …, 4.75. This defines the class intervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike the previous example, the initial and last intervals are the same length as the remaining intervals.

```
#include <imsl.h>
int main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25, 2.75,
 3.25, 3.75, 4.25, 4.75};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CLASS_MARKS, class_marks, 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output

Counts
1 2 3 4 5 6
2 7 6 6 4 2
7 8 9 10
2 0 0 1

Example 4
This example inputs nine cutpoints 0.5, 1.0, 1.5, 2.0, ..., 4.5 to define the same 10 intervals as in Example 3. Here again, the initial and last intervals are semi-infinite intervals.
```
```c
#include <imsl.h>
int main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
 4.5};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CUTPOINTS, cutpoints,
 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}
```

**Output**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
chi_squared_test

Performs a chi-squared goodness-of-fit test.

Synopsis

```c
#include <imsl.h>

float imsl_f_chi_squared_test (float user_proc_cdf(), int n_observations,
 int n_categories, float x[], ..., 0)
```

The type `double` function is `imsl_d_chi_squared_test`.

Required Arguments

- `float user_proc_cdf (float y)(Input)`
  User-supplied function that returns the hypothesized, cumulative distribution function at the point `y`.

- `int n_observations (Input)`
  The number of data elements input in `x`.

- `int n_categories (Input)`
  The number of cells into which the observations are to be tallied.

- `float x[] (Input)`
  Array with `n_observations` components containing the vector of data elements for this test.

Return Value

The `p`-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_chi_squared_test (float user_proc_cdf(), int n_observations,
 int n_categories, float x[],
 IMSL_N_PARAMETERS_ESTIMATED, int n_parameters,
 IMSL_CUTPOINTS, float **p_cutpoints,
 IMSL_CUTPOINTS_USER, float cutpoints[],
 IMSL_CUTPOINTS_EQUAL,
```

IMSL_CHI_SQUARED, float *chi_squared,
IMSL_DEGREES_OF_FREEDOM, float *df,
IMSL_FREQUENCIES, float frequencies[],
IMSL_BOUNDS, float lower_bound, float upper_bound,
IMSL_CELL_COUNTS, float **p_cell_counts,
IMSL_CELL_COUNTS_USER, float cell_counts[],
IMSL_CELL_EXPECTED, float **p_cell_expected,
IMSL_CELL_EXPECTED_USER, float cell_expected[],
IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared,
IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
IMSL_FCN_W_DATA, float user_proc_cdf(), void *data,
0)

Optional Arguments

IMSL_N_PARAMETERS_ESTIMATED, int n_parameters (Input)
The number of parameters estimated in computing the cumulative distribution function.

IMSL_CUTPOINTS, float **p_cutpoints (Output)
The address of a pointer to the cutpoints array. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_cutpoints is declared; &p_cutpoints is used as an argument to this function; and imsl_free (p_cutpoints) is used to free this array.

IMSL_CUTPOINTS_USER, float cutpoints[] (Input or Output)
Array with n_categories − 1 components containing the vector of cutpoints defining the cell intervals. The intervals defined by the cutpoints are such that the lower endpoint is not included, and the upper endpoint is included in any interval. If IMSL_CUTPOINTS_EQUAL is specified, equal probability cutpoints are computed and returned in cutpoints.

IMSL_CUTPOINTS_EQUAL
If IMSL_CUTPOINTS_USER is specified, then equal probability cutpoints can still be used if, in addition, the IMSL_CUTPOINTS_EQUAL option is specified. If IMSL_CUTPOINTS_USER is not specified, equal probability cutpoints are used by default.

IMSL_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.
IMSL_DEGREES_OF_FREEDOM, float *df (Output)
   If specified, the degrees of freedom for the chi-squared goodness-of-fit test is returned in *df.

IMSL_FREQUENCIES, float frequencies[] (Input)
   Array with $n_{\text{observations}}$ components containing the vector frequencies for the observations stored in $x$.

IMSL_BOUNDS, float lower_bound, float upper_bound (Input)
   If IMSL_BOUNDS is specified, then lower_bound is the lower bound of the range of the distribution, and upper_bound is the upper bound of this range. If lower_bound = upper_bound, a range on the whole real line is used (the default). If the lower and upper endpoints are different, points outside the range of these bounds are ignored. Distributions conditional on a range can be specified when IMSL_BOUNDS is used. By convention, lower_bound is excluded from the first interval, but upper_bound is included in the last interval.

IMSL_CELL_COUNTS, float **p_cell_counts (Output)
   The address of a pointer to an array containing the cell counts. The cell counts are the observed frequencies in each of the $n_{\text{categories}}$ cells. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_cell_counts is declared; &p_cell_counts is used as an argument to this function; and imsl_free(p_cell_counts) is used to free this array.

IMSL_CELL_COUNTS_USER, float cell_counts[] (Output)
   If specified, the $n_{\text{categories}}$ cell counts are returned in the array cell_counts provided by the user.

IMSL_CELLEXPECTED, float **p_cell_expected (Output)
   The address of a pointer to the cell expected values. The expected value of a cell is the expected count in the cell given that the hypothesized distribution is correct. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_cell_expected is declared; &p_cell_expected is used as an argument to this function; and imsl_free(p_cell_expected) is used to free this array.

IMSL_CELLEXPECTED_USER, float cell_expected[] (Output)
   If specified, the $n_{\text{categories}}$ cell expected values are returned in the array cell_expected provided by the user.

IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared (Output)
   The address of a pointer to an array of length $n_{\text{categories}}$ containing the cell contributions to chi-squared. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_cell_chi_squared is declared; &p_cell_chi_squared is used as an argument to this function; and imsl_free(p_cell_chi_squared) is used to free this array.
 IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output) 
If specified, the cell contributions to chi-squared are returned in the array cell_chi_squared provided by the user.

IMSL_FCN_W_DATA, float user_proc_cdf (float y, void *data), void *data, (Input) 
User supplied function that returns the hypothesized, cumulative distribution function at the point y, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_chi_squared_test performs a chi-squared goodness-of-fit test that a random sample of observations is distributed according to a specified theoretical cumulative distribution. The theoretical distribution, which may be continuous, discrete, or a mixture of discrete and continuous distributions, is specified via the user-defined function user_proc_cdf. Because the user is allowed to give a range for the observations, a test conditional upon the specified range is performed.

Argument n_categories gives the number of intervals into which the observations are to be divided. By default, equiprobable intervals are computed by imsl_f_chi_squared_test, but intervals that are not equiprobable can be specified (through the use of optional argument IMSL_CUTPOINTS).

Regardless of the method used to obtain the cutpoints, the intervals are such that the lower endpoint is not included in the interval, while the upper endpoint is always included. If the cumulative distribution function has discrete elements, then user-provided cutpoints should always be used since imsl_f_chi_squared_test cannot determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are $-\infty$ and $+\infty$, respectively. If IMSL_BOUNDS is specified, the endpoints are defined by the user via the two arguments lower_bound and upper_bound.

A tally of counts is maintained for the observations in x as follows. If the cutpoints are specified by the user, the tally is made in the interval to which $x_i$ belongs using the endpoints specified by the user. If the cutpoints are determined by imsl_f_chi_squared_test, then the cumulative probability at $x_i$, $F(x_i)$, is computed via the function user_proc_cdf. The tally for $x_i$ is made in interval number $\lfloor m F(x_i) + 1 \rfloor$ where $m = n\_categories$

and $\lfloor \cdot \rfloor$ is the function that takes the greatest integer that is no larger than the argument of the function. Thus, if the computer time required to calculate the cumulative distribution function is large, user-specified cutpoints may be preferred to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-squared approximation may be suspect. A warning message to this effect is issued in this case, as well as when an expected value is less than 5.
On some platforms, \texttt{imsl\_f\_chi\_squared\_test} can evaluate the user-supplied function \texttt{user\_proc\_cdf} in parallel. This is done only if the function \texttt{imsl\_omp\_options} is called to flag user-defined functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to global or static variables.

**Programming Notes**

The user must supply a function \texttt{user\_proc\_cdf} with calling sequence \texttt{user\_proc\_cdf(y)}, that returns the value of the cumulative distribution function at any point \(y\) in the (optionally) specified range. Many of the cumulative distribution functions in \textit{Special Functions} can be used for \texttt{user\_proc\_cdf}, either directly, if the calling sequence is correct, or indirectly, if, for example, the sample means and standard deviations are to be used in computing the theoretical cumulative distribution function.

**Examples**

**Example 1**

This example illustrates the use of \texttt{imsl\_f\_chi\_squared\_test} on a randomly generated sample from the normal distribution. One-thousand randomly generated observations are tallied into 10 equiprobable intervals. The null hypothesis that the sample is from a normal distribution is specified by use of the \texttt{imsl\_f\_normal\_cdf} (see \textit{Special Functions}) as the hypothesized distribution function. In this example, the null hypothesis is not rejected.

```c
#include <imsl.h>
#include <stdio.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

int main()
{
 float *x, p_value;

 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 imsl_random_seed_set(SEED);

 /* Generate Normal deviates */
 x = imsl_f_random_normal (
 N_OBSERVATIONS,
 0);

 /* Perform chi squared test */
 p_value = imsl_f_chi_squared_test (imsl_f_normal_cdf,
```


N_OBSERVATIONS,
N_CATEGORIES, x,
0);

/* Print results */
printf ("p value %7.4f\n", p_value);
}

**Output**

p value 0.1546

**Example 2**

In this example, some optional arguments are used for the data in the initial example.

```c
#include <imsl.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

int main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared", "degrees of freedom",
 "p-value"};

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 imsl_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsl_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 chi_squared_statistics[2] =
 imsl_f_chi_squared_test (imsl_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,
 IMSL_CUTPOINTS, &cutpoints,
 IMSL_CELL_COUNTS, &cell_counts,
 IMSL_CELL_CHI_SQUARED, &cell_chi_squared,
 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsl_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1, cutpoints, 0);
```
imsl_f_write_matrix ("Cell Counts", 1, N_CATEGORIES, cell_counts, 0);
imsl_f_write_matrix ("Cell Contributions to Chi-Squared", 1, N_CATEGORIES, cell_chi_squared, 0);
}

Output

Chi Squared Statistics

\begin{align*}
\text{chi-squared} & \quad 13.18 \\
\text{degrees of freedom} & \quad 9.00 \\
\text{p-value} & \quad 0.15 \\
\end{align*}

\begin{tabular}{cccccc}
\hline
\text{Cut Points} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
-1.282 & -0.842 & -0.524 & -0.253 & -0.000 & 0.253 \\
7 & 8 & 9 \\
0.524 & 0.842 & 1.282 \\
\hline
\end{tabular}

\begin{tabular}{cccccc}
\hline
\text{Cell Counts} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
106 & 109 & 89 & 92 & 83 & 87 \\
7 & 8 & 9 & 10 \\
110 & 104 & 121 & 99 \\
\hline
\end{tabular}

\begin{tabular}{cccccc}
\hline
\text{Cell Contributions to Chi-Squared} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0.36 & 0.81 & 1.21 & 0.64 & 2.89 & 1.69 \\
7 & 8 & 9 & 10 \\
1.00 & 0.16 & 4.41 & 0.01 \\
\hline
\end{tabular}

Example 3

In this example, a discrete Poisson random sample of size 1000 with parameter $\theta = 5.0$ is generated via function \texttt{imsl_f_random_poisson}. In the call to \texttt{imsl_f_chi_squared_test}, function \texttt{imsl_f_poisson_cdf} is used as function \texttt{user_proc_cdf}.

#include <imsl.h>

#define SEED               123457
#define N_CATEGORIES           10
#define N_PARAMETERS_ESTIMATED  0
#define N_NUMBERS            1000
#define THETA                 5.0
float user_proc_cdf(float);

int main()
{
    int i, *poisson;

    float cell_statistics[3][N_CATEGORIES];
    float chi_squared_statistics[3], x[N_NUMBERS];
    float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5};
    char *cell_row_labels[] = {"count", "expected count", "cell chi-squared"};
    char *cell_col_labels[] = {"Poisson value", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"};
    char *stat_row_labels[] = {"chi-squared", "degrees of freedom", "p-value"};

    imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
    imsl_random_seed_set(SEED);
    /* Generate the data */
    poisson = imsl_random_poisson(N_NUMBERS, THETA, 0);
    /* Copy data to a floating point vector*/
    for (i = 0; i < N_NUMBERS; i++)
        x[i] = poisson[i];

    chi_squared_statistics[2] =
        imsl_f_chi_squared_test(user_proc_cdf, N_NUMBERS, N_CATEGORIES, x,
                                IMSL_CUTPOINTS_USER, cutpoints,
                                IMSL_CELL_COUNTS_USER, &cell_statistics[0][0],
                                IMSL_CELL_EXPECTED_USER, &cell_statistics[1][0],
                                IMSL_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
                                IMSL_CHI_SQUARED, &chi_squared_statistics[0],
                                IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
                                0);

    /* Print results */
    imsl_f_write_matrix("\nChi-squared statistics\n", 3, 1,
                        &chi_squared_statistics[0],
                        IMSL_ROW_LABELS, stat_row_labels, 0);
    imsl_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
                        &cell_statistics[0][0],
                        IMSL_ROW_LABELS, cell_row_labels,
                        IMSL_COL_LABELS, cell_col_labels, 0);
}

float user_proc_cdf(float k)
{
    float cdf_v;
\[ cdf_v = \text{imsl}_f\_\text{poisson}_\text{cdf} ((\text{int}) k, \text{THETA}); \]
\[ \text{return } cdf_v; \]

**Output**

Chi-squared statistics

<table>
<thead>
<tr>
<th></th>
<th>10.48</th>
</tr>
</thead>
<tbody>
<tr>
<td>chi-squared</td>
<td></td>
</tr>
<tr>
<td>degrees of freedom</td>
<td>9.00</td>
</tr>
<tr>
<td>p-value</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Cell Statistics

<table>
<thead>
<tr>
<th>Poisson value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>41.0</td>
<td>94.0</td>
<td>138.0</td>
<td>158.0</td>
<td>150.0</td>
</tr>
<tr>
<td>expected count</td>
<td>40.4</td>
<td>84.2</td>
<td>140.4</td>
<td>175.5</td>
<td>175.5</td>
</tr>
<tr>
<td>cell chi-squared</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>1.7</td>
<td>3.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poisson value</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>159.0</td>
<td>116.0</td>
<td>75.0</td>
<td>37.0</td>
<td>32.0</td>
</tr>
<tr>
<td>expected count</td>
<td>146.2</td>
<td>104.4</td>
<td>65.3</td>
<td>36.3</td>
<td>31.8</td>
</tr>
<tr>
<td>cell chi-squared</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

**Warning Errors**

- **IMSL\_EXPECTED\_VAL\_LESS\_THAN\_1**
  
  An expected value is less than 1.

- **IMSL\_EXPECTED\_VAL\_LESS\_THAN\_5**
  
  An expected value is less than 5.

**Fatal Errors**

- **IMSL\_ALL\_OBSERVATIONS\_MISSING**
  
  All observations contain missing values.

- **IMSL\_INCORRECT\_CDF\_1**
  
  The function \texttt{user}_proc\_cdf is not a cumulative distribution function. The value at the lower bound must be nonnegative, and the value at the upper bound must not be greater than one.

- **IMSL\_INCORRECT\_CDF\_2**
  
  The function \texttt{user}_proc\_cdf is not a cumulative distribution function. The probability of the range of the distribution is not positive.

- **IMSL\_INCORRECT\_CDF\_3**
  
  The function \texttt{user}_proc\_cdf is not a cumulative distribution function. Its evaluation at an element in \( x \) is inconsistent with either the evaluation at the lower or upper bound.
| IMSL_INCORRECT_CDF_4 | The function user_proc_cdf is not a cumulative distribution function. Its evaluation at a cutpoint is inconsistent with either the evaluation at the lower or upper bound. |
| IMSL_INCORRECT_CDF_5 | An error has occurred when inverting the cumulative distribution function. This function must be continuous and defined over the whole real line. |
| IMSL_STOP_USER_FCN | Request from user supplied function to stop algorithm. User flag = "#". |
Computes the sample variance-covariance or correlation matrix.

Synopsis

#include <imsl.h>

float *imsl_f_covariances (int n_observations, int n_variables, float x[], ... , 0)

The type double function is imsl_d_covariances.

Required Arguments

int n_observations (Input)
The number of observations.

int n_variables (Input)
The number of variables.

float x[] (Input)
Array of size n_observations x n_variables containing the matrix of data.

Return Value

If no optional arguments are used, imsl_f_covariances returns a pointer to an n_variables x n_variables matrix containing the sample variance-covariance matrix of the observations. The rows and columns of this matrix correspond to the columns of x.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_covariances (int n_observations, int n_variables, float x[],
    IMSL_X_COL_DIM, int x_col_dim,
    IMSL_VARIANCE_COVARIANCE_MATRIX,
    IMSL_CORRECTED_SSCP_MATRIX,
    IMSL_CORRELATION_MATRIX,
IMSL_STDEV_CORRELATION_MATRIX,
IMSL_MEANS, float **p_means,
IMSL_MEANS_USER, float means[],
IMSL_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSL_RETURN_USER, float covariance[],
0)

Optional Arguments

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_VARIANCE_COVARIANCE_MATRIX, or
IMSL_CORRECTED_SSCP_MATRIX, or
IMSL_CORRELATION_MATRIX, or
IMSL_STDEV_CORRELATION_MATRIX
Exactly one of these options can be used to specify the type of matrix to be computed.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Type of Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_VARIANCE_COVARIANCE_MATRIX</td>
<td>variance-covariance matrix (default)</td>
</tr>
<tr>
<td>IMSL_CORRECTED_SSCP_MATRIX</td>
<td>corrected sums of squares and crossproducts matrix</td>
</tr>
<tr>
<td>IMSL_CORRELATION_MATRIX</td>
<td>correlation matrix</td>
</tr>
<tr>
<td>IMSL_STDEV_CORRELATION_MATRIX</td>
<td>correlation matrix except for the diagonal elements which are the standard deviations</td>
</tr>
</tbody>
</table>

IMSL_MEANS, float **p_means (Output)
The address of a pointer to the array containing the means of the variables in x. The components of the array correspond to the columns of x. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_means is declared; &p_means is used as an argument to this function; and imsl_free(p_means) is used to free this array.

IMSL_MEANS_USER, float means[] (Output)
Calculate the n_variables means and store them in the memory provided by the user. The elements of means correspond to the columns of x.
The function `imsl_f_covariances` computes estimates of correlations, covariances, or sums of squares and crossproducts for a data matrix $x$. The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed using the method of provisional means. Let

$$
\bar{x}_{ki}
$$

denote the mean based on $i$ observations for the $k$-th variable, and let $c_{jk|i}$ denote the sum of crossproducts (or sum of squares if $j = k$) based on $i$ observations. Then, the method of provisional means finds new means and sums of crossproducts as follows:

The means and crossproducts are initialized as:

$$
\bar{x}_{k0} = 0.0 \quad k = 1, \ldots, p
$$
$$
c_{jk0} = 0.0 \quad j, k = 1, \ldots, p
$$

where $p$ denotes the number of variables. Letting $x_{k,i+1}$ denote the $k$-th variable on observation $i + 1$, each new observation leads to the following updates for

$$
\bar{x}_{ki}
$$

and $c_{jk|i}$ using update constant $r_{i+1}$:

$$
r_{i+1} = \frac{1}{i+1}
$$
$$
\bar{x}_{k,i+1} = \bar{x}_{ki} + \left(x_{k,i+1} - \bar{x}_{ki}\right)r_{i+1}
$$
$$
c_{jk,i+1} = c_{jk|i} + \left(x_{j,i+1} - \bar{x}_{ji}\right)\left(x_{k,i+1} - \bar{x}_{ki}\right)\left(1 - r_{i+1}\right)
$$

Usage Notes

The function `imsl_f_covariances` uses the following definition of a sample mean:

$$
\bar{x}_k = \frac{\sum_{i=1}^{n} x_{ki}}{n}
$$

where $n$ is the number of observations. The following formula defines the sample covariance, $s_{jk}$, between variables $j$ and $k$:
The sample correlation between variables \( j \) and \( k \), \( r_{jk} \), is defined as follows:

\[
    r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj} s_{kk}}}
\]

\[
    s_{jk} = \frac{\sum_{i=1}^{n}(x_{ji} - \bar{x}_{j})(x_{ki} - \bar{x}_{k})}{n-1}
\]

**Examples**

**Example 1**

The first example illustrates the use of `imsl_f_covariances` for the first 50 observations in the Fisher iris data (Fisher 1936). Note in this example that the first variable is constant over the first 50 observations.

```c
#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

int main()
{
 float *covariances;
 float x[] =
 {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,

```
1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2);
covariances = imsl_f_covariances (N_OBSERVATIONS, N_VARIABLES, x, 0);
imsl_f_write_matrix ("The default case: variances/covariances",
N_VARIABLES, N_VARIABLES, covariances,
IMSL_PRINT_UPPER, 
0);
}

Output

The default case: variances/covariances

1        2        3        4        5
1  0.0000  0.0000  0.0000  0.0000  0.0000
2  0.1242  0.0992  0.0164  0.0103
3  0.1437  0.0117  0.0093
4  0.0302  0.0061
5  0.0111

Example 2

This example illustrates the use of some optional arguments in imsl_f_covariances. Once again, the first 50 observations in the Fisher iris data are used.
```c
#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

int main()
{
 char *title;
 float *means, *correlations;
 float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 correlations = imsl_f_covariances (N_OBSERVATIONS,
 N_VARIABLES-1, x+1,
 IMSL_STDEV_CORRELATION_MATRIX,
 IMSL_X_COL_DIM, N_VARIABLES,
 IMSL_MEANS, &means,
 0);
 imsl_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
 title = "Correlations with Standard Deviations on the Diagonal\n";
 imsl_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
 correlations, IMSL_PRINT_UPPER,
 0);
}

Output
```
Means

1          2          3          4
5.006      3.428      1.462      0.246

Correlations with Standard Deviations on the Diagonal

1          2          3          4
1     0.3525     0.7425     0.2672     0.2781
2                0.3791     0.1777     0.2328
3                           0.1737     0.3316
4                                      0.1054

Warning Errors

**IMSL_CONSTANT_VARIABLE**

Correlations are requested, but the observations on one or more variables are constant. The corresponding correlations are set to NaN.
regression

Fits a multiple linear regression model using least squares.

Synopsis

```
#include <imsl.h>

float *imsl_f_regression (int n_observations, int n_independent, float x[], float y[], ...
..., 0)
```

The type `double` function is `imsl_d_regression`.

Required Arguments

- `int n_observations` (Input)
  The number of observations.

- `int n_independent` (Input)
  The number of independent (explanatory) variables.

- `float x[]` (Input)
  Array of size `n_observations x n_independent` containing the matrix of independent
  (explanatory) variables.

- `float y[]` (Input)
  Array of length `n_observations` containing the dependent (response) variable.

Return Value

If the optional argument `IMSL_NO_INTERCEPT` is not used, `imsl_f_regression` returns a pointer to an
array of length `n_independent + 1` containing a least-squares solution for the regression coefficients. The
estimated intercept is the initial component of the array.

Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_regression (int n_observations, int n_independent, float x[], float y[],
IMSL_X_COL_DIM, int x_col_dim,
IMSL_NO_INTERCEPT,
IMSL_TOLERANCE, float tolerance,
```
IMSL_RANK, int *rank,
IMSL_COEF_COVARIANCES, float **p_coef_covariances,
IMSL_COEF_COVARIANCES_USER, float coef_covariances[],
IMSL_COV_COL_DIM, int cov_col_dim,
IMSL_X_MEAN, float **p_x_mean,
IMSL_X_MEAN_USER, float x_mean[],
IMSL_RESIDUAL, float **p_residual,
IMSL_RESIDUAL_USER, float residual[],
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of x.
Default: x_col_dim = n_independent

IMSL_NO_INTERCEPT
By default, the fitted value for observation $i$ is

$$\hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k$$

where $k = n_{\text{independent}}$. If IMSL_NO_INTERCEPT is specified, the intercept term

$$\hat{\beta}_0$$

is omitted from the model.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence. For imsl_f_regression,
tolerance = 100 × imsl_f_machine(4) is the default choice. For imsl_d_regression,
tolerance = 100 × imsl_d_machine(4) is the default. See imsl_f_machine.

IMSL_RANK, int *rank (Output)
The rank of the fitted model is returned in *rank.
IMSL_COEF_COVARIANCES, float **p_coef_covariances (Output)
The address of a pointer to the $m \times m$ array containing the estimated variances and covariances of
the estimated regression coefficients. Here, $m$ is the number of regression coefficients in the model.
If IMSL_NO_INTERCEPT is specified, $m = n_{\text{independent}}$; otherwise,
$m = n_{\text{independent}} + 1$. On return, the pointer is initialized (through a memory allocation request
to malloc), and the array is stored there. Typically, float *p_coef_covariances is declared;
&p_coef_covariances is used as an argument to this function; and
imsl_free(p_coef_covariances) is used to free this array.

IMSL_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
If specified, coef_covariances is an array of length $m \times m$ containing the estimated variances
and covariances of the estimated coefficients where $m$ is the number of regression coefficients in the
model.

IMSL_COV_COL_DIM, int cov_col_dim (Input)
The column dimension of array coef_covariance.
Default: cov_col_dim = $m$ where $m$ is the number of regression coefficients in the model.

IMSL_X_MEAN, float **p_x_mean (Output)
The address of a pointer to the array containing the estimated means of the independent variables.
On return, the pointer is initialized (through a memory allocation request to malloc), and the array
is stored there. Typically, float *p_x_mean is declared; &p_x_mean is used as an argument to this
function; and imsl_free(p_x_mean) is used to free this array.

IMSL_X_MEAN_USER, float x_mean[] (Output)
If specified, x_mean is an array of length $n_{\text{independent}}$ provided by the user. On return,
x_mean contains the means of the independent variables.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the pointer is initialized
(through a memory allocation request to malloc), and the array is stored there. Typically,
float *p_residual is declared; &p_residual is used as argument to this function; and
imsl_free(p_residual) is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length $n_{\text{observations}}$ provided by the user. On return,
residual contains the residuals.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)
The address of a pointer to the array containing the analysis of variance table. On return, the pointer is initialized
(through a memory allocation request to malloc), and the array is stored there. Typically,
float *p_anova_table is declared; &p_anova_table is used as argument to this function; and
imsl_free(p_anova_table) is used to free this array.
The analysis of variance statistics are given as follows:

<table>
<thead>
<tr>
<th>Element</th>
<th>Analysis of Variance Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>degrees of freedom for the model</td>
</tr>
<tr>
<td>1</td>
<td>degrees of freedom for error</td>
</tr>
<tr>
<td>2</td>
<td>total (corrected) degrees of freedom</td>
</tr>
<tr>
<td>3</td>
<td>sum of squares for the model</td>
</tr>
<tr>
<td>4</td>
<td>sum of squares for error</td>
</tr>
<tr>
<td>5</td>
<td>total (corrected) sum of squares</td>
</tr>
<tr>
<td>6</td>
<td>model mean square</td>
</tr>
<tr>
<td>7</td>
<td>error mean square</td>
</tr>
<tr>
<td>8</td>
<td>overall $F$-statistic</td>
</tr>
<tr>
<td>9</td>
<td>$p$-value</td>
</tr>
<tr>
<td>10</td>
<td>$R^2$ (in percent)</td>
</tr>
<tr>
<td>11</td>
<td>adjusted $R^2$ (in percent)</td>
</tr>
<tr>
<td>12</td>
<td>estimate of the standard deviation</td>
</tr>
<tr>
<td>13</td>
<td>overall mean of $y$</td>
</tr>
<tr>
<td>14</td>
<td>coefficient of variation (in percent)</td>
</tr>
</tbody>
</table>

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
If specified, the 15 analysis of variance statistics listed above are computed and stored in the array anova_table provided by the user.

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array coefficients provided by the user. If IMSL_NO_INTERCEPT is specified, the array requires $m = n_{independent}$ units of memory; otherwise, the number of units of memory required to store the coefficients is $m = n_{independent} + 1$.

**Description**

The function `imsl_f_regression` fits a multiple linear regression model with or without an intercept. By default, the multiple linear regression model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \epsilon_i \quad i = 1, 2, \ldots, n$$

where the observed values of the $y_i$'s (input in $y$) are the responses or values of the dependent variable; the $x_{i1}$'s, $x_{i2}$'s, ..., $x_{ik}$'s (input in $x$) are the settings of the $k$ (input in $n_{independent}$) independent variables; $\beta_0, \beta_1, \ldots, \beta_k$ are the regression coefficients whose estimated values are to be output by `imsl_f_regression`; and the $\epsilon_i$'s are independently distributed normal errors each with mean zero and variance $\sigma^2$. Here, $n$ is the number of rows in the augmented matrix $(x,y)$, i.e., $n$ equals $n_{observations}$. Note that by default, $\beta_0$ is included in the model.
The function `imsl_f_regression` computes estimates of the regression coefficients by minimizing the sum of squares of the deviations of the observed response \( y_i \) from the fitted response \( \hat{y}_i \) for the \( n \) observations. This minimum sum of squares (the error sum of squares) is output as one of the analysis of variance statistics if `IMSL_ANOVA_TABLE` (or `IMSL_ANOVA_TABLE_USER`) is specified and is computed as

\[
SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
\]

Another analysis of variance statistic is the total sum of squares. By default, the total sum of squares is the sum of squares of the deviations of \( y_i \) from its mean \( \bar{y} \) the so-called *corrected total sum of squares*. This statistic is computed as

\[
SST = \sum_{i=1}^{n} (y_i - \bar{y})^2
\]

When `IMSL_NO_INTERCEPT` is specified, the total sum of squares is the sum of squares of \( y_i \) the so-called *uncorrected total sum of squares*. This is computed as

\[
SST = \sum_{i=1}^{n} y_i^2
\]

See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analysis, and many examples.

In order to compute a least-squares solution, `imsl_f_regression` performs an orthogonal reduction of the matrix of regressors to upper-triangular form. The reduction is based on one pass through the rows of the augmented matrix \((x, y)\) using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156-162; Gentleman 1974.) This method has the advantage that the loss of accuracy resulting from forming the crossproduct matrix used in the normal equations is avoided.

By default, the current means of the dependent and independent variables are used to internally center the data for improved accuracy. Let \( x_i \) be a column vector containing the \( j \)-th row of data for the independent variables. Let \( \bar{x}_i \) represent the mean vector for the independent variables given the data for rows 1, 2, ..., \( i \). The current mean vector is defined to be
The $i$-th row of data has $x_i$ subtracted from it and is then weighted by $i/(i-1)$. Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the following formula for the sum of squares and crossproducts matrix:

$$\sum_{i=1}^{n} (x_i - \bar{x}_n)(x_i - \bar{x}_n)^T = \sum_{i=2}^{n} \frac{i}{i-1} (x_i - \bar{x}_i)(x_i - \bar{x}_i)^T$$

An orthogonal reduction on the centered matrix is computed. When the final computations are performed, the intercept estimate and the first row and column of the estimated covariance matrix of the estimated coefficients are updated (if IMSL_COEF_COVARIANCES or IMSL_COEF_COVARIANCES_USER is specified) to reflect the statistics for the original (uncentered) data. This means that the estimate of the intercept is for the uncentered data.

As part of the final computations, ims1_regression checks for linearly dependent regressors. In particular, linear dependence of the regressors is declared if any of the following three conditions are satisfied:

- A regressor equals zero.
- Two or more regressors are constant.
- $\sqrt{1 - R_{i,1,2,\ldots,i-1}^2}$ is less than or equal to tolerance. Here, $R_{i,1,2,\ldots,i-1}$ is the multiple correlation coefficient of the $i$-th independent variable with the first $i-1$ independent variables. If no intercept is in the model, the “multiple correlation” coefficient is computed without adjusting for the mean.

On completion of the final computations, if the $i$-th regressor is declared to be linearly dependent upon the previous $i-1$ regressors, then the $i$-th coefficient estimate and all elements in the $i$-th row and $i$-th column of the estimated variance-covariance matrix of the estimated coefficients (if IMSL_COEF_COVARIANCES or IMSL_COEF_COVARIANCES_USER is specified) are set to zero. Finally, if a linear dependence is declared, an informational (error) message, code IMSL_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1
A regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i \quad i = 1, 2, \ldots, 9$$

is fitted to data taken from Maindonald (1984, pp. 203-204).

```c
#include <imsl.h>
#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
```
#define N_OBSERVATIONS 9

int main()
{
    float *coefficients;
    float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
                                2.0,-1.0, 6.0,
                                7.0, 3.0, 5.0,
                                -3.0, 1.0, 4.0,
                                2.0,-1.0, 0.0,
                                2.0, 1.0, 7.0,
                                -3.0,-1.0, 3.0,
                                2.0, 1.0, 1.0,
                                2.0, 1.0, 4.0};

    float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

    coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
                                       (float *)x, y, 0);
    imsl_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
                        coefficients,
                        IMSL_COL_NUMBER_ZERO,
                        0);
}

Output

Least-Squares Coefficients
0          1          2          3
7.733     -0.200      2.333     -1.667

Example 2

A weighted least-squares fit is computed using the model

\[ y_i = \beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i \quad i = 1, 2, \ldots, 4 \]

and weights \(1/i^2\) discussed by Maindonald (1984, pp. 67-68). In order to compute the weighted least-squares fit, using an ordinary least-squares function (imsl_f_regression), the regressors (including the column of ones for the intercept term) and the responses must be transformed prior to invocation of imsl_f_regression. Specifically, the \(i\)-th response and regressors are multiplied by a square root of the \(i\)-th weight.

IMSL_NO_INTERCEPT must be specified since the column of ones corresponding to the intercept term in the untransformed model is transformed by the weights and is regarded as an additional independent variable.

In the example, IMSL_ANOVA_TABLE is specified. The minimum sum of squares for error in terms of the original untransformed regressors and responses for this weighted regression is
where $w_i = 1/i^2$. Also, since IMSL_NO_INTERCEPT is specified, the uncorrected total sum-of-squares terms of the original untransformed responses is

$$SST = \sum_{i=1}^{4} w_i y_i^2$$

```c
#include <imsl.h>
#include <math.h>

#define N_INDEPENDENT 3
#define N_COEFFICIENTS N_INDEPENDENT
#define N_OBSERVATIONS 4

int main()
{
 int i, j;
 float *coefficients, w, anova_table[15], power;
 float x[N_INDEPENDENT][N_INDEPENDENT] = {
 1.0, -2.0, 0.0,
 1.0, -1.0, 2.0,
 1.0, 2.0, 5.0,
 1.0, 7.0, 3.0};
 float y[] = {-3.0, 1.0, 2.0, 6.0};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 power = 0.0;
 for (i = 0; i < N_OBSERVATIONS; i++) {
 power += 1.0;
 /* The square root of the weight */
 w = sqrt(1.0 / (power*power));
 /* Transform response */
 y[i] *= w;
 /* Transform regressors */
 for (j = 0; j < N_INDEPENDENT; j++)
```
x[i][j] *= w;
}

coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
    (float *)x, y,
    IMSL_NO_INTERCEPT,
    IMSL_ANOVA_TABLE_USER,
    anova_table, 0);

imsl_f_write_matrix("Least-Squares Coefficients", 1,
    N_COEFFICIENTS, coefficients, 0);
imsl_f_write_matrix("* * * Analysis of Variance * * *
    degrees of freedom for regression            3.00
    degrees of freedom for error                 1.00
    total (uncorrected) degrees of freedom       4.00
    sum of squares for regression               10.93
    sum of squares for error                     1.01
    total (uncorrected) sum of squares          11.94
    regression mean square                       3.64
    error mean square                            1.01
    F-statistic                                   3.60
    p-value                                       0.37
    R-squared (in percent)                       91.52
    adjusted R-squared (in percent)              66.08
    est. standard deviation of model error        1.01
    overall mean of y                             -0.08
    coefficient of variation (in percent)        -1207.73

Warning Errors

IMSL_RANK_DEFICIENT The model is not full rank. There is not a unique least-

squares solution.
poly_regression

Performs a polynomial least-squares regression.

Synopsis

```c
#include <imsl.h>

float *imsl_f_poly_regression (int n_observations, float x[], float y[], int degree, ..., 0)
```

The type `double` procedure is `imsl_d_poly_regression`.

Required Arguments

- `int n_observations` (Input)
  - The number of observations.
- `float x[]` (Input)
  - Array of length `n_observations` containing the independent variable.
- `float y[]` (Input)
  - Array of length `n_observations` containing the dependent variable.
- `int degree` (Input)
  - The degree of the polynomial.

Return Value

A pointer to the vector of size `degree + 1` containing the coefficients of the fitted polynomial. If a fit cannot be computed, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_poly_regression (int n_observations, float xdata[], float ydata[], int degree,
 IMSL_WEIGHTS, float weights[],
 IMSL_SSQ_POLY, float **p_ssq_poly,
 IMSL_SSQ_POLY_USER, float ssq_poly[],
 IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,
```
IMSL_SSQ_LOF, float **p_ssq_lof,
IMSL_SSQ_LOF_USER, float ssq_lof[],
IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSL_X_MEAN, float *x_mean,
IMSL_X_VARIANCE, float *x_variance,
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_DF_PURE_ERROR, int *df_pure_error,
IMSL_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSL_RESIDUAL, float **p_residual,
IMSL_RESIDUAL_USER, float residual[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments

IMSL_WEIGHTS, float weights[] (Input)
Array with n_observations components containing the vector of weights for the observation. If this option is not specified, all observations have equal weights of one.

IMSL_SSQ_POLY, float **p_ssq_poly (Output)
The address of a pointer to the array containing the sequential sums of squares and other statistics. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_ssq_poly is declared; &p_ssq_poly is used as an argument to this function; and imsl_free (p_ssq_poly) is used to free this array. Row i corresponds to x^i, i = 1, ..., degree, and the columns are described as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>2</td>
<td>sums of squares</td>
</tr>
<tr>
<td>3</td>
<td>F-statistic</td>
</tr>
<tr>
<td>4</td>
<td>p-value</td>
</tr>
</tbody>
</table>

IMSL_SSQ_POLY_USER, float ssq_poly[] (Output)
Array of size degree × 4 containing the sequential sums of squares for a polynomial fit described under optional argument IMSL_SSQ_POLY.
IMSL\_SSQ\_POLY\_COL\_DIM, int ssq\_poly\_col\_dim (Input)

   The column dimension of ssq\_poly.
   Default: ssq\_poly\_col\_dim = 4

IMSL\_SSQ\_LOF, float **p\_ssq\_lof (Output)

   The address of a pointer to the array containing the lack-of-fit statistics. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p\_ssq\_lof is declared; &p\_ssq\_lof is used as an argument to this function; and imsl\_free (p\_ssq\_lof) is used to free this array. Row \( i \) corresponds to \( x^i, i = 1, \ldots, \) degree, and the columns are described in the following table:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>2</td>
<td>lack-of-fit sums of squares</td>
</tr>
<tr>
<td>3</td>
<td>( F )-statistic for testing lack-of-fit for a polynomial model of degree ( i )</td>
</tr>
<tr>
<td>4</td>
<td>( p )-value for the test</td>
</tr>
</tbody>
</table>

IMSL\_SSQ\_LOF\_USER, float ssq\_lof[] (Output)

   Array of size degree \( \times 4 \) containing the matrix of lack-of-fit statistics described under optional argument IMSL\_SSQ\_LOF.

IMSL\_SSQ\_LOF\_COL\_DIM, int ssq\_lof\_col\_dim (Input)

   The column dimension of ssq\_lof.
   Default: ssq\_lof\_col\_dim = 4

IMSL\_X\_MEAN, float *x\_mean (Output)

   The mean of \( x \).

IMSL\_X\_VARIANCE, float *x\_variance (Output)

   The variance of \( x \).

IMSL\_ANOVA\_TABLE, float **p\_anova\_table (Output)

   The address of a pointer to the array containing the analysis of variance table. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p\_anova\_table is declared; &p\_anova\_table is used as an argument to this function; and imsl\_free (p\_anova\_table) is used to free this array.

<table>
<thead>
<tr>
<th>Element</th>
<th>Analysis of Variance Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>degrees of freedom for the model</td>
</tr>
<tr>
<td>1</td>
<td>degrees of freedom for error</td>
</tr>
<tr>
<td>2</td>
<td>total (corrected) degrees of freedom</td>
</tr>
<tr>
<td>3</td>
<td>sum of squares for the model</td>
</tr>
<tr>
<td>4</td>
<td>sum of squares for error</td>
</tr>
</tbody>
</table>

---

**RogueWave**

poly\_regression    Chapter 10 Statistics and Random Number Generation    1225
<table>
<thead>
<tr>
<th>Element</th>
<th>Analysis of Variance Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>total (corrected) sum of squares</td>
</tr>
<tr>
<td>6</td>
<td>model mean square</td>
</tr>
<tr>
<td>7</td>
<td>error mean square</td>
</tr>
<tr>
<td>8</td>
<td>overall $F$-statistic</td>
</tr>
<tr>
<td>9</td>
<td>$p$-value</td>
</tr>
<tr>
<td>10</td>
<td>$R^2$ (in percent)</td>
</tr>
<tr>
<td>11</td>
<td>adjusted $R^2$ (in percent)</td>
</tr>
<tr>
<td>12</td>
<td>estimate of the standard deviation</td>
</tr>
<tr>
<td>13</td>
<td>overall mean of $y$</td>
</tr>
<tr>
<td>14</td>
<td>coefficient of variation (in percent)</td>
</tr>
</tbody>
</table>

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
Array of size 15 containing the analysis variance statistics listed under optional argument IMSL_ANOVA_TABLE.

IMSL_DFPURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in df_pure_error.

IMSL_SSQPURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in ssq_pure_error.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_residual is declared; &p_residual is used as an argument to this function; and imsl_free(p_residual) is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length n_observations provided by the user. On return, residual contains the residuals.

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array coefficients of size degree + 1 provided by the user.

Description
The function imsl_f_poly_regression computes estimates of the regression coefficients in a polynomial (curvilinear) regression model. In addition to the computation of the fit, imsl_f_poly_regression computes some summary statistics. Sequential sums of squares attributable to each power of the independent variable (stored in ssq_poly) are computed. These are useful in assessing the importance of the higher order
powers in the fit. Draper and Smith (1981, pp. 101-102) and Neter and Wasserman (1974, pp. 278-287) discuss
the interpretation of the sequential sums of squares. The statistic $R^2$ is the percentage of the sum of squares of $y$
about its mean explained by the polynomial curve. Specifically,

$$R^2 = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2} \times 100\%$$

where $\hat{y}_i$ is the fitted $y$ value at $x_i$ and $\bar{y}$ is the mean of $y$. This statistic is useful in assessing the overall fit of
the curve to the data. $R^2$ must be between 0% and 100%, inclusive. $R^2 = 100\%$ indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed using orthogonal polynomials as the
regressor variables. This reparameterization of the polynomial model in terms of orthogonal polynomials has the
advantage that the loss of accuracy resulting from forming powers of the $x$-values is avoided. All results are
returned to the user for the original model (power form).

The function imsl_f_poly_regression is based on the algorithm of Forsythe (1957). A modification to Forsythe's algorithm
suggested by Shampine (1975) is used for computing the polynomial coefficients. A discussion of Forsythe's algorithm

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp. 279-285). The data set con-
tains the response variable $y$ measuring coffee sales (in hundred gallons) and the number of self-service coffee
dispensers. Responses for 14 similar cafeterias are in the data set. A graph of the results also is given.

