JMSL™ NUMERICAL LIBRARY USER GUIDE

Version 7.3
Contents

1 Introduction

2 Linear Systems
Matrix .. 9
ComplexMatrix 14
SparseMatrix 19
ComplexSparseMatrix 30
LU .. 40
SuperLU .. 45
ComplexLU 60
ComplexSuperLU 65
Cholesky ... 80
SparseCholesky 85
ComplexSparseCholesky 92
QR ... 99
SVD .. 103
GenMinRes 108
ConjugateGradient 128
SingularMatrixException 141

3 Eigensystem Analysis
Eigen ... 144
SymEigen 148
Interpolation and Approximation 153

- Spline 155
- CsAkima 159
- CsTCB 160
- CsInterpolate 166
- CsPeriodic 168
- CsShape 170
- CsSmooth 172
- CsSmoothC2 174
- BSpline 176
- BsInterpolate 180
- BsLeastSquares 182
- Spline2D 184
- Spline2DInterpolate 188
- Spline2DLeastSquares 197
- RadialBasis 202

Quadrature 217

- Quadrature 218
- HyperRectangleQuadrature 225

Differential Equations 229

- ODE 230
- OdeRungeKutta 236
- OdeAdamsGear 240
- FeynmanKac 251

Transforms 317

- FFT 318
- ComplexFFT 322

Nonlinear Equations 327

- ZeroPolynomial 328
Nonparametric Statistics

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SignTest</td>
<td>845</td>
</tr>
<tr>
<td>WilcoxonRankSum</td>
<td>849</td>
</tr>
</tbody>
</table>

Tests of Goodness of Fit

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChiSquaredTest</td>
<td>857</td>
</tr>
<tr>
<td>NormalityTest</td>
<td>864</td>
</tr>
<tr>
<td>KolmogorovOneSample</td>
<td>869</td>
</tr>
<tr>
<td>KolmogorovTwoSample</td>
<td>872</td>
</tr>
</tbody>
</table>

Time Series and Forecasting

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoCorrelation</td>
<td>880</td>
</tr>
<tr>
<td>ARAutoUnivariate</td>
<td>890</td>
</tr>
<tr>
<td>ARSeasonalFit</td>
<td>915</td>
</tr>
<tr>
<td>ARMA</td>
<td>928</td>
</tr>
<tr>
<td>ARMAEstimateMissing</td>
<td>954</td>
</tr>
<tr>
<td>ARMAMaxLikelihood</td>
<td>964</td>
</tr>
<tr>
<td>ARMAOutlierIdentification</td>
<td>981</td>
</tr>
<tr>
<td>AutoARIMA</td>
<td>1000</td>
</tr>
<tr>
<td>CrossCorrelation</td>
<td>1024</td>
</tr>
<tr>
<td>Difference</td>
<td>1035</td>
</tr>
<tr>
<td>GARCH</td>
<td>1040</td>
</tr>
<tr>
<td>KalmanFilter</td>
<td>1050</td>
</tr>
<tr>
<td>MultiCrossCorrelation</td>
<td>1062</td>
</tr>
<tr>
<td>LackOffFit</td>
<td>1076</td>
</tr>
<tr>
<td>HoltWintersExponentialSmoothing</td>
<td>1079</td>
</tr>
<tr>
<td>TimeSeries</td>
<td>1088</td>
</tr>
<tr>
<td>TimeSeriesOperations</td>
<td>1096</td>
</tr>
<tr>
<td>VectorAutoregression</td>
<td>1108</td>
</tr>
</tbody>
</table>

Multivariate Analysis

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterKMeans</td>
<td>1117</td>
</tr>
</tbody>
</table>

Contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterKNN</td>
<td>1134</td>
</tr>
<tr>
<td>Dissimilarities</td>
<td>1139</td>
</tr>
<tr>
<td>ClusterHierarchical</td>
<td>1146</td>
</tr>
<tr>
<td>FactorAnalysis</td>
<td>1155</td>
</tr>
<tr>
<td>DiscriminantAnalysis</td>
<td>1174</td>
</tr>
<tr>
<td>21 Survival and Reliability Analysis</td>
<td>1199</td>
</tr>
<tr>
<td>KaplanMeierECDF</td>
<td>1199</td>
</tr>
<tr>
<td>KaplanMeierEstimates</td>
<td>1203</td>
</tr>
<tr>
<td>ProportionalHazards</td>
<td>1211</td>
</tr>
<tr>
<td>LifeTables</td>
<td>1231</td>
</tr>
<tr>
<td>22 Probability Distribution Functions and Inverses</td>
<td>1237</td>
</tr>
<tr>
<td>Cdf</td>
<td>1239</td>
</tr>
<tr>
<td>Pdf</td>
<td>1280</td>
</tr>
<tr>
<td>InvCdf</td>
<td>1296</td>
</tr>
<tr>
<td>CdfFunction</td>
<td>1307</td>
</tr>
<tr>
<td>InverseCdf</td>
<td>1308</td>
</tr>
<tr>
<td>Distribution</td>
<td>1311</td>
</tr>
<tr>
<td>ProbabilityDistribution</td>
<td>1311</td>
</tr>
<tr>
<td>NormalDistribution</td>
<td>1313</td>
</tr>
<tr>
<td>GammaDistribution</td>
<td>1315</td>
</tr>
<tr>
<td>LogNormalDistribution</td>
<td>1317</td>
</tr>
<tr>
<td>PoissonDistribution</td>
<td>1319</td>
</tr>
<tr>
<td>23 Random Number Generation</td>
<td>1323</td>
</tr>
<tr>
<td>Random</td>
<td>1324</td>
</tr>
<tr>
<td>FaureSequence</td>
<td>1349</td>
</tr>
<tr>
<td>MersenneTwister</td>
<td>1353</td>
</tr>
<tr>
<td>MersenneTwister64</td>
<td>1357</td>
</tr>
<tr>
<td>RandomSequence</td>
<td>1361</td>
</tr>
<tr>
<td>RandomSamples</td>
<td>1362</td>
</tr>
</tbody>
</table>
24 Input/Output

- AbstractFlatFile ... 1373
- FlatFile .. 1423
- Tokenizer ... 1456
- MPSReader ... 1457

25 Finance

- BasisPart ... 1472
- Bond .. 1473
- DayCountBasis .. 1527
- Finance .. 1530

26 Chart 2D

- Chart ... 1562
- AbstractChartNode 1567
- ChartNode ... 1586
- Background ... 1608
- ChartTitle ... 1609
- Legend .. 1609
- Annotation ... 1610
- Grid ... 1612
- Axis ... 1613
- AxisXY ... 1615
- Axis1D ... 1617
- AxisLabel .. 1622
- AxisLine ... 1623
- AxisTitle .. 1623
- AxisUnit ... 1624
- MajorTick .. 1625
- MinorTick .. 1625
- Transform ... 1626
- TransformDate .. 1627
<table>
<thead>
<tr>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxisR</td>
<td>1628</td>
</tr>
<tr>
<td>AxisRLabel</td>
<td>1630</td>
</tr>
<tr>
<td>AxisRLine</td>
<td>1631</td>
</tr>
<tr>
<td>AxisRMajorTick</td>
<td>1631</td>
</tr>
<tr>
<td>AxisTheta</td>
<td>1632</td>
</tr>
<tr>
<td>GridPolar</td>
<td>1633</td>
</tr>
<tr>
<td>Data</td>
<td>1634</td>
</tr>
<tr>
<td>ChartFunction</td>
<td>1645</td>
</tr>
<tr>
<td>ChartSpline</td>
<td>1645</td>
</tr>
<tr>
<td>Text</td>
<td>1646</td>
</tr>
<tr>
<td>ToolTip</td>
<td>1648</td>
</tr>
<tr>
<td>FillPaint</td>
<td>1650</td>
</tr>
<tr>
<td>Draw</td>
<td>1653</td>
</tr>
<tr>
<td>JFrameChart</td>
<td>1664</td>
</tr>
<tr>
<td>JPanelChart</td>
<td>1665</td>
</tr>
<tr>
<td>DrawPick</td>
<td>1667</td>
</tr>
<tr>
<td>PickEvent</td>
<td>1673</td>
</tr>
<tr>
<td>PickListener</td>
<td>1674</td>
</tr>
<tr>
<td>JspBean</td>
<td>1675</td>
</tr>
<tr>
<td>ChartServlet</td>
<td>1678</td>
</tr>
<tr>
<td>DrawMap</td>
<td>1679</td>
</tr>
<tr>
<td>BoxPlot</td>
<td>1685</td>
</tr>
<tr>
<td>Contour</td>
<td>1695</td>
</tr>
<tr>
<td>ErrorBar</td>
<td>1703</td>
</tr>
<tr>
<td>HighLowClose</td>
<td>1708</td>
</tr>
<tr>
<td>Candlestick</td>
<td>1714</td>
</tr>
<tr>
<td>CandlestickItem</td>
<td>1716</td>
</tr>
<tr>
<td>SplineData</td>
<td>1717</td>
</tr>
<tr>
<td>Bar</td>
<td>1720</td>
</tr>
<tr>
<td>BarItem</td>
<td>1726</td>
</tr>
<tr>
<td>BarSet</td>
<td>1727</td>
</tr>
<tr>
<td>Chart Type</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Pie</td>
<td>1728</td>
</tr>
<tr>
<td>PieSlice</td>
<td>1732</td>
</tr>
<tr>
<td>Dendrogram</td>
<td>1733</td>
</tr>
<tr>
<td>Polar</td>
<td>1741</td>
</tr>
<tr>
<td>Heatmap</td>
<td>1745</td>
</tr>
<tr>
<td>Treemap</td>
<td>1755</td>
</tr>
<tr>
<td>Colormap</td>
<td>1764</td>
</tr>
<tr>
<td>ChartXML</td>
<td>1766</td>
</tr>
</tbody>
</table>

27 Quality Control and Improvement Charts 1771

- ShewhartControlChart 1771
- ControlLimit 1777
- XbarR 1779
- RChart 1785
- XbarS 1789
- SChart 1796
- XmR 1799
- NpChart 1802
- PChart 1805
- CChart 1809
- UChart 1812
- EWMA 1815
- CuSum 1819
- CuSumStatus 1822
- ParetoChart 1830

28 Chart 3D 1837

- Chart3D 1837
- JFrameChart3D 1840
- ChartNode3D 1842
- Background 1852
- Canvas3DChart 1852
BufferedPaint .. 1856
ChartLights .. 1857
AmbientLight ... 1857
DirectionalLight .. 1858
PointLight ... 1860
AxisXYZ .. 1861
AxisBox ... 1863
Axis3D ... 1865
AxisLabel .. 1868
AxisLine ... 1869
AxisTitle ... 1869
MajorTick .. 1870
Surface .. 1870
Data ... 1881
ColorFunction .. 1893
ColormapLegend .. 1893

29 Data Mining .. 1897
NaiveBayesClassifier .. 1902
Itemsets ... 1923
AssociationRule .. 1925
Apriori ... 1926
KohonenSOM .. 1934
KohonenSOMTrainer ... 1942
PredictiveModel .. 1945
BootstrapAggregation .. 1962
CrossValidation .. 1969
GradientBoosting ... 1976

30 Support Vector Machines 2003
SupportVectorMachine ... 2003
SVClassification .. 2013
Contents

<table>
<thead>
<tr>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVOneClass</td>
<td>2025</td>
</tr>
<tr>
<td>SVRegression</td>
<td>2029</td>
</tr>
<tr>
<td>Kernel</td>
<td>2037</td>
</tr>
<tr>
<td>LinearKernel</td>
<td>2039</td>
</tr>
<tr>
<td>SigmoidKernel</td>
<td>2040</td>
</tr>
<tr>
<td>RadialBasisKernel</td>
<td>2042</td>
</tr>
<tr>
<td>PolynomialKernel</td>
<td>2044</td>
</tr>
<tr>
<td>DataNode</td>
<td>2045</td>
</tr>
<tr>
<td>Neural Nets</td>
<td>2047</td>
</tr>
<tr>
<td>Network</td>
<td>2090</td>
</tr>
<tr>
<td>FeedForwardNetwork</td>
<td>2099</td>
</tr>
<tr>
<td>Layer</td>
<td>2113</td>
</tr>
<tr>
<td>InputLayer</td>
<td>2114</td>
</tr>
<tr>
<td>HiddenLayer</td>
<td>2115</td>
</tr>
<tr>
<td>OutputLayer</td>
<td>2116</td>
</tr>
<tr>
<td>Node</td>
<td>2118</td>
</tr>
<tr>
<td>InputNode</td>
<td>2118</td>
</tr>
<tr>
<td>Perceptron</td>
<td>2119</td>
</tr>
<tr>
<td>OutputPerceptron</td>
<td>2120</td>
</tr>
<tr>
<td>Activation</td>
<td>2121</td>
</tr>
<tr>
<td>Link</td>
<td>2123</td>
</tr>
<tr>
<td>Trainer</td>
<td>2124</td>
</tr>
<tr>
<td>QuasiNewtonTrainer</td>
<td>2125</td>
</tr>
<tr>
<td>LeastSquaresTrainer</td>
<td>2134</td>
</tr>
<tr>
<td>EpochTrainer</td>
<td>2138</td>
</tr>
<tr>
<td>BinaryClassification</td>
<td>2144</td>
</tr>
<tr>
<td>MultiClassification</td>
<td>2187</td>
</tr>
<tr>
<td>ScaleFilter</td>
<td>2202</td>
</tr>
<tr>
<td>UnsupervisedNominalFilter</td>
<td>2211</td>
</tr>
<tr>
<td>Example: UnsupervisedNominalFilter</td>
<td>2214</td>
</tr>
<tr>
<td>UnsupervisedOrdinalFilter</td>
<td>2215</td>
</tr>
</tbody>
</table>
Example: UnsupervisedOrdinalFilter .. 2219
TimeSeriesFilter ... 2220
TimeSeriesClassFilter ... 2222

32 Decision Trees ... 2227
 TreeNode ... 2229
 Tree ... 2234
 DecisionTree .. 2237
 DecisionTreeInfoGain .. 2265
 ALACART ... 2269
 C45 ... 2275
 CHAID .. 2283
 QUEST ... 2289
 RandomTrees ... 2298

33 Maximum Likelihood Estimation .. 2311
 MaximumLikelihoodEstimation ... 2312
 ProbabilityDistribution .. 2321
 PDFGradientInterface .. 2324
 PDFHessianInterface ... 2324
 ClosedFormMaximumLikelihoodInterface 2325
 MethodOfMomentsInterface ... 2326
 BetaPD ... 2326
 ContinuousUniformPD .. 2329
 ExponentialPD .. 2333
 GammaPD ... 2336
 NormalPD ... 2339

34 Error Handling ... 2345
 Messages ... 2345
 Version ... 2347
 IMSLFormatter ... 2347
35 References 2357

Index i
Chapter 1: Introduction

Distributed Computing and Parallelism

Distributed computing refers to breaking a problem down into parts and the communication of the parts across a network. Parallel computing refers to the simultaneous processing of the parts, often on the same processor or multiple processors which share memory.

The Adobe Hadoop is a Java open-source project for distributed computing. Certain JMSL classes can be used in conjunction with Hadoop for data mining large data sets on a cluster. Example JMSL classes include Linear Regression and the Apriori class used for market basket analysis.

The JMSL Library utilizes Java Threads to implement parallel processing. The JMSL implementation provides methods for specifying the number of threads to be used in selected classes which may benefit most from parallel processing, such as those in the Optimization, Time Series, and Data Mining categories.

JMSL Concurrency (Java Threads)

The JMSL Library utilizes Java Threads to implement parallel processing. The choice whether to leverage this capability and to what extent is left to the user. The advantage of parallel processing is frequently determined by available hardware resources and simultaneous processes. This is such a complex issue that significant research is ongoing in this area of technology.

The JMSL implementation provides accessor and mutator methods for specifying the number of Threads to be used in selected classes that may benefit most from parallel processing. These classes include the Matrix class as well as several classes from the Optimization, Time Series, and Data Mining categories.

The JMSL parallel API occurs in two contexts. The first is a class mutator. For these cases, the mutator prototype is “setNumberOfThreads(int numberOfThreads)”. Classes that implement this mutator method have the capacity to operate in parallel. The second context is a method (usually static) where the ”numberOfThreads” argument is one of multiple arguments. For example, the overloaded parallel version of Matrix.multiply is Matrix.multiply(double[][] a, double[][] b, int numberOfThreads).

JMSL’s elementary mechanism for issuing parallel analysis provides flexibility and control while also providing all of the potential performance benefits.
Compressed Sparse Column (CSC) Format

Classes that accept data in coordinate format can also accept data stored in the format described in the Users' Guide for the Harwell-Boeing Sparse Matrix Collection. The scheme is column oriented, with each column held as a sparse vector, represented by a list of the row indices of the entries in an integer array ("rowInd" below) and a list of the corresponding values in a separate double array ("values" below). Data for each column is stored consecutively and the columns are stored in order. A third array ("colPtr" below) indicates the location in array "values" in which to place the first nonzero value of each succeeding column of the original sparse matrix. So "colPtr[i]" contains the index of the first free location in array "values" in which to place the values from the i-th column of the original sparse matrix. In other words, "values[colPtr[j]]" holds the first nonzero value of the i-th column of the original sparse matrix. Only entries in the lower triangle and diagonal are stored for symmetric and Hermitian matrices. All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’s one-based arrays.

As in the Harwell-Boeing user guide (link above), the storage scheme is illustrated with the following example: The 5 x 5 matrix

\[
\begin{bmatrix}
1 & -3 & 0 & -1 & 0 \\
0 & 0 & -2 & 0 & 3 \\
2 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & -4 & 0 \\
5 & 0 & -5 & 0 & 6
\end{bmatrix}
\]

would be stored in the arrays colPtr (location of first entry), rowInd (row indices), and values (nonzero entries) as follows:

<table>
<thead>
<tr>
<th>Subscripts</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>colPtr</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rowInd</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>values</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>-3</td>
<td>4</td>
<td>-2</td>
<td>-5</td>
<td>-1</td>
<td>-4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

The following program fragment shows the relationship between CSC storage format and coordinate representation:

```java
import com.imsl.math.*;

public class CSCFormat {

    public static void main(String args[]) {
        int n = 5;
        int[] colPtr = {0, 3, 5, 7, 9, 11};
        int[] rowInd = {0, 2, 4, 0, 3, 1, 4, 0, 3, 1, 4};
        double[] values = {
            1.0, 2.0, 5.0, -3.0, 4.0, -2.0, -5.0, -1.0, -4.0, 3.0, 6.0
        };
        SparseMatrix a = new SparseMatrix(n, n);
        // Convert CSC format to coordinate format.
    }
}```
// Save coordinate format in a SparseMatrix object.
for (int i = 0; i < n; i++) {
    int start = colPtr[i];
    int stop = colPtr[i + 1];
    for (int j = start; j < stop; j++) {
        // a.set(row, column, value);
        a.set(rowInd[j], i, values[j]);
    }
}
Chapter 2: Linear Systems

Types

class Matrix ................................................................. 9
class ComplexMatrix ..................................................... 14
class SparseMatrix ........................................................ 19
class ComplexSparseMatrix ............................................. 30
class LU ................................................................. 40
class SuperLU ............................................................. 45
class ComplexLU ......................................................... 60
class ComplexSuperLU .................................................. 65
class Cholesky ............................................................ 80
class SparseCholesky ...................................................... 85
class ComplexSparseCholesky ......................................... 92
class QR ................................................................. 99
class SVD ............................................................... 103
class GenMinRes ......................................................... 108
class ConjugateGradient ............................................... 128
exception SingularMatrixException .................................. 141

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form \( Ax = b \), where \( A \) is a user-specified \( n \times n \) matrix, \( b \) is a given right-hand side \( n \) vector, and \( x \) is the solution \( n \) vector. Each entry of \( A \) and \( b \) must be specified by the user. The entire vector \( x \) is returned as output.

When \( A \) is invertible, a unique solution to \( Ax = b \) exists. The most commonly used direct method for solving \( Ax = b \) factors the matrix \( A \) into a product of triangular matrices and solves the resulting triangular systems of linear equations. Functions that use direct methods for solving systems of linear equations all compute the solution to \( Ax = b \).

Matrix Factorizations

In some applications, it is desirable to just factor the \( n \times n \) matrix \( A \) into a product of two triangular
matrices. This can be done by a constructor of a class for solving the system of linear equations $Ax = b$. The constructor of class LU computes the LU factorization of $A$.

Besides the basic matrix factorizations, such as $LU$ and $LL^T$, additional matrix factorizations also are provided. For a real matrix $A$, its $QR$ factorization can be computed using the class $QR$. The class for computing the singular value decomposition (SVD) of a matrix is discussed in a later section.

**Matrix Inversions**

The inverse of an $n \times n$ nonsingular matrix can be obtained by using the method inverse in the classes for solving systems of linear equations. The inverse of a matrix need not be computed if the purpose is to solve one or more systems of linear equations. Even with multiple right-hand sides, solving a system of linear equations by computing the inverse and performing matrix multiplication is usually more expensive than the method discussed in the next section.

**Multiple Right-Hand Sides**

Consider the case where a system of linear equations has more than one right-hand side vector. It is most economical to find the solution vectors by first factoring the coefficient matrix $A$ into products of triangular matrices. Then, the resulting triangular systems of linear equations are solved for each right-hand side. When $A$ is a real general matrix, access to the $LU$ factorization of $A$ is computed by a constructor of LU. The solution $x_k$ for the $k$-th right-hand side vector, $b_k$ is then found by two triangular solves, $Ly_k = b_k$ and $Ux_k = y_k$. The method solve in class LU is used to solve each right-hand side. These arguments are found in other functions for solving systems of linear equations.

**Least-Squares Solutions and QR Factorizations**

Least-squares solutions are usually computed for an over-determined system of linear equations $A_{m \times n}x = b$, where $m > n$. A least-squares solution $x$ minimizes the Euclidean length of the residual vector $r = Ax - b$. The class $QR$ computes a unique least-squares solution for $x$ when $A$ has full column rank. If $A$ is rank-deficient, then the base solution for some variables is computed. These variables consist of the resulting columns after the interchanges. The $QR$ decomposition, with column interchanges or pivoting, is computed such that $AP = QR$. Here, $Q$ is orthogonal, $R$ is upper-trapezoidal with its diagonal elements nonincreasing in magnitude, and $P$ is the permutation matrix determined by the pivoting. The base solution $x_B$ is obtained by solving $R(P^T)x = Q^Tb$ for the base variables. For details, see class $QR$. The QR factorization of a matrix $A$ such that $AP = QR$ with $P$ specified by the user can be computed using keywords.

**Singular Value Decompositions and Generalized Inverses**

The SVD of an $m \times n$ matrix $A$ is a matrix decomposition $A = USV^T$. With $q = \min(m, n)$, the factors $U_{mxq}$ and $V_{nxq}$ are orthogonal matrices, and $S_{q \times q}$ is a nonnegative diagonal matrix with nonincreasing diagonal terms. The class SVD computes the singular values of $A$ by default. Part or all of the $U$ and $V$ matrices, an estimate of the rank of $A$, and the generalized inverse of $A$, also can be obtained.

**Ill-Conditioning and Singularity**

An $m \times n$ matrix $A$, is mathematically singular if there is an $x \neq 0$ such that $Ax = 0$. In this case, the system of linear equations $Ax = b$ does not have a unique solution. On the other hand, a matrix $A$ is numerically singular if it is “close” to a mathematically singular matrix. Such problems are called ill-conditioned. If the numerical results with an ill-conditioned problem are unacceptable, users can
either use more accuracy if it is available (for type float accuracy switch to double) or they can obtain an approximate solution to the system. One form of approximation can be obtained using the SVD of $A$: If $q = \min(m,n)$ and

$$A = \sum_{i=1}^{q} s_i u_i v_i^T$$

then the approximate solution is given by the following:

$$x_k = \sum_{i=1}^{k} t_{i,j} (b^T u_i)v_i$$

The scalars $t_{i,j}$ are defined below.

$$t_{i,j} = \begin{cases} 
    s_i^{-1} & \text{if } s_i \geq \text{tol} > 0 \\
    0 & \text{otherwise}
\end{cases}$$

The user specifies the value of tol. This value determines how “close” the given matrix is to a singular matrix. Further restrictions may apply to the number of terms in the sum, $k \leq q$. For example, there may be a value of $k \leq q$ such that the scalars $|b^T u_i|$, $i > k$ are smaller than the average uncertainty in the right-hand side $b$. This means that these scalars can be replaced by zero; and hence, $b$ is replaced by a vector that is within the stated uncertainty of the problem.

**Sparse Matrix Storage Modes**

All JMSL classes that work with sparse matrices (e.g. classes SparseCholesky, SuperLU, ComplexSparseCholesky and ComplexSuperLU) require a matrix input format that only stores information about the nonzero entries of these matrices. JMSL supports two such formats: The sparse coordinate storage (SCS) format and the Java Sparse Array (JSA) format. The SCS format stores the value of each matrix entry together with that entry’s row and column index. The JSA format stores the sparse matrix in two arrays of arrays. One array contains the references to the nonzero value arrays for each row of the matrix, the other contains the references to the associated column index arrays. As an example, consider the following sparse $6 \times 6$ matrix:

$$A = \begin{pmatrix}
10 & 0 & 0 & 0 & 0 & 0 \\
0 & 10 & -3 & -1 & 0 & 0 \\
0 & 0 & 15 & 0 & 0 & 0 \\
-2 & 0 & 0 & 10 & -1 & 0 \\
-1 & 0 & 0 & -5 & 1 & -3 \\
-1 & -2 & 0 & 0 & 0 & 6
\end{pmatrix}$$

This matrix has 15 nonzero elements, and the sparse coordinate representation would be

<table>
<thead>
<tr>
<th>row</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>5</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>col</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>val</td>
<td>10</td>
<td>10</td>
<td>-3</td>
<td>-1</td>
<td>15</td>
<td>-2</td>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>-5</td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>-2</td>
<td>6</td>
</tr>
</tbody>
</table>

Since this representation does not rely on the order of the matrix elements, an equivalent form would be
In JSA format, matrix $A$ can be represented by the following two arrays, `index` and `values`:

```java
index:
row 0: 0
row 1: 1, 2, 3
row 2: 2
row 3: 0, 3, 4
row 4: 0, 3, 4, 5
row 5: 0, 1, 5

values:
row 0: 10
row 1: 10, -3, -1
row 2: 15
row 3: -2, 10, -1
row 4: -1, -5, 1, -3
row 5: -1, -2, 6
```

In contrast to the SCS format, the row order is fixed here, but the entries within each row do not rely on any order.

In JMSL, sparse matrices are instances of classes `SparseMatrix/ComplexSparseMatrix`. Use of the SCS and JSA input format is reflected by different constructors. The following code fragment shows how a user can construct a `SparseMatrix` for the matrix $A$ above in SCS format:

```java
// Generate an empty 6 by 6 SparseMatrix object
int nRows = nColumns = 6;
SparseMatrix a = new SparseMatrix(nRows, nColumns);
// Fill object a with the entries of matrix A,
// A given in SCS format
a.set(0, 0, 10.0); a.set(1, 1, 10.0); a.set(1, 2, -3.0);
a.set(1, 3, -1.0); a.set(2, 2, 15.0); a.set(3, 0, -2.0);
a.set(3, 3, 10.0); a.set(3, 4, -1.0); a.set(4, 0, -1.0);
a.set(4, 3, -5.0); a.set(4, 4, 1.0); a.set(4, 5, -3.0);
a.set(5, 0, -1.0); a.set(5, 1, -2.0); a.set(5, 5, 6.0);
```

Similarly, the following code fragment shows how to construct a `SparseMatrix` in JSA format:

```java
// Generate matrix A in JSA format
int nRows = nColumns = 6;
int[][] aIndex = {{0},
 {1, 2, 3},
 {2},
 {0, 3, 4},
 {0, 3, 4, 5},
 {0, 1, 5}};
int[][] aValues = {{10.0},
 {10.0, -3.0, -1.0},
 {15.0},
 {-2.0, 10.0, -1.0},
 {-1.0, -5.0, 1.0, -3.0},
 {-1.0, -2.0, 6.0}};
```
{10.0, -3.0, -1.0},
{15.0},
{-2.0, 10.0, -1.0},
{-1.0, -5.0, 1.0, -3.0},
{-1.0, -2.0, 6.0}};

// Create SparseMatrix object based on A in JSA format
SparseMatrix a = new SparseMatrix(nRows, nColumns, aIndex, aValues);

All JMSL algorithms working on sparse matrices use SparseMatrix or ComplexSparseMatrix as an input argument type. A \( n \times n \) matrix is called symmetric if \( A^T = A \), where \( A^T \) denotes the transpose of \( A \). It is called Hermitian if \( A^H = A \). Here, \( A^H \equiv \bar{A}^T \) denotes the conjugate transpose of \( A \). For these types of matrices, all matrix information is stored in the lower triangular part of the matrix. Therefore, for all JMSL sparse matrix classes working on symmetric or Hermitian matrices it is sufficient to store only the lower triangle of the matrix in the SparseMatrix or ComplexSparseMatrix input object.

The complex 4 \( \times \) 4 matrix

\[
H = \begin{pmatrix}
4 & 1-i & 0 & 0 \\
1+i & 4 & 1-i & 0 \\
0 & 1+i & 4 & 1-i \\
0 & 0 & 1+i & 4 \\
\end{pmatrix}
\]

is Hermitian positive definite. Typically, matrices of this type are input to methods of class ComplexSparseCholesky.

The following code fragment shows how the lower triangular part of \( H \) can be constructed as a ComplexSparseMatrix in SCS input format:

// Generate an empty 4 by 4 ComplexSparseMatrix object
int nRows = nColumns = 4;
ComplexSparseMatrix h = new ComplexSparseMatrix(nRows, nColumns);
// Store lower triangular part of H in object h
h.set(0, 0, new Complex(4.0, 0.0));
h.set(1, 0, new Complex(1.0, 1.0)); h.set(1, 1, new Complex(4.0, 0.0));
h.set(2, 1, new Complex(1.0, 1.0)); h.set(2, 2, new Complex(4.0, 0.0));
h.set(3, 2, new Complex(1.0, 1.0)); h.set(3, 3, new Complex(4.0, 0.0));

---

Matrix class

public class com.imsl.math.Matrix

Matrix manipulation functions.
Methods

add
static public double[][] add(double[][] a, double[][] b)

Description
Add two rectangular arrays, a + b.

Parameters
a – a double rectangular array
b – a double rectangular array

Returns
a double rectangular array representing the matrix sum of the two arguments

checkMatrix
static public void checkMatrix(double[][] a)

Description
Check that all of the rows in the matrix have the same length.

Parameter
a – a double matrix

checkSquareMatrix
static public void checkSquareMatrix(double[][] a)

Description
Check that the matrix is square.

Parameter
a – a double matrix

frobeniusNorm
static public double frobeniusNorm(double[][] a)

Description
Return the Frobenius norm of a matrix.

Parameter
a – a double rectangular array

Returns
a double scalar value equal to the Frobenius norm of the matrix.

infinityNorm
static public double infinityNorm(double[][] a)
Description
Return the infinity norm of a matrix.

Parameter
  a – a double rectangular array

Returns
a double scalar value equal to the maximum of the row sums of the absolute values of the array elements

inverseLowerTriangular
static public double[][] inverseLowerTriangular(double[][] a)

Description
Returns the inverse of the lower triangular matrix a.

Parameter
  a – a double square lower triangular matrix

Returns
a double matrix containing the inverse of a

inverseUpperTriangular
static public double[][] inverseUpperTriangular(double[][] a)

Description
Returns the inverse of the upper triangular matrix a.

Parameter
  a – a double square upper triangular matrix

Returns
a double matrix containing the inverse of a

multiply
static public double[] multiply(double[] x, double[][] a)

Description
Return the product of the row array x and the rectangular array a.

Parameters
  x – a double row array
  a – a double rectangular matrix

Returns
a double vector representing the product of the arguments, x*a.

multiply
static public double[] multiply(double[][] a, double[] x)
**Description**
Multiply the rectangular array a and the column array x.

**Parameters**
- a – a double rectangular matrix
- x – a double column array

**Returns**
a double vector representing the product of the arguments, a*x

---

**multiply**
static public double[][] multiply(double[][] a, double[][] b)

**Description**
Multiply two rectangular arrays, a * b.

**Parameters**
- a – a double rectangular array
- b – a double rectangular array

**Returns**
the double matrix product of a times b

---

**multiply**
static public double[][] multiply(double[][] a, double[][] b, int numberOfThreads)

**Description**
Multiply two rectangular arrays, a * b, using multiple java.lang.Threads.

**Parameters**
- a – a double rectangular array
- b – a double rectangular array
- numberOfThreads – An int which specifies the number of java.lang.Thread instances to use. If numberOfThreads is less than 1, then numberOfThreads = 1 is used.

**Returns**
the double matrix product of a times b

---

**oneNorm**
static public double oneNorm(double[][] a)

**Description**
Return the matrix one norm.

**Parameter**
- a – a double rectangular array

---

12 • Matrix  
JMSL
Returns
a double value equal to the maximum of the column sums of the absolute values of the array elements

subtract
static public double[][] subtract(double[][] a, double[][] b)

Description
Subtract two rectangular arrays, a - b.

Parameters
a – a double rectangular array
b – a double rectangular array

Returns
a double rectangular array representing the matrix difference of the two arguments

transpose
static public double[][] transpose(double[][] a)

Description
Return the transpose of a matrix.

Parameter
a – a double matrix

Returns
a double matrix which is the transpose of the argument

Example: Matrix and PrintMatrix
The 1 norm of a matrix is found using a method from the Matrix class. The matrix is printed using the PrintMatrix class.

```java
import com.imsl.math.*;

public class MatrixEx1 {
 public static void main(String args[]) {
 double nrm1;
 double a[][] = {
 {0., 1., 2., 3.},
 {4., 5., 6., 7.},
 {8., 9., 8., 1.},
 {6., 3., 4., 3.}
 };

 // Get the 1 norm of matrix a
 nrm1 = Matrix.oneNorm(a);
 }
}
```

Linear Systems

Matrix • 13
// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm
p.print(a);
System.out.println("The 1 norm of the matrix is " + nrm1);
}

Output
A Simple Matrix
 0 1 2 3
 0 0 1 2 3
 1 4 5 6 7
 2 8 9 8 1
 3 6 3 4 3

The 1 norm of the matrix is 20.0

ComplexMatrix class

public class com.imsl.math.ComplexMatrix
Complex matrix manipulation functions.

Methods

add
static public Complex[][] add(Complex[][] a, Complex[][] b)

Description
Add two rectangular Complex arrays, $a + b$.

Parameters
- $a$ – a Complex rectangular array
- $b$ – a Complex rectangular array

Returns
the Complex matrix sum of the two arguments
Exception

IllegalArgumentException This exception is thrown when (1) the lengths of the rows of either of the input matrices are not uniform, or (2) the matrices are not the same size.

checkMatrix
static public void checkMatrix(Complex[][] a)

Description
Check that all of the rows in the Complex matrix have the same length.

Parameter
a – a Complex matrix

Exception
IllegalArgumentException This exception is thrown when the lengths of the rows of the input matrix are not uniform.

checkSquareMatrix
static public void checkSquareMatrix(Complex[][] a)

Description
Check that the Complex matrix is square.

Parameter
a – a Complex matrix

Exception
IllegalArgumentException This exception is thrown when the matrix is not square.

frobeniusNorm
static public double frobeniusNorm(Complex[][] a)

Description
Return the Frobenius norm of a Complex matrix.

Parameter
a – a Complex rectangular matrix

Returns
a double value equal to the Frobenius norm of the matrix

Exception
IllegalArgumentException This exception is thrown when the lengths of the rows of the input matrix is not uniform.

infinityNorm
static public double infinityNorm(Complex[][] a)
Description
Return the infinity norm of a Complex matrix.

Parameter
a – a Complex rectangular matrix

Returns
a double value equal to the maximum of the row sums of the absolute values of the array elements.

Exception
IllegalArgumentException This exception is thrown when the lengths of the rows of the input matrix is not uniform.

multiply
static public Complex[] multiply(Complex[] x, Complex[][] a)

Description
Return the product of the row vector x and the rectangular array a, both Complex.

Parameters
x – a Complex row vector
a – a Complex rectangular matrix

Returns
a Complex vector containing the product of the arguments, x*a.

Exception
IllegalArgumentException This exception is thrown when (1) the lengths of the rows of the input matrix are not uniform, or (2) the number of elements in the input vector is not equal to the number of rows of the matrix.

multiply
static public Complex[] multiply(Complex[][] a, Complex[] x)

Description
Multiply the rectangular array a and the column vector x, both Complex.

Parameters
a – a Complex rectangular matrix
x – a Complex vector

Returns
a Complex vector containing the product of the arguments, a*x
Exception

IllegalArgumentException This exception is thrown when (1) the lengths of the rows of the input matrix are not uniform, and (2) the number of columns in the input matrix is not equal to the number of elements in the input vector.

multiply

static public Complex[][] multiply(Complex[][] a, Complex[][] b)

Description

Multiply two Complex rectangular arrays, a * b.

Parameters

- a – a Complex rectangular array
- b – a Complex rectangular array

Returns

the Complex matrix product of a times b

Exception

IllegalArgumentException This exception is thrown when (1) the lengths of the rows of either of the input matrices are not uniform, or (2) the number of columns in a is not equal to the number of rows in b.

multiply

static public Complex[][] multiply(Complex[][] a, Complex[][] b, int numberOfThreads)

Description

Multiply two Complex rectangular arrays, a * b, using multiple java.lang.Thread instances.

Parameters

- a – a Complex rectangular array
- b – a Complex rectangular array
- numberOfThreads – An int which specifies the number of java.lang.Thread instances to use. If numberOfThreads is less than 1, then numberOfThreads = 1 is used.

Returns

the Complex matrix product of a times b

Exception

IllegalArgumentException This exception is thrown when (1) the lengths of the rows of either of the input matrices are not uniform, or (2) the number of columns in a is not equal to the number of rows in b.

oneNorm

static public double oneNorm(Complex[][] a)
Description
Return the Complex matrix one norm.

Parameter
  a – a Complex rectangular array

Returns
a double value equal to the maximum of the column sums of the absolute values of the array elements

Exception
  IllegalArgumentException  This exception is thrown when the lengths of the rows of the input matrix is not uniform.

subtract
static public Complex[][] subtract(Complex[][] a, Complex[][] b)

Description
Subtract two Complex rectangular arrays, a - b.

Parameters
  a – a Complex rectangular array
  b – a Complex rectangular array

Returns
the Complex matrix difference of the two arguments.

Exception
  IllegalArgumentException  This exception is thrown when (1) the lengths of the rows of either of the input matrices are not uniform, or (2) the matrices are not the same size.

transpose
static public Complex[][] transpose(Complex[][] a)

Description
Return the transpose of a Complex matrix.

Parameter
  a – a Complex matrix

Returns
the Complex matrix transpose of the argument

Exception
  IllegalArgumentException  This exception is thrown when the lengths of the rows of the input matrix are not uniform.
Example: Print a Complex Matrix

A Complex matrix is initialized and printed.

```java
import com.imsl.math.*;

public class ComplexMatrixEx1 {

 public static void main(String args[]) {
 Complex a[][] = {
 {new Complex(1, 3), new Complex(3, 5), new Complex(7, 9)},
 {new Complex(8, 7), new Complex(9, 5), new Complex(1, 9)},
 {new Complex(2, 9), new Complex(6, 9), new Complex(7, 3)},
 {new Complex(5, 4), new Complex(8, 4), new Complex(5, 9)}
 };

 // Construct a PrintMatrix object with a title
 PrintMatrix p = new PrintMatrix("A Complex Matrix");

 // Print the matrix
 p.print(a);
 }
}
```

Output

```
A Complex Matrix
0 1 2
0 1+3i 3+5i 7+9i
1 8+7i 9+5i 1+9i
2 2+9i 6+9i 7+3i
3 5+4i 8+4i 5+9i
```

SparseMatrix class

```java
public class com.imsl.math.SparseMatrix implements Serializable

Sparse matrix of type double. The class represents a general real sparse matrix. It is intended to be efficiently and easily updated.

A SparseMatrix can be constructed from a set of arrays, or it can be abstractly created as an empty array and then incrementally built into final form. It is usually easier to create an empty SparseMatrix of set size and then use the set method to set the elements of the array. When setting the elements of the sparse array, their positions should be thought of as their positions in the dense array. Elements can be set in any order, but only the elements actually set are stored.

This class includes methods to update the sparse matrix. There are also methods to multiply a sparse
```
matrix and a vector or to multiply two sparse matrices. To solve a sparse linear system use 
SparseCholesky or SuperLU.

**Constructors**

**SparseMatrix**
public SparseMatrix(SparseMatrix A)

**Description**
Creates a new instance of SparseMatrix which is a copy of another SparseMatrix.

**Parameter**
A – the SparseMatrix object containing the sparse matrix to be copied.

**SparseMatrix**
public SparseMatrix(SparseMatrix.SparseArray jsa)

**Description**
Constructs a sparse matrix from a SparseArray object.

**Parameter**
jsa – is a SparseArray used to initialize the sparse matrix. The field numberOfNonZeros in jsa
is not used for initialization, so it does not have to be set.

**SparseMatrix**
public SparseMatrix(int nRows, int nColumns)

**Description**
Creates a new instance of SparseMatrix. Initially this is the zero matrix.

**Parameters**
nRows – an int containing the number of rows in the sparse matrix.
nColumns – an int containing the number of columns in the sparse matrix.

**SparseMatrix**
public SparseMatrix(int nRows, int nColumns, int[][] index, double[][] values)

**Description**
Constructs a sparse matrix from SparseArray (Java Sparse Array) data.

**Parameters**
nRows – an int containing the number of rows in the sparse matrix.
nColumns – an int containing the number of columns in the sparse matrix.
index – an int jagged array containing the column indices of all nonzero elements corresponding to the compressed representation of the sparse matrix in values. The size of index must be identical to the size of values. The i-th row contains the column indices of all nonzero elements of row i of the sparse matrix. The j-th element of row i is the column index of the value located at the same position in values.

values – a double jagged array containing the compressed representation of a real sparse matrix of size nRows by nColumns. The number of rows in values must be nRows. The i-th row contains all nonzero elements of row i of the full sparse matrix.

Methods

add

static public SparseMatrix add(double alpha, double beta, SparseMatrix A, SparseMatrix B)

Description

Performs element-wise addition of two real sparse matrices A, B of type SparseMatrix, $C \leftarrow \alpha A + \beta B$.

Parameters

- alpha – a double scalar.
- beta – a double scalar.
- A – a SparseMatrix matrix.
- B – a SparseMatrix matrix.

Returns

a SparseMatrix matrix representing the computed sum.

Exception

IllegalArgumentException This exception is thrown when the matrices are not of the same size.

checkSquareMatrix

public void checkSquareMatrix()

Description

Check that the matrix is square.

Exception

IllegalArgumentException is thrown if the matrix is not square.

frobeniusNorm

public double frobeniusNorm()
Description
Returns the Frobenius norm of the matrix.

Returns
a double scalar value equal to the Frobenius norm of the matrix.

get
public double get(int iRow, int jColumn)

Description
Returns the value of an element in the matrix.

Parameters
iRow – an int containing the row index of the element.
jColumn – an int containing the column index of the element.

Returns
a double containing the value of the iRow-th and jColumn-th element. If the element was never set, its value is zero.

getNumberOfColumns
public int getNumberOfColumns()

Description
Returns the number of columns in the matrix.

Returns
an int containing the number of columns in the matrix.

getNumberOfNonZeros
public long getNumberOfNonZeros()

Description
Returns the number of nonzeros in the matrix.

Returns
a long containing the number of nonzeros in the matrix.

getNumberOfRows
public int getNumberOfRows()

Description
Returns the number of rows in the matrix.

Returns
an int containing the number of rows in the matrix.

infinityNorm
public double infinityNorm()
Returns the infinity norm of the matrix.

Returns a double scalar value equal to the maximum of the row sums of the absolute values of the array elements of the sparse matrix.

**multiply**

```java
public double[] multiply(double[] x)
```

Description

Multiply the matrix by a vector.

Parameter

- x – a double column vector.

Returns

A double vector representing the product of this matrix times x.

Exception

IllegalArgumentException This exception is thrown if the number of columns in the SparseMatrix object is not equal to the number of elements in the input column vector.

**multiply**

```java
static public SparseMatrix multiply(SparseMatrix A, SparseMatrix B)
```

Description

Multiply two sparse matrices A and B, C ← AB.

Parameters

- A – a SparseMatrix sparse matrix.
- B – a SparseMatrix sparse matrix.

Returns

The SparseMatrix product AB of A and B.

Exception

IllegalArgumentException This exception is thrown when the number of columns of matrix A is not equal to the number of rows of matrix B.

**multiply**

```java
static public double[] multiply(SparseMatrix A, double[] x)
```

Description

Multiply sparse matrix A and column array x, Ax.
Parameters
- \( A \) – a \text{SparseMatrix} matrix.
- \( x \) – a double column array.

Returns
a double vector representing the product of the arguments, \( Ax \).

Exception
\text{IllegalArgumentException} This exception is thrown when the number of columns in the input matrix is not equal to the number of elements in the input column vector.

\textbf{multiply}
\begin{verbatim}
static public double[] multiply(double[] x, \text{SparseMatrix} A)
\end{verbatim}

Description
Multiply row array \( x \) and sparse matrix \( A \), \( x^T A \).

Parameters
- \( x \) – a double row array.
- \( A \) – a \text{SparseMatrix} matrix.

Returns
a double vector representing the product of the arguments, \( x^T A \).

Exception
\text{IllegalArgumentException} This exception is thrown when the number of elements in the input vector is not equal to the number of rows of the matrix.

\textbf{multiplySymmetric}
\begin{verbatim}
static public double[] multiplySymmetric(\text{SparseMatrix} A, double[] x)
\end{verbatim}

Description
Multiply sparse symmetric matrix \( A \) and column vector \( x \).

Parameters
- \( A \) – a \text{SparseMatrix} sparse symmetric matrix, where only the lower triangular part of the matrix is to be used.
- \( x \) – a double vector.

Returns
a double vector representing the product of the arguments, \( Ax \).

Exception
\text{IllegalArgumentException} This exception is thrown when the input matrix is not square or the number of columns in the input matrix is not equal to the number of elements in the input column vector.

\textbf{oneNorm}
\begin{verbatim}
public double oneNorm()
\end{verbatim}
Description
Returns the matrix one norm of the sparse matrix.

Returns
a double value equal to the maximum of the column sums of the absolute values of the array elements.

plusEquals
public double plusEquals(int iRow, int jColumn, double x)

Description
Adds a value to an element in the matrix.

Parameters
   iRow – an int containing the row index of the element.
   jColumn – an int containing the column index of the element.
   x – a double containing the value to be added to the iRow-th and jColumn-th element.

Returns
a double containing the updated value of the element, which equals its old value plus x.

set
public void set(int iRow, int jColumn, double x)

Description
Sets the value of an element in the matrix.

Parameters
   iRow – an int containing the row index of the element.
   jColumn – an int containing the column index of the element.
   x – a double containing the value of the iRow-th and jColumn-th element.

toDenseMatrix
public double[][] toDenseMatrix()

Description
Returns the sparse matrix as a dense matrix.

Returns
a rectangular Java array of type double containing this matrix with all of the zeros explicitly present. The number of rows and columns in the returned matrix is the same as in the sparse matrix.

toSparseArray
public SparseMatrix.SparseArray toSparseArray()
Description
Returns the sparse matrix in the SparseArray form.

**transpose**
public SparseMatrix transpose()

Description
Returns the transpose of the matrix.

Returns
a SparseMatrix object which is the transpose of the constructed SparseMatrix object.

**Example 1: SparseMatrix**

The matrix product of two matrices is computed using a method from the SparseMatrix class. The one norm of the result is also computed. The matrix and its norm are printed.