```
#include <imsl.h>

#define DEGREE 2
#define NOBS 14

int main()
{
 float *coefficients;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

 coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE, 0);

 imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
 DEGREE + 1, 1, coefficients,
 IMSL_ROW_NUMBER_ZERO,
 0);
```
Example 2

This example is a continuation of the initial example. Here, many optional arguments are used.

```c
#include <stdio.h>
#include <imsl.h>

#define DEGREE 2
#define NOBS 14

int main()
{
 int iset = 1, dfpe;
 float *coefficients, *anova, sspe, *sspoly, *sslof;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
```
char  *coef_rlab[2];

char  *coef_clab[] = {" ", "intercept", "linear", "quadratic"};

char  *stat_clab[] = {
    " ", "Degrees of nFreedom",
    "Sum of nSquares", "F-Statistic",
    "np-value"};

char  *anova_rlab[] = {
    "degrees of freedom for regression",
    "degrees of freedom for error",
    "total (corrected) degrees of freedom",
    "sum of squares for regression",
    "sum of squares for error",
    "total (corrected) sum of squares",
    "regression mean square",
    "error mean square", "F-statistic",
    "p-value", "R-squared (in percent)",
    "adjusted R-squared (in percent)",
    "est. standard deviation of model error",
    "overall mean of y",
    "coefficient of variation (in percent)"};

coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE,
    IMSL_SSQ_POLY, &sspoly,
    IMSL_SSQ_LOF, &sslof,
    IMSL_ANOVA_TABLE, &anova,
    IMSL_DF_PURE_ERROR, &dfpe,
    IMSL_SSQ_PURE_ERROR, &sspe,
    0);

imsl_write_options(-1, &iset);
imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
    1, DEGREE + 1, coefficients,
    IMSL_COL_LABELS, coef_clab, 0);

coef_rlab[0] = coef_clab[2];
coef_rlab[1] = coef_clab[3];

imsl_f_write_matrix("Sequential Statistics", DEGREE, 4, sspoly,
    IMSL_COL_LABELS, stat_clab,
    IMSL_ROW_LABELS, coef_rlab,
    IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
    0);

imsl_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, sslof,
    IMSL_COL_LABELS, stat_clab,
    IMSL_ROW_LABELS, coef_rlab,
    IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
    0);

imsl_f_write_matrix("* * * Analysis of Variance * * *
    15, 1, anova,
    IMSL_ROW_LABELS, anova_rlab,
    IMSL_WRITE_FORMAT, "%9.2f",
    0);
Output

Least-Squares Polynomial Coefficients
intercept     linear  quadratic
503.3       78.9       -4.0

Sequential Statistics

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>F-Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>1.0</td>
<td>220644.2</td>
<td>3415.8</td>
</tr>
<tr>
<td>quadratic</td>
<td>1.0</td>
<td>4387.7</td>
<td>67.9</td>
</tr>
</tbody>
</table>

Lack-of-Fit Statistics

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>F-Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>5.0</td>
<td>4793.7</td>
<td>22.0</td>
</tr>
<tr>
<td>quadratic</td>
<td>4.0</td>
<td>405.9</td>
<td>2.3</td>
</tr>
</tbody>
</table>

* * * Analysis of Variance * * *

degrees of freedom for regression           2.00
degrees of freedom for error               11.00
total (corrected) degrees of freedom       13.00
sum of squares for regression          225031.94
sum of squares for error                  710.55
total (corrected) sum of squares       225742.48
regression mean square                 112515.97
error mean square                          64.60
F-statistic                              1741.86
p-value                                     0.00
R-squared (in percent)                     99.69
adjusted R-squared (in percent)            99.63
est. standard deviation of model error      8.04
overall mean of y                          710.99
coefficient of variation (in percent)       1.13

Warning Errors

IMSL_CONSTANT_YVALUES
The y values are constant. A zero-order polynomial is fit. High order coefficients are set to zero.

IMSL_FEW_DISTINCT_XVALUES
There are too few distinct x values to fit the desired degree polynomial. High order coefficients are set to zero.

IMSL_PERFECT_FIT
A perfect fit was obtained with a polynomial of degree less than degree. High order coefficients are set to zero.
## Fatal Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_NONNEG_WEIGHT_REQUEST_2</td>
<td>All weights must be nonnegative.</td>
</tr>
<tr>
<td>IMSL_ALL_OBSERVATIONS_MISSING</td>
<td>Each ((x, y)) point contains NaN (not a number). There are no valid data.</td>
</tr>
<tr>
<td>IMSL_CONSTANT_XVALUES</td>
<td>The (x) values are constant.</td>
</tr>
</tbody>
</table>
ranks

Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis

```c
#include <imsl.h>

float *imsl_f_ranks (int n_observations, float x[], ... , 0)
```

The type `double` function is `imsl_d_ranks`.

Required Arguments

- `int n_observations (Input)`
  The number of observations.
- `float x[] (Input)`
  Array of length `n_observations` containing the observations to be ranked.

Return Value

A pointer to a vector of length `n_observations` containing the rank (or optionally, a transformation of the rank) of each observation.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float* imsl_f_ranks (int n_observations, float x[],
 IMSL_AVERAGE_TIE,
 IMSL_HIGHEST,
 IMSL_LOWEST,
 IMSL_RANDOM_SPLIT,
 IMSL_FUZZ, float fuzz_value,
 IMSL_RANKS,
 IMSL_BLOM_SCORES,
 IMSL_TUKEY_SCORES,
```

IMSL\_VAN\_DER\_WAERDEN\_SCORES,  
IMSL\_EXPECTED\_NORMAL\_SCORES,  
IMSL\_SAVAGE\_SCORES,  
IMSL\_RETURN\_USER, float ranks[],  
0)

**Optional Arguments**

IMSL\_AVERAGE\_TIE, or  
IMSL\_HIGHEST, or  
IMSL\_LOWEST, or  
IMSL\_RANDOM\_SPLIT  
Exactly one of these optional arguments may be used to change the method used to assign a score to tied observations.

<table>
<thead>
<tr>
<th><strong>Keyword</strong></th>
<th><strong>Result</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_AVERAGE_TIE</td>
<td>average of the scores of the tied observations (default)</td>
</tr>
<tr>
<td>IMSL_HIGHEST</td>
<td>highest score in the group of ties</td>
</tr>
<tr>
<td>IMSL_LOWEST</td>
<td>lowest score in the group of ties</td>
</tr>
<tr>
<td>IMSL_RANDOM_SPLIT</td>
<td>tied observations are randomly split using a random number generator.</td>
</tr>
</tbody>
</table>

IMSL\_FUZZ, float fuzz\_value (Input)  
Value used to determine when two items are tied. If abs(x[i]−x[j]) is less than or equal to fuzz\_value, then x[i] and x[j] are said to be tied. The default value for fuzz\_value is 0.0.

IMSL\_RANKS, or  
IMSL\_BLOM\_SCORES, or  
IMSL\_TUKEY\_SCORES, or  
IMSL\_VAN\_DER\_WAERDEN\_SCORES, or  
IMSL\_EXPECTED\_NORMAL\_SCORES, or
IMSL_SAVAGE_SCORES
Exactly one of these optional arguments may be used to specify the type of values returned.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_RANKS</td>
<td>ranks (default)</td>
</tr>
<tr>
<td>IMSL_BLOM_SCORES</td>
<td>Blom version of normal scores</td>
</tr>
<tr>
<td>IMSL_TUKEY_SCORES</td>
<td>Tukey version of normal scores</td>
</tr>
<tr>
<td>IMSL_VAN_DER_WAERDEN_SCORES</td>
<td>Van der Waerden version of normal scores</td>
</tr>
<tr>
<td>IMSL_EXPECTED_NORMAL_SCORES</td>
<td>expected value of normal order statistics (For tied observations, the average of the expected normal scores.)</td>
</tr>
<tr>
<td>IMSL_SAVAGE_SCORES</td>
<td>Savage scores (the expected value of exponential order statistics)</td>
</tr>
</tbody>
</table>

IMSL_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties
In data without ties, the output values are the ordinary ranks (or a transformation of the ranks) of the data in x. If \( x[i] \) has the smallest value among the values in x and there is no other element in x with this value, then \( \text{ranks}[i] = 1 \). If both \( x[i] \) and \( x[j] \) have the same smallest value, then the output value depends upon the option used to break ties.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_AVERAGE_TIE</td>
<td>( \text{ranks}[i] = \text{ranks}[j] = 1.5 )</td>
</tr>
<tr>
<td>IMSL_HIGHEST</td>
<td>( \text{ranks}[i] = \text{ranks}[j] = 2.0 )</td>
</tr>
<tr>
<td>IMSL_LOWEST</td>
<td>( \text{ranks}[i] = \text{ranks}[j] = 1.0 )</td>
</tr>
<tr>
<td>IMSL_RANDOM_SPLIT</td>
<td>( \text{ranks}[i] = 1.0 ) and ( \text{ranks}[j] = 2.0 ) or, randomly, ( \text{ranks}[i] = 2.0 ) and ( \text{ranks}[j] = 1.0 )</td>
</tr>
</tbody>
</table>

When the ties are resolved randomly, the function \text{imsl}_f_random_uniform is used to generate random numbers. Different results may occur from different executions of the program unless the “seed” of the random number generator is set explicitly by use of the function \text{imsl_random_seed_set}.  

---

RogueWave

Chapter 10 Statistics and Random Number Generation

ranks
The Scores

Normal and other functions of the ranks can optionally be returned. Normal scores can be defined as the expected values, or approximations to the expected values, of order statistics from a normal distribution. The simplest approximations are obtained by evaluating the inverse cumulative normal distribution function, `imsl_f_normal_inverse_cdf`, at the ranks scaled into the open interval (0,1). In the Blom version (see Blom 1958), the scaling transformation for the rank \( r_i \) (where \( n \) is the sample size, `n_observations`) is \((r_i - 3/8)/(n + 1/4)\). The Blom normal score corresponding to the observation with rank \( r_i \) is

\[
\phi^{-1}\left(\frac{r_i - 3/8}{n + 1/4}\right)
\]

where \( \phi(\cdot) \) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if \( x[i] \) equals \( x[j] \) (within `fuzz_value`) and their value is the \( k \)-th smallest in the data set, the Blom normal scores are determined for ranks of \( k \) and \( k + 1 \). Then, these normal scores are averaged or selected in the manner specified. (Whether the transformations are made first or ties are resolved first makes no difference except when `IMSL_AVERAGE` is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank \( r_i \) is \((r_i - 1/3)/(n + 1/3)\). The Tukey normal score corresponding to the observation with rank \( r_i \) is

\[
\phi^{-1}\left(\frac{r_i - 1/3}{n + 1/3}\right)
\]

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation for the rank \( r_i \) is \( r_i/(n + 1) \). The Van der Waerden normal score corresponding to the observation with rank \( r_i \) is

\[
\phi^{-1}\left(\frac{r_i}{n + 1}\right)
\]

Ties are handled in the same way as for the Blom normal scores.

When option `IMSL_EXPECTED_NORMAL_SCORES` is used, the output values are the expected values of the normal order statistics from a sample of size `n_observations`. If the value in \( x[i] \) is the \( k \)-th smallest, then the value output in `ranks[i]` is \( E(z_k) \) where \( E(\cdot) \) is the expectation operator, and \( z_k \) is the \( k \)-th order statistic in a sample of size `n_observations` from a standard normal distribution. Ties are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a sample of size `n_observations`. These values are called Savage scores because of their use in a test discussed by Savage (1956) (see Lehmann 1975). If the value in \( x[i] \) is the \( k \)-th smallest, then the value output in `ranks[i]` is \( E(y_k) \) where \( y_k \) is the \( k \)-th order statistic in a sample of size `n_observations` from a standard exponential distribution. The expected value of the \( k \)-th order statistic from an exponential sample of size `n` (`n_observations`) is
Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1
The data for this example, from Hinkley (1977), contains 30 observations. Note that the fourth and sixth observations are tied, and that the third and twentieth observations are tied.

```c
#include <imsl.h>

#define N_OBSERVATIONS 30

int main()
{
 float *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

 ranks = imsl_f_ranks(N_OBSERVATIONS, x, 0);
 imsl_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0);
}

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0</td>
<td>18.0</td>
<td>6.5</td>
<td>11.5</td>
<td>21.0</td>
<td>11.5</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>15.0</td>
<td>29.0</td>
<td>24.0</td>
<td>27.0</td>
<td>28.0</td>
</tr>
<tr>
<td>13</td>
<td>16.0</td>
<td>23.0</td>
<td>3.0</td>
<td>17.0</td>
<td>13.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Example 2

This example uses all of the score options with the same data set, which contains some ties. Ties are handled in several different ways in this example.

```c
#include <ims1.h>

#define N_OBSERVATIONS         30

int main()
{
    float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
    float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
    char *row_labels[] = {"Blom", "Tukey", "Van der Waerden", "Expected Value"};

    /* Blom scores using largest ranks */
    /* for ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_HIGHEST,
                 IMSL_BLOM_SCORES,
                 IMSL_RETURN_USER,  &score[0][0],
                 0);

    /* Tukey normal scores using smallest */
    /* ranks for ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_LOWEST,
                 IMSL_TUKEY_SCORES,
                 IMSL_RETURN_USER, &score[1][0],
                 0);

    /* Van der Waerden scores using */
    /* randomly resolved ties */
    imsl_random_seed_set(123457);
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_RANDOM_SPLIT,
                 IMSL_VAN_DER_WAERDEN_SCORES,
                 IMSL_RETURN_USER, &score[2][0],
                 0);

    /* Expected value of normal order */
    /* statistics using averaging to */
    /* break ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_EXPECTED_NORMAL_SCORES,
                 IMSL_RETURN_USER, &score[3][0],
                 0);

    imsl_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
                          (float *)score,
                          IMSL_ROW_LABELS, row_labels,
```

ranks = imsl_f_ranks(N_OBSERVATIONS, x,
IMSL_SAVAGE_SCORES,
0);

imsl_f_write_matrix("Expected values of exponential order "
"statistics", 1,
N_OBSERVATIONS, ranks,
0);

Output

Normal Order Statistics

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blom</td>
<td>-1.024</td>
<td>0.209</td>
<td>-0.776</td>
<td>-0.294</td>
<td>0.473</td>
</tr>
<tr>
<td>Tukey</td>
<td>-1.020</td>
<td>0.208</td>
<td>-0.890</td>
<td>-0.381</td>
<td>0.471</td>
</tr>
<tr>
<td>Van der Waerden</td>
<td>-0.989</td>
<td>0.204</td>
<td>-0.753</td>
<td>-0.287</td>
<td>0.460</td>
</tr>
<tr>
<td>Expected Value</td>
<td>-1.026</td>
<td>0.209</td>
<td>-0.836</td>
<td>-0.338</td>
<td>0.473</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blom</td>
<td>-0.294</td>
<td>-1.610</td>
<td>-0.041</td>
<td>1.610</td>
<td>0.776</td>
</tr>
<tr>
<td>Tukey</td>
<td>-0.381</td>
<td>-1.599</td>
<td>-0.041</td>
<td>1.599</td>
<td>0.773</td>
</tr>
<tr>
<td>Van der Waerden</td>
<td>-0.372</td>
<td>-1.518</td>
<td>-0.040</td>
<td>1.518</td>
<td>0.753</td>
</tr>
<tr>
<td>Expected Value</td>
<td>-0.338</td>
<td>-1.616</td>
<td>-0.041</td>
<td>1.616</td>
<td>0.777</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blom</td>
<td>1.176</td>
<td>1.361</td>
<td>0.041</td>
<td>0.668</td>
<td>-1.361</td>
</tr>
<tr>
<td>Tukey</td>
<td>1.171</td>
<td>1.354</td>
<td>0.041</td>
<td>0.666</td>
<td>-1.354</td>
</tr>
<tr>
<td>Van der Waerden</td>
<td>1.131</td>
<td>1.300</td>
<td>0.040</td>
<td>0.649</td>
<td>-1.300</td>
</tr>
<tr>
<td>Expected Value</td>
<td>1.179</td>
<td>1.365</td>
<td>0.041</td>
<td>0.669</td>
<td>-1.365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blom</td>
<td>0.125</td>
<td>-0.209</td>
<td>-2.040</td>
<td>-1.176</td>
<td>-0.776</td>
</tr>
<tr>
<td>Tukey</td>
<td>0.124</td>
<td>-0.208</td>
<td>-2.015</td>
<td>-1.171</td>
<td>-0.890</td>
</tr>
<tr>
<td>Van der Waerden</td>
<td>0.122</td>
<td>-0.204</td>
<td>-1.849</td>
<td>-1.131</td>
<td>-0.865</td>
</tr>
<tr>
<td>Expected Value</td>
<td>0.125</td>
<td>-0.209</td>
<td>-2.043</td>
<td>-1.179</td>
<td>-0.836</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blom</td>
<td>1.024</td>
<td>0.294</td>
<td>-0.473</td>
<td>-0.125</td>
<td>2.040</td>
</tr>
<tr>
<td>Tukey</td>
<td>1.020</td>
<td>0.293</td>
<td>-0.471</td>
<td>-0.124</td>
<td>2.015</td>
</tr>
<tr>
<td>Van der Waerden</td>
<td>0.989</td>
<td>0.287</td>
<td>-0.460</td>
<td>-0.122</td>
<td>1.849</td>
</tr>
<tr>
<td>Expected Value</td>
<td>1.026</td>
<td>0.294</td>
<td>-0.473</td>
<td>-0.125</td>
<td>2.043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blom</td>
<td>0.893</td>
<td>-0.568</td>
<td>0.382</td>
<td>-0.668</td>
<td>0.568</td>
</tr>
<tr>
<td>Tukey</td>
<td>0.890</td>
<td>-0.566</td>
<td>0.381</td>
<td>-0.666</td>
<td>0.566</td>
</tr>
<tr>
<td>Van der Waerden</td>
<td>0.865</td>
<td>-0.552</td>
<td>0.372</td>
<td>-0.649</td>
<td>0.552</td>
</tr>
<tr>
<td>Expected Value</td>
<td>0.894</td>
<td>-0.568</td>
<td>0.382</td>
<td>-0.669</td>
<td>0.568</td>
</tr>
<tr>
<td>Ranks</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Values</td>
<td>0.179</td>
<td>0.892</td>
<td>0.240</td>
<td>0.474</td>
<td>1.166</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Values</td>
<td>0.068</td>
<td>0.677</td>
<td>2.995</td>
<td>1.545</td>
<td>2.162</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Values</td>
<td>0.743</td>
<td>1.402</td>
<td>0.104</td>
<td>0.815</td>
<td>0.555</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Values</td>
<td>0.141</td>
<td>0.240</td>
<td>1.912</td>
<td>0.975</td>
<td>0.397</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Values</td>
<td>3.995</td>
<td>1.712</td>
<td>0.350</td>
<td>1.066</td>
<td>0.304</td>
</tr>
</tbody>
</table>
random_seed_get

Retrieves the current value of the seed used in the IMSL random number generators.

Synopsis

```
#include <imsl.h>

int imsl_random_seed_get();
```

Return Value

The value of the seed.

Description

The function `imsl_random_seed_get` retrieves the current value of the "seed" used in the random number generators. A reason for doing this would be to restart a simulation, using `imsl_random_seed_set` to reset the seed.

Example

This example illustrates the statements required to restart a simulation using `imsl_random_seed_get` and `imsl_random_seed_set`. Also, the example shows that restarting the sequence of random numbers at the value of the seed last generated is the same as generating the random numbers all at once.

```
#include <imsl.h>

#define N_RANDOM 5

int main()
{
    int    seed = 123457;
    float  *r1, *r2, *r;

    imsl_random_seed_set(seed);
    r1 = imsl_f_random_uniform(N_RANDOM, 0);
    imsl_f_write_matrix("First Group of Random Numbers", 1,
    N_RANDOM, r1, 0);
    seed = imsl_random_seed_get();

    imsl_random_seed_set(seed);
    r2 = imsl_f_random_uniform(N_RANDOM, 0);
    imsl_f_write_matrix("Second Group of Random Numbers", 1,
    N_RANDOM, r2, 0);
}
```
```c
  imsl_random_seed_set(123457);
  r = imsl_f_random_uniform(2*N_RANDOM, 0);
  imsl_f_write_matrix ("Both Groups of Random Numbers", 1,
                       2*N_RANDOM, r, 0);
```

Output

<table>
<thead>
<tr>
<th></th>
<th>First Group of Random Numbers</th>
<th>Second Group of Random Numbers</th>
<th>Both Groups of Random Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.9662</td>
<td>0.2607</td>
<td>0.7663</td>
<td>0.5693</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.0443</td>
<td>0.9872</td>
<td>0.6014</td>
<td>0.8964</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.9662</td>
<td>0.2607</td>
<td>0.7663</td>
<td>0.5693</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0.9872</td>
<td>0.6014</td>
<td>0.8964</td>
<td>0.3809</td>
</tr>
</tbody>
</table>
random_seed_set

Initializes a random seed for use in the IMSL random number generators.

Synopsis

```c
#include <imsl.h>

void imsl_random_seed_set (int seed)
```

Required Arguments

`int seed (Input)`
The seed of the random number generator. The argument seed must be in the range (0, 2147483646). If seed is zero, a value is computed using the system clock. Hence, the results of programs using the IMSL random number generators will be different at various times.

Description

The function `imsl_random_seed_set` is used to initialize the seed used in the IMSL random number generators. The form of the generators is

\[x_i \equiv cx_{i-1} \mod (2^{31} - 1) \]

The value of \(x_0 \) is the seed. If the seed is not initialized prior to invocation of any of the routines for random number generation by calling `imsl_random_seed_set`, the seed is initialized via the system clock. The seed can be reinitialized to a clock-dependent value by calling `imsl_random_seed_set` with seed set to 0.

The effect of `imsl_random_seed_set` is to set some global values used by the random number generators. A common use of `imsl_random_seed_set` is in conjunction with `imsl_random_seed_get` to restart a simulation.

Example

See function `imsl_random_seed_get`.
random_option

Selects the uniform (0,1) multiplicative congruential pseudorandom number generator.

Synopsis

```c
#include <imsl.h>

void imsl_random_option (int generator_option)
```

Required Arguments

`int generator_option` (Input)

Indicator of the generator. The random number generator is a multiplicative congruential generator with modulus $2^{31} - 1$. Argument `generator_option` is used to choose the multiplier and whether or not shuffling is done.

<table>
<thead>
<tr>
<th>generator_option</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>multiplier 16807 used</td>
</tr>
<tr>
<td>2</td>
<td>multiplier 16807 used with shuffling</td>
</tr>
<tr>
<td>3</td>
<td>multiplier 397204094 used</td>
</tr>
<tr>
<td>4</td>
<td>multiplier 397204094 used with shuffling</td>
</tr>
<tr>
<td>5</td>
<td>multiplier 950706376 used</td>
</tr>
<tr>
<td>6</td>
<td>multiplier 950706376 used with shuffling</td>
</tr>
</tbody>
</table>

Description

The IMSL uniform pseudorandom number generators use a multiplicative congruential method, with or without shuffling. The value of the multiplier and whether or not to use shuffling are determined by `imsl_random_option`. The description of function `imsl_f_random_uniform` may provide some guidance in the choice of the form of the generator. If no selection is made explicitly, the generators use the multiplier 16807 without shuffling. This form of the generator has been in use for some time (Lewis et al. 1969).

Example

The C statement

```c
imsl_random_option(1)
```

selects the simple multiplicative congruential generator with multiplier 16807. Since this is the same as the default, this statement has no effect unless `imsl_random_option` had previously been called in the same program to select a different generator.
random_uniform

Generates pseudorandom numbers from a uniform (0,1) distribution.

Synopsis

```c
#include <imsl.h>

float *imsl_f_random_uniform (int n_random, ... , 0)
```

The type `double` function is `imsl_d_random_uniform`.

Required Arguments

- `int n_random (Input)`
 - Number of random numbers to generate.

Return Value

A pointer to a vector of length `n_random` containing the random uniform (0, 1) deviates.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_random_uniform (int n_random,

    IMSL_RETURN_USER, float r[],

    0)
```

Optional Arguments

- `IMSL_RETURN_USER, float r[] (Output)`
 - If specified, the array of length `n_random` containing the random uniform (0, 1) deviates is returned in the user-provided array `r`.

Description

The function `imsl_f_random_uniform` generates pseudorandom numbers from a uniform (0, 1) distribution using a multiplicative congruential method. The form of the generator is

\[x_i \equiv cx_{i-1} \mod (2^{31} - 1) \]
Each \(x_i \) is then scaled into the unit interval \((0,1)\). The possible values for \(c \) in the generators are 16807, 397204094, and 950706376. The selection is made by the function \texttt{imsl_random_option}. The choice of 16807 will result in the fastest execution time. If no selection is made explicitly, the functions use the multiplier 16807.

The function \texttt{imsl_random_seed_set} can be used to initialize the seed of the random number generator. The function \texttt{imsl_random_option} can be used to select the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table is filled with the first 128 uniform \((0,1)\) numbers resulting from the simple multiplicative congruential generator. Then, for each \(x_i \) from the simple generator, the low-order bits of \(x_i \) are used to select a random integer, \(j \), from 1 to 128. The \(j \)-th entry in the table is then delivered as the random number; and \(x_i \), after being scaled into the unit interval, is inserted into the \(j \)-th position in the table.

The values returned by \texttt{imsl_f_random_uniform} are positive and less than 1.0. Some values returned may be smaller than the smallest relative spacing, however. Hence, it may be the case that some value, for example \(r[i] \), is such that \(1.0 - r[i] = 1.0 \).

Deviates from the distribution with uniform density over the interval \((a, b)\) can be obtained by scaling the output from \texttt{imsl_f_random_uniform}. The following statements (in single precision) would yield random deviates from a uniform \((a, b)\) distribution.

```c
float *r;
r = imsl\_f\_random\_uniform (n\_random, 0);
for (i=0; i<n\_random; i++) r[i]*(b-a) +a;
```

Example

In this example, \texttt{imsl_f_random_uniform} is used to generate five pseudorandom uniform numbers. Since \texttt{imsl_random_option} is not called, the generator used is a simple multiplicative congruential one with a multiplier of 16807.

```c
#include <imsl.h>
#include <stdio.h>

#define N\_RANDOM       5

int main()
{
    float     *r;
    imsl\_random\_seed\_set(123457);
    r = imsl\_f\_random\_uniform(N\_RANDOM, 0);

    printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
            r[0], r[1], r[2], r[3], r[4]);
}
```
Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448
random_normal

Generates pseudorandom numbers from a standard normal distribution using an inverse CDF method.

Synopsis

```c
#include <imsl.h>

float *imsl_f_random_normal(int n_random, ... , 0)
```

The type `double` function is `imsl_d_random_normal`.

Required Arguments

```c
int n_random (Input)
Number of random numbers to generate.
```

Return Value

A pointer to a vector of length `n_random` containing the random standard normal deviates. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_random_normal(int n_random, IMSL_RETURN_USER, float r[],
0)
```

Optional Arguments

```c
IMSL_RETURN_USER, float r[] (Output)
Pointer to a vector of length `n_random` that will contain the generated random standard normal deviates.
```
Description

Function `imsl_f_random_normal` generates pseudorandom numbers from a standard normal (Gaussian) distribution using an inverse CDF technique. In this method, a uniform (0, 1) random deviate is generated. Then, the inverse of the normal distribution function is evaluated at that point, using the function `imsl_f_normal_inverse_cdf` (See Chapter 11 of the IMSL C Stat Library user guide.)

Deviates from the normal distribution with mean `mean` and standard deviation `std_dev` can be obtained by scaling the output from `imsl_f_random_normal`. The following statements (in single precision) would yield random deviates from a normal (mean, std_dev^2) distribution.

```c
float *r;
r = imsl_f_random_normal (n_random, 0);
for (i=0; i<n_random; i++)
    r[i] = r[i]*std_dev + mean;
```

Example

In this example, `imsl_f_random_normal` is used to generate five pseudorandom deviates from a standard normal distribution.

```c
#include <imsl.h>
#define N_RANDOM 5

int main()
{
    int        seed = 123457;
    int        n_random = N_RANDOM;
    float      *r;

    imsl_random_seed_set (seed);
r = imsl_f_random_normal (n_random, 0);
    printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
            "Standard normal random deviates",
            r[0], r[1], r[2], r[3], r[4]);
}
```

Output

Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145

Remark

The function `imsl_random_seed_set` can be used to initialize the seed of the random number generator. The function `imsl_random_option` can be used to select the form of the generator.
Generates pseudorandom numbers from a Poisson distribution.

Synopsis

```c
#include <imsl.h>

int *imsl_random_poisson (int n_random, float theta, ... , 0)
```

Required Arguments

- `int n_random` (Input)
 - Number of random numbers to generate.
- `float theta` (Input)
 - Mean of the Poisson distribution. The argument `theta` must be positive.

Return Value

If no optional arguments are used, `imsl_random_poisson` returns a pointer to a vector of length `n_random` containing the random Poisson deviates. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

int *imsl_random_poisson (int n_random, float theta,
   IMSL_RETURN_USER, int r[],
   0)
```

Optional Arguments

- `IMSL_RETURN_USER, int r[]` (Output)
 - If specified, the vector of length `n_random` of random Poisson deviates is returned in the user-provided array `r`.
Description

The function `imsl_random_poisson` generates pseudorandom numbers from a Poisson distribution with positive mean `theta`. The probability function (with \(\theta = \text{theta} \)) is

\[
f(x) = \frac{(e^{-\theta})^x}{x!}, \text{ for } x = 0, 1, 2, \ldots
\]

If \(\theta \) is less than 15, `imsl_random_poisson` uses an inverse CDF method; otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used. The PTPE method uses a composition of four regions, a triangle, a parallelogram, and two negative exponentials. In each region except the triangle, acceptance/rejection is used. The execution time of the method is essentially insensitive to the mean of the Poisson.

The function `imsl_random_seed_set` can be used to initialize the seed of the random number generator. The function `imsl_random_option` can be used to select the form of the generator.

Example

In this example, `imsl_random_poisson` is used to generate five pseudorandom deviates from a Poisson distribution with mean equal to 0.5.

```c
#include <imsl.h>

#define N_RANDOM 5

int main()
{
    int  *r;
    int  seed = 123457;
    float theta = 0.5;

    imsl_random_seed_set (seed);
    r = imsl_random_poisson (N_RANDOM, theta, 0);
    imsl_i_write_matrix ("Poisson(0.5) random deviates", 1, 5, r, 0);
}
```

Output

Poisson(0.5) random deviates

1 2 3 4 5
2 0 1 0 1
random_gamma

Generates pseudorandom numbers from a standard gamma distribution.

Synopsis

```
#include <imsl.h>

float *imsl_f_random_gamma (int n_random, float a, ... , 0)
```

The type `double` procedure is `imsl_d_random_gamma`.

Required Arguments

- `int n_random` (Input)
 Number of random numbers to generate.

- `float a` (Input)
 The shape parameter of the gamma distribution. This parameter must be positive.

Return Value

If no optional arguments are used, `imsl_f_random_gamma` returns a pointer to a vector of length `n_random` containing the random standard gamma deviates. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_random_gamma (int n_random, float a, 
                          IMSL_RETURN_USER, float r[],
                          0)
```

Optional Arguments

- `IMSL_USER_RETURN, float r[]` (Output)
 If specified, the vector of length `n_random` containing the random standard gamma deviates is returned in the user-provided array `r`.
Description

The function `imsl_f_random_gamma` generates pseudorandom numbers from a gamma distribution with shape parameter \(a \) and unit scale parameter. The probability density function is

\[
f(x) = \frac{1}{\Gamma(a)} x^{a-1} e^{-x} \quad \text{for} \ x \geq 0
\]

Various computational algorithms are used depending on the value of the shape parameter \(a \). For the special case of \(a = 0.5 \), squared and halved normal deviates are used; and for the special case of \(a = 1.0 \), exponential deviates are generated. Otherwise, if \(a \) is less than 1.0, an acceptance-rejection method due to Ahrens, described in Ahrens and Dieter (1974), is used. If \(a \) is greater than 1.0, a ten-region rejection procedure developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter \(a \) and scale parameter \(b \) can be generated by using `imsl_f_random_gamma` and then multiplying each entry in \(r \) by \(b \). The following statements (in single precision) would yield random deviates from a gamma \((a, b)\) distribution.

```c
float *r;
r = imsl_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *=b;
```

The Erlang distribution is a standard gamma distribution with the shape parameter having a value equal to a positive integer; hence, `imsl_f_random_gamma` generates pseudorandom deviates from an Erlang distribution with no modifications required.

The function `imsl_random_seed_set` can be used to initialize the seed of the random number generator. The function `imsl_random_option` can be used to select the form of the generator.

Example

In this example, `imsl_f_random_gamma` is used to generate five pseudorandom deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0.

```c
#include <imsl.h>

int main()
{
    int seed = 123457;
    int n_random = 5;
    float a = 3.0;
    float *r;

    imsl_random_seed_set(seed);
    r = imsl_f_random_gamma(n_random, a, 0);
    imsl_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}
```
Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Gamma(3) random deviates</td>
<td>6.843</td>
<td>3.445</td>
<td>1.853</td>
<td>3.999</td>
</tr>
</tbody>
</table>
random_beta

Generates pseudorandom numbers from a beta distribution.

Synopsis

```
#include <imsl.h>

float *imsl_f_random_beta (float n_random, float pin, float qin, ... , 0)
```

The type double function is imsl_d_random_beta.

Required Arguments

- `int n_random (Input)`
 Number of random numbers to generate.

- `float pin (Input)`
 First beta distribution parameter. Argument pin must be positive.

- `float qin (Input)`
 Second beta distribution parameter. Argument qin must be positive.

Return Value

If no optional arguments are used, imsl_f_random_beta returns a pointer to a vector of length n_random containing the random standard beta deviates. To release this space, use imsl_free.

Synopsis with Optional Arguments

```
#include <imsl.h>

float *imsl_f_random_beta (float n_random, float pin, float qin,
                           IMSL_RETURN_USER, float r[],
                           0)
```

Optional Arguments

- `IMSL_RETURN_USER, float r[] (Output)`
 If specified, the vector of length n_random containing the random standard beta deviates is returned in r.
Description

The function \texttt{imsl_f_random_beta} generates pseudorandom numbers from a beta distribution with parameters \(p \) and \(q \), both of which must be positive. With \(p = \texttt{pin} \) and \(q = \texttt{qin} \), the probability density function is

\[
 f(x) = \frac{\Gamma(p + q)}{\Gamma(p)\Gamma(q)} x^{p-1}(1 - x)^{q-1} \quad \text{for } 0 \leq x \leq 1
\]

where \(\Gamma(\cdot) \) is the gamma function.

The algorithm used depends on the values of \(p \) and \(q \). Except for the trivial cases of \(p = 1 \) or \(q = 1 \), in which the inverse CDF method is used, all of the methods use acceptance/rejection. If \(p \) and \(q \) are both less than 1, the method of Jöhnk (1964) is used. If either \(p \) or \(q \) is less than 1 and the other is greater than 1, the method of Atkinson (1979) is used. If both \(p \) and \(q \) are greater than 1, algorithm BB of Cheng (1978), which requires very little setup time, is used if \(n_\text{random} \) is less than 4; and algorithm B4PE of Schmeiser and Babu (1980) is used if \(n_\text{random} \) is greater than or equal to 4. Note that for \(p \) and \(q \) both greater than 1, calling \texttt{imsl_f_random_beta} in a loop getting less than 4 variates on each call will not yield the same set of deviates as calling \texttt{imsl_f_random_beta} once and getting all the deviates at once.

The values returned in \(r \) are less than 1.0 and greater than \(\epsilon \) where \(\epsilon \) is the smallest positive number such that \(1.0 - \epsilon \) is less than 1.0.

The function \texttt{imsl_random_seed_set} can be used to initialize the seed of the random number generator.

The function \texttt{imsl_random_option} can be used to select the form of the generator.

Example

In this example, \texttt{imsl_f_random_beta} is used to generate five pseudorandom beta (3, 2) variates.

```c
#include <imsl.h>

int main()
{

    int        n_random = 5;
    int        seed = 123457;
    float      pin = 3.0;
    float      qin = 2.0;
    float      *r;

    imsl_random_seed_set (seed);
    r = imsl_f_random_beta (n_random, pin, qin, 0);
    imsl_f_write_matrix("Beta (3,2) random deviates", 1, n_random, r, 0);
}
```
Output

<table>
<thead>
<tr>
<th></th>
<th>Beta (3,2) random deviates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2814</td>
</tr>
<tr>
<td>2</td>
<td>0.9483</td>
</tr>
<tr>
<td>3</td>
<td>0.3984</td>
</tr>
<tr>
<td>4</td>
<td>0.3103</td>
</tr>
<tr>
<td>5</td>
<td>0.8296</td>
</tr>
</tbody>
</table>
random_exponential

Generates pseudorandom numbers from a standard exponential distribution.

Synopsis

```c
#include <imsl.h>

float *imsl_f_random_exponential (int n_random, ... , 0)
```

The type `double` function is `imsl_d_random_exponential`.

Required Arguments

int n_random (Input)

Number of random numbers to generate.

Return Value

A pointer to an array of length `n_random` containing the random standard exponential deviates.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_random_exponential (int n_random,

IMSL_RETURN_USER, float r[],

0)
```

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)

If specified, the array of length `n_random` containing the random standard exponential deviates is returned in the user-provided array `r`.

Description

Function `imsl_f_random_exponential` generates pseudorandom numbers from a standard exponential distribution. The probability density function is $f(x) = e^{-x}$, for $x > 0$. Function `imsl_random_exponential` uses an antithetic inverse CDF technique; that is, a uniform random deviate U is generated, and the inverse of the exponential cumulative distribution function is evaluated at $1.0 - U$ to yield the exponential deviate.
Deviates from the exponential distribution with mean θ can be generated by using `imsl_f_random_exponential` and then multiplying each entry in r by θ.

Example

In this example, `imsl_f_random_exponential` is used to generate five pseudorandom deviates from a standard exponential distribution.

```c
#include <imsl.h>
define NRANDOM 5

int main()
{
    int seed = 123457;
    int n_random = NRANDOM;
    float *r;

    imsl_random_seed_set(seed);
    r = imsl_f_random_exponential(n_random, 0);
    printf("Exponential random deviates: %8.4f%8.4f%8.4f%8.4f\n",
        "Exponential random deviates",
        r[0], r[1], r[2], r[3], r[4]);
}
```

Output

Exponential random deviates: 0.0344 1.3443 0.2662 0.5633 0.1686
faure_next_point

Computes a shuffled Faure sequence.

Synopsis

```c
#include <imsl.h>

Imsl_faure *imsl_faure_sequence_init (int ndim, ..., 0)

float *imsl_f_faure_next_point (Imsl_faure *state, ..., 0)

void imsl_faure_sequence_free (Imsl_faure *state)
```

The type `double` function is `imsl_d_faure_next_point`. The functions `imsl_faure_sequence_init` and `imsl_faure_sequence_free` are precision independent.

Required Arguments for `imsl_faure_sequence_init`

- `int ndim` (Input)
 - The dimension of the hyper-rectangle.

Return Value for `imsl_faure_sequence_init`

Returns a structure that contains information about the sequence. The structure should be freed using `imsl_faure_sequence_free` after it is no longer needed.

Required Arguments for `imsl_faure_next_point`

- `Imsl_faure *state` (Input/Output)
 - Structure created by a call to `imsl_faure_sequence_init`.

Return Value for `imsl_faure_next_point`

Returns the next point in the shuffled Faure sequence. To release this space, use `imsl_free`.

Required Arguments for `imsl_faure_sequence_free`

- `Imsl_faure *state` (Input/Output)
 - Structure created by a call to `imsl_faure_sequence_init`.
Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_faure_sequence_init (int ndim,
   IMSL_BASE, int base,
   IMSL_SKIP, int skip,
   0)

float *imsl_f_faure_next_point (Imsl_faure *state,
   IMSL_RETURN_USER, float *user,
   IMSL_RETURN_SKIP, int *skip,
   0)
```

Optional Arguments

- **IMSL_BASE, int base (Input)**
 The base of the Faure sequence.
 Default: The smallest prime greater than or equal to `ndim`.

- **IMSL_SKIP, int *skip (Input)**
 The number of points to be skipped at the beginning of the Faure sequence.
 Default: \(\lceil \text{base}^{m-1} \rceil \), where \(m = \lceil \log B / \log \text{base} \rceil \) and \(B \) is the largest representable integer.

- **IMSL_RETURN_USER, float *user (Output)**
 User-supplied array of length `ndim` containing the current point in the sequence.

- **IMSL_RETURN_SKIP, int *skip (Output)**
 The current point in the sequence. The sequence can be restarted by initializing a new sequence using this value for IMSL_SKIP, and using the same dimension for `ndim`.

Description

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set \(x_1, \ldots, x_n \in [0, 1]^d, d \geq 1 \), is

\[
D_n^{(d)} = \sup_E \left| \frac{A(E; n)}{n} - \lambda(E) \right|
\]

where the supremum is over all subsets of \([0, 1]^d\) of the form
\[E = \left[0, t_1 \right) \times \ldots \times \left[0, t_d \right), \ 0 \leq t_j \leq 1, \ 1 \leq j \leq d \]

\(\lambda \) is the Lebesque measure, and \(A \left(E; n \right) \) is the number of the \(x_j \) contained in \(E \).

The sequence \(x_1, x_2, \ldots \) of points \([0,1]^d\) is a low-discrepancy sequence if there exists a constant \(c(d) \), depending only on \(d \), such that

\[D_n^{(d)} \leq c \left(d \right) \left(\frac{\log n}{n} \right)^d \]

for all \(n>1 \).

Generalized Faure sequences can be defined for any prime base \(b \geq d \). The lowest bound for the discrepancy is obtained for the smallest prime \(b \geq d \), so the optional argument IMSL_BASE defaults to the smallest prime greater than or equal to the dimension.

The generalized Faure sequence \(x_1, x_2, \ldots \), is computed as follows:

Write the positive integer \(n \) in its \(b \)-ary expansion,

\[n = \sum_{i=0}^{\infty} a_i(n) b^i \]

where \(a_i(n) \) are integers, \(0 \leq a_i(n) < b \).

The \(j \)-th coordinate of \(x_n \) is

\[x_n(j) = \sum_{k=0}^{\infty} \sum_{d=0}^{\infty} c_{kd} a_d(n) b^{-k-1}, \ 1 \leq j \leq d \]

The generator matrix for the series, \(c_{kd} \), is defined to be

\[c_{kd}^{(j)} = j^{d-k} c_{kd} \]

and \(c_{kd} \) is an element of the Pascal matrix,

\[c_{kd} = \begin{cases} \frac{d!}{c!(d-c)!} & k \leq d \\ 0 & k > d \end{cases} \]

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the \(b \)-ary Gray code. The function \(G(n) \) maps the positive integer \(n \) into the integer given by its \(b \)-ary expansion.

The sequence computed by this function is \(x(G(n)) \), where \(x \) is the generalized Faure sequence.
Example

In this example, five points in the Faure sequence are computed. The points are in the three-dimensional unit cube.

Note that `ims1_faure_sequence_init` (see Synopsis) is used to create a structure that holds the state of the sequence. Each call to `ims1_f_faure_next_point` returns the next point in the sequence and updates the `Imsl_faure` structure. The final call to `ims1_fauer_sequence_free` (see Synopsis) frees data items, stored in the structure, that were allocated by `ims1_faure_sequence_init`.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    Imsl_faure   *state;
    float       *x;
    int         ndim = 3;
    int         k;

    state = imsl_faure_sequence_init(ndim, 0);

    for (k = 0; k < 5; k++) {
        x = imsl_f_faure_next_point(state, 0);
        printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
        imsl_free(x);
    }

    imsl_faure_sequence_free(state);
}
```

Output

```
0.334     0.493      0.064
0.667     0.826      0.397
0.778     0.270      0.175
0.111     0.604      0.509
0.445     0.937      0.842
```
Functions

Prints a matrix or vector. .. write_matrix 1264
Sets the page width and length ... page 1271
Sets the printing options ... write_options 1273
write_matrix

Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis

```c
#include <imsl.h>

void imsl_f_write_matrix (char *title, int nra, int nca, float a[],..., 0)
```

For `int` `a[]`, use `imsl_i_write_matrix`.

For `double` `a[]`, use `imsl_d_write_matrix`.

For `f_complex` `a[]`, use `imsl_c_write_matrix`.

For `d_complex` `a[]`, use `imsl_z_write_matrix`.

Required Arguments

- **char *title (Input)**
 The matrix title. Use `\n` within a title to create a new line. Long titles are automatically wrapped.

- **int nra (Input)**
 The number of rows in the matrix.

- **int nca (Input)**
 The number of columns in the matrix.

- **float a[] (Input)**
 Array of size `nra × nca` containing the matrix to be printed.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void imsl_f_write_matrix (char *title, int nra, int nca, float a[],
                         IMSL_TRANSPOSE,
                         IMSL_A_COL_DIM, int a_col_dim,
                         IMSL_PRINT_ALL,
                         IMSL_PRINT_LOWER,
                         IMSL_PRINT_UPPER,
```

For `double` `a[]`, use `imsl_d_write_matrix`.

For `f_complex` `a[]`, use `imsl_c_write_matrix`.

For `d_complex` `a[]`, use `imsl_z_write_matrix`.
IMSL_PRINT_LOWER_NO_DIAG,
IMSL_PRINT_UPPER_NO_DIAG,
IMSL_WRITE_FORMAT, char *fmt,
IMSL_ROW_LABELS, char *rlabel[],
IMSL_NO_ROW_LABELS,
IMSL_ROW_NUMBER,
IMSL_ROW_NUMBER_ZERO,
IMSL_COL_LABELS, char *clabel[],
IMSL_NO_COL_LABELS,
IMSL_COL_NUMBER,
IMSL_COL_NUMBER_ZERO,
IMSL_RETURN_STRING, char **string,
IMSL_WRITE_TO_CONSOLE,
0)

Optional Arguments

IMSL_TRANSPOSE
Print \(a^T \).

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of \(a \).
Default: \(a_{\text{col_dim}} = nca \)

IMSL_PRINT_ALL, or

IMSL_PRINT_LOWER, or

IMSL_PRINT_UPPER, or

IMSL_PRINT_LOWER_NO_DIAG, or
IMSL_PRINT_UPPER_NO_DIAG

Exactly one of these optional arguments can be specified in order to indicate that either a triangular part of the matrix or the entire matrix is to be printed. If omitted, the entire matrix is printed.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_PRINT_ALL</td>
<td>The entire matrix is printed (the default).</td>
</tr>
<tr>
<td>IMSL_PRINT_LOWER</td>
<td>The lower triangle of the matrix is printed, including the diagonal.</td>
</tr>
<tr>
<td>IMSL_PRINT_UPPER</td>
<td>The upper triangle of the matrix is printed, including the diagonal.</td>
</tr>
<tr>
<td>IMSL_PRINT_LOWER_NO_DIAG</td>
<td>The lower triangle of the matrix is printed, without the diagonal.</td>
</tr>
<tr>
<td>IMSL_PRINT_UPPER_NO_DIAG</td>
<td>The upper triangle of the matrix is printed, without the diagonal.</td>
</tr>
</tbody>
</table>

IMSL_WRITE_FORMAT, char *fmt (Input)

Character string containing a list of C conversion specifications (formats) to be used when printing the matrix. Any list of C conversion specifications suitable for the data type may be given. For example, `fmt = "%10.3f"` specifies the conversion character `f` for the entire matrix. (For the conversion character `f`, the matrix must be of type `float`, `double`, `f_complex`, or `d_complex`). Alternatively, `fmt = "%10.3e%10.3f%10.3f%10.3f%10.3f"` specifies the conversion character `e` for columns 1 and 2 and the conversion character `f` for columns 3, 4, and 5. (For complex matrices, two conversion specifications are required for each column of the matrix so the conversion character `e` is used in column 1. The conversion character `f` is used in column 2 and the real part of column 3.) If the end of `fmt` is encountered and if some columns of the matrix remain, format control continues with the first conversion specification in `fmt`.

Aside from restarting the format from the beginning, other exceptions to the usual C formatting rules are as follows:

— Characters not associated with a conversion specification are not allowed. For example, in the format `fmt = "1%d2%d"`, the characters 1 and 2 are not allowed and result in an error.

— A conversion character `d` can be used for floating-point values (matrices of type `float`, `double`, `f_complex`, or `d_complex`). The integer part of the floating-point value is printed.

— For printing numbers whose magnitudes are unknown, the conversion character `g` is useful; however, the decimal points will generally not be aligned when printing a column of numbers. The `w` (or `W`) conversion character is a special conversion character used by this function to select a conversion specification so that the decimal points will be aligned. The conversion specification ending with `w` is specified as "%n.dw". Here, `n` is the field width and `d` is the number of significant digits generally printed. Valid values for `n` are 3, 4, …, 40. Valid values for `d` are 1, 2, …, `n-2`. If `fmt` specifies one conversion specification ending with `w`, all elements of `a` are examined to determine one conversion specification for printing.
If `fmt` specifies more than one conversion specification, separate conversion specifications are generated for each conversion specification ending with `w`. Set `fmt = "10.4w"` if you want a single conversion specification selected automatically with field width 10 and with four significant digits.

IMSL_NO_ROW_LABELS, or

IMSL_ROW_NUMBER, or

IMSL_ROW_NUMBER_ZERO, or

IMSL_ROW_LABELS, `char *rlabel[]` (Input)
If `IMSL_ROW_LABELS` is specified, `rlabel` is a vector of length `nra` containing pointers to the character strings comprising the row labels. Here, `nra` is the number of rows in the printed matrix. Use `\n` within a label to create a new line. Long labels are automatically wrapped. If no row labels are desired, use the `IMSL_NO_ROW_LABELS` optional argument. If the numbers 1, 2, ..., `nra` are desired, use the `IMSL_ROW_NUMBER` optional argument. If the numbers 1, 2, ..., `nra` − 1 are desired, use the `IMSL_ROW_NUMBER_ZERO` optional argument. If none of these optional arguments is used, the numbers 1, 2, 3, ..., `nra` are used for the row labels by default whenever `nra` > 1. If `nra` = 1, the default is no row labels.

IMSL_NO_COL_LABELS, or

IMSL_COL_NUMBER, or

IMSL_COL_NUMBER_ZERO, or

IMSL_COL_LABELS, `char *clabel[]` (Input)
If `IMSL_COL_LABELS` is specified, `clabel` is a vector of length `nca` + 1 containing pointers to the character strings comprising the column headings. The heading for the row labels is `clabel[0]`, and `clabel[i]`, `i = 1, ..., nca`, is the heading for the `i`-th column. Use `\n` within a label to create a new line. Long labels are automatically wrapped. If no column labels are desired, use the `IMSL_NO_COL_LABELS` optional argument. If the numbers 1, 2, ..., `nca`, are desired, use the `IMSL_COL_NUMBER` optional argument. If the numbers 0, 1, ..., `nca` − 1 are desired, use the `IMSL_COL_NUMBER_ZERO` optional argument. If none of these optional arguments is used, the numbers 1, 2, 3, ..., `nca` are used for the column labels by default whenever `nca` > 1. If `nca` = 1, the default is no column labels.

IMSL_RETURN_STRING, `char **string` (Output)
The address of a pointer to a NULL-terminated string containing the matrix to be printed. Lines are new-line separated and the last line does not have a trailing new-line character. Typically `char *string` is declared, and `&string` is used as the argument.

IMSL_WRITE_TO_CONSOLE
This matrix is printed to a console window. If a console has not been allocated, a default console (80 × 24, white on black, no scrollbars) is created.
Description

The function `imsl_write_matrix` prints a real rectangular matrix (stored in `a`) with optional row and column labels (specified by `rlabel` and `clabel`, respectively, regardless of whether `a` or `a^T` is printed). An optional format, `fmt`, may be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the upper or lower triangles of a matrix via the `IMSL_TRIANGLE` option. Generally, the `IMSL_TRIANGLE` option is used with symmetric matrices, but this is not required. Vectors can be printed by specifying a row or column dimension of 1.

Output is written to the file specified by the function `imsl_output_file`. The default output file is standard output (corresponding to the file pointer `stdout`).

A page width of 78 characters is used. Page width and page length can be reset by invoking function `imsl_page`.

Horizontal centering, the method for printing large matrices, paging, the method for printing NaN (Not a Number), and whether or not a title is printed on each page can be selected by invoking function `imsl_write_options`.

Examples

Example 1

This example is representative of the most common situation in which no optional arguments are given.

```c
#include <imsl.h>

#define NRA    3
#define NCA    4

int main()
{
    int        i, j;
    f_complex  a[NRA][NCA];

    for (i = 0; i < NRA; i++) {
        for (j = 0; j < NCA; j++) {
            a[i][j].re = (i+1+(j+1)*0.1);
            a[i][j].im = -a[i][j].re+100;
        }
    }
    /* Write matrix */
    imsl_c_write_matrix ("matrix\na", NRA, NCA, (f_complex *)a, 0);
}
```
Output

```
Output

matrix  a

1   2   3
1 (   1.1,   98.9) (   1.2,   98.8) (   1.3,   98.7)
2 (   2.1,   97.9) (   2.2,   97.8) (   2.3,   97.7)
3 (   3.1,   96.9) (   3.2,   96.8) (   3.3,   96.7)

Example 2
In this example, some of the optional arguments available in the write_matrix functions are demonstrated.

```
Example 3
In this example, a row vector of length four is printed.

```c
#include <imsl.h>

#define NRA  1
#define NCA  4

int main()
{
    int        i;
    float      a[NCA];
    char       *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

    for (i = 0; i < NCA; i++) {
        a[i] = i + 1;
    }

    /* Write matrix */
    imsl_f_write_matrix ("matrix\na", NRA, NCA, a,
                        IMSL_COL_LABELS, clabel,
                        0);
}
```

Output

```
matrix
  a
    col 1    col 2    col 3    col 4
      1       2       3       4
```
Sets or retrieves the page width or length.

Synopsis

```c
#include <imsl.h>

void imsl_page (Imsl_page_options option, int *page_attribute)
```

Required Arguments

- `Imsl_page_options option` (Input)
 Option giving which page attribute is to be set or retrieved. The possible values are:

<table>
<thead>
<tr>
<th>option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_SET_PAGE_WIDTH</td>
<td>Set the page width.</td>
</tr>
<tr>
<td>IMSL_GET_PAGE_WIDTH</td>
<td>Retrieve the page width.</td>
</tr>
<tr>
<td>IMSL_SET_PAGE_LENGTH</td>
<td>Set the page length.</td>
</tr>
<tr>
<td>IMSL_GET_PAGE_LENGTH</td>
<td>Retrieve the page length.</td>
</tr>
</tbody>
</table>

- `int *page_attribute` (Input, if the attribute is set; Output, otherwise)
 The value of the page attribute to be set or retrieved. The page width is the number of characters per line of output (default 78), and the page length is the number of lines of output per page (default 60). Ten or more characters per line and 10 or more lines per page are required.

Example

The following example illustrates the use of `imsl_page` to set the page width to 40 characters. The IMSL function `imsl_f_write_matrix` is then used to print a 3×4 matrix A, where $a_{ij} = i + j/10$.

```c
#include <imsl.h>

#define NRA    3
#define NCA    4

int main()
{
    int i, j, page_attribute;
    float a[NRA][NCA];

    for (i = 0; i < NRA; i++) {
        for (j = 0; j < NCA; j++) {
            a[i][j] = (i+1) + (j+1)/10.0;
        }
    }
    return 0;
}
```
page

Chapter 11 Printing Functions

Output

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>3.2</td>
</tr>
</tbody>
</table>

4

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>3.4</td>
</tr>
</tbody>
</table>
write_options

Sets or retrieves an option for printing a matrix.

Synopsis

```
#include <imsl.h>

void imsl_write_options (imsl_write_options option, int *option_value)
```

Required Arguments

`imsl_write_options` option (Input)
Option giving the type of the printing attribute to set or retrieve.

<table>
<thead>
<tr>
<th>option for Setting</th>
<th>option for Retrieving</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_SET_DEFAULTS</td>
<td></td>
<td>Use the default settings for all parameters</td>
</tr>
<tr>
<td>IMSL_SET_CENTERING</td>
<td>IMSL_GET_CENTERING</td>
<td>Horizontal centering</td>
</tr>
<tr>
<td>IMSL_SET_ROW_WRAP</td>
<td>IMSL_GET_ROW_WRAP</td>
<td>Row wrapping</td>
</tr>
<tr>
<td>IMSL_SET_PAGING</td>
<td>IMSL_GET_PAGING</td>
<td>Paging</td>
</tr>
<tr>
<td>IMSL_SET_NAN_CHAR</td>
<td>IMSL_GET_NAN_CHAR</td>
<td>Method for printing NaN (not a number)</td>
</tr>
<tr>
<td>IMSL_SET_TITLE_PAGE</td>
<td>IMSL_GET_TITLE_PAGE</td>
<td>Whether or not titles appear on each page</td>
</tr>
<tr>
<td>IMSL_SET_FORMAT</td>
<td>IMSL_GET_FORMAT</td>
<td>Default format for real and complex numbers</td>
</tr>
</tbody>
</table>

`int *option_value` (Input, if option is to be set; Output, otherwise)
The value of the option attribute selected by option. The values to be used when setting attributes are described in a table in the description section.

Description

The function `imsl_write_options` allows the user to set or retrieve an option for printing a matrix. Options controlled by `imsl_write_options` are horizontal centering, method for printing large matrices, paging, method for printing in NaN (not a number), method for printing titles, and the default format for real and complex numbers. NaN can be retrieved by functions `imsl_f_machine` and `imsl_d_machine`. For more information, see the description for `imsl_f_machine`.
The values that may be used for the attributes are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTERING</td>
<td>0</td>
<td>Matrix is left justified.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Matrix is centered.</td>
</tr>
<tr>
<td>ROW_WRAP</td>
<td>0</td>
<td>A complete row is printed before the next row is printed. Wrapping is used if necessary. Here m is a positive integer. Let n_1 be the maximum number of columns that fit across the page, as determined by the widths in the conversion specifications starting with column 1. First, columns 1 through n_1 are printed for rows 1 through m. Let n_2 be the maximum number of columns that fit across the page, starting with column $n_1 + 1$. Second, columns $n_1 + 1$ through $n_1 + n_2$ are printed for rows 1 through m. This continues until the last columns are printed for rows 1 through m. Printing continues in this fashion for the next m rows, etc.</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>PAGING</td>
<td>-2</td>
<td>No paging occurs.</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>Paging is on. Every invocation of a \texttt{imsl_f_write_matrix} function begins on a new page, and paging occurs within each invocation as is needed. Paging is on. The first invocation of a \texttt{imsl_f_write_matrix} function begins on a new page, and subsequent paging occurs as is needed. Paging occurs in the second and all subsequent calls to a \texttt{imsl_f_write_matrix} function only as needed. Turn paging on and set the number of lines printed on the current page to k lines. If k is greater than or equal to the page length, then the first invocation of a \texttt{imsl_f_write_matrix} function begins on a new page. In any case, subsequent paging occurs as is needed.</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>NAN_CHAR</td>
<td>0</td>
<td>............. is printed for NaN.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>A blank field is printed for NaN.</td>
</tr>
<tr>
<td>TITLE_PAGE</td>
<td>0</td>
<td>Title appears only on first page.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Title appears on the first page and all continuation pages.</td>
</tr>
<tr>
<td>FORMAT</td>
<td>0</td>
<td>Format is "%10.4x".</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Format is "%12.6w".</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Format is "%22.5e".</td>
</tr>
</tbody>
</table>

The w conversion character used by the \texttt{FORMAT} option is a special conversion character that can be used to automatically select a pretty C conversion specification ending in either e, f, or d. The conversion specification ending with w is specified as "\%n.dw". Here, n is the field width, and d is the number of significant digits generally printed.
The function `imsl_write_options` can be invoked repeatedly before using a `write_matrix` function to print a matrix. The matrix printing functions retrieve the values set by `imsl_write_options` to determine the printing options. It is not necessary to call `imsl_write_options` if a default value of a printing option is desired. The defaults are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTERING</td>
<td>0</td>
<td>Left justified</td>
</tr>
<tr>
<td>ROW_WRAP</td>
<td>1000</td>
<td>Lines before wrapping</td>
</tr>
<tr>
<td>PAGING</td>
<td>-2</td>
<td>No paging</td>
</tr>
<tr>
<td>NAN_CHAR</td>
<td>0</td>
<td>.......................................</td>
</tr>
<tr>
<td>TITLE_PAGE</td>
<td>0</td>
<td>Title appears only on the first page</td>
</tr>
<tr>
<td>FORMAT</td>
<td>0</td>
<td>%10.4w</td>
</tr>
</tbody>
</table>

Example

The following example illustrates the effect of `imsl_write_options` when printing a 3×4 real matrix A with IMSL function `imsl_f_write_matrix`, where $a_{ij} = i + j / 10$. The first call to `imsl_write_options` sets horizontal centering so that the matrix is printed centered horizontally on the page. In the next invocation of `imsl_f_write_matrix`, the left-justification option has been set via function `imsl_write_options`, so the matrix is left justified when printed.

```c
#include <imsl.h>

#define NRA    4
#define NCA    3

int main()
{
    int    i, j, option_value;
    float  a[NRA][NCA];

    for (i = 0; i < NRA; i++) {
        for (j = 0; j < NCA; j++) {
            a[i][j] = (i+1) + (j+1)/10.0;
        }
    }
    /* Activate centering option */
    option_value = 1;
    imsl_write_options (IMSL_SET_CENTERING, &option_value);
    /* Write a matrix */
    imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
    /* Activate left justification */
    option_value = 0;
    imsl_write_options (IMSL_SET_CENTERING, &option_value);
    imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
}
### Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Chapter 12 Utilities

Functions

Set Output Files
- Set output files ................................................. output_file 1279
- Get library version and license number ...................... version 1284

Time and Date
- CPU time used .................................................. ctime 1286
- Date to days since epoch ..................................... date_to_days 1287
- Days since epoch to date ..................................... days_to_date 1289

Error Handling
- Error message options ................................ error_options 1291
- Gets error type ................................................. error_type 1298
- Gets the text of error message .............................. error_message 1299
- Gets error code ................................................. error_code 1301
- Initializes error handling system ......................... initialize_error_handler 1303
- Stops the current algorithm and returns to the calling program ............................................ set_user_fcn_return_flag 1305

C Runtime Library
- Initializes the library ....................................... initialize 1310
- Frees memory .................................................. free 1311
- Opens a file ..................................................... fopen 1313
- Closes a file ..................................................... fclose 1315

OpenMP
- OpenMP options .............................................. omp_options 1316

Constants
- Natural and mathematical constants ....................... constant 1318
- Integer machine constants ................................ machine (integer) 1322
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Function/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Float machine constants</strong></td>
<td></td>
<td>machine (float)</td>
<td>1325</td>
</tr>
<tr>
<td><strong>Sorting</strong></td>
<td>Sort float vector</td>
<td>sort</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>Sort integer vector</td>
<td>sort (integer)</td>
<td>1331</td>
</tr>
<tr>
<td><strong>Computing Vector Norms</strong></td>
<td>Compute various norms</td>
<td>vector_norm</td>
<td>1334</td>
</tr>
<tr>
<td></td>
<td>Compute various norms</td>
<td>vector_norm (complex)</td>
<td>1337</td>
</tr>
<tr>
<td><strong>Linear Algebra Support</strong></td>
<td><strong>Vector-Vector, Matrix-Vector, and Matrix-Matrix-Multiplication</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Real Matrix</td>
<td>mat_mul_rect</td>
<td>1341</td>
</tr>
<tr>
<td></td>
<td>Complex matrix</td>
<td>mat_mul_rect (complex)</td>
<td>1346</td>
</tr>
<tr>
<td></td>
<td>Real band matrix</td>
<td>mat_mul_rect_band</td>
<td>1351</td>
</tr>
<tr>
<td></td>
<td>Complex band matrix</td>
<td>mat_mul_rect_band (complex)</td>
<td>1356</td>
</tr>
<tr>
<td></td>
<td>Real coordinate matrix</td>
<td>mat_mul_rect_coordinate</td>
<td>1361</td>
</tr>
<tr>
<td></td>
<td>Complex coordinate matrix</td>
<td>mat_mul_rect_coordinate (complex)</td>
<td>1366</td>
</tr>
<tr>
<td></td>
<td><strong>Vector-Vector, Matrix-Vector, and Matrix-Matrix-Addition</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Real band matrix</td>
<td>mat_add_band</td>
<td>1372</td>
</tr>
<tr>
<td></td>
<td>Complex band matrix</td>
<td>mat_add_band (complex)</td>
<td>1376</td>
</tr>
<tr>
<td></td>
<td>Real coordinate matrix</td>
<td>mat_add_coordinate</td>
<td>1381</td>
</tr>
<tr>
<td></td>
<td>Complex coordinate matrix</td>
<td>mat_add_coordinate (complex)</td>
<td>1385</td>
</tr>
<tr>
<td><strong>Matrix Norm</strong></td>
<td>Real matrix</td>
<td>matrix_norm</td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>Real band matrix</td>
<td>matrix_norm_band</td>
<td>1393</td>
</tr>
<tr>
<td></td>
<td>Real coordinate matrix</td>
<td>matrix_norm_coordinate</td>
<td>1397</td>
</tr>
<tr>
<td><strong>Test Matrices of Class</strong></td>
<td>Real matrix</td>
<td>generate_test_band</td>
<td>1401</td>
</tr>
<tr>
<td></td>
<td>Complex matrix</td>
<td>generate_test_band (complex)</td>
<td>1404</td>
</tr>
<tr>
<td></td>
<td>Real matrix</td>
<td>generate_test_coordinate</td>
<td>1407</td>
</tr>
<tr>
<td></td>
<td>Complex</td>
<td>generate_test_coordinate (complex)</td>
<td>1412</td>
</tr>
<tr>
<td><strong>GPU Support</strong></td>
<td>Programming Notes for Using NVIDIA® CUDA™ Toolkit</td>
<td></td>
<td>1417</td>
</tr>
<tr>
<td></td>
<td>Gets the switchover value</td>
<td>cuda_get</td>
<td>1420</td>
</tr>
<tr>
<td></td>
<td>Sets the switchover value</td>
<td>cuda_set</td>
<td>1423</td>
</tr>
<tr>
<td></td>
<td>Frees NVIDIA memory</td>
<td>cuda_free</td>
<td>1425</td>
</tr>
</tbody>
</table>
output_file

Sets the output file or the error message output file.

Synopsis with Optional Arguments

```
#include <imsl.h>

void imsl_output_file (
 IMSL_SET_OUTPUT_FILE, FILE *ofile,
 IMSL_GET_OUTPUT_FILE, FILE **pofile,
 IMSL_SET_ERROR_FILE, FILE *efile,
 IMSL_GET_ERROR_FILE, FILE **pefile,
 0)
```

Optional Arguments

- **IMSL_SET_OUTPUT_FILE, FILE *ofile (Input)**
  - Set the output file to ofile.
  - Default: ofile = stdout

- **IMSL_GET_OUTPUT_FILE, FILE **pofile (Output)**
  - Set the FILE pointed to by pofile to the current output file.

- **IMSL_SET_ERROR_FILE, FILE *efile (Input)**
  - Set the error message output file to efile.
  - Default: efile = stderr

- **IMSL_GET_ERROR_FILE, FILE **pefile (Output)**
  - Set the FILE pointed to by pefile to the error message output file.

Description

This function allows the file used for printing by IMSL routines to be changed.

If multiple threads are used then default settings are valid for each thread. When using threads it is possible to set different output files for each thread by calling imsl_output_file in Chapter 15 of the IMSL Stat Numerical Libraries from within each thread. See Example 2 for details.
Examples

Example 1
This example opens the file myfile and changes the output file to this new file. The function imsl_f_write_matrix then writes to this file.

```c
#include <stdio.h>
#include <imsl.h>
extern FILE* imsl_fopen(char* filename, char* mode);
extern int imsl_fclose(FILE* file);

int main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};

 imsl_f_write_matrix ("x (default file)", 1, 3, x, 0);

 ofile = imsl_fopen("myfile", "w");
 imsl_output_file(
 IMSL_SET_OUTPUT_FILE, ofile,
 0);

 imsl_f_write_matrix ("x (myfile)", 1, 3, x, 0);

 imsl_fclose(ofile);
}
```

Output

```
x (default file)
 1 2 3
 3 2 1
```

File myfile

```
x (myfile)
 1 2 3
 3 2 1
```

Example 2
This example illustrates how to direct output from IMSL routines that run in separate threads to different files. First, two threads are created, each calling a different IMSL function, then the results are printed by calling imsl_f_write_matrix from within each thread. Note that imsl_output_file is called from within each thread to change the default output file.
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <imsl.h>

void *ex1(void* arg);
void *ex2(void* arg);
extern FILE* imsl_fopen(char* filename, char* mode);
extern int imsl_fclose(FILE* file);

int main()
{
    pthread_t thread1;
    pthread_t thread2;

    /* Disable IMSL signal trapping. */
    imsl_error_options(
        IMSL_SET_SIGNAL_TRAPPING, 0, 0);

    /* Create two threads. */
    if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
        perror("pthread_create"), exit(1);
    if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
        perror("pthread_create"), exit(1);

    /* Wait for threads to finish. */
    if (pthread_join(thread1, NULL) != 0)
        perror("pthread_join"), exit(1);
    if (pthread_join(thread2, NULL) != 0)
        perror("pthread_join"), exit(1);
}

void *ex1(void *arg)
{
    float *rand_nums = NULL;
    FILE *file_ptr;

    /* Open a file to write the result in. */
    file_ptr = imsl_fopen("ex1.out", "w");

    /* Set the output file for this thread. */
    imsl_output_file(
        IMSL_SET_OUTPUT_FILE, file_ptr, 0);

    /* Compute 5 random numbers. */
    imsl_random_seed_set(12345);
rand_nums = imsl_f_random_uniform(5, 0);

/* Output random numbers. */
imsl_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0);

if (rand_nums) imsl_free(rand_nums);
imsl_fclose(file_ptr);
}

void *ex2(void *arg)
{
    int n = 3;
    float *x;
    float a[] = {1.0, 3.0, 3.0, 1.0, 3.0, 4.0, 1.0, 4.0, 3.0};
    float b[] = {1.0, 4.0, -1.0};
    FILE *file_ptr;

    /* Open a file to write the result in. */
    file_ptr = imsl_fopen("ex2.out", "w");

    /* Set the output file for this thread. */
imsl_output_file(
        IMSL_SET_OUTPUT_FILE, file_ptr,
        0);

    /* Solve Ax = b for x */
x = imsl_f_lin_sol_gen (n, a, b, 0);

    /* Print x */
imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);

    if(x) imsl_free(x);
imsl_fclose(file_ptr);
}

**Output**

The content of the file `ex1.out` is shown below.

Random Numbers
1  0.0966
2  0.8340
3  0.9477
4  0.0359
5  0.0115

**Output**

The content of the file `ex2.out` is shown below.
Solution, $x$, of $Ax = b$

\[
\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -2 & 3 \\
\end{array}
\]
version

Returns information describing the version of the library, serial number, operating system, and compiler.

Synopsis

```c
#include <imsl.h>
char *imsl_version (Imsl_keyword code)
```

Required Arguments

- `Imsl_keyword code (Input)`
  - Index indicating which value is to be returned. It must be `IMSL_LIBRARY_VERSION`, `IMSL_OS_VERSION`, `IMSL_COMPILER_VERSION`, or `IMSL_LICENSE_NUMBER`.

Return Value

The requested value is returned. If `code` is out of range, then `NULL` is returned. Use `imsl_free` to release the returned string.

Description

The function `imsl_version` returns information describing the version of this library, the version of the operating system under which it was compiled, the compiler used, and the IMSL number.

Example

This example prints all the values returned by `imsl_version` on a particular machine. The output is omitted because the results are system dependent.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 char *library_version, *os_version;
 char *compiler_version, *license_number;

 library_version = imsl_version(IMSL_LIBRARY_VERSION);
 os_version = imsl_version(IMSL_OS_VERSION);
```
compiler_version = imsl_version(IMSL_COMPILER_VERSION);
license_number = imsl_version(IMSL_LICENSE_NUMBER);

printf("Library version = %s\n", library_version);
printf("OS version = %s\n", os_version);
printf("Compiler version = %s\n", compiler_version);
printf("Serial number = %s\n", license_number);
}
ctime

Returns the number of CPU seconds used.

Synopsis

```c
#include <imsl.h>

double imsl_ctime()
```

Return Value

The number of CPU seconds used so far by the program.

Example

The CPU time needed to compute

\[ \sum_{k=0}^{1,000,000} k \]

is obtained and printed. The time needed is, of course, machine dependent. The CPU time needed will also vary slightly from run to run on the same machine.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int k;
 double sum, time;

 /* Sum 1 million values */
 for (sum=0, k=1; k<=1000000; k++)
 sum += k;

 /* Get amount of CPU time used */
 time = imsl_ctime();
 printf("sum = %f\n", sum);
 printf("time = %f\n", time);
}
```

Output

```
sum = 500000500000.000000
time = 2.260000
```
date_to_days

Computes the number of days from January 1, 1900, to the given date.

Synopsis

```
#include <imsl.h>

int imsl_date_to_days (int day, int month, int year)
```

Required Arguments

- `int day` (Input)
  - Day of the input date.
- `int month` (Input)
  - Month of the input date.
- `int year` (Input)
  - Year of the input date. The year 1950 would correspond to the year 1950 A.D., and the year 50 would correspond to year 50 A.D.

Return Value

Number of days from January 1, 1900, to the given date. If negative, it indicates the number of days prior to January 1, 1900.

Description

The function `imsl_date_to_days` returns the number of days from January 1, 1900, to the given date. The function `imsl_date_to_days` returns negative values for days prior to January 1, 1900. A negative year can be used to specify B.C. Input dates in year 0 and for October 5, 1582, through October 14, 1582, inclusive, do not exist; consequently, in these cases, `imsl_date_to_days` issues a terminal error.

The beginning of the Gregorian calendar was the first day after October 4, 1582, which became October 15, 1582. Prior to that, the Julian calendar was in use.

Example

The following example uses `imsl_date_to_days` to compute the number of days from January 15, 1986, to February 28, 1986.

```
#include <imsl.h>
```
```
#include <stdio.h>

int main()
{
 int day0, day1;

 day0 = imsl_date_to_days(15, 1, 1986);
 day1 = imsl_date_to_days(28, 2, 1986);
 printf("Number of days = %d\n", day1 - day0);
}

Output

Number of days = 44
```
days_to_date

Gives the date corresponding to the number of days since January 1, 1900.

Synopsis

```c
#include <imsl.h>

void imsl_days_to_date (int days, int *day, int *month, int *year)
```

Required Arguments

- `int days` (Input)
  - Number of days since January 1, 1900.
- `int *day` (Output)
  - Day of the output date.
- `int *month` (Output)
  - Month of the output date.
- `int *year` (Output)
  - Year of the output date. The year 1950 would correspond to the year 1950 A.D., and the year 50 would correspond to year 50 A.D.

Description

The function `imsl_days_to_date` computes the date corresponding to the number of days since January 1, 1900. For a negative input value of `days`, the date computed is prior to January 1, 1900. This function is the inverse of function `imsl_date_to_days`.

The beginning of the Gregorian calendar was the first day after October 4, 1582, which became October 15, 1582. Prior to that, the Julian calendar was in use.

Example

The following example uses `imsl_days_to_date` to compute the date for the 100th day of 1986. This is accomplished by first using IMSL function `imsl_date_to_days` to get the “day number” for December 31, 1985.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int day0, day, month, year;
```
day0 = imsl_date_to_days(31, 12, 1985);
imsl_days_to_date(day0+100, &day, &month, &year);
printf("Day 100 of 1986 is (day-month-year) %d-%d-%d
",
    day, month, year);
}

Output

Day 100 of 1986 is (day-month-year) 10-4-1986
error_options

Sets various error handling options.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void imsl_error_options (
 IMSL_SET_PRINT, Imsl_error type, int setting,
 IMSL_SET_STOP, Imsl_error type, int setting,
 IMSL_SET_TRACEBACK, Imsl_error type, int setting,
 IMSL_FULL_TRACEBACK, int setting,
 IMSL_GET_PRINT, Imsl_error type, int *psetting,
 IMSL_GET_STOP, Imsl_error type, int *psetting,
 IMSL_GET_TRACEBACK, Imsl_error type, int *psetting,
 IMSL_SET_ERROR_FILE, FILE *file,
 IMSL_GET_ERROR_FILE, FILE **pfile,
 IMSL_ERROR_MSG_PATH, char *path,
 IMSL_ERROR_MSG_NAME, char *name,
 IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc,
 0)
```

Optional Arguments

- **IMSL_SET_PRINT, Imsl_error type, int setting (Input)**
  - Printing of type `type` error messages is turned off if `setting` is 0; otherwise, printing is turned on.
  - Default: Printing turned on for `IMSL_WARNING`, `IMSL_FATAL`, `IMSL_TERMINAL`, `IMSL_FATAL_IMMEDIATE`, and `IMSL_WARNING_IMMEDIATE` messages

- **IMSL_SET_STOP, Imsl_error type, int setting (Input)**
  - Stopping on type `type` error messages is turned off if `setting` is 0; otherwise, stopping is turned on.
  - Default: Stopping turned on for `IMSL_FATAL`, `IMSL_TERMINAL`, and `IMSL_FATAL_IMMEDIATE` messages
IMSL_SET_TRACEBACK, _imsl_error type, int setting (Input)
  Printing of a traceback on type type error messages is turned off if setting is 0; otherwise, printing of the traceback turned on.
  Default: Traceback turned off for all message types

IMSL_FULL_TRACEBACK, int setting (Input)
  Only documented functions are listed in the traceback if setting is 0; otherwise, internal function names also are listed.
  Default: Full traceback turned off

IMSL_GET_PRINT, _imsl_error type, int *psetting (Output)
  Sets the integer pointed to by psetting to the current setting for printing of type type error messages.

IMSL_GET_STOP, _imsl_error type, int *psetting (Output)
  Sets the integer pointed to by psetting to the current setting for stopping on type type error messages.

IMSL_GET_TRACEBACK, _imsl_error type, int *psetting (Output)
  Sets the integer pointed to by psetting to the current setting for printing of a traceback for type type error messages.

IMSL_SET_ERROR_FILE, FILE *file (Input)
  Sets the error output file.
  Default: file = stderr

IMSL_GET_ERROR_FILE, FILE **pfile (Output)
  Sets the FILE * pointed to by pfile to the error output file.

IMSL_ERROR_MSG_PATH, char *path (Input)
  Sets the error message file path. On UNIX systems, this is a colon-separated list of directories to be searched for the file containing the error messages.
  Default: system dependent

IMSL_ERROR_MSG_NAME, char *name (Input)
  Sets the name of the file containing the error messages.
  Default: file = “imslerr.bin”

IMSL_ERROR_PRINT_PROC, _imsl_error_print_proc print_proc (Input)
  Sets the error printing function. The procedure print_proc has the form
 
  void print_proc ( _imsl_error type, long code, char *function_name, char *message).

  In this case, type is the error message type number (IMSL_FATAL, etc.), code is the error message code number (IMSL_MAJOR_VIOLATION, etc.), function_name is the name of the function setting the error, and message is the error message to be printed. If print_proc is NULL, then the default error printing function is used.
Return Value

The return value for this function is void.

Description

This function allows the error handling system to be customized.

If multiple threads are used then default settings are valid for each thread but can be altered for each individual thread. See Example 3 and Example 4 for multithreaded examples.

Examples

Example 1

In this example, the IMSL_TERMINAL print setting is retrieved. Next, stopping on IMSL_TERMINAL errors is turned off, then output to standard output is redirected, and an error is deliberately caused by calling imsl_error_options with an illegal value.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int setting; /* Turn off stopping on IMSL_TERMINAL */
 /* error messages and write error */
 /* messages to standard output */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout, 0);
 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(-1);
 /* Get setting for IMSL_TERMINAL */
 imsl_error_options(IMSL_GET_PRINT, IMSL_TERMINAL, &setting, 0);
 printf("IMSL_TERMINAL error print setting = %d\n", setting);
}
```

Output

*** TERMINAL Error from imsl_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.

IMSL_TERMINAL error print setting = 1
Example 2
In this example, IMSL’s error printing function has been substituted for the standard function. Only the first four lines are printed below.

```c
#include <imsl.h>
#include <stdio.h>

void print_proc(Imsl_error, long, char*, char*);

int main()
{
 /* Turn off tracebacks on IMSL_TERMINAL */
 /* error messages and use a custom */
 /* print function */
 imsl_error_options(IMSL_ERROR_PRINT_PROC, print_proc, 0);
 /* Call imsl_error_options() with an */
 /* illegal value */
 imsl_error_options(-1);
}

void print_proc(Imsl_error type, long code, char *function_name, char *message)
{
 printf("Error message type %d\n", type);
 printf("Error code %d\n", code);
 printf("From function %s\n", function_name);
 printf("%s\n", message);
}
```

Output
Error message type 5
Error code 103
From function imsl_error_options
There is an error with argument number 1. This may be caused by an incorrect number of values following a previous optional argument name.

Example 3
In this example, two threads are created and error options is called within each thread to set the error handling options differently for each thread. Since we expect to generate terminal errors in each thread, we must turn off stopping on terminal errors for each thread. See Example 4 for a similar example using WIN32 threads. Note since multiple threads are executing, the order of the errors output may differ on some systems.