```java
import com.imsl.math.*;

public class SparseMatrixEx1 {

 public static void main(String args[]) {
 SparseMatrix b = new SparseMatrix(6, 6);
 b.set(0, 0, 10.0);
 b.set(1, 1, 10.0);
 b.set(1, 2, -3.0);
 b.set(1, 3, -1.0);
 b.set(2, 2, 15.0);
 b.set(3, 0, -2.0);
 b.set(3, 3, 10.0);
 b.set(3, 4, -1.0);
 b.set(4, 0, -1.0);
 b.set(4, 3, -5.0);
 b.set(4, 4, 1.0);
 b.set(4, 5, -3.0);
 b.set(5, 0, -1.0);
 b.set(5, 1, -2.0);
 b.set(5, 5, 6.0);

 SparseMatrix c = new SparseMatrix(6, 3);
 c.set(0, 0, 5.0);
 c.set(1, 2, -3.0);
 c.set(2, 0, 1.0);
 c.set(2, 2, 7.0);
 c.set(3, 0, 2.0);
 c.set(4, 1, -5.0);
 c.set(4, 2, 2.0);
 c.set(5, 2, 4.0);

 SparseMatrix A = SparseMatrix.multiply(b, c);
 // Get the one norm of matrix A
 System.out.println("The 1-norm of the matrix is "+A.oneNorm());
 }
}
```
SparseMatrix.SparseArray sa = A.toSparseArray();

// Print the matrix and its one norm
System.out.println("row column value");
for (int i = 0; i < sa.numberOfRows; i++) {
    for (int j = 0; j < sa.index[i].length; j++) {
        int jj = sa.index[i][j];
        System.out.println(" " + i + " " + jj + " " + sa.values[i][j]);
    }
}

Output

The 1-norm of the matrix is 198.0
row column value
0 0 50.0
1 0 -5.0
1 2 -51.0
2 0 15.0
2 2 105.0
3 0 10.0
3 1 5.0
3 2 -2.0
4 0 -15.0
4 1 -5.0
4 2 -10.0
5 0 -5.0
5 2 30.0

Example 2: SparseMatrix Using the Matrix Market Format

The matrix market exchange format is an ASCII file format that represents sparse matrices in coordinate format. It consists of three sections: The header section is the first line in the file and contains general information about the matrix, e.g. data type and symmetry properties. This line is followed by the comments section which consists of zero or more lines of comments. The remainder of the file is the data section. The first line of the data section contains the row number, column number, and number of nonzeros of the matrix. The following lines contain the location and value of all nonzero entries of the matrix, usually one per line. A file in Matrix Market format is read and converted to a JMSL SparseMatrix in this example. Matrix information and the one norm of the matrix are printed.

import com.imsl.math.*;
import java.io.*;

public class SparseMatrixEx2 {
    public static class MTXReader {
        private String typecode;
        private SparseMatrix matrix;
public void read(String filename) throws java.io.IOException {
    InputStream s = SparseMatrixEx2.class.getResourceAsStream(filename);
    BufferedReader br = new BufferedReader(new InputStreamReader(s));

    // read type code initial line
    String line = br.readLine();
    typecode = line;

    // read comment lines if any
    boolean comment = true;
    while (comment) {
        line = br.readLine();
        comment = line.startsWith("%");
    }

    // line now contains the size information which needs to be parsed
    String[] str = line.split(" ");
    int nRows = Integer.valueOf(str[0].trim());
    int nColumns = Integer.valueOf(str[1].trim());

    // now we're into the data section
    matrix = new SparseMatrix(nRows, nColumns);
    while (true) {
        line = br.readLine();
        if (line == null) {
            break;
        }
        str = line.split(" ");
        int i = Integer.valueOf(str[0].trim());
        int j = Integer.valueOf(str[1].trim());
        double x = Double.valueOf(str[2].trim());
        matrix.set(i - 1, j - 1, x);
    }
    br.close();
    s.close();
}

public String getTypeCode() {
    return this.typecode;
}

public static void main(String args[]) throws Exception {
    MTXReader mr = new MTXReader();
    mr.read("bcsstk01.mtx");
    SparseMatrix A = mr.matrix;

    // Print the matrix type
    System.out.println("The matrix type is " + mr.getTypeCode());

    // Print the matrix information and its one norm
    System.out.println("The number of rows is " + A.getNumberOfRows());
    int ncols = A.getNumberOfColumns();
    System.out.println("The number of columns is " + ncols);
    long nnz = A.getNumberOfNonZeros();
}
Output

The matrix type is MatrixMarket matrix coordinate real symmetric
The number of rows is 48
The number of columns is 48
The number of nonzero elements is 224

The 1 norm of the matrix is 3.0094444444744E9

SparseMatrix.SparseArray class

static public class com.imsl.math.SparseMatrix.SparseArray

The SparseArray class uses public fields to hold the data for a sparse matrix in the Java Sparse Array format. This format came about as a means for storing sparse matrices in Java. In this format, a sparse matrix is represented by two arrays of arrays. One array contains the references to the nonzero value arrays for each row of the sparse matrix. The other contains the references to the associated column index arrays.

As an example, consider the following real sparse matrix:

\[
A = \begin{pmatrix}
10.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 10.0 & -3.0 & -1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 15.0 & 0.0 & 0.0 & 0.0 \\
-2.0 & 0.0 & 0.0 & 10.0 & -1.0 & 0.0 \\
-1.0 & 0.0 & 0.0 & -5.0 & 1.0 & -3.0 \\
-1.0 & -2.0 & 0.0 & 0.0 & 0.0 & 6.0
\end{pmatrix}
\]

In SparseArray, this matrix can be represented by the two jagged arrays, values and index, where values refers to the nonzero entries in A and index to the column indices:

double values[][] = {{10.0}, {10.0, -3.0, -1.0}, {15.0}, {-2.0, 10.0, -1.0},
{-1.0, -5.0, 1.0, -3.0}, {-1.0, -2.0, 6.0}}
int index[][] = {{0}, {1, 2, 3}, {2}, {0, 3, 4}, {0, 3, 4, 5}, {0, 1, 5}}
Fields

**index**

```java
public int[][] index
```

Jagged array containing column indices. The length of this array equals `numberOfRows`. The length of each row equals the number of nonzeros in that row of the sparse matrix.

**numberOfColumns**

```java
public int numberOfColumns
```

Number of columns in the matrix.

**numberOfNonZeros**

```java
public long numberOfNonZeros
```

Number of nonzeros in the matrix.

**numberOfRows**

```java
public int numberOfRows
```

Number of rows in the matrix.

**values**

```java
public double[][] values
```

Jagged array containing sparse array values. This array must have the same shape as `index`.

Constructor

**SparseMatrix.SparseArray**

```java
public SparseMatrix.SparseArray()
```

ComplexSparseMatrix class

```java
public class com.imsl.math.ComplexSparseMatrix implements Serializable
```

Sparse matrix of type `Complex`. The class represents a general complex sparse matrix. It is intended to be efficiently and easily updated.

A `ComplexSparseMatrix` can be constructed from a set of arrays, or it can be abstractly created as an empty array and then incrementally built into final form. It is usually easier to create an empty `ComplexSparseMatrix` of set size and then use the `set` method to set the elements of the array. When
setting the elements of the sparse array, their positions should be thought of as their positions in the
dense array. Elements can be set in any order, but only the elements set are stored.

This class includes methods to update the sparse matrix. There are also methods to multiply a sparse
matrix and a vector or to multiply two sparse matrices. To solve a sparse linear system use
ComplexSparseCholesky or ComplexSuperLU.

**Constructors**

**ComplexSparseMatrix**

```java
public ComplexSparseMatrix(ComplexSparseMatrix A)
```

**Description**

Creates a new instance of ComplexSparseMatrix which is a copy of another ComplexSparseMatrix.

**Parameter**

- `A` – is the ComplexSparseMatrix to be copied.

**ComplexSparseMatrix**

```java
public ComplexSparseMatrix(ComplexSparseMatrix.SparseArray sparseArray)
```

**Description**

Constructs a complex sparse matrix from a SparseArray object.

**Parameter**

- `sparseArray` – is a SparseArray used to initialize the sparse matrix. The field
  `numberOfNonZeros` in SparseArray is not used for initialization, so it does not have to be set.

**ComplexSparseMatrix**

```java
public ComplexSparseMatrix(int nRows, int nColumns)
```

**Description**

Creates a new instance of ComplexSparseMatrix. Initially this is the zero matrix.

**Parameters**

- `nRows` – an int containing the number of rows in the sparse matrix.
- `nColumns` – an int containing the number of columns in the sparse matrix.

**ComplexSparseMatrix**

```java
public ComplexSparseMatrix(int nRows, int nColumns, int[][] index, Complex[][] values)
```

**Description**

Constructs a sparse matrix from SparseArray (Java Sparse Array) data.
Parameters

- `nRows` – an `int` containing the number of rows in the sparse matrix.
- `nColumns` – an `int` containing the number of columns in the sparse matrix.
- `index` – an `int` jagged array containing the column indices of all nonzero elements corresponding to the compressed representation of the sparse matrix in `values`. The size of `index` must be identical to the size of `values`. The `i`-th row contains the column indices of all nonzero elements of row `i` of the sparse matrix. The `j`-th element of row `i` is the column index of the value located at the same position in `values`.
- `values` – a `Complex` jagged array containing the compressed representation of a complex sparse matrix of size `nRows` by `nColumns`. The number of rows in `values` must be `nRows`. The `i`-th row contains all nonzero elements of row `i` of the full sparse matrix.

Methods

add

```java
static public ComplexSparseMatrix add(Complex alpha, Complex beta, ComplexSparseMatrix A, ComplexSparseMatrix B)
```

Description

Performs element-wise addition of two complex sparse matrices `A`, `B` of type `ComplexSparseMatrix`, \( C \leftarrow \alpha A + \beta B \).

Parameters

- `alpha` – a `Complex` scalar.
- `beta` – a `Complex` scalar.
- `A` – a `ComplexSparseMatrix` matrix.
- `B` – a `ComplexSparseMatrix` matrix.

Returns

A `ComplexSparseMatrix` matrix representing the computed sum.

Exception

`IllegalArgumentException` This exception is thrown if the matrices are not of the same size.

checkSquareMatrix

```java
public void checkSquareMatrix()
```

Description

Check that the matrix is square.
### Exception

*IllegalArgumentException* is thrown if the matrix is not square.

### conjugateTranspose

**public ComplexSparseMatrix conjugateTranspose()**

**Description**

Returns the conjugate transpose of the matrix.

**Returns**

a *ComplexSparseMatrix* object which is the conjugate transpose of the constructed *ComplexSparseMatrix* object.

### frobeniusNorm

**public double frobeniusNorm()**

**Description**

Returns the Frobenius norm of the matrix.

**Returns**

a *double* scalar value equal to the Frobenius norm of the matrix.

### get

**public Complex get(int iRow, int jColumn)***

**Description**

Returns the value of an element in the matrix.

**Parameters**

- iRow – an *int* containing the row index of the element.
- jColumn – an *int* containing the column index of the element.

**Returns**

a *Complex* containing the value of the iRow-th and jColumn-th element. If the element was never set, its value is zero.

### getNumberOfColumns

**public int getNumberOfColumns()**

**Description**

Returns the number of columns in the matrix.

**Returns**

an *int* containing the number of columns in the matrix.

### getNumberOfNonZeros

**public long getNumberOfNonZeros()**
**getNumberOfNonzeros**

public long getNumberOfNonzeros()

**Description**

Returns the number of nonzeros in the matrix.

**Returns**

a `long` containing the number of nonzeros in the matrix.

**getNumberOfRows**

public int getNumberOfRows()

**Description**

Returns the number of rows in the matrix.

**Returns**

an `int` containing the number of rows in the matrix.

**infinityNorm**

public double infinityNorm()

**Description**

Returns the infinity norm of the matrix.

**Returns**

a `double` scalar value equal to the maximum of the row sums of the absolute values of the array elements of the sparse matrix.

**multiply**

public Complex[] multiply(Complex[] x)

**Description**

Multiply the matrix by a vector.

**Parameter**

- `x` – a `Complex` column array.

**Returns**

a `Complex` vector representing the product of this matrix times `x`.

**Exception**

- `IllegalArgumentException` This exception is thrown if the number of columns in the `ComplexSparseMatrix` object is not equal to the number of elements in the input column vector.

**multiply**

static public Complex[] multiply(Complex[] x, ComplexSparseMatrix A)

**Description**

Multiply row array `x` and sparse matrix `A`, $xA$.
Parameters

- x – a Complex row array.
- A – a ComplexSparseMatrix matrix.

Returns

- a Complex vector representing the product of the arguments, $x^T A$.

Exception

- IllegalArgumentException: This exception is thrown when the number of elements in the input vector is not equal to the number of rows of the matrix.

**multiply**

```
static public Complex[] multiply(ComplexSparseMatrix A, Complex[] x)
```

Description

Multiply sparse matrix A and column array x, $Ax$.

Parameters

- A – a ComplexSparseMatrix matrix.
- x – a Complex column array.

Returns

- a Complex vector representing the product of the arguments, $Ax$.

Exception

- IllegalArgumentException: This exception is thrown when the number of columns in the input matrix is not equal to the number of elements in the input column vector.

**multiply**

```
static public ComplexSparseMatrix multiply(ComplexSparseMatrix A, ComplexSparseMatrix B)
```

Description

Multiply two sparse complex matrices A and B, $C \leftarrow AB$.

Parameters

- A – a ComplexSparseMatrix sparse matrix.
- B – a ComplexSparseMatrix sparse matrix.

Returns

- the ComplexSparseMatrix product $AB$ of A and B.

Exception

- IllegalArgumentException: This exception is thrown when the column number of matrix A is not equal to the row number of matrix B.

**multiplyHermitian**

```
static public Complex[] multiplyHermitian(ComplexSparseMatrix A, Complex[] x)
```


**Description**
Multiply sparse Hermitian matrix \( A \) and column vector \( x \).

**Parameters**
- \( A \) – a `ComplexSparseMatrix` sparse Hermitian matrix, where only the lower triangular part of the matrix is to be used.
- \( x \) – A `Complex` vector.

**Returns**
a `Complex` vector representing the product of the arguments, \( Ax \).

**Exception**
`IllegalArgumentException` This exception is thrown when the input matrix is not square or the number of columns in the input matrix is not equal to the number of elements in the input column vector.

---

**oneNorm**
```java
public double oneNorm()
```

**Description**
Returns the matrix one norm of the sparse matrix.

**Returns**
a `double` value equal to the maximum of the column sums of the absolute values of the array elements.

---

**plusEquals**
```java
public Complex plusEquals(int iRow, int jColumn, Complex x)
```

**Description**
Adds a value to an element in the matrix.

**Parameters**
- \( iRow \) – an `int` containing the row index of the element.
- \( jColumn \) – an `int` containing the column index of the element.
- \( x \) – a `Complex` containing the value to be added.

**Returns**
a `Complex` containing the updated value of the element, which equals its old value plus \( x \).

---

**set**
```java
public void set(int iRow, int jColumn, Complex x)
```

**Description**
Sets the value of an element in the matrix.
Parameters

- iRow – an int containing the row index of the element.
- jColumn – an int containing the column index of the element.
- x – a Complex containing the value of the iRow-th and jColumn-th element.

**toDenseMatrix**

public Complex[][] toDenseMatrix()

**Description**

Returns the sparse matrix as a dense matrix.

**Returns**

da rectangular Java array of type Complex containing this matrix with all of the zeros explicitly present. The number of rows and columns in the returned matrix is the same as in the sparse matrix.

**toSparseArray**

public ComplexSparseMatrix.SparseArray toSparseArray()

**Description**

Returns the sparse matrix in the SparseArray form.

---

**Example: ComplexSparseMatrix**

The matrix product of two complex sparse matrices is computed using a method from the ComplexSparseMatrix class. The one-norm of the result is also computed. The matrix and its norm are printed.

```java
import com.imsl.math.*;

public class ComplexSparseMatrixEx1 {

 public static void main(String args[]) {
 ComplexSparseMatrix b = new ComplexSparseMatrix(6, 6);
 b.set(0, 0, new Complex(10.0, -3.0));
 b.set(1, 1, new Complex(10.0, 0.0));
 b.set(1, 2, new Complex(-3.0, 2.0));
 b.set(1, 3, new Complex(-1.0, -1.0));
 b.set(2, 2, new Complex(15.0, 5.0));
 b.set(3, 0, new Complex(-2.0, 0.0));
 b.set(3, 3, new Complex(10.0, 1.0));
 b.set(3, 4, new Complex(-1.0, -2.0));
 b.set(4, 0, new Complex(-1.0, 0.0));
 b.set(4, 3, new Complex(-5.0, 7.0));
 b.set(4, 4, new Complex(1.0, -3.0));
 b.set(4, 5, new Complex(-3.0, 0.0));
 b.set(5, 0, new Complex(-1.0, 4.0));
 b.set(5, 1, new Complex(-2.0, 1.0));
 b.set(5, 5, new Complex(6.0, -5.0));

 ComplexSparseMatrix c = new ComplexSparseMatrix(6, 3);
```
```java
 c.set(0, 0, new Complex(5.0, 0.0));
 c.set(1, 2, new Complex(-3.0, -4.0));
 c.set(2, 0, new Complex(1.0, 2.0));
 c.set(2, 2, new Complex(7.0, 1.0));
 c.set(3, 0, new Complex(2.0, -7.0));
 c.set(4, 1, new Complex(-5.0, 2.0));
 c.set(4, 2, new Complex(2.0, 1.0));
 c.set(5, 2, new Complex(4.0, 0.0));

 // A = b * c
 ComplexSparseMatrix A = ComplexSparseMatrix.multiply(b, c);

 // Get the one norm of matrix A
 System.out.println("The 1-norm of the matrix is "+ A.oneNorm());

 ComplexSparseMatrix.SparseArray sa = A.toSparseArray();

 System.out.println("row column value");
 for (int i = 0; i < sa.numberOfRows; i++) {
 for (int j = 0; j < sa.index[i].length; j++) {
 System.out.println(" "+i+");
 System.out.println(" ("+
 Complex.real(sa.values[i][j]) + ","
 + Complex.imag(sa.values[i][j]) + ")");
 }
 }
```

**Output**

The 1-norm of the matrix is 253.9370051143438

<table>
<thead>
<tr>
<th>row</th>
<th>column</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(50.0, -15.0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(-16.0, 1.0)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(-53.0, -29.0)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(5.0, 35.0)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(100.0, 50.0)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>(17.0, -68.0)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(9.0, 8.0)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>(0.0, -5.0)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>(34.0, 49.0)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(1.0, 17.0)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>(-7.0, -5.0)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>(-5.0, 20.0)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>(34.0, -15.0)</td>
</tr>
</tbody>
</table>
ComplexSparseMatrix.SparseArray class

**static public class** com.imsl.math.ComplexSparseMatrix.SparseArray implements Serializable

The SparseArray class uses public fields to hold the data for a sparse matrix in the Java Sparse Array format. This format came about as a means for storing sparse matrices in Java. In this format, a sparse matrix is represented by two arrays of arrays. One array contains the references to the nonzero value arrays for each row of the sparse matrix. The other contains the references to the associated column index arrays.

As an example, consider the following complex sparse matrix:

\[
A = \begin{pmatrix}
10.0 - 3.0i & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 10.0 & -3.0 + 2.0i & -1.0 - 1.0i & 0.0 & 0.0 \\
0.0 & 0.0 & 15.0 + 5.0i & 0.0 & 0.0 & 0.0 \\
-2.0 & 0.0 & 0.0 & 10.0 + 1.0i & -1.0 - 2.0i & 0.0 \\
-1.0 & 0.0 & 0.0 & -5.0 + 7.0i & 1.0 - 3.0i & -3.0 \\
-1.0 + 4.0i & -2.0 + 1.0i & 0.0 & 0.0 & 0.0 & 6.0 - 5.0i
\end{pmatrix}
\]

In SparseArray, this matrix can be represented by the two jagged arrays, values and index, where values refers to the nonzero entries in \( A \) and index to the column indices:

```java
Complex values[][] = {
 {new Complex(10.0, -3.0)},
 {new Complex(10.0, 0.0), new Complex(-3.0, 2.0), new Complex(-1.0, -1.0)},
 {new Complex(15.0, 5.0)},
 {new Complex(-2.0, 0.0), new Complex(10.0, 1.0), new Complex(-1.0, -2.0)},
 {new Complex(-1.0, 0.0), new Complex(-5.0, 7.0), new Complex(1.0, -3.0),
 new Complex(-3.0, 0.0)},
 {new Complex(-1.0, 4.0), new Complex(-2.0, 1.0), new Complex(6.0, -5.0)}
}

int index[][] = {
 {0},
 {1, 2, 3},
 {2},
 {0, 3, 4},
 {0, 3, 4, 5},
 {0, 1, 5}
}
```

**Fields**

**index**

**public int[][] index**
Jagged array containing column indices. The length of this array equals numberOfRows. The length of each row equals the number of nonzeros in that row of the sparse matrix.

**numberOfColumns**

public int numberOfColumns

Number of columns in the matrix.

**numberOfNonZeros**

public long numberOfNonZeros

Number of nonzeros in the matrix.

**numberOfRows**

public int numberOfRows

Number of rows in the matrix.

**values**

public Complex[][] values

Jagged array containing sparse array values. This array must have the same shape as index.

**Constructor**

**ComplexSparseMatrix.SparseArray**

public ComplexSparseMatrix.SparseArray()

**LU class**

public class com.imsl.math.LU implements Serializable, Cloneable

LU factorization of a matrix of type double.

LU performs an LU factorization of a real general coefficient matrix. The condition method estimates the reciprocal of the $L_1$ condition number of the matrix. The LU factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same infinity norm.

The $L_1$ condition number of the matrix $A$ is defined to be $\kappa(A) = ||A||_1||A^{-1}||_1$. Since it is expensive to compute $||A^{-1}||_1$, the condition number is only estimated. The estimation algorithm is the same as used by LINPACK and is described in a paper by Cline et al. (1979).

Note that $A$ is not retained for use by other methods of this class, only the factorization of $A$ is retained. Thus, $A$ is a required parameter to the condition method.
An estimated condition number greater than $1/\varepsilon$ (where $\varepsilon$ is machine precision) indicates that very small changes in $A$ can cause very large changes in the solution $x$. Iterative refinement can sometimes find the solution to such a system. If there is concern about the input matrix being ill-conditioned, the user of this class should check the condition number of the input matrix using the condition method before using one of the other class methods.

LU fails if $U$, the upper triangular part of the factorization, has a zero diagonal element. This can occur only if $A$ either is singular or is very close to a singular matrix.

Use the solve method to solve systems of equations. The determinant method can be called to compute the determinant of the coefficient matrix.

LU is based on the LINPACK routine SGECO; see Dongarra et al. (1979). SGECO uses unscaled partial pivoting.

### Fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| factor | protected double[][] factor  
This is an $n$ by $n$ matrix containing the $LU$ factorization of the matrix $A$. |
| ipvt   | protected int[] ipvt  
Vector of length $n$ containing the pivot sequence for the factorization. |

### Constructor

#### LU

```java
public LU(double[][] a) throws SingularMatrixException
```

**Description**

Creates the $LU$ factorization of a square matrix of type double.

**Parameter**

- $a$ – the double square matrix to be factored

**Exceptions**

- IllegalArgumentException is thrown when the row lengths of input matrix are not equal (for example, the matrix edges are “jagged”).
- SingularMatrixException is thrown when the input matrix is singular.
Methods

**condition**
public double condition(double[][] a)

**Description**
Return an estimate of the reciprocal of the $L_1$ condition number of a matrix.

**Parameter**
an – the double square matrix for which the reciprocal of the $L_1$ condition number is desired

**Returns**
a double value representing an estimate of the reciprocal of the $L_1$ condition number of the matrix

**determinant**
public double determinant()

**Description**
Return the determinant of the matrix used to construct this instance.

**Returns**
a double scalar containing the determinant of the matrix used to construct this instance

**getL**
public double[][] getL()

**Description**
Returns the lower triangular portion of the $LU$ factorization of $A$.

Scaled partial pivoting is used to achieve the $LU$ factorization. The resulting factorization is such that $AP = LU$, where $A$ is the input matrix $a$, $P$ is the permutation matrix returned by `getPermutationMatrix`, $L$ is the lower triangular matrix returned by `getL`, and $U$ is the unit upper triangular matrix returned by `getU`.

**Returns**
a double matrix containing $L$, the lower triangular portion of the $LU$ factorization of $A$.

**getPermutationMatrix**
public double[][] getPermutationMatrix()

**Description**
Returns the permutation matrix which results from the $LU$ factorization of $A$.

Scaled partial pivoting is used to achieve the $LU$ factorization. The resulting factorization is such that $AP = LU$, where $A$ is the input matrix $a$, $P$ is the permutation matrix returned by `getPermutationMatrix`, $L$ is the lower triangular matrix returned by `getL`, and $U$ is the unit upper triangular matrix returned by `getU`.

42 • LU      JMSL
Returns
a double matrix containing the permuted identity matrix as a result of the LU factorization of $A$.

**getU**
public double[][] getU()

**Description**
Returns the unit upper triangular portion of the LU factorization of $A$.

Scaled partial pivoting is used to achieve the LU factorization. The resulting factorization is such that $AP = LU$, where $A$ is the input matrix a, $P$ is the permutation matrix returned by `getPermutationMatrix`, $L$ is the lower triangular matrix returned by `getL`, and $U$ is the unit upper triangular matrix returned by `getU`.

Returns
a double matrix containing $U$, the unit upper triangular portion of the LU factorization of $A$.

**inverse**
public double[][] inverse()

**Description**
Returns the inverse of the matrix used to construct this instance.

Returns
a double matrix representing the inverse of the matrix used to construct this instance

**solve**
public double[] solve(double[] b)

**Description**
Return the solution $x$ of the linear system $Ax = b$ using the LU factorization of $A$.

**Parameter**
- $b$ – a double array containing the right-hand side of the linear system

Returns
a double array containing the solution to the linear system of equations

**solve**
static public double[] solve(double[][] a, double[] b) throws SingularMatrixException

**Description**
Solve $Ax = b$ for $x$ using the LU factorization of $A$.

**Parameters**
- $a$ – a double square matrix
- $b$ – a double column vector
Returns
a double column vector containing the solution to the linear system of equations

Exceptions
IllegalArgumentException  This exception is thrown when (1) the lengths of the rows of the
input matrix are not uniform, and (2) the number of rows in the input matrix is not equal to the
number of elements in x.

SingularMatrixException  is thrown when the matrix is singular.

solveTranspose
public double[] solveTranspose(double[] b)

Description
Return the solution x of the linear system $A^T = b$.

Parameter
b – double array containing the right-hand side of the linear system

Returns
double array containing the solution to the linear system of equations

Example: LU Factorization of a Matrix
The LU Factorization of a Matrix is performed. The reciprocal of the condition number of the Matrix is
ten computed and checked against machine precision to determine whether or not to issue a Warning
about the results. A linear system is then solved using the factorization. The inverse and determinant of
the input matrix are also computed.

```java
import com.imsl.math.*;

public class LUEx1 {

 public static void main(String args[]) throws SingularMatrixException {
 double a[][] = {
 {1, 3, 3},
 {1, 3, 4},
 {1, 4, 3}
 };
 double b[] = {12, 13, 14};

 // Compute the LU factorization of A
 LU lu = new LU(a);

 // Check the reciprocal of the condition number of
 // A against machine precision
 double condition = lu.condition(a);
 if (condition <= 2.220446049250313e-16) {
 System.out.println("WARNING. The matrix is too ill-conditioned.");
 System.out.println("An estimate of the reciprocal of its L1 "+
 "condition number is "+condition+ ".");
 }
 }
}
```
System.out.println("Results based on this factorization "
   + "may not be accurate.");

// Solve Ax = b
double x[] = lu.solve(b);
new PrintMatrix("x").print(x);

// Find the inverse of A.
double ainv[][] = lu.inverse();
new PrintMatrix("ainv").print(ainv);

// Print the condition number of A.
System.out.println("condition number = " + condition);
System.out.println();

// Find the determinant of A.
double determinant = lu.determinant();
System.out.println("determinant = " + determinant);

Output

x
0
0 3
1 2
2 1

ainv
0 1 2
0 7 -3 -3
1 -1 0 1
2 -1 1 0

condition number = 0.015120274914089344

determinant = -0.9999999999999998

SuperLU class

public class com.ims1.math.SuperLU implements Serializable
Computes the LU factorization of a general sparse matrix of type SparseMatrix by a column method and solves the real sparse linear system of equations \( Ax = b \).
Consider the sparse linear system of equations

\[ Ax = b. \]

Here, \( A \) is a general square, nonsingular, \( n \) by \( n \) sparse matrix, and \( x \) and \( b \) are vectors of length \( n \). All entries in \( A, x \) and \( b \) are of type \texttt{double}.

Gaussian elimination, applied to the system above, can be shortly described as follows:
1. Compute a triangular factorization \( P_rD_rAD_cP_c = LU \). Here, \( D_r \) and \( D_c \) are positive definite diagonal matrices to equilibrate the system and \( P_r \) and \( P_c \) are permutation matrices to ensure numerical stability and preserve sparsity. \( L \) is a unit lower triangular matrix and \( U \) is an upper triangular matrix.
2. Solve \( Ax = b \) by evaluating

\[ x = A^{-1}b = D_c(P_c(U^{-1}(L^{-1}(P_r(D_r(b)))))). \]

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of \( b \) by \( D_r \). Multiplying \( P_r(D_r(b)) \) means permuting the rows of \( D_r(b) \). Multiplying \( U^{-1}(P_r(D_r(b))) \) means solving the triangular system of equations with matrix \( L \) by substitution. Similarly, multiplying \( U^{-1}(L^{-1}(P_rD_r(b))) \) means solving the triangular system with \( U \).

Class \texttt{SuperLU} handles step 1 above in the \texttt{solve} method if it has not been computed prior to step 2. More precisely, before \( Ax = b \) is solved the following steps are performed:

1. Equilibrate matrix \( A \), i.e. compute diagonal matrices \( D_r \) and \( D_c \) so that \( \hat{A} = D_rAD_c \) is “better conditioned” than \( A \), i.e. \( \hat{A}^{-1} \) is less sensitive to perturbations in \( \hat{A} \) than \( A^{-1} \) is to perturbations in \( A \).
2. Order the columns of \( \hat{A} \) to increase the sparsity of the computed \( L \) and \( U \) factors, i.e. replace \( \hat{A} \) by \( \hat{A}P_c \) where \( P_c \) is a column permutation matrix.
3. Compute the \( LU \) factorization of \( \hat{A}P_c \). For numerical stability, the rows of \( \hat{A}P_c \) are eventually permuted through the factorization process by scaled partial pivoting, leading to the decomposition \( \hat{A} := P_r\hat{A}P_c = LU \). The \( LU \) factorization is done by a left looking supernode-panel algorithm with 2-D blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.
4. Compute the reciprocal pivot growth factor

\[
\max_{1 \leq j \leq n} \frac{||\hat{A}_j||_\infty}{||U_j||_\infty}
\]

where \( \hat{A}_j \) and \( U_j \) denote the \( j \)-th column of matrices \( \hat{A} \) and \( U \), respectively.
5. Estimate the reciprocal of the condition number of matrix \( \hat{A} \).

Method \texttt{solve} uses this information to perform the following steps:

1. Solve the system \( Ax = b \) using the computed triangular factors.
2. Iteratively refine the solution, again using the computed triangular factors. This is equivalent to Newton’s method.
3. Compute forward and backward error bounds for the solution vector $x$.

Some of the steps mentioned above are optional. Their settings can be controlled by the set methods of class SuperLU.

Class SuperLU is based on the SuperLU code written by Demmel, Gilbert, Li et al. For more detailed explanations of the factorization and solve steps, see the SuperLU Users’ Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Fields

```
COLUMN_APPROXIMATE_MINIMUM_DEGREE
static final public int COLUMN_APPROXIMATE_MINIMUM_DEGREE
```

For column ordering, use column approximate minimum degree ordering.

```
COLUMN_SCALING
static final public int COLUMN_SCALING
```

Indicates that input matrix $A$ was column scaled before factorization. This is a return value for
getEquilibrationMethod.

**FILL_FACTOR**
static final public int FILL_FACTOR

A performance tuning parameter which can be adjusted via method setPerformanceTuningParameters.

**MAXIMUM_SUPERNODE_SIZE**
static final public int MAXIMUM_SUPERNODE_SIZE

A performance tuning parameter which can be adjusted via method setPerformanceTuningParameters.

**MINIMUM_COLUMN_DIMENSION**
static final public int MINIMUM_COLUMN_DIMENSION

A performance tuning parameter which can be adjusted via method setPerformanceTuningParameters.

**MINIMUM_DEGREE_AT_A**
static final public int MINIMUM_DEGREE_AT_A

For column ordering, use minimum degree ordering on the structure of $A^T A$.

**MINIMUM_DEGREE_AT_PLUS_A**
static final public int MINIMUM_DEGREE_AT_PLUS_A

For column ordering, use minimum degree ordering on the structure of $A^T + A$.

**MINIMUM_ROW_DIMENSION**
static final public int MINIMUM_ROW_DIMENSION

A performance tuning parameter which can be adjusted via method setPerformanceTuningParameters.

**NATURAL_ORDERING**
static final public int NATURAL_ORDERING

For column ordering, use the natural ordering.

**NO_SCALING**
static final public int NO_SCALING

Indicates that input matrix $A$ was not equilibrated before factorization. This is a return value for getEquilibrationMethod.

**PANEL_SIZE**
static final public int PANEL_SIZE

A performance tuning parameter which can be adjusted via method setPerformanceTuningParameters.
**RELAXATION_PARAMETER**
static final public int RELAXATION_PARAMETER

A performance tuning parameter which can be adjusted via method
setPerformanceTuningParameters.

**ROW_AND_COLUMN_SCALING**
static final public int ROW_AND_COLUMN_SCALING

Indicates that input matrix A was row and column scaled before factorization. This is a return value for
getEquilibrationMethod.

**ROW_SCALING**
static final public int ROW_SCALING

Indicates that input matrix A was row scaled before factorization. This is a return value for
getEquilibrationMethod.

**Constructor**

**SuperLU**
public SuperLU(SparseMatrix A)

**Description**
Constructor for SuperLU.

**Parameter**

A – a SparseMatrix containing the sparse quadratic input matrix.

**Methods**

**getColumnPermutationMethod**
public int getColumnPermutationMethod()

**Description**
Returns the method that will be used to permute the columns of the input matrix.

**Returns**
an int scalar specifying how the columns of the input matrix are to be permuted for sparsity preservation.
<table>
<thead>
<tr>
<th>return value</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = NATURAL_ORDERING</td>
<td>natural ordering, that is $P_c = I, I$ the</td>
</tr>
<tr>
<td></td>
<td>identity matrix.</td>
</tr>
<tr>
<td>1 = MINIMUM_DEGREE_AT_PLUS_A</td>
<td>minimum degree ordering on the structure of</td>
</tr>
<tr>
<td></td>
<td>$A^T + A$</td>
</tr>
<tr>
<td>2 = MINIMUM_DEGREE_AT_A</td>
<td>minimum degree ordering on the structure of</td>
</tr>
<tr>
<td></td>
<td>$A^TA$</td>
</tr>
<tr>
<td>3 = COLUMN_APPROXIMATE_MINIMUM_DEGREE</td>
<td>column approximate minimum degree ordering</td>
</tr>
</tbody>
</table>

**getConditionNumber**

**public double getConditionNumber() throws SingularMatrixException**

**Description**

Returns the estimate of the reciprocal condition number of the matrix $A$.

**Returns**

A double scalar containing the reciprocal condition number of the matrix $A$ after equilibration and permutation of rows/columns (if done). If the return value is less than machine precision (in particular, if the return value $= 0$), the matrix is singular to working precision.

**getDiagonalPivotThreshold**

**public double getDiagonalPivotThreshold()**

**Description**

Returns the threshold used for a diagonal entry to be an acceptable pivot.

**Returns**

A double scalar specifying the threshold used for a diagonal entry to be an acceptable pivot.

**getEquilibrate**

**public boolean getEquilibrate()**

**Description**

Returns the equilibration flag.

**Returns**

A boolean specifying whether or not matrix $A$ is equilibrated before factorization. If $getEquilibrate$ returns true the system is equilibrated, if $getEquilibrate$ returns false, no equilibration is performed.

**getEquilibrationMethod**

**public int getEquilibrationMethod()**

**Description**

Returns information on the type of equilibration used before matrix factorization.
Returns
an int value specifying the equilibration option used.

<table>
<thead>
<tr>
<th>return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = NO_SCALING</td>
<td>No equilibration is performed.</td>
</tr>
<tr>
<td>2 = ROW_SCALING</td>
<td>Equilibration is performed with row scaling.</td>
</tr>
<tr>
<td>3 = COLUMN_SCALING</td>
<td>Equilibration is performed with column scaling.</td>
</tr>
<tr>
<td>4 = ROW_AND_COLUMN_SCALING</td>
<td>Equilibration is performed with row and column scaling.</td>
</tr>
</tbody>
</table>

**getForwardErrorBound**
public double getForwardErrorBound()

**Description**
Returns the estimated forward error bound for the solution vector.

**Returns**
a double containing the estimated forward error bound for the solution vector. The estimate is as reliable as the estimate for the reciprocal condition number, and is almost always a slight overestimate of the true error. If iterative refinement is not used, the return value = 1.0.

**getIterativeRefinement**
public boolean getIterativeRefinement()

**Description**
Returns a value specifying whether iterative refinement is to be performed or not.

**Returns**
a boolean scalar specifying whether iterative refinement is to be performed, true, or no iterative refinement is to be performed, false.

**getPerformanceTuningParameters**
public int getPerformanceTuningParameters(int parameter)

**Description**
Returns a performance tuning parameter value.

**Parameter**

parameter – an int scalar that specifies the parameter for which the value is to be returned.
### Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Return Value Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL_SIZE</td>
<td>The panel size.</td>
</tr>
<tr>
<td>RELAXATION_PARAMETER</td>
<td>The relaxation parameter to control supernode amalgamation.</td>
</tr>
<tr>
<td>MAXIMUM_SUPERNODE_SIZE</td>
<td>The maximum allowable size for a supernode.</td>
</tr>
<tr>
<td>MINIMUM_Row_DIMENSION</td>
<td>The minimum row dimension to be used for 2D blocking.</td>
</tr>
<tr>
<td>MINIMUM_COLUMN_DIMENSION</td>
<td>The minimum column dimension to be used for 2D blocking.</td>
</tr>
<tr>
<td>FILL_FACTOR</td>
<td>The estimated fill factor for $L$ and $U$, compared with $A$.</td>
</tr>
</tbody>
</table>

**Returns**

An `int` specifying the current value used for the specified tuning parameter.

---

#### getPivotGrowth

```java
public boolean getPivotGrowth()
```

**Description**

Returns the reciprocal pivot growth factor flag.

**Returns**

A `boolean` specifying whether to compute the reciprocal pivot growth factor. Returns true if the reciprocal pivot growth factor is to be computed.

---

#### getReciprocalPivotGrowthFactor

```java
public double getReciprocalPivotGrowthFactor() throws SingularMatrixException
```

**Description**

Returns the reciprocal pivot growth factor.

**Returns**

A `double` scalar representing the reciprocal growth factor

$$
\max_{j \in \{1, \ldots, n\}} \frac{\|\tilde{A}_j\|_\infty}{\|U_j\|_\infty}.
$$

If the returned value is much less than 1, the stability of the $LU$ factorization could be poor.

---

#### getRelativeBackwardError

```java
public double getRelativeBackwardError()
```

**Description**

Returns the componentwise relative backward error of the solution vector.
Returns
a double containing the componentwise relative backward error of the solution vector \( x \). If iterative refinement is not used, the return value = 1.0.

---

**getSymmetricMode**

public boolean getSymmetricMode()

**Description**

Returns the symmetric mode flag.

**Returns**

a boolean scalar indicating if symmetric mode is to be used. Returns true if symmetric mode is to be used.

---

**setColumnPermutationMethod**

public void setColumnPermutationMethod(int colpermute)

**Description**

Specifies how to permute the columns of the input matrix.

**Parameter**

<table>
<thead>
<tr>
<th>colpermute – an int scalar specifying how to permute the columns of the input matrix for sparsity preservation.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>method</strong></td>
</tr>
<tr>
<td>NATURAL_ORDERING – natural ordering, that is ( P_e = I, I ) the identity matrix.</td>
</tr>
<tr>
<td>MINIMUM_DEGREE_AT_PLUS_A – minimum degree ordering on the structure of ( A^T + A )</td>
</tr>
<tr>
<td>MINIMUM_DEGREE_AT_A – minimum degree ordering on the structure of ( A^T A )</td>
</tr>
<tr>
<td>COLUMN_APPROXIMATE_MINIMUM_DEGREE – column approximate minimum degree ordering</td>
</tr>
</tbody>
</table>

If this method is not called, colpermute is set to SuperLU.COLUMN_APPROXIMATE_MINIMUM_DEGREE.

**Exception**

IllegalArgumentException is thrown when colpermute is not one of the above values.

---

**setDiagonalPivotThreshold**

public void setDiagonalPivotThreshold(double thresh)

**Description**

Specifies the threshold used for a diagonal entry to be an acceptable pivot.
Parameter

thresh – a double scalar specifying the threshold used for a diagonal entry to be an acceptable pivot.
Default: thresh=1.0, i.e. classical partial pivoting.

Exception

IllegalArgumentException is thrown when thresh is not in the interval [0.0, 1.0].

setEquilibrate

public void setEquilibrate(boolean equilibrate)

Description

Determines if input matrix A should be equilibrated before factorization.

Parameter

equilbrate – a boolean determining if matrix A should be equilibrated before the factorization.

<table>
<thead>
<tr>
<th>equilbrate</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>do not equilibrate</td>
</tr>
<tr>
<td>true</td>
<td>equilibrate</td>
</tr>
</tbody>
</table>

If this method is not called, equilbrate is set to true.

setIterativeRefinement

public void setIterativeRefinement(boolean refine)

Description

Specifies whether to perform iterative refinement.

Parameter

refine – a boolean specifying whether to use iterative refinement, refine = true, or no iterative refinement, refine = false.
Default: refine = false.

setPerformanceTuningParameters

public void setPerformanceTuningParameters(int parameter, int tunedValue)

Description

Sets performance tuning parameters.

Parameters

parameter – an int scalar that specifies the parameter to be tuned.
tunedValue – an int scalar that specifies the value to be used for the specified tuning parameter.
<table>
<thead>
<tr>
<th>parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL_SIZE</td>
<td>The panel size.</td>
<td>10</td>
</tr>
<tr>
<td>RELAXATION_PARAMETER</td>
<td>The relaxation parameter to control supernode amalgamation.</td>
<td>5</td>
</tr>
<tr>
<td>MAXIMUM_SUPERNODE_SIZE</td>
<td>The maximum allowable size for a supernode.</td>
<td>100</td>
</tr>
<tr>
<td>MINIMUM_ROW_DIMENSION</td>
<td>The minimum row dimension to be used for 2D blocking.</td>
<td>200</td>
</tr>
<tr>
<td>MINIMUM_COLUMN_DIMENSION</td>
<td>The minimum column dimension to be used for 2D blocking.</td>
<td>40</td>
</tr>
<tr>
<td>FILL_FACTOR</td>
<td>The estimated fill factor for $L$ and $U$, compared with $A$.</td>
<td>20</td>
</tr>
</tbody>
</table>

**Exception**

IllegalArgumentException is thrown when a) parameter is not in the interval $[1, \ldots, 6]$ or b) tunedValue is not greater than zero.

**setPivotGrowth**

public void setPivotGrowth(boolean growth)

**Description**

Specifies whether to compute the reciprocal pivot growth factor.

**Parameter**

- growth – a boolean specifying whether to compute the reciprocal pivot growth factor.

<table>
<thead>
<tr>
<th>growth</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>don’t compute growth factor</td>
</tr>
<tr>
<td>true</td>
<td>compute growth factor</td>
</tr>
</tbody>
</table>

Default: growth = false.

**setSymmetricMode**

public void setSymmetricMode(boolean symmetric)

**Description**

Specifies whether to use the symmetric mode.

**Parameter**

- symmetric – a boolean indicating if symmetric mode is to be used. This mode should be applied if the input matrix $A$ is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold (e.g. 0.0 or 0.01) by method setDiagonalPivotThreshold and choose an $(A^T + A)$-based column permutation algorithm (e.g. column permutation method SuperLU.MINIMUM_DEGREE_AT_PLUS_A).

<table>
<thead>
<tr>
<th>symmetric</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>symmetric mode is not used</td>
</tr>
<tr>
<td>true</td>
<td>symmetric mode is used</td>
</tr>
</tbody>
</table>
solve
public double[] solve(double[] b) throws SingularMatrixException

Description
Computation of the solution vector for the system \(Ax = b\).

Parameter
\(b\) – a double vector of length \(n\), \(n\) the order of input matrix \(A\), containing the right hand side.

Returns
a double vector containing the solution to the system \(Ax = b\). Optionally, the solution is improved by iterative refinement, if setIterativeRefinement is set to true. Method solve internally first factorizes matrix \(A\) (step 1 of the introduction) if the factorization has not been done before.

solveTranspose
public double[] solveTranspose(double[] b) throws SingularMatrixException

Description
Computation of the solution vector for the system \(A^T x = b\).

Parameter
\(b\) – a double vector of length \(n\), \(n\) the order of input matrix \(A\), containing the right hand side.

Returns
a double vector containing the solution to the system \(A^T x = b\). Optionally, the solution is improved by iterative refinement, if setIterativeRefinement is set to true. Method solveTranspose internally first factorizes matrix \(A\) (step 1 of the introduction) if the factorization has not been done before.

Example: LU Factorization of a Sparse Matrix
The LU Factorization of the sparse 6 \(\times\) 6 matrix
\[
A = \begin{pmatrix}
10.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 10.0 & -3.0 & -1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 15.0 & 0.0 & 0.0 & 0.0 \\
-2.0 & 0.0 & 0.0 & 10.0 & -1.0 & 0.0 \\
-1.0 & 0.0 & 0.0 & -5.0 & 1.0 & -3.0 \\
-1.0 & -2.0 & 0.0 & 0.0 & 0.0 & 6.0
\end{pmatrix}
\]
is computed. The sparse coordinate form for \(A\) is given by a series of row, column, value triplets:
Let
\[ y^T = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0) \]
so that \( b_1 := Ay = (10.0, 7.0, 45.0, 33.0, -34.0, 31.0)^T \), and
\[ b_2 := A^Ty = (-9.0, 8.0, 39.0, 13.0, 1.0, 21.0)^T \]

The LU factorization of \( A \) is used to solve the sparse linear systems \( Ax = b_1 \) and \( A^T x = b_2 \) with iterative refinement. The reciprocal pivot growth factor and the reciprocal condition number are also computed.