```c
#include <imsl.h>
#include <stdlib.h>
#include <pthread.h>
```
void *ex1(void* arg);
void *ex2(void* arg);

int main()
{
    pthread_t    thread1;
    pthread_t    thread2;

    /* Create two threads. */
    if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
        perror("pthread_create"), exit(1);
    if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
        perror("pthread_create"), exit(1);

    /* Wait for threads to finish. */
    if (pthread_join(thread1, NULL ) != 0)
        perror("pthread_join"),exit(1);
    if (pthread_join(thread2, NULL ) != 0)
        perror("pthread_join"),exit(1);
}

void *ex1(void* arg)
{
    float res;
    /* Call imsl_error_options to set the error handling
    * options for this thread. Notice that the error printing
    * function will be user defined for this thread only. */
    imsl_error_options(
        IMSL_SET_STOP,
        IMSL_TERMINAL, 0,
        0);
    res = imsl_f_beta(-1.0, .5);
}

void *ex2(void* arg)
{
    float res;

    /* Call imsl_error_options to set the error handling
    * options for this thread. */
    imsl_error_options(
        IMSL_SET_STOP,
        IMSL_TERMINAL, 0,
        IMSL_SET_TRACEBACK,
        IMSL_TERMINAL, 1,
        0);
    res = imsl_f_gamma(-1.0);
}
**Example 4**

In this example the WIN32 API is used to demonstrate the same functionality as shown in Example 3 above. Note since multiple threads are executing, the order of the errors output may differ on some systems.

```c
#include <imsl.h>
#include <stdio.h>
#include <windows.h>

DWORD WINAPI ex1(void *arg);
DWORD WINAPI ex2(void *arg);

int main(int argc, char* argv[]) {
 HANDLE thread[2];

 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);

 WaitForMultipleObjects(2, thread, TRUE, INFINITE);
 system("pause");
}

DWORD WINAPI ex1(void *arg) {
 float res;

 /* Call imsl_error_options to set the error handling
 * options for this thread. */
 imsl_error_options(
 IMSL_SET_STOP,
 IMSL_TERMINAL, 0,
 0);
 res = imsl_f_beta(-1.0, .5);

 return 0;
}
```

Output

*** TERMINAL Error from imsl_f_beta. Both "x" = -1.000000e+00 and "y" = 5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsl_f_gamma. The argument for the function can not be a negative integer. Argument "x" = -1.000000e+00.

Here is a traceback of the calls in reverse order.

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Error Code</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_TERMINAL</td>
<td>IMSL_NEGATIVE_INTEGER</td>
<td>imsl_f_gamma</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Example 4

In this example the WIN32 API is used to demonstrate the same functionality as shown in Example 3 above. Note since multiple threads are executing, the order of the errors output may differ on some systems.
DWORD WINAPI ex2(void *arg)
{
    float res;

    /* Call imsl_error_options to set the error handling
     * options for this thread. Notice that tracebacks are
     * turned on for IMSL_TERMINAL errors. */

    imsl_error_options(
        IMSL_SET_STOP,
        IMSL_TERMINAL, 0,
        IMSL_SET_TRACEBACK,
        IMSL_TERMINAL, 1,
        0);
    res = imsl_f_gamma(-1.0);
}

Output

*** TERMINAL Error from imsl_f_gamma. The argument for the function can not
*** be a negative integer. Argument "x" = -1.000000e+00.

Here is a traceback of the calls in reverse order.

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Error Code</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_TERMINAL</td>
<td>IMSL_NEGATIVE_INTEGER</td>
<td>imsl_f_gamma</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** TERMINAL Error from imsl_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.
error_type

Gets the type corresponding to the error message from the last function called.

Synopsis

```
#include <imsl.h>

imsl_error imsl_error_type()
```

Return Value

An `imsl_error` enum value is returned.

Description

The `imsl_error` enum type has seven values: `IMSL_NOTE`, `IMSL_ALERT`, `IMSL_WARNING`, `IMSL_FATAL`, `IMSL_TERMINAL`, `IMSL_WARNING_IMMEDIATE` and `IMSL_FATAL_IMMEDIATE`. See Kinds of Errors and Default Actions for more details.

Example

See `error_message` for an example.
error_message

Gets the text of the error message from the last function called.

Synopsis

```c
#include <imsl.h>
char *imsl_error_message()
```

Return Value

Returns the current error message.

Description

If the current error type is positive then the last error message set is returned. It does not matter if the error message was printed or not. The current error type is the number returned by `imsl_error_type`. If the current error type is zero then `NULL` is returned.

The returned string can be freed using `imsl_free`.

Example

This example retrieves the error message from a call to `imsl_f_gamma` with an illegal argument. Error stopping is turned off so that the example continues beyond the terminal error.

```c
#include <imsl.h>
#include <stdio.h>

int main(void)
{
 char *msg;

 imsl_error_options(
 IMSL_SET_STOP, IMSL_TERMINAL, 0,
 0);

 imsl_f_gamma(0.0);
 msg = imsl_error_message();
 printf("type = %d\ncode = %d\n", imsl_error_type(), imsl_error_code());
 printf("msg = %s\n", msg);
}
```
Output

*** TERMINAL Error from imsl_f_gamma. The argument for the function cannot be zero.

type = 5
code = 9024
msg = The argument for the function cannot be zero.
error_code

Gets the code corresponding to the error message from the last function called.

Synopsis

```c
#include <imsl.h>

long imsl_error_code()
```

Return Value

This function returns the error message code from the last IMSL function called. The include file `imsl.h` defines a name for each error code.

Example

This example turns off stopping on `IMSL_TERMINAL` error messages and generates an error by calling `imsl_error_options` with an illegal value for `IMSL_SET_PRINT`. The error message code number is retrieved and printed. In `imsl.h`, `IMSL_INTEGER_OUT_OF_RANGE` is defined to be 132.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 long code;

 /* Turn off stopping IMSL TERMINAL */
 /* messages and print error messages */
 /* on standard output. */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout,
 0);

 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(IMSL_SET_PRINT, 100, 0,
 0);

 /* Get the error message code */
 code = imsl_error_code();
 printf("error code = %d\n", code);
}
```

Output

*** TERMINAL Error from imsl_error_options."type" must be between 1 and 5,
*** but "type" = 100.

error code = 132
initialize_error_handler

Initializes the IMSL C Math Library error handling system.

Synopsis

```c
#include <imsl.h>

int imsl_initialize_error_handler()
```

Return Value

If the initialization succeeds, zero is returned. If there is an error, a nonzero value is returned.

Description

This function is used to initialize the IMSL C Math Library error handling system for the current thread. It is not required, but is always allowed.

Use of this function is advised if the possibility of low heap memory exists when calling the IMSL C Math Library for the first time in the current thread. A successful return from `imsl_initialize_error_handler` confirms that IMSL C Math Library error handling system has been initialized and is operational. The effects of calling `imsl_initialize_error_handler` are limited to the calling thread only.

If `imsl_initialize_error_handler` is not called and initialization of the error handling system fails, an error message is printed to `stderr`, and execution is stopped.

Example

In this example, the IMSL C Math Library error handler is initialized prior to calling multiple other IMSL C Math Library functions. Often this is not required, but is advised if the possibility of low heap memory exists. Even if not required, the initialization call is always allowed.

The computations performed in this example are based on Example 1 for `imsl_f_spline_least_squares`.

```c
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 90
/* Define function */
#define F(x) (float)(1. + sin(x)+7.*sin(3.0*x))

int main()
{
```
int status;
int i, spline_space_dim = 12;
float fdata[NDATA], xdata[NDATA], *random;
Imsl_f_spline *sp;

/* Initialize the IMSL C Math Library error handler. */
status = imsl_initialize_error_handler();

/*
 * Verify successful error handler initialization before
 * continuing.
 */
if (status == 0) {
    /* Generate random numbers */
    imsl_random_seed_set(123457);
    random = imsl_f_random_uniform(NDATA, 0);
    /* Set up data */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = 6.*(float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
    }
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
                                           spline_space_dim, 0);
    printf(" x  error  
");
    for(i = 0; i < 10; i++) {
        float x, error;
        x = 6.*i/9.;
        error = F(x) - imsl_f_spline_value(x, sp, 0);
        printf("%10.3f  %10.3f
", x, error);
    }
} else {
    printf("Unable to initialize IMSL C Math Library error handler.\n");
}
}
set_user_fcn_return_flag

Indicates a condition has occurred in a user-supplied function necessitating a return to the calling function.

Synopsis

```c
#include <imsl.h>

void imsl_set_user_fcn_return_flag(int code)
```

Required Arguments

- `int code` (Input)
  - A user-defined number that indicates the reason for the return from the user-supplied function.

Description

Given a certain condition in a user-supplied function, `imsl_set_user_fcn_return_flag` stops executing any IMSL algorithm that has called the function and then returns to the calling function or main program. Upon invocation of `imsl_set_user_fcn_return_flag`, a flag is set in the IMSL error handler. Upon returning from the user-supplied function, the error `IMSL_STOP_USER_FCN` is issued with severity `IMSL_FATAL`. Typically, if you use this function, you would disable stopping on `IMSL_C_MATH` errors, thus gaining greater control in situations where you need to prematurely return from an algorithm. (See Programming Notes.)

Programming Notes

- Since the default behavior of IMSL error handling is to stop execution on `IMSL_TERMINAL` and `IMSL_FATAL` errors, execution of the main program stops when the `IMSL_STOP_USER_FCN` error message is issued unless you alter this behavior by turning stopping off using `imsl_error_options`.
- In a user-supplied function, the user is responsible for checking error conditions such as memory allocation, return status for any function calls, valid return values, etc.
- Use of this function is valid only if called from within a user-supplied function.

Examples

**Example 1**

This example is based on `imsl_f_int_fcn`. In this example, the user, for any hypothetical reason, wants to stop the evaluation of the user-supplied function, `fcn`, when `x` is less than 0.5.

```c
#include <math.h>
```
### Chapter 12 Utilities

```c
#include <imsl.h>
#include <stdio.h>

float fcn(float x);
float q;
float exact;

int main()
{
 /* Turn off stopping on IMSL_FATAL errors. */
 imsl_error_options(IMSL_SET_STOP, IMSL_FATAL, 0, 0);
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

 /* evaluate the integral */
 q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);

 /* The following lines will be executed because stopping is turned off. */
 if (q != q) {
 printf("integral = NaN\n");
 } else {
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 }
}

float fcn(float x)
{
 float y;

 /* For a hypothetical reason, stop execution when x < 0.5. */
 if (x < 0.5) {
 imsl_set_user_fcn_return_flag(1);
 return 0;
 }

 y = x * (exp(x));
 return y;
}

Output

*** FATAL Error IMSL_STOP_USER_FCN from imsl_f_int_fcn. Request
*** from user supplied function to stop algorithm. User flag = "1".

integral = NaN
Example 2

This example is based on `imsl_f_chi_squared_test`, Example 3. This example demonstrates how to handle the error condition if the user-supplied function calls a C Math Library function. In this example, \(\text{THETA} \) is set to 0 to force an error condition in calling the `imsl_f_poisson_cdf` function in the user-supplied function.

```c
#include <imsl.h>
#include <stdio.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 0.0

float user_proc_cdf(float);

int main()
{
    /* Generate the data */
    float *poisson = imsl_random_poisson(N_NUMBERS, 5.0, 0);

    /* Copy data to a floating point vector*/
    for (int i = 0; i < N_NUMBERS; i++)
        x[i] = poisson[i];

    chi_squared_statistics[2] =
        imsl_f_chi_squared_test(user_proc_cdf, N_NUMBERS, N_CATEGORIES, x, 
            IMSL_CUTPOINTS_USER, cutpoints,
            IMSL_CELL_COUNTS_USER, &cell_statistics[0][0], 
            IMSL_CELLEXPECTED_USER, &cell_statistics[1][0], 
            IMSL_CELL_CHI_SQUARED_USER, &cell_statistics[2][0], 
```
IMSL_CHI_SQUARED, &chi_squared_statistics[0],
IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1], 0);

/* The following lines will be executed because
 stopping is turned off. */
if (chi_squared_statistics[2] != chi_squared_statistics[2]) {
 printf("p-value = NaN\n");
} else {
 imsl_f_write_matrix("\nChi-squared Statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSL_ROW_LABELS, stat_row_labels,
 0);

 imsl_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSL_ROW_LABELS, cell_row_labels,
 IMSL_COL_LABELS, cell_col_labels,
 IMSL_WRITE_FORMAT, "%9.1f",
 0);
}

float user_proc_cdf(float k)
{
 float cdf_v;
 int setting;

 /* The user is responsible for checking error conditions in the
 user-supplied function, even if the user-supplied function
 is calling an IMSL function.

 For theta = 0.0 (an invalid input), imsl_f_poisson_cdf issues
 an IMSL_TERMINAL error. Thus, stopping is turned off on
 IMSL_TERMINAL errors. */

 /* Get the current terminal error stopping setting which will be
 used for restoring the setting later. */
 imsl_error_options(IMSL_GET_STOP, IMSL_TERMINAL, &setting, 0);

 /* Disable stopping on terminal errors. */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0, 0);

 cdf_v = imsl_f_poisson_cdf ((int) k, THETA);

 /* If there is a terminal error, stop and return to main. */
 if (imsl_error_type() == IMSL_TERMINAL) {
 imsl_set_user_fcn_return_flag(1);
 return 0;
 }
/* Restore stopping setting */
imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, setting, 0);

return cdf_v;
}

Output

*** TERMINAL Error from imsl_f_poisson_cdf. The mean of the Poisson
*** distribution, "theta" = 0.000000e+000, must be positive.

*** FATAL Error IMSL_STOP_USER_FCN from imsl_f_chi_squared_test.
*** Request from user supplied function to stop algorithm. User
*** flag = "1".

p-value = NaN
Note: This function is deprecated and its use is not supported. To view the deprecated documentation, see imsl_initialize.pdf on the Rogue Wave website. You can also access a local copy in your IMSL installation directory at pdf\deprecated_routines\math\imsl_initialize.pdf.
free

Frees memory returned from an IMSL C Math Library function.

Synopsis

```
#include <imsl.h>

void imsl_free (void *data)
```

Required Arguments

```
void *data (Input)
   A pointer to data returned from an IMSL C Math Library function.
```

Description

The function `imsl_free` frees memory using the C runtime library used by the IMSL C Math Library for allocation. It is a wrapper around the standard C runtime function `free`.

Function `imsl_free` can always be used to free memory allocated by the IMSL C Math Library, but is required if an application has linked to multiple copies of the C runtime library, with each copy having its own set of heap allocation structures. In this situation, using the C runtime function `free` can result in memory being allocated with one copy of the C runtime library and freed with a different copy, which may cause abnormal termination. Using `imsl_free` ensures that the same C runtime library is used for both allocation and freeing.

Note that `imsl_free` should be used only to free memory that was allocated by IMSL C Math Library.

Example

This example computes a set of random numbers, prints them, and then frees the array returned from the random number generation function.

```
#include <imsl.h>
#include <stdio.h>
int main()
{
   int seed = 123457;
   int n_random = 5;
   float *r;

   imsl_random_seed_set (seed);
   r = imsl_f_random_normal(n_random, 0);
   printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
    "Standard normal random deviates",
```
\[r[0], r[1], r[2], r[3], r[4]); \]

\[\text{imsl_free}(r); \]

\}

Output

Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145
fopen

Opens a file using the C runtime library used by the IMSL C Math Library.

Synopsis

```c
#include <imsl.h>
#include <stdio.h>

FILE *imsl_fopen (char *filename, char *mode)
```

Required Arguments

- `char *filename` (Input)
 - The name of the file to be opened.
- `char *mode` (Input)
 - The type of access to be permitted to the file. This string is passed to the C runtime function `fopen`, which determines the valid mode values.

Return Value

A pointer for the file structure, `FILE`, defined in `stdio.h`. To close the file, use `imsl_fclose`. If there is a fatal error, then NULL is returned.

Description

The function `imsl_fopen` opens a file using the C runtime library used by the IMSL C Math Library. It is a wrapper around the standard C runtime function `fopen`.

Function `imsl_fopen` can always be used to open a file which will be used by the IMSL C Math Library, but is required if an application has linked to multiple copies of the C runtime library, with each copy having its own set of file instructions. In this situation, using the C runtime function `fopen` can result in a file being opened with one copy of the C runtime library and reading or writing to it with a different copy, which may cause abnormal behavior or termination. Using `imsl_fopen` ensures that the same C runtime library is used for both the open operation and reading and writing within an IMSL C Math Library function to which the file pointer has been passed as an input argument.

Note that `imsl_fopen` should only be used to open a file whose file pointer will be input to an IMSL C Math Library function. Use `imsl_fclose` to close files opened with `imsl_fopen`.
Example

This example writes a matrix to the file matrix.txt. The function imsl_fopen is used to open a file. This function returns a file pointer, which is passed to imsl_output_file. The matrix is written by imsl_f_write_matrix, which uses the file pointer from imsl_output_file. The function imsl_fclose is then used to close the file.

```c
#include <imsl.h>
#include <stdio.h>

extern FILE* imsl_fopen(char* filename, char* mode);
extern int imsl_fclose(FILE* file);

int main()
{
    FILE       *ofile;
    float      x[] = {3.0, 2.0, 1.0};

    imsl_f_write_matrix ("x (default file)", 1, 3, x, 0);

    ofile = imsl_fopen("myfile", "w");
    imsl_output_file(
        IMSL_SET_OUTPUT_FILE, ofile, 0);
    imsl_f_write_matrix ("x (myfile)", 1, 3, x, 0);
    imsl_fclose(ofile);
}
```

Output

The content below is stored in the matrix.txt file.

```
Matrix written to file matrix.txt
    1   2   3
1   1.1  2.4  3.6
2   4.3  5.1  6.7
3   7.2  8.9  9.3
```
fclose

Closes a file opened by imsl_fopen.

Synopsis

```c
#include <imsl.h>
#include <stdio.h>

int imsl_fclose (FILE *file)
```

Required Arguments

`FILE *file` (Input/Output)

A file pointer returned from imsl_fopen.

Return Value

The return value is zero if the file is successfully closed. If there is an error, EOF is returned. EOF is defined in stdio.h.

Description

The function imsl_fclose is a wrapper around the standard C runtime function fclose. It is used to close files opened with imsl_fopen.

Note that imsl_fopen should only be used to open a file whose file pointer will be input to an IMSL C Math Library function. Use imsl_fclose to close files opened with imsl_fopen.

Note: This function is not prototyped in imsl.h. This is to avoid including stdio.h within imsl.h. An extern declaration should be explicitly used to assure compatibility with linkers.

Example

See imsl_fopen for an example of its use.
omp_options

Sets various OpenMP options.

Synopsis with Optional Arguments

```
#include <imsl.h>

void imsl_omp_options (  
    IMSL_SET_FUNCTIONS_THREAD_SAFE, int setting,  
    IMSL_GET_FUNCTIONS_THREAD_SAFE, int *psetting,  
    0)
```

Return Value

The return value for this function is void.

Optional Arguments

- **IMSL_SET_FUNCTIONS_THREAD_SAFE, int setting** (Input)
 If nonzero, user supplied functions are assumed to be thread-safe. This allows user functions to be evaluated in parallel with different arguments.
 Default: User supplied functions are not assumed to be thread-safe and are not evaluated in parallel by IMSL C Math Library functions.

- **IMSL_GET_FUNCTIONS_THREAD_SAFE, int *psetting** (Output)
 Sets the integer pointed to by psetting to zero if user functions are not assumed to be thread-safe and to one if they are assumed to be thread-safe.

Description

The performance of some IMSL C Math Library functions can be improved if they evaluate user supplied functions in parallel. Unfortunately, incorrect results can occur if the user supplied functions are not thread-safe. By default, the IMSL C Math Library assumes user supplied functions are not thread-safe and thus will not evaluate them in parallel. To change this assumption, use the optional argument
IMSL_SET_FUNCTIONS_THREADSAFE with its argument equal to one.

This function can be used multiple times in an application to change the thread-safe assumption.
Example

This example computes the integral $\int_0^2 xe^x \, dx$. A call to the function `imsl_omp_options` is used to indicate that function `fcn` is thread-safe and so can be safely evaluated by multiple, simultaneous threads.

```c
#include <stdio.h>
#include <math.h>
#include <imsl.h>

float fcn(float x);

int main()
{
    float q;
    float exact;

    imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

    /* Evaluate the integral and print result */
    q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);
    exact = exp(2.0) + 1.0;
    printf("integral = %10.3f
exact   = %10.3f\n", q, exact);
}

float fcn(float x)
{
    return x * (exp(x));
}
```

Output

```
integral =     8.389
exact   =     8.389
```

```
\int_0^2 xe^x \, dx
```
constant

Returns the value of various mathematical and physical constants.

Synopsis

```c
#include <imsl.h>

float imsl_f_constant (char *name, char *unit)
```

The type `double` function is `imsl_d_constant`.

Required Arguments

- `char *name` (Input)
 Character string containing the name of the desired constant. The case of the character string `name` does not matter. The names "PI", "Pi", "pI", and "pi" are equivalent. Spaces and underscores are allowed and ignored.

- `char *unit` (Input)
 Character string containing the units of the desired constant. If NULL, then Système International d'Unités (SI) units are assumed. The case of the character string `unit` does not matter. The names "METER", "Meter" and "meter" are equivalent. `unit` has the form `U1*U2*...*Um/V1/.../Vn`, where `Ui` and `Vi` are the names of basic units or are the names of basic units raised to a power. Basic units must be separated by * or /. Powers are indicated by ^, as in “m^2” for m^2. Examples are, “METER*KILOGRAM/SECOND”, “M*KG/S”, “METER”, or “M/KG^2”.

Return Value

By default, `imsl_f_constant` returns the desired constant. If no value can be computed, NaN is returned.

Description

The names allowed are listed in the following table. Values marked with a ‡ are exact (to machine precision). The references in the right-hand column are indicated by the code numbers: [1] for Cohen and Taylor (1986), [2] for Liepman (1964), and [3] for precomputed mathematical constants.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amu</td>
<td>Atomic mass unit</td>
<td>1.6605655 × 10^{-27} kg</td>
<td>1</td>
</tr>
<tr>
<td>ATM</td>
<td>Standard atm pressure</td>
<td>1.01325 × 10^5 N/m^2 ‡</td>
<td>2</td>
</tr>
</tbody>
</table>
The units allowed are as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Astronomical unit</td>
<td>$1.496 \times 10^{11} \text{ m}$</td>
<td>1</td>
</tr>
<tr>
<td>Avogadro</td>
<td>Avogadro’s number, N</td>
<td>$6.022045 \times 10^{23} \text{ 1/mole}$</td>
<td>1</td>
</tr>
<tr>
<td>Boltzman</td>
<td>Boltzmann’s constant, k</td>
<td>$1.380662 \times 10^{-23} \text{ J/K}$</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>Speed of light, c</td>
<td>$2.99792458 \times 10^8 \text{ m/s}$</td>
<td>1</td>
</tr>
<tr>
<td>Catalan</td>
<td>Catalan’s constant</td>
<td>$0.915965…$‡</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>Base of natural logs, e</td>
<td>$2.718…$‡</td>
<td>3</td>
</tr>
<tr>
<td>ElectronCharge</td>
<td>Electron charge, e</td>
<td>$1.6021892 \times 10^{-19} \text{ C}$</td>
<td>1</td>
</tr>
<tr>
<td>ElectronMass</td>
<td>Electron mass, m_e</td>
<td>$9.109534 \times 10^{-31} \text{ kg}$</td>
<td>1</td>
</tr>
<tr>
<td>ElectronVolt</td>
<td>Electron Volt, eV</td>
<td>$1.6021892 \times 10^{-19} \text{ J}$</td>
<td>1</td>
</tr>
<tr>
<td>Euler</td>
<td>Euler’s constant, γ</td>
<td>$0.577…$‡</td>
<td>3</td>
</tr>
<tr>
<td>Faraday</td>
<td>Faraday constant, F</td>
<td>$9.648536 \times 10^4 \text{ C/mole}$</td>
<td>1</td>
</tr>
<tr>
<td>FineStructure</td>
<td>Fine structure, α</td>
<td>7.2973506×10^{-3}</td>
<td>1</td>
</tr>
<tr>
<td>Gamma</td>
<td>Euler’s constant, γ</td>
<td>$0.577…$‡</td>
<td>3</td>
</tr>
<tr>
<td>Gas</td>
<td>Gas constant, R_0</td>
<td>8.31441 J/mole/K</td>
<td>1</td>
</tr>
<tr>
<td>Gravity</td>
<td>Gravitational constant, G</td>
<td>$6.6720 \times 10^{-11} \text{ N m}^2/\text{kg}^2$</td>
<td>1</td>
</tr>
<tr>
<td>Hbar</td>
<td>Planck’s constant/2π</td>
<td>$1.0545887 \times 10^{-34} \text{ J s}$</td>
<td>1</td>
</tr>
<tr>
<td>PerfectGasVolume</td>
<td>Std vol ideal gas</td>
<td>$2.241383 \times 10^{-2} \text{ m}^3/\text{mole}$</td>
<td>1</td>
</tr>
<tr>
<td>Pi</td>
<td>π</td>
<td>$3.141…$‡</td>
<td>3</td>
</tr>
<tr>
<td>Planck</td>
<td>Planck’s constant, h</td>
<td>$6.626176 \times 10^{-34} \text{ J s}$</td>
<td>1</td>
</tr>
<tr>
<td>ProtonMass</td>
<td>Proton mass, M_p</td>
<td>$1.6726485 \times 10^{-27} \text{ kg}$</td>
<td>1</td>
</tr>
<tr>
<td>Rydberg</td>
<td>Rydberg’s constant, R_μ</td>
<td>$1.097373177 \times 10^7/\text{m}$</td>
<td>1</td>
</tr>
<tr>
<td>Speedlight</td>
<td>Speed of light, c</td>
<td>$2.99792458 \times 10^8 \text{ m/s}$</td>
<td>1</td>
</tr>
<tr>
<td>StandardGravity</td>
<td>Standard g</td>
<td>9.80665 m/s^2 ‡</td>
<td>2</td>
</tr>
<tr>
<td>StandardPressure</td>
<td>Standard atm pressure</td>
<td>$1.01325 \times 10^5 \text{ N/m}^2$ ‡</td>
<td>2</td>
</tr>
<tr>
<td>StefanBoltzman</td>
<td>Stefan-Boltzman, σ</td>
<td>$5.67032 \times 10^{-8} \text{ W/K}^4/\text{m}^2$</td>
<td>1</td>
</tr>
<tr>
<td>WaterTriple</td>
<td>Triple point of water</td>
<td>$2.7316 \times 10^2 \text{ K}$</td>
<td>2</td>
</tr>
</tbody>
</table>

The units allowed are as follows:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>day, hour = hr, min, minute, s = sec = second, year</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hertz = Hz</td>
</tr>
<tr>
<td>Mass</td>
<td>AMU, g = gram, lb = pound, ounce = oz, slug</td>
</tr>
<tr>
<td>Distance</td>
<td>Angstrom, AU, feet = foot, in = inch, m = meter = metre, micron, mile, mill, parsec, yard</td>
</tr>
<tr>
<td>Area</td>
<td>Acre</td>
</tr>
</tbody>
</table>
The following metric prefixes may be used with the above units. The one or two letter prefixes may only be used with one letter unit abbreviations.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>1 = liter=litre</td>
</tr>
<tr>
<td>Force</td>
<td>dyne, N = Newton</td>
</tr>
<tr>
<td>Energy</td>
<td>BTU, Erg, J = Joule</td>
</tr>
<tr>
<td>Work</td>
<td>W = watt</td>
</tr>
<tr>
<td>Pressure</td>
<td>ATM = atmosphere, bar</td>
</tr>
<tr>
<td>Temperature</td>
<td>degC = Celsius, degF = Fahrenheit, degK = Kelvin</td>
</tr>
<tr>
<td>Viscosity</td>
<td>poise, stoke</td>
</tr>
<tr>
<td>Charge</td>
<td>Abcoulomb, C = Coulomb, statcoulomb</td>
</tr>
<tr>
<td>Current</td>
<td>A = ampere, abampere, statampere</td>
</tr>
<tr>
<td>Voltage</td>
<td>Abvolt, V = volt</td>
</tr>
<tr>
<td>Magnetic induction</td>
<td>T = Telsa, Wb = Weber</td>
</tr>
<tr>
<td>Other units</td>
<td>Ι, farad, mole, Gauss, Henry, Maxwell, Ohm</td>
</tr>
</tbody>
</table>

There is no one letter unit abbreviation for myria or mega since m means milli.

Examples

Example 1

In this example, Euler's constant γ is obtained and printed. Euler's constant is defined to be

$$\gamma = \lim_{n \to \infty} \left[\sum_{k=1}^{n-1} \frac{1}{k} - \ln n \right]$$

```c
#include <stdio.h>
#include <imsl.h>
```
int main()
{
 float gamma; /* Get gamma */
 gamma = imsl_f_constant("gamma", 0); /* Print gamma */
 printf("gamma = %f\n", gamma);
}

Output
gamma = 0.577216

Example 2
In this example, the speed of light is obtained using several different units.

#include <stdio.h>
#include <imsl.h>

int main()
{
 float speed_light; /* Get speed of light in meters/second */
 speed_light = imsl_f_constant("Speed Light", "meter/second");
 printf("speed of light = %g meter/second\n", speed_light);
 /* Get speed of light in miles/second */
 speed_light = imsl_f_constant("Speed Light", "mile/second");
 printf("speed of light = %g mile/second\n", speed_light);
 /* Get speed of light in */
 /* centimeters/nanosecond */
 speed_light = imsl_f_constant("Speed Light", "cm/ns");
 printf("speed of light = %g cm/ns\n", speed_light);
}

Output
speed of light = 2.99792e+08 meter/second
speed of light = 186282 mile/second
speed of light = 29.9793 cm/ns

Warning Errors
IMSL_MASS_TO_FORCE A conversion of units of mass to units of force was required for consistency.
Returns integer information describing the computer’s arithmetic.

Synopsis

```c
#include <imsl.h>

long imsl_i_machine(int n)
```

Required Arguments

- `int n` (Input)
 - Index indicating which value is to be returned. It must be between 0 and 12.

Return Value

The requested value is returned. If `n` is out of range, then NaN is returned.

Description

The function `imsl_i_machine` returns information describing the computer’s arithmetic. This can be used to make programs machine independent.

\(\text{imsl_i_machine}(0) = \text{Number of bits per byte} \)

Assume that integers are represented in \(M \)-digit, base-\(A \) form as

\[
\sigma \sum_{k=0}^{M} x_k A^k
\]

where \(\sigma \) is the sign and \(0 \leq x_k < A \) for \(k = 0, \ldots, M \). Then,

<table>
<thead>
<tr>
<th>(n)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(C), bits per character</td>
</tr>
<tr>
<td>1</td>
<td>(A), the base</td>
</tr>
<tr>
<td>2</td>
<td>(M_s), the number of base-(A) digits in a \text{short int}</td>
</tr>
<tr>
<td>3</td>
<td>(A^{M_s} - 1), the largest \text{short int}</td>
</tr>
<tr>
<td>4</td>
<td>(M_l), the number of base-(A) digits in a \text{long int}</td>
</tr>
<tr>
<td>5</td>
<td>(A^{M_l} - 1), the largest \text{long int}</td>
</tr>
</tbody>
</table>
Assume that floating-point numbers are represented in N-digit, base B form as

$$
\sigma B^E \sum_{k=1}^{N} x_k B^{-k}
$$

where σ is the sign and $0 \leq x_k < B$ for $k = 1, \ldots, N$ for and $E_{\min} \leq E \leq E_{\max}$.

Then,

<table>
<thead>
<tr>
<th>n</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>B, the base</td>
</tr>
<tr>
<td>7</td>
<td>N_f, the number of base-B digits in float</td>
</tr>
<tr>
<td>8</td>
<td>$E_{\min,f}$, the smallest float exponent</td>
</tr>
<tr>
<td>9</td>
<td>$E_{\max,f}$, the largest float exponent</td>
</tr>
<tr>
<td>10</td>
<td>N_d, the number of base-B digits in double</td>
</tr>
<tr>
<td>11</td>
<td>$E_{\min,d}$, the smallest double exponent</td>
</tr>
<tr>
<td>12</td>
<td>$E_{\max,d}$, the largest double exponent</td>
</tr>
</tbody>
</table>

Example

This example prints all the values returned by `imsl_i_machine` on a 32-bit machine with IEEE (Institute for Electrical and Electronics Engineer) arithmetic.

```c
#include <imsl.h>
#include <stdio.h>

int main() {
    int n;
    long ans;

    for (n = 0; n <= 12; n++) {
        ans = imsl_i_machine(n);
        printf("imsl_i_machine(%d) = %ld\n", n, ans);
    }
}
```
Output

```c
imsl_i_machine(0) = 8
imsl_i_machine(1) = 2
imsl_i_machine(2) = 15
imsl_i_machine(3) = 32767
imsl_i_machine(4) = 31
imsl_i_machine(5) = 2147483647
imsl_i_machine(6) = 2
imsl_i_machine(7) = 24
imsl_i_machine(8) = -125
imsl_i_machine(9) = 128
imsl_i_machine(10) = 53
imsl_i_machine(11) = -1021
imsl_i_machine(12) = 1024
```
machine (float)

Returns information describing the computer's floating-point arithmetic.

Synopsis

```c
#include <imsl.h>

float imsl_f_machine(int n)
```

The type `double` function is `imsl_d_machine`.

Required Arguments

```c
int n (Input)
```

Index indicating which value is to be returned. The index must be between 1 and 8.

Return Value

The requested value is returned. If \(n \) is out of range, then NaN is returned.

Description

The function `imsl_f_machine` returns information describing the computer's floating-point arithmetic. This can be used to make programs machine independent. In addition, some of the functions are also important in setting missing values (see below).

Assume that `float` numbers are represented in \(N_f \)-digit, base \(B \) form as

\[
\sigma B^k \sum_{k=1}^{N_f} x_k B^{-k}
\]

where \(\sigma \) is the sign, \(0 \leq x_k < B \) for \(k = 1, 2, \ldots, N_f \), and

\[
E_{\min_f} \leq E \leq E_{\max_f}
\]

Note that \(B = imsl_i_machine(6) \), \(N_f = imsl_i_machine(7) \),

\[
E_{\min_f} = imsl_i_machine(8)
\]

and
The ANSI/IEEE Std 754-1985 standard for binary arithmetic uses NaN (not a number) as the result of various otherwise illegal operations, such as computing 0/0. On computers that do not support NaN, a value larger than \(\text{imsl_d_machine}(2) \) is returned for \(\text{imsl_f_machine}(6) \). On computers that do not have a special representation for infinity, \(\text{imsl_f_machine}(2) \) returns the same value as \(\text{imsl_f_machine}(7) \).

The function \(\text{imsl_f_machine} \) is defined by the following table:

<table>
<thead>
<tr>
<th>n</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(B^{E_{\text{min}}_{f}^{-1}}), the smallest positive number</td>
</tr>
<tr>
<td>2</td>
<td>(B^{E_{\text{max}}{f}} \left(1 - B^{N{f}} \right)), the largest number</td>
</tr>
<tr>
<td>3</td>
<td>(B^{-N_{f}}), the smallest relative spacing</td>
</tr>
<tr>
<td>4</td>
<td>(B^{1-N_{f}}), the largest relative spacing</td>
</tr>
<tr>
<td>5</td>
<td>(\log_{10}(B))</td>
</tr>
<tr>
<td>6</td>
<td>NaN (not a number)</td>
</tr>
<tr>
<td>7</td>
<td>positive machine infinity</td>
</tr>
<tr>
<td>8</td>
<td>negative machine infinity</td>
</tr>
</tbody>
</table>

The function \(\text{imsl_d_machine} \) retrieves machine constants which define the computer’s double arithmetic. Note that for \(\text{double } B = \text{imsl_i_machine}(6), N_{d} = \text{imsl_i_machine}(10) \),

\[
E_{\text{min}}_{f} = \text{imsl_i_machine}(11)
\]

and

\[
E_{\text{max}}_{f} = \text{imsl_i_machine}(12)
\]

Missing values in IMSL functions are always indicated by NaN (Not a Number). This is \(\text{imsl_f_machine}(6) \) in single precision and \(\text{imsl_d_machine}(6) \) in double. There is no missing-value indicator for integers. Users will almost always have to convert from their missing value indicators to NaN.

Example

This example prints all eight values returned by \(\text{imsl_f_machine} \) and by \(\text{imsl_d_machine} \) on a machine with IEEE arithmetic.
```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    int        n;
    float      fans;
    double     dans;

    for (n = 1; n <= 8; n++) {
        fans = imsl_f_machine(n);
        printf("imsl_f_machine(%d) = %g\n", n, fans);
    }

    for (n = 1; n <= 8; n++) {
        dans = imsl_d_machine(n);
        printf("imsl_d_machine(%d) = %g\n", n, dans);
    }
}

Output

imsl_f_machine(1) = 1.17549e-38
imsl_f_machine(2) = 3.40282e+38
imsl_f_machine(3) = 5.96046e-08
imsl_f_machine(4) = 1.19209e-07
imsl_f_machine(5) = 0.30103
imsl_f_machine(6) = NaN
imsl_f_machine(7) = Inf
imsl_f_machine(8) = -Inf
imsl_d_machine(1) = 2.22507e-308
imsl_d_machine(2) = 1.79769e+308
imsl_d_machine(3) = 1.11022e-16
imsl_d_machine(4) = 2.22045e-16
imsl_d_machine(5) = 0.30103
imsl_d_machine(6) = NaN
imsl_d_machine(7) = Inf
imsl_d_machine(8) = -Inf
```
sort

Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.

Synopsis

```c
#include <imsl.h>

float *imsl_f_sort (int n, float *x, ..., 0)
```

The type double function is imsl_d_sort.

Required Arguments

- **int n** (Input)

 The length of the input vector.

- **float *x** (Input)

 Input vector to be sorted.

Return Value

A vector of length n containing the values of the input vector x sorted into ascending order. If an error occurs, then NULL is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_sort (int n, float *x, 

  IMSL_ABSOLUTE, 
  IMSL_PERMUTATION, int **perm, 
  IMSL_PERMUTATION_USER, int perm_user[], 
  IMSL_RETURN_USER, float y[], 
  0)
```
Optional Arguments

IMSL_ABSOLUTE
 Sort x by absolute value.

IMSL_PERMUTATION, int **perm (Output)
 Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, int perm_user[] (Output)
 Return the sort permutation in user-supplied space.

IMSL_RETURN_USER, float y[] (Output)
 Return the sorted data in user-supplied space.

Description

By default, imsl_f_sort sorts the elements of x into ascending order by algebraic value. The vector is divided into two parts by choosing a central element T of the vector. The first and last elements of x are compared with T and exchanged until the three values appear in the vector in ascending order. The elements of the vector are rearranged until all elements greater than or equal to the central elements appear in the second part of the vector and all those less than or equal to the central element appear in the first part. The upper and lower subscripts of one of the segments are saved, and the process continues iteratively on the other segment. When one segment is finally sorted, the process begins again by retrieving the subscripts of another unsorted portion of the vector. On completion, \(x_j \leq x_i \) for \(j < i \). If the option IMSL_ABSOLUTE is selected, the elements of x are sorted into ascending order by absolute value. If we denote the return vector by y, on completion, \(|y_j| \leq |y_i| \) for \(j < i \).

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the array x is returned. That is, after the initialization of perm\(_i\) = \(i \), the elements of perm are moved in the same manner as are the elements of x.

Examples

Example 1

In this example, an input vector is sorted algebraically.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float x[] = {1.0, 3.0, -2.0, 4.0};
    float *sorted_result;
    int    n;

    n = 4;
```
sorted_result = imsl_f_sort (n, x, 0);

imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

<table>
<thead>
<tr>
<th>Sorted vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
</tr>
<tr>
<td>-2 1 3 4</td>
</tr>
</tbody>
</table>

Example 2

This example sorts an input vector by absolute value and prints the result stored in user-allocated space.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    float x[] = {1.0, 3.0, -2.0, 4.0};
    float sorted_result[4];
    int n;

    n = 4;
    imsl_f_sort (n, x,
                 IMSL_ABSOLUTE,
                 IMSL_RETURN_USER, sorted_result,
                 0);

    imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}
```

Output

<table>
<thead>
<tr>
<th>Sorted vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1 -2 3 4</td>
</tr>
</tbody>
</table>
sort (integer)

Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.

Synopsis

#include <imsl.h>

int *imsl_i_sort (int n, int *x, ... , 0)

Required Arguments

int n (Input)
The length of the input vector.

int *x (Input)
Input vector to be sorted.

Return Value

A vector of length n containing the values of the input vector x sorted into ascending order. If an error occurs, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

int *imsl_i_sort (int n, int *x,

IMSL_ABSOLUTE,

IMSL_PERMUTATION, int **perm,

IMSL_PERMUTATION_USER, int perm_user[],

IMSL_RETURN_USER, int y[],

0)
Optional Arguments

- **IMSL_ABSOLUTE**
 Sort \(x \) by absolute value.

- **IMSL_PERMUTATION, int **perm** (Output)**
 Return a pointer to the sort permutation.

- **IMSL_PERMUTATION_USER, int **perm_user**[]** (Output)
 Return the sort permutation in user-supplied space.

- **IMSL_RETURN_USER, int **y**[]** (Output)
 Return the sorted data in user-supplied space.

Description

By default, `imsl_i_sort` sorts the elements of \(x \) into ascending order by algebraic value. The vector is divided into two parts by choosing a central element \(T \) of the vector. The first and last elements of \(x \) are compared with \(T \) and exchanged until the three values appear in the vector in ascending order. The elements of the vector are rearranged until all elements greater than or equal to the central elements appear in the second part of the vector and all those less than or equal to the central element appear in the first part. The upper and lower subscripts of one of the segments are saved, and the process continues iteratively on the other segment. When one segment is finally sorted, the process begins again by retrieving the subscripts of another unsorted portion of the vector. On completion, \(x_j \leq x_i \) for \(j < i \). If the option `IMSL_ABSOLUTE` is selected, the elements of \(x \) are sorted into ascending order by absolute value. If we denote the return vector by \(y \), on completion, \(|y_j| \leq |y_i| \) for \(j < i \).

If the option `IMSL_PERMUTATION` is chosen, a record of the permutations to the array \(x \) is returned. That is, after the initialization of \(perm_i = i \), the elements of \(perm \) are moved in the same manner as are the elements of \(x \).

Examples

Example 1

In this example, an input vector is sorted algebraically.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    int x[] = {1, 3, -2, 4};
    int *sorted_result;
    int n;

    n = 4;
```
sorted_result = imsl_i_sort (n, x, 0);
imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

Sorted vector
1 2 3 4
-2 1 3 4

Example 2

This example sorts an input vector by absolute value and prints the result stored in user-allocated space.

```c
#include <stdio.h>
#include <imsl.h>

int main()
{
    int x[] = {1, 3, -2, 4};
    int  sorted_result[4];
    int  n;

    n = 4;
    imsl_i_sort (n, x,
                 IMSL_ABSOLUTE,
                 IMSL_RETURN_USER, sorted_result, 0);

    imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

**Output**

Sorted vector
1 2 3 4
1 -2 3 4
vector_norm

Computes various norms of a vector or the difference of two vectors.

Synopsis

```
#include <imsl.h>

float imsl_f_vector_norm (int n, float *x, ..., 0)
```

The type `double` function is `imsl_d_vector_norm`.

Required Arguments

- `int n` (Input)
  The length of the input vector(s).

- `float *x` (Input)
  Input vector for which the norm is to be computed

Return Value

The requested norm of the input vector. If the norm cannot be computed, NaN is returned. By default, the two norm of $x$, $\|x\|_2$, is computed.

Synopsis with Optional Arguments

```
#include <imsl.h>

float imsl_f_vector_norm (int n, float *x,
 IMSL_ONE_NORM,
 IMSL_INF_NORM, int *index,
 IMSL_SECOND_VECTOR, float *y, 0)
```

Optional Arguments

**IMSL_ONE_NORM**
Compute the one norm,

\[ \|x\|_1 = \sum_{i=0}^{n-1} |x_i| \]

**IMSL_INF_NORM, int *index (Output)**
Compute the infinity norm,

\[ \|x\|_\infty = \max_{0 \leq i < n} |x_i| \]

**IMSL_SECOND_VECTOR, float *y (Input)**
Compute the norm of \(x\) minus \(y\),

\[ \|x - y\|, \text{instead of } \|x\| \]

Description

By default, `imsl_f_vector_norm` computes the Euclidean norm

\[ \left( \sum_{i=0}^{n-1} x_i^2 \right)^{1/2} \]

If the option `IMSL_ONE_NORM` is selected, the 1-norm

\[ \sum_{i=0}^{n-1} |x_i| \]

is returned. If the option `IMSL_INF_NORM` is selected, the infinity norm

\[ \text{max } |x_i| \]

is returned. In the case of the infinity norm, the program also returns the index of the element with maximum modulus. If `IMSL_SECOND_VECTOR` is selected, then the norm of \(x - y\) is computed.

Examples

**Example 1**
In this example, the Euclidean norm of an input vector is computed.

```c
#include <stdio.h>
```
#include <imsl.h>

int main()
{
    float x[] = {1.0, 3.0, -2.0, 4.0};
    float norm;
    int n;

    n = sizeof(x)/sizeof(*x);
    norm = imsl_f_vector_norm(n, x, 0);
    printf("Euclidean norm of x = %f\n", norm);
}

Output
Euclidean norm of x = 5.477226

Example 2
This example computes \( \max |x_i - y_i| \) and prints the norm and index.

#include <stdio.h>
#include <imsl.h>

int main()
{
    float x[] = {1.0, 3.0, -2.0, 4.0};
    float y[] = {4.0, 2.0, -1.0, -5.0};
    float norm;
    int index;
    int n;

    n = sizeof(x)/sizeof(*x);
    norm = imsl_f_vector_norm(n, x,
        IMSL_SECOND_VECTOR, y,
        IMSL_INF_NORM, &index, 0);

    printf("Infinity norm of x-y = %f ", norm);
    printf("at location %d\n", index);
}

Output
Infinity norm of x-y = 9.000000 at location 3
vector_norm (complex)

Computes various norms of a vector or the difference of two vectors.

Synopsis

```c
#include <imsl.h>

float imsl_c_vector_norm(int n, f_complex x[], ..., 0)
```

The type `d_complex` function is `imsl_z_vector_norm`.

Required Arguments

- `int n` (Input)
  The length of the input vector(s).

- `f_complex x[]` (Input)
  Input vector for which the norm is to be computed

Return Value

The requested norm of the input vector. If the norm cannot be computed, NaN is returned. By default, the two norm of \(x\), \(\|x\|_2\), is computed.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_c_vector_norm(int n, f_complex x[],
 IMSL_ONE_NORM,
 IMSL_INF_NORM, int *index,
 IMSL_SECOND_VECTOR, f_complex y[],
 0)
```

Optional Arguments

- `IMSL_ONE_NORM`
Compute the one norm, 
\[ \|x\|_1 = \sum_{i=0}^{n-1} |x_i| \]

IMSL_INF_NORM, int *index (Output)

Compute the infinity norm, 
\[ \|x\|_\infty = \max_{0 \leq i < n} |x_i| \]

The index at which the vector has its maximum absolute value is also returned.

IMSL_SECOND_VECTOR, f_complex y [ ] (Input)

Compute the norm of \(x\) minus \(y\),
\[ \|x - y\|, \text{instead of } \|x\| \]

Description

By default, imsl_c_vector_norm computes the Euclidean norm
\[ \left( \sum_{i=0}^{n-1} x_i^2 \right)^{\frac{1}{2}} \]

If the option IMSL_ONE_NORM is selected, the 1-norm
\[ \sum_{i=0}^{n-1} |x_i| \]

is returned. If the option IMSL_INF_NORM is selected, the infinity norm
\[ \max |x_i| \]

is returned. In the case of the infinity norm, the program also returns the index of the element with maximum modulus. If IMSL_SECOND_VECTOR is selected, then the norm of \(x - y\) is computed.

Examples

Example 1

In this example, the Euclidean norm of an input vector is computed.

```
#include <stdio.h>
#include <imsl.h>
```
int main()
{
    f_complex x[4] = {
        {1.0, 2.0},
        {3.0, 4.0},
        {-2.0, -1.0},
        {4.0, 5.0}
    };
    float norm;

    norm = imsl_c_vector_norm (4, x, 0);

    printf("Euclidean norm of x = %f\n", norm);
}

Output

Euclidean norm of x = 8.717798

Example 2

This example computes \( \max |x_i - y_i| \) and prints the norm and index.

#include <stdio.h>
#include <imsl.h>

int main()
{
    f_complex x[4] = {
        {1.0, 2.0},
        {3.0, 4.0},
        {-2.0, -1.0},
        {4.0, 5.0}
    };
    f_complex y[4] = {
        {4.0, 3.0},
        {2.0, 1.0},
        {-1.0, -2.0},
        {-5.0, -4.0}
    };
    float norm;
    int index;

    norm = imsl_c_vector_norm (4, x,
        IMSL_SECOND_VECTOR, y,
        IMSL_INF_NORM, &index,
        0);

    printf("Infinity norm of x-y = %f ", norm);
    printf("at location %d\n", index);
}
Output

Infinity norm of x-y = 12.727922 at location 3
mat_mul_rect

Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product.

Synopsis

```
#include <imsl.h>
float *imsl_f_mat_mul_rect (char *string,..., 0)
```

The type double procedure is imsl_d_mat_mul_rect.

Required Arguments

```
char *string (Input)
String indicating matrix multiplication to be performed.
```

Return Value

The result of the multiplication. This is always a pointer to a float, even if the result is a single number. To release this space, use imsl_free. If no answer was computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_mat_mul_rect(char *string,

IMSL_A_MATRIX, int nrowa, int ncola, float a[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_MATRIX, int nrowb, int ncolb, float b[],
IMSL_B_COL_DIM, int b_col_dim,
IMSL_X_VECTOR, int nx, float *x,
IMSL_Y_VECTOR, int ny, float *y,
IMSL_RETURN_USER, float ans[],
IMSL_RETURN_COL_DIM, int return_col_dim,
0)
```
Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, float a[] (Input)
The nrowa x ncola matrix A.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, float b[] (Input)
The nrowb x ncolb matrix B.

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, float *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, float *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, float ans[] (Output)
A user-allocated array containing the result.

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description

This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple product according to the specification given by string. For example, if “A x x” is given, Ax is computed. In string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with trans, indicating transpose. The vectors x and y are treated as n x 1 matrices.

If string contains only one item, such as “x” or “trans (A)”, then a copy of the array, or its transpose, is returned. If string contains one multiplication, such as “A x x” or “B x A”, then the indicated product is returned. Some other legal values for string are “trans (y) x A”, “A x trans (B)”, “x x trans (y)”, or “trans (x) x y”.

The matrices and/or vectors referred to in string must be given as optional arguments. If string is “B x x”, then IMSL_B_MATRIX and IMSL_X_VECTOR must be given.
Example

Let

\[
A = \begin{bmatrix}
1 & 2 & 9 \\
5 & 4 & 7
\end{bmatrix} \quad B = \begin{bmatrix}
3 & 2 \\
7 & 4 \\
9 & 1
\end{bmatrix} \quad x = \begin{bmatrix}
7 \\
2
\end{bmatrix} \quad y = \begin{bmatrix}
3 \\
4 \\
2
\end{bmatrix}
\]

The arrays \(A^\top, Ax, x^\top A, AB, B^\top A, x^\top y, xy^\top,\) and \(x^\top Ay\) are computed and printed.

```c
#include <imsl.h>

int main()
{
 float A[] = {1, 2, 9,
 5, 4, 7};
 float B[] = {3, 2,
 7, 4,
 9, 1};
 float x[] = {7, 2, 1};
 float y[] = {3, 4, 2};
 float *ans;

 ans = imsl_f_mat_mul_rect("trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_f_write_matrix("trans(A)", 3, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("Ax",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("Ax", 1, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_f_write_matrix("A*B", 2, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(B)*trans(A)",
 IMSL_B_MATRIX, 3, 2, B,
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);
}
```
ans = imsl_f_mat_mul_rect("trans(x)*y",
    IMSL_X_VECTOR, 3, x,
    IMSL_Y_VECTOR, 3, y,
    0);
imsl_f_write_matrix("trans(x)*y", 1, 1, ans, 0);

ans = imsl_f_mat_mul_rect("x*trans(y)",
    IMSL_X_VECTOR, 3, x,
    IMSL_Y_VECTOR, 3, y,
    0);
imsl_f_write_matrix("x*trans(y)", 3, 3, ans, 0);

ans = imsl_f_mat_mul_rect("trans(x)*A*y",
    IMSL_A_MATRIX, 2, 3, A,
    /* use only the first 2 components of x */
    IMSL_X_VECTOR, 2, x,
    IMSL_Y_VECTOR, 3, y,
    0);
imsl_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Output

trans (A)
  1   2
  1   1   5
  2   2   4
  3   9   7

A*x
  1   2
20  50

trans (x)*trans (A)
  1   2
20  50

A*B
  1   2
  1  98  19
  2 106  33

trans (B)*trans (A)
  1   2
  1  98 106
  2  19 33

trans (x)*y
  31
$ x \cdot \text{trans}(y) $

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

$ \text{trans}(x) \cdot A \cdot y $

293
mat_mul_rect (complex)

Computes the transpose of a matrix, the conjugate-transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product.

Synopsis

```
#include <imsl.h>

f_complex *imsl_c_mat_mul_rect (char *string, ... , 0)
```

The type `d_complex` function is `imsl_z_mat_mul_rect`.

Required Arguments

```
char *string (Input)
```

String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. This is always a pointer to a `f_complex`, even if the result is a single number. To release this space, use `imsl_free`. If no answer was computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

f_complex *imsl_c_mat_mul_rect (char *string,
 IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a,
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b,
 IMSL_B_COL_DIM, int b_col_dim,
 IMSL_X_VECTOR, int nx, f_complex *x,
 IMSL_Y_VECTOR, int ny, f_complex *y,
 IMSL_RETURN_USER, f_complex ans [],
 IMSL_RETURN_COL_DIM, int return_col_dim,
 0)
```
Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a (Input)
The nrowa × ncola matrix A.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b (Input)
The nrowb × ncolb matrix B.

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, f_complex *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, f_complex *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, f_complex ans[] (Output)
A user-allocated array containing the result.

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description

This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple product according to the specification given by string. For example, if “A × x” is given, Ax is computed. In string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with trans, indicating transpose, or with ctrans, indicating conjugate (or Hermitian) transpose. The vectors x and y are treated as n × 1 matrices.

If string contains only one item, such as “x” or “trans (A)”, then a copy of the array, or its transpose, is returned. If string contains one multiplication, such as “A × x” or “B × A”, then the indicated product is returned. Some other legal values for string are “trans (y) × A”, “A × ctrans (B)”, “x × trans (y) ”, or “ctrans (x) × y”.

The matrices and/or vectors referred to in string must be given as optional arguments. If string is “B × x”, then IMSL_B_MATRIX and IMSL_X_VECTOR must be given.
Example

Let

\[
A = \begin{bmatrix}
1 + 4i & 2 + 3i & 9 + 6i \\
5 + 2i & 4 - 3i & 7 + i \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
3 - 6i & 2 + 4i \\
7 + 3i & 4 - 5i \\
9 + 2i & 1 + 3i \\
\end{bmatrix}
\]

\[
x = \begin{bmatrix}
7 + 4i \\
2 + 2i \\
1 - 5i \\
\end{bmatrix}
\]

\[
y = \begin{bmatrix}
3 + 4i \\
4 + 2i \\
2 - 3i \\
\end{bmatrix}
\]

The arrays \(A^H, Ax, x^T A^T, AB, B^H A^T, x^T y, \) and \(xy^H\) are computed and printed.

```c
#include <imsl.h>

int main()
{
 f_complex A[] = {{1,4}, {2, 3}, {9,6},
 {5,2}, {4,-3}, {7,1}};

 f_complex B[] = {{3,-6}, {2, 4},
 {7, 3}, {4,-5},
 {9, 2}, {1, 3}};

 f_complex x[] = {{7,4}, {2, 2}, {1,-5}};
 f_complex y[] = {{3,4}, {4,-2}, {2, 3}};
 f_complex *ans;

 ans = imsl_c_mat_mul_rect("ctrans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_c_write_matrix("ctrans(A)", 3, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("A*x",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("A*x", 1, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_c_write_matrix("A*B", 2, 2, ans, 0);
}
```
ans = imsl_c_mat_mul_rect("ctrans(B)*trans(A)",
    IMSL_A_MATRIX, 2, 3, A,
    IMSL_B_MATRIX, 3, 2, B,
    0);
imsl_c_write_matrix("ctrans(B)*trans(A)", 2, 2, ans, 0);

ans = imsl_c_mat_mul_rect("trans(x)*y",
    IMSL_X_VECTOR, 3, x,
    IMSL_Y_VECTOR, 3, y,
    0);
imsl_c_write_matrix("trans(x)*y", 1, 1, ans, 0);

ans = imsl_c_mat_mul_rect("x*ctrans(y)",
    IMSL_X_VECTOR, 3, x,
    IMSL_Y_VECTOR, 3, y,
    0);
imsl_c_write_matrix("x*ctrans(y)", 3, 3, ans, 0);
}

Output

ctrans(A)

\[
\begin{bmatrix}
1 & 2 \\
1 & -4 & 5 & -2 \\
2 & -3 & 4 & 3 \\
3 & -6 & 7 & -1
\end{bmatrix}
\]

A*x

\[
\begin{bmatrix}
28 & 3 \\
28 & 3 & 53 & 2
\end{bmatrix}
\]

trans(x)*trans(A)

\[
\begin{bmatrix}
1 & 2 \\
28 & 3 & 53 & 2
\end{bmatrix}
\]

A*B

\[
\begin{bmatrix}
1 & 2 \\
1 & 105 & 0 & 47 \\
2 & 125 & -10 & 14
\end{bmatrix}
\]

ctrans(B)*trans(A)

\[
\begin{bmatrix}
1 & 2 \\
1 & 95 & 69 & 87 & -2 \\
2 & 38 & 5 & 59 & -28
\end{bmatrix}
\]

trans(x)*y

\[
\begin{bmatrix}
34 & 37
\end{bmatrix}
\]

x*ctrans(y)

\[
\begin{bmatrix}
1 & 2 & 3
\end{bmatrix}
\]
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37,</td>
<td>-16</td>
<td>20,</td>
<td>30</td>
<td>26,</td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14,</td>
<td>-2</td>
<td>4,</td>
<td>12</td>
<td>10,</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-17,</td>
<td>-19</td>
<td>14,</td>
<td>-18</td>
<td>-13,</td>
<td>-13</td>
<td></td>
</tr>
</tbody>
</table>
mat_mul_rect_band

Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in band form.

Synopsis

```c
#include <imsl.h>

float *imsl_f_mat_mul_rect_band (char *string, ...);
```

The equivalent `double` function is `imsl_d_mat_mul_rect_band`.

Required Arguments

`char *string` (Input)
String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void *imsl_f_mat_mul_rect_band (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, float *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, float *b,
IMSL_X_VECTOR, int nx, float *x,
IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result,
IMSL_RETURN_USER_VECTOR, float vector_user[],
0)
```

Optional Arguments

`IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, float *a` (Input)
The sparse matrix
The function `imsl_f_mat_mul_rect_band` computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in band format. The operation performed is specified by `string`. For example, if “A*x” is given, A x is computed. In `string`, the matrices A and B and the vector x can be used. Any of these names can be used with `trans`, indicating transpose. The vector x is treated as a dense \( n \times 1 \) matrix. If `string` contains only one item, such as “x” or “\text{trans}(A)”, then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in `string` must be given as optional arguments. Therefore, if `string` is “A*x”, then `IMSL_A_MATRIX` and `IMSL_X_VECTOR` must be given.

### Examples

#### Example 1

Consider the matrix

\[
A = \begin{bmatrix}
2 & -1 & 0 & 0 \\
-3 & 1 & -2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 2 & 1
\end{bmatrix}
\]

After storing A in band format, multiply A by \( x = (1, 2, 3, 4)^T \) and print the result.

```c
#include <imsl.h>
int main()
{

```
float a[] = {0.0, -1.0, -2.0, 2.0,
            2.0, 1.0, -1.0, 1.0,
            -3.0, 0.0, 2.0, 0.0};

float x[] = {1.0, 2.0, 3.0, 4.0};
int n = 4;
int nuca = 1;
int nlca = 1;
float *b;

/* Set b = A*x */

b = imsl_f_mat_mul_rect_band ("A*x",
                             IMSL_A_MATRIX, n, n, nlca, nuca, a,
                             IMSL_X_VECTOR, n, x,
                             0);

imsl_f_write_matrix ("Product, Ax", 1, n, b, 0);

Output

Product, Ax

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>-7</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Example 2

This example uses the power method to determine the dominant eigenvector of $E(100, 10)$. The same computation is performed by using imsl_f_eig_sym, described in the chapter Eigensystem Analysis. The iteration stops when the component-wise absolute difference between the dominant eigenvector found by imsl_f_eig_sym and the eigenvector at the current iteration is less than the square root of machine unit roundoff.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main()
{
    int i;
    int j;
    int k;
    int n;
    int c;
    int nz;
    int index;
    int start;
    int stop;
    float *a;
```c
float *z;
float *q;
float *dense_a;
float *dense_evec;
float *dense_eval;
float norm;
float *evec;
float error;
float tolerance;

n = 100;
c = 10;
tolerance = sqrt(ims1_f_machine(4));
error = 1.0;
evec = (float*) malloc (n*sizeof(*evec));
z = (float*) malloc (n*sizeof(*z));
q = (float*) malloc (n*sizeof(*q));
dense_a = (float*) calloc (n*n, sizeof(*dense_a));

a = imsl_f_generate_test_band (n, c, 0);

/* Convert to dense format, starting with upper triangle */
start = c;
for (i=0; i<c; i++, start--)
 for (k=0, j=start; j<n; j++, k++)
 dense_a[k*n + j] = a[i*n + j];

/* Convert diagonal */
for (j=0; j<n; j++)
 dense_a[j*n + j] = a[c*n + j];

/* Convert lower triangle */
stop = n-1;
for (i=c+1; i<2*c+1; i++, stop--)
 for (k=i-c, j=0; j<stop; j++, k++)
 dense_a[k*n + j] = a[i*n + j];

/* Determine dominant eigenvector by a dense method */
dense_eval = imsl_f_eig_sym (n, dense_a,
 IMSL_VECTORS, &dense_evec,
 0);

for (i=0; i<n; i++)
 evec[i] = dense_evec[n*i];

/* Normalize */
norm = imsl_f_vector_norm (n, evec,
 0);
```
for (i=0; i<n; i++)
  evec[i] /= norm;
for (i=0; i<n; i++)
  q[i] = 1.0/sqrt((float) n);

/* Do power method */
while (error > tolerance) {
  imsl_f_mat_mul_rect_band ("A*x",
    IMSL_A_MATRIX, n, n, c, c, a,
    IMSL_X_VECTOR, n, q,
    IMSL_RETURN_USER_VECTOR, z,
    0);

  /* Normalize */
  norm = imsl_f_vector_norm (n, z,
    0);
  for (i=0; i<n; i++)
    q[i] = z[i]/norm;

  /* Compute maximum absolute error between any
two elements */
  error = imsl_f_vector_norm (n, q,
    IMSL_SECOND_VECTOR, evec,
    IMSL_INF_NORM, &index,
    0);
}
printf ("Maximum absolute error = %e\n", error);
}

Output

Maximum absolute error = 3.367960e-04
mat_mul_rect_band (complex)

Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices of complex type and stored in band form.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_mat_mul_rect_band (char *string, ... , 0)
```
The equivalent `d_complex` function is `imsl_z_mat_mul_rect_band`.

Required Arguments

- `char *string` (Input)
  String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication is returned. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void *imsl_c_mat_mul_rect_band (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, f_complex *a,

IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, f_complex *b,

IMSL_X_VECTOR, int nx, f_complex *x,

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result,

IMSL_RETURN_USER_VECTOR, f_complex vector_user[],

0)
```

Optional Arguments

- `IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, f_complex *a` (Input)
  The sparse matrix
\( A \in \mathbb{C}^{nrowa \times ncola} \)

\[
A = \begin{bmatrix}
-2 & 4 & 0 & 0 \\
6 + i & -0.5 + 3i & -2 + 2i & 0 \\
0 & 1 + i & 3 - 3i & -4 - i \\
0 & 0 & 2i & 1 - i
\end{bmatrix}
\]

IMSL_B_MATRIX, \text{int} nrowb, \text{int} ncolb, \text{int} nlcb, \text{int} nucb, \text{f_complex} *b (Input)

The sparse matrix

\( B \in \mathbb{C}^{nrowb \times ncolb} \)

IMSL_X_VECTOR, \text{int} nx, \text{f_complex} *x, (Input)

The vector \( x \) of length \( nx \).

IMSL_RETURN_MATRIX_CODIAGONALS, \text{int} *nlc_result, \text{int} *nuc_result, (Output)

If the function imsl_c_mat_mul_rect_band returns data for a band matrix, use this option to retrieve the number of lower and upper codiagonals of the return matrix.

IMSL_RETURN_USER_VECTOR, \text{f_complex} vector_user[], (Output)

If the result of the computation in a vector, return the answer in the user supplied sparse vector_user.

Description

The function imsl_c_mat_mul_rect_band computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in band format. The operation performed is specified by \text{string}. For example, if “A\times x” is given, \( Ax \) is computed. In \text{string}, the matrices \( A \) and \( B \) and the vector \( x \) can be used. Any of these names can be used with \text{trans}, indicating transpose. The vector \( x \) is treated as a dense \( n \times 1 \) matrix. If \text{string} contains only one item, such as “\( x \)” or “\text{trans}(A)”, then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in \text{string} must be given as optional arguments. Therefore, if \text{string} is “\( A\times x \)”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

Examples

Example 1

Let

\[
A = \begin{bmatrix}
-2 & 4 & 0 & 0 \\
6 + i & -0.5 + 3i & -2 + 2i & 0 \\
0 & 1 + i & 3 - 3i & -4 - i \\
0 & 0 & 2i & 1 - i
\end{bmatrix}
\]
and

$$x = \begin{bmatrix} 3 \\ -1 + i \\ 3 \\ -1 + i \end{bmatrix}$$

This example computes the product $Ax$.

```c
#include <imsl.h>

int main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;
 f_complex *z;
 int nlca_z;
 int nuca_z;

 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex x[] =
 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};

 /* Set b = A*x */
 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("Ax", 1, n, b,
 0);
}
```

**Output**

```
Product, Ax

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10.0, -5.0</td>
<td>9.5, 5.5</td>
<td>12.0, -12.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.0, 8.0</th>
</tr>
</thead>
</table>
```

**Example 2**

Using the same matrix $A$ and vector $x$ given in the last example, the products $Ax, A^\top x, A^H x$ and $AA^H$ are computed.
```c
#include <imsl.h>

int main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;
 f_complex *z;
 int nlca_z;
 int nuca_z;

 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex x[] =
 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};

 /* Set b = A*x */
 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("Ax", 1, n, b,
 0);
 imsl_free(b);

 /* Set b = trans(A)*x */
 b = imsl_c_mat_mul_rect_band ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b,
 0);
 imsl_free(b);

 /* Set b = ctrans(A)*x */
 b = imsl_c_mat_mul_rect_band ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b,
 0);
 imsl_free(b);

 /* Set z = A*ctrans(A) */
 z = imsl_c_mat_mul_rect_band ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("\n\nA*ctrans(A)x", 1, n, z,
 0);
 imsl_free(z);

 return 0;
}
```

```c
IMSL_X_VECTOR, n, x,
IMSL_RETURN_MATRIX_CODIAGONALS, &nlca_z, &nuca_z,
0);
imsl_c_write_matrix("A*ctrans(A)", nlca_z+nuca_z+1, n, z,
0);
}

Output

Ax

\[
\begin{pmatrix}
-10.0 & -5.0 \\
0.0 & 8.0 \\
\end{pmatrix}
\begin{pmatrix}
9.5 & 5.5 \\
12.0 & -12.0 \\
\end{pmatrix}
\]

trans(A)x

\[
\begin{pmatrix}
-13.0 & -4.0 \\
-12.0 & -1.0 \\
\end{pmatrix}
\begin{pmatrix}
12.5 & -0.5 \\
7.0 & -15.0 \\
\end{pmatrix}
\]

ctrans(A)x

\[
\begin{pmatrix}
-11.0 & 16.0 \\
-14.0 & 3.0 \\
\end{pmatrix}
\begin{pmatrix}
18.5 & -0.5 \\
15.0 & 11.0 \\
\end{pmatrix}
\]

A*ctrans(A)

\[
\begin{pmatrix}
0.00 & 0.00 \\
-17.00 & -28.00 \\
29.00 & 0.00 \\
-17.00 & 28.00 \\
4.00 & 4.00 \\
\end{pmatrix}
\begin{pmatrix}
0.00 & 0.00 \\
-17.00 & -28.00 \\
54.25 & 0.00 \\
-9.50 & -3.50 \\
4.00 & -4.00 \\
\end{pmatrix}
\]
```
mat_mul_rect_coordinate

Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices stored in sparse coordinate form.

Synopsis

```c
#include <imsl.h>

void *imsl_f_mat_mul_rect_coordinate (char *string, ...)
```

The equivalent `double` function is `imsl_d_mat_mul_rect_coordinate`.

Required Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string</code></td>
<td><code>char *</code> (Input)</td>
<td>String indicating matrix multiplication to be performed.</td>
</tr>
</tbody>
</table>

Return Value

The returned value is the result of the multiplication. If the result is a vector, the return type is pointer to `float`. If the result of the multiplication is a sparse matrix, the return type is pointer to `imsl_f_sparse_elem`. To release this space, use `imsl_free`.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void *imsl_f_mat_mul_rect_coordinate (char *string,

 IMSL_A_MATRIX, int nrowa, int ncola, int nza, imsl_f_sparse_elem *a,

 IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, imsl_f_sparse_elem *b,

 IMSL_X_VECTOR, int nx, float *x,

 IMSL_RETURN_MATRIX_SIZE, int *size,

 IMSL_RETURN_USER_VECTOR, float vector_user[],

 0)
```
Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, int nza, lmsl_f_sparse_elem *a (Input)
The sparse matrix

\[ A \in \mathbb{R}^{nrowa \times ncola} \]
with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, lmsl_f_sparse_elem *b (Input)
The sparse matrix

\[ B \in \mathbb{R}^{nrowb \times ncolb} \]
with nzb nonzero elements.

IMSL_X_VECTOR, int nx, float *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)
If the function imsl_f_mat_mul_rect_coordinate returns a vector of type lmsl_f_sparse_elem, use this option to retrieve the length of the return vector, i.e. the number of nonzero elements in the sparse matrix generated by the requested computations.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user supplied sparse vector_user. Its size depends on the computation.

Description

The function imsl_f_mat_mul_rect_coordinate computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in coordinate representation. The operation performed is specified by string. For example, if "A*x" is given, Ax is computed. In string, the matrices A and B and the vector x can be used. Any of these names can be used with trans, indicating transpose. The vector x is treated as a dense n × 1 matrix.

If string contains only one item, such as “x” or “trans (A)”, then a copy of the array, or its transpose is returned. Some multiplications, such as “A*trans (A)” or “trans (x) *B”, will produce a sparse matrix in coordinate format as a result. Other products such as “B*x” will produce a pointer to a floating type, containing the resulting vector.

The matrices and/or vector referred to in string must be given as optional arguments. Therefore, if string is “A*x”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.
Examples

Example 1

In this example, a sparse matrix in coordinate form is multiplied by a vector.

```c
#include <imsl.h>
int main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;

 /* Set x = A*b */

 x = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, b,
 0);

 imsl_f_write_matrix ("Product Ab", 1, n, x, 0);
}
```

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>-98</td>
<td>675</td>
<td>344</td>
<td>-302</td>
<td>162</td>
</tr>
</tbody>
</table>


**Example 2**

This example uses the power method to determine the dominant eigenvector of $E(100, 10)$. The same computation is performed by using `imsl_f_eig_sym`. The iteration stops when the component-wise absolute difference between the dominant eigenvector found by `imsl_f_eig_sym` and the eigenvector at the current iteration is less than the square root of machine unit roundoff.

```c
#include <imsl.h>
#include <math.h>

int main()
{
 int i;
 int n;
 int c;
 int nz;
 int index;
 Imsl_f_sparse_elem *a;
 float *z;
 float *q;
 float *dense_a;
 float *dense_evec;
 float *dense_eval;
 float norm;
 float *evec;
 float error;
 float tolerance;

 n = 100;
 c = 10;
 tolerance = sqrt(imsl_f_machine(4));
 error = 1.0;

 evec = (float*) malloc (n*sizeof(*evec));
 z = (float*) malloc (n*sizeof(*z));
 q = (float*) malloc (n*sizeof(*q));
 dense_a = (float*) calloc (n*n, sizeof(*dense_a));
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Convert to dense format */
 for (i=0; i<nz; i++)
 dense_a[a[i].col + n*a[i].row] = a[i].val;

 /* Determine dominant eigenvector by a dense method */
 dense_eval = imsl_f_eig_sym (n, dense_a,
 IMSL_VECTORS, &dense_evec,
 0);
 for (i=0; i<n; i++) evec[i] = dense_evec[n*i];
}
/* Normalize */

norm = imsl_f_vector_norm (n, evec, 0);
for (i=0; i<n; i++) evec[i] /= norm;

for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);

/* Do power method */

while (error > tolerance) {
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, q,
 IMSL_RETURN_USER_VECTOR, z,
 0);

 /* Normalize */

 norm = imsl_f_vector_norm (n, z, 0);
 for (i=0; i<n; i++) q[i] = z[i]/norm;

 /* Compute maximum absolute error between any two elements */
 error = imsl_f_vector_norm (n, q,
 IMSL_SECOND_VECTOR, evec,
 IMSL_INF_NORM, &index,
 0);
}

printf ("Maximum absolute error = %e\n", error);

Output

Maximum absolute error = 3.368035e-04
mat_mul_rect_coordinate (complex)

Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices stored in sparse coordinate form.

Synopsis

```
#include <imsl.h>

void *imsl_c_mat_mul_rect_coordinate (char *string, ..., 0)
```

The equivalent `double` function is `imsl_d_mat_mul_rect_coordinate`.

Required Arguments

```
char *string (Input)
String indicating matrix multiplication to be performed.
```

Return Value

The result of the multiplication. If the result is a vector, the return type is pointer to `f_complex`. If the result of the multiplication is a sparse matrix, the return type is pointer to `imsl_c_sparse_elem`.

Synopsis with Optional Arguments

```
#include <imsl.h>

void *imsl_c_mat_mul_rect_coordinate (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, int nza, imsl_c_sparse_elem *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, imsl_c_sparse_elem *b,
IMSL_X_VECTOR, int nx, f_complex *,x,
IMSL_RETURN_MATRIX_SIZE, int *,size,
IMSL_RETURN_USER_VECTOR, f_complex *vector_user[],
0)
```

Optional Arguments

```
IMSL_A_MATRIX, int nrowa, int ncola, int nza, imsl_c_sparse_elem *a (Input)
```

The sparse matrix
\[A \in \mathbb{C}^{nrowa \times ncola} \]

with \(nza \) nonzero elements.

IMSL_B_MATRIX, \textit{int} \textit{nrowb}, \textit{int} \textit{ncolb}, \textit{int} \textit{nzb}, \textit{imsl_c_sparse_elem} *\textit{b} (Input)

The sparse matrix

\[B \in \mathbb{C}^{nrowb \times ncolb} \]

with \(nzb \) nonzero elements.

IMSL_X_VECTOR, \textit{int} \textit{nx}, \textit{f_complex} *\textit{x}, (Input)

The vector \(x \) of length \(nx \).

IMSL_RETURN_MATRIX_SIZE, \textit{int} *\textit{size}, (Output)

If the function \texttt{imsl_c_mat_mul_rect_coordinate} returns a vector of type \textit{imsl_c_sparse_elem}, use this option to retrieve the length of the return vector, i.e. the number of non-zero elements in the sparse matrix generated by the requested computations.

IMSL_RETURN_USER_VECTOR, \textit{f_complex} vector_user[], (Output)

If the result of the computation is a vector, return the answer in the user supplied space \texttt{vector_user}. Its size depends on the computation.

Description

The function \texttt{imsl_c_mat_mul_rect_coordinate} computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in coordinate representation. The operation performed is specified by \textit{string}. For example, if “\texttt{A*x}” is given, \(Ax \) is computed. In \textit{string}, the matrices \(A \) and \(B \) and the vector \(x \) can be used. Any of these names can be used with \texttt{trans} or \texttt{ctrans}, indicating transpose and conjugate transpose, respectively. The vector \(x \) is treated as a dense \(n \times 1 \) matrix.

If \textit{string} contains only one item, such as “\texttt{x}” or “\texttt{trans (A)}”, then a copy of the array, or its transpose is returned. Some multiplications, such as “\texttt{A*ctrans (A)}” or “\texttt{trans (x) *B}”, will produce a sparse matrix in coordinate format as a result. Other products such as “\texttt{B*x}” will produce a pointer to a complex type, containing the resulting vector.

The matrix and/or vector referred to in \textit{string} must be given as optional arguments. Therefore, if \textit{string} is “\texttt{A*x}”, \texttt{IMSL_A_MATRIX} and \texttt{IMSL_X_VECTOR} must be given.

To release this space, use \texttt{imsl_free}.
Examples

Example 1

Let

\[
A = \begin{bmatrix}
10 + 7i & 0 & 0 & 0 & 0 & 0 \\
0 & 3 + 2i & -3 & -1 + 2i & 0 & 0 \\
0 & 0 & 4 + 2i & 0 & 0 & 0 \\
-2 - 4i & 0 & 0 & 1 + 6i & -1 + 3i & 0 \\
-5 + 4i & 0 & 0 & -5 & 12 + 2i & -7 + 7i \\
-1 + 12i & -2 + 8i & 0 & 0 & 0 & 3 + 7i \\
\end{bmatrix}
\]

and

\[x^T = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)\]

This example computes the product \(Ax\).

```c
#include <imsl.h>

int main()
{
    Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
                             1, 1, {3.0, 2.0},
                             1, 2, {-3.0, 0.0},
                             1, 3, {-1.0, 2.0},
                             2, 2, {4.0, 2.0},
                             3, 0, {-2.0, -4.0},
                             3, 3, {1.0, 6.0},
                             3, 4, {-1.0, 3.0},
                             4, 0, {-5.0, 4.0},
                             4, 3, {-5.0, 0.0},
                             4, 4, {12.0, 2.0},
                             4, 5, {-7.0, 7.0},
                             5, 0, {-1.0, 12.0},
                             5, 1, {-2.0, 8.0},
                             5, 5, {3.0, 7.0}};
    f_complex    b[] = {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
                        {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};

    int          n = 6;
    int          nz = 15;
    f_complex   *x;

    /* Set x = A*b */

    x = imsl_c_mat_mul_rect_coordinate ("A*x",
```
IMSL_A_MATRIX, n, n, nz, a,
IMSL_X_VECTOR, n, b,
0);

imsl_c_write_matrix ("Product Ab", 1, n, x, 0);
}

Output

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>-19</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>-38</td>
<td>-63</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td></td>
<td>83</td>
</tr>
</tbody>
</table>

Example 2

Using the same matrix A and vector x given in the last example, the products Ax, A^Tx, A^Hx and AA^H are computed.

#include <imsl.h>
#include <stdio.h>

int main()
{
 Imsl_c_sparse_elem *z;
 Imsl_c_sparse_elem a[] =
 {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};

 f_complex x[] =
 {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
 {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};

 int n = 6, nz = 15, nz_z, i;
 f_complex *b;
/* Set b = A*x */
b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);
imsl_c_write_matrix ("Ax", 1, n, b,
 0);
imsl_free(b);

/* Set b = trans(A)*x */
b = imsl_c_mat_mul_rect_coordinate ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);
imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b,
 0);
imsl_free(b);

/* Set b = ctrans(A)*x */
b = imsl_c_mat_mul_rect_coordinate ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);
imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b,
 0);
imsl_free(b);

/* Set z = A*ctrans(A) */
z = imsl_c_mat_mul_rect_coordinate ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 IMSL_RETURN_MATRIX_SIZE, &nz_z,
 0);
printf("\n\n\t\t\t z = A*ctrans(A)\n\n");
for (i=0; i<nz_z; i++)
 printf ("\t\t\tz[%1d,%1d] = (%6.1f, %6.1f)\n",
 z[i].row, z[i].col, z[i].val.re, z[i].val.im);
}

Output

Ax

1 2 3
(3, 17) (-19, 5) (6, 18)
(-38, 32) (-63, 49) (-57, 83)
\[\text{trans}(A)x \]

\[
\begin{pmatrix}
1 & 2 & 3 \\
-112 & -58 & 0 \\
54 & 46 & 12 \\
4 & 5 & 6 \\
-51 & 78 & -94 \\
5 & 54 & 60
\end{pmatrix}
\]

\[\text{ctrans}(A)x \]

\[
\begin{pmatrix}
1 & 2 & 3 \\
54 & -112 & 12 \\
46 & -58 & 0 \\
4 & 5 & 6 \\
5 & 34 & -94 \\
5 & 78 & 60
\end{pmatrix}
\]

\[z = A*\text{ctrans}(A) \]

\[
\begin{align*}
z(0,0) &= (149.0, 0.0) \\
z(0,3) &= (-48.0, 26.0) \\
z(0,4) &= (-22.0, -75.0) \\
z(0,5) &= (74.0, -127.0) \\
z(1,1) &= (27.0, 0.0) \\
z(1,2) &= (-12.0, 6.0) \\
z(1,3) &= (5.0, -10.0) \\
z(1,4) &= (10.0, -28.0) \\
z(2,1) &= (-12.0, -6.0) \\
z(2,2) &= (20.0, 0.0) \\
z(2,3) &= (-48.0, -26.0) \\
z(2,4) &= (11.0, -8.0) \\
z(3,0) &= (67.0, 0.0) \\
z(3,1) &= (-17.0, 36.0) \\
z(3,2) &= (-46.0, 28.0) \\
z(3,3) &= (-22.0, 75.0) \\
z(3,4) &= (5.0, 10.0) \\
z(3,5) &= (-17.0, -36.0) \\
z(4,0) &= (312.0, 0.0) \\
z(4,1) &= (81.0, 126.0) \\
z(4,2) &= (74.0, 127.0) \\
z(4,3) &= (10.0, 28.0) \\
z(4,4) &= (-46.0, -28.0) \\
z(4,5) &= (81.0, -126.0) \\
z(5,0) &= (271.0, 0.0)
\end{align*}
\]
mat_add_band

Adds two band matrices, both in band storage mode, \(C \leftarrow \alpha A + \beta B \).

Synopsis

```c
#include <imsl.h>

float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha, float a[], int nlcb, int nucb, float beta, float b[], int *nlcc, int *nucc, ... , 0)
```

The type `double` function is `imsl_d_mat_add_band`.