```java
import com.imsl.math.*;

public class SuperLUEx1 {
 public static void main(String[] args) throws Exception {
 int m = 6;
 SuperLU slu;
 double conditionNumber, recip_pivot_growth;
 double[] sol = null;
 double Ferr, Berr;
 double[] b1 = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 double[] b2 = {-9.0, 8.0, 39.0, 13.0, 1.0, 21.0};

 // Initialize matrix A.
 m = 6;
 SparseMatrix a = new SparseMatrix(m, m);
 a.set(0, 0, 10.0);
 a.set(1, 1, 10.0);
 a.set(1, 2, -3.0);
 a.set(1, 3, -1.0);
 a.set(2, 2, 15.0);
 a.set(3, 0, -2.0);
 a.set(3, 3, 10.0);
 a.set(3, 4, -1.0);
 a.set(4, 0, -1.0);
 a.set(4, 3, -5.0);
 a.set(4, 4, 1.0);
 a.set(4, 5, -3.0);
 a.set(5, 0, -1.0);
 a.set(5, 1, -2.0);
 a.set(5, 5, 6.0);
```
a.set(3, 0, -2.0);
a.set(3, 3, 10.0);
a.set(3, 4, -1.0);
a.set(4, 0, -1.0);
a.set(4, 3, -5.0);
a.set(4, 4, 1.0);
a.set(4, 5, -3.0);
a.set(5, 0, -1.0);
a.set(5, 1, -2.0);
a.set(5, 5, 6.0);

// Compute the sparse LU factorization of a
slu = new SuperLU(a);

slu.setEquilibrate(false);
slu.setColumnPermutationMethod(SuperLU.NATURAL_ORDERING);
slu.setPivotGrowth(true);

//slu.setPerformanceTuningParameters(1,2);
//slu.setPerformanceTuningParameters(2,1);
// Set option of iterative refinement
slu.setIterativeRefinement(true);

// Solve sparse system A*x = b1
System.out.println();
System.out.println("Solve sparse System Ax=b1");
System.out.println("="");
System.out.println();

sol = slu.solve(b1);
new PrintMatrix("Solution").print(sol);

Ferr = slu.getForwardErrorBound();
Berr = slu.getRelativeBackwardError();

System.out.println();
System.out.println("Forward error bound: " + Ferr);
System.out.println("Relative backward error: " + Berr);
System.out.println();

// Solve sparse system A^T*x = b2
System.out.println();
System.out.println("Solve sparse System A^Tx=b2");
System.out.println("="");
System.out.println();

sol = slu.solveTranspose(b2);
new PrintMatrix("Solution").print(sol);

Ferr = slu.getForwardErrorBound();
Berr = slu.getRelativeBackwardError();

System.out.println();
System.out.println("Forward error bound: " + Ferr);
System.out.println("Relative backward error: " + Berr);
// Compute reciprocal pivot growth factor and condition number
recip_pivot_growth = slu.getReciprocalPivotGrowthFactor();
conditionNumber = slu.getConditionNumber();

System.out.println("Pivot growth factor and condition number");
System.out.println("========================================");
System.out.println();
System.out.println("Reciprocal pivot growth factor: "+ recip_pivot_growth);
System.out.println("Reciprocal condition number: " + conditionNumber);
System.out.println();

}
Pivot growth factor and condition number

Reciprocal pivot growth factor: 1.0
Reciprocal condition number: 0.02445109780439122

ComplexLU class

public class com.imsl.math.ComplexLU implements Serializable, Cloneable

LU factorization of a matrix of type Complex.

ComplexLU performs an LU factorization of a complex general coefficient matrix. ComplexLU’s method condition estimates the reciprocal of the $L_1$ condition number of the matrix. The LU factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same infinity norm.

The $L_1$ condition number of the matrix $A$ is defined to be $\kappa (A) = \|A\|_1 \|A^{-1}\|_1$. Since it is expensive to compute $\|A^{-1}\|_1$, the condition number is only estimated. The estimation algorithm is the same as used by LINPACK and is described by Cline et al. (1979).

Note that $A$ is not retained for use by other methods of this class, only the factorization of $A$ is retained. Thus, $A$ is a required parameter to the condition method.

An estimated condition number greater than $1/\varepsilon$ (where $\varepsilon$ is machine precision) indicates that very small changes in $A$ can cause very large changes in the solution $x$. Iterative refinement can sometimes find the solution to such a system. If there is concern about the input matrix being ill-conditioned, the user of this class should check the condition number of the input matrix using the condition method before using one of the other class methods.

ComplexLU fails if $U$, the upper triangular part of the factorization, has a zero diagonal element. This can occur only if $A$ either is singular or is very close to a singular matrix.

The solve method can be used to solve systems of equations. The method determinant can be called to compute the determinant of the coefficient matrix.

ComplexLU is based on the LINPACK routine CGECO; see Dongarra et al. (1979). CGECO uses unscaled partial pivoting.
Fields

factor
protected Complex[][] factor

This is an \( n \) by \( n \) Complex matrix containing the \( LU \) factorization of the matrix \( A \).

ipvt
protected int[] ipvt

Vector of length \( n \) containing the pivot sequence for the factorization.

Constructor

ComplexLU
public ComplexLU(Complex[][] a) throws SingularMatrixException

Description
Creates the \( LU \) factorization of a square matrix of type Complex.

Parameter
a – Complex square matrix to be factored

Exceptions
IllegalArgumentException is thrown when the row lengths of input matrix are not equal (for example, the matrix edges are “jagged”.)
SingularMatrixException is thrown when the input matrix is singular.

Methods

condition
public double condition(Complex[][] a)

Description
Return an estimate of the reciprocal of the \( L_1 \) condition number.

Parameter
a – a Complex matrix
Returns a double scalar value representing the estimate of the reciprocal of the $L_1$ condition number of the matrix $A$, where $A$ is the parameter $a$.

**determinant**

public Complex determinant()

**Description**

Return the determinant of the matrix used to construct this instance.

**Returns**

a Complex scalar containing the determinant of the matrix used to construct this instance.

**getL**

public Complex[][] getL()

**Description**

Returns the lower triangular portion of the $LU$ factorization of $A$.

Scaled partial pivoting is used to achieve the $LU$ factorization. The resulting factorization is such that $AP = LU$, where $A$ is the input matrix $a$, $P$ is the permutation matrix returned by getPermutationMatrix, $L$ is the lower triangular matrix returned by getL, and $U$ is the unit upper triangular matrix returned by getU.

**Returns**

a Complex matrix containing $L$, the lower triangular portion of the $LU$ factorization of $A$.

**getPermutationMatrix**

public Complex[][] getPermutationMatrix()

**Description**

Returns the permutation matrix which results from the $LU$ factorization of $A$.

Scaled partial pivoting is used to achieve the $LU$ factorization. The resulting factorization is such that $AP = LU$, where $A$ is the input matrix $a$, $P$ is the permutation matrix returned by getPermutationMatrix, $L$ is the lower triangular matrix returned by getL, and $U$ is the unit upper triangular matrix returned by getU.

**Returns**

A Complex matrix containing the permuted identity matrix as a result of the $LU$ factorization of $A$.

**getU**

public Complex[][] getU()

**Description**

Returns the unit upper triangular portion of the $LU$ factorization of $A$.

Scaled partial pivoting is used to achieve the $LU$ factorization. The resulting factorization is such that $AP = LU$, where $A$ is the input matrix $a$, $P$ is the permutation matrix returned by getPermutationMatrix, $L$ is the lower triangular matrix returned by getL, and $U$ is the unit upper triangular matrix returned by getU.
Returns
a Complex matrix containing $U$, the unit upper triangular portion of the $LU$ factorization of $A$.

inverse
public Complex[][] inverse()

description
Returns the inverse of the matrix used to construct this instance.

Returns
a Complex matrix containing the inverse of the matrix used to construct this object.

solve
public Complex[] solve(Complex[] b)

description
Return the solution $x$ of the linear system $Ax = b$ using the $LU$ factorization of $A$.

parameter
b – Complex array containing the right-hand side of the linear system

returns
Complex array containing the solution to the linear system of equations

solve
static public Complex[] solve(Complex[][] a, Complex[] b) throws SingularMatrixException

description
Solve $Ax = b$ for $x$ using the $LU$ factorization of $A$.

parameters
a – a Complex square matrix
b – a Complex column vector

returns
a Complex column vector containing the solution to the linear system of equations.

exceptions
IllegalArgumentException. This exception is thrown when (1) the lengths of the rows of the input matrix are not uniform, and (2) the number of rows in the input matrix is not equal to the number of elements in $x$.
SingularMatrixException is thrown when the matrix is singular.

solveTranspose
public Complex[] solveTranspose(Complex[] b)
Description

Return the solution $x$ of the linear system $A^T x = b$.

Parameter

- $b$ – Complex array containing the right-hand side of the linear system

Returns

Complex array containing the solution to the linear system of equations

Example: LU Decomposition of a Complex Matrix

The Complex structure is used to convert a real matrix to a Complex matrix. An LU decomposition of the matrix is performed. The reciprocal of the condition number of the Matrix is then computed and checked against machine precision to determine whether or not to issue a Warning about the results. A linear system is then solved using the factorization. The determinant of the input matrix is also computed.

```java
import com.imsl.math.*;

public class ComplexLUEx1 {

 public static void main(String args[]) throws SingularMatrixException {
 double ar[][] = {
 {1, 3, 3},
 {1, 3, 4},
 {1, 4, 3}
 };
 double br[] = {12, 13, 14};
 Complex a[][] = new Complex[3][3];
 Complex b[] = new Complex[3];
 for (int i = 0; i < 3; i++) {
 b[i] = new Complex(br[i]);
 for (int j = 0; j < 3; j++) {
 a[i][j] = new Complex(ar[i][j]);
 }
 }

 // Compute the LU factorization of A
 ComplexLU clu = new ComplexLU(a);

 // Check the reciprocal of the condition number of A
 // against machine precision
 double condition = clu.condition(a);
 if (condition <= 2.220446049250313e-16) {
 System.out.println("WARNING. The matrix is too ill-conditioned.");
 System.out.println("An estimate of the reciprocal of its L1 "+
 "condition number is " + condition + ".");
 System.out.println("Results based on this factorization may "+
 "not be accurate.");
 }
 }
}
```
// Solve Ax = b
Complex x[] = clu.solve(b);
System.out.println("The solution is:");
System.out.println(" ");
new PrintMatrix("x").print(x);

// Print the condition number of A.
System.out.println("The condition number = " + condition);
System.out.println();

// Find the determinant of A.
Complex determinant = clu.determinant();
System.out.println("The determinant = " + determinant);
}

Output

The solution is:

x
0
0 3
1 2
2 1

The condition number = 0.014886731391585757

The determinant = -0.9999999999999998

ComplexSuperLU class

public class com.imsl.math.ComplexSuperLU implements Serializable

Computes the LU factorization of a general sparse matrix of type ComplexSparseMatrix by a column method and solves a sparse linear system of equations \( Ax = b \).

Consider the sparse linear system of equations

\[
Ax = b.
\]

Here, \( A \) is a general square, nonsingular, \( n \times n \) sparse matrix, and \( x \) and \( b \) are vectors of length \( n \). All entries in \( A \), \( x \) and \( b \) are of type Complex.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization \( P_rD_rAD_cP_c = LU \). Here, \( D_r \) and \( D_c \) are positive definite diagonal matrices to equilibrate the system and \( P_r \) and \( P_c \) are permutation matrices to ensure

Linear Systems ComplexSuperLU • 65
numerical stability and preserve sparsity. $L$ is a unit lower triangular matrix and $U$ is an upper triangular matrix.

2. Solve $Ax = b$ by evaluating

$$x = A^{-1}b = D_c(P_r(U^{-1}(L^{-1}(P_r(D_r(b)))))].$$

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of $b$ by $D_r$. Multiplying $P_r(D_r b)$ means permuting the rows of $D_r b$. Multiplying $L^{-1}(P_r(D_r b))$ means solving the triangular system of equations with matrix $L$ by substitution. Similarly, multiplying $U^{-1}(L^{-1}(P_r(D_r b)))$ means solving the triangular system with $U$.

Class ComplexSuperLU handles step 1 above in the solve method if it is has not been computed prior to step 2. More precisely, before $Ax = b$ is solved the following steps are performed:

1. Equilibrate matrix $A$, i.e. compute diagonal matrices $D_r$ and $D_c$ so that $\hat{A} = D_r AD_c$ is “better conditioned” than $A$, i.e. $\hat{A}^{-1}$ is less sensitive to perturbations in $\hat{A}$ than $A^{-1}$ is to perturbations in $A$.

2. Order the columns of $\hat{A}$ to increase the sparsity of the computed $L$ and $U$ factors, i.e. replace $\hat{A}$ by $\hat{A} P_c$ where $P_c$ is a column permutation matrix.

3. Compute the $LU$ factorization of $\hat{A} P_c$. For numerical stability, the rows of $\hat{A} P_c$ are eventually permuted through the factorization process by scaled partial pivoting, leading to the decomposition $\tilde{A} := P_r \hat{A} P_c = LU$. The $LU$ factorization is done by a left looking supernode-panel algorithm with 2-D blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

$$\max_{1 \leq j \leq n} \frac{\|\tilde{A}_j\|_{\infty}}{\|U_j\|_{\infty}},$$

where $\tilde{A}_j$ and $U_j$ denote the $j$-th column of matrices $\tilde{A}$ and $U$, respectively.

5. Estimate the reciprocal of the condition number of matrix $\tilde{A}$.

Method solve uses this information to perform the following steps:

1. Solve the system $Ax = b$ using the computed triangular factors.

2. Iteratively refine the solution, again using the computed triangular factors. This is equivalent to Newton’s method.

3. Compute forward and backward error bounds for the solution vector $x$.

Some of the steps mentioned above are optional. Their settings can be controlled by the set methods of class ComplexSuperLU.
Class ComplexSuperLU is based on the SuperLU code written by Demmel, Gilbert, Li et al. For more detailed explanations of the factorization and solve steps, see the SuperLU Users’ Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Fields

COLUMN_APPROXIMATE_MINIMUM_DEGREE
static final public int COLUMN_APPROXIMATE_MINIMUM_DEGREE

For column ordering, use column approximate minimum degree ordering.

COLUMN_SCALING
static final public int COLUMN_SCALING

Indicates that input matrix A was column scaled before factorization. This is a return value for getEquilibrationMethod.

FILL_FACTOR
static final public int FILL_FACTOR
A performance tuning parameter which can be adjusted via method
setPerformanceTuningParameters.

**MAXIMUM_SUPERNODE_SIZE**

static final public int MAXIMUM_SUPERNODE_SIZE

A performance tuning parameter which can be adjusted via method
setPerformanceTuningParameters.

**MINIMUM_COLUMN_DIMENSION**

static final public int MINIMUM_COLUMN_DIMENSION

A performance tuning parameter which can be adjusted via method
setPerformanceTuningParameters.

**MINIMUM_DEGREE_AT_A**

static final public int MINIMUM_DEGREE_AT_A

For column ordering, use minimum degree ordering on the structure of $A^T A$.

**MINIMUM_DEGREE_AT_PLUS_A**

static final public int MINIMUM_DEGREE_AT_PLUS_A

For column ordering, use minimum degree ordering on the structure of $A^T + A$.

**MINIMUM_ROW_DIMENSION**

static final public int MINIMUM_ROW_DIMENSION

A performance tuning parameter which can be adjusted via method
setPerformanceTuningParameters.

**NATURAL_ORDERING**

static final public int NATURAL_ORDERING

For column ordering, use the natural ordering.

**NO_SCALING**

static final public int NO_SCALING

Indicates that input matrix $A$ was not equilibrated before factorization. This is a return value for
getEquilibrationMethod.

**PANEL_SIZE**

static final public int PANEL_SIZE

A performance tuning parameter which can be adjusted via method
setPerformanceTuningParameters.

**RELAXATION_PARAMETER**

static final public int RELAXATION_PARAMETER
A performance tuning parameter which can be adjusted via method
`setPerformanceTuningParameters`.

**ROW_AND_COLUMN_SCALING**
static final public int ROW_AND_COLUMN_SCALING

Indicates that input matrix $A$ was row and column scaled before factorization. This is a return value for
`getEquilibrationMethod`.

**ROW_SCALING**
static final public int ROW_SCALING

Indicates that input matrix $A$ was row scaled before factorization. This is a return value for
`getEquilibrationMethod`.

### Constructor

**ComplexSuperLU**

`public ComplexSuperLU(ComplexSparseMatrix A)`

**Description**
Constructor for ComplexSuperLU.

**Parameter**
- A – a `ComplexSparseMatrix` containing the sparse quadratic input matrix.

### Methods

**getColumnPermutationMethod**

`public int getColumnPermutationMethod()`

**Description**
Returns the method that will be used to permute the columns of the input matrix.

**Returns**
an `int` scalar specifying how the columns of the input matrix are to be permuted for sparsity
preservation.
**getConditionNumber**

**Description**

Returns the estimate of the reciprocal condition number of the matrix $A$.

**Returns**

A `double` scalar containing the reciprocal condition number of the matrix $A$ after equilibration and permutation of rows/columns (if done). If the reciprocal condition number is less than machine precision, in particular if it is equal to 0, the matrix is singular to working precision.

**getDiagonalPivotThreshold**

**Description**

Returns the threshold used for a diagonal entry to be an acceptable pivot.

**Returns**

A `double` scalar specifying the threshold used for a diagonal entry to be an acceptable pivot.

**getEquilibrate**

**Description**

Returns the equilibration flag.

**Returns**

A `boolean` specifying whether or not matrix $A$ is equilibrated before factorization. If `getEquilibrate` returns `true` the system is equilibrated, if `getEquilibrate` returns `false`, no equilibration is performed.

**getEquilibrationMethod**

**Description**

Returns information on the type of equilibration used before matrix factorization.

---

<table>
<thead>
<tr>
<th>return value</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = NATURAL_ORDERING</td>
<td>natural ordering, that is $P_c = I$, $I$ the identity matrix</td>
</tr>
<tr>
<td>1 = MINIMUM DEGREE_AT_PLUS_A</td>
<td>minimum degree ordering on the structure of $A^T + A$</td>
</tr>
<tr>
<td>2 = MINIMUM DEGREE_AT_A</td>
<td>minimum degree ordering on the structure of $A^TA$</td>
</tr>
<tr>
<td>3 = COLUMN APPROXIMATE MINIMUM DEGREE</td>
<td>column approximate minimum degree ordering</td>
</tr>
</tbody>
</table>
Returns

an int value specifying the equilibration option used.

<table>
<thead>
<tr>
<th>return value</th>
<th>option description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = NO_SCALING</td>
<td>No equilibration is performed.</td>
</tr>
<tr>
<td>2 = ROW_SCALING</td>
<td>Equilibration is performed with row scaling.</td>
</tr>
<tr>
<td>3 = COLUMN_SCALING</td>
<td>Equilibration is performed with column scaling.</td>
</tr>
<tr>
<td>4 = ROW_AND_COLUMN_SCALING</td>
<td>Equilibration is performed with row and column scaling.</td>
</tr>
</tbody>
</table>

getForwardErrorBound

public double getForwardErrorBound()

Description

Returns the estimated forward error bound for each solution vector.

Returns

a double containing the estimated forward error bound for the solution vector. The estimate is as reliable as the estimate for the reciprocal condition number, and is almost always a slight overestimate of the true error. If iterative refinement is not used, the return value = 1.0.

getIterativeRefinement

public boolean getIterativeRefinement()

Description

Returns a value specifying whether iterative refinement is to be performed or not.

Returns

a boolean scalar specifying whether iterative refinement is to be performed, true, or no iterative refinement is to be performed, false.

getPerformanceTuningParameters

public int getPerformanceTuningParameters(int parameter)

Description

Returns a performance tuning parameter value.

Parameter

parameter – an int scalar that specifies the parameter for which the value is to be returned.
<table>
<thead>
<tr>
<th>parameter</th>
<th>return value description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL_SIZE</td>
<td>The panel size.</td>
</tr>
<tr>
<td>RELAXATION_PARAMETER</td>
<td>The relaxation parameter to control supernode amalgamation.</td>
</tr>
<tr>
<td>MAXIMUM_SUPERNODE_SIZE</td>
<td>The maximum allowable size for a supernode.</td>
</tr>
<tr>
<td>MINIMUM_ROW_DIMENSION</td>
<td>The minimum row dimension to be used for 2D blocking.</td>
</tr>
<tr>
<td>MINIMUM_COLUMN_DIMENSION</td>
<td>The minimum column dimension to be used for 2D blocking.</td>
</tr>
<tr>
<td>FILL_FACTOR</td>
<td>The estimated fill factor for $L$ and $U$, compared with $A$.</td>
</tr>
</tbody>
</table>

**Returns**

an `int` specifying the current value used for the specified tuning parameter.

**getPivotGrowth**

public boolean getPivotGrowth()

**Description**

Returns the reciprocal pivot growth factor flag.

**Returns**

a `boolean` specifying whether to compute the reciprocal pivot growth factor. Returns true if the reciprocal pivot growth factor is to be computed.

**getReciprocalPivotGrowthFactor**

public double getReciprocalPivotGrowthFactor() throws SingularMatrixException

**Description**

Returns the reciprocal pivot growth factor.

**Returns**

a `double` scalar representing the reciprocal growth factor

$$\max_{1 \leq j \leq n} \frac{\|\tilde{A}_j\|_\infty}{\|U_j\|_\infty}.$$  

If the returned value is much less than 1, the stability of the $LU$ factorization could be poor.

**getRelativeBackwardError**

public double getRelativeBackwardError()

**Description**

Returns the componentwise relative backward error of the solution vector.
Returns
a double containing the componentwise relative backward error of the solution vector x. If setIterativeRefinement is not set to true, then getRelativeBackwardError returns 1.0.

getSymmetricMode
public boolean getSymmetricMode()

Description
Returns the symmetric mode flag.

Returns
a boolean scalar indicating if symmetric mode is to be used. Returns true if symmetric mode is to be used.

setColumnPermutationMethod
public void setColumnPermutationMethod(int colpermute)

Description
Specifies how to permute the columns of the input matrix.

Parameter

colpermute – an int scalar specifying how to permute the columns of the input matrix for sparsity preservation.

<table>
<thead>
<tr>
<th>colpermute</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL_ORDERING</td>
<td>natural ordering, that is $P_c = I$, $I$ the identity matrix</td>
</tr>
<tr>
<td>MINIMUM_DEGREE_AT_PLUS_A</td>
<td>minimum degree ordering on the structure of $A^T + A$</td>
</tr>
<tr>
<td>MINIMUM_DEGREE_AT_A</td>
<td>minimum degree ordering on the structure of $A^T A$</td>
</tr>
<tr>
<td>COLUMN_APPROXIMATE_MINIMUM_DEGREE</td>
<td>column approximate minimum degree ordering</td>
</tr>
</tbody>
</table>

Default: colpermute = SuperLU.COLUMN_APPROXIMATE_MINIMUM_DEGREE.

setDiagonalPivotThreshold
public void setDiagonalPivotThreshold(double thresh)

Description
Specifies the threshold used for a diagonal entry to be an acceptable pivot.

Parameter

thresh – a double scalar specifying the threshold used for a diagonal entry to be an acceptable pivot.
Default: thresh=1.0, i.e. classical partial pivoting.
Exception
IllegalArgumentException is thrown if thresh is not in the interval [0.0, 1.0].

**setEquilibrate**
public void setEquilibrate(boolean equilibrate)

**Description**
Specifies if input matrix A should be equilibrated before factorization.

**Parameter**
equilbrate – a boolean determining if matrix A should be equilibrated before the factorization.

<table>
<thead>
<tr>
<th>equilibrate</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>do not equilibrate</td>
</tr>
<tr>
<td>true</td>
<td>equilibrate</td>
</tr>
</tbody>
</table>

Default: equilibrate = true.

**setIterativeRefinement**
public void setIterativeRefinement(boolean refine)

**Description**
Specifies whether to perform iterative refinement.

**Parameter**
refine – a boolean scalar specifying whether to use iterative refinement, refine = true or no iterative refinement, refine = false.

Default: refine = false.

**setPerformanceTuningParameters**
public void setPerformanceTuningParameters(int parameter, int tunedValue)

**Description**
Sets performance tuning parameters.

**Parameters**
- parameter – an int scalar that specifies the parameter to be tuned.
- tunedValue – an int scalar that specifies the value to be used for the specified tuning parameter.
<table>
<thead>
<tr>
<th>parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL_SIZE</td>
<td>The panel size.</td>
<td>10</td>
</tr>
<tr>
<td>RELAXATION_PARAMETER</td>
<td>The relaxation parameter to control supernode amalgamation.</td>
<td>5</td>
</tr>
<tr>
<td>MAXIMUM_SUPERNODE_SIZE</td>
<td>The maximum allowable size for a supernode.</td>
<td>100</td>
</tr>
<tr>
<td>MINIMUM_ROW_DIMENSION</td>
<td>The minimum row dimension to be used for 2D blocking.</td>
<td>200</td>
</tr>
<tr>
<td>MINIMUM_COLUMN_DIMENSION</td>
<td>The minimum column dimension to be used for 2D blocking.</td>
<td>40</td>
</tr>
<tr>
<td>FILL_FACTOR</td>
<td>The estimated fill factor for ( L ) and ( U ), compared with ( A ).</td>
<td>20</td>
</tr>
</tbody>
</table>

**Exception**

*IllegalArgumentException* is thrown when a) parameter is not in the interval \([1, \ldots, 6]\) or b) tunedValue is not greater than zero.

### setPivotGrowth

def public void setPivotGrowth(boolean growth)

**Description**

Specifies whether to compute the reciprocal pivot growth factor.

**Parameter**

- **growth** – a boolean specifying whether to compute the reciprocal pivot growth factor.

<table>
<thead>
<tr>
<th>growth</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>don’t compute growth factor</td>
</tr>
<tr>
<td>true</td>
<td>compute growth factor</td>
</tr>
</tbody>
</table>

Default: growth = false.

### setSymmetricMode

def public void setSymmetricMode(boolean symmetric)

**Description**

Specifies whether to use the symmetric mode.

**Parameter**

- **symmetric** – a boolean indicating if symmetric mode is to be used. This mode should be applied if the input matrix \( A \) is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold (e.g. 0.0 or 0.01) by method `setDiagonalPivotThreshold` and choose an \((A^T + A)\)-based column permutation algorithm (e.g. column permutation method `ComplexSuperLU.MINIMUM_DEGREE_AT_PLUS_A`).

<table>
<thead>
<tr>
<th>symmetric</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>symmetric mode is not used</td>
</tr>
<tr>
<td>true</td>
<td>symmetric mode is used</td>
</tr>
</tbody>
</table>
Default: symmetric=false.

**solve**

```java
public Complex[] solve(Complex[] b) throws SingularMatrixException
```

**Description**

Computation of the solution vector for the system $Ax = b$.

**Parameter**

$b$ – a Complex vector of length $n$, $n$ the order of input matrix $A$, containing the right hand side.

**Returns**

a Complex vector containing the solution to the system $Ax = b$. Optionally, the solution is improved by iterative refinement, if `setIterativeRefinement` is set to true. Method `solve` internally first factorizes matrix $A$ (step 1 of the introduction) if the factorization has not been done before.

**solveConjugateTranspose**

```java
public Complex[] solveConjugateTranspose(Complex[] b) throws SingularMatrixException
```

**Description**

Computation of the solution vector for the system $A^Hx = b$.

**Parameter**

$b$ – a Complex vector of length $n$, $n$ the order of input matrix $A$, containing the right hand side.

**Returns**

a Complex vector containing the solution to the system $A^Hx = b$. Optionally, the solution is improved by iterative refinement, if `setIterativeRefinement` is set to true. Method `solveConjugateTranspose` internally first factorizes matrix $A$ (step 1 of the introduction) if the factorization has not been done before.

**solveTranspose**

```java
public Complex[] solveTranspose(Complex[] b) throws SingularMatrixException
```

**Description**

Computation of the solution vector for the system $A^Tx = b$.

**Parameter**

$b$ – a Complex vector of length $n$, $n$ the order of input matrix $A$, containing the right hand side.

**Returns**

a Complex vector containing the solution to the system $A^Tx = b$. Optionally, the solution is improved by iterative refinement, if `setIterativeRefinement` is set to true. Method `solveTranspose` internally first factorizes matrix $A$ (step 1 of the introduction) if the factorization has not been done before.
Example: LU Factorization of a Complex Sparse Matrix

The LU Factorization of the sparse complex $6 \times 6$ matrix

$$A = \begin{pmatrix}
10 + 7i & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 3 + 2i & -3 + 0i & -1 + 2i & 0.0 & 0.0 \\
0.0 & 0.0 & 4 + 2i & 0.0 & 0.0 & 0.0 \\
-2 - 4i & 0.0 & 0.0 & 1 + 2i & -1 + 3i & 0.0 \\
-5 + 4i & 0.0 & 0.0 & -5 + 0i & 12 + 2i & -7 + 7i \\
-1 + 12i & -2 + 8i & 0.0 & 0.0 & 0.0 & 3 + 7i
\end{pmatrix}$$

is computed. The sparse coordinate form for $A$ is given by row, column, value triplets:

<table>
<thead>
<tr>
<th>row</th>
<th>column</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10+7i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3+2i</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-3+0i</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-1+2i</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4+2i</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-2-4i</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1+6i</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-1+3i</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-5+4i</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-5+0i</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12+2i</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-7+7i</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1+12i</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-2+8i</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3+7i</td>
</tr>
</tbody>
</table>

Let

$$x^T = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)$$

so that

$$b_1 := Ax = (3 + 17i, -19 + 5i, 6 + 18i, -38 + 32i, -63 + 49i, -57 + 83i)^T$$

and

$$b_2 := A^Hx = (54 - 112i, 46 - 58i, 12, 5 - 51i, 78 + 34i, 60 - 94i)^T.$$
ComplexSuperLU ComplexSparseLU;
double conditionNumber, recip_pivot_growth;
Complex[] sol = null;
double Ferr, Berr;

Complex[] b1 = {
    new Complex(3.0, 17.0), new Complex(-19.0, 5.0),
    new Complex(6.0, 18.0), new Complex(-38.0, 32.0),
    new Complex(-63.0, 49.0), new Complex(-57.0, 83.0)
};

Complex[] b2 = {
    new Complex(54.0, -112.0), new Complex(46.0, -58.0),
    new Complex(12.0, 0.0), new Complex(5.0, -51.0),
    new Complex(78.0, 34.0), new Complex(60.0, -94.0)
};

// Initialize input matrix A.
m = 6;
ComplexSparseMatrix a = new ComplexSparseMatrix(m, m);
a.set(0, 0, new Complex(10.0, 7.0));
a.set(1, 1, new Complex(3.0, 2.0));
a.set(1, 2, new Complex(-3.0, 0.0));
a.set(1, 3, new Complex(-1.0, 2.0));
a.set(2, 2, new Complex(4.0, 2.0));
a.set(3, 0, new Complex(-2.0, -4.0));
a.set(3, 3, new Complex(1.0, 6.0));
a.set(3, 4, new Complex(-1.0, 3.0));
a.set(4, 0, new Complex(-5.0, 4.0));
a.set(4, 3, new Complex(-5.0, 0.0));
a.set(4, 4, new Complex(12.0, 2.0));
a.set(5, 0, new Complex(-1.0, 12.0));
a.set(5, 1, new Complex(-2.0, 8.0));
a.set(5, 5, new Complex(3.0, 7.0));

// Compute the sparse LU factorization of a
ComplexSparseLU = new ComplexSuperLU(a);
ComplexSparseLU.setEquilibrate(false);
ComplexSparseLU.setColumnPermutationMethod(
    ComplexSuperLU.NATURAL_ORDERING);
ComplexSparseLU.setPivotGrowth(true);

// Set option of iterative refinement
ComplexSparseLU.setIterativeRefinement(true);

// Solve sparse system A*x = b1
System.out.println();
System.out.println("Solve sparse System Ax=b1");
System.out.println("=
----------------");
System.out.println();
sol = ComplexSparseLU.solve(b1);
new PrintMatrix("Solution").print(sol);
Ferr = ComplexSparseLU.getForwardErrorBound();
Berr = ComplexSparseLU.getRelativeBackwardError();

System.out.println();
System.out.println("Forward error bound: " + Ferr);
System.out.println("Relative backward error: " + Berr);
System.out.println();

// Solve sparse system A^H*x = b2
System.out.println();
System.out.println("Solve sparse System A^Hx=b2");
System.out.println("==========================");
System.out.println();

sol = ComplexSparseLU.solveConjugateTranspose(b2);
new PrintMatrix("Solution").print(sol);

Ferr = ComplexSparseLU.getForwardErrorBound();
Berr = ComplexSparseLU.getRelativeBackwardError();

System.out.println();
System.out.println("Forward error bound: " + Ferr);
System.out.println("Relative backward error: " + Berr);
System.out.println();

// Compute reciprocal pivot growth factor and condition number
recip_pivot_growth = ComplexSparseLU.getReciprocalPivotGrowthFactor();
conditionNumber = ComplexSparseLU.getConditionNumber();
System.out.println("Pivot growth factor and condition number");
System.out.println("================================");
System.out.println();
System.out.println("Reciprocal pivot growth factor: "+ recip_pivot_growth);
System.out.println("Reciprocal condition number: " + conditionNumber);
System.out.println();

Output

Solve sparse System Ax=b1
=========================

Solution
  0
  0 1+1i
  1 2+2i
\[
\begin{bmatrix}
2 & 3+3i \\
3 & 4+4i \\
4 & 5+5i \\
5 & 6+6i
\end{bmatrix}
\]

Forward error bound: 2.8393330592805326E-15
Relative backward error: 1.708035422500241E-16

Solve sparse System \(A^Hx=b\)

\[
\begin{bmatrix}
0 \\
0 & 1+i \\
1 & 2+2i \\
2 & 3+3i \\
3 & 4+4i \\
4 & 5+5i \\
5 & 6+6i
\end{bmatrix}
\]

Forward error bound: 8.54834098797111E-15
Relative backward error: 1.0297720808117394E-16

Pivot growth factor and condition number

\[
\begin{bmatrix}
- \frac{1}{\text{Reciprocal pivot growth factor}} \\
\frac{1}{\text{Reciprocal condition number}}
\end{bmatrix}
\]

Cholesky class

public class com.imsl.math.Cholesky implements Serializable, Cloneable

Cholesky factorization of a matrix of type double.

Class Cholesky uses the Cholesky-Banachiewicz algorithm to factor the matrix \(A\).

The Cholesky factorization of a matrix is \(A = RR^T\), where \(R\) is a lower triangular matrix. Thus,

\[
A = RR^T =
\begin{bmatrix}
R_{11} & 0 & 0 \\
R_{21} & R_{22} & 0 \\
R_{31} & R_{32} & R_{33}
\end{bmatrix}
\begin{bmatrix}
R_{11} & R_{21} & R_{31} \\
0 & R_{22} & R_{32} \\
0 & 0 & R_{33}
\end{bmatrix} =
\begin{bmatrix}
R_{11}^2 & R_{21}R_{11} & R_{31}R_{11} \\
R_{21}R_{11} & R_{22}^2 + R_{22}^2 & R_{32}R_{22} \\
R_{31}R_{11} & R_{32}R_{22} & R_{33}^2 + R_{32}^2 + R_{33}^2
\end{bmatrix}
\]

(Symmetric)
which leads to the following for the entries of the lower triangular matrix $R$:

$$R_{i,j} = \frac{1}{R_{j,j}} \left( A_{i,j} - \sum_{k=1}^{i-1} R_{i,k} R_{j,k} \right), \text{ for } i > j$$

and

$$R_{i,i} = \sqrt{A_{i,i} - \sum_{k=1}^{i-1} R_{i,k}^2}.$$

The method update is based on the LINPACK routine SCHUD; see Dongarra et al. (1979) and updates the $RR^T$ Cholesky factorization of the real symmetric positive definite matrix $A$ after a rank-one matrix is added. Given this factorization, update computes the factorization $\tilde{R}$ such that

$$A + xx^T = \tilde{R}\tilde{R}^T.$$

Similarly, the method downdate, based on the LINPACK routine SCHDD; see Dongarra et al. (1979), downdates the $RR^T$ Cholesky factorization of the real symmetric positive definite matrix $A$ after a rank-one matrix is subtracted. downdate computes the factorization $\tilde{R}$ such that

$$A - xx^T = \tilde{R}\tilde{R}^T.$$

This is not always possible, since $A - xx^T$ may not be positive definite.

downdate determines an orthogonal matrix $U$ as the product $G_N \ldots G_1$ of Givens rotations, such that

$$U \begin{bmatrix} R^T \\ 0 \end{bmatrix} = \begin{bmatrix} \tilde{R}^T \\ x^T \end{bmatrix}.$$

By multiplying this equation by its transpose and noting that $U^T U = I$, the desired result

$$RR^T - xx^T = \tilde{R}\tilde{R}^T$$

is obtained.

Let $a$ be the solution of the linear system $Ra = x$ and let

$$\alpha = \sqrt{1 - \|a\|_2^2}.$$

The Givens rotations, $G_i$, are chosen such that

$$G_1 \ldots G_N \begin{bmatrix} a \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

The $G_i$, are $(N + 1)$ by $(N + 1)$ matrices of the form

$$G_i = \begin{bmatrix} I_{i-1} & 0 & 0 & 0 \\ 0 & c_i & 0 & -s_i \\ 0 & 0 & I_{N-i} & 0 \\ 0 & s_i & 0 & c_i \end{bmatrix}.$$
where $I_k$ is the identity matrix of order $k$; and $c_i = \cos \theta_i, s_i = \sin \theta_i$ for some $\theta_i$.

The Givens rotations are then used to form

$$\tilde{R}^T, G_1 \cdots G_N \begin{bmatrix} R^T \\ 0 \end{bmatrix} = \begin{bmatrix} R^T \\ \tilde{x}^T \end{bmatrix}$$

The matrix

$$\tilde{R}$$

is lower triangular and

$$\tilde{x} = x$$

because

$$x = (R 0) \begin{bmatrix} a \\ \alpha \end{bmatrix} = (R 0) U^T U \begin{bmatrix} a \\ \alpha \end{bmatrix} = (\tilde{R} \tilde{x}) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \tilde{x}.$$

### Constructor

**Cholesky**

```java
public Cholesky(double[][] a) throws SingularMatrixException, Cholesky.NotSPDException
```

**Description**

Create the Cholesky factorization of a symmetric positive definite matrix of type `double`.

**Parameter**

- `a` – a `double` square matrix to be factored

**Exceptions**

- `IllegalArgumentException` Thrown when the row lengths of matrix `a` are not equal (for example, the matrix edges are “jagged”).
- `SingularMatrixException` Thrown when the input matrix `A` is singular.
- `NotSPDException` Thrown when the input matrix is not symmetric, positive definite.

### Methods

**downdate**

```java
public void downdate(double[] x) throws Cholesky.NotSPDException
```

**Description**

Downdates the factorization by subtracting a rank-1 matrix. The object will contain the Cholesky factorization of $A - xx^T$, where $A$ is the previously factored matrix.
Parameter
x – A double array which specifies the rank-1 matrix. x is not modified by this function.

Exception
NotSPDException if A – xxᵀ is not symmetric positive-definite.

getR
public double[][] getR()

Description
Returns the R matrix that results from the Cholesky factorization.

Returns
a double matrix which contains the lower triangular R matrix that results from the Cholesky factorization such that A = RRᵀ

inverse
public double[][] inverse()

Description
Returns the inverse of this matrix

Returns
a double matrix containing the inverse

solve
public double[] solve(double[] b)

Description
Solve Ax = b where A is a positive definite matrix with elements of type double.

Parameter
b – a double array containing the right-hand side of the linear system

Returns
a double array containing the solution to the system of linear equations

update
public void update(double[] x)

Description
Updates the factorization by adding a rank-1 matrix. The object will contain the Cholesky factorization of A + xxᵀ, where A is the previously factored matrix.

Parameter
x – A double array which specifies the rank-1 matrix. x is not modified by this function.
Example: Cholesky Factorization

The Cholesky Factorization of a matrix is performed as well as its inverse.

```java
import com.imsl.math.*;

public class CholeskyEx1 {
 public static void main(String args[]) throws com.imsl.IMSLException {
 double a[][] = {
 {1, -3, 2},
 {-3, 10, -5},
 {2, -5, 6}
 };
 double b[] = {27, -78, 64};

 // Compute the Cholesky factorization of A
 Cholesky cholesky = new Cholesky(a);

 // Solve Ax = b
 double x[] = cholesky.solve(b);
 new PrintMatrix("x").print(x);

 // Find the inverse of A.
 double ainv[][] = cholesky.inverse();
 new PrintMatrix("ainv").print(ainv);
 }
}
```

Output

```
 x
 0
 0 1
 1 -4
 2 7

 ainv
 0 1 2
 0 35 8 -5
 1 8 2 -1
 2 -5 -1 1
```

Cholesky.NotSPDException class

```java
static public class com.imsl.math.Cholesky.NotSPDException extends com.imsl.IMSLException
```
The matrix is not symmetric, positive definite.

**Constructor**

**Cholesky.NotSPDEException**

public Cholesky.NotSPDEException()

**Description**

Constructs a NotSPDEException object.

---

**SparseCholesky class**

public class com.imsl.math.SparseCholesky implements Serializable

Sparse Cholesky factorization of a matrix of type SparseMatrix.

Class SparseCholesky computes the Cholesky factorization of a sparse symmetric positive definite matrix A. This factorization can then be used to compute the solution of the linear system \( Ax = b \).

Typically, the solution of a large sparse positive definite system \( Ax = b \) is done in 4 steps:

1. In step one, an ordering algorithm is used to preserve sparsity in the Cholesky factor \( L \) of matrix \( A \) during the numerical factorization process. The new order can be described by a permutation matrix \( P \).

2. Step two consists of setting up the data structure for the Cholesky factor \( L \), where \( PAP^T = LL^T \). This step is called the symbolic factorization phase of the computation. During symbolic factorization, only the sparsity pattern of sparse matrix \( A \), i.e., the locations of the nonzero entries of matrix \( A \) are needed but not any of the elements themselves.

3. In step 3, the numerical factorization phase, the Cholesky factorization is done numerically.

4. Step 4 is the solution phase. Here, the numerical solution, \( x \), to the original system is obtained by solving the two triangular systems \( Ly_1 = Pb \), \( L^T y_2 = y_1 \) and the permutation \( x = P^T y_2 \).

Class SparseCholesky realizes all four steps by algorithms described in George and Liu (1981). Especially, step one, is a realization of a minimum degree ordering algorithm. The numerical factorization in its standard form is based on a sparse compressed storage scheme. Alternatively, a multifrontal method can be used. The multifrontal method requires more storage but will be faster than the standard method in certain cases. The multifrontal method is based on the routines in Liu (1987). For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987) et al. (1987), and Liu (1986, 1989, 1992). The numerical factorization method can be specified by using the `setNumericFactorizationMethod`.
The solve method will compute the symbolic and numeric factorizations if they have not already been computed or supplied by the user through the factorSymbolically, factorNumerically, setNumericFactor, or setSymbolicFactor methods. These factorizations are retained for later use by the solve method when different right-hand sides are to be solved.

There is a special situation where computations can be simplified. If an application generates different sparse symmetric positive definite coefficient matrices that all have the same sparsity pattern, then by using methods getSymbolicFactor and setSymbolicFactor the symbolic factorization needs only be computed once.

Fields

MULTIFRONタルAL METHOD
static final public int MULTIFRONタルAL METHOD

Indicates the multifrontal method will be used for numeric factorization.

STANDARD METHOD
static final public int STANDARD METHOD

Indicates the method of George/Liu (1981) will be used for numeric factorization.

Constructor

SparseCholesky
public SparseCholesky(SparseMatrix A)

Description
Constructs the matrix structure for the Cholesky factorization of a sparse symmetric positive definite matrix of type SparseMatrix.

Parameter

A – The SparseMatrix symmetric positive definite matrix to be factored. Only the lower triangular part of the input matrix is used.

Methods

factorNumerically
public void factorNumerically() throws SparseCholesky.NotSPDException
**Description**

Computes the numeric factorization of a sparse real symmetric positive definite matrix.

This method numerically factors the instance of the constructed matrix $A$, where $A$ is of type SparseMatrix and is symmetric positive definite. The factorization is obtained in several steps:

1. First, matrix $A$ is permuted to reduce fill-in, leading to a sparse symmetric positive definite matrix $PAP^T$.
2. Then, matrix $PAP^T$ is symbolically and numerically factored.

Note that the symbolic factorization is not done if the symbolic factor has been supplied by the user through the `setSymbolicFactor` method.

**Exception**

`NotSPDEException` is thrown if the input matrix is not symmetric, positive definite.

---

**factorSymbolically**

`public void factorSymbolically() throws SparseCholesky.NotSPDEException`

**Description**

Computes the symbolic factorization of a sparse real symmetric positive definite matrix.

This method symbolically factors the instance of the constructed matrix $A$, where $A$ is of type SparseMatrix and is symmetric positive definite. The factorization is obtained in several steps:

1. First, matrix $A$ is permuted to reduce fill-in, leading to a sparse symmetric positive definite system $PAP^T = Pb$.
2. Then, matrix $PAP^T$ is symbolically factored.

**Exception**

`NotSPDEException` is thrown if the input matrix is not symmetric, positive definite.

---

**getLargestDiagonalElement**

`public double getLargestDiagonalElement()`

**Description**

Returns the largest diagonal element of the Cholesky factor.

**Returns**

A `double` value specifying the largest diagonal element of the Cholesky factor. Use of this method is only sensible if a numeric factorization of the input matrix was done beforehand.

---

**getNumberOfNonzeros**

`public long getNumberOfNonzeros()`

**Description**

Returns the number of nonzeros in the Cholesky factor.
Returns a long value specifying the number of nonzeros (including the diagonal) of the Cholesky factor.

**getNumericFactor**

```
public SparseCholesky.NumericFactor getNumericFactor()
```

**Description**

Returns the numeric Cholesky factor.

**Returns**

a NumericFactor containing the numeric Cholesky factor.

**getNumericFactorizationMethod**

```
public int getNumericFactorizationMethod()
```

**Description**

Returns the method used in the numerical factorization of the permuted input matrix.

**Returns**

an int value equal to STANDARD_METHOD = 0 or MULTIFRONTAL_METHOD = 1 representing the method used in the numeric factorization of the permuted input matrix. See `setNumericFactorizationMethod` for more details.

**getSmallestDiagonalElement**

```
public double getSmallestDiagonalElement()
```

**Description**

Returns the smallest diagonal element of the Cholesky factor.

**Returns**

a double value specifying the smallest diagonal element of the Cholesky factor. Use of this method is only sensible if a numeric factorization of the input matrix was done beforehand.

**getSymbolicFactor**

```
public SparseCholesky.SymbolicFactor getSymbolicFactor()
```

**Description**

Returns the symbolic Cholesky factor.

**Returns**

a SymbolicFactor containing the symbolic Cholesky factor.

**setNumericFactor**

```
public void setNumericFactor(SparseCholesky.NumericFactor numericFactor)
```

**Description**

Sets the numeric Cholesky factor to use in solving of a sparse positive definite system of linear equations $Ax = b$. 

88 • SparseCholesky
Parameter

numericFactor – a NumericFactor object containing the numeric Cholesky factor. By default
the numeric factorization is computed.

setNumericFactorizationMethod
public void setNumericFactorizationMethod(int method)

Description
Defines the method used in the numerical factorization of the permuted input matrix.

Parameter

method – an int value specifying the method to choose:

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD_METHOD</td>
<td>standard method as described by George/Liu (1981). This is the default.</td>
</tr>
<tr>
<td>MULTIFRONTAL_METHOD</td>
<td>multifrontal method</td>
</tr>
</tbody>
</table>

Exception

IllegalArgumentException This exception is thrown when the value for method is not
STANDARD_METHOD or MULTIFRONTAL_METHOD.

setSymbolicFactor
public void setSymbolicFactor(SparseCholesky.SymbolicFactor symbolicFactor)

Description
Sets the symbolic Cholesky factor to use in solving a sparse positive definite system of linear equations
\( Ax = b \).

Parameter

symbolicFactor – a SymbolicFactor containing the symbolic Cholesky factor. By default the
symbolic factorization is computed.

solve
public double[] solve(double[] b) throws SparseCholesky.NotSPDEException

Description
Computes the solution of a sparse real symmetric positive definite system of linear equations \( Ax = b \).
This method solves the linear system \( Ax = b \), where \( A \) is symmetric positive definite. The solution is
obtained in several steps:

1. First, matrix \( A \) is permuted to reduce fill-in, leading to a sparse symmetric positive definite system
   \( P A P^T = Pb \).
2. Then, matrix \( P A P^T \) is symbolically and numerically factored.
3. The final solution is obtained by solving the systems \( L y_1 = Pb, L^T y_2 = y_1 \) and \( x = P^T y_2 \).

By default this method implements all of the above steps. The factorizations are retained for later use by
subsequent solves. By choosing appropriate methods within this class, the computation can be reduced
to the solution of the system \( Ax = b \) for a given or precomputed symbolic or numeric factor.
Parameter

\[ b \] – a double vector of length equal to the order of matrix A representing the new right-hand side.

Returns

a double vector of length equal to the order of matrix A representing the solution to the system of linear equations \( Ax = b \).

Exception

NotSPDException is thrown if the input matrix is not symmetric, positive definite.

Example: Sparse Cholesky Factorization

The Cholesky Factorization of a sparse symmetric positive definite matrix is used to solve a linear system. Some additional information about the Cholesky factorization is also computed.