Required Arguments

- `int n` (Input)
 - The order of the matrices \(A \) and \(B \).
- `int nlca` (Input)
 - Number of lower codiagonals of \(A \).
- `int nuca` (Input)
 - Number of upper codiagonals of \(A \).
- `float alpha` (Input)
 - Scalar multiplier for \(A \).
- `float a[]` (Input)
 - An \(n \) by \(n \) band matrix with \(nlca \) lower codiagonals and \(nuca \) upper codiagonals stored in band mode with dimension \((nlca + nuca + 1) \) by \(n \).
- `int nlcb` (Input)
 - Number of lower codiagonals of \(B \).
- `int nucb` (Input)
 - Number of upper codiagonals of \(B \).
- `float beta` (Input)
 - Scalar multiplier for \(B \).
- `float b[]` (Input)
 - An \(n \) by \(n \) band matrix with \(nlcb \) lower codiagonals and \(nucb \) upper codiagonals stored in band mode with dimension \((nlcb + nucb + 1) \) by \(n \).
- `int *nlcc` (Output)
 - Number of lower codiagonals of \(C \).
Return Value

A pointer to an array of type `float` containing the computed sum. `NULL` is returned in the event of an error or if the return matrix has no nonzero elements.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha, float a[], int nlcB, int nuCB, float beta, float b[], int *nlcc, int *nucc,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_SYMMETRIC,
0)
```

Optional Arguments

- `IMSL_A_TRANSPOSE`,
 - Replace A with A^T in the expression $\alpha A + \beta B$.

- `IMSL_B_TRANSPOSE`,
 - Replace B with B^T in the expression $\alpha A + \beta B$.

- `IMSL_SYMMETRIC`,
 - A, B and C are stored in band symmetric storage mode.

Description

The function `imsl_f_mat_add_band` forms the sum $\alpha A + \beta B$, given the scalars α and β, and the matrices A and B in band format. The transpose of A and/or B may be used during the computation if optional arguments are specified. Symmetric storage mode may be used if the optional argument is specified.

If `IMSL_SYMMETRIC` is specified, the return value for the number of lower codiagonals, `nlcc`, will be equal to 0.

If the return matrix equals `NULL`, the return value for the number of lower codiagonals, `nlcc`, will be equal to -1 and the number of upper codiagonals, `nucc`, will be equal to 0.
Examples

Example 1

Add two real matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and one lower codiagonal. Matrix B has no upper codiagonals and two lower codiagonals.

```c
#include <imsl.h>

int main()
{
    float a[] = {0.0, 2.0, 3.0, -1.0,
                 1.0, 1.0, 1.0, 1.0,
                 0.0, 3.0, 4.0, 0.0};
    float b[] = {3.0, 3.0, 3.0, 3.0,
                 1.0, -2.0, 1.0, 0.0,
                 -1.0, 2.0, 0.0, 0.0};
    int nucb = 0, nlcb = 2;
    int nuca = 1, nlca = 1;
    int nucc, nlcc;
    int n = 4, m;
    float alpha = 1.0, beta = 1.0;
    float *c;
    
    c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
                             nlcb, nucb, beta, b,
                             &nlcc, &nucc, 0);
    m = nlcc + nucc + 1;
    imsl_f_write_matrix("C = A + B", m, n, c, 0);
    imsl_free(c);
}
```

Output

```
C = A + B

1  2  3  4  
1  0  2  3  -1
2  4  4  4  4  
3  1  1  5  0
4  -1  2  0  0
```
Example 2

Compute $4A + 2B$, where

$$A = \begin{bmatrix} 3 & 4 & 0 & 0 \\ 4 & 2 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

#include <imsl.h>

int main()
{
 float a[] = {0.0, 4.0, 3.0, 1.0,
 3.0, 2.0, 1.0, 2.0};
 float b[] = {0.0, 2.0, 3.0, 1.0,
 5.0, 1.0, 2.0, 2.0};
 int nuca = 1, nlca = 1;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 float alpha = 4.0, beta = 2.0;
 float *c;

 c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc,
 IMSL_SYMMETRIC, 0);

 m = nucc + nlcc + 1;
 imsl_f_write_matrix("C = 4*A + 2*B\n", m, n, c, 0);
 imsl_free(c);
}

Output

$$C = 4A + 2B$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>20</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>10</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>
mat_add_band (complex)

Adds two band matrices, both in band storage mode, $C \leftarrow \alpha A + \beta B$.

Synopsis

```c
#include <imsl.h>

f_complex *imsl_c_mat_add_band(int n, int nlca, int nuca, f_complex alpha, f_complex a[],
                                 int nlcb, int nucb, f_complex beta, f_complex b[], int *nlcc, int *nucc, ...)
```

The type double function is imsl_z_mat_add_band.

Required Arguments

- `int n` (Input)
 The order of the matrices A and B.

- `int nlca` (Input)
 Number of lower codiagonals of A.

- `int nuca` (Input)
 Number of upper codiagonals of A.

- `f_complex alpha` (Input)
 Scalar multiplier for A.

- `f_complex a[]` (Input)
 An n by n band matrix with nlca lower codiagonals and nuca upper codiagonals stored in band mode with dimension $(nlca + nuca + 1)$ by n.

- `int nlcb` (Input)
 Number of lower codiagonals of B.

- `int nucb` (Input)
 Number of upper codiagonals of B.

- `f_complex beta` (Input)
 Scalar multiplier for B.

- `f_complex b[]` (Input)
 An n by n band matrix with nlcb lower codiagonals and nucb upper codiagonals stored in band mode with dimension $(nlcb + nucb + 1)$ by n.

- `int *nlcc` (Output)
 Number of lower codiagonals of C.
int *nucc (Output)
Number of upper codiagonals of C.

Return Value
A pointer to an array of type f_complex containing the computed sum. In the event of an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex alpha, f_complex a[], int nlcb, int nucb, f_complex beta, f_complex b[], int *nlcc, int *nucc,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
IMSL_SYMMETRIC,
0)

Optional Arguments

IMSL_A_TRANSPOSE,
Replace A with A^T in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with B^T in the expression αA + βB.

IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with A^H in the expression αA + βB.

IMSL_B_CONJUGATE_TRANSPOSE,
Replace B with B^H in the expression αA + βB.

IMSL_SYMMETRIC,
Matrix A, B, and C are stored in band symmetric storage mode.
Description

The function `imsl_c_mat_add_band` forms the sum $\alpha A + \beta B$, given the scalars α and β, and the matrices A and B in band format. The transpose or conjugate transpose of A and/or B may be used during the computation if optional arguments are specified. Symmetric storage mode may be used if the optional argument is specified.

If `IMSL_SYMMETRIC` is specified, the return value for the number of lower codiagonals, $nlcc$, will be equal to 0.

If the return matrix equals `NULL`, the return value for the number of lower codiagonals, $nlcc$, will be equal to -1 and the number of upper codiagonals, $nucc$, will be equal to 0.

Examples

Example 1

Add two complex matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and one lower codiagonal. Matrix B has no upper codiagonals and two lower codiagonals.

```c
#include <imsl.h>

int main()
{
    f_complex a[] =
        {{0.0, 0.0}, {2.0, 1.0}, {3.0, 3.0}, {-1.0, 0.0},
         {1.0, 1.0}, {1.0, 3.0}, {1.0, -2.0}, {1.0, 5.0},
         {0.0, 0.0}, {3.0, -2.0}, {4.0, 0.0}, {0.0, 0.0}};
    f_complex b[] =
        {{3.0, 1.0}, {3.0, 5.0}, {3.0, -1.0}, {3.0, 1.0},
         {1.0, -3.0}, {-2.0, 0.0}, {1.0, 2.0}, {0.0, 0.0},
         {-1.0, 4.0}, {2.0, 1.0}, {0.0, 0.0}, {0.0, 0.0}};

    int nucb = 0, nlcb = 2;
    int nuca = 1, nlca = 1;
    int nucc, nlcc;
    int n = 4, m;
    f_complex *c;
    f_complex alpha = {1.0, 0.0};
    f_complex beta = {1.0, 0.0};

    c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
                              nlcb, nucb, beta, b,
                              &nlcc, &nucc, 0);

    m = nlcc + nucc + 1;
    imsl_c_write_matrix("C = A + B", m, n, c, 0);
    imsl_free(c);
}
```
Output

\[
C = A + B
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 (0, 0) & 2 (1, 1) & 3 (3, 3) \\
2 (4, 2) & 4 (4, 8) & 4 (4, -3) \\
3 (1, -3) & 1 (1, -2) & 5 (2) \\
4 (-1, 4) & 2 (1) & 0 (0) \\
4 & & \\
1 (-1, 0) & \\
2 (4, 6) & \\
3 (0, 0) & \\
4 (0, 0) & \\
\end{array}
\]

Example 2

Compute

\[(3 + 2i)A^H + (4 + i)B^H\]

where

\[
A = \begin{bmatrix} 2+3i & 1+3i & 0 & 0 \\
0 & 6+2i & 3+i & 0 \\
0 & 0 & 4+i & 2+5i \\
0 & 0 & 0 & 1+2i \end{bmatrix}
\]

and

\[
B = \begin{bmatrix} 1+2i & 5+i & 0 & 0 \\
4+i & 1+3i & 2+3i & 0 \\
0 & 2+3i & 3+2i & 4+2i \\
0 & 0 & 2+6i & 1+4i \end{bmatrix}
\]

#include <imsl.h>

int main()
{
 f_complex a[] = {
 {0.0, 0.0}, {1.0, 3.0}, {3.0, 1.0}, {2.0, 5.0},
 {2.0, 3.0}, {6.0, 2.0}, {4.0, 1.0}, {1.0, 2.0}};
 f_complex b[] = {
 {0.0, 0.0}, {5.0, 1.0}, {2.0, 3.0}, {4.0, 2.0},
 {1.0, 2.0}, {1.0, 3.0}, {3.0, 2.0}, {1.0, 4.0},
 {4.0, 1.0}, {2.0, 3.0}, {2.0, 6.0}, {0.0, 0.0}};
 int nuca = 1, nlca = 0;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 f_complex *c;
 f_complex alpha = {3.0, 2.0};
 f_complex beta = {4.0, 1.0};
 c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc,
 IMSL_A_CONJUGATE_TRANSPOSE,
 IMSL_B_CONJUGATE_TRANSPOSE, 0);
m = nlcc + nucc + 1;
imsl_c_write_matrix("C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)\n", m, n, c, 0);
imsl_free(c);
}

Output

\[
C = (3+2i)\cdot\text{ctrans}(A) + (4+i)\cdot\text{ctrans}(B)
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & (0, 0) & (17, 0) & (11, -10) \\
2 & (18, -12) & (29, -5) & (28, 0) \\
3 & (30, -6) & (22, -7) & (34, -15) \\
4 & & & \\
1 & (14, -22) & & \\
2 & (15, -19) & & \\
3 & (0, 0) & & \\
\end{array}
\]
mat_add_coordinate

Performs element-wise addition on two real matrices stored in coordinate format, $C = \alpha A + \beta B$.

Synopsis

```
#include <imsl.h>

imsl_f_sparse_elem* imsl_f_mat_add_coordinate(int n, int nz_a, float alpha,
                         imsl_f_sparse_elem a[], int nz_b, float beta, imsl_f_sparse_elem b[], int *nz_c, ..., 0)
```

The type double function is imsl_d_mat_add_coordinate.

Required Arguments

- **int n** (Input)
 - The order of the matrices A and B.

- **int nz_a** (Input)
 - Number of nonzeros in the matrix A.

- **float alpha** (Input)
 - Scalar multiplier for A.

- **imsl_f_sparse_elem a[]** (Input)
 - Vector of length nz_a containing the location and value of each nonzero entry in the matrix A.

- **int nz_b** (Input)
 - Number of nonzeros in the matrix B.

- **float beta** (Input)
 - Scalar multiplier for B.

- **imsl_f_sparse_elem b[]** (Input)
 - Vector of length nz_b containing the location and value of each nonzero entry in the matrix B.

- **int *nz_c** (Output)
 - The number of nonzeros in the sum $\alpha A + \beta B$.

Return Value

A pointer to an array of type imsl_f_sparse_elem containing the computed sum. In the event of an error or if the return matrix has no nonzero elements, NULL is returned.
Synopsis with Optional Arguments

#include <imsl.h>

imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float alpha,
 imsl_f_sparse_elem a[], int nz_b, float beta, imsl_f_sparse_elem b[], int *nz_c,

 IMSL_A_TRANSPOSE,
 IMSL_B_TRANSPOSE,

 0)

Optional Arguments

 IMSL_A_TRANSPOSE,
 Replace A with A^T in the expression $\alpha A + \beta B$.

 IMSL_B_TRANSPOSE,
 Replace B with B^T in the expression $\alpha A + \beta B$.

Description

The function imsl_f_mat_add_coordinate forms the sum $\alpha A + \beta B$, given the scalars α and β, and the matrices A and B in coordinate format. The transpose of A and/or B may be used during the computation if optional arguments are specified. The method starts by storing A in a linked list data structure, and performs the multiply by α. Next the data in matrix B is traversed and if the coordinates of a nonzero element correspond to those of a nonzero element in A, that entry in the linked list is updated. Otherwise, a new node in the linked list is created. The multiply by β occurs at this time. Lastly, the linked list representation of C is converted to coordinate representation, omitting any elements that may have become zero through cancellation.

Examples

Example 1

Add two real matrices of order 4 stored in coordinate format. Matrix A has five nonzero elements. Matrix B has seven nonzero elements.

#include <imsl.h>
#include <stdio.h>

int main ()
{
 imsl_f_sparse_elem a[] =
 {0, 0, 3,
 0, 3, -1,
1, 2, 5,
2, 0, 1,
3, 1, 3};
Imsl_f_sparse_elem b[] =
{0, 1, -2,
0, 3, 1,
1, 0, 3,
2, 2, 5,
2, 3, 1,
3, 0, 4,
3, 1, 3};

int nz_a = 5, nz_b = 7, nz_c;
int n = 4, i;
float alpha = 1.0, beta = 1.0;
Imsl_f_sparse_elem *c;

c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
nz_b, beta, b, &nz_c, 0);

printf(" row column value\n");
for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);

imsl_free(c);

Example 2

Compute $2A^T + 2B^T$, where

$$A = \begin{bmatrix} 3 & 0 & 0 & -1 \\
0 & 0 & 5 & 0 \\
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & -2 & 0 & 1 \\
3 & 0 & 0 & 0 \\
0 & 0 & 5 & 1 \\
4 & 3 & 0 & 0 \end{bmatrix}$$

#include <imsl.h>
```
#include <stdio.h>

int main ()
{
    Imsl_f_sparse_elem a[] =
    {0, 0, 3,
     0, 3, -1,
     1, 2, 5,
     2, 0, 1,
     3, 1, 3};
    Imsl_f_sparse_elem b[] =
    {0, 1, -2,
     0, 3, 1,
     1, 0, 3,
     2, 2, 5,
     2, 3, 1,
     3, 0, 4,
     3, 1, 3};

    int nz_a = 5, nz_b = 7, nz_c;
    int n = 4, i;
    float alpha = 2.0, beta = 2.0;
    Imsl_f_sparse_elem *c;

    c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
                                  nz_b, beta, b, &nz_c,
                                  IMSL_A_TRANSPOSE,
                                  IMSL_B_TRANSPOSE,
                                  0);

    printf(" row column value\n");

    for (i = 0; i < nz_c; i++)
        printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);
    imsl_free(c);
}
```

Output

```
row column value
0 0 6.00
0 1 6.00
0 2 2.00
0 3 8.00
1 0 -4.00
1 3 12.00
2 1 10.00
2 2 10.00
3 2 2.00
```
mat_add_coordinate (complex)

Performs element-wise addition on two complex matrices stored in coordinate format, \(C \leftarrow \alpha A + \beta B \).

Synopsis

```c
#include <imsl.h>

Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a, f_complex alpha,
                                              Imsl_c_sparse_elem a[], int nz_b, f_complex beta, Imsl_c_sparse_elem b[], int *nz_c, ... , 0)
```

The type `double` function is `imsl_z_mat_add_coordinate`.

Required Arguments

- `int n` *(Input)*
 - The order of the matrices \(A \) and \(B \).

- `int nz_a` *(Input)*
 - Number of nonzeros in the matrix \(A \).

- `f_complex alpha` *(Input)*
 - Scalar multiplier for \(A \).

- `Imsl_c_sparse_elem a[]` *(Input)*
 - Vector of length \(nz_a \) containing the location and value of each nonzero entry in the matrix \(A \).

- `int nz_b` *(Input)*
 - Number of nonzeros in the matrix \(B \).

- `f_complex beta` *(Input)*
 - Scalar multiplier for \(B \).

- `Imsl_c_sparse_elem b[]` *(Input)*
 - Vector of length \(nz_b \) containing the location and value of each nonzero entry in the matrix \(B \).

- `Int *nz_c` *(Output)*
 - The number of nonzeros in the sum \(\alpha A + \beta B \).

Return Value

A pointer to an array of type `Imsl_c_sparse_elem` containing the computed sum. In the event of an error or if the return matrix has no nonzero elements, `NULL` is returned.
Synopsis with Optional Arguments

```
#include <imsl.h>

imslc_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a, f_complex alpha,
                                          imslc_sparse_elem a[], int nz_b, f_complex beta, imslc_sparse_elem b[], int *nz_c,
                                          IMSL_A_TRANSPOSE,
                                          IMSL_B_TRANSPOSE,
                                          IMSL_A_CONJUGATE_TRANSPOSE,
                                          IMSL_B_CONJUGATE_TRANSPOSE,
                                          0)
```

Optional Arguments

- **IMSL_A_TRANSPOSE**,
 - Replace A with A^T in the expression $\alpha A + \beta B$.

- **IMSL_B_TRANSPOSE**,
 - Replace B with B^T in the expression $\alpha A + \beta B$.

- **IMSL_A_CONJUGATE_TRANSPOSE**,
 - Replace A with A^H in the expression $\alpha A + \beta B$.

- **IMSL_B_CONJUGATE_TRANSPOSE**,
 - Replace B with B^H in the expression $\alpha A + \beta B$.

Description

The function `imsl_c_mat_add_coordinate` forms the sum $\alpha A + \beta B$, given the scalars α and β and the matrices A and B in coordinate format. The transpose or conjugate transpose of A and/or B may be used during the computation if optional arguments are specified. The method starts by storing A in a linked list data structure, and performs the multiply by α. Next the data in matrix B is traversed and if the coordinates of a nonzero element correspond to those of a nonzero element in A, that entry in the linked list is updated. Otherwise, a new node in the linked list is created. The multiply by β occurs at this time. Lastly, the linked list representation of C is converted to coordinate representation, omitting any elements that may have become zero through cancellation.
Examples

Example 1
Add two complex matrices of order 4 stored in coordinate format. Matrix A has five nonzero elements. Matrix B has seven nonzero elements.

```c
#include <imsl.h>
#include <stdio.h>

int main ()
{
    Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
    0, 3, -1, 2,
    1, 2, 5, -1,
    2, 0, 1, 2,
    3, 1, 3, 0};

    Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
    0, 3, 1, -2,
    1, 0, 3, 0,
    2, 2, 5, 2,
    2, 3, 1, 4,
    3, 0, 4, 0,
    3, 1, 3, -2};

    int                nz_a = 5, nz_b = 7, nz_c, n = 4, i;
    f_complex          alpha = {1.0, 0.0}, beta = {1.0, 0.0};
    Imsl_c_sparse_elem *c;
    c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a, nz_b, beta,
    b, &nz_c,
    0);

    printf(" row column    value
");
    for (i = 0; i < nz_c; i++)
        printf("%3d %5d %8.2f %8.2f
",
            c[i].row, c[i].col, c[i].val.re, c[i].val.im);
}
```

Output

<table>
<thead>
<tr>
<th>row</th>
<th>column</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3.00 4.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-2.00 1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3.00 0.00</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5.00 -1.00</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1.00 2.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5.00 2.00</td>
</tr>
</tbody>
</table>
Example 2

Compute $2 + 3i * A^T + 2 - i * B^T$, where

$$A = \begin{bmatrix} 3 + 4i & 0 & 0 & -1 + 2i \\ 0 & 0 & 5 - i & 0 \\ 1 + 2i & 0 & 0 & 0 \\ 0 & 3 + 0i & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & -2 + i & 0 & 1 - 2i \\ 3 + 0i & 0 & 0 & 0 \\ 0 & 0 & 5 + 2i & 1 + 4i \\ 4 + 0i & 3 - 2i & 0 & 0 \end{bmatrix}$$

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
    Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
                            0, 3, -1, 2,
                            1, 2, 5, -1,
                            2, 0, 1, 2,
                            3, 1, 3, 0};

    Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
                            0, 3, 1, -2,
                            1, 0, 3, 0,
                            2, 2, 5, 2,
                            2, 3, 1, 4,
                            3, 0, 4, 0,
                            3, 1, 3, -2};

    int nz_a = 5, nz_b = 7, nz_c, n = 4, i;
    f_complex alpha = {2.0, 3.0}, beta = {2.0, -1.0};
    Imsl_c_sparse_elem *c;

    c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
                                   nz_b, beta, b, &nz_c,
                                   IMSL_A_TRANSPOSE,
                                   IMSL_B_TRANSPOSE,
                                   0);

    printf(" row column value\n");
    for (i = 0; i < nz_c; i++)
        printf("%3d %5d %8.2f %8.2f\n",
                c[i].row, c[i].col, c[i].val.re, c[i].val.im);
}
```
Output

<table>
<thead>
<tr>
<th>row</th>
<th>column</th>
<th>value</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-6.00</td>
<td>17.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6.00</td>
<td>-3.00</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>-4.00</td>
<td>7.00</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>8.00</td>
<td>-4.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-3.00</td>
<td>4.00</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>10.00</td>
<td>2.00</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>13.00</td>
<td>13.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>12.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-8.00</td>
<td>-4.00</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>
matrix_norm

Computes various norms of a rectangular matrix.

Synopsis

```c
#include <imsl.h>

float imsl_f_matrix_norm (int m, int n, float a[], ...) 0
```

The type `double` function is `imsl_d_matrix_norm`.

Required Arguments

- `int m` (Input)

 The number of rows in matrix A.

- `int n` (Input)

 The number of columns in matrix A.

- `float a[]` (Input)

 Matrix for which the norm will be computed.

Return Value

The requested norm of the input matrix. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_matrix_norm (int m, int n, float a[],
    IMSL_ONE_NORM,
    IMSL_INF_NORM,
    0)
```

Optional Arguments

- `IMSL_ONE_NORM`,

 Compute the 1-norm of matrix A,
IMSL_INF_NORM,
Compute the infinity norm of matrix A.

Description

By default, imsl_f_matrix_norm computes the Frobenius norm

$$\|A\|_2 = \left[\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{ij}^2 \right]^{\frac{1}{2}}$$

If the option IMSL_ONE_NORM is selected, the 1-norm

$$\|A\|_1 = \max_{0 \leq j \leq n-1} \sum_{i=0}^{m-1} |A_{ij}|$$

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

$$\|A\|_\infty = \max_{0 \leq i \leq m-1} \sum_{j=0}^{n-1} |A_{ij}|$$

is returned.

Example

Compute the Frobenius norm, infinity norm, and one norm of matrix A.

#include <imsl.h>

int main()
{
 float a[] = {1.0, 2.0, -2.0, 3.0,
 -2.0, 1.0, 3.0, 0.0,
 0.0, 3.0, 1.0, -7.0,
 5.0, -2.0, 7.0, 6.0,
 4.0, 3.0, 4.0, 0.0};
 int m = 5, n = 4;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm(m, n, a, 0);
 inf_norm = imsl_f_matrix_norm(m, n, a, IMSL_INF_NORM, 0);
 one_norm = imsl_f_matrix_norm(m, n, a, IMSL_ONE_NORM, 0);
```c
printf("Frobenius norm = %f\n", frobenius_norm);
printf("Infinity norm = %f\n", inf_norm);
printf("One norm = %f\n", one_norm);
}
```

Output

Frobenius norm = 15.684387
Infinity norm = 20.000000
One norm = 17.000000
matrix_norm_band

Computes various norms of a matrix stored in band storage mode.

Synopsis

```c
#include <imsl.h>

float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc, ...) 0)
```

The type `double` function is `imsl_d_matrix_norm_band`.

Required Arguments

- **int n** (Input)
 The order of matrix `A`.

- **float a[]** (Input)
 Matrix for which the norm will be computed.

- **int nlc** (Input)
 Number of lower codiagonals of `A`.

- **int nuc** (Input)
 Number of upper codiagonals of `A`.

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc, 
    IMSL_ONE_NORM, 
    IMSL_INF_NORM, 
    IMSL_SYMMETRIC, 
    0)
```
Optional Arguments

IMSL_ONE_NORM,
 Compute the 1-norm of matrix A,

IMSL_INF_NORM,
 Compute the infinity norm of matrix A,

IMSL_SYMMETRIC,
 Matrix A is stored in band symmetric storage mode.

Description

By default, imsl_f_matrix_norm_band computes the Frobenius norm

\[\|A\|_2 = \left[\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{ij}^2 \right]^{\frac{1}{2}} \]

If the option IMSL_ONE_NORM is selected, the 1-norm

\[\|A\|_1 = \max_{0 \leq j \leq n-1} \sum_{i=0}^{m-1} |A_{ij}| \]

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

\[\|A\|_\infty = \max_{0 \leq i \leq m-1} \sum_{j=0}^{n-1} |A_{ij}| \]

is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is stored in band storage mode.

```c
#include <imsl.h>

int main()
{
  float a[] = {0.0, 2.0, 3.0, -1.0,
               1.0, 1.0, 1.0, 1.0,
               0.0, 3.0, 4.0, 0.0};
  int         nlc = 1, nuc = 1;
  int         n = 4;
```
float frobenius_norm, inf_norm, one_norm;

frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc, 0);
inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM, 0);
one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM, 0);

printf("Frobenius norm = %f\n", frobenius_norm);
printf("Infinity norm = %f\n", inf_norm);
printf("One norm = %f\n", one_norm);

Output

Frobenius norm = 6.557438
Infinity norm = 5.000000
One norm = 8.000000

Example 2

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is stored in symmetric band storage mode.

#include <imsl.h>

int main()
{
 float a[] = {0.0, 0.0, 7.0, 3.0, 1.0, 4.0,
 0.0, 5.0, 1.0, 2.0, 1.0, 2.0,
 1.0, 2.0, 4.0, 6.0, 3.0, 1.0};
 int nlc = 2, nuc = 2;
 int n = 6;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_SYMMETRIC, 0);
 inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);
 one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
}
printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 16.941074
Infinity norm = 16.000000
One norm = 16.000000
matrix_norm_coordinate

Computes various norms of a matrix stored in coordinate format.

Synopsis

```c
#include <imsl.h>

float imsl_f_matrix_norm_coordinate (int m, int n, int nz, Imsl_f_sparse_elem a[], ..., 0)
```

The type `double` function is `imsl_d_matrix_norm_coordinate`.

Required Arguments

- `int m` (Input)
 - The number of rows in matrix A.
- `int n` (Input)
 - The number of columns in matrix A.
- `int nz` (Input)
 - The number of nonzeros in the matrix A.
- `Imsl_f_sparse_elem a[]` (Input)
 - Matrix for which the norm will be computed.

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

float imsl_f_matrix_norm_coordinate (int m, int n, int nz, Imsl_f_sparse_elem a[],

  IMSL_ONE_NORM,
  IMSL_INF_NORM,
  IMSL_SYMMETRIC,
  0)
```
Optional Arguments

IMSL_ONE_NORM,
Compute the 1-norm of matrix A.

IMSL_INF_NORM,
Compute the infinity norm of matrix A.

IMSL_SYMMETRIC,
Matrix A is stored in symmetric coordinate format.

Description

By default, imsl_f_matrix_norm_coordinate computes the Frobenius norm

$$
\|A\|_2 = \left[\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{ij}^2 \right]^{\frac{1}{2}}
$$

If the option IMSL_ONE_NORM is selected, the 1-norm

$$
\|A\|_1 = \max_{0 \leq j \leq n-1} \sum_{i=0}^{m-1} |A_{ij}|
$$

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

$$
\|A\|_\infty = \max_{0 \leq i \leq m-1} \sum_{j=0}^{n-1} |A_{ij}|
$$

is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is stored in coordinate format.

```c
#include <imsl.h>

int main()
{
    Imsl_f_sparse_elem a[] = {0, 0, 10.0,
                              1, 1, 10.0,
                              1, 2, -3.0,
                              1, 3, -1.0,
                              2, 2, 15.0,
                            };
```
Example 2

Compute the Frobenius norm, infinity norm and one norm of matrix A. Matrix A is stored in symmetric coordinate format.

```c
#include <imsl.h>

int main()
{
    Imsl_f_sparse_elem a[] = {0, 0, 10.0,
                              0, 2, -1.0,
                              0, 5, 5.0,
                              1, 3, 2.0,
                              1, 4, 3.0,
                              2, 2, 3.0,
                              2, 5, 4.0,
                              4, 4, -1.0,
                              3, 0, -2.0,
                              3, 3, 10.0,
                              3, 4, -1.0,
                              4, 0, -1.0,
                              4, 3, -5.0,
                              4, 4, 1.0,
                              4, 5, -3.0,
                              5, 0, -1.0,
                              5, 1, -2.0,
                              5, 5, 6.0};

    int    m = 6, n = 6;
    int    nz = 15;
    float  frobenius_norm, inf_norm, one_norm;

    frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a, 0);
    inf_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a,
                                              IMSL_INF_NORM, 0);
    one_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a,
                                              IMSL_ONE_NORM, 0);

    printf("Frobenius norm = %f\n", frobenius_norm);
    printf("Infinity norm = %f\n", inf_norm);
    printf("One norm      = %f\n", one_norm);
}
```

Output

Frobenius norm = 24.839485
Infinity norm = 15.000000
One norm = 18.000000
4, 5, 4.0};
int m = 6, n = 6;
int nz = 9;
float frobenius_norm, inf_norm, one_norm;

frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a,
 IMSL_SYMMETRIC, 0);

inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);

one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);

printf("Frobenius norm = %f
", frobenius_norm);
printf("Infinity norm = %f\n", inf_norm);
printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 15.874508
Infinity norm = 16.000000
One norm = 16.000000
generate_test_band

Generates test matrices of class and $E(n, c)$. Returns in band or band symmetric format.

Synopsis

```c
#include <imsl.h>
float *imsl_f_generate_test_band (int n, int c, ..., 0)
```

The function imsl_d_generate_test_band is the double precision analogue.

Required Arguments

- `int n` (Input)
 - Number of rows in the matrix.
- `int c` (Input)
 - Parameter used to alter structure, also the number of upper/lower codiagonals.

Return Value

A pointer to a vector of type `float`. To release this space, use `imsl_free`. If no test was generated, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>
void *imsl_f_generate_test_band (int n, int c,
                                 IMSL_SYMMETRIC_STORAGE,
                                 0)
```

Optional Arguments

- `IMSL_SYMMETRIC_STORAGE`,
 - Return matrix stored in band symmetric format.
Description

The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class $E(n, c)$, to which we will gener-
ally refer to as E-matrices, are symmetric, positive definite matrices of order n with 4 in the diagonal and −1 in the
superdiagonal and subdiagonal. In addition there are two bands with −1 at a distance c from the diagonal. More
precisely:

\[
\begin{array}{ll}
a_{i,i} = 4 & 0 \leq i < n \\
a_{i,i+1} = -1 & 0 \leq i < n - 1 \\
a_{i+1,i} = -1 & 0 \leq i < n - 1 \\
a_{i,i+c} = -1 & 0 \leq i < n - c \\
a_{i+c,i} = -1 & 0 \leq i < n - c \\
\end{array}
\]

for any $n \geq 3$ and $2 \leq c \leq n - 1$.

E-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differential
equations.

By default, `imsl_f_generate_test_band` returns an E-matrix in band storage mode. Option
`IMSL_SYMMETRIC_STORAGE` returns a matrix in band symmetric storage mode.

Example

This example generates the matrix

\[
E(5, 3) = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & 0 & -1 \\ 0 & -1 & 4 & -1 & 0 \\ -1 & 0 & -1 & 4 & -1 \\ 0 & -1 & 0 & -1 & 4 \end{bmatrix}
\]

and prints the result.

```c
#include <imsl.h>

int main()
{
    int n = 5;
    int c = 3;
    float *a;

    a = imsl_f_generate_test_band (n, c, 0);
    imsl_f_write_matrix ("E(5,3) in band storage", 2*c + 1, n, a, 0);
}
```
E(5,3) in band storage

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
generate_test_band (complex)

Generates test matrices of class $E_c(n, c)$. Returns in band or band symmetric format.

Synopsis

```
#include <imsl.h>

f_complex *imsl_c_generate_test_band (int n, int c, ..., 0)
```

The function imsl_z_generate_test_band is the double precision analogue.

Required Arguments

- `int n` (Input)
 - Number of rows in the matrix.
- `int c` (Input)
 - Parameter used to alter structure, also the number of upper/lower codiagonals

Return Value

A pointer to a vector of type `f_complex`. To release this space, use `imsl_free`. If no test was generated, then `NULL` is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>

void *imsl_c_generate_test_band (int n, int c,

    IMSL_SYMMETRIC_STORAGE,

    0)
```

Optional Arguments

```
IMSL_SYMMETRIC_STORAGE,
    Return matrix stored in band symmetric format.
Description

We use the same nomenclature as Østerby and Zlatev (1982). Test matrices of class $E(n, c)$, to which we will gener-
ally refer to as $E$-matrices, are symmetric, positive definite matrices of order $n$ with $(6.0, 0.0)$ in the diagonal, $(-1.0, 1.0)$ in the superdiagonal and $(-1.0, -1.0)$ subdiagonal. In addition there are two bands at a distance $c$ from the
diagonal with $(-1.0, 1.0)$ in the upper codiagonal and $(-1.0, -1.0)$ in the lower codiagonal. More precisely:

\[
\begin{array}{ll}
    a_{i,i} = 6 & 0 \leq i < n \\
    a_{i,i+1} = -1 - i & 0 \leq i < n - 1 \\
    a_{i+1,i} = -1 - i & 0 \leq i < n - 1 \\
    a_{i,i+c} = -1 + i & 0 \leq i < n - c \\
    a_{i+c,i} = -1 + i & 0 \leq i < n - c
\end{array}
\]

for any $n \geq 3$ and $2 \leq c \leq n - 1$.

$E$-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differential
equations.

By default, `imsl_c_generate_test_band` returns an $E$-matrix in band storage mode. Option
`IMSL_SYMMETRIC_STORAGE` returns a matrix in band symmetric storage mode.
Example

This example generates the following matrix and prints the result:

\[
E_c(5, 3) = \begin{bmatrix}
6 & -1-i & 0 & -1+i & 0 \\
-1-i & 6 & -1+i & 0 & -1+i \\
0 & -1-i & 6 & -1+i & 0 \\
-1-i & 0 & -1-i & 6 & -1+i \\
0 & -1-i & 0 & -1-i & 6
\end{bmatrix}
\]

```c
#include <imsl.h>

int main()
{
 int i;
 int n = 5;
 int c = 3;
 f_complex *a;

 a = imsl_c_generate_test_band (n, c, 0);

 imsl_c_write_matrix ("E(5,3) in band storage", 2*c + 1, n, a, 0);
}
```

Output

```
E(5,3) in band storage

1 2 3
1 (0, 0) (0, 0) (0, 0)
2 (0, 0) (0, 0) (0, 0)
3 (0, 0) (-1, 1) (-1, 1)
4 (6, 0) (6, 0) (6, 0)
5 (-1, -1) (-1, -1) (-1, -1)
6 (0, 0) (0, 0) (0, 0)
7 (-1, -1) (-1, -1) (0, 0)

4 5
1 (-1, 1) (-1, 1)
2 (0, 0) (0, 0)
3 (-1, 1) (-1, 1)
4 (6, 0) (6, 0)
5 (-1, -1) (0, 0)
6 (0, 0) (0, 0)
7 (0, 0) (0, 0)
```
generate_test_coordinate

Generates test matrices of class $D(n, c)$ and $E(n, c)$. Returns in either coordinate format.

Synopsis

```c
#include <imsl.h>

imsl_f_sparse_elem *imsl_f_generate_test_coordinate (int n, int c, int *nz, ..., 0)
```

The function `imsl_d_generate_test_coordinate` is the double precision analogue.

Required Arguments

- `int n` (Input)
  Number of rows in the matrix.
- `int c` (Input)
  Parameter used to alter structure.
- `int *nz` (Output)
  Length of the return vector.

Return Value

A pointer to a vector of length $nz$ of type `imsl_f_sparse_elem`. To release this space, use `imsl_free`. If no test was generated, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void *imsl_f_generate_test_coordinate (int n, int c, int *nz,

 IMSL_D_MATRIX,

 IMSL_SYMMETRIC_STORAGE,

 0)
```

Optional Arguments

- `IMSL_D_MATRIX`
  Return a matrix of class $D(n, c)$.
  Default: Return a matrix of class $E(n, c)$.
IMSL_SYMMETRIC_STORAGE,

For coordinate representation, return only values for the diagonal and lower triangle. This option is not allowed if IMSL_D_MATRIX is specified.

Description

We use the same nomenclature as Østerby and Zlatev (1982). Test matrices of class $E(n, c)$, to which we will generally refer to as $E$-matrices, are symmetric, positive definite matrices of order $n$ with 4 in the diagonal and $-1$ in the superdiagonal and subdiagonal. In addition there are two bands with $-1$ at a distance $c$ from the diagonal. More precisely

<table>
<thead>
<tr>
<th>$a_{ij}$</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{i,i} = 4$</td>
<td>$0 \leq i &lt; n$</td>
</tr>
<tr>
<td>$a_{i,i+1} = -1$</td>
<td>$0 \leq i &lt; n - 1$</td>
</tr>
<tr>
<td>$a_{i+1,i} = -1$</td>
<td>$0 \leq i &lt; n - 1$</td>
</tr>
<tr>
<td>$a_{i,i+c} = -1$</td>
<td>$0 \leq i &lt; n - c$</td>
</tr>
<tr>
<td>$a_{i+c,i} = -1$</td>
<td>$0 \leq i &lt; n - c$</td>
</tr>
</tbody>
</table>

for any $n \geq 3$ and $2 \leq c \leq n - 1$.

$E$-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differential equations.

Test matrices of class $D(n, c)$ are square matrices of order $n$ with a full diagonal, three bands at a distance $c$ above the diagonal and reappearing cyclically under the diagonal, and a $10 \times 10$ triangle of elements in the upper right corner. More precisely:

<table>
<thead>
<tr>
<th>$a_{ij}$</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{i,i} = 1$</td>
<td>$0 \leq i &lt; n$</td>
</tr>
<tr>
<td>$a_{i,i+c} = i + 2$</td>
<td>$0 \leq i &lt; n - c$</td>
</tr>
<tr>
<td>$a_{i,i+n+c} = i + 2$</td>
<td>$n - c \leq i &lt; n$</td>
</tr>
<tr>
<td>$a_{i,i+c+1} = -(i + 1)$</td>
<td>$0 \leq i &lt; n - c - 1$</td>
</tr>
<tr>
<td>$a_{i,i+n+c+1} = -(i + 1)$</td>
<td>$n - c - 1 \leq i &lt; n$</td>
</tr>
<tr>
<td>$a_{i,i+c+2} = 16$</td>
<td>$0 \leq i &lt; n - c - 2$</td>
</tr>
<tr>
<td>$a_{i,i+n+c+2} = 16$</td>
<td>$n - c - 2 \leq i &lt; n$</td>
</tr>
<tr>
<td>$a_{i,n-11+i+j} = 100j$</td>
<td>$1 \leq i &lt; 11 - j, \ 0 \leq j &lt; 10$</td>
</tr>
</tbody>
</table>

for any $n \geq 14$ and $1 \leq c \leq n - 13$. 
We now show the sparsity pattern of $D(20, 5)$

By default `imsl_f_generate_test_coordinate` returns an $E$-matrix in coordinate representation. By specifying the `IMSL_SYMMETRIC_STORAGE` option, only the diagonal and lower triangle are returned. The scalar $\text{nz}$ will contain the number of nonzeros in this representation.

The option `IMSL_D_MATRIX` will return a matrix of class $D(n, c)$. Since $D$-matrices are not symmetric, the `IMSL_SYMMETRIC_STORAGE` option is not allowed.

**Examples**

**Example 1**

This example generates the matrix

```
 x
 x
 x
 x
 x
```

By default `imsl_f_generate_test_coordinate` returns an $E$-matrix in coordinate representation. By specifying the `IMSL_SYMMETRIC_STORAGE` option, only the diagonal and lower triangle are returned. The scalar $\text{nz}$ will contain the number of nonzeros in this representation.

The option `IMSL_D_MATRIX` will return a matrix of class $D(n, c)$. Since $D$-matrices are not symmetric, the `IMSL_SYMMETRIC_STORAGE` option is not allowed.
and prints the result.

```
#include <imsl.h>
#include <stdio.h>

int main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 printf("row col val\n");
 for (i=0; i<nz; i++)
 printf(" %d %d %5.1f",
 a[i].row, a[i].col, a[i].val);
}
```

**Output**

```
row col val
0 0 4.0
1 1 4.0
2 2 4.0
3 3 4.0
4 4 4.0
1 0 -1.0
2 1 -1.0
3 2 -1.0
4 3 -1.0
0 1 -1.0
1 2 -1.0
2 3 -1.0
3 4 -1.0
3 0 -1.0
4 1 -1.0
0 3 -1.0
1 4 -1.0
```
Example 2

In this example, the matrix $E(5, 3)$ is returned in symmetric storage and printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;

 a = imsl_f_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d %5.1f\n",
 a[i].row, a[i].col, a[i].val);
}
```

Output

```
row col val
0 0 4.0
1 1 4.0
2 2 4.0
3 3 4.0
4 4 4.0
1 0 -1.0
2 1 -1.0
3 2 -1.0
4 3 -1.0
3 0 -1.0
4 1 -1.0
```
generate_test_coordinate (complex)

Generates test matrices of class $D(n, c)$ and $E(n, c)$. Returns in either coordinate or band storage format, where possible.

Synopsis

```c
#include <imsl.h>

void *imsl_c_generate_test_coordinate (int n, int c, int *nz, ..., 0)
```

The function is `imsl_z_generate_test_coordinate` is the double precision analogue.

Required Arguments

- `int n` (Input)
  - Number of rows in the matrix.
- `int c` (Input)
  - Parameter used to alter structure.
- `int *nz` (Output)
  - Length of the return vector.

Return Value

A pointer to a vector of length $nz$ of type `imsl_c_sparse_elem`. To release this space, use `imsl_free`. If no test was generated, then `NULL` is returned.

Synopsis with Optional Arguments

```c
#include <imsl.h>

void *imsl_c_generate_test_coordinate (int n, int c, int *nz,

 IMSL_D_MATRIX,
 IMSL_SYMMETRIC_STORAGE,
 0)
```
Optional Arguments

IMSL_D_MATRIX
Return a matrix of class $D(n, c)$.
Default: Return a matrix of class $E(n, c)$.