```java
import com.ims1.math.*;

public class SparseCholeskyEx1 {
 public static void main(String args[]) throws Exception {
 SparseMatrix A = new SparseMatrix(5, 5);
 A.set(0, 0, 10.0);
 A.set(1, 1, 20.0);
 A.set(2, 0, 1.0);
 A.set(2, 2, 30.0);
 A.set(3, 2, 4.0);
 A.set(3, 3, 40.0);
 A.set(4, 0, 2.0);
 A.set(4, 1, 3.0);
 A.set(4, 3, 5.0);
 A.set(4, 4, 50.0);

 double b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
 SparseCholesky cholesky = new SparseCholesky(A);

 // Choose Multifrontal method as numeric factorization method
 cholesky.setNumericFactorizationMethod(
 SparseCholesky.MULTIFRONTAL_METHOD);

 // Compute solution
 double solution[] = cholesky.solve(b);
 new PrintMatrix("Computed Solution").print(solution);

 // Print additional information about the factorization
 System.out.println("Smallest diagonal element of Cholesky factor: " +
 cholesky.getSmallestDiagonalElement());
 System.out.println("Largest diagonal element of Cholesky factor: " +
 cholesky.getLargestDiagonalElement());
 System.out.println("Number of nonzeros in Cholesky factor: " +
 cholesky.getNumberOfNonzeros());
 }
}
```
Output

Computed Solution
0
0 5
1 4
2 3
3 2
4 1

Smallest diagonal element of Cholesky factor: 3.1622776601683795
Largest diagonal element of Cholesky factor: 7.010706098532443
Number of nonzeros in Cholesky factor: 11

SparseCholesky.NotSPDException class

static public class com.imsl.math.SparseCholesky.NotSPDException extends com.imsl.IMSLException

The matrix is not symmetric, positive definite.

Constructor

SparseCholesky.NotSPDException
public SparseCholesky.NotSPDException()  

Description
Constructs a NotSPDException object.

SparseCholesky.SymbolicFactor class

static public class com.imsl.math.SparseCholesky.SymbolicFactor implements Serializable

The symbolic Cholesky factorization of a matrix.
Used by `getSymbolicFactor` and `setSymbolicFactor` to hold the symbolic Cholesky factorization of a matrix.

---

**SparseCholesky.NumericFactor class**

```java
static public class com.imsl.math.SparseCholesky.NumericFactor implements Serializable
```

The numeric Cholesky factorization of a matrix.

Used by `getNumericFactor` and `setNumericFactor` to hold the numeric Cholesky factorization of a matrix.

---

**ComplexSparseCholesky class**

```java
public class com.imsl.math.ComplexSparseCholesky implements Serializable
```

Sparse Cholesky factorization of a matrix of type `ComplexSparseMatrix`.

Class `ComplexSparseCholesky` computes the Cholesky factorization of a sparse Hermitian positive definite matrix \( A \). This factorization can then be used to compute the solution of the linear system \( Ax = b \).

Typically, the solution of a large sparse positive definite system \( Ax = b \) is done in four steps.

1. In the first step, an ordering algorithm is used to preserve sparsity in the Cholesky factor \( L \) of matrix \( A \) during the numerical factorization process. The new order can be described by a permutation matrix \( P \).

2. Step two consists of setting up the data structure for the Cholesky factor \( L \), where \( PAP^T = LL^T \). This step is called the symbolic factorization phase of the computation. During symbolic factorization, only the sparsity pattern of sparse matrix \( A \), i.e., the locations of the nonzero entries of matrix \( A \) are needed but not any of the elements themselves.

3. In step 3, the numerical factorization phase, the Cholesky factorization is done numerically.

4. Step 4 is the solution phase. Here, the numerical solution, \( x \), to the original system is obtained by solving the two triangular systems \( Ly_1 = Pb \), \( L^Ty_2 = y_1 \) and the permutation \( x = P^Ty_2 \).

Class `ComplexSparseCholesky` realizes all four steps by algorithms described in George and Liu (1981). Especially, step one, is a realization of a minimum degree ordering algorithm. The numerical factorization in its standard form is based on a sparse compressed storage scheme. Alternatively, a multifrontal method can be used. The multifrontal method requires more storage but will be faster than...

The `solve` method will compute the symbolic and numeric factorizations if they have not already been computed or supplied by the user through the `factorSymbolically`, `factorNumerically`, `setNumericFactor`, or `setSymbolicFactor` methods. These factorizations are retained for later use by the `solve` method when different right-hand sides are to be solved.

There is a special situation where computations can be simplified. If an application generates different sparse Hermitian positive definite coefficient matrices that all have the same sparsity pattern, then by using methods `getSymbolicFactor` and `setSymbolicFactor` the symbolic factorization needs only be computed once.

### Fields

**MULTIFRONTAL_METHOD**

```java
static final public int MULTIFRONTAL_METHOD
```

Indicates the multifrontal method will be used for numeric factorization.

**STANDARD_METHOD**

```java
static final public int STANDARD_METHOD
```

Indicates that the method of George/Liu (1981) is used for numeric factorization.

### Constructor

**ComplexSparseCholesky**

```java
public ComplexSparseCholesky(ComplexSparseMatrix A)
```

**Description**

Constructs the matrix structure for the Cholesky factorization of a sparse Hermitian positive definite matrix of type `ComplexSparseMatrix`.

**Parameter**

- `A` – The `ComplexSparseMatrix` Hermitian positive definite matrix to be factored. Only the lower triangular part of the input matrix is used.
Methods

factorNumerically
public void factorNumerically() throws ComplexSparseCholesky.NotSPDEception

Description
Computes the numeric factorization of a sparse Hermitian positive definite matrix.
This method numerically factors the instance of the constructed matrix A, where A is of type ComplexSparseMatrix and is Hermitian positive definite. The factorization is obtained in several steps:

1. First, matrix A is permuted to reduce fill-in, leading to a sparse Hermitian positive definite matrix $PAP^T$.
2. Then, matrix $PAP^T$ is symbolically and numerically factored.

Note that the symbolic factorization is not done if the symbolic factor has been supplied by the user through the setSymbolicFactor method.

Exception
NotSPDEception is thrown if the input matrix is not Hermitian, positive definite.

factorSymbolically
public void factorSymbolically() throws ComplexSparseCholesky.NotSPDEception

Description
Computes the symbolic factorization of a sparse Hermitian positive definite matrix.
This method symbolically factors the instance of the constructed matrix A, where A is of type ComplexSparseMatrix and is Hermitian positive definite. The factorization is obtained in several steps:

1. First, matrix A is permuted to reduce fill-in, leading to a sparse Hermitian positive definite matrix $PAP^T$.
2. Then, matrix $PAP^T$ is symbolically factored.

Exception
NotSPDEception is thrown if the input matrix is not Hermitian, positive definite.

getLargestDiagonalElement
public double getLargestDiagonalElement()

Description
Returns the largest diagonal element of the Cholesky factor.

Returns
a double value specifying the largest diagonal element of the Cholesky factor. Use of this method is only sensible if a numeric factorization of the input matrix was done beforehand.

getNumberOfNonzeros
public long getNumberOfNonzeros()
getNonzeros

Description
Returns the number of nonzeros in the Cholesky factor.

Returns
a `long` value specifying the number of nonzeros (including the diagonal) of the Cholesky factor.

generateCholeskyFactor

Description

Returns the numeric Cholesky factor.

Returns
a `NumericFactor` containing the numeric Cholesky factor.

generateCholeskyFactorizationMethod

Description
Returns the method used in the numerical factorization of the permuted input matrix.

Returns
an `int` value equal to `STANDARD_METHOD = 0` or `MULTIFRONTAL_METHOD = 1` representing the method used in the numeric factorization of the permuted input matrix. See `setNumericFactorizationMethod` for more details.

generateSmallestDiagonalElement

Description
Returns the smallest diagonal element of the Cholesky factor.

Returns
a `double` value specifying the smallest diagonal element of the Cholesky factor. Use of this method is only sensible if a numeric factorization of the input matrix was done beforehand.

generateSymbolicFactor

Description
Returns the symbolic Cholesky factor.

Returns
a `SymbolicFactor` containing the symbolic Cholesky factor.

generateNumericFactor

Description

Returns the numeric Cholesky factor.

Returns
a `NumericFactor` containing the numeric Cholesky factor.

generateNumericFactorizationMethod

Description
Returns the method used in the numerical factorization of the permuted input matrix.

Returns
an `int` value equal to `STANDARD_METHOD = 0` or `MULTIFRONTAL_METHOD = 1` representing the method used in the numeric factorization of the permuted input matrix. See `setNumericFactorizationMethod` for more details.

generateSmallestDiagonalElement

Description
Returns the smallest diagonal element of the Cholesky factor.

Returns
a `double` value specifying the smallest diagonal element of the Cholesky factor. Use of this method is only sensible if a numeric factorization of the input matrix was done beforehand.

generateSymbolicFactor

Description
Returns the symbolic Cholesky factor.

Returns
a `SymbolicFactor` containing the symbolic Cholesky factor.

generateNumericFactor

Description

Returns the numeric Cholesky factor.

Returns
a `NumericFactor` containing the numeric Cholesky factor.
Description
Sets the numeric Cholesky factor to use in solving a sparse complex Hermitian positive definite system of linear equations $Ax = b$.

Parameter
numericFactor – a NumericFactor object containing the numeric Cholesky factor. By default the numeric factorization is computed.

setNumericFactorizationMethod
public void setNumericFactorizationMethod(int method)

Description
Defines the method used in the numerical factorization of the permuted input matrix.

Parameter
method – an int value specifying the method to choose:

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD_METHOD</td>
<td>standard method as described by George/Liu (1981). This is the default.</td>
</tr>
<tr>
<td>MULTIFRONTAL_METHOD</td>
<td>multifrontal method</td>
</tr>
</tbody>
</table>

Exception
IllegalArgumentException This exception is thrown when the value for method is not STANDARD_METHOD or MULTIFRONTAL_METHOD.

setSymbolicFactor
public void setSymbolicFactor(ComplexSparseCholesky.SymbolicFactor symbolicFactor)

Description
Sets the symbolic Cholesky factor to use in solving a sparse complex Hermitian positive definite system of linear equations $Ax = b$.

Parameter
symbolicFactor – a SymbolicFactor containing the symbolic Cholesky factor. By default the symbolic factorization is computed.

solve
public Complex[] solve(Complex[] b) throws ComplexSparseCholesky.NotSPDException

Description
Computes the solution of a sparse Hermitian positive definite system of linear equations $Ax = b$.
This method solves the linear system $Ax = b$, where $A$ is Hermitian positive definite. The solution is obtained in several steps:
1. First, matrix $A$ is permuted to reduce fill-in, leading to a sparse Hermitian positive definite system $PAP^T = Pb$.

2. Then, matrix $PAP^T$ is symbolically and numerically factored.

3. The final solution is obtained by solving the systems $Ly_1 = Pb, L^T y_2 = y_1$ and $x = P^T y_2$.

By default this method implements all of the above steps. The factorizations are retained for later use by subsequent solves. By choosing appropriate methods within this class, the computation can be reduced to the solution of the system $Ax = b$ for a given or precomputed symbolic or numeric factor.

**Parameter**

$b$ – A Complex vector of length equal to the order of $A$ containing the right-hand side.

**Returns**

A Complex vector of length equal to the order of matrix $A$ containing the solution of the system $Ax = b$.

**Exception**

`NotSPDException` is thrown if the input matrix is not Hermitian, positive definite.

**Example: Complex Sparse Cholesky Factorization**

The Cholesky Factorization of a sparse hermitian positive definite matrix is used to solve a linear system. Some additional information about the Cholesky factorization is also computed.

```java
import com.imsl.math.*;
import com.imsl.*;

public class ComplexSparseCholeskyEx1 {
 public static void main(String args[]) throws IMSLEException {
 ComplexSparseMatrix A = new ComplexSparseMatrix(3, 3);
 A.set(0, 0, new Complex(2.0, 0.0));
 A.set(1, 0, new Complex(-1.0, -1.0));
 A.set(1, 1, new Complex(4.0, 0.0));
 A.set(2, 1, new Complex(1.0, -2.0));
 A.set(2, 2, new Complex(10.0, 0.0));
 Complex[] b = {
 new Complex(-2., 2.),
 new Complex(5., 15.),
 new Complex(36., 28.)
 };
 ComplexSparseCholesky cholesky = new ComplexSparseCholesky(A);
 // Choose Multifrontal method as numeric factorization method
 cholesky.setNumericFactorizationMethod(cholesky.MULTIFRONTAL_METHOD);
 // Compute solution
 Complex[] solution = cholesky.solve(b);
 PrintMatrix p = new PrintMatrix("Computed solution");
 p.print(solution);
 }
}
```

**Linear Systems**

ComplexSparseCholesky • 97
// Compute additional information about the factorization
System.out.println("Smallest diagonal element of Cholesky factor: "+cholesky.getSmallestDiagonalElement());
System.out.println("Largest diagonal element of Cholesky factor: "+cholesky.getLargestDiagonalElement());
System.out.println("Number of nonzeros in Cholesky factor: "+cholesky.getNumberOfNonzeros());
}

Output
Computed solution
  0
  0 1+i
  1 2+2i
  2 3+3i

Smallest diagonal element of Cholesky factor: 1.4142135623730951
Largest diagonal element of Cholesky factor: 2.8867513459481287
Number of nonzeros in Cholesky factor: 5

ComplexSparseCholesky.NotSPDException class

static public class com.imsl.math.ComplexSparseCholesky.NotSPDException extends com.imsl.IMSLException
The matrix is not Hermitian, positive definite.

Constructor

ComplexSparseCholesky.NotSPDException
public ComplexSparseCholesky.NotSPDException()

Description
Constructs a NotSPDException object.
ComplexSparseCholesky.NumericFactor class

static public class com.imsl.math.ComplexSparseCholesky.NumericFactor
    implements Serializable

Data structures and functions for the numeric Cholesky factor.
Used by getNumericFactor and setNumericFactor to hold the numeric Cholesky factorization of a matrix.

ComplexSparseCholesky.SymbolicFactor class

static public class com.imsl.math.ComplexSparseCholesky.SymbolicFactor
    implements Serializable

Data structures and functions for the symbolic Cholesky factor.
Used by getSymbolicFactor and setSymbolicFactor to hold the symbolic Cholesky factorization of a matrix.

QR class

public class com.imsl.math.QR implements Serializable, Cloneable

QR Decomposition of a matrix.

Class QR computes the QR decomposition of a matrix using Householder transformations. It is based on the LINPACK routine SQRDC; see Dongarra et al. (1979).

QR determines an orthogonal matrix $Q$, a permutation matrix $P$, and an upper trapezoidal matrix $R$ with diagonal elements of nonincreasing magnitude, such that $AP = QR$. The Householder transformation for column $k$ is of the form

$$ I - \frac{u_k u_k^T}{P_k} $$

for $k = 1, 2, \ldots, \min(\text{number of rows of } A, \text{number of columns of } A)$, where $u$ has zeros in the first $k - 1$ positions. The matrix $Q$ is not produced directly by QR. Instead the information needed to reconstruct the
Householder transformations is saved. If the matrix $Q$ is needed explicitly, the method $getQ$ can be called after $QR$. This method accumulates $Q$ from its factored form.

Before the decomposition is computed, initial columns are moved to the beginning of the array $A$ and the final columns to the end. Both initial and final columns are frozen in place during the computation. Only free columns are pivoted. Pivoting is done on the free columns of largest reduced norm.

**Constructor**

**QR**

```java
public QR(double[][] a)
```

**Description**

Constructs the QR decomposition of a matrix with elements of type `double`.

**Parameter**

- `a` – a `double` matrix to be factored

**Exception**

- `IllegalArgumentException` Thrown when the row lengths of input matrix `a` are not equal (i.e. the matrix edges are “jagged”)

**Methods**

**getPermute**

```java
public int[] getPermute()
```

**Description**

Returns an integer vector containing information about the permutation of the elements of the matrix during pivoting.

**Returns**

an `int` array containing the permutation information. The $k$-th element contains the index of the column of the matrix that has been interchanged into the $k$-th column.

**getQ**

```java
public double[][] getQ()
```

**Description**

Returns the orthogonal or unitary matrix $Q$. 

### Constructor

**QR**

```java
public QR(double[][] a)
```

**Description**

Constructs the QR decomposition of a matrix with elements of type `double`.

**Parameter**

- `a` – a `double` matrix to be factored

**Exception**

- `IllegalArgumentException` Thrown when the row lengths of input matrix `a` are not equal (i.e. the matrix edges are “jagged”).

### Methods

**getPermute**

```java
public int[] getPermute()
```

**Description**

Returns an integer vector containing information about the permutation of the elements of the matrix during pivoting.

**Returns**

an `int` array containing the permutation information. The $k$-th element contains the index of the column of the matrix that has been interchanged into the $k$-th column.

**getQ**

```java
public double[][] getQ()
```

**Description**

Returns the orthogonal or unitary matrix $Q$. 

### Constructor

**QR**

```java
public QR(double[][] a)
```

**Description**

Constructs the QR decomposition of a matrix with elements of type `double`.

**Parameter**

- `a` – a `double` matrix to be factored

**Exception**

- `IllegalArgumentException` Thrown when the row lengths of input matrix `a` are not equal (i.e. the matrix edges are “jagged”).

### Methods

**getPermute**

```java
public int[] getPermute()
```

**Description**

Returns an integer vector containing information about the permutation of the elements of the matrix during pivoting.

**Returns**

an `int` array containing the permutation information. The $k$-th element contains the index of the column of the matrix that has been interchanged into the $k$-th column.

**getQ**

```java
public double[][] getQ()
```

**Description**

Returns the orthogonal or unitary matrix $Q$. 

### Constructor

**QR**

```java
public QR(double[][] a)
```

**Description**

Constructs the QR decomposition of a matrix with elements of type `double`.

**Parameter**

- `a` – a `double` matrix to be factored

**Exception**

- `IllegalArgumentException` Thrown when the row lengths of input matrix `a` are not equal (i.e. the matrix edges are “jagged”).

### Methods

**getPermute**

```java
public int[] getPermute()
```

**Description**

Returns an integer vector containing information about the permutation of the elements of the matrix during pivoting.

**Returns**

an `int` array containing the permutation information. The $k$-th element contains the index of the column of the matrix that has been interchanged into the $k$-th column.

**getQ**

```java
public double[][] getQ()
```

**Description**

Returns the orthogonal or unitary matrix $Q$. 

### Constructor

**QR**

```java
public QR(double[][] a)
```

**Description**

Constructs the QR decomposition of a matrix with elements of type `double`.

**Parameter**

- `a` – a `double` matrix to be factored

**Exception**

- `IllegalArgumentException` Thrown when the row lengths of input matrix `a` are not equal (i.e. the matrix edges are “jagged”).

### Methods

**getPermute**

```java
public int[] getPermute()
```

**Description**

Returns an integer vector containing information about the permutation of the elements of the matrix during pivoting.

**Returns**

an `int` array containing the permutation information. The $k$-th element contains the index of the column of the matrix that has been interchanged into the $k$-th column.

**getQ**

```java
public double[][] getQ()
```
**Returns**
a double matrix containing the accumulated orthogonal matrix Q from the QR decomposition

**getR**
public double[][] getR()

**Description**
Returns the upper trapezoidal matrix R.

**Returns**
the upper trapezoidal double matrix R of the QR decomposition

**getRank**
public int getRank()

**Description**
Returns the rank of the matrix used to construct this instance.

**Returns**
an int specifying the rank of the matrix used to construct this instance

**rank**
public int rank(double tolerance)

**Description**
Returns the rank of the matrix given an input tolerance.

**Parameter**

tolerance – a double scalar value used in determining the rank of the matrix

**Returns**
an int specifying the rank of the matrix

**solve**
public double[] solve(double[] b) throws SingularMatrixException

**Description**
Returns the solution to the least-squares problem Ax = b.

**Parameter**

b – a double array to be manipulated

**Returns**
a double array containing the solution vector to Ax = b with components corresponding to the unused columns set to zero
Exception

SingularMatrixException Thrown when the upper triangular matrix R resulting from the QR factorization is singular.

solve

class QR.solve(double[] b, double tol) throws SingularMatrixException

Description

Returns the solution to the least-squares problem Ax = b using an input tolerance.

Parameters

- b – a double array to be manipulated
- tol – a double scalar value used in determining the rank of A

Returns

a double array containing the solution vector to Ax = b with components corresponding to the unused columns set to zero

Exception

SingularMatrixException Thrown when the upper triangular matrix R resulting from the QR factorization is singular.

Example: QR Factorization of a Matrix

The QR Factorization of a Matrix is performed. A linear system is then solved using the factorization. The rank of the input matrix is also computed.

```java
import com.imsl.math.

public class QREx1 {

 public static void main(String args[]) throws SingularMatrixException {
 double a[][] = {
 {1, 2, 4},
 {1, 4, 16},
 {1, 6, 36},
 {1, 8, 64}
 };
 double b[] = {4.999, 9.001, 12.999, 17.001};

 // Compute the QR factorization of A
 QR qr = new QR(a);

 // Solve Ax = b
 double x[] = qr.solve(b);
 new PrintMatrix("x").print(x);

 // Print Q and R.
 new PrintMatrix("Q").print(qr.getQ());
 new PrintMatrix("R").print(qr.getR());
 }
}
```

```
102 • QR
```
// Find the rank of A.
int rank = qr.getRank();
System.out.println("rank = " + rank);
}

Output

\[
\begin{align*}
\mathbf{x} & = \\
0 & 0.999 \\
1 & 2 \\
2 & -0
\end{align*}
\]

\[
\mathbf{Q} = \\
0 & -0.053 & -0.542 & 0.808 & -0.224 \\
1 & -0.213 & -0.657 & -0.269 & 0.671 \\
2 & -0.478 & -0.346 & -0.449 & -0.671 \\
3 & -0.85 & 0.393 & 0.269 & 0.224
\]

\[
\mathbf{R} = \\
0 & -75.26 & -10.63 & -1.594 \\
1 & 0 & -2.647 & -1.153 \\
2 & 0 & 0 & 0.359 \\
3 & 0 & 0 & 0
\]

rank = 3

SVD class

public class com.imsl.math.SVD

Singular Value Decomposition (SVD) of a rectangular matrix of type \texttt{double}.

SVD is based on the LINPACK routine \texttt{SSVDC}; see Dongarra et al. (1979).

Let \( n \) be the number of rows in \( A \) and let \( p \) be the number of columns in \( A \). For any \( n \times p \) matrix \( A \), there exists an \( n \times n \) orthogonal matrix \( U \) and a \( p \times p \) orthogonal matrix \( V \) such that

\[
U^TAV = \begin{cases} 
\begin{bmatrix} 
\Sigma \\
0 \\
\end{bmatrix} & \text{if } n \geq p \\
\Sigma \\
& \text{if } n \leq p
\end{cases}
\]

where \( \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_m) \), and \( m = \min(n, p) \). The scalars \( \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m \geq 0 \) are called the...
singular values of $A$. The columns of $U$ are called the left singular vectors of $A$. The columns of $V$ are called the right singular vectors of $A$.

The estimated rank of $A$ is the number of $\sigma_k$ that is larger than a tolerance $\eta$. If $\tau$ is the parameter $\text{tol}$ in the program, then

$$\eta = \begin{cases} \tau & \text{if } \tau > 0 \\ |\tau| \|A\|_\infty & \text{if } \tau < 0 \end{cases}$$

The Moore-Penrose generalized inverse of the matrix is computed by partitioning the matrices $U$, $V$ and $\Sigma$ as $U = (U_1, U_2)$, $V = (V_1, V_2)$ and $\Sigma_1 = \text{diag}(\sigma_1, \ldots, \sigma_k)$ where the “1” matrices are $k$ by $k$. The Moore-Penrose generalized inverse is $V_1 \Sigma_1^{-1} U_1^T$.

**Constructors**

**SVD**

```java
public SVD(double[][] a) throws SVD.DidNotConvergeException
```

**Description**

Construct the singular value decomposition of a rectangular matrix with default tolerance. The tolerance used is $2.2204460492503e-14$. This tolerance is used to determine rank. A singular value is considered negligible if the singular value is less than or equal to this tolerance.

**Parameter**

- $a$ – a double matrix for which the singular value decomposition is to be computed

**Exception**

- `IllegalArgumentException` is thrown when the row lengths of input matrix $a$ are not equal (i.e. the matrix edges are “jagged”)

**SVD**

```java
public SVD(double[][] a, double tol) throws SVD.DidNotConvergeException
```

**Description**

Construct the singular value decomposition of a rectangular matrix with a given tolerance. If $\text{tol}$ is positive, then a singular value is considered negligible if the singular value is less than or equal to $\text{tol}$. If $\text{tol}$ is negative, then a singular value is considered negligible if the singular value is less than or equal to the absolute value of the product of $\text{tol}$ and the infinity norm of the input matrix. In the latter case, the absolute value of $\text{tol}$ generally contains an estimate of the level of the relative error in the data.

**Parameters**

- $a$ – a double matrix for which the singular value decomposition is to be computed
- $\text{tol}$ – a double scalar containing the tolerance used to determine when a singular value is negligible
Exceptions

IllegalArgumentException is thrown when the row lengths of input matrix a are not equal (for example, the matrix edges are “jagged”)

DidNotConvergeException is thrown when the rank cannot be determined because convergence was not obtained for all singular values

Methods

getInfo
public int getInfo()

Description
Returns convergence information about S, U, and V.

Returns
Convergence was obtained for the info, info+1, ..., min(nra,nca) singular values and their corresponding vectors. Here, nra and nca represent the number of rows and columns of the input matrix respectively.

getRank
public int getRank()

Description
Returns the rank of the matrix used to construct this instance.

Returns
an int scalar containing the rank of the matrix used to construct this instance. The estimated rank of the input matrix is the number of singular values which are larger than a tolerance.

getS
public double[] getS()

Description
Returns the singular values.

Returns
a double array containing the singular values of the matrix

getU
public double[][] getU()

Description
Returns the left singular vectors.
Returns
a double matrix containing the left singular vectors

getV
public double[][] getV()

Description
Returns the right singular vectors.

Returns
a double matrix containing the right singular vectors

inverse
public double[][] inverse()

Description
Compute the Moore-Penrose generalized inverse of a real matrix.

Returns
a double matrix containing the generalized inverse of the matrix used to construct this instance

Example: Singular Value Decomposition of a Matrix
The singular value decomposition of a matrix is performed. The rank of the matrix is also computed.

```java
import com.imsl.math.*;

public class SVDEx1 {
 public static void main(String args[]) throws SVD.DidNotConvergeException {
 double a[][] = {{1, 2, 1, 4},
 {3, 2, 1, 3},
 {4, 3, 1, 4},
 {2, 1, 3, 1},
 {1, 5, 2, 2},
 {1, 2, 2, 3}};

 // Compute the SVD factorization of A
 SVD svd = new SVD(a);

 // Print U, S and V.
 new PrintMatrix("U").print(svd.getU());
 new PrintMatrix("S").print(svd.getS());
 new PrintMatrix("V").print(svd.getV());

 // Find the rank of A.
 int rank = svd.getRank();
 System.out.println("rank = " + rank);
 }
}
```
Output

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & -0.38 & 0.12 & 0.439 & -0.565 & 0.024 & -0.573 \\
1 & -0.404 & 0.345 & -0.057 & 0.215 & 0.809 & 0.119 \\
2 & -0.545 & 0.429 & 0.051 & 0.432 & -0.572 & 0.04 \\
3 & -0.265 & -0.068 & -0.884 & -0.215 & -0.063 & -0.306 \\
4 & -0.446 & -0.817 & 0.142 & 0.321 & 0.062 & -0.08 \\
5 & -0.355 & -0.102 & -0.004 & -0.546 & -0.099 & 0.746 \\
\end{array}
\]

\[
S
\]

\[
0 \quad 11.485 \\
1 \quad 3.27 \\
2 \quad 2.653 \\
3 \quad 2.089 \\
\]

\[
V
\]

\[
0 \quad 1 \quad 2 \\
0 \quad -0.444 \quad 0.556 \quad -0.435 \quad 0.552 \\
1 \quad -0.558 \quad -0.654 \quad 0.277 \quad 0.428 \\
2 \quad -0.324 \quad -0.351 \quad -0.732 \quad -0.485 \\
3 \quad -0.621 \quad 0.374 \quad 0.444 \quad -0.526 \\
\]

\[
\text{rank} = 4
\]

---

**SVD.DidNotConvergeException class**

static public class com.imsl.math.SVD.DidNotConvergeException extends com.imsl.IMSLException

The iteration did not converge

**Constructors**

**SVD.DidNotConvergeException**

public SVD.DidNotConvergeException(String message)

**Description**

Constructs a DidNotConvergeException object.

**Parameter**

message – a String containing the error message
SVD.DidNotConvergeException
public SVD.DidNotConvergeException(String key, Object[] arguments)

Description
Constructs a DidNotConvergeException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

GenMinRes class

public class com.imsl.math.GenMinRes implements Serializable

Linear system solver using the restarted Generalized Minimum Residual (GMRES) method.

GenMinRes implements restarted GMRES to generate an approximate solution to $Ax = b$. It is based on
GMRES by Homer Walker (1988).

The GMRES method begins with an approximate solution $x_0$ and an initial residual $r_0 = b - Ax_0$. At
iteration $m$, a correction $z_m$ is determined in the Krylov subspace

$$
\kappa_m(v) = \text{span}(v, Av, \ldots, A^{m-1}v)
$$

$v = r_0$ which solves the least squares problem

$$
\min_{z \in \kappa_m(r_0)} \|b - A(x_0 + z)\|_2
$$

Then at iteration $m$, $x_m = x_0 + z_m$.

There are four distinct GMRES implementations, selectable through method setMethod. The first
Gram-Schmidt implementation is essentially the original algorithm by Saad and Schultz (1986). The
second Gram-Schmidt implementation, developed by Homer Walker and Lou Zhou, is simpler than the
first implementation. The least squares problem is constructed in upper-triangular form and the residual
vector updating at the end of a GMRES cycle is cheaper. The first Householder implementation is
algorithm 2.2 of Walker (1988), but with more efficient correction accumulation at the end of each
GMRES cycle. The second Householder implementation is algorithm 3.1 of Walker (1988). The
products of Householder transformations are expanded as sums, allowing most work to be formulated as
large scale matrix-vector operations.

The Gram-Schmidt implementations are less expensive than the Householder, the latter requiring about
twice as many computations beyond the coefficient matrix/vector products. However, the Householder
implementations may be more reliable near the limits of residual reduction. See Walker (1988) for
details. Issues such as the cost of coefficient matrix/vector products, availability of effective
preconditioners, and features of particular computing environments may serve to mitigate the extra
expense of the Householder implementations.
Note that one can use the JAVA Logging API to generate intermediate output for the solver. Accumulated
levels of detail correspond to JAVA’s FINE and FINER logging levels with FINE yielding the smallest
amount of information and FINER yielding the most. The levels of output yield the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE</td>
<td>A summary report is printed upon completion.</td>
</tr>
<tr>
<td>FINER</td>
<td>Lines of intermediate results giving the most important data for each step are printed after each step. A summary report is printed upon completion.</td>
</tr>
</tbody>
</table>

Fields

**DIRECT_AT_RESTART_AND_TERMINATION**
static final public int DIRECT_AT_RESTART_AND_TERMINATION

Indicates residual updating is to be done by direct evaluation upon restarting and at termination.

**DIRECT_AT_RESTART_ONLY**
static final public int DIRECT_AT_RESTART_ONLY

Indicates residual updating is to be done by direct evaluation upon restarting only.

**FIRSTGRAM_SCHMIDT**
static final public int FIRSTGRAM_SCHMIDT

Indicates the first Gram-Schmidt implementation method is to be used.

**FIRST_HOUSEHOLDER**
static final public int FIRST_HOUSEHOLDER

Indicates the first Householder implementation method is to be used.

**LINEAR_AT_RESTART_AND_TERMINATION**
static final public int LINEAR_AT_RESTART_AND_TERMINATION

Indicates residual updating is to be done by linear combination upon restarting and at termination.

**LINEAR_AT_RESTART_ONLY**
static final public int LINEAR_AT_RESTART_ONLY

Indicates residual updating is to be done by linear combination upon restarting only.

**SECOND_GRAM_SCHMIDT**
static final public int SECOND_GRAM_SCHMIDT

Indicates the second Gram-Schmidt implementation method is to be used.
SECOND_HOUSEHOLDER
static final public int SECOND_HOUSEHOLDER

Indicates the second Householder implementation method is to be used.

Constructor

GenMinRes
public GenMinRes(int n, GenMinRes.Function argF)

Description
GMRES linear system solver constructor.

Parameters
  n – An int scalar value which defines the order of the system to be solved
  argF – a Function that defines the user-supplied function which computes \( z = Ap \). If \( argF \)
  implements Preconditioner then right preconditioning is performed using this user supplied function. Otherwise, no preconditioning is performed. Note that \( argF \) can be used to act upon the coefficients of matrix A stored in different storage modes. See the examples.

Methods

getGuess
public double[] getGuess()

Description
Returns the initial guess of the solution.

Returns
a double array of length \( n \) containing the initial guess of the solution.

getIterations
public int getIterations()

Description
Returns the actual number of GMRES iterations used.

Returns
an int scalar representing the number of iterations used.

getLogger
public Logger getLogger()
**Description**
Returns the logger object.

**Returns**
the logger object, if present, or null.

---

**getMaxIterations**
public int getMaxIterations()

**Description**
Returns the maximum number of iterations allowed.

**Returns**
an int specifying the maximum number of iterations allowed.

---

**getMaxKrylovDim**
public int getMaxKrylovDim()

**Description**
Returns the maximum Krylov subspace dimension, i.e., the maximum allowable number of GMRES iterations allowed before restarting.

**Returns**
An int scalar representing the maximum Krylov subspace dimension, i.e., the maximum allowable number of GMRES iterations allowed before restarting.

---

**getMethod**
public int getMethod()

**Description**
Returns the implementation method to be used.

**Returns**
an int scalar value specifying the implementation method to be used.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = FIRST_GRAM_SCHMIDT</td>
<td>Use the first Gram-Schmidt implementation. This is the default value used.</td>
</tr>
<tr>
<td>2 = SECOND_GRAM_SCHMIDT</td>
<td>Use the second Gram-Schmidt implementation.</td>
</tr>
<tr>
<td>3 = FIRST_HOUSEHOLDER</td>
<td>Use the first Householder implementation.</td>
</tr>
<tr>
<td>4 = SECOND_HOUSEHOLDER</td>
<td>Use the second Householder implementation.</td>
</tr>
</tbody>
</table>

---

**getPreconditionerSolves**
public int getPreconditionerSolves()
Description
Returns the total number of GMRES right preconditioner solves.

Returns
An int representing the number of GMRES right preconditioner solves.

getProducts
public int getProducts()

Description
Returns the total number of GMRES matrix-vector products used.

Returns
An int representing the number of GMRES matrix-vector products used.

getRelativeError
public double getRelativeError()

Description
Returns the stopping tolerance. The algorithm attempts to generate x such that $\|b - Ax\|_2 \leq t \|b\|_2$, where $t = \text{tolerance}$.

Returns
A double scalar value specifying the stopping tolerance.

getResidualNorm
public double getResidualNorm()

Description
Returns the final residual norm, $\|b - Ax\|_2$.

Returns
A double scalar value specifying the final residual norm.

getResidualUpdating
public int getResidualUpdating()

Description
Returns the residual updating method to be used.

Returns
An int scalar value specifying the residual updating method to be used.
<table>
<thead>
<tr>
<th>Return Value</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = LINEAR_AT_RESTART_ONLY</td>
<td>Update by linear combination upon restarting only. This is the default value used.</td>
</tr>
<tr>
<td>2 = LINEAR_AT_RESTART_AND_TERMINATION</td>
<td>Update by linear combination upon restarting and at termination.</td>
</tr>
<tr>
<td>3 = DIRECT_AT_RESTART_ONLY</td>
<td>Update by direct evaluation upon restarting only.</td>
</tr>
<tr>
<td>4 = DIRECT_AT_RESTART_AND_TERMINATION</td>
<td>Update by direct evaluation upon restarting and at termination.</td>
</tr>
</tbody>
</table>

**getVectorProducts**

public GenMinRes.VectorProducts getVectorProducts()

**Description**

Returns the user-supplied functions for the inner product and, optionally, the norm used in the Gram-Schmidt implementations.

**Returns**

a VectorProducts that defines the user-supplied functions for the inner product and, optionally, the norm used in the Gram-Schmidt implementations.

**setGuess**

public void setGuess(double[] xguess)

**Description**

Set the initial guess of the solution. If this member function is not called, the elements of this array are set to 0.0.

**Parameter**

xguess – a double array of length n specifying the initial guess of the solution.

**setMaxIterations**

public void setMaxIterations(int maxIterations)

**Description**

Set the maximum number of iterations allowed.

**Parameter**

maxIterations – an int specifying the maximum number of iterations allowed. By default, maxIterations = 1000.

**Exception**

IllegalArgumentException is thrown if maxIterations is less than or equal to 0.

**setMaxKrylovDim**

public void setMaxKrylovDim(int kmax)
Description
Set the maximum Krylov subspace dimension, i.e., the maximum allowable number of GMRES iterations allowed before restarting. If this member function is not called, \( kdmax \) is set to the minimum of \( n \) and 20.

Exception
IllegalArgumentException is thrown if \( kdmax \) is less than 1 or greater than \( n \).

setMethod
public void setMethod(int iMethod)

Description
Set the implementation method to be used.

Parameter
- \( iMethod \) – an int scalar value specifying the implementation method to be used. If this member function is not called, \( iMethod \) is set to FIRST_GRAM_SCHMIDT.

<table>
<thead>
<tr>
<th>iMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST_GRAM_SCHMIDT</td>
<td>Use the first Gram-Schmidt implementation. This is the default value used.</td>
</tr>
<tr>
<td>SECOND_GRAM_SCHMIDT</td>
<td>Use the second Gram-Schmidt implementation.</td>
</tr>
<tr>
<td>FIRST_HOUSEHOLDER</td>
<td>Use the first Householder implementation.</td>
</tr>
<tr>
<td>SECOND_HOUSEHOLDER</td>
<td>Use the second Householder implementation.</td>
</tr>
</tbody>
</table>

Exception
IllegalArgumentException is thrown if \( iMethod \) is less than 1 or greater than 4.

setRelativeError
public void setRelativeError(double tolerance)

Description
Set the stopping tolerance. The algorithm attempts to generate \( x \) such that \( \| b - Ax \|_2 \leq t \| b \|_2 \), where \( t \) = tolerance. If this member function is not called, \( tolerance \) is set to 1.4901161193847656e-08.

Parameter
- \( tolerance \) – a double scalar value specifying the stopping tolerance. By default, \( tolerance = 1.49e-08 \).

Exception
IllegalArgumentException is thrown if \( tolerance \) is less than or equal to 0.0

setResidualUpdating
public void setResidualUpdating(int rMethod)

Description
Set the residual updating method to be used.
Parameter

rMethod – an int scalar value specifying the residual updating method to be used. If this member function is not called, rMethod is set to LINEAR_AT_RESTART_ONLY.

<table>
<thead>
<tr>
<th>rMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR_AT_RESTART_ONLY</td>
<td>Update by linear combination upon restarting only. This is the default value used.</td>
</tr>
<tr>
<td>LINEAR_AT_RESTART_AND_TERMINATION</td>
<td>Update by linear combination upon restarting and at termination.</td>
</tr>
<tr>
<td>DIRECT_AT_RESTART_ONLY</td>
<td>Update by direct evaluation upon restarting only.</td>
</tr>
<tr>
<td>DIRECT_AT_RESTART_AND_TERMINATION</td>
<td>Update by direct evaluation upon restarting and at termination.</td>
</tr>
</tbody>
</table>

Exception

IllegalArgumentException is thrown if rMethod is less than 1 or greater than 4.

setVectorProducts

public void setVectorProducts(GenMinRes.VectorProducts argP)

Description
Sets the user-supplied functions for the inner product and, optionally, the norm to be used in the Gram-Schmidt implementations.

Parameter
argP – a VectorProduct specifying the user-defined function for the inner product and, optionally, the norm in the Gram-Schmidt implementations. If this member function is not called, the dot product will be used for the inner product and the $L_2$ norm will be used for the norm.

solve

public double[] solve(double[] b) throws SingularMatrixException, GenMinRes.TooManyIterationsException

Description
Generate an approximate solution to $Ax = b$ using the Generalized Residual Method.

Parameter
b – a double array which defines the right-hand side of the linear system.

Returns
a double array containing the solution of the linear system.

Exception
IllegalArgumentException is thrown if the length of b is not consistent with n.
Example 1: Solve a Small Linear System

A solution to a small linear system is found. The coefficient matrix is stored as a full matrix and no preconditioning is used. Typically, preconditioning is required to achieve convergence in a reasonable number of iterations.

```java
import com.ims1.math.*;

public class GenMinResEx1 implements GenMinRes.Function {
 static private double a[][] = {
 {33.0, 16.0, 72.0},
 {-24.0, -10.0, -57.0},
 {18.0, -11.0, 7.0}
 };
 static private double b[] = {129.0, -96.0, 8.5};
 // If A were to be read in from some outside source the
 // code to read the matrix could reside in a constructor.

 public void amultp(double p[], double z[]) {
 double[] result;
 result = Matrix.multiply(a, p);
 System.arraycopy(result, 0, z, 0, z.length);
 }

 public static void main(String args[]) throws Exception {
 int n = 3;
 GenMinResEx1 atp = new GenMinResEx1();

 // Construct a GenMinRes object
 GenMinRes gnmnrs = new GenMinRes(n, atp);

 // Solve Ax = b
 new PrintMatrix("x").print(gnmnrs.solve(b));
 }
}
```

Output

```
x 0
0 1
1 1.5
2 1
```

Example 2: Solve a Small Linear System with User Supplied Inner Product

A solution to a small linear system is found. The coefficient matrix is stored as a full matrix and no preconditioning is used. Typically, preconditioning is required to achieve convergence in a reasonable number of iterations.
number of iterations. The user supplies a function to compute the inner product and norm within the Gram-Schmidt implementation.

```java
import com.imsl.math.*;

public class GenMinResEx2 implements GenMinRes.Function, GenMinRes.Norm {

 static private double a[][] = {
 {33.0, 16.0, 72.0},
 {-24.0, -10.0, -57.0},
 {18.0, -11.0, 7.0}
 };
 static private double b[] = {129.0, -96.0, 8.5};
 // If A were to be read in from some outside source the
 // code to read the matrix could reside in a constructor.

 public void amultp(double p[], double z[]) {
 double[] result;
 result = Matrix.multiply(a, p);
 System.arraycopy(result, 0, z, 0, z.length);
 }

 public double innerproduct(double[] x, double[] y) {
 int n = x.length;
 double tmp = 0.0;
 for (int i = 0; i < n; i++) {
 tmp += x[i] * y[i];
 }
 return tmp;
 }

 public double norm(double[] x) {
 int n = x.length;
 double tmp = 0.0;
 for (int i = 0; i < n; i++) {
 tmp += x[i] * x[i];
 }
 return Math.sqrt(tmp);
 }

 public static void main(String args[]) throws Exception {
 int n = 3;
 GenMinResEx2 atp = new GenMinResEx2();

 // Construct a GenMinRes object
 GenMinRes gmnrs = new GenMinRes(n, atp);
 gmnrs.setVectorProducts(atp);

 // Solve Ax = b
 new PrintMatrix("x").print(gmnrs.solve(b));
 }
}
```
Example 3: Solve a Small Linear System Stored in Sparse Form

A solution to a small linear system in which the coefficient matrix has been stored in SparseMatrix form is found. An initial guess of ones is set before solving the system.

```java
import com.imsl.math.*;

public class GenMinResEx3 implements GenMinRes.Function {

 static private SparseMatrix A;
 static private double a[] = {6.0, 10.0, 15.0, -3.0, 10.0, -1.0, -1.0, -3.0, -5.0, 1.0, 10.0, -1.0, -2.0, -1.0, -2.0};
 static private double b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 static private double xguess[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
 static private int irow[] = {5, 1, 2, 1, 3, 3, 4, 4, 4, 4, 4, 0, 5, 5, 1, 3};
 static private int jcol[] = {5, 1, 2, 2, 3, 4, 0, 5, 3, 4, 0, 0, 1, 3, 0};

 public void amultp(double p[], double z[]) {
 double[] result;
 result = A.multiply(A, p);
 System.arraycopy(result, 0, z, 0, z.length);
 }

 public static void main(String args[]) throws Exception {
 int n = 6;
 A = new SparseMatrix(n, n);
 for (int i = 0; i < a.length; i++) {
 A.set(irow[i], jcol[i], a[i]);
 }
 GenMinResEx3 atp = new GenMinResEx3();

 GenMinRes gnmnrs = new GenMinRes(n, atp);
 gnmnrs.setGuess(xguess);
 // Solve Ax = b
 new PrintMatrix("x").print(gnmnrs.solve(b));
 }
}
```
Example 4: Solve a Small Linear System Stored in Sparse Form With Preconditioning

A solution to a small linear system in which the coefficient matrix has been stored in SparseMatrix form is found. An initial guess of ones is set before solving the system and preconditioning is used.

```java
import com.imsl.math.*;

public class GenMinResEx4 implements GenMinRes.Preconditioner {

 static private SparseMatrix A;
 static private double a[] = {
 6.0, 10.0, 15.0, -3.0, 10.0,
 -1.0, -1.0, -3.0, -5.0, 1.0,
 10.0, -1.0, -2.0, -1.0, -2.0
 };
 static private double b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 static private double xguess[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
 static private double diagin[] = {0.1, 0.1, 0.066666666666667,
 0.1, 1.0, 0.1666666666666667};
 static private int irow[] = {5, 1, 2, 1, 3, 3, 4, 4, 4, 4, 0, 5, 5, 1, 3};
 static private int jcol[] = {5, 1, 2, 2, 3, 4, 0, 5, 3, 4, 0, 0, 1, 3, 0};

 public void amultp(double p[], double z[]) {
 double[] result;
 result = A.multiply(A, p);
 System.arraycopy(result, 0, z, 0, z.length);
 }

 public void preconditioner(double r[], double z[]) {
 int n = z.length;
 for (int i = 0; i < n; i++) {
 z[i] = diagin[i] * r[i];
 }
 }

 public static void main(String args[]) throws Exception {
 int n = 6;
 A = new SparseMatrix(n, n);
 for (int i = 0; i < a.length; i++) {
 A.set(irow[i], jcol[i], a[i]);
 }
 }
}
```

Linear Systems  GenMinRes • 119
Example 5: The Second Householder Implementation

The coefficient matrix in this example corresponds to the five-point discretization of the 2-d Poisson equation with the Dirichlet boundary condition. Assuming the natural ordering of the unknowns, and moving all boundary terms to the right hand side, we obtain a block tridiagonal matrix. (Consider the tridiagonal matrix T which has the value 4.0 down the main diagonal and -1.0 along the upper and lower co-diagonals. Then the coefficient matrix is the block tridiagonal matrix consisting of T’s down the main diagonal and -I along the upper and lower co-diagonals where I is the identity matrix.) Discretizing on a 20 x 20 grid implies that the coefficient matrix is 400 x 400. In the solution, the second Householder implementation is selected and we choose to update the residual vector by direct evaluation.
for (int i = 0; i < n - 2; i++) {
    z[i + 1] = -1.0 * p[i] + z[i + 1];
}
// Correct for terms not properly in block diagonal
for (int i = k - 1; i < n - k; i = i + k) {
    z[i] += p[i + 1];
    z[i + 1] += p[i];
}
// Do the super and subdiagonal blocks, the -I's
for (int i = 0; i < n - k; i++) {
    z[i] = -1.0 * p[i + k] + z[i];
}
for (int i = 0; i < n - k; i++) {
    z[i + k] = -1.0 * p[i] + z[i + k];
}

public static void main(String args[]) throws Exception {
    int n = 400;
    double b[] = new double[n];
    double xguess[] = new double[n];
    GenMinResEx5 atp = new GenMinResEx5();
    // Construct a GenMinRes object
    GenMinRes gnmnrs = new GenMinRes(n, atp);
    // Set right hand side and initial guess to ones
    for (int i = 0; i < n; i++) {
        b[i] = 1.0;
        xguess[i] = 1.0;
    }
    gnmnrs.setGuess(xguess);
    gnmnrs.setMethod(gnmnrs.SECOND_HOUSEHOLDER);
    gnmnrs.setResidualUpdating(gnmnrs.DIRECT_AT_RESTART_ONLY);
    // Solve Ax = b
    gnmnrs.solve(b);
    int iterations = gnmnrs.getIterations();
    System.out.println("The number of iterations used = " + iterations);
    double resnorm = gnmnrs.getResidualNorm();
    System.out.println("The final residual norm is " + resnorm);
}

Output
The number of iterations used = 92
The final residual norm is 2.5264852954103667E-7

Example 6: The Second Householder Implementation With Preconditioning

The coefficient matrix in this example corresponds to the five-point discretization of the 2-d Poisson equation with the Dirichlet boundary condition. Assuming the natural ordering of the unknowns, and
moving all boundary terms to the right hand side, we obtain a block tridiagonal matrix. (Consider the
diagonal matrix \( T \) which has the value 4.0 down the main diagonal and -1.0 along the upper and lower
codiagonals. Then the coefficient matrix is the block tridiagonal matrix consisting of \( T \)'s down the main
diagonal and -1 along the upper and lower codiagonals where I is the identity matrix.) Discretizing on a
20 x 20 grid implies that the coefficient matrix is 400 x 400. In the solution, the second Householder
implementation is selected and we choose to update the residual vector by direct evaluation.
Preconditioning is used with the preconditioning matrix being a diagonal matrix with 4.0 down the main
diagonal and -1.0 along the upper and lower co-diagonals. This preconditioning method solves this
tridiagonal matrix.