IMSL_SYMMETRIC_STORAGE,
For coordinate representation, return only values for the diagonal and lower triangle. This option is not allowed if IMSL_D_MATRIX is specified.

Description

The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class $E(n, c)$, to which we will generally refer to as $E$-matrices, are symmetric, positive definite matrices of order $n$ with $(6.0, 0.0)$ in the diagonal, $(-1.0, 1.0)$ in the superdiagonal and $(-1.0, -1.0)$ subdiagonal. In addition there are two bands at a distance $c$ from the diagonal with $(-1.0, 1.0)$ in the upper codiagonal and $(-1.0, -1.0)$ in the lower codiagonal. More precisely:

\[
\begin{align*}
a_{i,i} &= 6 & 0 \leq i < n \\
a_{i,i+1} &= -1 - i & 0 \leq i < n - 1 \\
a_{i+1,i} &= -1 - i & 0 \leq i < n - 1 \\
a_{i,i+c} &= -1 + i & 0 \leq i < n - c \\
a_{i+c,i} &= -1 + i & 0 \leq i < n - c
\end{align*}
\]

for any $n \geq 3$ and $2 \leq c \leq n - 1$.

Test matrices of class $D(n, c)$ are square matrices of order $n$ with a full diagonal, three bands at a distance $c$ above the diagonal and reappearing cyclically under the diagonal, and a $10 \times 10$ triangle of elements in the upper-right corner. More precisely:

\[
\begin{align*}
a_{i,i} &= 1 & 0 \leq i < n \\
a_{i,i+c} &= i + 2 & 0 \leq i < n - c \\
a_{i,i+n+c} &= i + 2 & n - c \leq i < n \\
a_{i,i+c+1} &= -(i + 1) & 0 \leq i < n - c - 1 \\
a_{i,i+c+1} &= -(i + 1) & n - c - 1 \leq i < n \\
a_{i,i+c+2} &= 16 & 0 \leq i < n - c - 2 \\
a_{i,i+n+c+2} &= 16 & n - c - 2 \leq i < n \\
a_{i,n-11+i+j} &= 100j & 1 \leq i < 11 - j, \ 0 \leq j < 10
\end{align*}
\]

for any $n \geq 14$ and $1 \leq c \leq n - 13$. 
The sparsity pattern of $D(20, 5)$ is as follows:

By default `imsl_c_generate_test_coordinate` returns an $E$-matrix in coordinate representation. By specifying the `IMSL_SYMMETRIC_STORAGE` option, only the diagonal and lower triangle are returned. The scalar $n_{z}$ will contain the number of non-zeros in this representation.

The option `IMSL_D_MATRIX` will return a matrix of class $D(n, c)$. Since $D$-matrices are not symmetric, the `IMSL_SYMMETRIC_STORAGE` option is not allowed.

**Examples**

**Example 1**

This example generates the matrix
\[ E_c(5,3) = \begin{bmatrix} 6 & -1-i & 0 & -1+i & 0 \\ -1-i & 6 & -1-i & 0 & -1+i \\ 0 & -1-i & 6 & -1-i & 0 \\ -1-i & 0 & -1-i & 6 & -1+i \\ 0 & -1-i & 0 & -1-i & 6 \end{bmatrix} \]

and prints the result.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int i, n = 5, c = 3, nz;
 Imsl_c_sparse_elem *a;

 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

 printf ("row col val\n");

 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n", a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}

Output
row col val
0 0 (6.0, 0.0)
1 1 (6.0, 0.0)
2 2 (6.0, 0.0)
3 3 (6.0, 0.0)
4 4 (6.0, 0.0)
1 0 (-1.0, -1.0)
2 1 (-1.0, -1.0)
3 2 (-1.0, -1.0)
4 3 (-1.0, -1.0)
0 1 (-1.0, 1.0)
1 2 (-1.0, 1.0)
2 3 (-1.0, 1.0)
3 4 (-1.0, 1.0)
3 0 (-1.0, -1.0)
4 1 (-1.0, -1.0)
0 3 (-1.0, 1.0)
1 4 (-1.0, 1.0)
```
Example 2

In this example, the matrix $E(5, 3)$ is returned in symmetric storage and printed.

```c
#include <imsl.h>
#include <stdio.h>

int main()
{
 int i, n = 5, c = 3, nz;
 Imsl_c_sparse_elem *a;

 a = imsl_c_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE, 0);

 printf ("row col val
");

 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n",
 a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}
```

**Output**

```
row col val
0 0 (6.0, 0.0)
1 1 (6.0, 0.0)
2 2 (6.0, 0.0)
3 3 (6.0, 0.0)
4 4 (6.0, 0.0)
1 0 (-1.0, -1.0)
2 1 (-1.0, -1.0)
3 2 (-1.0, -1.0)
4 3 (-1.0, -1.0)
3 0 (-1.0, -1.0)
4 1 (-1.0, -1.0)
```
Programming Notes for Using NVIDIA® CUDA™ Toolkit

This reference material is intended for users who want to use the computational resources of their NVIDIA GPU board for numeric processing when using the IMSL C Numerical Library. Users who do not have the NVIDIA GPU board can ignore this section.

Rationale and General Algorithm

NVIDIA® CUDA™ technology leverages the massively parallel processing power of NVIDIA GPUs. The NVIDIA CUDA Toolkit provides functions which can be used as building blocks for an application taking advantage of this technology. IMSL C Numerical Library has incorporated the use of some of these functions to improve the overall performance of the library.

No direct use or knowledge of the NVIDIA CUDA Toolkit is required to take advantage of these functions. The program or application is simply rebuilt using environment variables which link with the NVIDIA CUDA Toolkit libraries.

The strategy for using the NVIDIA GPU is given by the following algorithm:

- If an NVIDIA-enabled version of an IMSL function is called and the maximum of vector or matrix dimensions are greater than or equal to a threshold value, then
  - Copy the required vector and matrix data from the CPU to the GPU
  - Compute the result on the GPU
  - Copy the result from the GPU to the CPU
- Else, use the IMSL equivalent version of the function that does not use the GPU.

Normally a code that calls an IMSL/NVIDIA code does not have to be aware of the copy steps or the threshold size. These are hidden from the user code. Users have the option of changing the threshold size. This is important because using the GPU may be slower than using a CPU version of the code until array sizes become sufficiently large. Thereafter the GPU version is typically faster and increasingly much faster as the problem size increases. The default threshold value is 32 but it may not be optimal. This default allows the functions to perform correctly without initial attention to this value.

The user can change the threshold value for all or specific IMSL/NVIDIA functions by using the IMSL function `imsl_cuda_set`. The threshold values can be obtained using the IMSL function `imsl_cuda_get`.

The floating point results obtained using the CPU vs. the GPU will likely differ in units of the low order bits in each component. These differences come from non-equivalent strategies of floating point arithmetic and rounding modes that are implemented in the NVIDIA board. This can be an important detail when comparing results for purposes of benchmarking or code regression. Generally either result should be acceptable for numerical work.
Implementation

Basic Linear Algebra Subprograms

IMSL C Numerical Library incorporates the use of many Basic Linear Algebra Subprograms (BLAS) throughout the product. These functions are named using IMSL conventions and used internally. They are not accessible directly by the user.

NVIDIA Corp. implemented certain Level 1, 2 and 3 BLAS in the NVIDIA CUDA Toolkit. The NVIDIA external names and argument protocols are different from those used by the IMSL C Numerical Library. Wrappers have been written to allow for the IMSL C Numerical Library to access selected routines in the NVIDIA CUDA Toolkit.

In Table 12.9, we document an enumeration that includes those BLAS for which a CUDA Toolkit implementation is provided in the IMSL C Numerical Library. The naming convention used is the name of the BLAS function prefaced by ‘IMSL_CUDA_’.

Transforms

NVIDIA CUDA Toolkit implementations of complex two-dimensional FFT (Fast Fourier Transform) functions can be accessed when using functions imsl_c_fft_2d_complex and imsl_z_fft_2d_complex. The enumerations defined to enable the user to manipulate the parameters used by these function are documented in Table 12.9.

Utility Functions

There are three utility functions provided in the IMSL C Math Library that can be used to help manage the use of NVIDIA CUDA Toolkit. These utilities appear in Table 12.10 and are described in more detail in their corresponding function descriptions.

Note: Some NVIDIA hardware does not provide double precision arithmetic. Since the double precision functions are included in the NVIDIA CUDA Toolkit library, those functions will appear to execute correctly even though they do not return correct results. When the IMSL software detects that the correct results are not returned, a warning error message will be printed and the IMSL equivalent of the function which does not use the GPU will be used. The user can eliminate this error by using function imsl_cuda_set to set the threshold value to zero.

Table 12.9 — Enumerations of NVIDIA Toolkit-Enabled Functions

<table>
<thead>
<tr>
<th>IMSL_CUDA_SGEMV</th>
<th>IMSL_CUDA_DGER</th>
<th>IMSL_CUDA_DGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSL_CUDA_SGER</td>
<td>IMSL_CUDA_DSYR</td>
<td>IMSL_CUDA_DTRSM</td>
</tr>
<tr>
<td>IMSL_CUDA_SSYR</td>
<td>IMSL_CUDA_DGEMM</td>
<td>IMSL_CUDA_C_FFT_2D_COMPLEX</td>
</tr>
<tr>
<td>IMSL_CUDA_SGEMM</td>
<td>IMSL_CUDA_SGBMV</td>
<td>IMSL_CUDA_Z_FFT_2D_COMPLEX</td>
</tr>
<tr>
<td>IMSL_CUDA_DGEMV</td>
<td>IMSL_CUDA_DGBMV</td>
<td></td>
</tr>
</tbody>
</table>
Table 12.10 — NVIDIA CUDA Toolkit Utilities

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>imsl_c.cuda.get</code></td>
</tr>
<tr>
<td><code>imsl_c.cuda_set</code></td>
</tr>
<tr>
<td><code>imsl_c.cuda_free</code></td>
</tr>
</tbody>
</table>

Required NVIDIA Copyright Notice:

© 2005–2011 by NVIDIA Corporation. All rights reserved.

Portions of the NVIDIA **SGEMM** and **DGEMM** library routines were written by Vasily Volkov and are subject to the Modified Berkeley Software Distribution License as follows:

Copyright (©) 2007-09, Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. (See [CUDA Toolkit 4.0, CUBLAS Library, April, 2011](#), for these remaining conditions.)
cuda_get

Gets the threshold used by the specified function to determine if the NVIDIA CUDA Toolkit algorithm will be used.

Synopsis

```c
#include <imsl.h>

int imsl_cuda_get (imsl_cuda cuda_name)
```

Required Arguments

`imsl_cuda cuda_name` (Input)

An enumerator which specifies the IMSL function for which the threshold will be retrieved. `cuda_name` must be one of the values defined in Table 12.9.

Return Value

Returns the threshold value used to determine when the NVIDIA CUDA Toolkit version of the function specified by `cuda_name` will be used. A return value of zero indicates that the IMSL version of the specified function will always be used. A return value greater than zero is the threshold value being used by the function specified by `cuda_name`. If the problem size is greater than or equal to threshold, the NVIDIA Toolkit algorithm will be used.

See Programming Notes for Using NVIDIA® CUDA™ Toolkit for more information on NVIDIA’s CUDA Toolkit integration into IMSL C Numerical Library.

Synopsis with Optional Arguments

```c
#include <imsl.h>

int imsl_cuda_get (imsl_cuda cuda_name,
 IMSL_GET_DEVICE, int *idevice,
 0)
```

Optional Arguments

`IMSL_GET_DEVICE, int *idevice` (Output)

Returns a value specifying whether the NVIDIA CUDA Toolkit algorithm was used for the last call to the IMSL function specified by `cuda_name`. Returns 1 if the NVIDIA Toolkit algorithm was used and 0 if the IMSL version of the algorithm was used. A value of -1 indicates that the IMSL function specified by `cuda_name` has not been used.
Description

This function returns the threshold value for a specified function. It can optionally be used to return information on the last invocation of the specified function.

Example

Function `imsl_f_lin_sol_gen` uses Basic Linear Algebra Subprogram SGER to improve performance. In this example the threshold value of the function SGER is manipulated to force the use of both the IMSL and NVIDIA CUDA Toolkit algorithms.

```c
#include <imsl.h>
#include <stdio.h>

int main() {
 int n = 3, iswitch, idevice;
 float *x;

 float lv_a[] =
 { 1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0
 };

 float lv_b[] =
 { 1.0, 4.0, -1.0
 };

 /* Get the current threshold value for SGER */
 iswitch = imsl_cuda_get(IMSL_CUDA_SGER, 0);

 /* Set the threshold value of SGER to 0 so that use of the IMSL version is ensured */
 imsl_cuda_set(IMSL_CUDA_SGER, 0, 0);

 /* Call routine which uses SGER */
 x = imsl_f_lin_sol_gen (n, lv_a, lv_b, 0);
 imsl_free(x);

 /* Check to see what version of SGER was used */
 imsl_cuda_get(IMSL_CUDA_SGER,
 IMSL_GET_DEVICE, &idevice,
 0);

 if (!idevice)
 printf("The IMSL version of SGER was used.\n");
 else
```
printf("Error: The CUDA version of SGER was used.\n");

/* Set the threshold value to be very small to ensure the
CUDA version of SGER will be used. */
imsl_cuda_set(IMSL_CUDA_SGER, 1, 0);

/* Call routine which uses SGER */
x = imsl_f_lin_sol_gen(n, lv_a, lv_b, 0);
imsl_free(x);

/* Check to see what version of SGER */
imsl_cuda_get(IMSL_CUDA_SGER,
    IMSL_GET_DEVICE, &idevice,
    0);

if (!idevice)
    printf("Error:  The IMSL version of SGER was used.\n");
else
    printf("The CUDA version of SGER was used.\n");

/* Set the threshold value to the original setting */
imsl_cuda_set(IMSL_CUDA_SGER, iswitch, 0);

/* Release GPU memory */
imsl_cuda_free();

}

Output

The IMSL version of SGEMM was used.
The CUDA version of SGEMM was used.

Warning Errors

IMFSL_CUDA_ENUM_NAME	The argument specified for "cuda_name" = # is not valid.
IMFSL_CUDA_NOT_IMPLEMENTED	The specified function name does not have a CUDA implementation.
IMFSL_FCN_NOT_USED	The specified function name has not yet been used.
IMFSL_CUDA_NOT_AVAIL	The CUDA Toolkit algorithms are not implemented using this version of the library. Use the CUDA link environment variables to leverage the CUDA Toolkit algorithms.
cuda_set

Set the threshold used by the specified function to determine if the NVIDIA CUDA Toolkit algorithm will be used.

Synopsis

```c
#include <imsl.h>

int imsl_cuda_set (Imsl_cuda cuda_name, int threshold)
```

Required Arguments

`Imsl_cuda cuda_name` (Input)
An enumerator which specifies the IMSL function for which the threshold will be set. `cuda_name` must be one of the values defined in Table 12.9.

`int threshold` (Input)
The threshold value which determines if the NVIDIA CUDA Toolkit algorithm will be used. A value of zero ensures that the IMSL version of the function will always be used. If the problem size is greater than or equal to `threshold`, the NVIDIA Toolkit algorithm will be used.

Return Value

A return value of 0 indicates the threshold was set successfully. A return value of 1 indicates the threshold was not set successfully.

Synopsis with Optional Arguments

```c
#include <imsl.h>

int imsl_cuda_set (Imsl_cuda cuda_name, int threshold,
 IMSL_SET_ALL,
 0)
```

Optional Arguments

`IMSL_SET_ALL` (Input)
Sets the threshold of all IMSL/NVIDIA implemented functions.

Description

This routine sets the threshold value for a specified function.
### Example

Refer to `imsl_cuda_get` for the document example.

### Warning Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>IMSL_CUDA_ENUM_NAME</code></td>
<td>The argument specified for “cuda_name” = # is not valid.</td>
</tr>
<tr>
<td><code>IMSL_CUDA_NOT_IMPLEMENTED</code></td>
<td>The specified function name does not have a CUDA implementation.</td>
</tr>
<tr>
<td><code>IMSL_CUDA_SET_ERROR</code></td>
<td>Invalid argument. This argument must be greater than or equal to 0.</td>
</tr>
<tr>
<td><code>IMSL_CUDA_NOT_AVAIL</code></td>
<td>The CUDA Toolkit algorithms are not implemented using this version of the library. Use the CUDA link environment variables to leverage the CUDA Toolkit algorithms.</td>
</tr>
</tbody>
</table>
cuda_free

Releases NVIDIA memory allocated by the IMSL C Numerical Library.

Synopsis

```c
#include <imsl.h>

int imsl_cuda_free()
```

Return Value

A return value of zero indicates that no error was encountered when releasing the memory. A return value of one indicates that an error was generated when releasing the memory.

Description

Allocation of NVIDIA memory by the IMSL C Numerical Library is done as infrequently as possible by reusing allocated memory.

When allocating memory either through the IMSL C Numerical Library or through your own application, an error message indicating not enough memory exists on the GPU may possibly be generated. Sufficient memory may be available but may be reserved by the IMSL C Numerical Library. This function is provided to force the reserved NVIDIA memory to be released.

Example

Refer to `imsl_cuda_get` for the document example.

Warning Errors

- **IMSL_CUDA_FREE**
  An error was encountered freeing memory from the GPU.

- **IMSL_CUDA_NOT_AVAIL**
  The CUDA Toolkit algorithms are not implemented using this version of the library. Use the CUDA link environment variables to leverage the CUDA Toolkit algorithms.
Contents

User Errors
- What Determines Error Severity .................................................. 1428
- Kinds of Errors and Default Actions ........................................ 1428
- Errors in Lower-Level Functions ............................................... 1429
- Functions for Error Handling .................................................... 1429
- Threads and Error Handling ...................................................... 1430
- Use of Informational Error to Determine Program Action .......... 1430
- Additional Examples ................................................................. 1430

Complex Data Types and Functions
- Single-Precision Complex Operations and Functions ............... 1432
- Double-Precision Complex Operations and Functions ............. 1433
User Errors

IMSL functions attempt to detect user errors and handle them in a way that provides as much information to the user as possible. To do this, we recognize various levels of severity of errors, and we also consider the extent of the error in the context of the purpose of the function; a trivial error in one situation may be serious in another. Functions attempt to report as many errors as they can reasonably detect. Multiple errors present a difficult problem in error detection because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of limitations of the computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the assessed degree of accuracy determines the severity of the error. In cases where the function computes several output quantities, if some are not computable but most are, an error condition exists; and its severity depends on an assessment of the overall impact of the error.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the IMSL C Math Library. Each level has an associated PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but they may also be set by the user. The purpose of having multiple error types is to provide independent control of actions to be taken for errors of different levels of severity. Upon return from an IMSL function, exactly one error state exists. (A code 0 “error” is no error.) Even if more than one informational error occurs, only one message is printed (if the PRINT attribute is YES). Multiple errors for which no corrective action within the calling program is reasonable or necessary result in the printing of multiple messages (if the PRINT attribute for their severity level is YES). Errors of any of the severity levels except IMSL_TERMINAL may be informational errors. The include file, imsl.h, defines IMSL_NOTE, IMSL_ALERT, IMSL_WARNING, IMSL_FATAL, IMSL_TERMINAL, IMSL_WARNING_IMMEDIATE, and IMSL_FATAL_IMMEDIATE as an enumerated data type Imsl_error.

IMSL_NOTE. A note is issued to indicate the possibility of a trivial error or simply to provide information about the computations.

Default attributes: PRINT=NO, STOP=NO.

IMSL_ALERT. An alert indicates that a function value has been set to 0 due to underflow.

Default attributes: PRINT=NO, STOP=NO.

IMSL_WARNING. A warning indicates the existence of a condition that may require corrective action by the user or calling routine. A warning error may be issued because the results are accurate to only a few decimal places, because some of the output may be erroneous, but most of the output is correct, or because some assumptions underlying the analysis technique are violated. Usually no corrective action is necessary, and the condition can be ignored.

Default attributes: PRINT=YES, STOP=NO.
IMSL_FATAL. A **fatal** error indicates the existence of a condition that may be serious. In most cases, the user or calling routine must take corrective action to recover.

Default attributes: PRINT=YES, STOP=YES.

IMSL_TERMINAL. A **terminal** error is serious. It usually is the result of an incorrect specification, such as specifying a negative number as the number of equations. These errors may also be caused by various programming errors impossible to diagnose correctly in C. The resulting error message may be perplexing to the user. In such cases, the user is advised to compare carefully the actual arguments passed to the function with the dummy argument descriptions given in the documentation. Special attention should be given to checking argument order and data types.

A terminal error is not an informational error, because corrective action within the program is generally not reasonable. In normal usage, execution is terminated immediately when a terminal error occurs. Messages relating to more than one terminal error are printed if they occur.

Default attributes: PRINT=YES, STOP=YES.

IMSL_WARNING_IMMEDIATE. An **immediate warning** error is identical to a warning error, except it is printed immediately.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL_IMMEDIATE. An **immediate fatal** error is identical to a fatal error, except it is printed immediately.

Default attributes: PRINT=YES, STOP=YES.

The user can set PRINT and STOP attributes by calling `imsl_error_options` as described in Chapter 12, “Utilities”.

**Errors in Lower-Level Functions**

It is possible that a user’s program may call an IMSL C Math Library function that in turn calls a nested sequence of lower-level functions. If an error occurs at a lower level in such a nest of functions, and if the lower-level function cannot pass the information up to the original user-called function, then a traceback of the functions is produced. The only common situation in which this can occur is when an IMSL C Math Library function calls a user-supplied routine that in turn calls another IMSL C Math Library function.

**Functions for Error Handling**

The user may interact in three ways with the IMSL error-handling system:

1. Change the default actions.
2. Determine the code of an informational error so as to take corrective action.
3. Initialize the error handling systems.

The functions that support these actions are:
• \texttt{imsl\_error\_options}
  Sets the actions to be taken when errors occur.

• \texttt{imsl\_error\_type}
  Retrieves the \texttt{imsl\_error} enum error type value.

• \texttt{imsl\_error\_code}
  Retrieves the integer code for an informational error.

• \texttt{imsl\_error\_message}
  Retrieves the error message string.

• \texttt{imsl\_initialize\_error\_handler}
  Initializes the IML C Math Library error handling system for the current thread. This function is not required but is always allowed. Use of this function is advised if the possibility of low heap memory exists when calling the IML C Math Library for the first time in the current thread.

These functions are documented in Chapter 15, \textit{Utilities}.

### Threads and Error Handling

If multiple threads are used then default settings are valid for each thread but can be altered for each individual thread. When using threads it is necessary to set options using \texttt{imsl\_error\_options} for each thread by calling \texttt{imsl\_error\_options} from within each thread.

See Example 3 and Example 4 of \texttt{imsl\_error\_options} for multithreaded examples.

### Use of Informational Error to Determine Program Action

In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is determined that the matrix is not nonnegative definite (and often this is not immediately obvious), the program is to take a different branch.

```c
x = imsl_f_lin_sol_nonnegdef (n, a, b, 0);
if (imsl_error_code() == IMSL_NOT_NONNEG_DEFINITE) {
 /* Handle matrix that is not nonnegative definite */

}
```

### Additional Examples

See functions \texttt{imsl\_error\_options} and \texttt{imsl\_error\_code} in Chapter 12, \textit{Utilities} for additional examples.
Complex Data Types and Functions

Users can perform computations with complex arithmetic by using predefined data types. These types are available in two floating-point precisions:

1. `f_complex z` for single-precision complex values
2. `d_complex w` for double-precision complex values

Each complex value is a C language `structure` that consists of a pair of real values, the `real` and `imaginary` part of the complex number. To access the real part of a single-precision complex number `z`, use the subexpression `z.re`. For the imaginary part, use the subexpression `z.im`. Use subexpressions `w.re` and `w.im` for the real and imaginary parts of a double-precision complex number `w`. The structure is declared within `imsl.h` as follows:

```c
typedef struct{
 float re;
 float im;
} f_complex;
```

Several standard operations and functions are available for users to perform calculations with complex numbers within their programs. The operations are provided for both single and double precision data types. Notice that even the ordinary arithmetic operations of `+`, `-`, `*`, and `/` must be performed using the appropriate functions.

A uniform prefix name is used as part of the names for the operations and functions. The prefix `imsl_c_` is used for `f_complex` data. The prefix `imsl_z_` is used with `d_complex` data.
### Single-Precision Complex Operations and Functions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function Name</th>
<th>Function Result</th>
<th>Function Argument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( z = -x )</td>
<td>( z = \text{imsl}_c_\text{neg}(x) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( z = x + y )</td>
<td>( z = \text{imsl}_c_\text{add}(x,y) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} ) (both)</td>
</tr>
<tr>
<td>( z = x - y )</td>
<td>( z = \text{imsl}_c_\text{sub}(x,y) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} ) (both)</td>
</tr>
<tr>
<td>( z = x \cdot y )</td>
<td>( z = \text{imsl}_c_\text{mul}(x,y) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} ) (both)</td>
</tr>
<tr>
<td>( z = x / y )</td>
<td>( z = \text{imsl}_c_\text{div}(x,y) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} ) (both)</td>
</tr>
<tr>
<td>( x = y^a )</td>
<td>( x = \text{imsl}_c_\text{eq}(x,y) )</td>
<td>( \text{Int} )</td>
<td>( f_\text{complex} ) (both)</td>
</tr>
<tr>
<td>( z = x )</td>
<td>( z = \text{imsl}_c_\text{cz_convert}(x) )</td>
<td>( f_\text{complex} )</td>
<td>( d_\text{complex} )</td>
</tr>
</tbody>
</table>

\( ^a \) Result has the value 1 if \( x \) and \( y \) are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function Name</th>
<th>Function Result</th>
<th>Function Argument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( z = a + ib )</td>
<td>( z = \text{imsl}_c_\text{cf_convert}(a,b) )</td>
<td>( f_\text{complex} )</td>
<td>( \text{float} ) (both)</td>
</tr>
<tr>
<td>( z = \overline{x} )</td>
<td>( z = \text{imsl}_c_\text{conjg}(x) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( a =</td>
<td>z</td>
<td>)</td>
<td>( a = \text{imsl}_c_\text{abs}(z) )</td>
</tr>
<tr>
<td>( a = \text{arg}(z) )</td>
<td>( a = \text{imsl}_c_\text{arg}(z) )</td>
<td>( \text{float} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( z = \sqrt{z} )</td>
<td>( z = \text{imsl}_c_\text{sqrt}(z) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( z = \cos(z) )</td>
<td>( z = \text{imsl}_c_\text{cos}(z) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( z = \sin(z) )</td>
<td>( z = \text{imsl}_c_\text{sin}(z) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( z = \exp(z) )</td>
<td>( z = \text{imsl}_c_\text{exp}(z) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( z = \log(z) )</td>
<td>( z = \text{imsl}_c_\text{log}(z) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} )</td>
</tr>
<tr>
<td>( z = x^a )</td>
<td>( z = \text{imsl}_c_\text{cf_power}(x,a) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex}, \text{float} )</td>
</tr>
<tr>
<td>( z = x^i )</td>
<td>( z = \text{imsl}_c_\text{cc_power}(x,y) )</td>
<td>( f_\text{complex} )</td>
<td>( f_\text{complex} ) (both)</td>
</tr>
<tr>
<td>( c = a^k )</td>
<td>( c = \text{imsl}_c_\text{fi_power}(a,k) )</td>
<td>( \text{float} )</td>
<td>( \text{float}, \text{int} )</td>
</tr>
<tr>
<td>( c = a^b )</td>
<td>( c = \text{imsl}_c_\text{ff_power}(a,b) )</td>
<td>( \text{float} )</td>
<td>( \text{float} ) (both)</td>
</tr>
<tr>
<td>( m = j^k )</td>
<td>( m = \text{imsl}_c_\text{ii_power}(j,k) )</td>
<td>( \text{Int} )</td>
<td>( \text{Int} ) (both)</td>
</tr>
</tbody>
</table>
Double-Precision Complex Operations and Functions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function Name</th>
<th>Function Result</th>
<th>Function Argument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( z = -x )</td>
<td>( z = \text{imsl}_z_\text{neg}(x) )</td>
<td>( \text{d_complex} )</td>
<td>( \text{d_complex} )</td>
</tr>
<tr>
<td>( z = x + y )</td>
<td>( z = \text{imsl}_z_\text{add}(x,y) )</td>
<td>( \text{d_complex} )</td>
<td>( \text{d_complex (both)} )</td>
</tr>
<tr>
<td>( z = x - y )</td>
<td>( z = \text{imsl}_z_\text{sub}(x,y) )</td>
<td>( \text{d_complex} )</td>
<td>( \text{d_complex (both)} )</td>
</tr>
<tr>
<td>( z = x \times y )</td>
<td>( z = \text{imsl}_z_\text{mul}(x,y) )</td>
<td>( \text{d_complex} )</td>
<td>( \text{d_complex (both)} )</td>
</tr>
<tr>
<td>( z = x \div y )</td>
<td>( z = \text{imsl}_z_\text{div}(x,y) )</td>
<td>( \text{d_complex} )</td>
<td>( \text{d_complex (both)} )</td>
</tr>
<tr>
<td>( x = y^b )</td>
<td>( z = \text{imsl}_z_\text{eq}(x,y) )</td>
<td>( \text{Int} )</td>
<td>( \text{d_complex (both)} )</td>
</tr>
</tbody>
</table>

**Drop Precision**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function Name</th>
<th>Function Result</th>
<th>Function Argument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( z = x )</td>
<td>( z = \text{imsl}_z_\text{convert}(x) )</td>
<td>( \text{d_complex} )</td>
<td>( \text{f_complex} )</td>
</tr>
</tbody>
</table>

**Ascend Data**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function Name</th>
<th>Function Result</th>
<th>Function Argument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( z = a + ib )</td>
<td>( z = \text{imsl}_z_\text{d_convert}(a,b) )</td>
<td>( \text{d_complex} )</td>
<td>( \text{double (both)} )</td>
</tr>
</tbody>
</table>

\(^b\) Result has the value 1 if \( x \) and \( y \) are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

### Example

The following sample code computes and prints several quantities associated with complex numbers. Note that the quantity

\[ z = \text{imsl}_z\_\text{conjugate}(x) \]

\[ a = |z| \]

\[ a = \text{arg}(z) \]

\[ -\pi < a \leq \pi \]

\[ z = \sqrt{z} \]

\[ z = \cos(z) \]

\[ z = \sin(z) \]

\[ z = \exp(z) \]

\[ z = \log(z) \]

\[ z = x^a \]

\[ z = x^b \]

\[ c = a^k \]

\[ c = a^b \]

\[ m = j^k \]
$w = \sqrt{3 + 4i}$

has a rounding error associated with it. Also the quotient $z = (1 + 2i)/(3 + 4i)$ has a rounding error. The result is acceptable in both cases because the relative errors $|w - (2 + 2i)/|w||$ and $|z \cdot (3 + 4i) - (1 + 2i)/|(1 + 2i)||$ are approximately the size of machine precision.