```java
import com.imsl.math.*;

public class GenMinResEx6 implements GenMinRes.Preconditioner {

 private double precondA[], precondB[], precondC[];

 // Creates a new instance of GenMinResEx6
 public GenMinResEx6(int n) throws Exception {
 precondA = new double[n];
 precondB = new double[n];
 precondC = new double[n];
 // Define the preconditioning matrix
 for (int i = 0; i < n; i++) {
 precondA[i] = 4.0;
 precondB[i] = -1.0;
 precondC[i] = -1.0;
 }
 }

 public void amultp(double p[], double z[]) {
 int m = z.length;
 int n = (int) Math.sqrt(m);
 // Multiply by diagonal blocks
 for (int i = 0; i < m; i++) {
 z[i] = 4.0 * p[i];
 }
 for (int i = 0; i < m - 2; i++) {
 z[i] -= p[i + 1];
 }
 for (int i = 0; i < m - 2; i++) {
 z[i + 1] -= p[i];
 }
 // Correct for terms not properly in block diagonal
 for (int i = n - 1; i < m - n; i = i + n) {
 z[i] += p[i + 1];
 z[i + 1] += p[i];
 }
 // Do the super and subdiagonal blocks, the -I's
 for (int i = 0; i < m - n; i++) {
 z[i] -= p[i + n];
 }
 for (int i = 0; i < m - n; i++) {
 z[i + n] -= p[i];
 }
 }
}
```

/**
 * Solve the tridiagonal preconditioning matrix problem for z.
 */
public void preconditioner(double r[], double z[]) {
    int n = z.length;
    double w[] = new double[n];
    double v[] = new double[n];
    double u[] = new double[n];
    w[0] = precondA[0];
    v[0] = precondC[0] / w[0];
    u[0] = r[0] / w[0];
    for (int i = 1; i < n; i++) {
        w[i] = precondA[i] - precondB[i] * v[i - 1];
        v[i] = precondC[i] / w[i];
        u[i] = (r[i] - precondB[i] * u[i - 1]) / w[i];
    }
    z[n - 1] = u[n - 1];
    for (int j = n - 2; j >= 0; j--) {
        z[j] = u[j] - v[j] * z[j + 1];
    }
}

public static void main(String args[]) throws Exception {
    int n = 400;
    double b[] = new double[n];
    double xguess[] = new double[n];
    GenMinResEx6 atp = new GenMinResEx6(n);
    // Construct a GenMinRes object
    GenMinRes gnmnrs = new GenMinRes(n, atp);
    // Set right hand side and initial guess to ones
    for (int i = 0; i < n; i++) {
        b[i] = 1.0;
        xguess[i] = 1.0;
    }
    gnmnrs.setGuess(xguess);
    gnmnrs.setMethod(gnmnrs.SECOND_HOUSEHOLDER);
    gnmnrs.setResidualUpdating(gnmnrs.DIRECT_AT_RESTART_ONLY);
    // Solve Ax = b
    gnmnrs.solve(b);
    int iterations = gnmnrs.getIterations();
    System.out.println("The number of iterations used = " + iterations);
    double resnorm = gnmnrs.getResidualNorm();
    System.out.println("The final residual norm is " + resnorm);
}

Output
The number of iterations used = 60
The final residual norm is 2.841414917241539E-7
Example 7: Solve a Small Linear System With Logging

A solution to a small linear system is found. The coefficient matrix is stored as a full matrix and no preconditioning is used. Typically, preconditioning is required to achieve convergence in a reasonable number of iterations. Logging is enabled so that intermediate output and a summary report are generated.

```java
import com.imsl.math.*;
import java.util.logging.*;

public class GenMinResEx7 implements GenMinRes.Function {

 static private double a[][] = {
 {33.0, 16.0, 72.0},
 {-24.0, -10.0, -57.0},
 {18.0, -11.0, 7.0}
 };
 static private double b[] = {129.0, -96.0, 8.5};
 // If A were to be read in from some outside source the
 // code to read the matrix could reside in a constructor.

 public void amultp(double p[], double z[]) {
 double[] result = Matrix.multiply(a, p);
 System.arraycopy(result, 0, z, 0, z.length);
 }

 public static void main(String args[]) throws Exception {
 int n = 3;
 GenMinResEx7 atp = new GenMinResEx7();

 // Construct a GenMinRes object
 GenMinRes gnmnrs = new GenMinRes(n, atp);
 Logger logger = gnmnrs.getLogger();
 Handler h = new java.util.logging.FileHandler("GenMinReslog.txt");
 logger.addHandler(h);
 logger.setLevel(Level.FINER);
 h.setFormatter(new com.imsl.IMSLFormatter());

 // Solve Ax = b
 new PrintMatrix("x").print(gnmnrs.solve(b));
 }
}
```

Output

```
x
 0
0 1
1 1.5
2 1
```
GenMinRes.Function interface

public interface com.imsl.math.GenMinRes.Function
Public interface for the user supplied function to GenMinRes.

Method

amultp
public void amultp(double[] p, double[] z)

Description
Used to compute $z = Ap$ where $A$ is the matrix of coefficients to solve and $p$ and $z$ are arrays of length $n$, the order of matrix $A$.

Parameters
- $p$ – an input double array of length $n$ generated during the implementation of the solve method.
- $z$ – an output double array of length $n$.

GenMinRes.Preconditioner interface

Public interface for the user supplied function to GenMinRes used for preconditioning.

Method

preconditioner
public void preconditioner(double[] r, double[] z)

Description
Used to compute $z = M^{-1}r$ where $M$ is the preconditioning matrix and $r$ and $z$ are arrays of length $n$, the order of matrix $M$. 
Parameters

- \( r \) – an input double array of length \( n \) generated during the implementation of the solve method.
- \( z \) – an output double array of length \( n \).

---

**GenMinRes.VectorProducts interface**

```java
public interface com.imsl.math.GenMinRes.VectorProducts {
 public interface for the user supplied function to the GenMinRes object used for the inner product when the Gram-Schmidt implementation is used.
```

**Method**

**innerproduct**

```java
public double innerproduct(double[] x, double[] y)
```

**Description**

Used to compute the inner product of 2 vectors for the Gram-Schmidt implementation. If this function is not implemented, the dot product is used for the inner product.

**Parameters**

- \( x \) – first input double vector which is to take part in the inner product.
- \( y \) – second input double vector which is to take part in the inner product.

**Returns**

- a double, the value of the inner product of \( x \) and \( y \).

---

**GenMinRes.Norm interface**

```java
 Public interface for the user supplied function to the GenMinRes object used for the norm \(\| X \| \) when the Gram-Schmidt implementation is used.
```

---

126 • GenMinRes  JMSL
Method

**norm**

```java
public double norm(double[] x)
```

**Description**

Used to compute the norm $\|X\|$ in the Gram-Schmidt implementation. If this function is not implemented, the $L_2$ norm is used.

**Parameter**

$x$ – input double vector for which the norm will be computed.

**Returns**

a double, the value of the norm of $x$.

GenMinRes.TooManyIterationsException class

```java
static public class com.imsl.math.GenMinRes.TooManyIterationsException extends com.imsl.IMSLException
```

Maximum number of iterations exceeded.

**Constructors**

**GenMinRes.TooManyIterationsException**

```java
public GenMinRes.TooManyIterationsException(String message)
```

**Description**

Constructs a TooManyIterationsException object.

**Parameter**

message – a String containing the error message

**GenMinRes.TooManyIterationsException**

```java
public GenMinRes.TooManyIterationsException(String key, Object[] arguments)
```

**Description**

Constructs a TooManyIterationsException object.

**Parameters**

- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string
GenMinRes.Formatter class

Static public class com.imsl.math.GenMinRes.Formatter extends java.util.logging.Formatter

Simple formatter for GenMinRes logging

Constructor

GenMinRes.Formatter

public GenMinRes.Formatter()

Method

format

public String format(LogRecord record)

ConjugateGradient class

public class com.imsl.math.ConjugateGradient implements Serializable

Solves a real symmetric definite linear system using the conjugate gradient method with optional preconditioning.

Class ConjugateGradient solves the symmetric positive or negative definite linear system $Ax = b$ using the conjugate gradient method with optional preconditioning. This method is described in detail by Golub and Van Loan (1983, Chapter 10), and in Hageman and Young (1981, Chapter 7).

The preconditioning matrix $M$ is a matrix that approximates $A$, and for which the linear system $Mz = r$ is easy to solve. These two properties are in conflict; balancing them is a topic of current research. If no preconditioning matrix is specified, $M$ is set to the identity, i.e. $M = I$.

The number of iterations needed depends on the matrix and the error tolerance. As a rough guide,

$$itmax = \sqrt{n} \text{ for } n \gg 1,$$

where $n$ is the order of matrix $A$. 
See the references for details.

Let $M$ be the preconditioning matrix, let $b, p, r, x$ and $z$ be vectors and let $\tau$ be the desired relative error. Then the algorithm used is as follows:

$$\lambda = -1$$

$$p_0 = x_0$$

$$r_1 = b - Ap_0$$

for $k = 1, \ldots, \text{itmax}$

$$z_k = M^{-1}r_k$$

if $k = 1$ then

$$\beta_k = 1$$

$$p_k = z_k$$

else

$$\beta_k = (z_k^T r_k) / (z_{k-1}^T r_{k-1})$$

$$p_k = z_k + \beta_k p_{k-1}$$

endif

$$\alpha_k = (r_k^T z_k) / (p_k^T Ap_k)$$

$$x_k = x_{k-1} + \alpha_k p_k$$

$$r_{k+1} = r_k - \alpha_k Ap_k$$

if $\|Ap_k\|_2 \leq \tau (1 - \lambda) \|x_k\|_2$ then

recompute $\lambda$

if $\|Ap_k\|_2 \leq \tau (1 - \lambda) \|x_k\|_2$ exit

endif

endfor

Here, $\lambda$ is an estimate of $\lambda_{\text{max}}(\Gamma)$, the largest eigenvalue of the iteration matrix $\Gamma = I - M^{-1}A$. The stopping criterion is based on the result (Hageman and Young 1981, pp. 148-151)

$$\frac{\|x_k - x\|_M}{\|x\|_M} \leq \left( \frac{1}{1 - \lambda_{\text{max}}(\Gamma)} \right) \frac{\|z_k\|_M}{\|x_k\|_M},$$

where

$$\|x\|_M^2 = x^T M x.$$

It is also known that

$$\lambda_{\text{max}}(T_1) \leq \lambda_{\text{max}}(T_2) \leq \ldots \leq \lambda_{\text{max}}(\Gamma) < 1,$$
where the $T_i$ are the symmetric, tridiagonal matrices

$$T_i = \begin{bmatrix} \mu_1 & \omega_2 & & & \\ \omega_2 & \mu_2 & \omega_3 & & \\ & \omega_3 & \mu_3 & \ddots & \\ & & \ddots & \ddots & \omega_l \\ & & & \omega_l & \mu_l \end{bmatrix}$$

with $\mu_1 = 1 - 1/\alpha_1$ and, for $k = 2, \ldots, l$,

$$\mu_k = 1 - \beta_k/\alpha_{k-1} - 1/\alpha_k \quad \text{and} \quad \omega_k = \sqrt{\beta_k/\alpha_{k-1}}.$$ 

Usually, the eigenvalue computation is needed for only a few of the iterations.

### Constructor

#### ConjugateGradient

```java
public ConjugateGradient(int n, ConjugateGradient.Function argF)
```

**Description**

Conjugate gradient constructor.

**Parameters**

- `n` – an int scalar value defining the order of the matrix.
- `argF` – a Function that defines the user-supplied function which computes $z = Ap$. If `argF` implements `Preconditioner` then right preconditioning is performed using this user supplied function. Otherwise, no preconditioning is performed. Note that `argF` can be used to act upon the coefficients of matrix $A$ stored in different storage modes.

### Methods

#### getIterations

```java
public int getIterations()
```

**Description**

Returns the number of iterations needed by the conjugate gradient algorithm.

**Returns**

an int value indicating the number of iterations needed.

#### getJacobi

```java
public double[] getJacobi()
```
Description
Returns the Jacobi preconditioning matrix.

Returns
a double vector diagonal containing the diagonal of the Jacobi preconditioner $M$, that is, $\text{diagonal}[i]=A_{i,i}$, $A$ the input matrix.

getMaxIterations
public int getMaxIterations()

Description
Returns the maximum number of iterations allowed.

Returns
an int value specifying the maximum number of iterations allowed.

getRelativeError
public double getRelativeError(double errorRelative)

Description
Returns the relative error used for stopping the algorithm.

Returns
a double containing the relative error.

setJacobi
public void setJacobi(double[] diagonal)

Description
Defines a Jacobi preconditioner as the preconditioning matrix, that is, $M$ is the diagonal of $A$.

Parameter
diagonal – a double vector containing the diagonal of $A$ as the Jacobi preconditioner $M$, that is, $\text{diagonal}[i]=A_{i,i}$.

Exception
IllegalArgumentException is thrown if the length of vector diagonal is not equal to the order $n$ of input matrix $A$.

setMaxIterations
public void setMaxIterations(int maxIterations)

Description
Sets the maximum number of iterations allowed.

Parameter
maxIterations – an int value specifying the maximum number of iterations allowed. By default, $\text{maxIterations} = \max(1000, \sqrt{n})$. 

Linear Systems
ConjugateGradient • 131
Exception
IllegalArgumentException is thrown if maxIterations is less than or equal to 0.

setRelativeError
public void setRelativeError(double tolerance)

Description
Sets the relative error used for stopping the algorithm.

Parameter
tolerance – a double specifying the relative error. By default, tolerance = 1.49e-08, the square root of the precision.

Exception
IllegalArgumentException is thrown if tolerance is less than 0.

solve

Description
Solves a real symmetric positive or negative definite system $Ax = b$ using a conjugate gradient method with or without preconditioning.

Parameter
b – a double vector of length $n$ containing the right-hand side.

Returns
a double vector of length $n$ containing the approximate solution to the linear system.

Exceptions
IllegalArgumentException is thrown if the length of $b$ is not consistent with the order $n$ of $A$.
SingularPreconditionMatrixException is thrown if the preconditioning matrix is singular.
NotDefinitePreconditionMatrixException is thrown if the preconditioning matrix is not definite.
SingularMatrixException is thrown if input matrix $A$ is singular.
NotDefiniteAMatrixException is thrown if matrix $A$ is not definite.
NoConvergenceException is thrown if the algorithm is not convergent within maxIterations iterations.
NotDefiniteJacobiPreconditionerException is thrown if the Jacobi preconditioner is not definite.
Conjugate Gradient Example 1:
The solution to a positive definite linear system is found. The coefficient matrix is stored as a full matrix.

```java
import com.imsl.math.*;

public class ConjugateGradientEx1 implements ConjugateGradient.Function {

 static private double[][] a = {
 {1.0, -3.0, 2.0},
 {-3.0, 10.0, -5.0},
 {2.0, -5.0, 6.0}
 };
 static private double[] b = {27.0, -78.0, 64.0};

 public void amultp(double[] p, double[] z) {
 double[] w = Matrix.multiply(a, p);
 System.arraycopy(w, 0, z, 0, z.length);
 }

 public static void main(String args[]) throws Exception {
 int n = 3;
 ConjugateGradientEx1 atp = new ConjugateGradientEx1();
 // Construct Cg object
 ConjugateGradient cg = new ConjugateGradient(n, atp);
 // Solve Ax=b
 new PrintMatrix("Solution").print(cg.solve(b));
 }
}
```

Output
Solution
0
0 1
1 -4
2 7

Conjugate Gradient Example 2:
In this example, two different preconditioners are used to find the solution of a sparse positive definite linear system which occurs in a finite difference solution of Laplace’s equation on a regular \( c \times c \) grid, \( c = 50 \). The matrix is \( A = E(c^2, c) \). For the first solution, Jacobi preconditioning with preconditioner \( M = \text{diag}(A) \) is used. The required iteration number and maximum absolute error are printed. Next, a more complicated preconditioning matrix, consisting of the symmetric tridiagonal part of \( A \), is used. Again, the iteration number and the maximum absolute error are printed. The iteration number is substantially reduced.
import com.imsl.math.*;

public class ConjugateGradientEx2 implements ConjugateGradient.Preconditioner {

    private SparseMatrix A;
    private SparseCholesky M;

    public ConjugateGradientEx2(int n, int c)
        throws SparseCholesky.NotSPDEException {
        // Create matrix E(n,c), n>1, 1<c<n-1
        // See Osterby and Zlatev(1982), pp. 7-8
        A = new SparseMatrix(n, n);
        for (int j = 0; j < n; j++) {
            if (j - c >= 0) {
                A.set(j, j - c, -1.0);
            }
            if (j - 1 >= 0) {
                A.set(j, j - 1, -1.0);
            }
            A.set(j, j, 4.0);
            if (j + 1 < n) {
                A.set(j, j + 1, -1.0);
            }
            if (j + c < n) {
                A.set(j, j + c, -1.0);
            }
        }
        // Create and factor preconditioning matrix
        SparseMatrix C = new SparseMatrix(n, n);
        for (int j = 0; j < n; j++) {
            if (j - 1 >= 0) {
                C.set(j, j - 1, -1.0);
            }
            C.set(j, j, 4.0);
            if (j + 1 < n) {
                C.set(j, j + 1, -1.0);
            }
        }
        M = new SparseCholesky(C);
        M.factorSymbolically();
        M.factorNumerically();
    }

    public void amultp(double[] p, double[] z) {
        double[] w = A.multiply(p);
        System.arraycopy(w, 0, z, 0, w.length);
    }

    public void preconditioner(double[] r, double[] z) {
        try {
            double[] w = M.solve(r);
            System.arraycopy(w, 0, z, 0, w.length);
        } catch (SparseCholesky.NotSPDEException e) {
            // No danger of NotSPDEException because the system is only
            // solved here for given Cholesky factor. This exception
        }
    }
}

134 • ConjugateGradient  JMSL
public static void main(String[] args) throws Exception {
    int n = 2500;
    int c = 50;
    ConjugateGradientEx2 atp = new ConjugateGradientEx2(n, c);
    // Set a predetermined answer and diagonal
    double[] expected = new double[n];
    double[] diagonal = new double[n];
    for (int i = 0; i < n; i++) {
        expected[i] = (double) (i % 5);
        diagonal[i] = 4.0;
    }
    // Get right-hand side
    double[] b = new double[n];
    atp.amultp(expected, b);
    // Solve system with Jacobi preconditioning
    ConjugateGradient cgJacobi = new ConjugateGradient(n, atp);
    cgJacobi.setJacobi(diagonal);
    double[] solution = cgJacobi.solve(b);
    // Compute inf-norm of computed solution - exact solution, print results
    double norm = 0.0;
    for (int i = 0; i < n; i++) {
        norm = Math.max(norm, Math.abs(solution[i] - expected[i]));
    }
    System.out.println("Jacobi preconditioning");
    System.out.println("Iterations= " + cgJacobi.getIterations() + ", norm= " + norm);
    System.out.println();
    /*
     * Solve the same system, with Cholesky preconditioner
     */
    ConjugateGradient cgCholesky = new ConjugateGradient(n, atp);
    solution = cgCholesky.solve(b);
    norm = 0.0;
    for (int i = 0; i < n; i++) {
        norm = Math.max(norm, Math.abs(solution[i] - expected[i]));
    }
    System.out.println("More general preconditioning");
    System.out.println("Iterations= " + cgCholesky.getIterations() + ", norm= " + norm);
    }
}
Output
Jacobi preconditioning
Iterations= 187, norm= 4.463440728130763E-10

More general preconditioning
Iterations= 127, norm= 5.137250624898115E-10

ConjugateGradient.SingularPreconditionMatrixException class

static public class
com.imsl.math.ConjugateGradient.SingularPreconditionMatrixException extends
com.imsl.IMSLException

The Precondition matrix is singular.

Constructors

ConjugateGradient.SingularPreconditionMatrixException
public ConjugateGradient.SingularPreconditionMatrixException(String message)

Description
Constructs a SingularPreconditionMatrixException object.

Parameter
message – a String containing the error message

ConjugateGradient.SingularPreconditionMatrixException
public ConjugateGradient.SingularPreconditionMatrixException(String key,
Object[] arguments)

Description
Constructs a SingularPreconditionMatrixException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

136 • ConjugateGradient
ConjugateGradient.NotDefinitePreconditionMatrixException class


The Precondition matrix is indefinite.

Constructors

ConjugateGradient.NotDefinitePreconditionMatrixException
public ConjugateGradient.NotDefinitePreconditionMatrixException(String message)

Description
Constructs a NotDefinitePreconditionMatrixException object.

Parameter
message – a String containing the error message

ConjugateGradient.NotDefinitePreconditionMatrixException
public ConjugateGradient.NotDefinitePreconditionMatrixException(String key, Object[] arguments)

Description
Constructs a NotDefinitePreconditionMatrixException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

ConjugateGradient.NotDefiniteAMatrixException class

static public class com.imsl.math.ConjugateGradient.NotDefiniteAMatrixException extends com.imsl.IMSLException

The input matrix A is indefinite, that is the matrix is not positive or negative definite.
Constructors

ConjugateGradient.NotDefiniteAMatrixException
public ConjugateGradient.NotDefiniteAMatrixException(String message)

Description
Constructs a NotDefiniteAMatrixException object.

Parameter
message – a String containing the error message

ConjugateGradient.NotDefiniteAMatrixException
public ConjugateGradient.NotDefiniteAMatrixException(String key, Object[] arguments)

Description
Constructs a NotDefiniteAMatrixException object.

Parameters
key – a String containing the error message
 arguments – an Object array containing arguments used within the error message string

ConjugateGradient.NoConvergenceException
class

static public class com.imsl.math.ConjugateGradient.NoConvergenceException
extends com.imsl.IMSLException

The conjugate gradient method did not converge within the allowed maximum number of iterations.

Constructors

ConjugateGradient.NoConvergenceException
public ConjugateGradient.NoConvergenceException(String message)

Description
Constructs a NoConvergenceException object.
Parameter

message – a String containing the error message

ConjugateGradient.NoConvergenceException
public ConjugateGradient.NoConvergenceException(String key, Object[] arguments)

Description
Constructs a NoConvergenceException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

ConjugateGradient.NotDefiniteJacobiPreconditionerException
class

static public class com.imsl.math.ConjugateGradient.NotDefiniteJacobiPreconditionerException
extends com.imsl.IMSLException

The Jacobi preconditioner is not strictly positive or negative definite.

Constructors

ConjugateGradient.NotDefiniteJacobiPreconditionerException
public ConjugateGradient.NotDefiniteJacobiPreconditionerException(String message)

Description
Constructs a NotDefiniteJacobiPreconditionerException object.

Parameter
message – a String containing the error message

ConjugateGradient.NotDefiniteJacobiPreconditionerException
public ConjugateGradient.NotDefiniteJacobiPreconditionerException(String key, Object[] arguments)

Description
Constructs a NotDefiniteJacobiPreconditionerException object.
Parameters

key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

---

**ConjugateGradient.Function interface**

```java
public interface com.imsl.math.ConjugateGradient.Function
```

Public interface for the user supplied function to ConjugateGradient.

**Method**

```java
public void amultp(double[] p, double[] z)
```

**Description**

A user-supplied function which computes \( z = Ap \).

**Parameters**

- \( p \) – an input double vector of length dimension of \( A \).
- \( z \) – an output double vector containing the matrix-vector product \( Ap \).

---

**ConjugateGradient.Preconditioner interface**

```java
```

Public interface for the user supplied function to ConjugateGradient used for preconditioning.

**Method**

```java
public void preconditioner(double[] r, double[] z)
```
Description

Used to compute $z = M^{-1}r$ where $M$ is the preconditioning matrix and $r$ and $z$ are arrays of length $n$, the order of matrix $M$.

Parameters

- $r$ – an input double array of length $n$ generated during the implementation of the solve method.
- $z$ – an output double array of length $n$.

SingularMatrixException class

```java
public class com.imsl.math.SingularMatrixException extends com.imsl.IMSLException

The matrix is singular.
```

Constructor

```java
SingularMatrixException()
```
Chapter 3: Eigensystem Analysis

Types

class Eigen .......................................................... 144
class SymEigen .......................................................... 148

Usage Notes

An ordinary linear eigensystem problem is represented by the equation $Ax = \lambda x$ where $A$ denotes an $n \times n$ matrix. The value $\lambda$ is an eigenvalue and $x \neq 0$ is the corresponding eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we have chosen this factor so that $x$ has Euclidean length one, and the component of $x$ of largest magnitude is positive. If $x$ is a complex vector, this component of largest magnitude is scaled to be real and positive. The entry where this component occurs can be arbitrary for eigenvectors having nonunique maximum magnitude values.

Error Analysis and Accuracy

Except in special cases, functions will not return the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem $Ax = \lambda x$. Typically, the computed pair

$$\tilde{x}, \tilde{\lambda}$$

are an exact eigenvector-eigenvalue pair for a “nearby” matrix $A + E$. Information about $E$ is known only in terms of bounds of the form $\|E\|_2 \leq f(n) \|A\|_2 \epsilon$. The value of $f(n)$ depends on the algorithm, but is typically a small fractional power of $n$. The parameter $\epsilon$ is the machine precision. By a theorem due to Bauer and Fike (see Golub and Van Loan 1989, p. 342),

$$\min \left| \tilde{\lambda} - \lambda \right| \leq \kappa(X) \|E\|_2 \text{ for all } \lambda \text{ in } \sigma(A)$$

where $\sigma(A)$ is the set of all eigenvalues of $A$ (called the spectrum of $A$), $X$ is the matrix of eigenvectors, $\| \cdot \|_2$ is Euclidean length, and $\kappa(X)$ is the condition number of $X$ defined as $\kappa(X) = \|X\|_2 \|X^{-1}\|_2$. If $A$ is a real symmetric or complex Hermitian matrix, then its eigenvector matrix $X$ is respectively orthogonal or unitary. For these matrices, $\kappa(X) = 1$.

The accuracy of the computed eigenvalues
and eigenvectors

\[ \tilde{\lambda}_j, \tilde{x}_j \]

can be checked by computing their performance index \( \tau \). The performance index is defined to be

\[
\tau = \max_{1 \leq j \leq n} \frac{\| A \tilde{x}_j - \tilde{\lambda}_j \tilde{x}_j \|_2}{n \epsilon \| A \|_2 \| \tilde{x}_j \|_2}
\]

where \( \epsilon \) is again the machine precision.

The performance index \( \tau \) is related to the error analysis because

\[
\| E \tilde{x}_j \|_2 = \| A \tilde{x}_j - \tilde{\lambda}_j \tilde{x}_j \|_2
\]

where \( E \) is the “nearby” matrix discussed above.

While the exact value of \( \tau \) is precision and data dependent, the performance of an eigensystem analysis function is defined as excellent if \( \tau < 1 \), good if \( 1 \leq \tau \leq 100 \), and poor if \( \tau > 100 \). This is an arbitrary definition, but large values of \( \tau \) can serve as a warning that there is a significant error in the calculation.

If the condition number \( \kappa(X) \) of the eigenvector matrix \( X \) is large, there can be large errors in the eigenvalues even if \( \tau \) is small. In particular, it is often difficult to recognize near multiple eigenvalues or unstable mathematical problems from numerical results. This facet of the eigenvalue problem is often difficult for users to understand. Suppose the accuracy of an individual eigenvalue is desired. This can be answered approximately by computing the condition number of an individual eigenvalue (see Golub and Van Loan 1989, pp. 344-345). For matrices \( A \), such that the computed array of normalized eigenvectors \( X \) is invertible, the condition number of \( \lambda_i \) is

\[
\kappa_j = \| e_j^T X^{-1} \|,
\]

the Euclidean length of the \( j \)-th row of \( X^{-1} \). Users can choose to compute this matrix using the class LU in “Linear Systems.” An approximate bound for the accuracy of a computed eigenvalue is then given by \( \kappa_j \epsilon \| A \| \). To compute an approximate bound for the relative accuracy of an eigenvalue, divide this bound by \( |\lambda_j| \).

---

**Eigen class**

public class com.imsl.math.Eigen
Collection of Eigen System functions.

Eigen computes the eigenvalues and eigenvectors of a real matrix. The matrix is first balanced. Orthogonal similarity transformations are used to reduce the balanced matrix to a real upper Hessenberg matrix. The implicit double-shifted QR algorithm is used to compute the eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such that each has Euclidean length of value one. The largest component is real and positive.

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is based on the EISPACK routines ORTHES and ORTRAN. The QR algorithm routine is based on the EISPACK routine HQR2. See Smith et al. (1976) for the EISPACK routines. Further details, some timing data, and credits are given in Hanson et al. (1990).

While the exact value of the performance index, $\tau$, is highly machine dependent, the performance of Eigen is considered excellent if $\tau < 1$, good if $1 \leq \tau \leq 100$, and poor if $\tau > 100$.

The performance index was first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages 124-125).

**Constructors**

**Eigen**

```java
public Eigen()
```

**Description**

Constructs the eigenvalues and the eigenvectors of a real square matrix.

**Methods**

**getMaxIterations**

```java
public int getMaxIterations()
```

**Description**

Returns the maximum number of iterations.

**Returns**

an int containing the maximum number of iterations.

**getValues**

```java
public Complex[] getValues()
```

**Description**

Returns the eigenvalues of a matrix of type double.
Returns
a Complex array containing the eigenvalues of this matrix in descending order

**getVectors**
public Complex[][] getVectors()

**Description**
Returns the eigenvectors.

**Returns**
A Complex matrix containing the eigenvectors. The eigenvector corresponding to the j-th eigenvalue is stored in the j-th column. Each vector is normalized to have Euclidean length one.

**performanceIndex**
public double performanceIndex(double[][] a)

**Description**
Returns the performance index of a real eigensystem.

**Parameter**
- a – a double matrix

**Returns**
A double scalar value indicating how well the algorithms which have computed the eigenvalue and eigenvector pairs have performed. A performance index less than 1 is considered excellent, 1 to 100 is good, while greater than 100 is considered poor.

**setMaxIterations**
public void setMaxIterations(int maxIterations)

**Description**
Set the maximum number of iterations allowed.

**Parameter**
- maxIterations – an int specifying the maximum number of iterations allowed.
  - maxIterations must be greater than 0. By default, maxIterations = 50.

**solve**
public void solve(double[][] a, boolean computeVectors) throws Eigen.DidNotConvergeException

**Description**
Solves for the eigenvalues and (optionally) the eigenvectors of a real square matrix.

**Parameters**
- a – is the double square matrix for which the eigenvalues and (optionally) eigenvectors are to be found
- computeVectors – is true if the eigenvectors are to be computed
Exception

DidNotConvergeException is thrown when the algorithm fails to converge on the eigenvalues of the matrix.

Example: Eigensystem Analysis

The eigenvalues and eigenvectors of a matrix are computed.

```java
import com.imsl.math.*;

public class EigenEx1 {
 public static void main(String args[]) throws Eigen.DidNotConvergeException {
 double a[][] = {
 {8, -1, -5},
 {-4, 4, -2},
 {18, -5, -7}
 };
 Eigen eigen = new Eigen();
 eigen.solve(a, true);
 new PrintMatrix("Eigenvalues").print(eigen.getValues());
 new PrintMatrix("Eigenvectors").print(eigen.getVectors());
 }
}
```

Output

Eigenvalues
0
0 2+4i
1 2-4i
2 1

Eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.316-0.316i</td>
<td>0.316+0.316i</td>
<td>0.408</td>
</tr>
<tr>
<td>1</td>
<td>0.632</td>
<td>0.632</td>
<td>0.816</td>
</tr>
<tr>
<td>2</td>
<td>0-0.632i</td>
<td>0+0.632i</td>
<td>0.408</td>
</tr>
</tbody>
</table>

Eigen.DidNotConvergeException class

static public class com.imsl.math.Eigen.DidNotConvergeException extends com.imsl.IMSLException

The iteration did not converge
Constructors

**Eigen.DidNotConvergeException**

public Eigen.DidNotConvergeException(String message)

**Description**
Constructs a DidNotConvergeException object.

**Parameter**
message – a String containing the error message

**Eigen.DidNotConvergeException**

public Eigen.DidNotConvergeException(String key, Object[] arguments)

**Description**
Constructs a DidNotConvergeException object.

**Parameters**

key – a String containing the error message

arguments – an Object array containing arguments used within the error message string

---

**SymEigen class**

public class com.imsl.math.SymEigen

Computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. These transformations are accumulated. An implicit rational QR algorithm is used to compute the eigenvalues of this tridiagonal matrix. The eigenvectors are computed using the eigenvalues as perfect shifts, Parlett (1980, pages 169, 172). The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976) for the EISPACK routines. Further details, some timing data, and credits are given in Hanson et al. (1990).

Let $M$ = the number of eigenvalues, $\lambda$ = the array of eigenvalues, and $x_j$ is the associated eigenvector with $j$th eigenvalue.

Also, let $\varepsilon$ be the machine precision. The performance index, $\tau$, is defined to be

$$
\tau = \max_{1 \leq j \leq M} \frac{\|Ax_j - \lambda_jx_j\|_1}{10N\varepsilon \|A\|_1 \|x_j\|_1}
$$

While the exact value of $\tau$ is highly machine dependent, the performance of SymEigen is considered excellent if $\tau < 1$, good if $1 \leq 100$, and poor if $\tau > 100$. The performance index was first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, pages 124-125).
Constructors

**SymEigen**

public SymEigen(double[][] a)

**Description**

Constructs the eigenvalues and the eigenvectors for a real symmetric matrix.

**Parameter**

a – is the symmetric matrix whose eigensystem is to be constructed.

**SymEigen**

public SymEigen(double[][] a, boolean computeVectors)

**Description**

Constructs the eigenvalues and (optionally) the eigenvectors for a real symmetric matrix.

**Parameters**

a – a double symmetric matrix whose eigensystem is to be constructed

computeVectors – a boolean, true if the eigenvectors are to be computed

**Exception**

IllegalArgumentException is thrown when the lengths of the rows of the input matrix are not uniform.

Methods

**getValues**

public double[] getValues()

**Description**

Returns the eigenvalues

**Returns**

a double array containing the eigenvalues in descending order. If the algorithm fails to converge on an eigenvalue, that eigenvalue is set to NaN.

**getVectors**

public double[][] getVectors()

**Description**

Return the eigenvectors of a symmetric matrix of type double.
**Returns**
a double array containing the eigenvectors. The \( j \)-th column of the eigenvector matrix corresponds to
the \( j \)-th eigenvalue. The eigenvectors are normalized to have Euclidean length one. If the eigenvectors
were not computed by the constructor, then null is returned.

**performanceIndex**
public double performanceIndex(double[][] a)

**Description**
Returns the performance index of a real symmetric eigensystem.

**Parameter**

a – a double symmetric matrix

**Returns**
a double scalar value indicating how well the algorithms which have computed the eigenvalue and
eigenvector pairs have performed. A performance index less than 1 is considered excellent, 1 to 100 is
good, while greater than 100 is considered poor.

**Exception**
IllegalArgumentException is thrown when the lengths of the rows of the input matrix are not
uniform.

**Example: Eigenvalues and Eigenvectors of a Symmetric Matrix**
The eigenvalues and eigenvectors of a symmetric matrix are computed.

```java
import com.imsl.math.*;

public class SymEigenEx1 {
 public static void main(String args[]) {
 double a[][] = {
 {1, 1, 1},
 {1, 1, 1},
 {1, 1, 1}
 };

 SymEigen eigen = new SymEigen(a);
 new PrintMatrix("Eigenvalues").print(eigen.getValues());
 new PrintMatrix("Eigenvectors").print(eigen.getVectors());
 }
}
```

**Output**
Eigenvalues

0
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.577</td>
<td>0.816</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.577</td>
<td>-0.408</td>
<td>-0.707</td>
</tr>
<tr>
<td>2</td>
<td>0.577</td>
<td>-0.408</td>
<td>0.707</td>
</tr>
</tbody>
</table>
Chapter 4: Interpolation and Approximation

Types

class Spline ................................................................. 155
class CsAkima ............................................................... 159
class CsTCB ................................................................. 160
class CsInterpolate ....................................................... 166
class CsPeriodic .......................................................... 168
class CsShape ............................................................... 170
class CsSmooth ............................................................. 172
class CsSmoothC2 ......................................................... 174
class BSpline .............................................................. 176
class BsInterpolate ...................................................... 180
class BsLeastSquares .................................................... 182
class Spline2D .............................................................. 184
class Spline2DInterpolate ............................................... 188
class Spline2DLeastSquares ........................................... 197
class RadialBasis ......................................................... 202

This chapter contains classes to interpolate and approximate data with cubic splines. Interpolation means that the fitted curve passes through all of the specified data points. An approximation spline does not have to pass through any of the data points. An approximating curve can therefore be smoother than an interpolating curve.

Cubic splines are smooth $C^1$ or $C^2$ fourth-order piecewise-polynomial (pp) functions. For historical and other reasons, cubic splines are the most heavily used pp functions.

This chapter contains five cubic spline interpolation classes and two approximation classes. These classes are derived from the base class Spline, which provides basic services, such as spline evaluation and integration.
The chart shows how the nine splines in this chapter fit a single data set.

Class **CsInterpolate** allows the user to specify various endpoint conditions (such as the value of the first and second derivatives at the right and left endpoints).

Class **CsPeriodic** is used to fit periodic (repeating) data. The sample data set used is not periodic and so the curve does not pass through the final data point.

Class **CsAkima** keeps the shape of the data while minimizing oscillations.

Class **CsTCB** allows the user to specify various datpoint parameters (such as tension, continuity, and bias).

Class **CsShape** keeps the shape of the data by preserving its convexity.
Class **CsSmooth** constructs a smooth spline from noisy data.

Class **CsSmoothC2** constructs a smooth spline from noisy data using cross-validation and a user-supplied smoothing parameter.

Class **BSpline** is the abstract base class for univariate B-splines. B-splines provide a particularly convenient and suitable basis for a given class of smooth piecewise polynomial (ppoly) functions. Such a class is specified by giving its breakpoint sequence, its order \( k \), and the required smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified by giving its knot sequence \( t \in \mathbb{R} \). The specification rule is as follows: if the class is to have all derivatives up to and including the \( j \)-th derivative continuous across the interior breakpoint \( \xi \), then the number \( \xi \) should occur \( k-j-1 \) times in the knot sequence. Assuming that \( \xi_0 \) and \( \xi_{n-1} \) are the endpoints of the interval of interest, choose the first \( k \) knots equal to \( \xi_0 \) and the last \( k \) knots equal to \( \xi_{n-1} \). This can be done because the B-splines are defined to be right continuous near \( \xi_0 \) and left continuous near \( \xi_{n-1} \).

When the above construction is completed, a knot sequence \( t \) of length \( M \) is generated, and there are \( m = M-k \) B-splines of order \( k \), for example \( B_0, \ldots, B_{m-1} \), spanning the ppoly functions on the interval with the indicated smoothness. That is, each ppoly function in this class has a unique representation
\[
p = a_0 B_0 + a_1 B_1 + \cdots + a_{m-1} B_{m-1}
\]
as a linear combination of B-splines. A B-spline is a particularly compact ppoly function. \( B_i \) is a nonnegative function that is nonzero only on the interval \( [t_i, t_{i+k}] \). More precisely, the support of the \( i \)-th B-spline is \( [t_i, t_{i+k}] \). No ppoly function in the same class (other than the zero function) has smaller support (i.e., vanishes on more intervals) than a B-spline. This makes B-splines particularly attractive as basis functions since the influence of any particular B-spline coefficient extends only over a few intervals. When it is necessary to emphasize the dependence of the B-spline on its parameters, we will use the notation \( B_{i,j,t} \) to denote the \( i \)-th B-spline of order \( k \) for the knot sequence \( t \).

Class **BsInterpolate** extends **BSpline** and creates a B-spline by interpolating data points.

Class **BsLeastSquares** extends **BSpline** and creates a B-spline by computing a least squares spline approximation to data points.

Class **Spline2D** is the abstract base class for the two-dimensional, tensor-product splines.

Class **Spline2DInterpolate** computes a Spline2D using interpolation from two-dimensional, tensor-product data.

Class **Spline2DLeastSquares** computes a Spline2D using least squares.

Class **RadialBasis** computes an approximation to scattered data in \( \mathbb{R}^M \) using radial-basis functions.

---

**Spline class**

abstract public class com.imsl.math.Spline implements Serializable, Cloneable

Spline represents and evaluates univariate piecewise polynomial splines.

A univariate piecewise polynomial (function) \( p(x) \) is specified by giving its breakpoint sequence \( \xi \in \mathbb{R}^n \), the order \( k \) (degree \( k-1 \)) of its polynomial pieces, and the \( k \times (n-1) \) matrix \( c \) of its local polynomial coefficients.
coefficients. In terms of this information, the piecewise polynomial (ppoly) function is given by

\[ p(x) = \sum_{j=1}^{k} c_{ji} \frac{(x - \xi_i)^{j-1}}{(j-1)!} \quad \text{for } \xi_i \leq x \leq \xi_{i+1} \]

The breakpoint sequence \( \xi \) is assumed to be strictly increasing, and we extend the ppoly function to the entire real axis by extrapolation from the first and last intervals.

**Fields**

**EPSILON_LARGE**
static final protected double EPSILON_LARGE

The largest relative spacing for double.

**breakPoint**
protected double[] breakPoint

The breakpoint array of length \( n \), where \( n \) is the number of piecewise polynomials.

**coef**
protected double[][] coef

Coefficients of the piecewise polynomials. This is an \( n \) by \( k \) array, where \( n \) is the number of piecewise polynomials and \( k \) is the order (degree+1) of the piecewise polynomials. coef[1] contains the coefficients for the piecewise polynomial valid in the interval \([x[k], x[k+1])\).

**Constructor**

**Spline**
public Spline()

**Methods**

**copyAndSortData**
protected void copyAndSortData(double[] xData, double[] yData)
Copy and sort xData into breakPoint and yData into the first column of coef.

**copyAndSortData**
protected void copyAndSortData(double[] xData, double[] yData, double[] weight)

Copy and sort xData into breakPoint and yData into the first column of coef.

**derivative**
public double derivative(double x)

Returns the value of the first derivative of the spline at a point.

**Parameter**

x – a double, the point at which the derivative is to be evaluated

**Returns**
a double containing the value of the first derivative of the spline at the point x

**derivative**
public double derivative(double x, int ideriv)

Returns the value of the derivative of the spline at a point.

**Parameters**

x – a double, the point at which the derivative is to be evaluated
ideriv – an int specifying the derivative to be computed. If zero, the function value is returned. If one, the first derivative is returned, etc.

**Returns**
a double containing the value of the derivative of the spline at the point x

**derivative**
public double[] derivative(double[] x, int ideriv)

Returns the value of the derivative of the spline at each point of an array.

**Parameters**

x – a double array of points at which the derivative is to be evaluated
ideriv – an int specifying the derivative to be computed. If zero, the function value is returned. If one, the first derivative is returned, etc.
Returns
da double array containing the value of the derivative of the spline at each point of the array x

getBreakpoints
gpublic double[] getBreakpoints()

Description
Returns a copy of the breakpoints.

Returns
da double array containing a copy of the breakpoints

integral
integral(double a, double b)

Description
Returns the value of an integral of the spline.

Parameters

- a – a double specifying the lower limit of integration
- b – a double specifying the upper limit of integration

Returns
a double, the integral of the spline from a to b

value
value(double x)

Description
Returns the value of the spline at a point.

Parameter

- x – a double, the point at which the spline is to be evaluated

Returns
a double giving the value of the spline at the point x

value
value(double[] x)

Description
Returns the value of the spline at each point of an array.

Parameter

- x – a double array of points at which the spline is to be evaluated

Returns
a double array containing the value of the spline at each point of the array x
CsAkima class

public class com.imsl.math.CsAkima extends com.imsl.math.Spline

Extension of the Spline class to handle the Akima cubic spline.

Class CsAkima computes a $C^1$ cubic spline interpolant to a set of data points $(x_i, f_i)$ for $i = 0, \ldots, n - 1$. The breakpoints of the spline are the abscissas. Endpoint conditions are automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth, say $C^4$, function $f$, i.e. $f_i = f(x_i)$, then the error will behave in a predictable fashion. Let $\xi$ be the breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies

$$\| f - s\|_{\xi_0, \xi_{n-1}} \leq C \|f^{(2)}\|_{\xi_0, \xi_{n-1}} |\xi|^2$$

where

$$|\xi| := \max_{i=1,\ldots,n-1} |\xi_i - \xi_{i-1}|$$

CsAkima is based on a method by Akima (1970) to combat wiggles in the interpolant. The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear polynomials are reproduced.)

Constructor

CsAkima

public CsAkima(double[] xData, double[] yData)

Description

Constructs the Akima cubic spline interpolant to the given data points.

Parameters

- xData – a double array containing the x-coordinates of the data. Values must be distinct.
- yData – a double array containing the y-coordinates of the data.

Exception

IllegalArgumentException This exception is thrown if the arrays xData and yData do not have the same length.
Example: The Akima cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is printed.

```java
import com.imsl.math.*;

public class CsAkimaEx1 {
 public static void main(String args[]) {
 int n = 11;
 double x[] = new double[n];
 double y[] = new double[n];

 for (int k = 0; k < n; k++) {
 x[k] = (double) k / (double) (n - 1);
 y[k] = Math.sin(15.0 * x[k]);
 }

 CsAkima cs = new CsAkima(x, y);
 double csv = cs.value(0.25);
 System.out.println("The computed cubic spline value at point .25 is "+ csv);
 }
}
```

Output

The computed cubic spline value at point .25 is -0.478185519991867

---

CsTCB class

```java
public class com.imsl.math.CsTCB extends com.imsl.math.Spline

Extension of the Spline class to handle a tension-continuity-bias (TCB) cubic spline, also known as a Kochanek-Bartels spline and is a generalization of the Catmull-Rom spline.

Let \(x = xData \), \(y = yData \), and \(n = \) the length of \(xData \) and \(yData \). Class CsTCB computes the Kochanek-Bartels spline, a piecewise cubic Hermite spline interpolant to the set of data points \(\{x_i, y_i\} \) for \(i = 0, \ldots, n - 1 \). The breakpoints of the spline are the abscissas. As with all of the univariate interpolation functions, the abscissas need not be sorted.

The \(\{x_i\} \) values are the knots, so the \(i \)-th interval is \([x_i, x_{i+1}] \). (To simplify the explanation, it is assumed that the data points are given in increasing order.) The cubic Hermite in the \(i \)-th segment has a starting value of \(y_i \) and an ending value of \(y_{i+1} \). Its incoming tangent is

\[
DS_i = \frac{1}{2} (1-t_i)(1-c_i)(1+b_i) \frac{y_{i+1} - y_i}{x_{i+1} - x_i} + \frac{1}{2} (1-t_i)(1+c_i)(1-b_i) \frac{y_{i+1} - y_i}{x_{i+1} - x_i}
\]
```

160 • CsTCB

JMSL
where \( t_i \) is the \( i \)-th tension value, \( c_i \) is the \( i \)-th continuity value, and \( b_i \) is the \( i \)-th bias value. Its outgoing tangent is

\[
DD_i = \frac{1}{2}(1-t_i)(1+c_i)(1+b_i) \frac{y_i - y_{i-1}}{x_{i+1} - x_i} + \frac{1}{2}(1-t_i)(1-c_i)(1-b_i) \frac{y_{i+1} - y_i}{x_{i+1} - x_i}
\]

The value of the tangent at the endpoint, left, is given as:

\[
\frac{y_0 - y_{-1}}{x_1 - x_0}
\]

The value of the tangent at the endpoint, right, is given as:

\[
\frac{y_n - y_{n-1}}{x_n - x_{n-1}}
\]

By default the values of the tangents at the leftmost and rightmost endpoints are zero. These values can be reset via the \texttt{setLeftEndTangent} and \texttt{setRightEndTangent} methods.

The spline has a continuous first derivative \((C^{-1})\) if at each data point the left and right tangents are equal. This is true if the continuity parameters, \( c_i \), are all zero. For any values of the parameters the spline is continuous \((C^0)\).

If \( t_i = c_i = b_i = 0 \) for all \( i \), then the curve is the Catmull-Rom spline.

The following chart shows the same data points interpolated with different parameter values. All of the tension, continuity, and bias parameters are zero except for the labeled parameter, which has the indicated value at all data points.

Tension controls how sharply the spline bends at the data points. The tension values can be set via the \texttt{setTension} method. If tension values are near +1, the curve tightens. If the tension values are near -1, the curve slackens.

The continuity parameter controls the continuity of the first derivative. The continuity values can be set via the \texttt{setContinuity} method. If the continuity value is zero, the spline's first derivative is continuous, so the spline is \( C^0 \).

The bias parameter controls the weighting of the left and right tangents. If zero, the tangents are equally weighted. If the bias parameter is near +1, the left tangent dominates. If the bias parameter is near -1, the right tangent dominates. The bias values can be set via the \texttt{setBias} method.
Constructor

**CsTCB**

public CsTCB(double[] xData, double[] yData)
Description
Constructs the tension-continuity-bias (TCB) cubic spline interpolant to the given data points.

Parameters
- xData – a double array containing the x-coordinates of the data. Values must be distinct. xData and yData must be of the same length.
- yData – a double array containing the y-coordinates of the data. xData and yData must be of the same length.

Methods

compute
public void compute()

Description
Computes the tension-continuity-bias (TCB) cubic spline interpolant.

gLeftEndTangent
public double getLeftEndTangent()

Description
Returns the value of the tangent at the leftmost endpoint.

Returns
A double value of the tangent at the leftmost endpoint.

gRightEndTangent
public double getRightEndTangent()

Description
Returns the value of the tangent at the rightmost endpoint.

Returns
A double value of the tangent at the rightmost endpoint.

setBias
public void setBias(double[] bias)

Description
Sets the bias values at the data points.
Parameter

bias – A double array of length xData.length which contains bias values in the interval [-1,1]. For each point, if the bias value is zero, the left and right side tangents are equally weighted. If the value is near +1, the left-side tangent dominates. If the value is near -1, the right side tangent dominates. By default, all values of bias are zero.

setContinuity

public void setContinuity(double[] continuity)

Description

Sets the continuity values at the data points.

Parameter

continuity – A double array of length xData.length which contains continuity values in the interval [-1,1]. For each point, if the continuity value is zero, the curve is $C^1$ at that point. Otherwise, the curve has a corner at that point, but is still continuous ($C^0$). By default, all values of continuity are zero.

setLeftEndTangent

public void setLeftEndTangent(double left)

Description

Sets the value of the tangent at the left endpoint.

Parameter

left – A double value of the tangent at the leftmost endpoint. The default value is zero.

setRightEndTangent

public void setRightEndTangent(double right)

Description

Sets the value of the tangent at the right endpoint.

Parameter

right – A double value of the tangent at the rightmost endpoint. The default value is zero.

setTension

public void setTension(double[] tension)

Description

Sets the tension values at the data points.

Parameter

tension – A double array of length xData.length which contains tension values in the interval [-1,1]. For each point, if the tension value is near +1, the curve is tightened at that point. If it is near -1, the curve is slack. By default, all values of tension are zero.
Example: The Kochanek-Bartels cubic spline interpolant

This example interpolates to a set of points. At \( x = 3 \), the continuity and tension parameters are -1. At all other points, they are zero. Interpolated values are then printed.

```java
import java.text.*;
import com.imsl.math.*;

public class CsTCBEx1 {
 public static void main(String args[]) {
 double[] xdata = {0., 1., 2., 3., 4., 5.};
 double[] ydata = {5., 2., 3., 5., 1., 2.};
 double[] continuity = {0., 0., 0., -1., 0., 0.};
 double[] tension = {0., 0., 0., -1., 0., 0.};

 CsTCB cs = new CsTCB(xdata, ydata);
 cs.setContinuity(continuity);
 cs.setTension(tension);
 cs.compute();
 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(4);
 nf.setMinimumFractionDigits(4);
 System.out.println(" x " + " value ");
 for (int k = 0; k < 11; k++) {
 double x = (double) k / 2.0;
 double y = cs.value(x);
 System.out.println(" " + nf.format(x) + " + " + nf.format(y));
 }
 }
}
```

Output

<table>
<thead>
<tr>
<th>x</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>5.0000</td>
</tr>
<tr>
<td>0.5000</td>
<td>3.4375</td>
</tr>
<tr>
<td>1.0000</td>
<td>2.0000</td>
</tr>
<tr>
<td>1.5000</td>
<td>2.1875</td>
</tr>
<tr>
<td>2.0000</td>
<td>3.0000</td>
</tr>
<tr>
<td>2.5000</td>
<td>3.6875</td>
</tr>
<tr>
<td>3.0000</td>
<td>5.0000</td>
</tr>
<tr>
<td>3.5000</td>
<td>2.1875</td>
</tr>
<tr>
<td>4.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>4.5000</td>
<td>1.2500</td>
</tr>
<tr>
<td>5.0000</td>
<td>2.0000</td>
</tr>
</tbody>
</table>
CsInterpolate class

public class com.imsl.math.CsInterpolate extends com.imsl.math.Spline

Extension of the Spline class to interpolate data points.

CsInterpolate computes a $C^2$ cubic spline interpolant to a set of data points $(x_i, f_i)$ for $i = 0, \ldots, n - 1$. The breakpoints of the spline are the abscissas. Endpoint conditions can be automatically determined by the program, or explicitly specified by using the appropriate constructor. Constructors are provided that allow setting specific values for first or second derivative values at the endpoints, or for specifying conditions that correspond to the “not-a-knot” condition (see de Boor 1978).

The “not-a-knot” conditions require that the third derivative of the spline be continuous at the second and next-to-last breakpoint. If $n$ is 2 or 3, then the linear or quadratic interpolating polynomial is computed, respectively.

If the data points arise from the values of a smooth, say, $C^4$ function $f$, i.e. $f_i = f(x_i)$, then the error will behave in a predictable fashion. Let $\xi$ be the breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies

$$|f - s|_{[\xi_0, \xi_n]} \leq C \left\| f^{(4)} \right\|_{[\xi_0, \xi_n]} |\xi|^4$$

where

$$|\xi| := \max_{i=0, \ldots, n-1} |\xi_{i+1} - \xi_i|$$

For more details, see de Boor (1978, pages 55-56).

Fields

**FIRST_DERIVATIVE**
static final public int FIRST_DERIVATIVE

**NOT_A_KNOT**
static final public int NOT_A_KNOT

**SECOND_DERIVATIVE**
static final public int SECOND_DERIVATIVE
Constructors

CsInterpolate

public CsInterpolate(double[] xData, double[] yData)

Description

Constructs a cubic spline that interpolates the given data points. The interpolant satisfies the “not-a-knot” condition.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be distinct.
yData – A double array containing the y-coordinates of the data. The arrays xData and yData must have the same length.

CsInterpolate

public CsInterpolate(double[] xData, double[] yData, int typeLeft, double valueLeft, int typeRight, double valueRight)

Description

Constructs a cubic spline that interpolates the given data points with specified derivative endpoint conditions.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be distinct.
yData – A double array containing the y-coordinates of the data. The arrays xData and yData must have the same length.
typeLeft – An int denoting the type of condition at the left endpoint. This can be NOT_A_KNOT, FIRST_DERIVATIVE or SECOND_DERIVATIVE.
valueLeft – A double value at the left endpoint. If typeLeft is NOT_A_KNOT this is ignored, otherwise, it is the value of the specified derivative.
typeRight – An int denoting the type of condition at the right endpoint. This can be NOT_A_KNOT, FIRST_DERIVATIVE or SECOND_DERIVATIVE.
valueRight – A double value at the right endpoint.

Example: The cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is printed.

import com.ims1.math.*;

class CsInterpolateEx1 {
  public static void main(String args[]) {
    int n = 11;
    double x[] = new double[n];
    double y[] = new double[n];
for (int k = 0; k < n; k++) {
    x[k] = (double) k / (double) (n - 1);
    y[k] = Math.sin(15.0 * x[k]);
}

CsInterpolate cs = new CsInterpolate(x, y);
double csv = cs.value(0.25);
System.out.println("The computed cubic spline value at point .25 is " + csv);
}

Output
The computed cubic spline value at point .25 is -0.5487725038121579

CsPeriodic class

public class com.imsl.math.CsPeriodic extends com.imsl.math.Spline

Extension of the Spline class to interpolate data points with periodic boundary conditions.

Class CsPeriodic computes a $C^2$ cubic spline interpolant to a set of data points $(x_i, f_i)$ for
$i = 0, \ldots, n - 1$. The breakpoints of the spline are the abscissas. The program enforces periodic endpoint
conditions. This means that the spline $s$ satisfies $s(a) = s(b)$, $s'(a) = s'(b)$, and $s''(a) = s''(b)$, where $a$ is
the leftmost abscissa and $b$ is the rightmost abscissa. If the ordinate values corresponding to $a$ and $b$ are
not equal, then a warning message is issued. The ordinate value at $b$ is set equal to the ordinate value at $a$
and the interpolant is computed.

If the data points arise from the values of a smooth (say $C^4$) periodic function $f$, i.e. $f_i = f(x_i)$, then the
error will behave in a predictable fashion. Let $\xi$ be the breakpoint vector for the above spline interpolant.
Then, the maximum absolute error satisfies

$$
|f - s|_{[\xi_0, \xi_{n-1}]} \leq C |f^{(4)}|_{[\xi_0, \xi_{n-1}]} |\xi|^4
$$

where

$$
|\xi| := \max_{i=1, \ldots, n-1} |\xi_i - \xi_{i-1}|
$$

For more details, see de Boor (1978, pages 320-322).
Constructor

**CsPeriodic**

```java
public CsPeriodic(double[] xData, double[] yData)
```

**Description**

Constructs a cubic spline that interpolates the given data points with periodic boundary conditions.

**Parameters**

- `xData` – A `double` array containing the x-coordinates of the data. There must be at least 4 data points and values must be distinct.
- `yData` – A `double` array containing the y-coordinates of the data. The arrays `xData` and `yData` must have the same length.

**Example: The cubic spline interpolant with periodic boundary conditions**

A cubic spline interpolant to a function is computed. The value of the spline at point 0.23 is printed.

```java
import com.imsl.math.*;

public class CsPeriodicEx1 {
 public static void main(String args[]) {
 int n = 11;
 double x[] = new double[n];
 double y[] = new double[n];

 double h = 2. * Math.PI / 15. / 10.;
 for (int k = 0; k < n; k++) {
 x[k] = h * (double) (k);
 y[k] = Math.sin(15.0 * x[k]);
 }
 CsPeriodic cs = new CsPeriodic(x, y);
 double csv = cs.value(0.23);
 System.out.println("The computed cubic spline value at point .23 is "+ csv);
 }
}
```

**Output**

The computed cubic spline value at point .23 is -0.3034014726064514
CsShape class

public class com.imsl.math.CsShape extends com.imsl.math.Spline

Extension of the Spline class to interpolate data points consistent with the concavity of the data.

Class CsShape computes a cubic spline interpolant to \( n \) data points \( x_i, f_i \) for \( i = 0, \ldots, n - 1 \). For ease of explanation, we will assume that \( x_i < x_{i+1} \), although it is not necessary for the user to sort these data values. If the data are strictly convex, then the computed spline is convex, \( C^2 \), and minimizes the expression

\[
\int_{x_1}^{x_n} (g''(x))^2 dx
\]

over all convex \( C^1 \) functions that interpolate the data. In the general case when the data have both convex and concave regions, the convexity of the spline is consistent with the data and the above integral is minimized under the appropriate constraints. For more information on this interpolation scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this class is that it is not possible, a priori, to predict the number of breakpoints of the resulting interpolant. In most cases, there will be breakpoints at places other than data locations. The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear polynomials are reproduced.) This routine should be used when it is important to preserve the convex and concave regions implied by the data.

Constructor

CsShape

public CsShape(double[] xData, double[] yData) throws
CsShape.TooManyIterationsException, SingularMatrixException

Description

Construct a cubic spline interpolant which is consistent with the concavity of the data.

Parameters

- xData – A double array containing the x-coordinates of the data. Values must be distinct.
- yData – A double array containing the y-coordinates of the data. The arrays xData and yData must have the same length.

Example: The shape preserving cubic spline interpolant

A cubic spline interpolant to a function is computed consistent with the concavity of the data. The spline value at 0.05 is printed.
import com.imsl.math.*;

public class CsShapeEx1 {
    public static void main(String args[]) throws com.imsl.IMSLException {
        double x[] = {0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00};
        double y[] = {0.00, 0.90, 0.95, 0.90, 0.10, 0.05, 0.05, 0.20, 1.00};

        CsShape cs = new CsShape(x, y);
        double csv = cs.value(0.05);
        System.out.println("The computed cubic spline value at point .05 is "+ csv);
    }
}

Output
The computed cubic spline value at point .05 is 0.5582312228648201

---

CsShape.TooManyIterationsException class

static public class com.imsl.math.CsShape.TooManyIterationsException extends com.imsl.IMSLException

Too many iterations.

Constructors

CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException()

Description
Constructs a TooManyIterationsException object.

CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException(Object[] arguments)

Description
Constructs a TooManyIterationsException object.

Parameter
arguments – an Object array containing arguments used within the error message string
CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException(String key, Object[] arguments)

Description
Constructs a TooManyIterationsException object.

Parameters
   key – a String containing the error message
   arguments – an Object array containing arguments used within the error message string

CsSmooth class

public class com.imsl.math.CsSmooth extends com.imsl.math.Spline
Extension of the Spline class to construct a smooth cubic spline from noisy data points.

Class CsSmooth is designed to produce a $C^2$ cubic spline approximation to a data set in which the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline with knots at all the data abscissas $x = xData$, but it does not interpolate the data $(x_i, f_i)$. The smoothing spline $S$ is the unique $C^2$ function that minimizes

$$
\int_a^b S''(x)^2 \, dx
$$

subject to the constraint

$$
\sum_{i=0}^{n-1} |(S(x_i) - f_i)w_i|^2 \leq \sigma
$$

where $\sigma$ is the smoothing parameter. The reader should consult Reinsch (1967) for more information concerning smoothing splines. CsSmooth solves the above problem when the user provides the smoothing parameter $\sigma$. CsSmoothC2 attempts to find the “optimal” smoothing parameter using the statistical technique known as cross-validation. This means that (in a very rough sense) one chooses the value of $\sigma$ so that the smoothing spline $(S_{\sigma})$ best approximates the value of the data at $x_i$, if it is computed using all the data except the $i$-th; this is true for all $i = 0, \ldots, n - 1$. For more information on this topic, we refer the reader to Craven and Wahba (1979).
 Constructors

 CsSmooth
 public CsSmooth(double[] xData, double[] yData)

 Description
 Constructs a smooth cubic spline from noisy data using cross-validation to estimate the smoothing parameter. All of the points have equal weights.

 Parameters
 xData – A double array containing the x-coordinates of the data. Values must be distinct.
 yData – A double array containing the y-coordinates of the data. The arrays xData and yData must have the same length.

 CsSmooth
 public CsSmooth(double[] xData, double[] yData, double[] weight)

 Description
 Constructs a smooth cubic spline from noisy data using cross-validation to estimate the smoothing parameter. Weights are supplied by the user.

 Parameters
 xData – A double array containing the x-coordinates of the data. Values must be distinct.
 yData – A double array containing the y-coordinates of the data. The arrays xData and yData must have the same length.
 weight – A double array containing the relative weights. This array must have the same length as xData.

 Example: The cubic spline interpolant to noisy data

 A cubic spline interpolant to noisy data is computed using cross-validation to estimate the smoothing parameter. The value of the spline at point 0.3010 is printed.

 import com.imsl.math.*;
 import com.imsl.stat.*;

 public class CsSmoothEx1 {

     public static void main(String args[]) {
         int n = 300;
         double x[] = new double[n];
         double y[] = new double[n];
         for (int k = 0; k < n; k++) {
             x[k] = (3.0 * k) / (n - 1);
             y[k] = 1.0 / (0.1 + Math.pow(3.0 * (x[k] - 1.0), 4));
         }

         // Seed the random number generator

 Interpolation and Approximation CsSmooth • 173
Random rn = new Random();
rn.setSeed(1234579L);
rn.setMultiplier(16807);

// Contaminate the data
for (int i = 0; i < n; i++) {
    y[i] += 2.0 * rn.nextFloat() - 1.0;
}

// Smooth the data
CsSmooth cs = new CsSmooth(x, y);
double csv = cs.value(0.3010);
System.out.println("The computed cubic spline value at point .3010 is " + csv);

Output
The computed cubic spline value at point .3010 is 0.10785822561423902

CsSmoothC2 class

public class com.imsl.math.CsSmoothC2 extends com.imsl.math.Spline

Extension of the Spline class used to construct a spline for noisy data points using an alternate method.

Class CsSmoothC2 is designed to produce a $C^2$ cubic spline approximation to a data set in which the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline with knots at all the data abscissas $x_i$, but it does not interpolate the data $(x_i, f_i)$. The smoothing spline $S_\sigma$ is the unique $C^2$ function that minimizes

$$\int_a^b s_\sigma''(x)^2 \, dx$$

subject to the constraint

$$\sum_{i=0}^{n-1} |s_\sigma(x_i) - f_i|^2 \leq \sigma .$$

Recommended values for $\sigma$ depend on the weights, $w$. If an estimate for the standard deviation of the error in the $y$-values is available, then $w_i$ should be set to this value and the smoothing parameter should be chosen in the confidence interval corresponding to the left side of the above inequality. That is,

$$n - \sqrt{2n} \leq \sigma \leq n + \sqrt{2n}.$$
CsSmoothC2 is based on an algorithm of Reinsch (1967). This algorithm is also discussed in de Boor (1978, pages 235-243).

**Constructors**

**CsSmoothC2**

```java
class CsSmoothC2 {
 public CsSmoothC2(double[] xData, double[] yData, double sigma)
}
```

**Description**

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch (1967). All of the points have equal weights.

**Parameters**

- `xData`: A `double` array containing the x-coordinates of the data. Values must be distinct.
- `yData`: A `double` array containing the y-coordinates of the data. The arrays `xData` and `yData` must have the same length.
- `sigma`: A `double` value specifying the smoothing parameter. Sigma must not be negative.

**CsSmoothC2**

```java
class CsSmoothC2 {
 public CsSmoothC2(double[] xData, double[] yData, double[] weight, double sigma)
}
```

**Description**

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch (1967) with weights supplied by the user.

**Parameters**

- `xData`: A `double` array containing the x-coordinates of the data. Values must be distinct.
- `yData`: A `double` array containing the y-coordinates of the data. The arrays `xData` and `yData` must have the same length.
- `weight`: A `double` array containing the weights. The arrays `xData` and `weight` must have the same length.
- `sigma`: A `double` value specifying the smoothing parameter. Sigma must not be negative.

**Example: The cubic spline interpolant to noisy data with supplied weights**

A cubic spline interpolant to noisy data is computed using supplied weights and smoothing parameter. The value of the spline at point 0.3010 is printed.

```java
import com.imsl.math.*;
import com.imsl.stat.*;

public class CsSmoothC2Ex1 {

 public class CsSmoothC2Ex1 {
```

**Interpolation and Approximation**

CsSmoothC2 • 175
public static void main(String args[]) {
    // Set up a grid
    int n = 300;
    double x[] = new double[n];
    double y[] = new double[n];
    for (int k = 0; k < n; k++) {
        x[k] = 3. * ((double) (k) / (double) (n - 1));
        y[k] = 1. / (.1 + Math.pow(3. * (x[k] - 1.), 4));
    }
    // Seed the random number generator
    Random rn = new Random();
    rn.setSeed(1234579);
    rn.setMultiplier(16807);
    // Contaminate the data
    for (int i = 0; i < n; i++) {
        y[i] = y[i] + 2. * rn.nextFloat() - 1.;
    }
    // Set the weights
    double sdev = 1. / Math.sqrt(3.);
    double weights[] = new double[n];
    for (int i = 0; i < n; i++) {
        weights[i] = sdev;
    }
    // Set the smoothing parameter
    double smpar = (double) n;
    // Smooth the data
    CsSmoothC2 cs = new CsSmoothC2(x, y, weights, smpar);
    double csv = cs.value(0.3010);
    System.out.println("The computed cubic spline value at point .3010 is " + csv);
}

Output
The computed cubic spline value at point .3010 is 0.06458434076780883

BSpline class
abstract public class com.imsl.math.BSpline implements Serializable, Cloneable
BSpline represents and evaluates univariate B-splines.
B-splines provide a particularly convenient and suitable basis for a given class of smooth \( p \)-poly functions. Such a class is specified by giving its breakpoint sequence, its order \( k \), and the required smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified by giving its knot sequence \( t \in \mathbb{R}^M \). The specification rule is as follows: If the class is to have all derivatives up to and including the \( j \)-th derivative continuous across the interior breakpoint \( \xi_i \), then the number \( \xi_i \) should occur \( k - j - 1 \) times in the knot sequence. Assuming that \( \xi_1 \) and \( \xi_n \) are the endpoints of the interval of interest, choose the first \( k \) knots equal to \( \xi_1 \) and the last \( k \) knots equal to \( \xi_n \). This can be done because the B-splines are defined to be right continuous near \( \xi_1 \) and left continuous near \( \xi_n \).

When the above construction is completed, a knot sequence \( t \) of length \( M \) is generated, and there are \( m = M - k \) B-splines of order \( k \), for example \( B_0, \ldots, B_{m-1} \), spanning the \( p \)-poly functions on the interval with the indicated smoothness. That is, each \( p \)-poly function in this class has a unique representation
\[
p = a_0 B_0 + a_1 B_1 + \ldots + a_{m-1} B_{m-1}
\]
as a linear combination of B-splines. A B-spline is a particularly compact piecewise polynomial function. \( B_i \) is a nonnegative function that is nonzero only on the interval \([t_i, t_{i+k}]\). More precisely, the support of the \( i \)-th B-spline is \([t_i, t_{i+k}]\). No piecewise polynomial function in the same class (other than the zero function) has smaller support (i.e., vanishes on more intervals) than a B-spline. This makes B-splines particularly attractive basis functions since the influence of any particular B-spline coefficient extends only over a few intervals.

### Fields

**coef**

```java
protected double[] coef
```

The B-spline coefficient array.

**knot**

```java
protected double[] knot
```

The knot array of length \( n + order \), where \( n \) is the number of coefficients in the B-spline.

**order**

```java
protected int order
```

Order of the spline.

### Constructor

**BSpline**

```java
public BSpline()
```

Interpolation and Approximation
Methods

derivative
public double derivative(double x)

Description
Returns the value of the first derivative of the B-spline at a point.

Parameter
x – a double specifying a point at which the derivative is to be evaluated

Returns
a double containing the value of the first derivative of the B-spline at the point x

derivative
public double derivative(double x, int ideriv)

Description
Returns the value of the derivative of the B-spline at a point.

Parameters
x – a double specifying a point at which the derivative is to be evaluated
ideriv – an int specifying the derivative to be computed. If zero, the function value is returned.
If one, the first derivative is returned, etc.

Returns
a double containing the value of the derivative of the B-spline at the point x

derivative
public double[] derivative(double[] x, int ideriv)

Description
Returns the value of the derivative of the B-spline at each point of an array.

Parameters
x – a double array of points at which the derivative is to be evaluated
ideriv – an int specifying the derivative to be computed. If zero, the function value is returned.
If one, the first derivative is returned, etc.

Returns
a double array containing the value of the derivative the B-spline at each point of the array x

getKnots
public double[] getKnots()

Description
Returns a copy of the knot sequence.
Returns
a double array containing a copy of the knot sequence.

g getSpline
public Spline getSpline()

Description
Returns a Spline representation of the B-spline.

Returns
a Spline representation of the BSpline

integral
public double integral(double a, double b)

Description
Returns the value of an integral of the B-spline.

Parameters
  a – a double specifying the lower limit of integration
  b – a double specifying the upper limit of integration

Returns
a double which specifies the B-spline integral value from a to b

value
public double value(double x)

Description
Returns the value of the B-spline at a point.

Parameter
  x – a double specifying the point at which the B-spline is to be evaluated

Returns
a double giving the value of the B-spline at the point x

value
public double[] value(double[] x)

Description
Returns the value of the B-spline at each point of an array.

Parameter
  x – a double array of points at which the B-spline is to be evaluated

Returns
a double array containing the value of the B-spline at each point of the array x
BsInterpolate class

public class com.imsl.math.BsInterpolate extends com.imsl.math.BSpline

Extension of the BSpline class to interpolate data points.

Given the data points \( x = xData, f = yData, \) and \( n \) the number of elements in \( xData \) and \( yData, \) the default action of BsInterpolate computes a cubic (order = 4) spline interpolant \( s \) to the data using a default “not-a-knot” knot sequence. Constructors are also provided that allow the order and knot sequence to be specified. This algorithm is based on the routine SPLINT by de Boor (1978, p. 204).

First, the \( xData \) vector is sorted and the result is stored in \( x. \) The elements of \( yData \) are permuted appropriately and stored in \( f, \) yielding the equivalent data \((x_i,f_i)\) for \( i = 0 \) to \( n-1. \) The following preliminary checks are performed on the data, with \( k = \text{order}. \) We verify that

\[
x_i < x_{i+1} \text{ for } i = 0, \ldots, n - 2
\]

\[
t_i < t_{i+k} \text{ for } i = 0, \ldots, n - 1
\]

\[
t_i < t_{i+1} \text{ for } i = 0, \ldots, n+k - 2
\]

The first test checks to see that the abscissas are distinct. The second and third inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check \( t_{k-1} \leq x_i \leq t_n \) for \( i = 0 \) to \( n-1. \) This first inequality in the last check is necessary since the method used to generate the entries of the interpolation matrix requires that the \( k \) possibly nonzero B-splines at \( x_i, B_{j-k+1}, \ldots, B_j \) where \( j \) satisfies \( t_j \leq x_i < t_{j+1} \) be well-defined (that is, \( j-k+1 \geq 0). \)

Constructors

BsInterpolate

public BsInterpolate(double[] xData, double[] yData)

Description

Constructs a B-spline that interpolates the given data points. The computed B-spline will be order 4 (cubic) and have a default “not-a-knot” spline knot sequence.

Parameters

- \( xData \) – A double array containing the x-coordinates of the data. Values must be distinct.
- \( yData \) – A double array containing the y-coordinates of the data. The arrays \( xData \) and \( yData \) must have the same length.

BsInterpolate

public BsInterpolate(double[] xData, double[] yData, int order)
**Description**

Constructs a B-spline that interpolates the given data points and order, using a default “not-a-knot” spline knot sequence.

**Parameters**

- `xData` – A double array containing the x-coordinates of the data. Values must be distinct.
- `yData` – A double array containing the y-coordinates of the data. The arrays `xData` and `yData` must have the same length.
- `order` – An int denoting the order of the B-spline.

**BsInterpolate**

customBsInterpolate(double[] xData, double[] yData, int order, double[] knot)

**Description**

Constructs a B-spline that interpolates the given data points, using the specified order and knots.

**Parameters**

- `xData` – A double array containing the x-coordinates of the data. Values must be distinct.
- `yData` – A double array containing the y-coordinates of the data. The arrays `xData` and `yData` must have the same length.
- `order` – An int denoting the order of the spline.
- `knot` – A double array containing the knot sequence for the B-spline.

**Example: The B-spline interpolant**

A B-Spline interpolant to data is computed. The value of the spline at point .23 is printed.

```java
import com.imsl.math.*;

public class BsInterpolateEx1 {

 public static void main(String args[]) {
 int n = 11;
 double x[] = new double[n];
 double y[] = new double[n];

 double h = 2. * Math.PI / 15. / 10.;
 for (int k = 0; k < n; k++) {
 x[k] = h * (double) (k);
 y[k] = Math.sin(15.0 * x[k]);
 }

 BsInterpolate bs = new BsInterpolate(x, y);
 double bsv = bs.value(0.23);
 System.out.println("The computed B-spline value at point .23 is "+ bsv);
 }
}
```

**Interpolation and Approximation**

BsInterpolate • 181
Output
The computed B-spline value at point .23 is -0.3034183992767692

BsLeastSquares class

public class com.imsl.math.BsLeastSquares extends com.imsl.math.BSpline
Extension of the BSpline class to compute a least squares spline approximation to data points.

Let’s make the identifications
\[ n = \text{xData.length} \]
\[ x = \text{xData} \]
\[ f = \text{yData} \]
\[ m = \text{nCoef} \]
\[ k = \text{order} \]

For convenience, we assume that the sequence \( x \) is increasing, although the class does not require this.

By default, \( k = 4 \), and the knot sequence we select equally distributes the knots through the distinct \( x_i \)’s.
In particular, the \( m + k \) knots will be generated in \([x_1, x_n]\) with \( k \) knots stacked at each of the extreme values. The interior knots will be equally spaced in the interval.

Once knots \( t \) and weights \( w \) are determined, then the spline least-squares fit to the data is computed by minimizing over the linear coefficients \( a_j \)

\[
\sum_{i=0}^{n-1} w_i \left[ f_i - \sum_{j=1}^{m} a_j B_j(x_i) \right]^2
\]

where the \( B_j, j = 1,\ldots,m \) are a (B-spline) basis for the spline subspace.

This algorithm is based on the routine L2APPR by deBoor (1978, p. 255).

Fields

nCoef
protected int nCoef

Number of B-spline coefficients.
weight
protected double[] weight

The weight array of length \( n \), where \( n \) is the number of data points fit.

**Constructors**

**BsLeastSquares**

```java
public BsLeastSquares(double[] xData, double[] yData, int nCoef)
```

**Description**

Constructs a least squares B-spline approximation to the given data points.

**Parameters**

- `xData` – A double array containing the x-coordinates of the data.
- `yData` – A double array containing the y-coordinates of the data. The arrays `xData` and `yData` must have the same length.
- `nCoef` – An int denoting the linear dimension of the spline subspace. It should be smaller than the number of data points and greater than or equal to the order of the spline (whose default value is 4).

**BsLeastSquares**

```java
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order)
```

**Description**

Constructs a least squares B-spline approximation to the given data points.

**Parameters**

- `xData` – A double array containing the x-coordinates of the data.
- `yData` – A double array containing the y-coordinates of the data. The arrays `xData` and `yData` must have the same length.
- `nCoef` – An int denoting the linear dimension of the spline subspace. It should be smaller than the number of data points and greater than or equal to the order of the spline.
- `order` – An int denoting the order of the spline.

**BsLeastSquares**

```java
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order, double[] weight, double[] knot)
```

**Description**

Constructs a least squares B-spline approximation to the given data points.

---

**Interpolation and Approximation BsLeastSquares** • 183
Parameters

- **xData** – A double array containing the x-coordinates of the data.
- **yData** – A double array containing the y-coordinates of the data. The arrays xData and yData must have the same length.
- **nCoef** – An int denoting the linear dimension of the spline subspace. It should be smaller than the number of data points and greater than or equal to the order of the spline.
- **order** – An int denoting the order of the spline.
- **weight** – A double array containing the weights for the data. The arrays xData, yData and weights must have the same length.
- **knot** – A double array containing the knot sequence for the spline.

**Example: The B-spline least squares fit**

A B-Spline least squares fit to data is computed. The value of the spline at point 4.5 is printed.

```java
import com.imsl.math.*;

public class BsLeastSquaresEx1 {
 public static void main(String args[]) {
 double x[] = {0, 1, 2, 3, 4, 5, 8, 9, 10};
 double y[] = {1.0, 0.8, 2.4, 3.1, 4.5, 5.8, 6.2, 4.9, 3.7};

 BsLeastSquares bs = new BsLeastSquares(x, y, 5);
 double bsv = bs.value(4.5);
 System.out.println("The computed B-spline value at point 4.5 is " + bsv);
 }
}
```

**Output**

The computed B-spline value at point 4.5 is 5.228554323596942

**Spline2D class**

abstract public class com.imsl.math.Spline2D implements Serializable, Cloneable

Represents and evaluates tensor-product splines.

The simplest method of obtaining multivariate interpolation and approximation functions is to take univariate methods and form a multivariate method via tensor products. In the case of two-dimensional spline interpolation, the derivation proceeds as follows: Let $t_i$ be a knot sequence for splines of order $k_x$, $k_y$. 

184 • Spline2D JMSL
and \( t_y \) be a knot sequence for splines of order \( k_y \). Let \( N_x + k_x \) be the length of \( t_x \), and \( N_y + k_y \) be the length of \( t_y \). Then, the tensor-product spline has the following form:

\[
\sum_{m=0}^{N_y-1} \sum_{n=0}^{N_x-1} c_{nm} B_{n,k_x,t_x}(x) B_{m,k_y,t_y}(y)
\]

Given two sets of points

\[
\{x_i\}_{i=1}^{N_x}
\]

and

\[
\{y_j\}_{j=1}^{N_y}
\]

for which the corresponding univariate interpolation problem can be solved, the tensor-product interpolation problem finds the coefficients \( c_{nm} \) so that

\[
\sum_{m=0}^{N_y-1} \sum_{n=0}^{N_x-1} c_{nm} B_{n,k_x,t_x}(x_i) B_{m,k_y,t_y}(y_j) = f_{ij}
\]

This problem can be solved efficiently by repeatedly solving univariate interpolation problems as described in de Boor (1978, p. 347).

**Constructor**

**Spline2D**

```java
public Spline2D()
```

**Methods**

**derivative**

```java
public double derivative(double x, double y, int xPartial, int yPartial)
```

**Description**

Returns the value of the partial derivative of the tensor-product spline at the point \((x, y)\).

**Parameters**

\( x \) – a `double` scalar specifying the \( x \)-coordinate of the evaluation point for the tensor-product spline.

\( y \) – a `double` scalar specifying the \( y \)-coordinate of the evaluation point for the tensor-product spline.

\( xPartial \) – an `int` scalar specifying the \( x \)-partial derivative.

\( yPartial \) – an `int` scalar specifying the \( y \)-partial derivative.
Returns a double scalar containing the value of the partial derivative
\[ \frac{\partial^{i+j}s}{\partial^i x \, \partial^j y} \]
where \( i = x_{\text{Partial}} \) and \( j = y_{\text{Partial}} \), at \((x, y)\).

derivative

```java
public double[][] derivative(double[] xVec, double[] yVec, int xPartial, int yPartial)
```

Description

Returns the values of the partial derivative of the tensor-product spline of an array of points.

Parameters

- `xVec` – a double array specifying the \( x \)-coordinates at which the spline is to be evaluated.
- `yVec` – a double array specifying the \( y \)-coordinates at which the spline is to be evaluated.
- `xPartial` – an int scalar specifying the \( x \)-partial derivative.
- `yPartial` – an int scalar specifying the \( y \)-partial derivative.

Returns

a double matrix containing the values of the partial derivatives
\[ \frac{\partial^{i+j}s}{\partial^i x \, \partial^j y} \]
where \( i = x_{\text{Partial}} \) and \( j = y_{\text{Partial}} \), at each \((x, y)\).

gCoefficients

```java
public double[][] getCoefficients()
```

Description

Returns the coefficients for the tensor-product spline.

Returns

a double matrix containing the coefficients.

gXKnots

```java
public double[] getKnots()
```

Description

Returns the knot sequences in the \( x \)-direction.

Returns

a double array containing the knot sequences of the spline in the \( x \)-direction.

gYKnots

```java
public double[] getKnots()
```
**Description**
Returns the knot sequences in the y-direction.

**Returns**
a double array containing the knot sequences of the spline in the y-direction.

**integral**
```java
public double integral(double a, double b, double c, double d)
```

**Description**
Returns the value of an integral of a tensor-product spline on a rectangular domain.
If s is the spline, then the `integral` method returns
\[
\int_a^b \int_c^d s(x,y) dy dx
\]
This method uses the (univariate integration) identity (22) in de Boor (1978, p. 151)
\[
\int_{t_0}^{t_r} \sum_{i=0}^{n-1} \alpha_i B_{i,k}(\tau) d\tau = \sum_{i=0}^{r-1} \left[ \sum_{j=0}^{i} \alpha_j \frac{t_{j+k} - t_j}{k} \right] B_{i,k+1}(x)
\]
where \( t_0 \leq x \leq t_r \).
It assumes (for all knot sequences) that the first and last \( k \) knots are stacked, that is, \( t_0 = \ldots = t_{k-1} \) and \( t_{n} = \ldots = t_{n+k-1} \), where \( k \) is the order of the spline in the \( x \) or \( y \) direction.

**Parameters**
- \( a \) – a double specifying the lower limit for the first variable of the tensor-product spline.
- \( b \) – a double specifying the upper limit for the first variable of the tensor-product spline.
- \( c \) – a double specifying the lower limit for the second variable of the tensor-product spline.
- \( d \) – a double specifying the upper limit for the second variable of the tensor-product spline.

**Returns**
a double, the integral of the tensor-product spline over the rectangle \([a, b]\) by \([c, d]\).

**value**
```java
public double value(double x, double y)
```

**Description**
Returns the value of the tensor-product spline at the point \((x, y)\).

**Parameters**
- \( x \) – a double scalar specifying the \( x \)-coordinate of the evaluation point for the tensor-product spline.
- \( y \) – a double scalar specifying the \( y \)-coordinate of the evaluation point for the tensor-product spline.
value
public double[][] value(double[] xVec, double[] yVec)

Description
Returns the values of the tensor-product spline of an array of points.

Parameters
xVec – a double array specifying the x-coordinates at which the spline is to be evaluated.
yVec – a double array specifying the y-coordinates at which the spline is to be evaluated.

Returns
a double matrix containing the values evaluated.

Spline2DInterpolate class

public class com.imsl.math.Spline2DInterpolate extends com.imsl.math.Spline2D

Computes a two-dimensional, tensor-product spline interpolant from two-dimensional, tensor-product data.

The class Spline2DInterpolate computes a tensor-product spline interpolant. The tensor-product spline interpolant to data \{ \{(x_i, y_j, f_{ij})\} \}, where 0 \leq i \leq (n_x - 1) and 0 \leq j \leq (n_y - 1) has the form

$$\sum_{m=0}^{n_y-1} \sum_{n=0}^{n_x-1} c_{nm} B_{n,k_x,t_x}(x_i) B_{m,k_y,t_y}(y_j) = f_{ij}$$

where \(k_x\) and \(k_y\) are the orders of the splines. These numbers are defaulted to be 4, but can be set to any positive integer using xOrder and yOrder in the constructor. Likewise, \(t_x\) and \(t_y\) are the corresponding knot sequences (xKnots and yKnots). These default values are selected by Spline2DInterpolate.

The algorithm requires that

$$t_x(k_x - 1) \leq x_i \leq t_x(n_x) \quad 0 \leq i \leq n_x - 1$$

$$t_y(k_y - 1) \leq y_j \leq t_y(n_y - 1) \quad 0 \leq j \leq n_y - 1$$

Tensor-product spline interpolants in two dimensions can be computed quite efficiently by solving (repeatedly) two univariate interpolation problems.

The computation is motivated by the following observations. It is necessary to solve the system of equations

$$\sum_{m=0}^{n_x-1} \sum_{n=0}^{n_y-1} c_{nm} B_{n,k_x,t_x}(x_i) B_{m,k_y,t_y}(y_j) = f_{ij}$$
Setting

\[ h_{ni} = \sum_{n=0}^{n_x-1} c_{nm} B_{n,k_i,t_i}(x_i) \]

note that for each fixed \( i \) from 0 to \( n_x - 1 \), we have \( n_y \) linear equations in the same number of unknowns as can be seen below:

\[ \sum_{m=0}^{n_y-1} h_{mi} B_{m,k_j,t_j}(y_j) = f_{ij} \]

\[ \sum_{m=0}^{n_y-1} \sum_{n=0}^{n_x-1} c_{nm} B_{n,k_i,t_i}(x_i) B_{m,k_j,t_j}(y_j) = f_{ij} \]

Setting

\[ h_{ni} = \sum_{n=0}^{n_x-1} c_{nm} B_{n,k_i,t_i}(x_i) \]

note that for each fixed \( i \) from 0 to \( n_x - 1 \), we have \( n_y - 1 \) linear equations in the same number of unknowns as can be seen below:

\[ \sum_{m=0}^{n_y-1} h_{ni} B_{n,k_j,t_j}(y_j) = f_{ij} \]

The same matrix appears in all of the equations above:

\[ [B_{m,k_j,t_j}(y_j)] \quad 0 \leq m, j \leq n_y - 1 \]

Thus, only factor this matrix once and then apply this factorization to the \( n_x \) right-hand sides. Once this is done and \( h_{ni} \) is computed, then solve for the coefficients \( c_{nm} \) using the relation

\[ \sum_{n=0}^{n_x-1} c_{nm} B_{n,k_i,t_i}(x_i) = h_{mi} \]

for \( n \) from 0 to \( n_y - 1 \), which again involves one factorization and \( n_y \) solutions to the different right-hand sides. The class Spline2DInterpolate is based on the routine SPLI2D by de Boor (1978, p. 347).

**Constructors**

**Spline2DInterpolate**

```java
public Spline2DInterpolate(double[] xData, double[] yData, double[][] fData)
```

**Description**

Constructor for Spline2DInterpolate.
Parameters

- **xData** – a double array containing the data points in the x-direction.
- **yData** – a double array containing the data points in the y-direction.
- **fData** – a double matrix of size xData.length by yData.length containing the values to be interpolated.

**Spline2DInterpolate**

```java
public Spline2DInterpolate(double[] xData, double[] yData, double[][] fData, int xOrder, int yOrder)
```

**Description**

Constructor for Spline2DInterpolate.

**Parameters**

- **xData** – a double array containing the data points in the x-direction.
- **yData** – a double array containing the data points in the y-direction.
- **fData** – a double matrix of size xData.length by yData.length containing the values to be interpolated.
- **xOrder** – an int scalar value specifying the order of the spline in the x-direction. xOrder must be at least 1. Default: xOrder = 4, tensor-product cubic spline.
- **yOrder** – an int scalar value specifying the order of the spline in the y-direction. yOrder must be at least 1. Default: yOrder = 4, tensor-product cubic spline.

**Spline2DInterpolate**

```java
public Spline2DInterpolate(double[] xData, double[] yData, double[][] fData, int xOrder, int yOrder, double[] xKnots, double[] yKnots)
```

**Description**

Constructor for Spline2DInterpolate.

**Parameters**

- **xData** – a double array containing the data points in the x-direction.
- **yData** – a double array containing the data points in the y-direction.
- **fData** – a double matrix of size xData.length by yData.length containing the values to be interpolated.
- **xOrder** – an int scalar value specifying the order of the spline in the x-direction. xOrder must be at least 1. Default: xOrder = 4, tensor-product cubic spline.
- **yOrder** – an int scalar value specifying the order of the spline in the y-direction. yOrder must be at least 1. Default: yOrder = 4, tensor-product cubic spline.
- **xKnots** – a double array of size xData.length + xOrder specifying the knot sequences of the spline in the x-direction. Default knot sequences are selected by the class.
- **yKnots** – a double array of size yData.length + yOrder specifying the knot sequences of the spline in the y-direction. Default knot sequences are selected by the class.
Example 1

A tensor-product spline interpolant to a function

\[ f(x, y) = x^3 + y^2 \]

is computed. The values of the interpolant and the error on a 4 x 4 grid are displayed.

```java
import java.text.*;
import com.imsl.math.*;

public class Spline2DInterpolateEx1 {

 private static double F(double x, double y) {
 return (x * x * x + y * y);
 }

 public static void main(String args[]) {
 int nData = 11;
 int outData = 2;
 double[][] fData = new double[nData][nData];
 double[] xData = new double[nData];
 double[] yData = new double[nData];
 double x, y, z;

 // Set up grid
 for (int i = 0; i < nData; i++) {
 xData[i] = yData[i] = (double) i / ((double) (nData - 1));
 }

 for (int i = 0; i < nData; i++) {
 for (int j = 0; j < nData; j++) {
 fData[i][j] = F(xData[i], yData[j]);
 }
 }

 // Compute tensor-product interpolant
 Spline2DInterpolate spline = new Spline2DInterpolate(xData, yData, fData);

 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(4);
 nf.setMinimumFractionDigits(4);

 // Print results
 System.out.println(" x y F(x, y) Interpolant Error");
 for (int i = 0; i < outData; i++) {
 x = (double) i / (double) (outData);
 for (int j = 0; j < outData; j++) {
 y = (double) j / (double) (outData);
 z = spline.value(x, y);
 System.out.println(nf.format(x) + " " + nf.format(y) + " " + nf.format(F(x, y)) + " " + nf.format(z) + " " + nf.format(Math.abs(F(x, y) - z)));
 }
 }
 }
}
```

Interpolation and Approximation

Spline2DInterpolate • 191
Example 2

A tensor-product spline interpolant to a function

\[ f(x, y) = x^3 + y^2 \]

is computed. The values of the interpolant and the error on a 4 x 4 grid are displayed. Notice that the first interpolant with order = 3 does not reproduce the cubic data, while the second interpolant with order = 6 does reproduce the data.

```java
import java.text.*;
import com.imsl.math.*;

public class Spline2DInterpolateEx2 {

 private static double F(double x, double y) {
 return x * x * x + y * y;
 }

 public static void main(String args[]) {

 int nData = 7;
 int outData = 4;
 double[][] fData = new double[nData][nData];
 double[] xData = new double[nData];
 double[] yData = new double[nData];
 double x, y, z;

 // Set up grid
 for (int i = 0; i < nData; i++) {
 xData[i] = yData[i] = (double) i / ((double) (nData - 1));
 }

 for (int i = 0; i < nData; i++) {
 for (int j = 0; j < nData; j++) {
 fData[i][j] = F(xData[i], yData[j]);
 }
 }

 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(4);
 }
}
```
nf.setMinimumFractionDigits(4);

for (int order = 3; order < 7; order += 3) {
    // Compute tensor-product interpolant
    Spline2DInterpolate spline = new Spline2DInterpolate(xData, yData, fData, order, order);

    // Print results
    System.out.println("The order of the spline is "+order);
    System.out.println("x y F(x, y) Interpolant Error");
    for (int i = 0; i < outData; i++) {
        x = (double) i / (double) (outData);
        for (int j = 0; j < outData; j++) {
            y = (double) j / (double) (outData);
            z = spline.value(x, y);
            System.out.println(nf.format(x) + " " + nf.format(y) + " " + nf.format(F(x, y)) + " " + nf.format(z) + " " + nf.format(Math.abs(F(x, y) - z)));
        }
    }
}

Output

The order of the spline is 3

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.250</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.750</td>
<td>0.5625</td>
<td>0.5625</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.250</td>
<td>0.000</td>
<td>0.0156</td>
<td>0.0156</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.250</td>
<td>0.250</td>
<td>0.0781</td>
<td>0.0783</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.250</td>
<td>0.500</td>
<td>0.2656</td>
<td>0.2658</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.250</td>
<td>0.750</td>
<td>0.5781</td>
<td>0.5783</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>0.1250</td>
<td>0.1250</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.250</td>
<td>0.1875</td>
<td>0.1875</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>0.3750</td>
<td>0.3750</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.750</td>
<td>0.6875</td>
<td>0.6875</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.750</td>
<td>0.000</td>
<td>0.4219</td>
<td>0.4217</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.750</td>
<td>0.250</td>
<td>0.4844</td>
<td>0.4842</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.750</td>
<td>0.500</td>
<td>0.6719</td>
<td>0.6717</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.750</td>
<td>0.750</td>
<td>0.9844</td>
<td>0.9842</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

The order of the spline is 6

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Interpolant</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Interpolation and Approximation
Spline2DInterpolate • 193
Example 3
A spline interpolant \( s \) to a function
\[
 f(x, y) = x^3 y^2
\]
is constructed. Then, the values of the partial derivative
\[
 \frac{\partial^3 s(x, y)}{\partial x^2 \partial y}
\]
and the error are computed on a 4 x 4 grid.