```c
#include <imsl.h>

main()
{
 f_complex x = {1,2};
 f_complex y = {3,4};
 f_complex z,
 w;
 int isame;
 float eps = imsl_f_machine(4);
 /* Echo inputs x and y */
 printf("Data: x = (%g, %g)\n y = (%g, %g)\n", x.re, x.im, y.re, y.im);
 /* Add inputs */
 z = imsl_c_add(x,y);
 printf("Sum: z = x + y = (%g, %g)\n", z.re, z.im);
 /* Compute square root of y */
 w = imsl_c_sqrt(y);
 printf("Square Root: w = sqrt(y) = (%g, %g)\n", w.re, w.im);
 /* Check results */
 z = imsl_c_mul(w,w);
 printf("Check: w*w = (%g, %g)\n", z.re, z.im);
 isame = imsl_c_eq(y,z);
 printf(" y == w*w = %d\n", isame);
 z = imsl_c_sub(z,y);
 printf("Difference: w*w - y = (%g, %g) = (%g, %g) * eps\n", z.re, z.im, z.re/eps, z.im/eps);
 /* Divide inputs */
 z = imsl_c_div(x,y);
 printf("Quotient: z = x/y = (%g, %g)\n", z.re, z.im);
 /* Check results */
 w = imsl_c_sub(x, imsl_c_mul(z, y));
 printf("Check: w = x - z*y = (%g, %g) = (%g, %g) * eps\n", w.re, w.im, w.re/eps, w.im/eps);
}
```
Output

Data:  \( x = (1, 2) \)
   \( y = (3, 4) \)

Sum:  \( z = x + y = (4, 6) \)

Square Root: \( w = \sqrt{y} = (2, 1) \)
Check:  \( w^2 = (3, 4) \)
   \( y == w^2 = 0 \)
Difference: \( w^2 - y = (-2.38419e-07, 4.76837e-07) = (-2, 4) * \text{eps} \)

Quotient: \( z = x/y = (0.44, 0.08) \)
Check:  \( w = x - z*y = (5.96046e-08, 0) = (0.5, 0) * \text{eps} \)
Appendix A: References

**Abramowitz and Stegun**


**Ahrens and Dieter**


**Akima**


**Altman and Gondzio**


**Ashcraft**

Ashcraft et al.

Atkinson (1979)

Atkinson (1978)

Barnett

Barrett and Healy

Bays and Durham

Beckers

Blom

Blom and Zegeling

Boisvert
Bosten and Battiste

Brenan, Campbell, and Petzold

Brent


Brigham

Burgoyne

Carlson

Carlson and Notis

Carlson and Foley

Cheng

Cohen and Taylor
Cooley and Tukey

Cooper

Courant and Hilbert

Craven and Wahba

Crowe et al.
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

Davis and Rabinowitz

de Boor

Demmel et al.


Dennis and Schnabel
**Dongarra et al.**

**Doornik**

**Draper and Smith**

**DuCroz et al.**

**Duff et al.**

**Duff et al.**

**Duff and Reid**


**Enright and Pryce**

**Farebrother and Berry**

**Fisher**
Fishman and Moore

Forsythe

Franke

Garbow et al.


Gautschi


Gear

Gentleman

George and Liu
Gill and Murray

Gill et al.


Goldfarb and Idnani

Golub

Golub and Van Loan


Golub and Welsch

Gondzio (1994)

Gondzio (1995)
Gregory and Karney

Griffin and Redfish

Grosse

Guerra and Tapia

Hageman and Young

Hanson

Hanson

Hanson and Krogh

Hardy

Hart et al.
Healy

Herraman

Higham

Hill

Hindmarsh

Hinkley

Huber

Hull et al.

Irvine et al.

Jackson et al.
Jenkins

Jenkins and Traub


Jöhnk

Kendall and Stuart

Kennedy and Gentle

Kernighan and Richtie

Kinnucan and Kuki

Knuth

Kochanek and Bartels
Krogh


Learmonth and Lewis

Lehmann

Levenberg

Leavenworth

Lentini and Pereyra

Lewis et al.

Liepman

Liu


**Lyness and Giunta**


**Madsen and Sincovec**


**Maindonald**


**Marquardt**


**Marsaglia and Tsang**


**Martin and Wilkinson**


**Mayle**

Michelli

Michelli et al.

Moler and Stewart

Moré et al.

Müller

Murtagh

Murty

Nelder and Mead

Neter and Wasserman
Neter et al.

NVIDIA
NVIDIA Corporation (©2005-2011), © All rights reserved. Portions of the NVIDIA SGEMM and DGEMM library routines were written by Vasily Volkov and are subject to the Modified Berkeley Software Distribution License. (©) 2007-09, Regents of the University of California.

Østerby and Zlatev

Owen

Parlett

Pennington and Berzins

Petro

Petzold

Piessens et al.
Powell


Ralston


Rauber et. al.


Reinsch


Rice


Saad and Schultz


Salane


Sallas and Lionti

Savage


Schmeiser


Schmeiser and Babu


Schmeiser and Kachitvichyanukul


Schmeiser and Lal


Seidler and Carmichael


Shampine


Shampine and Gear


Sincovec and Madsen

Singleton

Smith et al.

Smith

Spellucci, Peter


Stewart

Strecok

Stroud and Secrest

Temme

Tezuka
Thompson and Barnett

Tukey

Velleman and Hoaglin

Verwer et al

Walker

Watkins

Weeks

Wilmott et al
<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>accr_interest_maturity</td>
<td>Evaluates the accrued interest for a security that pays at maturity.</td>
</tr>
<tr>
<td>accr_interest_periodic</td>
<td>Evaluates the accrued interest for a security that pays periodic interest.</td>
</tr>
<tr>
<td>airy_Ai</td>
<td>Evaluates the Airy function.</td>
</tr>
<tr>
<td>airy_Ai_derivative</td>
<td>Evaluates the derivative of the Airy function.</td>
</tr>
<tr>
<td>airy_Bi</td>
<td>Evaluates the Airy function of the second kind.</td>
</tr>
<tr>
<td>airy_Bi_derivative</td>
<td>Evaluates the derivative of the Airy function of the second kind.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>bessel_exp_I0</td>
<td>Evaluates the exponentially scale modified Bessel function of the first kind of order zero.</td>
</tr>
<tr>
<td>bessel_exp_I1</td>
<td>Evaluates the exponentially scaled modified Bessel function of the first kind of order one.</td>
</tr>
<tr>
<td>bessel_exp_K0</td>
<td>Evaluates the exponentially scaled modified Bessel function of the second kind of order zero.</td>
</tr>
<tr>
<td>bessel_exp_K1</td>
<td>Evaluates the exponentially scaled modified Bessel function of the second kind of order one.</td>
</tr>
<tr>
<td>bessel_I0</td>
<td>Evaluates the real modified Bessel function of the first kind of order zero $I_0(x)$.</td>
</tr>
<tr>
<td>bessel_I1</td>
<td>Evaluates the real modified Bessel function of the first kind of order one $I_1(x)$.</td>
</tr>
<tr>
<td>bessel_Ix</td>
<td>Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.</td>
</tr>
<tr>
<td>bessel_J0</td>
<td>Evaluates the real Bessel function of the first kind of order zero $J_0(x)$.</td>
</tr>
<tr>
<td>bessel_J1</td>
<td>Evaluates the real Bessel function of the first kind of order one $J_1(x)$.</td>
</tr>
<tr>
<td>bessel_Jx</td>
<td>Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.</td>
</tr>
<tr>
<td>bessel_K0</td>
<td>Evaluates the real modified Bessel function of the second kind of order zero $K_0(x)$.</td>
</tr>
<tr>
<td>bessel_K1</td>
<td>Evaluates the real modified Bessel function of the second kind of order one $K_1(x)$.</td>
</tr>
<tr>
<td>bessel_Kx</td>
<td>Evaluates a sequence of modified Bessel functions of the second kind with real order and complex arguments.</td>
</tr>
<tr>
<td>bessel_Y0</td>
<td>Evaluates the real Bessel function of the second kind of order zero $Y_0(x)$.</td>
</tr>
<tr>
<td>bessel_Y1</td>
<td>Evaluates the real Bessel function of the second kind of order one $Y_1(x)$.</td>
</tr>
<tr>
<td>bessel_Yx</td>
<td>Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.</td>
</tr>
<tr>
<td>beta</td>
<td>Evaluates the real beta function $\beta(x,y)$.</td>
</tr>
<tr>
<td>beta_cdf</td>
<td>Evaluates the beta probability distribution function.</td>
</tr>
<tr>
<td>beta_incomplete</td>
<td>Evaluates the real incomplete beta function $I_x = \beta(x, a, b)/\beta(a, b)$.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>beta_inverse_cdf</td>
<td>Evaluates the inverse of the beta distribution function.</td>
</tr>
<tr>
<td>binomial_cdf</td>
<td>Evaluates the binomial distribution function.</td>
</tr>
<tr>
<td>bivariate_normal_cdf</td>
<td>Evaluates the bivariate normal distribution function.</td>
</tr>
<tr>
<td>bond_equivalent_yield</td>
<td>Evaluates the bond-equivalent for a Treasury yield.</td>
</tr>
<tr>
<td>bounded_least_squares</td>
<td>Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm.</td>
</tr>
<tr>
<td>bvp_finite_difference</td>
<td>Solves a (parameterized) system of differential equations with boundary conditions at two points, using a variable order, variable step size finite difference method with deferred corrections.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>chi_squared_cdf</td>
<td>Evaluates the chi-squared distribution function.</td>
</tr>
<tr>
<td>chi_squared_inverse_cdf</td>
<td>Evaluates the inverse of the chi-squared distribution function.</td>
</tr>
<tr>
<td>chi_squared_test</td>
<td>Performs a chi-squared goodness-of-fit test.</td>
</tr>
<tr>
<td>constant</td>
<td>Returns the value of various mathematical and physical constants.</td>
</tr>
<tr>
<td>constrained_nlp</td>
<td>Solves a general nonlinear programming problem using a sequential equality constrained quadratic programming method.</td>
</tr>
<tr>
<td>convexity</td>
<td>Evaluates the convexity for a security.</td>
</tr>
<tr>
<td>convolution</td>
<td>Computes the convolution, and optionally, the correlation of two real vectors.</td>
</tr>
<tr>
<td>convolution (complex)</td>
<td>Computes the convolution, and optionally, the correlation of two complex vectors.</td>
</tr>
<tr>
<td>coupon_days</td>
<td>Evaluates the number of days in the coupon period that contains the settlement date.</td>
</tr>
<tr>
<td>coupon_number</td>
<td>Evaluates the number of coupons payable between the settlement date and maturity date.</td>
</tr>
<tr>
<td>covariances</td>
<td>Computes the sample variance-covariance or correlation matrix.</td>
</tr>
<tr>
<td>ctime</td>
<td>Returns the number of CPU seconds used.</td>
</tr>
<tr>
<td>cub_spline_integral</td>
<td>Computes the integral of a cubic spline.</td>
</tr>
<tr>
<td>cub_spline_interp_e_cnd</td>
<td>Computes a cubic spline interpolant, specifying various endpoint conditions.</td>
</tr>
<tr>
<td>cub_spline_interp_shape</td>
<td>Computes a shape-preserving cubic spline.</td>
</tr>
<tr>
<td>cub_spline_smooth</td>
<td>Computes a smooth cubic spline approximation to noisy data by using cross-validation to estimate the smoothing parameter or by directly choosing the smoothing parameter.</td>
</tr>
<tr>
<td>cub_spline_tcb</td>
<td>Computes a tension-continuity-bias (TCB) cubic spline interpolant. This is also called a Kochanek-Bartels spline and is a generalization of the Catmull–Rom spline.</td>
</tr>
<tr>
<td>cub_spline_value</td>
<td>Computes the value of a cubic spline or the value of one of its derivatives.</td>
</tr>
<tr>
<td>cuda_free</td>
<td>Releases NVIDIA memory allocated by the IMSL C Numerical Library.</td>
</tr>
<tr>
<td>cuda_get</td>
<td>Gets parameters used by the specified function to determine if the NVIDIA CUDA Toolkit algorithm will be used.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>cuda_set</td>
<td>Set parameters used by the specified function to determine if the <strong>NVIDIA CUDA Toolkit</strong> algorithm will be used.</td>
</tr>
<tr>
<td>cumulative_interest</td>
<td>Evaluates the cumulative interest paid between two periods.</td>
</tr>
<tr>
<td>cumulative_principal</td>
<td>Evaluates the cumulative principal paid between two periods.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>date_to_days</td>
<td>Evaluates the number of days from January 1, 1900, to the given date.</td>
</tr>
<tr>
<td>days_before_settlement</td>
<td>Evaluates the number of days from the beginning of the coupon period to the settlement date.</td>
</tr>
<tr>
<td>days_to_date</td>
<td>Gives the date corresponding to the number of days since January 1, 1900.</td>
</tr>
<tr>
<td>days_to_next_coupon</td>
<td>Evaluates the number of days from settlement date to the next coupon date.</td>
</tr>
<tr>
<td>dea_petzold_gear</td>
<td>Solves a first order differential-algebraic system of equations, ( g(t, y, y') = 0 ), using the Petzold-Gear BDF method.</td>
</tr>
<tr>
<td>depreciation_amor_degrc</td>
<td>Evaluates the depreciation for each accounting period. Similar to depreciation_amor_linc.</td>
</tr>
<tr>
<td>depreciation_amor_linc</td>
<td>Evaluates the depreciation for each accounting period. Similar to depreciation_amor_degrc.</td>
</tr>
<tr>
<td>depreciation_db</td>
<td>Evaluates the depreciation of an asset for a specified period using the fixed-declining balance method.</td>
</tr>
<tr>
<td>depreciation_ddb</td>
<td>Evaluates the depreciation of an asset for a specified period using the double-declining method.</td>
</tr>
<tr>
<td>depreciation_sln</td>
<td>Evaluates the straight line depreciation of an asset for one period.</td>
</tr>
<tr>
<td>depreciation_syd</td>
<td>Evaluates the sum-of-years digits depreciation of an asset for a specified period.</td>
</tr>
<tr>
<td>depreciation_vdb</td>
<td>Evaluates the depreciation of an asset for any given period, including partial periods, using the double-declining balance method.</td>
</tr>
<tr>
<td>differential_algebraic_eqs</td>
<td>Solves a first order differential-algebraic system of equations, ( g(t, y, y') = 0 ), with optional additional constraints and user-defined linear system solver.</td>
</tr>
<tr>
<td>discount_price</td>
<td>Evaluates the price per $100 face value of a discounted security.</td>
</tr>
<tr>
<td>discount_rate</td>
<td>Evaluates the discount rate for a security.</td>
</tr>
<tr>
<td>discount_yield</td>
<td>Evaluates the annual yield for a discounted security.</td>
</tr>
<tr>
<td>dollar_decimal</td>
<td>Converts a dollar price, expressed as a fraction, into a dollar price, expressed as a decimal number.</td>
</tr>
<tr>
<td>dollar_fraction</td>
<td>Converts a dollar price, expressed as a decimal number, into a dollar price, expressed as a fraction.</td>
</tr>
<tr>
<td>duration</td>
<td>Evaluates the annual duration of a security with periodic interest payment.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>effective_rate</td>
<td>Evaluates the effective annual interest rate.</td>
</tr>
<tr>
<td>eig_gen</td>
<td>Computes the eigenexpansion of a real matrix $A$.</td>
</tr>
<tr>
<td>eig_gen (complex)</td>
<td>Computes the eigenexpansion of a complex matrix $A$.</td>
</tr>
<tr>
<td>eig_herm (complex)</td>
<td>Computes the eigenexpansion of a complex Hermitian matrix $A$.</td>
</tr>
<tr>
<td>eig_sym</td>
<td>Computes the eigenexpansion of a real symmetric matrix $A$.</td>
</tr>
<tr>
<td>eig_symgen</td>
<td>Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$. $A$ and $B$ are real and symmetric. $B$ is positive definite.</td>
</tr>
<tr>
<td>elliptic_integral_E</td>
<td>Evaluates the complete elliptic integral of the second kind $E(x)$.</td>
</tr>
<tr>
<td>elliptic_integral_K</td>
<td>Evaluates the complete elliptic integral of the kind $K(x)$.</td>
</tr>
<tr>
<td>elliptic_integral_RC</td>
<td>Evaluates an elementary integral from which inverse circular functions, logarithms, and inverse hyperbolic functions can be computed.</td>
</tr>
<tr>
<td>elliptic_integral_RD</td>
<td>Evaluates Carlson’s elliptic integral of the second kind $RD(x, y, z)$.</td>
</tr>
<tr>
<td>elliptic_integral_RF</td>
<td>Evaluates Carlson’s elliptic integral of the first kind $RF(x, y, z)$.</td>
</tr>
<tr>
<td>elliptic_integral_RJ</td>
<td>Evaluates Carlson’s elliptic integral of the third kind $RJ(x, y, z, \rho)$.</td>
</tr>
<tr>
<td>erf</td>
<td>Evaluates the real error function $erf(x)$.</td>
</tr>
<tr>
<td>erf_inverse</td>
<td>Evaluates the real inverse error function $erf^{-1}(x)$.</td>
</tr>
<tr>
<td>erfc</td>
<td>Evaluates the real complementary error function $erfc(x)$.</td>
</tr>
<tr>
<td>erfc_inverse</td>
<td>Evaluates the real inverse complementary error function $erfc^{-1}(x)$.</td>
</tr>
<tr>
<td>erfce</td>
<td>Evaluates the exponentially scaled complementary error function.</td>
</tr>
<tr>
<td>erfe</td>
<td>Evaluates a scaled function related to $erfc(z)$.</td>
</tr>
<tr>
<td>error_code</td>
<td>Gets the code corresponding to the error message from the last function called.</td>
</tr>
<tr>
<td>error_message</td>
<td>Gets the text of the error message from the last function called.</td>
</tr>
<tr>
<td>function</td>
<td>description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>error_options</td>
<td>Sets various error handling options.</td>
</tr>
<tr>
<td>error_type</td>
<td>Gets the type corresponding to the error message from the last function called.</td>
</tr>
<tr>
<td><strong>Function</strong></td>
<td><strong>Purpose Statement</strong></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>F_cdf</td>
<td>Evaluates the F distribution function.</td>
</tr>
<tr>
<td>F_inverse_cdf</td>
<td>Evaluates the inverse of the F distribution function.</td>
</tr>
<tr>
<td>fast_poisson_2d</td>
<td>Solves Poisson's or Helmholtz's equation on a two-dimensional rectangle using a fast Poisson solver based on the HODIE finite-difference scheme on a uniform mesh.</td>
</tr>
<tr>
<td>faure_next_point</td>
<td>Evaluates a shuffled Faure sequence.</td>
</tr>
<tr>
<td>fclose</td>
<td>Closes a file opened by imsl_fopen.</td>
</tr>
<tr>
<td>fcn_derivative</td>
<td>Computes the first, second or third derivative of a user-supplied function.</td>
</tr>
<tr>
<td>feynman_kac</td>
<td>Solves a generalized Feynman-Kac equation on a finite interval using Hermite quintic splines.</td>
</tr>
<tr>
<td>feynman_kac_evaluate</td>
<td>Computes the value of a Hermite quintic spline or the value of one of its derivatives.</td>
</tr>
<tr>
<td>fft_2d_complex</td>
<td>Computes the complex discrete two-dimensional Fourier transform of a complex two-dimensional array.</td>
</tr>
<tr>
<td>fft_complex</td>
<td>Computes the complex discrete Fourier transform of a complex sequence.</td>
</tr>
<tr>
<td>fft_complex_init</td>
<td>Computes the parameters for imsl_c_fft_complex.</td>
</tr>
<tr>
<td>fft_cosine</td>
<td>Computes the discrete Fourier cosine transformation of an even sequence.</td>
</tr>
<tr>
<td>fft_cosine_init</td>
<td>Computes the parameters needed for imsl_f_fft_cosine.</td>
</tr>
<tr>
<td>fft_real</td>
<td>Computes the real discrete Fourier transform of a real sequence.</td>
</tr>
<tr>
<td>fft_real_init</td>
<td>Computes the parameters for imsl_f_fft_real.</td>
</tr>
<tr>
<td>fft_sine</td>
<td>Computes the discrete Fourier sine transformation of an odd sequence.</td>
</tr>
<tr>
<td>fft_sine_init</td>
<td>Computes the parameters needed for imsl_f_fft_sine.</td>
</tr>
<tr>
<td>fopen</td>
<td>Opens a file using the C runtime library used by the IMSL C Math Library.</td>
</tr>
<tr>
<td>free</td>
<td>Frees memory returned from an IMSL C Math Library function.</td>
</tr>
<tr>
<td>fresnel_integral_C</td>
<td>Evaluates the cosine Fresnel integral.</td>
</tr>
<tr>
<td>fresnel_integral_S</td>
<td>Evaluates the sine Fresnel integral.</td>
</tr>
<tr>
<td>future_value</td>
<td>Evaluates the future value of an investment.</td>
</tr>
<tr>
<td>future_value_schedule</td>
<td>Evaluates the future value of an initial principal after applying a series of compound interest rates.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>gamma</td>
<td>Evaluates the real gamma function ( \Gamma(x) ).</td>
</tr>
<tr>
<td>gamma_cdf</td>
<td>Evaluates the gamma distribution function.</td>
</tr>
<tr>
<td>gamma_incomplete</td>
<td>Evaluates the incomplete gamma function ( \gamma(a, x) ).</td>
</tr>
<tr>
<td>gauss_quad_rule</td>
<td>Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions.</td>
</tr>
<tr>
<td>geneig</td>
<td>Computes the generalized eigenexpansion of a system ( Ax = \lambda Bx ), with ( A ) and ( B ) real.</td>
</tr>
<tr>
<td>geneig (complex)</td>
<td>Computes the generalized eigenexpansion of a system ( Ax = \lambda Bx ), with ( A ) and ( B ) complex.</td>
</tr>
<tr>
<td>generate_test_band</td>
<td>Generates test matrices of class ( E(n, c) ).</td>
</tr>
<tr>
<td>generate_test_band (complex)</td>
<td>Generates test matrices of class ( Ec(n, c) ).</td>
</tr>
<tr>
<td>generate_test_coordinate</td>
<td>Generates test matrices of class ( D(n, c) ) and ( E(n, c) ).</td>
</tr>
<tr>
<td>generate_test_coordinate (complex)</td>
<td>Generates test matrices of class ( D(n, c) ) and ( E(n, c) ).</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>hypergeometric_cdf</td>
<td>Evaluates the hypergeometric distribution function.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>initialize</td>
<td>Deprecated.</td>
</tr>
<tr>
<td></td>
<td>Initializes the IMSL C Math Library.</td>
</tr>
<tr>
<td>initialize_error_handler</td>
<td>Initializes the IMSL C Math Library error handling system.</td>
</tr>
<tr>
<td>int_fcn</td>
<td>Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.</td>
</tr>
<tr>
<td>int_fcn_2d</td>
<td>Computes a two-dimensional iterated integral.</td>
</tr>
<tr>
<td>int_fcn_alg_log</td>
<td>Integrates a function with algebraic-logarithmic singularities.</td>
</tr>
<tr>
<td>int_fcn_cauchy</td>
<td>Computes integrals of the form $\int_{a}^{b} f(x) dx$ in the Cauchy principal value sense.</td>
</tr>
<tr>
<td>int_fcn_fourier</td>
<td>Computes a Fourier sine or cosine transform.</td>
</tr>
<tr>
<td>int_fcn_hyper_rect</td>
<td>Integrates a function on a hyper-rectangle.</td>
</tr>
<tr>
<td>int_fcn_inf</td>
<td>Integrates a function over an infinite or semi-infinite interval.</td>
</tr>
<tr>
<td>int_fcn_qmc</td>
<td>Integrates a function on a hyper-rectangle using a quasi-Monte Carlo method.</td>
</tr>
<tr>
<td>int_fcn_sing</td>
<td>Integrates a function, which may have endpoint singularities, using a globally adaptive scheme based on Gauss-Kronrod rules.</td>
</tr>
<tr>
<td>int_fcn_sing_1d</td>
<td>Integrates a function with a possible internal or endpoint singularity.</td>
</tr>
<tr>
<td>int_fcn_sing_2d</td>
<td>Integrates a function of two variables with a possible internal or endpoint singularity.</td>
</tr>
<tr>
<td>int_fcn_sing_3d</td>
<td>Integrates a function of three variables with a possible internal or endpoint singularity.</td>
</tr>
<tr>
<td>int_fcn_sing_pts</td>
<td>Integrates a function with singularity points given.</td>
</tr>
<tr>
<td>int_fcn_smooth</td>
<td>Integrates a smooth function using a nonadaptive rule.</td>
</tr>
<tr>
<td>int_fcn_trig</td>
<td>Integrates a function containing a sine or a cosine factor.</td>
</tr>
<tr>
<td>interest_payment</td>
<td>Evaluates the interest payment for a given period for an investment.</td>
</tr>
<tr>
<td>interest_rate_annuity</td>
<td>Evaluates the interest rate per period for an annuity.</td>
</tr>
<tr>
<td>interest_rate_security</td>
<td>Evaluates the interest rate for a fully invested security.</td>
</tr>
<tr>
<td>internal_rate_of_return</td>
<td>Evaluates the internal rate of return for a schedule of cash flows.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>internal_rate_schedule</td>
<td>Evaluates the internal rate of return for a schedule of cash flows that is not necessarily periodic.</td>
</tr>
<tr>
<td>inverse_laplace</td>
<td>Computes the inverse Laplace transform of a complex function.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>jacobian</td>
<td>Approximates the Jacobian of $m$ functions in $n$ unknowns using divided differences.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>kelvin_bei0</td>
<td>Evaluates the Kelvin function of the first kind, bei, of order zero.</td>
</tr>
<tr>
<td>kelvin_bei0_derivative</td>
<td>Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.</td>
</tr>
<tr>
<td>kelvin_ber0</td>
<td>Evaluates the Kelvin function of the first kind, ber, of order zero.</td>
</tr>
<tr>
<td>kelvin_ber0_derivative</td>
<td>Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.</td>
</tr>
<tr>
<td>kelvin_kei0</td>
<td>Evaluates the Kelvin function of the second kind, kei, of order zero.</td>
</tr>
<tr>
<td>kelvin_kei0_derivative</td>
<td>Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.</td>
</tr>
<tr>
<td>kelvin_ker0</td>
<td>Evaluates the Kelvin function of the second kind, der, of order zero.</td>
</tr>
<tr>
<td>kelvin_ker0_derivative</td>
<td>Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>lin_least_squares_gen</code></td>
<td>Solves a linear least-squares problem $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_lsq_lin_constraints</code></td>
<td>Solves a linear least squares problem with linear constraints.</td>
</tr>
<tr>
<td><code>lin_prog</code></td>
<td>Solves a linear programming problem using the revised simplex algorithm.</td>
</tr>
<tr>
<td><code>lin_sol_def_cg</code></td>
<td>Solves a real symmetric definite linear system using a conjugate gradient method.</td>
</tr>
<tr>
<td><code>lin_sol_gen</code></td>
<td>Solves a real general system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_gen (complex)</code></td>
<td>Solves a complex general system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_gen_band</code></td>
<td>Solves a real general band system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_gen_band (complex)</code></td>
<td>Solves a complex general system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_gen_coordinate</code></td>
<td>Solves a sparse system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_gen_coordinate (complex)</code></td>
<td>Solves a system of linear equations $Ax = b$, with sparse \ncomplex coefficient matrix $A$.</td>
</tr>
<tr>
<td><code>lin_sol_gen_min_residual</code></td>
<td>Solves a linear system $Ax = b$ using the restarted generalized minimum residual (GMRES) method.</td>
</tr>
<tr>
<td><code>lin_sol_nonnegdef</code></td>
<td>Solves a real symmetric nonnegative definite system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_posdef</code></td>
<td>Solves a real symmetric positive definite system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_posdef (complex)</code></td>
<td>Solves a complex Hermitian positive definite system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_posdef_band</code></td>
<td>Solves a real symmetric positive definite system of linear equations $Ax = b$ in band symmetric storage mode.</td>
</tr>
<tr>
<td><code>lin_sol_posdef_band (complex)</code></td>
<td>Solves a complex Hermitian positive definite system of linear equations $Ax = b$ in band symmetric storage mode.</td>
</tr>
<tr>
<td><code>lin_sol_posdef_coordinate</code></td>
<td>Solves a sparse real symmetric positive definite system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_sol_posdef_coordinate (complex)</code></td>
<td>Solves a sparse Hermitian positive definite system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td><code>lin_svd_gen</code></td>
<td>Computes the SVD, $A = USV^T$, of a real rectangular matrix $A$.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>lin_svd_gen</code> (complex)</td>
<td>Computes the SVD, $A = USV^H$, of a complex rectangular matrix $A$.</td>
</tr>
<tr>
<td><code>linear_programming</code></td>
<td>Solves a linear programming problem.</td>
</tr>
<tr>
<td><code>log_beta</code></td>
<td>Evaluates the logarithm of the real beta function $\ln \beta(x, y)$.</td>
</tr>
<tr>
<td><code>log_gamma</code></td>
<td>Evaluates the logarithm of the absolute value of the gamma function $\log</td>
</tr>
<tr>
<td><strong>Function</strong></td>
<td><strong>Purpose Statement</strong></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>machine (float)</td>
<td>Returns information describing the computer’s floating-point arithmetic.</td>
</tr>
<tr>
<td>machine (integer)</td>
<td>Returns integer information describing the computer’s arithmetic.</td>
</tr>
<tr>
<td>mat_add_band</td>
<td>Adds two band matrices, both in band storage mode, ( C \leftarrow \alpha A + \beta B ).</td>
</tr>
<tr>
<td>mat_add_band (complex)</td>
<td>Adds two band matrices, both in band storage mode, ( C \leftarrow \alpha A + \beta B ).</td>
</tr>
<tr>
<td>mat_add_coordinate</td>
<td>Performs element-wise addition of two real matrices stored in coordinate format, ( C \leftarrow \alpha A + \beta B ).</td>
</tr>
<tr>
<td>mat_add_coordinate (complex)</td>
<td>Performs element-wise addition on two complex matrices stored in coordinate format, ( C \leftarrow \alpha A + \beta B ).</td>
</tr>
<tr>
<td>mat_mul_rect</td>
<td>Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product.</td>
</tr>
<tr>
<td>mat_mul_rect (complex)</td>
<td>Computes the transpose of a matrix, the conjugate-transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product.</td>
</tr>
<tr>
<td>mat_mul_rect_band</td>
<td>Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in band form.</td>
</tr>
<tr>
<td>mat_mul_rect_band (complex)</td>
<td>Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices of complex type and stored in band form.</td>
</tr>
<tr>
<td>mat_mul_rect_coordinate</td>
<td>Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in sparse coordinate form.</td>
</tr>
<tr>
<td>mat_mul_rect_coordinate (complex)</td>
<td>Computes the transpose of a matrix, a matrix-vector product or a matrix-matrix product, all matrices stored in sparse coordinate form.</td>
</tr>
<tr>
<td>matrix_norm</td>
<td>Computes various norms of a rectangular matrix.</td>
</tr>
<tr>
<td>matrix_norm_band</td>
<td>Computes various norms of a matrix stored in band storage mode.</td>
</tr>
<tr>
<td>matrix_norm_coordinate</td>
<td>Computes various norms of a matrix stored in coordinate format.</td>
</tr>
<tr>
<td>min_con_gen_lin</td>
<td>Minimizes a general objective function subject to linear equality/inequality constraints.</td>
</tr>
<tr>
<td>min_uncon</td>
<td>Finds the minimum point of a smooth function ( f(x) ) of a single variable using only function evaluations.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>min_uncon_deriv</td>
<td>Finds the minimum point of a smooth function $f(x)$ of a single variable using both function and first derivative evaluations.</td>
</tr>
<tr>
<td>min_uncon_golden</td>
<td>Finds the minimum point of a nonsmooth function of a single variable.</td>
</tr>
<tr>
<td>min_uncon_multivar</td>
<td>Minimizes a function $f(x)$ of $n$ variables using a quasi-Newton method.</td>
</tr>
<tr>
<td>min_uncon_polytope</td>
<td>Minimizes a function of $n$ variables using a direct search polytope algorithm.</td>
</tr>
<tr>
<td>modified_duration</td>
<td>Evaluates the modified Macauley duration of a security.</td>
</tr>
<tr>
<td>modified_internal_rate</td>
<td>Evaluates the modified internal rate of return for a series of periodic cash flows.</td>
</tr>
<tr>
<td>modified_method_of_lines</td>
<td>Solves a system of partial differential equations of the form $u_t + f(x, t, u, u_x, u_{xx})$ using the method of lines.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>net_present_value</td>
<td>Evaluates the net present value of an investment based on a series of periodic.</td>
</tr>
<tr>
<td>next_coupon_date</td>
<td>Evaluates the next coupon date after the settlement date.</td>
</tr>
<tr>
<td>nominal_rate</td>
<td>Evaluates the nominal annual interest rate.</td>
</tr>
<tr>
<td>nonlin_least_squares</td>
<td>Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm.</td>
</tr>
<tr>
<td>nonneg_least_squares</td>
<td>Computes the non-negative least squares (nnls) solution.</td>
</tr>
<tr>
<td>nonneg_matrix_factorization</td>
<td>Given an $m \times n$ real matrix $A \geq 0$ and an integer $k \leq \min(m, n)$, compute a factorization $A \cong FG$.</td>
</tr>
<tr>
<td>normal_cdf</td>
<td>Evaluates the standard normal (Gaussian) distribution function.</td>
</tr>
<tr>
<td>normal_inverse_cdf</td>
<td>Evaluates the inverse of the standard normal (Gaussian) distribution function.</td>
</tr>
<tr>
<td>number_of_periods</td>
<td>Evaluates the number of periods for an investment based on periodic and constant payment and a constant interest rate.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ode_adams_2nd_order</td>
<td>Solves an initial-value problem for a system of ordinary differential equations of order one or two using a variable order Adams method.</td>
</tr>
<tr>
<td>ode_adams_gear</td>
<td>Solves a stiff initial-value problem for ordinary differential equations using the Adams-Gear methods.</td>
</tr>
<tr>
<td>Ode_adams_krogh</td>
<td>Solves an initial-value problem for a system of ordinary differential equations of order one or two using a variable order Adams method.</td>
</tr>
<tr>
<td>ode_runge_kutta</td>
<td>Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method.</td>
</tr>
<tr>
<td>omp_options</td>
<td>Sets various OpenMP options.</td>
</tr>
<tr>
<td>output_file</td>
<td>Sets the output file or the error message output file.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>page</td>
<td>Sets or retrieve the page width or length.</td>
</tr>
<tr>
<td>payment</td>
<td>Evaluates the periodic payment for an investment.</td>
</tr>
<tr>
<td>pde_1d_mg</td>
<td>Solves a system of one-dimensional time-dependent partial differential equations using a moving-grid interface.</td>
</tr>
<tr>
<td>poisson_cdf</td>
<td>Evaluates the Poisson distribution function.</td>
</tr>
<tr>
<td>poly_regression</td>
<td>Performs a polynomial least-squares regression.</td>
</tr>
<tr>
<td>present_value</td>
<td>Evaluates the present value of an investment.</td>
</tr>
<tr>
<td>present_value_schedule</td>
<td>Evaluates the present value for a schedule of cash flows that is not necessarily periodic.</td>
</tr>
<tr>
<td>previous_coupon_date</td>
<td>Evaluates the previous coupon date before the settlement date.</td>
</tr>
<tr>
<td>price</td>
<td>Evaluates the price per $100 face value of a security that pays periodic interest.</td>
</tr>
<tr>
<td>price_maturity</td>
<td>Evaluates the price per $100 face value of a security that pays interest at maturity.</td>
</tr>
<tr>
<td>principal_payment</td>
<td>Evaluates the payment on the principal for a given period.</td>
</tr>
<tr>
<td>psi</td>
<td>Evaluates the derivative of the log gamma function.</td>
</tr>
<tr>
<td>psil</td>
<td>Evaluates the second derivative of the log gamma function.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>quadratic_prog</td>
<td>Solves a quadratic programming problem subject to linear equality or inequality constraints.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>radial_evaluate</td>
<td>Evaluates a radial basis fit.</td>
</tr>
<tr>
<td>radial_scattered_fit</td>
<td>Computes an approximation to scattered data in ( \mathbb{R}^n ) for ( n \geq 2 ) using radial basis functions.</td>
</tr>
<tr>
<td>random_beta</td>
<td>Generates pseudorandom numbers from a beta distribution.</td>
</tr>
<tr>
<td>random_exponential</td>
<td>Generates pseudorandom numbers from a standard exponential distribution.</td>
</tr>
<tr>
<td>random_gamma</td>
<td>Generates pseudorandom numbers from a standard gamma distribution.</td>
</tr>
<tr>
<td>random_normal</td>
<td>Generates pseudorandom numbers from a standard normal distribution using an inverse CDF method.</td>
</tr>
<tr>
<td>random_option</td>
<td>Selects the uniform ((0, 1)) multiplicative congruential pseudorandom number generator.</td>
</tr>
<tr>
<td>random_poisson</td>
<td>Generates pseudorandom numbers from a Poisson distribution.</td>
</tr>
<tr>
<td>random_seed_get</td>
<td>Retrieves the current value of the seed used in the IMSL random number generators.</td>
</tr>
<tr>
<td>random_seed_set</td>
<td>Initializes a random seed for use in the IMSL random number generators.</td>
</tr>
<tr>
<td>random_uniform</td>
<td>Generates pseudorandom numbers from a uniform ((0, 1)) distribution.</td>
</tr>
<tr>
<td>ranks</td>
<td>Computes the ranks, normal scores, or exponential scores for a vector of observations.</td>
</tr>
<tr>
<td>read_mps</td>
<td>Reads an MPS file containing a linear programming problem or a quadratic programming problem.</td>
</tr>
<tr>
<td>received_maturity</td>
<td>Evaluates the amount received for a fully invested security.</td>
</tr>
<tr>
<td>regression</td>
<td>Fits a multiple linear regression model using least squares.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>scattered_2d_interp</td>
<td>Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables.</td>
</tr>
<tr>
<td>set_user_fcn_return_flag</td>
<td>Indicates a condition has occurred in a user-supplied function necessitating a return to the calling function.</td>
</tr>
<tr>
<td>simple_statistics</td>
<td>Computes basic univariate statistics.</td>
</tr>
<tr>
<td>smooth_1d_data</td>
<td>Smooth one-dimensional data by error detection.</td>
</tr>
<tr>
<td>sort</td>
<td>Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.</td>
</tr>
<tr>
<td>sort (integer)</td>
<td>Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.</td>
</tr>
<tr>
<td>sparse_cholesky_smp</td>
<td>Computes the Cholesky factorization of a sparse real symmetric positive definite matrix $A$ by an OpenMP parallelized supernodal algorithm and solves the sparse real positive definite system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td>sparse_cholesky_smp (complex)</td>
<td>Computes the Cholesky factorization of a sparse (complex) Hermitian positive definite matrix $A$ by an OpenMP parallelized supernodal algorithm and solves the sparse Hermitian positive definite system of linear equations $Ax = b$.</td>
</tr>
<tr>
<td>sparse_lin_prog</td>
<td>Solves a sparse linear programming problem by an infeasible primal-dual interior-point method.</td>
</tr>
<tr>
<td>sparse_quadratic_prog</td>
<td>Solves a sparse convex quadratic programming problem by an infeasible primal-dual interior-point method.</td>
</tr>
<tr>
<td>spline_2d_integral</td>
<td>Evaluates the integral of a tensor-product spline on a rectangular domain.</td>
</tr>
<tr>
<td>spline_2d_interp</td>
<td>Computes a two-dimensional, tensor-product spline interpolant from two-dimensional, tensor-product data.</td>
</tr>
<tr>
<td>spline_2d_least_squares</td>
<td>Computes a two-dimensional, tensor-product spline approximant using least squares.</td>
</tr>
<tr>
<td>spline_2d_value</td>
<td>Computes the value of a tensor-product spline or the value of one of its partial derivatives.</td>
</tr>
<tr>
<td>spline_integral</td>
<td>Computes the integral of a spline.</td>
</tr>
<tr>
<td>spline_interp</td>
<td>Computes a spline interpolant.</td>
</tr>
<tr>
<td>spline_knots</td>
<td>Computes the knots for a spline interpolant.</td>
</tr>
<tr>
<td>spline_least_squares</td>
<td>Computes a least-squares spline approximation.</td>
</tr>
<tr>
<td>spline_lsq_constrained</td>
<td>Computes a least-squares constrained spline approximation.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>spline_nd_interp</td>
<td>Performs a multidimensional interpolation and differentiation for up to 7 dimensions.</td>
</tr>
<tr>
<td>spline_value</td>
<td>Computes the value of a spline or the value of one of its derivatives.</td>
</tr>
<tr>
<td>superlu</td>
<td>Computes the LU factorization of a general sparse matrix by a column method and solves the real sparse linear system of equations $Ax = b$.</td>
</tr>
<tr>
<td>superlu (complex)</td>
<td>Computes the LU factorization of a general complex sparse matrix by a column method and solves the complex sparse linear system of equations $Ax = b$.</td>
</tr>
<tr>
<td>superlu_smp</td>
<td>Computes the LU factorization of a general sparse matrix by a left-looking column method using OpenMP parallelism, and solves the real sparse linear system of equations $Ax = b$.</td>
</tr>
<tr>
<td>superlu_smp (complex)</td>
<td>Computes the LU factorization of a general complex sparse matrix by a left-looking column method using OpenMP parallelism and solves the complex sparse linear system of equations $Ax = b$.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>t_cdf</td>
<td>Evaluates the Student's $t$ distribution function.</td>
</tr>
<tr>
<td>t_inverse_cdf</td>
<td>Evaluates the inverse of the Student's $t$ distribution function.</td>
</tr>
<tr>
<td>table_oneway</td>
<td>Tallies observations into a one-way frequency table.</td>
</tr>
<tr>
<td>treasury_bill_price</td>
<td>Computes the price per $100 face value for a Treasury bill.</td>
</tr>
<tr>
<td>treasury_bill_yield</td>
<td>Computes the yield for a Treasury bill.</td>
</tr>
</tbody>
</table>
### Function | Purpose Statement
--- | ---
user_fcn_least_squares | Computes a least-squares fit using user-supplied functions.
<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector_norm</td>
<td>Computes various norms of a vector or the difference of two vectors.</td>
</tr>
<tr>
<td>vector_norm (complex)</td>
<td>Computes various norms of a vector or the difference of two vectors.</td>
</tr>
<tr>
<td>version</td>
<td>Returns integer information describing the version of the library, license number, operating system, and compiler.</td>
</tr>
</tbody>
</table>
### Function Purpose Statement

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>write_matrix</td>
<td>Prints a rectangular matrix (or vector) stored in contiguous memory locations.</td>
</tr>
<tr>
<td>write_options</td>
<td>Sets or retrieve an option for printing a matrix.</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose Statement</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>year_fraction</td>
<td>Evaluates the year fraction that represents the number of whole days between two dates.</td>
</tr>
<tr>
<td>yield_maturity</td>
<td>Evaluates the annual yield of a security that pays interest at maturity.</td>
</tr>
<tr>
<td>yield_periodic</td>
<td>Evaluates the yield of a security that pays periodic interest.</td>
</tr>
</tbody>
</table>
## Appendix B: Alphabetical Summary of Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros_function</td>
<td>Finds the real zeros of a real, continuous, univariate function.</td>
</tr>
<tr>
<td>zeros_poly</td>
<td>Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage algorithm.</td>
</tr>
<tr>
<td>zeros_poly (complex)</td>
<td>Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub three-stage algorithm.</td>
</tr>
<tr>
<td>zeros_sys_eqn</td>
<td>Solves a system of $n$ nonlinear equations $f(x) = 0$ using a modified Powell hybrid algorithm.</td>
</tr>
<tr>
<td>zero_univariate</td>
<td>Finds a zero of a real univariate function.</td>
</tr>
</tbody>
</table>
Contacting IMSL Support

Users within support warranty may contact Rogue Wave Software regarding the use of the IMSL C Numerical Library. IMSL Support can consult on the following topics:

- Clarity of documentation
- Possible IMSL-related programming problems
- Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of your program.

Refer to the following for IMSL Product Support contact information:

http://www.roguewave.com/help-support/customer-support

The following describes the procedure for consultation with Rogue Wave:

1. Include your IMSL license number
2. Include the product name and version number: IMSL C Numerical Library Version 8.5.0
3. Include compiler and operating system version numbers
4. Include the name of the routine for which assistance is needed and a description of the problem
Index

A
Adams method 579
variable order 579
Airy functions 1015, 1017, 1019, 1021
approximation 419

B
backward difference formulas 566
band matrices 1372, 1376
band storage mode 1372, 1376, 1393
Bessel functions 964, 967, 969, 972, 975, 977, 979, 981, 983, 985, 987, 989, 991, 993, 995, 997
beta functions 944, 947, 949, 1067
Black-Scholes Equation
American Put Pricing 661
Cash-or-Nothing Payoff, A Bet 674
Convertible Bond Pricing 680
European Put Pricing 661
Greeks, Delta, Gamma, and Theta, Feynman-Kac 661
Vertical Spread Payoff 674
bond functions 1124, 1126, 1129, 1131, 1134, 1136, 1138, 1140, 1142, 1144, 1146, 1148, 1150, 1152, 1155, 1157, 1159, 1161, 1163, 1166, 1169, 1171, 1173, 1175, 1177, 1180
boundary conditions 547
bvpFiniteDifference 547

C
chi-squared goodness-of-fit test 1197
Cholesky factorization 52, 254, 282
column pivoting 217
complex arithmetic 10, 1431
complex Hermitian positive definite system 81
computer’s arithmetic 1322
computer’s floating-point arithmetic 1325
Computing Initial Derivatives for DAE Systems 567, 569
Constant elasticity of variance, CEV 666
constrained least squares 34
constrained quadratic programming 899
ConstrainedNlp nonlinear programming 899
Constraints after Index Reduction 564, 565, 569, 573
Conservation Principles 567, 573
correlation 736, 744
coordinate format 1381, 1385, 1397
correlation matrix 1207
cosine Fresnel integrals 1011
CPU time 1286
cubic Hermite polynomials 631
cubic spline interpolant 410
cubic splines 306, 315, 329, 333, 395

d
DAE
Index of DAE System 567
Reducing the Index 567
DAE Solver 560
dates and days 1287, 1289
daetaPetzoldGear 577
derivatives 531
differential algebraic equations 537
differential equations 547
differential-algebraic equations 560
differential-algebraic solver 560
differential-algebraic systems 537
direct search polytope algorithm 809
discrete Fourier cosine transformation 717, 720
discrete Fourier sine transformation 723, 726
distribution functions 1039, 1041, 1043, 1046, 1048, 1050, 1055, 1057, 1059, 1061, 1063, 1065, 1067, 1069
eigenvalues 262, 263, 265, 269, 273, 277, 281
eigenvectors 273, 277, 285, 290
elementary integrals 1009
element-wise addition 1381, 1385
elliptic integrals 999, 1001, 1003, 1005, 1007
equality/inequality constraints 882
equilibrium 536
error detection 409
error functions 929, 931, 938, 941
complementary exponentially scaled 934
error handling 7, 1291, 1301
errors 1428
Euler’s constant 1320
even sequence 717
Examples
Linear ODE
User-Defined Linear Solver Constraints 573
Swinging Pendulum Constraints
Index 1 System 569
F
fast Fourier transforms  700, 702, 707, 710, 714, 729
fast_poisson_2d  692
Faure  1261
Faure sequence  1259
faure_next_point  1259
Feynman-Kac Differential Equation
  Absolute and Relative Tolerances, DAE  658
  Absolute and Relative Tolerances, DAE  655
  boundary values  538
  Differential Algebraic Equation, DAE  661
  Finite Element Method, Forcing or Source Term, Feynman-Kac  589, 659, 661
  Gauss-Legendre Integration  656
  Initial Values, Feynman-Kac  661
  Optional Arguments, Feynman-Kac  654
  Truncation Error, Feynman-Kac  590
  Feynman-Kac differential equation  656
  financial functions  1071, 1073, 1075, 1078, 1081, 1083, 1085, 1088, 1090, 1092, 1094, 1096, 1098, 1100, 1103, 1105, 1108, 1110, 1112, 1114, 1116, 1118, 1120, 1122
  forward differences  908
G
gamma functions  951, 954, 957
  logarithmic derivative  960, 962
  Gauss-Kronrod rules  435, 448
  generalized inverses  35, 243
  GMRES method  201
  Gray code  1261
H
Harding, L.J.  39
Healy's algorithm  257
Helmholtz's equation  692
HODIE finite-difference scheme  692
Householder's method  216, 217, 242, 249
hyper-rectangle  1259
I
Index of DAE System  566
  initial-value problems  536
  integration  365, 435, 440, 448, 453, 459, 464, 469, 475, 480, 485, 490, 496, 516, 521, 526
  interior point method  859
  interior-point method  867
  interpolation  299, 335, 341, 346, 414
J
Jacobian  908
Jenkins-Traub algorithm  761, 764
K
Karush-Kuhn-Tucker (KKT) optimality conditions  859, 874
Kelvin functions  1023, 1025, 1027, 1029, 1031, 1033, 1035, 1037
L
lack-of-fit test  1223
  least squares  299
  least-squares approximation  400
  least-squares fit  214, 373, 389, 409
  least-squares solutions  34
  Lebesque measure  1261
  Levenberg-Marquardt algorithm  814
  linear equations  64, 70
  linear least-squares problem  230
  linear programming  834
  active set strategy  836
  linear system solution  33, 36
  loop unrolling and jamming  39
  low-discrepancy  1261
  LU factorization  45, 87, 99
M
mathematical constants  1318
  matrices  33, 45, 52, 58, 254
  general  21
  Hermitian  21
  multiplying  1341
  rectangular  21
  symmetric  21
  matrix multiply  1346
  matrix transpose  1351, 1356, 1361, 1366
  matrix-matrix product  1351, 1356, 1361, 1366
  matrix-vector produce  1366
  matrix-vector product  1351, 1356, 1361
  Mehrutra's predictor-corrector algorithm  859, 874
  memory allocation  8
  method of lines  631
  minimization  784, 785, 787, 792, 801, 809, 814, 834, 841, 847, 867, 882
  models  general linear  1299, 1316
  modified_method_of_lines  631
  MPS  837, 863, 878
  Müller's method  1315
  multiple right-hand sides  34
N
nonlinear programming problem  899
non-negative least squares  34, 223
Non-Negative Matrix Factorization  35, 235
  norms of a vector  1334
O
odd sequence  723
ode_adams
  initial-value problem  579
ode_adams_gear  546
ode_runge_kutta  539
one-way frequency table  1192
order one or two
  system of ordinary differential equations  579
  ordinary differential equations  536, 539
output files 1279

P
Partial Differential Equations
A ‘Hot Spot’ Model 618
A Flame Propagation Model 613
A Model in Cylindrical Coordinates 610
Black Scholes 624
Electrodynamics Model 598
Inviscid Flow on a Plate 601
Petzold-Gear integrator 591
Population Dynamics 605
Traveling Waves 621

partial differential equations 631
partial pivoting 45, 48
pde_1d_mg 589
pde_method_of_lines 630
Poisson solver 692
polynomial interpolation 368
polynomial functions 760
polynomials 297
predator-prey model 542
primal-dual 853, 867, 875
printing 1264, 1271, 1273
pseudorandom numbers 1257
PV_WAVE 597

Q
QR factorizations 214
quadrature 432, 433
quasi-Monte Carlo 521

R
radial-basis fit 427
random number generation 1184, 1185
random numbers 1240, 1242, 1243, 1244, 1247, 1249, 1251, 1254
rank deficiency 34
real symmetric definite linear system 207
real symmetric positive definite system 76
rectangular matrix 1390
Reducing the Index 567

References
Parabolic PDE System 567
Runge-Kutta-Verner method 539

S
Savage scores 1232
sine Fresnel integrals 1013
singular value decomposition 35
singularity 35
singularity points 440, 496, 505
smoothed data 409
sort 1328, 1331
sparse Hermitian positive definite system 172
sparse linear programming 853
sparse quadratic programming 867
sparse real symmetric positive definite system 163
splines 297, 298, 300, 353, 357, 360, 382
standard exponential distributions 1257
statistics 1214
Stiff Solver 560
stiff systems 536
SVD factorization 240, 247

test matrices 1401, 1404, 1407, 1412
Thread Safe 15
multithreaded application 15
single-threaded application 15
threads and error handling 1430
time constants 536

U
uncertainty 35
uniform mesh 692
univariate statistics 1186
User-Defined Linear Solver 565, 573

V
variable order 547

Verner, J.H. 542
version 1284

Z
zero of a real univariate function 767
zero of a system 777
zeros of a function 771