```java
import java.text.*;
import com.imsl.math.*;

public class Spline2DInterpolateEx3 {

 private static double F(double x, double y) {
 return (x * x * x * y * y);
 }

 private static double F21(double x, double y) {
 return (6.0 * x * 2.0 * y);
 }

 public static void main(String args[]) {
 int nData = 11;
 int outData = 2;
 double[][] fData = new double[nData][nData];
 double[] xData = new double[nData];
 double[] yData = new double[nData];
 double x, y, z;

 // Set up grid
 for (int i = 0; i < nData; i++) {
 xData[i] = yData[i] = (double) i / ((double) (nData - 1));
 }
 }
```

for (int i = 0; i < nData; i++) {
    for (int j = 0; j < nData; j++) {
        fData[i][j] = F(xData[i], yData[j]);
    }
}

// Compute tensor-product interpolant
Spline2DInterpolate spline
    = new Spline2DInterpolate(xData, yData, fData);

NumberFormat nf = NumberFormat.getInstance();
    nf.setMaximumFractionDigits(4);
    nf.setMinimumFractionDigits(4);

// Print results
System.out.println(" x y F21(x, y) 21InterpDeriv Error");
for (int i = 0; i < outData; i++) {
    x = (double) (1 + i) / (double) (outData + 1);
    for (int j = 0; j < outData; j++) {
        y = (double) (1 + j) / (double) (outData + 1);
        z = spline.derivative(x, y, 2, 1);
        System.out.println(nf.format(x) + " " + nf.format(y) + " " + nf.format(F21(x, y)) + " " + nf.format(z) + " " + nf.format(Math.abs(F21(x, y) - z)));
    }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F21(x, y)</th>
<th>21InterpDeriv</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3333</td>
<td>0.3333</td>
<td>1.3333</td>
<td>1.3333</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.3333</td>
<td>0.6667</td>
<td>2.6667</td>
<td>2.6667</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6667</td>
<td>0.3333</td>
<td>2.6667</td>
<td>2.6667</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6667</td>
<td>0.6667</td>
<td>5.3333</td>
<td>5.3333</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Example 4

This example integrates a two-dimensional, tensor-product spline over the rectangle [0, x] by [0, y].

import java.text.*;
import com.imsl.math. *

public class Spline2DInterpolateEx4 {

    // Define function
    private static double F(double x, double y) {
        return (x * x * x + x * y);  
    }

    public static void main(String[] args) {
        double x = 0.3333;
        double y = 0.3333;
        double f = F(x, y);
        System.out.println(" F(x, y) = " + f);
    }
}

Interpolation and Approximation
Spline2DInterpolate • 195
// The integral of F from 0 to x and 0 to y
private static double FI(double x, double y) {
    return (y * x * x * x * x / 4.0 + x * y * y * y / 3.0);
}

public static void main(String args[]) {
    int nData = 11, outData = 2;
    double[][] fData = new double[nData][nData];
    double[] xData = new double[nData];
    double[] yData = new double[nData];
    double x, y, z;

    // Set up grid
    for (int i = 0; i < nData; i++) {
        xData[i] = yData[i] = (double) i / ((double) (nData - 1));
    }

    for (int i = 0; i < nData; i++) {
        for (int j = 0; j < nData; j++) {
            fData[i][j] = F(xData[i], yData[j]);
        }
    }

    // Compute tensor-product interpolant
    Spline2DInterpolate spline
        = new Spline2DInterpolate(xData, yData, fData);

    // Print results
    NumberFormat nf = NumberFormat.getInstance();
    nf.setMaximumFractionDigits(4);
    nf.setMinimumFractionDigits(4);
    System.out.println(" x y FI(x, y) Integral Error");
    for (int i = 0; i < outData; i++) {
        x = (double) (1 + i) / (double) (outData + 1);
        for (int j = 0; j < outData; j++) {
            y = (double) (1 + j) / (double) (outData + 1);
            z = spline.integral(0.0, x, 0.0, y);
            System.out.println(nf.format(x) + " " + nf.format(y) + " " + nf.format(FI(x, y)) + " " + nf.format(z) + " " + nf.format(Math.abs(FI(x, y) - z)));
        }
    }
}

Output

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>FI(x, y)</th>
<th>Integral</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3333</td>
<td>0.3333</td>
<td>0.0051</td>
<td>0.0051</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.3333</td>
<td>0.6667</td>
<td>0.0350</td>
<td>0.0350</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6667</td>
<td>0.3333</td>
<td>0.0247</td>
<td>0.0247</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6667</td>
<td>0.6667</td>
<td>0.0988</td>
<td>0.0988</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
**Spline2DLeastSquares class**

public class com.imsl.math.Spline2DLeastSquares extends com.imsl.math.Spline2D

Computes a two-dimensional, tensor-product spline approximant using least squares.

The Spline2DLeastSquares class computes a tensor-product spline least-squares approximation to weighted tensor-product data. The input consists of data vectors to specify the tensor-product grid for the data, two vectors with the weights, the values of the surface on the grid, and the specification for the tensor-product spline. The grid is specified by the two vectors \( x = xData \) and \( y = yData \) of length \( n = xData.length \) and \( m = yData.length \), respectively. A two-dimensional array \( f = fData \) contains the data values which are to be fit. The two vectors \( w_x = xWeights \) and \( w_y = yWeights \) contain the weights for the weighted least-squares problem. The information for the approximating tensor-product spline can be provided using the \( \text{setXOrder} \), \( \text{setYOrder} \), \( \text{setXKnots} \) and \( \text{setYKnots} \) methods. This information is contained in \( k_x = xOrder \), \( t_x = xKnots \), and \( N = xSplineSpaceDim \) for the spline in the first variable, and in \( k_y = yOrder \), \( t_y = yKnots \) and \( M = ySplineSpaceDim \) for the spline in the second variable. This class computes coefficients for the tensor-product spline by solving the normal equations in tensor-product form as discussed in de Boor (1978, Chapter 17). The interested reader might also want to study the paper by Grosse (1980).

As the computation proceeds, we obtain coefficients \( c \) minimizing

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} w_x(i) w_y(j) \left( \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} c_{kl} B_{kl}(x_i, y_j) - f_{ij} \right)^2
\]

where the function \( B_{kl} \) is the tensor-product of two B-splines of order \( k_x \) and \( k_y \). Specifically, we have

\[
B_{kl}(x,y) = B_{k_x,k_y,t_x}(x) B_{l,y,t_y}(y)
\]

The spline

\[
\sum_{k=0}^{N-1} \sum_{l=0}^{M-1} c_{kl} B_{kl}
\]

and its partial derivatives can be evaluated using the \text{value} method.

**Constructor**

**Spline2DLeastSquares**

public Spline2DLeastSquares(double[] xData, double[] yData, double[][] fData, int xSplineSpaceDim, int ySplineSpaceDim)

**Description**

Constructor for Spline2DLeastSquares.
**Parameters**

- **xData** – a double array containing the data points in the x-direction.
- **yData** – a double array containing the data points in the y-direction.
- **fData** – a double matrix of size `xData.length` by `yData.length` containing the values to be approximated.
- **xSplineSpaceDim** – an int scalar value specifying the linear dimension of the spline subspace for the x variable. It should be smaller than `xData.length` and greater than or equal to `xOrder` (whose default value is 4).
- **ySplineSpaceDim** – an int scalar value specifying the linear dimension of the spline subspace for the y variable. It should be smaller than `yData.length` and greater than or equal to `yOrder` (whose default value is 4).

**Methods**

- **compute**
  
  ```java
 public void compute()
  ```

  **Description**
  Computes a two-dimensional, tensor-product spline approximant using least squares.

- **getErrorSumOfSquares**
  
  ```java
 public double getErrorSumOfSquares()
  ```

  **Description**
  Returns the weighted error sum of squares.

  **Returns**
  a double scalar containing the weighted error sum of squares.

- **getXOrder**
  
  ```java
 public int getXOrder()
  ```

  **Description**
  Returns the order of the spline in the x-direction.

  **Returns**
  an int scalar containing the order of the spline in the x-direction.

- **getXWeights**
  
  ```java
 public double[] getXWeights()
  ```

  **Description**
  Returns the weights for the least-squares fit in the x-direction.
Returns a double array containing the weights for the least-squares fit in the x-direction.

getYOrder
public int getYOrder()

Description
Returns the order of the spline in the y-direction.

Returns
an int scalar containing the order of the spline in the y-direction.

getYWeights
public double[] getYWeights()

Description
Returns the weights for the least-squares fit in the y-direction.

Returns
a double array containing the weights for the least-squares fit in the y-direction.

setXKnots
public void setXKnots(double[] xKnots)

Description
Sets the knot sequences of the spline in the x-direction.

Parameter
xKnots – a double array of size xSplineSpaceDim + xOrder specifying the knot sequences of the spline in the x-direction. Default knot sequences are selected by the class.

setXOrder
public void setXOrder(int xOrder)

Description
Sets the order of the spline in the x-direction.

Parameter
xOrder – an int scalar value specifying the order of the spline in the x-direction. xOrder must be at least 1. Default: xOrder = 4, implying a tensor-product cubic spline.

setXWeights
public void setXWeights(double[] xWeights)

Description
Sets the weights for the least-squares fit in the x-direction.
Parameter

**xWeights** – a `double` array of size `xData.length` specifying the weights for the least-squares fit in the x-direction. Default: all weights are equal to 1.

---

**setYKnots**

```java
public void setYKnots(double[] yKnots)
```

**Description**

Sets the knot sequences of the spline in the y-direction.

**Parameter**

- **yKnots** – a `double` array of size `ySplineSpaceDim + yOrder` specifying the knot sequences of the spline in the y-direction. Default knot sequences are selected by the class.

---

**setYOrder**

```java
public void setYOrder(int yOrder)
```

**Description**

Sets the order of the spline in the y-direction.

**Parameter**

- **yOrder** – an `int` scalar value specifying the order of the spline in the y-direction. `yOrder` must be at least 1. Default: `yOrder = 4`, implying a tensor-product cubic spline.

---

**setYWeights**

```java
public void setYWeights(double[] yWeights)
```

**Description**

Sets the weights for the least-squares fit in the y-direction.

**Parameter**

- **yWeights** – a `double` array of size `yData.length` specifying the weights for the least-squares fit in the y-direction. Default: all weights are equal to 1.

---

**Example**

The data for this example comes from the function $e^{x \sin (x + y)}$ on the rectangle $[0, 3] \times [0, 5]$. This function is first sampled on a 50 x 25 grid. Next, an attempt to recover it by using tensor-product cubic splines is performed. The values of the function $e^{x \sin (x + y)}$ are printed on a 2 x 2 grid and compared with the values of the tensor-product spline least-squares fit.

```java
import java.text.*;
import com.imsl.math.*;

public class Spline2DLeastSquaresEx1 {

 private static double F(double x, double y) {
 return (Math.exp(x) * Math.sin(x + y));
 }

 public static void main(String[] args) {
 // Example code...
 }
}
```

---

200 • Spline2DLeastSquares  

JMSL
public static void main(String args[]) {
    int nxData = 50, nyData = 25, outData = 2;
    double[] xData = new double[nxData];
    double[] yData = new double[nyData];
    double[][] fData = new double[nxData][nyData];
    double x, y, z;

    // Set up grid
    for (int i = 0; i < nxData; i++) {
        xData[i] = 3. * (double) i / ((double) (nxData - 1));
    }
    for (int i = 0; i < nyData; i++) {
        yData[i] = 5. * (double) i / ((double) (nyData - 1));
    }

    // Compute function values on grid
    for (int i = 0; i < nxData; i++) {
        for (int j = 0; j < nyData; j++) {
            fData[i][j] = F(xData[i], yData[j]);
        }
    }

    // Compute tensor-product approximant
    Spline2DLeastSquares spline
        = new Spline2DLeastSquares(xData, yData, fData, 5, 7);
    spline.compute();
x = spline.getErrorSumOfSquares();

    NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(4);
nf.setMinimumFractionDigits(4);

    // Print results
    System.out.println("The error sum of squares is "+nf.format(x) + "\n");

double[][] output = new double[outData * outData][5];
for (int i = 0, idx = 0; i < outData; i++) {
    x = (double) i / (double) (outData);
    for (int j = 0; j < outData; j++) {
        y = (double) j / (double) (outData);
        z = spline.value(x, y);
        output[idx][0] = x;
        output[idx][1] = y;
        output[idx][2] = F(x, y);
        output[idx][3] = z;
        output[idx][4] = Math.abs(F(x, y) - z);
        idx++;
    }
}

String[] labels = {"x", "y", "F(x, y)", "Fitted Values", "Error"};
PrintMatrixFormat pmf = new PrintMatrixFormat();
      pmf.setNumberFormat(nf);

Interpolation and Approximation  Spline2DLeastSquares  •  201
pmf.setColumnLabels(labels);
new PrintMatrix().print(pmf, output);
}

**Output**

The error sum of squares is 3.7532

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F(x, y)</th>
<th>Fitted Values</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0204</td>
<td>0.024</td>
</tr>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.5000</td>
<td>0.5022</td>
<td>0.0208</td>
</tr>
<tr>
<td>2</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.8158</td>
<td>0.0253</td>
</tr>
<tr>
<td>3</td>
<td>0.5000</td>
<td>0.5000</td>
<td>1.3842</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

---

**RadialBasis class**

```
public class com.imsl.math.RadialBasis implements Serializable, Cloneable

RadialBasis computes a least-squares fit to scattered data in \(\mathbb{R}^d \), where \(d \) is the dimension. More precisely, we are given data points

\[x_0, \ldots, x_{n-1} \in \mathbb{R}^d \]

and function values

\[f_0, \ldots, f_{n-1} \in \mathbb{R}^1 \]

The radial basis fit to the data is a function \(F \) which approximates the above data in the sense that it minimizes the sum-of-squares error

\[\sum_{i=0}^{n-1} w_i (F(x_i) - f_i)^2 \]

where \(w \) are the weights. Of course, we must restrict the functional form of \(F \). Here we assume it is a linear combination of radial functions:

\[F(x) \equiv \sum_{j=0}^{m-1} \alpha_j \phi(\|x - c_j\|) \]

The \(c_j \) are the *centers*.

A radial function, \(\phi(r) \), maps \([0, \infty)\) into \(\mathbb{R}^1 \). The default radial function is the Hardy multiquadric,

\[\phi(r) \equiv \sqrt{r^2 + \delta^2} \]

with \(\delta = 1 \). An alternate radial function is the Gaussian, \(e^{-ar^2} \).
By default, the centers are points in a Faure sequence, scaled to cover the box containing the data.

Two update methods allow the user to specify weights for each data point in the approximation scheme. In this way the user can influence the fit of the radial basis function. For example, if weights are in the range \([0,1]\) then 0-weighted points are effectively removed from computations and 1-weighted points will have more influence than any others. When the number of centers equals the number of data points, the RBF fit will be “exact”, otherwise it will be an approximation (useful for large or noisy data sets). Provided the ratios of the weights are not too extreme, weights will not appreciably change the accuracy of the fit to the data, but they will affect the shape of the approximating function away from the data: Greater weights result in greater influence at greater distances.

Constructor

RadialBasis

```java
public RadialBasis(int nDim, int nCenters)
```

Description
Creates a new instance of RadialBasis.

Parameters
- `nDim` – an int specifying the number of dimensions.
- `nCenters` – an int specifying the number of centers.

Methods

getANOVA

```java
public ANOVA getANOVA()
```

Description
Returns the ANOVA statistics from the linear regression.

Returns
an ANOVA table and related statistics

getRadialFunction

```java
public RadialBasis.Function getRadialFunction()
```

Description
Returns the radial function.

Returns
a RadialBasis.Function which is the current radial function.
gradient
public double[] gradient(double[] x)

Description
Returns the gradient of the radial basis approximation at a point.

Parameter
- `x` – is a double array containing the locations of the data point at which the approximation’s gradient is to be computed.

Returns
a double array, of length nDim containing the value of the gradient of the radial basis approximation at x.

setRadialFunction
public void setRadialFunction(RadialBasis.Function radialFunction)

Description
Sets the radial function.

Parameter
- `radialFunction` – a RadialBasis.Function to be used in the approximation. The default is Hardy Multiquadric with $\delta = 1$.

update
public void update(double[] x, double f)

Description
Adds a data point with weight = 1.

Parameters
- `x` – is a double array containing the locations of the data point.
- `f` – is a double containing the function value at the data point.

update
public void update(double[][] x, double[] f)

Description
Adds a set of data points, all with weight = 1.

Parameters
- `x` – is a double matrix of size n by nDim containing the locations of the data points for each dimension.
- `f` – is a double array containing the function values at the data points.

update
public void update(double[] x, double f, double w)
Description

Adds a data point with a specified weight.

Parameters

- \(x\) – is a double array containing the locations of the data point.
- \(f\) – is a double containing the function value at the data point.
- \(w\) – is a double containing the weight of this data point.

update

```java
public void update(double[][] x, double[] f, double[] w)
```

Description

Adds a set of data points with user-specified weights.

Parameters

- \(x\) – is a double matrix of size \(n\times nDim\) containing the locations of the data points for each dimension.
- \(f\) – is a double array containing the function values at the data points.
- \(w\) – is a double array containing the weights associated with the data points.

value

```java
public double value(double[] x)
```

Description

Returns the value of the radial basis approximation at a point.

Parameter

- \(x\) – is a double array containing the locations of the data point at which the approximation is to be computed.

Returns

A double containing the value of the radial basis approximation at \(x\).

value

```java
public double[] value(double[][] x)
```

Description

Returns the value of the radial basis at a point.

Parameter

- \(x\) – a double matrix of size \(n\times nDim\) containing the points at which the radial basis is to be evaluated.

Returns

A double array giving the value of the radial basis at the point \(x\).
Example: Radial Basis Function Approximation

Data is generated from the function

\[e^{-\|\vec{x}\|^2/d} \]

where \(d \) is the dimension, is evaluated at a set of randomly chosen points. Random noise is added to the values and a radial basis approximation to the noisy data is computed. The radial basis fit, using the default radial basis function Hardy multiquadric with \(\delta = 1 \), is then compared to the original function at another set of randomly chosen points. Both the average error and the maximum error are computed and printed.

In this example, the dimension \(d=10 \). The function is sampled at 200 random points, in the \([-1,1]^d\) hyper-cube, to which what noise in the range \([-0.2,0.2]\) is added. The error is computed at 1000 random points, also from the \([-1,1]^d\) hyper-cube. The compute errors are less than the added noise.

```java
import com.imsl.math.*;
import java.util.Random;

public class RadialBasisEx1 {
    public static void main(String args[]) {
        int nDim = 10;

        // Sample, with noise, the function at 100 randomly chosen points
        int nData = 200;
        double xData[][] = new double[nData][nDim];
        double fData[] = new double[nData];
        Random rand = new Random(234567L);
        for (int k = 0; k < nData; k++) {
            for (int i = 0; i < nDim; i++) {
                xData[k][i] = 2.0 * rand.nextDouble() - 1.0;
            }
            // noisy sample
            fData[k] = fcn(xData[k]) + 0.20 * (2.0 * rand.nextDouble() - 1.0);
        }

        // Compute the radial basis approximation using 25 centers
        int nCenters = 25;
        RadialBasis rb = new RadialBasis(nDim, nCenters);
        rb.update(xData, fData);

        // Compute the error at a randomly selected set of points
        int nTest = 1000;
        double maxError = 0.0;
        double aveError = 0.0;
        double x[] = new double[nDim];
        for (int k = 0; k < nTest; k++) {
            for (int i = 0; i < nDim; i++) {
                x[i] = 2.0 * rand.nextDouble() - 1.0;
            }
            double error = Math.abs(fcn(x) - rb.value(x));
            aveError += error;
            maxError = Math.max(error, maxError);
        }
        aveError /= nTest;
    }
}
```
System.out.println("average error is " + aveError);
System.out.println("maximum error is " + maxError);
}

// The function to approximate
static private double fcn(double x[]) {
 double sum = 0.0;
 for (int k = 0; k < x.length; k++) {
 sum += x[k] * x[k];
 }
 sum /= x.length;
 return Math.exp(-sum);
}

Output

average error is 0.026192967462953198
maximum error is 0.13197595135821816

Example: “Custom” Radial Basis Function Approximation

Data is generated from the function

\[e^{\frac{y}{2}} \sin x \cos \frac{y}{2} \]

where a number of \((x,y)\) pairs make up a set of randomly chosen points. Random noise is added to the values, a “custom” Polyharmonic Spline radial basis function is specified

\[\varphi(r) = \begin{cases}
 r^k & k = 1, 3, 5, \ldots \\
 r^k \ln r & k = 2, 4, 6, \ldots
\end{cases} \]

and a radial basis approximation of the noisy data is computed. The radial basis fit is then compared to the original function at another set of randomly chosen points. Both the average normalized error and the maximum normalized error are computed and printed.

In this example, the order of the Polyharmonic Spline, \(k=2\). The function is sampled at 200 random points and the error is computed at 10000 random points.
private int order = 3;
private boolean isEven = false;

public PolyHarmonicSpline(int order) {
 this.isEven = order % 2 == 0;
 this.order = order;
}

public double f(double x) {
 if (this.isEven) {
 return Math.pow(x, order) * Math.log(x);
 }
 return Math.pow(x, order);
}

public double g(double x) {
 if (order == 1) {
 return 1;
 }
 if (this.isEven) {
 return order * Math.pow(x, order - 1) * Math.log(x) + Math.pow(x, order - 1);
 }
 return order * Math.pow(x, order - 1);
}

public int getOrder() {
 return order;
}

public boolean isEvenOrder() {
 return isEven;
}

public static void main(String args[]) {
 int nDim = 2;
 // Sample, with noise, the function at 100 randomly chosen points
 int nData = 200;
 double xData[] = new double[nData][nDim];
 double fData[] = new double[nData];
 Random rand = new Random(123457);
 rand.setMultiplier(16807);
 double noise[] = new double[nData * nDim];
 for (int k = 0; k < nData; k++) {
 for (int i = 0; i < nDim; i++) {
 noise[k * 2 + i] = 1.0d - 2.0d * rand.nextDouble();
 xData[k][i] = 3 * noise[k * 2 + i];
 }
 // noisy sample
 fData[k] = fcn(xData[k]) + noise[k * 2] / 10;
 }
 // Compute the radial basis approximation using 100 centers
 int nCenters = 100;
}
RadialBasis rb = new RadialBasis(nDim, nCenters);
rb.setRadialFunction(new PolyHarmonicSpline(2));
rb.update(xData, fData);

// Compute the error at a randomly selected set of points
int nTest = 10000;
double maxError = 0.0;
double aveError = 0.0;
double maxMagnitude = 0.0;
double x[][] = new double[nTest][nDim];
noise = new double[nTest * nDim];

for (int i = 0; i < nTest; i++) {
 for (int j = 0; j < nDim; j++) {
 noise[i * 2 + j] = 1.0d - 2.0d * (double) rand.nextDouble();
 x[i][j] = 3 * noise[i * 2 + j];
 }
 double error = Math.abs(fcn(x[i]) - rb.value(x[i]));
 maxMagnitude = Math.max(Math.abs(fcn(x[i])), maxMagnitude);
 aveError += error;
 maxError = Math.max(error, maxError);
}
aveError /= nTest;

System.out.println("Average normalized error is "+ aveError / maxMagnitude);
System.out.println("Maximum normalized error is "+ maxError / maxMagnitude);
System.out.println("Using even order equation: "+ ((PolyHarmonicSpline) rb.getRadialFunction()).isEvenOrder());

Output
Average normalized error is 0.01805587205103261
Maximum normalized error is 0.2575653108755503
Using even order equation: true

Example: Multiquadric Radial Basis Function Approximation

Data is generated from the function

\[
e^{-\sqrt{x^2 + y^2}} \sin x \cos \frac{y}{2.0}
\]

where a number of \((x,y)\) pairs make up a set of randomly chosen points. Random noise is added to the values, a Hardy multiquadric radial basis function is specified \(\sqrt{r^2 + \delta^2}\) and a radial basis approximation of the noisy data is computed. The radial basis fit is then compared to the original function at another set of randomly chosen points. Both the average normalized error and the maximum normalized error are computed and printed.

In this example, the parameter of the Hardy multiquadric radial basis function \(\delta = 5.5\). The function is sampled at 100 random points and the error is computed at 10000 random points.
import com.imsl.math.*;
import com.imsl.stat.Random;

public class RadialBasisEx3 {

 public static void main(String args[]) {
 int nDim = 2;

 // Sample, with noise, the function at 100 randomly chosen points
 int nData = 100;
 double xData[] = new double[nData][nDim];
 double fData[] = new double[nData];
 Random rand = new Random(123457);
 rand.setMultiplier(16807);
 double noise[] = new double[nData * nDim];
 for (int k = 0; k < nData; k++) {
 for (int i = 0; i < nDim; i++) {
 noise[k * 2 + i] = 1.0d - 2.0d * (double) rand.nextDouble();
 xData[k][i] = 3 * noise[k * 2 + i];
 }
 // noisy sample
 fData[k] = fcn(xData[k]) + noise[k * 2] / 10;
 }

 // Compute the radial basis approximation using 100 centers
 int nCenters = 100;
 RadialBasis rb = new RadialBasis(nDim, nCenters);
 rb.setRadialFunction(new RadialBasis.HardyMultiquadric(5.5));
 rb.update(xData, fData);

 // Compute the error at a randomly selected set of points
 int nTest = 10000;
 double maxError = 0.0;
 double aveError = 0.0;
 double maxMagnitude = 0.0;
 double x[][] = new double[nTest][nDim];
 noise = new double[nTest * nDim];
 for (int i = 0; i < nTest; i++) {
 for (int j = 0; j < nDim; j++) {
 noise[i * 2 + j] = 1.0d - 2.0d * rand.nextDouble();
 x[i][j] = 3 * noise[i * 2 + j];
 }
 double error = Math.abs(fcn(x[i]) - rb.value(x[i]));
 maxMagnitude = Math.max(Math.abs(fcn(x[i])), maxMagnitude);
 aveError += error;
 maxError = Math.max(error, maxError);
 }
 aveError /= nTest;

 System.out.println("Average normalized error is "+ aveError / maxMagnitude);
 System.out.println("Maximum normalized error is "+ maxError / maxMagnitude);
 }
}
// The function to approximate
static private double fcn(double x[]) {
 return Math.exp((x[1] / 2.0) * Math.sin(x[0]) - Math.cos((x[1]) / 2.0));
}

Output
Average normalized error is 0.011085255049181973
Maximum normalized error is 0.05481720536391322

Example: Gaussian Radial Basis Function Approximation

Data is generated from the function
\[e^{-\frac{x^2}{2}} \sin x \cos \frac{y}{2} \]

where a number of \((x,y)\) pairs make up a set of randomly chosen points. Random noise is added to the values, a Gaussian radial basis function is specified \(e^{-ax^2}\) and a radial basis approximation of the noisy data is computed. The radial basis fit is then compared to the original function at another set of randomly chosen points. Both the average normalized error and the maximum normalized error are computed and printed.

In this example, the parameter of the Gaussian radial basis function \(a = 0.1\). The function is sampled at 100 random points and the error is computed at 10000 random points.

```java
import com.imsl.math.*;
import com.imsl.stat.Random;

public class RadialBasisEx4 {
    public static void main(String args[]) {
        int nDim = 2;
        // Sample, with noise, the function at 100 randomly chosen points
        int nData = 100;
        double xData[][] = new double[nData][nDim];
        double fData[] = new double[nData];
        Random rand = new Random(123457);
        rand.setMultiplier(16807);
        double noise[] = new double[nData * nDim];
        for (int k = 0; k < nData; k++) {
            for (int i = 0; i < nDim; i++) {
                noise[k * 2 + i] = 1.0d - 2.0d * (double) rand.nextDouble();
                xData[k][i] = 3 * noise[k * 2 + i];
            }
            // Noisy sample
            fData[k] = fcn(xData[k]) + noise[k * 2] / 10;
        }
        // Compute the radial basis approximation using 100 centers
        int nCenters = 100;
    }
}
```

Interpolation and Approximation RadialBasis • 211
RadialBasis rb = new RadialBasis(nDim, nCenters);
rb.setRadialFunction(new RadialBasis.Gaussian(.1));
rb.update(xData, fData);

// Compute the error at a randomly selected set of points
int nTest = 10000;
double maxError = 0.0;
double aveError = 0.0;
double maxMagnitude = 0.0;
double x[][] = new double[nTest][nDim];
noise = new double[nTest * nDim];

for (int i = 0; i < nTest; i++) {
 for (int j = 0; j < nDim; j++) {
 noise[i * 2 + j] = 1.0d - 2.0d * rand.nextDouble();
x[i][j] = 3 * noise[i * 2 + j];
 }
 double error = Math.abs(fcn(x[i]) - rb.value(x[i]));
 maxMagnitude = Math.max(Math.abs(fcn(x[i])), maxMagnitude);
 aveError += error;
 maxError = Math.max(error, maxError);
}
aveError /= nTest;
System.out.println("Average normalized error is "+ aveError / maxMagnitude);
System.out.println("Maximum normalized error is "+ maxError / maxMagnitude);

// The function to approximate
static private double fcn(double x[]) {
 return Math.exp((x[1]) / 2.0) * Math.sin(x[0]) - Math.cos((x[1]) / 2.0);
}

Output
Average normalized error is 0.01095472360691534
Maximum normalized error is 0.02300757841627234

RadialBasis.Function interface

public interface com.imsl.math.RadialBasis.Function

Public interface for the user supplied function to the RadialBasis object.
Methods

\textbf{f}
\begin{verbatim}
public double f(double x)
\end{verbatim}

\textbf{Description}
A radial basis function.

\textbf{Parameter}
\begin{itemize}
\item x – a double, the point at which the function is to be evaluated
\end{itemize}

\textbf{Returns}
a double, the value of the function at x

\textbf{g}
\begin{verbatim}
public double g(double x)
\end{verbatim}

\textbf{Description}
The derivative of the radial basis function used to calculate the gradient of the radial basis approximation.

\textbf{Parameter}
\begin{itemize}
\item x – a double, the point at which the function is to be evaluated
\end{itemize}

\textbf{Returns}
a double, the value of the function at x

RadialBasis.HardyMultiquadric class

\begin{verbatim}
\end{verbatim}

The Hardy multiquadric basis function, $\sqrt{r^2 + \delta^2}$.

Constructor

RadialBasis.HardyMultiquadric
\begin{verbatim}
public RadialBasis.HardyMultiquadric(double delta)
\end{verbatim}

\textbf{Description}
Creates a Hardy multiquadric basis function $\sqrt{r^2 + \delta^2}$.
Parameter
delta – a double specifying the value of the function parameter. Increasing the multiquadric parameter decreases fitting-error but generally increases computational effort. The default value is 1.0.

Methods

f
public double f(double x)

Description
A Hardy multiquadric basis function.

Parameter
x – a double, the point at which the function is to be evaluated

Returns
a double, the value of the function at x

g
public double g(double x)

Description
The derivative of the Hardy multiquadric basis function used to calculate the gradient of the radial basis approximation.

Parameter
x – a double, the point at which the function is to be evaluated

Returns
a double, the value of the function at x

RadialBasis.Gaussian class

The Gaussian basis function, \(e^{-ax^2} \).
Constructor

RadialBasis.Gaussian

```java
public RadialBasis.Gaussian(double a)
```

Description

Creates a Gaussian basis function e^{-ax^2}.

Parameter

- `a` – a `double` specifying the value of the function parameter. Decreasing the Gaussian parameter decreases fitting-error but may increase computational effort.

Methods

f

```java
public double f(double x)
```

Description

A Gaussian basis function.

Parameter

- `x` – a `double`, the point at which the function is to be evaluated

Returns

- a `double`, the value of the function at `x`

g

```java
public double g(double x)
```

Description

The derivative of the Gaussian basis function used to calculate the gradient of the radial basis approximation.

Parameter

- `x` – a `double`, the point at which the function is to be evaluated

Returns

- a `double`, the value of the function at `x`
Chapter 5: Quadrature

Types

class Quadrature .. 218
class HyperRectangleQuadrature .. 225

Usage Notes

Univariate Quadrature

Class Quadrature computes approximations to integrals of the form

\[\int_{c}^{b} f(x)dx \]

One situation that occasionally arises in univariate quadrature concerns the approximation of integrals when only tabular data are given. The functions described above do not directly address this question. However, the standard method for handling this problem is first to interpolate the data, and then to integrate the interpolant. This can be accomplished by using a JMSL spline interpolation class derived from `com.imsl.math.Spline` and the method `com.imsl.Spline.integral(a,b)`

Multivariate Quadrature

The class HypercubeQuadrature computes an approximation to the integral of a function of \(n \) variables over a hyper-rectangle.

\[\int_{a_1}^{b_1} \ldots \int_{a_n}^{b_n} f(x_1, \ldots, x_n)dx_n \ldots dx_1 \]

Return Values from User-Supplied Functions

All values returned by user-supplied functions must be valid real numbers. It is the user’s responsibility to check that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.
Example: Minimum of a smooth function

The minimum of $e^x - 5x$ is found using function evaluations only.

```java
import com.imsl.math.*;

public class OptimizationIntroEx1 {
    public static void main(String args[]) {
        MinUncon zf = new MinUncon();
        zf.setGuess(0.0);
        zf.setAccuracy(0.001);
        MinUncon.Function fcn = new MinUncon.Function() {
            public double f(double x) {
                double y = Math.exp(x) - 5.*x;
                if(!Double.isNaN(y)) {
                    return y;
                } else {
                    return 0.0;
                }
            }
        };
        System.out.println("Minimum is "+zf.computeMin(fcn));
    }
}
```

Quadrature class

```java
public class com.imsl.math.Quadrature implements Serializable, Cloneable

Quadrature is a general-purpose integrator that uses a globally adaptive scheme in order to reduce the absolute error. It subdivides the interval $[A, B]$ and uses a $(2k+1)$-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the $k$-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected and the same procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. The Class Quadrature is based on the subroutine QAG by Piessens et al. (1983).

If the function to be integrated has endpoint singularities then extrapolation should be enabled. As described above, the integral’s value is approximated by applying a quadrature rule to a series of subdivisions of the interval. The sequence of approximate values converges to the integral’s value. The $\varepsilon$-algorithm can be used to extrapolate from the initial terms of the sequence to its limit. Without extrapolation, the quadrature approximation sequence converges slowly if the function being integrated has endpoint singularities. The $\varepsilon$-algorithm accelerates convergence of the sequence in this case. The class com.imsl.math.EpsilonAlgorithm (p. 580) implements the $\varepsilon$-algorithm. With extrapolation, this class is similar to the subroutine QAGS by Piessens et al. (1983).

The desired absolute error, $\varepsilon$, can be set using `setAbsoluteError`. The desired relative error, $\rho$, can be
set using `setRelativeError`. The method `eval` computes the approximate integral value
\[ \int_a^b f(x)\,dx \approx R \]
It also computes an error estimate \( E \), which can be retrieved using `getErrorEstimate`. These are related by the following equation:

\[ \left| \int_a^b f(x)\,dx - R \right| \leq E \leq \max \left\{ \varepsilon, \rho \left| \int_a^b f(x)\,dx \right| \right\} \]

### Constructor

**Quadrature**

```java
class Quadrature {
 public Quadrature()
 {
 // Constructor implementation
 }
}
```

**Description**

Constructs a Quadrature object.

### Methods

**eval**

```java
public double eval(Quadrature.Function objectF, double a, double b)
```

**Description**

Returns the value of the integral from \( a \) to \( b \).

**Parameters**

- `objectF` – an implementation of `Function` containing the function to be integrated
- `a` – a `double` specifying the lower limit of integration
- `b` – a `double` specifying the upper limit of integration, either or both of \( a \) and \( b \) can be `Double.POSITIVE_INFINITY` or `Double.NEGATIVE_INFINITY`

**getErrorEstimate**

```java
public double getErrorEstimate()
```

**Description**

Returns an estimate of the relative error in the computed result.

**Returns**

a `double` specifying an estimate of the relative error in the computed result

**getErrorStatus**

```java
public int getErrorStatus()
```

**Description**

Returns the error status.
**Description**
Returns the non-fatal error status.

**Returns**
an `int` specifying the non-fatal error status:

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error.</td>
</tr>
<tr>
<td>1</td>
<td>Maximum number of subdivisions allowed has been achieved. One can allow more subdivisions by using <code>setMaxSubintervals</code>. If this yields no improvement it is advised to analyze the integrand in order to determine the integration difficulties. If the position of a local difficulty can be determined (e.g., singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. If possible, an appropriate special-purpose integrator should be used, which is designed for handling the type of difficulty involved.</td>
</tr>
<tr>
<td>2</td>
<td>The occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved. The error may be underestimated.</td>
</tr>
<tr>
<td>3</td>
<td>Extremely bad integrand behavior occurs at some points of the integration interval.</td>
</tr>
<tr>
<td>4</td>
<td>The algorithm does not converge. Roundoff error is detected in the extrapolation table. It is presumed that the requested tolerance cannot be achieved, and that the returned result is the best which can be obtained.</td>
</tr>
<tr>
<td>5</td>
<td>The algorithm does not converge. Roundoff error is detected in the extrapolation table. It is presumed that the requested tolerance cannot be achieved, and that the returned result is the best that can be obtained.</td>
</tr>
<tr>
<td>6</td>
<td>The integral is probably divergent, or slowly convergent. It must be noted that divergence can occur with any other status value.</td>
</tr>
</tbody>
</table>

**setAbsoluteError**

```java
public void setAbsoluteError(double errorAbsolute)
```

**Description**
Sets the absolute error tolerance.

**Parameter**

- `errorAbsolute` – a double scalar value specifying the absolute error tolerance. The default value is `1.0536712127723714E-8`.

**setExtrapolation**

```java
public void setExtrapolation(boolean doExtrapolation)
```

---

220 • Quadrature
Description
If true, the epsilon-algorithm for extrapolation is enabled. The default is false (extrapolation is not used).

Parameter
doExtrapolation – a boolean, true if the epsilon-algorithm for extrapolation is to be enabled, false otherwise

setMaxSubintervals
public void setMaxSubintervals(int maxSubintervals)

Description
Sets the maximum number of subintervals allowed. The default value is 500.

Parameter
maxSubintervals – an int specifying the maximum number of subintervals to be allowed. The default is 500.

setRelativeError
public void setRelativeError(double errorRelative)

Description
Sets the relative error tolerance.

Parameter
errorRelative – a double scalar value specifying the relative error tolerance. The default value is 1.0536712127723714E-8.

setRule
public void setRule(int rule)

Description
Set the Gauss-Kronrod rule.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Data points used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7 - 15</td>
</tr>
<tr>
<td>2</td>
<td>10 - 21</td>
</tr>
<tr>
<td>3</td>
<td>15 - 31</td>
</tr>
<tr>
<td>4</td>
<td>20 - 41</td>
</tr>
<tr>
<td>5</td>
<td>25 - 51</td>
</tr>
<tr>
<td>6</td>
<td>30 - 61</td>
</tr>
</tbody>
</table>

The default is rule 3.

Parameter
rule – an int specifying the rule to be used. The default is 3.
Example 1: Integral of \( \exp(2x) \)

The integral \( \int_{1}^{3} e^{2x} \, dx \) is computed and compared to its expected value.

```java
import com.imsl.math.*;

public class QuadratureEx1 {
 public static void main(String args[]) {
 Quadrature.Function fcn = new Quadrature.Function() {
 public double f(double x) {
 return Math.exp(2.0 * x);
 }
 };
 Quadrature q = new Quadrature();
 double result = q.eval(fcn, 1.0, 3.0);
 double expect = (Math.exp(6) - Math.exp(2)) / 2.0;
 System.out.println("result = " + result);
 System.out.println("expect = " + expect);
 }
}
```

Output

```
result = 198.01986869690225
expect = 198.01986869690222
```

Example 2: Integral of \( \exp(-x) \) from 0 to infinity

The integral \( \int_{0}^{\infty} e^{-x} \, dx \) is computed and compared to its expected value.

```java
import com.imsl.math.*;

public class QuadratureEx2 {
 public static void main(String args[]) {
 Quadrature.Function fcn = new Quadrature.Function() {
 public double f(double x) {
 return Math.exp(-x);
 }
 };
 Quadrature q = new Quadrature();
 double result = q.eval(fcn, 0.0, Double.POSITIVE_INFINITY);
 double expect = 1.0;
 System.out.println("result = " + result);
 System.out.println("expect = " + expect);
 }
}
```

---

222 • Quadrature JMSL
Example 3: Integral of the entire real line

The integral \( \int_{-\infty}^{\infty} \frac{x}{4e^{x} + 9e^{-x}} \, dx \) is computed and compared to its expected value. This integral is evaluated in Gradshteyn and Ryzhik (equation 3.417.1).

```java
import com.imsl.math.*;

public class QuadratureEx3 {
 public static void main(String args[]) {
 Quadrature.Function fcn = new Quadrature.Function() {
 public double f(double x) {
 return x / (4 * Math.exp(x) + 9 * Math.exp(-x));
 }
 };

 Quadrature q = new Quadrature();
 double result = q.eval(fcn, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
 double expect = Math.PI * Math.log(1.5) / 12.;
 System.out.println("result = " + result);
 System.out.println("expect = " + expect);
 }
}
```

Output

result = 0.10615051707662819
expect = 0.10615051707663337

Reference


Example 4: Integral of an oscillatory function

The integral of \( \cos(ax) \) for \( a = 10^4 \) is computed and compared to its expected value. Because the function is highly oscillatory, the quadrature rule is set to 6. The relative error tolerance is also set.

```java
import com.imsl.math.*;

public class QuadratureEx4 {
 public static void main(String args[]) {
 // Code...
 }
}
```
final double a = 1.0e4;

Quadrature.Function fcn = new Quadrature.Function() {
    public double f(double x) {
        return Math.cos(a * x);
    }
};

Quadrature q = new Quadrature();
q.setRule(6);
q.setRelativeError(1.e-10);
double result = q.eval(fcn, 0.0, 1.0);
double expect = Math.sin(a) / a;
System.out.println("result = " + result);
System.out.println("expect = " + expect);
System.out.println("relative error = " + (expect - result) / expect);
System.out.println("relative error estimate = " + q.getErrorEstimate());
}

Output
result = -3.05614388902526E-5
expect = -3.056143888882521E-5
relative error = -4.670545934003717E-11
relative error estimate = 1.0488375541870691E-8

Quadrature.Function interface

public interface com.imsl.math.Quadrature.Function

Public interface function for the Quadrature class.

Method

f
public double f(double x)

Description
Returns the value of the function at the given point.

Parameter
x – a double specifying the point at which the function is to be evaluated
Returns

a double specifying the value of the function at x

---

**HyperRectangleQuadrature class**

```java
public class com.imsl.math.HyperRectangleQuadrature implements Serializable, Cloneable

HyperRectangleQuadrature integrates a function over a hypercube. This class is used to evaluate integrals of the form:

\[\int_{a_{n-1}}^{b_{n-1}} \cdots \int_{a_0}^{b_0} f(x_0, \ldots, x_{n-1}) \, dx_0 \cdots dx_{n-1} \]

Integration of functions over hypercubes by Monte Carlo, in which the integral is evaluated as the value of the function averaged over a sequence of randomly chosen points. Under mild assumptions on the function, this method will converge like \(1/\sqrt{n}\), where \(n\) is the number of points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the points at which the function is to be evaluated. Randomly distributed points tend to be non-uniformly distributed. The alternative to a sequence of random points is a low-discrepancy sequence. A low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by `com.imsl.stat.FaureSequence` (p. 1349).

Constructors

HyperRectangleQuadrature

```java
public HyperRectangleQuadrature(RandomSequence sequence)
```

Description

Constructs a HyperRectangleQuadrature object.

HyperRectangleQuadrature

```java
public HyperRectangleQuadrature(int dim)
```

Description

Constructs a HyperRectangleQuadrature object.
Methods

eval
public double eval(HyperRectangleQuadrature.Function objectF)

Description
Returns the value of the integral over the unit cube.

Parameter
objectF – Function containing the function to be integrated

eval
public double eval(HyperRectangleQuadrature.Function objectF, double[] a, double[] b)

Description
Returns the value of the integral over a cube.

Parameters
objectF – Function containing the function to be integrated
a – is a double specifying the lower limit of integration. If null all of the lower limits default to 0.
b – is a double specifying the upper limit of integration. If null all of the upper limits default to 1.

getAddress
public double getErrorEstimate()

Description
Returns an estimate of the relative error in the computed result.

Returns
a double specifying an estimate of the relative error in the computed result

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description
Sets the absolute error tolerance.

Parameter
errorAbsolute – a double scalar value specifying the absolute error

setRelativeError
public void setRelativeError(double errorRelative)

Description
Sets the relative error tolerance.
Parameter

`errorRelative` – a double scalar value specifying the relative error

Example: HyperRectangle Quadrature

This example evaluates the following multidimensional integral, with $n=10$.

$$
\int_{a_0}^{b_0} \cdots \int_{a_{n-1}}^{b_{n-1}} \left[\sum_{i=0}^{n} (-1)^i \prod_{j=0}^{i} x_j \right] dx_0 \cdots dx_{n-1} = \frac{1}{3} \left[1 - \left(-\frac{1}{2} \right)^n \right]
$$

```java
import com.imsl.math.*;

public class HyperRectangleQuadratureEx1 {
    public static void main(String args[]) {
        HyperRectangleQuadrature.Function fcn = new HyperRectangleQuadrature.Function() {
            public double f(double x[]) {
                int sign = 1;
                double sum = 0.0;
                for (int i = 0; i < x.length; i++) {
                    double prod = 1.0;
                    for (int j = 0; j <= i; j++) {
                        prod *= x[j];
                    }
                    sum += sign * prod;
                    sign = -sign;
                }
                return sum;
            }
        };
        HyperRectangleQuadrature q = new HyperRectangleQuadrature(10);
        double result = q.eval(fcn);
        System.out.println("result = " + result);
    }
}
```

Output

result = 0.3331253832089543

HyperRectangleQuadrature.Function interface

```java
public interface com.imsl.math.HyperRectangleQuadrature.Function
```

Quadrature HyperRectangleQuadrature • 227
Method

\[f \]
\[
\text{public double } f(\text{double[]} \ x)
\]

Description
Returns the value of the function at the given point.

Parameter
\[x \] – a double array specifying the point at which the function is to be evaluated

Returns
a double specifying the value of the function at \(x \)
Chapter 6: Differential Equations

Types

class ODE ... 230
class OdeRungeKutta .. 236
class OdeAdamsGear .. 240
class FeynmanKac ... 251

Usage Notes

Ordinary Differential Equations

An ordinary differential equation is an equation involving one or more dependent variables called y_i, one independent variable, t, and derivatives of the y_i with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent variables y_i at a known value $t = t_0$ are given. Values of $y_i(t)$ for $t > 0$ or $t < t_0$ are required.

The classes OdeRungeKutta and OdeAdamsGear solve the IVP for ODEs of the form

$$\frac{dy_i}{dt} = y_i'(t, y_1, ..., y_N) \quad i = 1, ..., N$$

with $y_i = (t = t_0)$ specified. Here, f_i is a user-supplied function that must be evaluated at any set of values $(t, y_1, ..., y_N), i = 1, ..., N$.

This problem statement is abbreviated by writing it as a system of first-order ODEs,

$$y(t) [y_1(t), ..., y_N(t)]^T, [f_1(t, y), ..., f_N(t, y)]^T$$

so that the problem becomes $y' = f(t, y)$ with initial values $y(t_0)$.

The system

$$\frac{dy}{dt} = y' = f(t, y)$$
is said to be stiff if some of the eigenvalues of the Jacobian matrix
\[\{ \partial y'_i / \partial y_j \} \]
are large and negative. This is frequently the case for differential equations modeling the behavior of physical systems, such as chemical reactions proceeding to equilibrium where subspecies effectively complete their reactions in different epochs. An alternate model concerns discharging capacitors such that different parts of the system have widely varying decay rates (or time constants).

Users typically identify stiff systems by the fact that numerical differential equation solvers such as OdeRungeKutta are inefficient, or else completely fail. Special methods are often required. The most common inefficiency is that a large number of evaluations of \(f(t, y) \) (and hence an excessive amount of computer time) are required to satisfy the accuracy and stability requirements of the software. In such cases, use OdeAdamsGear. For more discussion about stiff systems, see Gear (1971, Chapter 11) or Shampine and Gear (1979).

Partial Differential Equations

The FeynmanKac class solves the Feynman-Kac equation, a single partial differential equation, on a finite interval \([x_{\min}, x_{\max}]\). This equation often arises in applications from financial engineering and that is the primary focus of the documentation examples. The equation, initial conditions and Feynman-Kac boundary values are given by

\[
\begin{align*}
 f_t + \mu(x,t) + \frac{\sigma^2(x,t)}{2} f_{xx} - \kappa(x,t) f &= \phi(f,x,t), \\
 f(x,T) &= p(x), \ \{f_t = \frac{\partial f}{\partial t}, \text{etc.}\}, \\
 a(x,t)f + b(x,t)f_t + c(x,t)f_{xx} &= d(x,t), \ x = x_{\min} \& x_{\max}.
\end{align*}
\]

The solution is approximated by a piece-wise series of Hermite quintic polynomials on a grid of the interval \([x_{\min}, x_{\max}]\) that yields a twice differentiable solution. To assist in the evaluation of the approximate solution and its derivatives there is method getSplineValue.

ODE class

abstract public class com.imsl.math.ODE implements Serializable, Cloneable

ODE represents and solves an initial-value problem for ordinary differential equations.
Fields

AFTER_SUCCESSFUL_STEP

static final public int AFTER_SUCCESSFUL_STEP

Used by method examineStep to indicate examining after a successful step

AFTER_UNSUCCESSFUL_STEP

static final public int AFTER_UNSUCCESSFUL_STEP

Used by method examineStep to indicate examining after an unsuccessful step

BEFORE_STEP

static final public int BEFORE_STEP

Used by method examineStep to indicate examining before the next step

ERROR_NORM_ABS

static final public int ERROR_NORM_ABS

Used by method setNorm to indicate that the error norm to be used is to be the absolute error, equals $\max(|e_i|)$

ERROR_NORM_EUCLIDEAN

static final public int ERROR_NORM_EUCLIDEAN

Used by method setNorm to indicate that the error norm to be used is to be the scaled Euclidean norm defined as

$$s = \sqrt{\sum_{i=1}^{n_{eq}} \frac{e_i^2}{w_i^2}}$$

where $w_i = e_i / \max(|y_i(t)|, 1.0)$ and n_{eq} is the number of equations

ERROR_NORM_MAX

static final public int ERROR_NORM_MAX

Used by method setNorm to indicate that the error norm to be used is to be the maximum of $e_i / \max(|y_i(t)|, \text{floor})$ where floor is set via setFloor

ERROR_NORM_MINABSREL

static final public int ERROR_NORM_MINABSREL

Used by method setNorm to indicate that the error norm to be used is to be the minimum of the absolute error and the relative error, equals the maximum of $e_i / \max(|y_i(t)|, 1)$
Constructor

ODE
public ODE()

Methods

examineStep
protected void examineStep(int state, double t, double[] y)

Description
Called before and after each internal step. This method can be over-ridden by the user to examine intermediate values of t and y.

Parameters
- state – an int, one of BEFORE_STEP, AFTER_SUCCESSFUL_STEP or AFTER_UNSUCCESSFUL_STEP.
- t – double representing the independent variable.
- y – double array containing the dependent variables.

getFloor
public double getFloor()

Description
Returns the value used in the norm computation.

Returns
a double used in the norm computation.

getInitialStepsize
public double getInitialStepsize()

Description
Returns the initial internal step size.

Returns
a double specifying the initial internal step size.

getMaxSteps
public int getMaxSteps()

Description
Returns the maximum number of internal steps allowed.
Returns an int specifying the maximum number of internal steps allowed.

getMaximumStepsize

public double getMaximumStepsize()

Description

Returns the maximum internal step size.

Returns

a double specifying the maximum internal step size.

getMinimumStepsize

public double getMinimumStepsize()

Description

Returns the minimum internal step size.

Returns

a double specifying the minimum internal step size.

getNorm

public int getNorm()

Description

Returns the switch for determining the error norm.

Returns

an int specifying the switch for determining the error norm. In the following, e_i is the absolute value for an estimate of the error in $y_i(t)$.

<table>
<thead>
<tr>
<th>normMethod</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR_NORM_MINABSREL</td>
<td>Minimum of the absolute error and the relative error; equals the maximum of $e_i / \max(</td>
</tr>
<tr>
<td>ERROR_NORM_ABS</td>
<td>Absolute error, equals $\max(e_i)$</td>
</tr>
<tr>
<td>ERROR_NORM_MAX</td>
<td>Maximum of $e_i / \max(</td>
</tr>
</tbody>
</table>
| ERROR_NORM_EUCLIDEAN | Scaled Euclidean norm defined as $
\begin{align*}
 s &= \sqrt{\sum_{i=1}^{\text{neq}} \frac{e_i^2}{w_i^2}} \\
 w_i &= e_i / \max(|y_i(t)|, 1.0)
\end{align*}$

where neq is the number of equations

getScale

public double getScale()
Description
Returns the scaling factor.

Returns
a double specifying the scaling factor.

getTolerance
public double getTolerance()

Description
Returns the error tolerance.

Returns
a double specifying the error tolerance.

setFloor
public void setFloor(double floor)

Description
Sets the value used in the norm computation.

Parameter
- floor – a double used in the norm computation. floor must be greater than zero.
 Default: floor = 1.0

setInitialStepsize
public void setInitialStepsize(double stepsize)

Description
Sets the initial internal step size.

Parameter
- stepsize – a double specifying the initial internal step size. stepsize must be greater than or equal to zero. Default: stepsize = 0.0

setMaxSteps
public void setMaxSteps(int maxSteps)

Description
Sets the maximum number of internal steps allowed.

Parameter
- maxSteps – an int specifying the maximum number of internal steps allowed. maxSteps must be greater than zero. Default: maxSteps = 500

setMaximumStepsize
public void setMaximumStepsize(double stepsize)
Description
Sets the maximum internal step size.

Parameter
- `stepsize` – a double specifying the maximum internal step size. `stepsize` must be greater than zero.
 Default: See the `setMaximumStepsize` method in the subclasses for the default values used.

setMinimumStepsize

```java
public void setMinimumStepsize(double stepsize)
```

Description
Sets the minimum internal step size.

Parameter
- `stepsize` – a double specifying the minimum internal step size. `stepsize` must be greater than or equal to zero. Default: `stepsize = 0.0`

setNorm

```java
public void setNorm(int normMethod)
```

Description
Sets the switch for determining the error norm.

Parameter
- `normMethod` – an int specifying the switch for determining the error norm.
 Default: `normMethod = ERROR_NORM_MINABSREL`

In the following table, e_i is the absolute value for an estimate of the error in $y_i(t)$.

<table>
<thead>
<tr>
<th>normMethod</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR_NORM_MINABSREL</td>
<td>Minimum of the absolute error and the relative error, equals the maximum of $e_i / max(</td>
</tr>
<tr>
<td>ERROR_NORM_ABS</td>
<td>Absolute error, equals $max(e_i)$</td>
</tr>
<tr>
<td>ERROR_NORM_MAX</td>
<td>Maximum of $e_i / max(</td>
</tr>
<tr>
<td>ERROR_NORM_EUCLIDEAN</td>
<td>Scaled Euclidean norm defined as $s = \sqrt{\sum_{i=1}^{neq} \frac{e_i^2}{w_i^2}}$</td>
</tr>
</tbody>
</table>

where $w_i = e_i / max(|y_i(t)|, 1.0)$ and `neq` is the number of equations

setScale

```java
public void setScale(double scale)
```

Description
Sets the scaling factor.
Parameter
scale – a double specifying the scaling factor. scale must be greater than zero.
Default: scale = 1.0

setTolerance
public void setTolerance(double tolerance)

Description
Sets the error tolerance.

Parameter
tolerance – a double specifying the error tolerance. tolerance must be greater than zero.
Default: tolerance = 1.0e-6

vnorm
protected double vnorm(double[] v, double[] y, double[] ymax)

Description
Returns the norm of a vector. This method can be over-ridden by the user to supply a different norm than those available through setNorm.

Parameters
v – a double array containing the vector whose norm is to be computed
y – a double array containing the values of the dependent variable
ymax – a double array containing the maximum y values computed thus far

Returns
a double scalar value representing the norm of the vector v

OdeRungeKutta class

public class com.imsl.math.OdeRungeKutta extends com.imsl.math.ODE
Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method.

Class OdeRungeKutta finds an approximation to the solution of a system of first-order differential equations of the form \(\frac{dy}{dt} = y' = f(t, y) \) with given initial data. The class attempts to keep the global error proportional to a user-specified tolerance. This class is efficient for nonstiff systems where the derivative evaluations are not expensive.

OdeRungeKutta is based on a code designed by Hull, Enright and Jackson (1976, 1977). It uses Runge-Kutta formulas of order five and six developed by J. H. Verner.
Constructor

OdeRungeKutta

`public OdeRungeKutta(OdeRungeKutta.Function function)`

Description
Constructs an ODE solver to solve the initial value problem $\frac{dy}{dt} = f(t,y)$

Parameter
- `function` – implementation of interface `Function` that defines the right-hand side function $f(t,y)$

Methods

setMaximumStepsize

`public void setMaximumStepsize(double stepsize)`

Description
Sets the maximum internal step size.

Parameter
- `stepsize` – a `double` specifying the maximum internal step size. `stepsize` must be greater than zero. Default: `stepsize = 2`

solve

`public void solve(double t, double tEnd, double[] y) throws OdeRungeKutta.ToleranceTooSmallException, OdeRungeKutta.DidNotConvergeException`

Description
Integrates the ODE system from `t` to `tEnd`. On all but the first call to `solve`, the value of `t` must equal the value of `tEnd` from the previous call.

Parameters
- `t` – `double` specifying the independent variable
- `tEnd` – `double` specifying the value of `t` at which the solution is desired
- `y` – on input, `double` array containing the initial values. On output, `double` array containing the approximate solution.

Exceptions
- `DidNotConvergeException` is thrown if the number of internal steps exceeds `maxSteps` (default 500). This can be an indication that the ODE system is stiff. This exception can also be thrown if the error tolerance condition could not be met.
- `ToleranceTooSmallException` is thrown if the computation does not converge on some step.
Example: Runge-Kutta-Verner ordinary differential equation solver

An ordinary differential equation problem is solved using a solver which implements the Runge-Kutta-Verner method. The solution at time t=10 is printed.

```java
import com.imsl.math.*;

public class OdeRungeKuttaEx1 {
    public static void main(String args[]) throws com.imsl.IMSLException {
        OdeRungeKutta.Function fcn = new OdeRungeKutta.Function() {
            public void f(double t, double[] y, double[] yprime) {
                yprime[0] = 2. * y[0] * (1 - y[1]);
                yprime[1] = -y[1] * (1 - y[0]);
            }
        };
        double y[] = {1, 3};
        OdeRungeKutta q = new OdeRungeKutta(fcn);
        int nsteps = 10;
        for (int k = 0; k < nsteps; k++) {
            q.solve(k, k + 1, y);
        }
        System.out.println("Result = {" + y[0] + ", " + y[1] + "}");
    }
}
```

Output

Result = {3.1443416765160768, 0.3488265985196999}

OdeRungeKutta.Function interface

```java
public interface com.imsl.math.OdeRungeKutta.Function
```

Public interface for user supplied function to OdeRungeKutta object.

Method

```java
f
public void f(double t, double[] y, double[] yprime)
```
Returns the value of the function at the given point.

Parameters

- t – a double, the point at which the function is to be evaluated
- y – a double array which contains the dependent variable values
- yprime – a double array which contains the value of the function at (t, y)

OdeRungeKutta.ToleranceTooSmallException

static public class com.imsl.math.OdeRungeKutta.ToleranceTooSmallException
extends com.imsl.IMSLException
Tolerance is too small or the problem is stiff.

Constructors

OdeRungeKutta.ToleranceTooSmallException
public OdeRungeKutta.ToleranceTooSmallException(String message)

Description
Constructs a ToleranceTooSmallException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameter

- message – a String containing the error message

OdeRungeKutta.ToleranceTooSmallException
public OdeRungeKutta.ToleranceTooSmallException(String key, Object[] arguments)

Description
Constructs a ToleranceTooSmallException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameters

- key – the String key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string
OdeRungeKutta.DidNotConvergeException class

static public class com.imsl.math.OdeRungeKutta.DidNotConvergeException extends com.imsl.IMSLException

The iteration did not converge within the maximum number of steps allowed (default 500). This can be an indication that the ODE system is stiff. This exception can also be thrown if the error tolerance condition could not be met.

Constructors

OdeRungeKutta.DidNotConvergeException

public OdeRungeKutta.DidNotConvergeException(String message)

Description

Constructs a DidNotConvergeException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameter

message – a String containing the error message

OdeRungeKutta.DidNotConvergeException

public OdeRungeKutta.DidNotConvergeException(String key, Object[] arguments)

Description

Constructs a DidNotConvergeException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameters

key – the String key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

OdeAdamsGear class

public class com.imsl.math.OdeAdamsGear extends com.imsl.math.ODE

Extension of the ODE class to solve a stiff initial-value problem for ordinary differential equations using the Adams-Gear methods.
Class OdeAdamsGear finds an approximation to the solution of a system of first-order differential equations of the form

\[\frac{dy}{dt} = y' = f(t, y) \]

with given initial conditions for \(y \) at the starting value for \(t \). The class attempts to keep the global error proportional to a user-specified tolerance. The proportionality depends on the differential equation and the range of integration. The code is based on using backward difference formulas not exceeding order five as outlined in Gear (1971) and implemented by Hindmarsh (1974). There is an optional use of the code that employs implicit Adams formulas. This use is intended for nonstiff problems with expensive functions \(y' = f(t, y) \).

Fields

METHOD_ADAMS

static final public int METHOD_ADAMS

The Adams integration method

METHOD_BDF

static final public int METHOD_BDF

The BDF integration method

SOLVE_CHORD_COMPUTED_DIAGONAL

static final public int SOLVE_CHORD_COMPUTED_DIAGONAL

A chord method and a diagonal matrix based on a directional directive

SOLVE_CHORD_COMPUTED_JACOBIAN

static final public int SOLVE_CHORD_COMPUTED_JACOBIAN

A chord or modified Newton method and a divided differences Jacobian

SOLVE_CHORD_USER_JACOBIAN

static final public int SOLVE_CHORD_USER_JACOBIAN

A chord or modified Newton method and a user-supplied Jacobian

SOLVE_FUNCTION_ITERATION

static final public int SOLVE_FUNCTION_ITERATION

A function iteration or successive substitution method
Constructor

OdeAdamsGear

```java
public OdeAdamsGear(OdeAdamsGear.Function function)
```

Description

Constructs an ODE solver to solve the initial value problem \(\frac{dy}{dt} = f(t,y) \)

Parameter

- `function` – implementation of interface `Function` that defines the right-hand side function \(f(t,y) \)

Methods

getIntegrationMethod

```java
public int getIntegrationMethod()
```

Description

Returns the integration method used.

Returns

an `int` indicating the integration method used. One of the following is returned:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD_ADAMS</td>
<td>Use the implicit Adams method.</td>
</tr>
<tr>
<td>METHOD_BDF</td>
<td>Use backward differentiation formula (BDF) methods.</td>
</tr>
</tbody>
</table>

getMaxOrder

```java
public int getMaxOrder()
```

Description

Returns the highest order formula to use of implicit METHOD_ADAMS type or METHOD_BDF type.

Returns

an `int` specifying the highest order formula to use of implicit METHOD_ADAMS type or METHOD_BDF type.

getMaximumFunctionEvaluations

```java
public int getMaximumFunctionEvaluations()
```

Description

Returns the maximum number of function evaluations of \(y' \) allowed.

Returns

an `int` specifying the maximum number of function evaluations of \(y' \) allowed.

getNumberOfFcnEvals

```java
public int getNumberOfFcnEvals()
```
Description
Returns the number of function evaluations of y' made.

Returns
an int specifying the number of function evaluations of y' made.

getNumberOfJacobianEvals

public int getNumberOfJacobianEvals()

Description
Returns the number of Jacobian matrix evaluations used.

Returns
an int specifying the number of Jacobian matrix evaluations used.

getNumberOfSteps

public int getNumberOfSteps()

Description
Returns the number of internal steps taken.

Returns
an int specifying the number of internal steps taken.

getSolveMethod

public int getSolveMethod()

Description
Returns the method for solving the formula equations.

Returns
an int indicating the method used for solving the formula equations. One of the following is returned:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLVE_FUNCTION_ITERATION</td>
<td>Use a function iteration or successive substitution method.</td>
</tr>
<tr>
<td>SOLVE_CHORD_USER_JACOBIAN</td>
<td>Use a chord or modified Newton method and a user-supplied Jacobian.</td>
</tr>
<tr>
<td>SOLVE_CHORD_COMPUTED_JACOBIAN</td>
<td>Use a chord or modified Newton method and a Jacobian approximated by divided differences.</td>
</tr>
<tr>
<td>SOLVE_CHORD_COMPUTED_DIAGONAL</td>
<td>Use a chord method and a diagonal matrix based on a directional directive.</td>
</tr>
</tbody>
</table>

setIntegrationMethod

public void setIntegrationMethod(int intMethod)
Description
Indicates which integration method is to be used.

Parameter
- **intMethod** – an int specifying the integration method to be used. `intMethod` must be one of the values specified in the table which follows. Default: `intMethod = METHOD_BDF`

<table>
<thead>
<tr>
<th>intMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD_ADAMS</td>
<td>Use the implicit Adams method.</td>
</tr>
<tr>
<td>METHOD_BDF</td>
<td>Use backward differentiation formula (BDF) methods.</td>
</tr>
</tbody>
</table>

setMaxOrder
public void setMaxOrder(int maxOrder)

Description
Sets the highest order formula to use of implicit METHOD_ADAMS type or METHOD_BDF type.

Parameter
- **maxOrder** – an int specifying the highest order formula to use of implicit METHOD_ADAMS type or METHOD_BDF type. `maxOrder` must be greater than zero. Default: `maxOrder = 12` for METHOD_ADAMS and `maxOrder = 5` for METHOD_BDF.

setMaximumFunctionEvaluations
public void setMaximumFunctionEvaluations(int maxfcn)

Description
Sets the maximum number of function evaluations of y' allowed.

Parameter
- **maxfcn** – an int specifying the maximum number of function evaluations of y' allowed. `maxfcn` must be greater than zero. Default: No limit is enforced.

setMaximumStepsize
public void setMaximumStepsize(double stepsize)

Description
Sets the maximum internal step size.

Parameter
- **stepsize** – a double specifying the maximum internal step size. `stepsize` must be greater than zero. Default: `stepsize = 1.7976931348623157e+308`

setSolveMethod
public void setSolveMethod(int solveMethod)

Description
Indicates which method to use for solving the formula equations.
Parameter

solveMethod – an int specifying the method to be used for solving the formula equations. Note that if the problem is stiff and a chord or modified Newton method is most efficient, use SOLVE_CHORD_USER_JACOBIAN or SOLVE_CHORD_COMPUTED_JACOBIAN. solveMethod must be one of the values specified in the table which follows.

Default: solveMethod = SOLVE_CHORD_COMPUTED_JACOBIAN.

<table>
<thead>
<tr>
<th>solveMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLVE_FUNCTION_ITERATION</td>
<td>Use a function iteration or successive substitution method.</td>
</tr>
<tr>
<td>SOLVE_CHORD_USER_JACOBIAN</td>
<td>Use a chord or modified Newton method and a user-supplied Jacobian.</td>
</tr>
<tr>
<td>SOLVE_CHORD_COMPUTED_JACOBIAN</td>
<td>Use a chord or modified Newton method and a divided differences Jacobian.</td>
</tr>
<tr>
<td>SOLVE_CHORD_COMPUTED_DIAGONAL</td>
<td>Use a chord method and a diagonal matrix based on a directional directive.</td>
</tr>
</tbody>
</table>

solve

public void solve(double t, double tEnd, double[] y) throws
OdeAdamsGear.DidNotConvergeException,
OdeAdamsGear.MaxFcnEvalsExceededException,
OdeAdamsGear.ToleranceTooSmallException, OdeAdamsGear.SingularMatrixException

Description

Integrates the ODE system from t to tEnd. On all but the first call to solve, the value of t must equal the value of tEnd from the previous call.

Parameters

- t – a double specifying the independent variable
- tEnd – a double specifying the value of t at which the solution is desired
- y – on input, a double array containing the initial values. On output, a double array containing the approximate solution.

Exceptions

- DidNotConvergeException is thrown if the number of internal steps exceeds maxSteps (default 500). This can be an indication that the ODE system is stiff. This exception can also be thrown if the error tolerance condition could not be met.
- ToleranceTooSmallException is thrown if the computation does not converge on some step.
- MaxFcnEvalsExceededException is thrown if the maximum number of function evaluations allowed has been exceeded.
- SingularMatrixException is thrown if the factorization function encounters a singular matrix during LU decomposition.
Example: Adams-Gear ordinary differential equation solver

A mildly stiff ordinary differential equation problem is solved using a solver which implements the Adams-Gear method. The solution at time $t=240$ is printed.

```java
import java.text.*;
import com.imsl.math.*;

public class OdeAdamsGearEx1 {
    public static void main(String args[]) throws com.imsl.IMSLException {
        final double k1 = 294.0;
        final double k2 = 3.0;
        final double k3 = 0.01020408;

        OdeAdamsGear.Function f = new OdeAdamsGear.Function() {
            public double[] f(double t, double y[]) {
                double[] yprime = new double[y.length];
                yprime[0] = -y[0] - y[0] * y[1] + k1 * y[1];
                yprime[1] = -k2 * y[1] + k3 * (1.0 - y[1]) * y[0];
                return yprime;
            }
        };

        double t = 0.0;
        double tend = 240.0;
        double y[] = {1.0, 0.0};
        OdeAdamsGear q = new OdeAdamsGear(f);
        q.setNorm(OdeAdamsGear.ERROR_NORM_ABS);
        q.setSolveMethod(OdeAdamsGear.SOLVE_CHORD_COMPUTED_JACOBIAN);
        q.setTolerance(1.e-3);
        q.solve(t, tend, y);

        // Print Results
        NumberFormat nf = NumberFormat.getInstance();
        nf.setMaximumFractionDigits(4);
        nf.setMinimumFractionDigits(4);
        System.out.println("Result = ", + nf.format(y[0]) + ", " + nf.format(y[1]) + "});
    }
}
```

Output

Result = {0.3924, 0.0013}
OdeAdamsGear.Function interface

public interface com.imsl.math.OdeAdamsGear.Function

Public interface for user supplied function to OdeAdamsGear object.

Method

f

public double[] f(double t, double[] y)

Description

Computes the value of the function \(y' = f(t, y) \) at the given point.

Parameters

\(t \) – a double, the point at which the function is to be evaluated. (Input)

\(y \) – a double array which contains the dependent variable values. (Input)

Returns

a double array of length \(y.length \) which contains the value of the function \(\frac{dy}{dt} = y' = f(t, y) \). (Output)

OdeAdamsGear.Jacobian interface

Public interface for the user supplied function to evaluate the Jacobian matrix.

Method

jacobian

public double[][] jacobian(double t, double[] y, double[] yprime)

Description

Used to compute the Jacobian of the function at \(t \).
Parameters

- \(t \) – a double, the point at which the function is to be evaluated. (Input)
- \(y \) – a double array which contains the dependent variable values. (Input)
- \(yprime \) – a double array which contains the value of the function \(\frac{dy}{dt} = y' = f(t, y). \) (Input)

Returns

A double \(y.length \) by \(y.length \) matrix containing the value of the Jacobian of the function at \(t. \) (Output)

OdeAdamsGear.ToleranceTooSmallException class

```java
static public class com.imsl.math.OdeAdamsGear.ToleranceTooSmallException extends com.imsl.IMSLException

Tolerance is too small or the problem is stiff.
```

Constructors

OdeAdamsGear.ToleranceTooSmallException

```java
public OdeAdamsGear.ToleranceTooSmallException(String message)
```

Description

Constructs a ToleranceTooSmallException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameter

- message – a String containing the error message

OdeAdamsGear.ToleranceTooSmallException

```java
public OdeAdamsGear.ToleranceTooSmallException(String key, Object[] arguments)
```

Description

Constructs a ToleranceTooSmallException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameters

- key – the String key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string
OdeAdamsGear.MaxFcnEvalsExceeded(Exception class

static public class com.imsl.math.OdeAdamsGear.MaxFcnEvalsExceeded
extends com.imsl.IMSLException

Maximum function evaluations exceeded.

Constructors

OdeAdamsGear.MaxFcnEvalsExceeded

public OdeAdamsGear.MaxFcnEvalsExceeded(String message)

Description

Constructs a MaxFcnEvalsExceededException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameter

message – a String containing the error message

OdeAdamsGear.MaxFcnEvalsExceeded

public OdeAdamsGear.MaxFcnEvalsExceeded(String key, Object[] arguments)

Description

Constructs a MaxFcnEvalsExceededException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameters

key – the String key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

OdeAdamsGear.DidNotConvergeException class

static public class com.imsl.math.OdeAdamsGear.DidNotConvergeException extends com.imsl.IMSLException

Differential Equations OdeAdamsGear • 249
The iteration did not converge within the maximum number of steps allowed (default 500). This can be an indication that the ODE system is stiff. This exception can also be thrown if the error tolerance condition could not be met.

Constructors

OdeAdamsGear.DidNotConvergeException

public OdeAdamsGear.DidNotConvergeException(String message)

Description

Constructs a DidNotConvergeException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameter

message – a String containing the error message

OdeAdamsGear.DidNotConvergeException

public OdeAdamsGear.DidNotConvergeException(String key, Object[] arguments)

Description

Constructs a DidNotConvergeException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameters

key – the String key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

OdeAdamsGear.SingularMatrixException class

static public class com.imsl.math.OdeAdamsGear.SingularMatrixException extends com.imsl.IMSLException

The interpolation matrix is singular. This exception is thrown if the factorization function encounters a singular matrix during LU decomposition.

Constructors

OdeAdamsGear.SingularMatrixException

public OdeAdamsGear.SingularMatrixException(String message)
Description
Constructs a SingularMatrixException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameter
message – a String containing the error message

OdeAdamsGear.SingularMatrixException
public OdeAdamsGear.SingularMatrixException(String key, Object[] arguments)

Description
Constructs a SingularMatrixException with the specified detailed message. The detailed message is a String that describes this particular exception.

Parameters
key – the String key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

FeynmanKac class

public class com.imsl.math.FeynmanKac implements Serializable, Cloneable

Solves the generalized Feynman-Kac PDE.

Class FeynmanKac solves the generalized Feynman-Kac PDE on a rectangular grid with boundary conditions using a finite element Galerkin method. The generalized Feynman-Kac differential equation has the form

\[f_t + \mu(x,t)f_x + \frac{\sigma^2(x,t)}{2}f_{xx} - \kappa(x,t)f = \phi(f,x,t), \]

where the initial data satisfies \(f(x,T) = p(x) \). The derivatives are \(f_t = \frac{df}{dt} \), etc. Method \(\text{computeCoefficients} \) uses a finite element Galerkin method over the rectangle \([x_{\text{min}}, x_{\text{max}}] \times [T, T] \) in \((x, t) \) to compute the approximate solution. The interval \([x_{\text{min}}, x_{\text{max}}]\) is decomposed with a grid \((x_{\text{min}} =)x_1 < x_2 < \ldots < x_m (= x_{\text{max}}) \).

On each subinterval the solution is represented by

\[f(x,t) = f_i b_0(z) + f_{i+1} b_0(1-z) + h_i f'_i b_1(z) - h_i f'_{i+1} b_1(1-z) + h_i^2 f''_i b_2(z) + h_i^2 f''_{i+1} b_2(1-z). \]

The values

\[f_i, f'_i, f''_i, f_{i+1}, f'_i, f''_{i+1} \]
are time-dependent coefficients associated with each interval. The basis functions \(b_0, b_1, b_2 \) are given for

\[x \in [x_i, x_{i+1}], \quad h_i = x_{i+1} - x_i, \quad z = (x - x_i) / h_i, \quad z \in [0, 1], \]

by

\[
\begin{align*}
 b_0(z) &= -6z^5 + 15z^4 - 10z^3 + 1 = (1 - z)^3(6z^2 + 3z + 1), \\
 b_1(z) &= -3z^5 + 8z^4 - 6z^3 + z = (1 - z)^3(3z + 1), \\
 b_2(z) &= \frac{1}{2}(-z^5 + 3z^4 - 3z^3 + z^2) = \frac{1}{2}(1 - z)^3z^2.
\end{align*}
\]

By adding the piece-wise definitions the unknown solution function may be arranged as the series

\[
f(x, t) = \sum_{i=1}^{3m} y_i \beta_i(x), \quad x \in [x_{\min}, x_{\max}],
\]

where the time-dependent coefficients are defined by re-labeling:

\[
y_{3i-2} = f_i, \quad y_{3i-1} = f_i', \quad y_{3i} = f_i'', \quad i = 1, \ldots, m.
\]

The Galerkin principle is then applied. Using the provided initial and boundary conditions leads to an Index 1 differential-algebraic equation for the coefficients \(y_i, \quad i = 1, \ldots, 3m \).

This system is integrated using the variable order, variable step algorithm DDASLX noted in Hanson, R. and Krogh, F. (2008), *Solving Constrained Differential-Algebraic Systems Using Projections*. Solution values and their time derivatives at a grid preceding time \(T \), expressed in units of time remaining, are given back by methods getSplineCoefficients and getSplineCoefficientsPrime, respectively. For further details of deriving and solving the system see Hanson, R. (2008), *Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements*. To evaluate \(f \) or its partials \(f_x, f_{xx}, f_{xxx}, f_t, f_{tx}, f_{txx}, f_{txxx} \) at any time point in the grid, use method getSplineValue.

One useful application of the FeynmanKac class is financial analytics. This is illustrated in Example 2, which solves a diffusion model for call options which, in the special case \(\alpha = 2 \) reduces to the Black-Scholes (BS) model. Another useful application for the FeynmanKac class is the calculation of the Greeks, i.e. various derivatives of Feynman-Kac solutions applicable to, e.g., the pricing of options and related financial derivatives. In Example 5, the FeynmanKac class is used to calculate eleven of the Greeks for the same diffusion model introduced in Example 2 in the special BS case. These Greeks are also calculated using the BS closed form Greek equations (see http://en.wikipedia.org/wiki/The_Greeks). The Feynman-Kac and BS solutions are output and compared. Example 5 illustrates that the FeynmanKac class can be used to explore the Greeks for a much wider class of financial models than can BS.

Fields

METHOD_OF_PETZOLD

| static final public int METHOD_OF_PETZOLD |

Used by method setStepControlMethod to indicate that the step control algorithm of the original Petzold code is used in the integration.
METHOD_OF_SOEDERLIND

static final public int METHOD_OF_SOEDERLIND

Used by method setStepControlMethod to indicate that the step control method by Soederlind is used in the integration.

Constructor

FeynmanKac

public FeynmanKac(FeynmanKac.PdeCoefficients pdeCoeffs)

Description

Constructs a PDE solver to solve the Feynman-Kac PDE.

Parameter

pdeCoeffs – Implementation of interface PdeCoefficients that computes the values of the Feynman-Kac coefficients at a given point \((t,x)\).

Methods

computeCoefficients

public void computeCoefficients(int numLeftBounds, int numRightBounds, FeynmanKac.Boundaries pdeBounds, double[] xGrid, double[] tGrid) throws FeynmanKac.ToleranceTooSmallException, FeynmanKac.TooManyIterationsException, FeynmanKac.ErrorTestException, FeynmanKac.CorrectorConvergenceException, FeynmanKac.IterationMatrixSingularException, FeynmanKac.TcurrentTstopInconsistentException, FeynmanKac.TEqualsToutException, FeynmanKac.InitialConstraintsException, FeynmanKac.ConstraintsInconsistentException, SingularMatrixException, FeynmanKac.BoundaryInconsistentException

Description

Determines the coefficients of the Hermite quintic splines that represent an approximate solution for the Feynman-Kac PDE.

Parameters

numLeftBounds – an int, the number of left boundary conditions. It is required that \(1 \leq \text{numLeftBounds} \leq 3\).

numRightBounds – an int, the number of right boundary conditions. It is required that \(1 \leq \text{numRightBounds} \leq 3\).
pdeBounds – Implementation of interface Boundaries that computes the boundary coefficients and terminal condition for given (t,x).

xGrid – a double array containing the breakpoints for the Hermite quintic splines used in the x discretization. The length of $xGrid$ must be at least 2, $xGrid.length \geq 2$, and the elements in $xGrid$ must be in strictly increasing order.

tGrid – a double array containing the set of time points (in time-remaining units) where an approximate solution is returned. The elements in array $tGrid$ must be positive and in strictly increasing order.

Exceptions

ToleranceTooSmallException is thrown if the absolute or relative error tolerances used in the integrator are too small.

TooManyIterationsException is thrown if the integrator needs too many iteration steps.

ErrorTestException is thrown if the error test used in the integrator failed repeatedly.

CorrectorConvergenceException is thrown if the corrector failed to converge repeatedly.

IterationMatrixSingularException is thrown if one of the iteration matrices used in the integrator is singular.

TimeIntervalTooSmallException is thrown if the distance between an intermediate starting and end point for the integration is too small.

TCurrentTstopInconsistentException is thrown if during the integration the current integration time and given stepsize is inconsistent with the endpoint of the integration.

TEqualsToutException is thrown if during the integration process the actual integration time and the end time of the integration are identical.

InitialConstraintsException is thrown if at the initial integration point some of the constraints are inconsistent.

ConstraintsInconsistentException is thrown if during the integration process the constraints for the actual time point and given stepsize are inconsistent.

SingularMatrixException is thrown if one of the matrices used outside the integrator is singular.

BoundaryInconsistentException is thrown if the boundary conditions are inconsistent.

getAbsoluteErrorTolerances

```
public double[] getAbsoluteErrorTolerances()
```

Description

Returns absolute error tolerances.

Returns

A double array of length $3*\text{xGrid.length}$ containing absolute error tolerances for the solutions.

getGaussLegendreDegree

```
public int getGaussLegendreDegree()
```
Description

Returns the number of quadrature points used in the Gauss-Legendre quadrature formula.

Returns

an int, the degree of the polynomial used in the Gauss-Legendre quadrature.

getInitialStepsize

public double getInitialStepsize()

Description

Returns the starting step size for the integration.

Returns

a double, the starting step size used in the integrator.

getMaxSteps

public int getMaxSteps()

Description

Returns the maximum number of internal steps allowed.

Returns

an int specifying the maximum number of internal steps allowed between each output point of the integration.

getMaximumBDFOrder

public int getMaximumBDFOrder()

Description

Returns the maximum order of the BDF formulas.

Returns

an int, the maximum order of the backward differentiation formulas used in the integrator.

getMaximumStepsize

public double getMaximumStepsize()

Description

Returns the maximum internal step size used by the integrator.

Returns

a double, the maximum internal step size.

getRelativeErrorTolerances

public double[] getRelativeErrorTolerances()

Description

Returns relative error tolerances.
Returns
a double array of length 3*xGrid.length containing relative error tolerances for the solutions.

getSplineCoefficients
public double[][] getSplineCoefficients()

Description
Returns the coefficients of the Hermite quintic splines that represent an approximate solution of the Feynman-Kac PDE.

Returns
a double array of dimension (tGrid.length+1) by (3*xGrid.length) containing the coefficients of the Hermite quintic spline representation of the approximate solution for the Feynman-Kac PDE at time points 0, tGrid[0],...,tGrid[tGrid.length-1]. Setting ntGrid = tGrid.length and nxGrid = xGrid.length the approximate solution is given by

\[f(x,t) = \sum_{j=0}^{3*nxGrid-1} y_{ij}\beta_j(x) \] for \(t = tGrid[i-1], i = 1,\ldots, ntGrid. \]

The representation for the initial data at \(t=0 \) is

\[p(x) = \sum_{j=0}^{3*nxGrid-1} y_{0j}\beta_j(x). \]

The (ntGrid+1) by (3*nxGrid) matrix

\[(y_{ij})_{i=0,\ldots,ntGrid, j=0,\ldots,3*nxGrid-1} \]

is stored row-wise in the returned array.

getSplineCoefficientsPrime
public double[][] getSplineCoefficientsPrime()

Description
Returns the first derivatives of the Hermite quintic spline coefficients that represent an approximate solution of the Feynman-Kac PDE.

Returns
a double array of dimension (tGrid.length+1) by (3*xGrid.length) containing the first derivatives (in time) of the coefficients of the Hermite quintic spline representation of the approximate solution for the Feynman-Kac PDE at time points 0, tGrid[0],...,tGrid[tGrid.length-1]. The approximate solution itself is given by

\[f_t(x,\bar{t}) = \sum_{j=0}^{3*nxGrid-1} y'_{ij}\beta_j(x) \] for \(\bar{t} = tGrid[i-1], i = 1,\ldots, ntGrid, \]

and

\[f_t(x,\bar{t}) = \sum_{j=0}^{3*nxGrid-1} y_{0j}'\beta_j(x) \] for \(\bar{t} = 0. \)
The \((n\text{tGrid}+1)\) by \((3\times n\text{Grid})\) matrix
\[
(y_{ij}')_{j=0,...,3\times n\text{Grid}-1}^{i=0,...,n\text{tGrid}}
\]
is stored row-wise in the returned array.

getSplineValue

```java
public double[] getSplineValue(double[] evaluationPoints, double[] coefficients, int ideriv)
```

Description
Evaluates for time value 0 or a time value in tGrid the derivative of the Hermite quintic spline interpolant at evaluation points within the range of xGrid.

Parameters
- `evaluationPoints` – a double array containing the points in x-direction at which the Hermite quintic spline representing the approximate solution to the Feynman-Kac PDE or one of its derivatives is to be evaluated. It is required that all elements in array `evaluationPoints` are greater than or equal to `xGrid[0]` and less than or equal to `xGrid[xGrid.length-1].`
- `coefficients` – a double array of length \(3 \times x\text{Grid}.\)length containing the coefficients of the Hermite quintic spline representing the approximate solution \(f\) or \(f_t\) to the Feynman-Kac PDE. These coefficients are the rows of the arrays `splineCoeffs` and `splineCoeffsPrime` returned by methods `getSplineCoefficients` and `getSplineCoefficientsPrime`. If the user wants to compute approximate solutions \(f\) or \(f, f_x, f_{xx}, f_{xxx}\) to the Feynman-Kac PDE at time point 0, one must assign row `splineCoeffs[0]` to array `coefficients`. If the user wants to compute these approximate solutions for time points \(t=t\text{Grid}[i], i=0,...,t\text{Grid}.\)length-1, one must assign row `splineCoeffs[i+1]` to array `coefficients`. The same reasoning applies to the computation of approximate solutions \(f_t\) and \(f_t, f_{tx}, f_{txx}, f_{txxx}\) and assignment of rows of array `getSplineCoefficientsPrime` to array `coefficients`.
- `ideriv` – an int specifying the derivative to be computed. It must be 0, 1, 2 or 3.

Returns
a double array containing the derivative of order `ideriv` of the Hermite quintic spline representing the approximate solution \(f\) or \(f_t\) to the Feynman Kac PDE at `evaluationPoints`. If `ideriv`=0, then the spline values are returned. If `ideriv`=1, then the first derivative is returned, etc.

getStepControlMethod

```java
public int getStepControlMethod()
```

Description
Returns the step control method used in the integration of the Feynman-Kac PDE.

Returns
an int scalar specifying which step control method to be used.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD_OF_SOEDERLIND</td>
<td>Method of Soederlind</td>
</tr>
<tr>
<td>METHOD_OF_PETZOLD</td>
<td>Method from the original Petzold code DASSL</td>
</tr>
</tbody>
</table>
getTimeBarrier

public double getTimeBarrier()

Description

Returns the barrier set for integration in the time direction.

Returns
a `double`, the time point beyond which the integrator should not integrate.

setAbsoluteErrorTolerances

public void setAbsoluteErrorTolerances(double atol)

Description

Sets the absolute error tolerances.

Parameter

- `atol` – a `double` scalar specifying the absolute error tolerances for the row-wise solutions returned by method `getSplineCoefficients`. The tolerance value `atol` is applied to all 3*`xGrid.length` solution components. `atol` must be greater than or equal to zero. Also, not all entries in `atol` and `rtol` are allowed to be equal to 0 simultaneously. Default value is 1.0e-5 for each solution component.

setAbsoluteErrorTolerances

public void setAbsoluteErrorTolerances(double[] atol)

Description

Sets the absolute error tolerances.

Parameter

- `atol` – a `double` array of length 3*`xGrid.length` specifying the absolute error tolerances for the row-wise solutions returned by method `getSplineCoefficients`. All entries in `atol` must be greater than or equal to zero. Also, not all entries in `atol` and `rtol` are allowed to be equal to 0 simultaneously. Default value is 1.0e-5 for each solution component.

setForcingTerm

public void setForcingTerm(FeynmanKac.ForcingTerm forceTerm)

Description

Sets the user-supplied method that computes approximations to the forcing term $\phi(x)$ and its derivative $\partial \phi / \partial y$ used in the FeynmanKac PDE.

Parameter

- `forceTerm` – a `ForcingTerm` interface specifying the user defined function used for computation of the forcing term $\phi(f,x,t)$ and its derivative $\partial \phi / \partial y$. If this member function is not called it is assumed that $\phi(f,x,t)$ is identically zero.

setGaussLegendreDegree

public void setGaussLegendreDegree(int degree)
Description
Sets the number of quadrature points used in the Gauss-Legendre quadrature formula.

Parameter
- `degree` – an `int`, the degree of the polynomial used in the Gauss-Legendre quadrature. It is required that `degree` is greater than or equal to 6. The default value is 6.

setInitialData
public void setInitialData(FeynmanKac.InitialData initData)

Description
Sets the user-supplied method for adjustment of initial data or as an opportunity for output during the integration steps.

Parameter
- `initData` – an `InitialData` object specifying the user-defined function for adjustment of initial data or the object can be used as an opportunity for output during the integration steps. If this member function is not called, no adjustment of initial data or output during the integration steps is done.

setInitialStepsize
public void setInitialStepsize(double initStepsize)

Description
Sets the starting stepsize for the integration.

Parameter
- `initStepsize` – a `double`, the starting stepsize used by the integrator. Must be less than zero since the integration is internally done from `t=0` to `t=tGrid[tGrid.length-1]` in a negative direction. The default is `initStepsize = -1.1102230246252e-16`.

setMaxSteps
public void setMaxSteps(int maxSteps)

Description
Sets the maximum number of internal steps allowed.

Parameter
- `maxSteps` – an `int` specifying the maximum number of internal steps allowed between each output point of the integration. `maxSteps` must be positive. The default value is 500000.

setMaximumBDFOrder
public void setMaximumBDFOrder(int maxBDFOrder)

Description
Sets the maximum order of the BDF formulas.
Parameter
maxBDFOrder – an int specifying the maximum order of the backward differentiation formulas
used in the integrator. It is required that maxBDFOrder is greater than zero and smaller than 6. The
default is maxBDFOrder = 5.

setMaximumStepsize
public void setMaximumStepsize(double maximumStepsize)

Description
Sets the maximum internal step size used by the integrator.

Parameter
maximumStepsize – a positive scalar of type double, the maximum internal step size. Default
value is Double.MAX_VALUE, the largest possible machine number.

setRelativeErrorTolerances
public void setRelativeErrorTolerances(double rtol)

Description
Sets the relative error tolerances.

Parameter
rtol – a double scalar specifying the relative error tolerances for the solution. The tolerance
value rtol is applied to all 3*xGrid.length solution components. rtol must be greater than or
equal to zero. Also, not all entries in atol and rtol are allowed to be equal to 0 simultaneously.
Default value is 1.0e-5 for each solution component.

setRelativeErrorTolerances
public void setRelativeErrorTolerances(double[] rtol)

Description
Sets the relative error tolerances.

Parameter
rtol – a double array of length 3*xGrid.length specifying the relative error tolerances for the
solution. All entries in rtol must be greater than or equal to zero. Also, not all entries in atol and
rtol are allowed to be equal to 0 simultaneously. Default value is 1.0e-5 for each solution
component.

setStepControlMethod
public void setStepControlMethod(int stepControlMethod)

Description
Sets the step control method used in the integration of the Feynman-Kac PDE.
Parameter

stepControlMethod – an int scalar specifying the step control method to be used in the integration. If this member function is not called stepControlMethod is set to METHOD_OF_SOERDLIND by default.

<table>
<thead>
<tr>
<th>stepControlMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD_OF_SOERDLIND</td>
<td>Use method of Soederlind.</td>
</tr>
<tr>
<td>METHOD_OF_PETZOLD</td>
<td>Use method from the original Petzold code DASSL.</td>
</tr>
</tbody>
</table>

setTimeBarrier

public void setTimeBarrier(double timeBarrier)

Description

Sets a barrier for the integration in the time direction.

Parameter

timeBarrier – a double, controls whether the integrator should integrate in the time direction beyond a special point, timeBarrier, and then interpolate to get the Hermite quintic spline coefficients and its derivatives at the points in tGrid. It is required that timeBarrier be greater than or equal to tGrid[tGrid.length-1]. The default is timeBarrier = tGrid[tGrid.length-1].

setTimeDependence

public void setTimeDependence(boolean[] timeFlag)

Description

Sets the time dependence of the coefficients, boundary conditions and function φ in the Feynman-Kac equation.

Parameter

timeFlag – a boolean vector of length 7 indicating time dependencies in the Feynman-Kac PDE.

<table>
<thead>
<tr>
<th>Index</th>
<th>Time dependency of</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>σ'</td>
</tr>
<tr>
<td>1</td>
<td>σ</td>
</tr>
<tr>
<td>2</td>
<td>μ</td>
</tr>
<tr>
<td>3</td>
<td>κ</td>
</tr>
<tr>
<td>4</td>
<td>Left boundary conditions</td>
</tr>
<tr>
<td>5</td>
<td>Right boundary conditions</td>
</tr>
<tr>
<td>6</td>
<td>φ</td>
</tr>
</tbody>
</table>

timeFlag[i] = true indicates that the associated value is time-dependent, timeFlag[i] = false indicates that the associated value is not time-dependent. By default, timeFlag[i] = false for i = 0,...,6.
Example 1: American Option vs. European Option on a Vanilla Put

The value of the American Option on a Vanilla Put can be no smaller than its European counterpart. That is due to the American Option providing the opportunity to exercise at any time prior to expiration. This example compares this difference - or premium value of the American Option - at two time values using the Black-Scholes model. The example is based on Wilmott et al. (1996, p. 176), and uses the non-linear forcing or weighting term described in Hanson, R. (2008), *Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements*, for evaluating the price of the American Option. The coefficients, payoff, boundary conditions and forcing term for American and European options are defined through interfaces PdeCoefficients, Boundaries and ForcingTerm, respectively. One breakpoint is set exactly at the strike price. The sets of parameters in the computation are:

1. Strike price $K = 10.0$
2. Volatility $\sigma = 0.4$
3. Times until expiration = \{1/4, 1/2\}
4. Interest rate $r = 0.1$
5. $x_{\text{min}} = 0.0, x_{\text{max}} = 30.0$
6. $n_x = 61, n = 3 \times n_x = 183$

The payoff function is the “vanilla option”, $p(x) = \max(K - x, 0)$.

```java
import com.imsl.math.*;
import java.util.*;

public class FeynmanKacEx1 {
    public static void main(String args[]) throws Exception {
        // Compute American Option Premium for Vanilla Put
        // The strike price
        double KS = 10.0;
        // The sigma value
        double sigma = 0.4;
        // Time values for the options
        int nt = 2;
        double[] tGrid = {0.25, 0.5};
        // Values of the underlying where evaluations are made
        double[] evaluationPoints = {0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0};
        // Value of the interest rate
        double r = 0.1;
        // Values of the min and max underlying values modeled
        double xMin = 0.0, xMax = 30.0;
        // Define parameters for the integration step.
        int nxGrid = 61;
        int nv = 9;
        int nint = nxGrid - 1, n = 3 * nxGrid;
```
double[] xGrid = new double[nxGrid];
double dx;
int nlbcd = 2, nrbcd = 3;
// Define an equally-spaced grid of points for the
// underlying price
dx = (xMax - xMin) / ((double) nint);
xGrid[0] = xMin;
xGrid[nxGrid - 1] = xMax;
for (int i = 2; i <= nxGrid - 1; i++) {
xGrid[i - 1] = xGrid[i - 2] + dx;
}

FeynmanKac.Boundaries boundaries = new FeynmanKac.Boundaries() {
 public void leftBoundaries(double time, double[][] bndCoeffs) {
 bndCoeffs[0][0] = 0.0;
 bndCoeffs[0][1] = 1.0;
 bndCoeffs[0][2] = 0.0;
 bndCoeffs[0][3] = -1.0;
 bndCoeffs[1][0] = 0.0;
 bndCoeffs[1][1] = 0.0;
 bndCoeffs[1][2] = 1.0;
 bndCoeffs[1][3] = 0.0;
 }

 public void rightBoundaries(double time, double[][] bndCoeffs) {
 bndCoeffs[0][0] = 1.0;
 bndCoeffs[0][1] = 0.0;
 bndCoeffs[0][2] = 0.0;
 bndCoeffs[0][3] = 0.0;
 bndCoeffs[1][0] = 0.0;
 bndCoeffs[1][1] = 1.0;
 bndCoeffs[1][2] = 0.0;
 bndCoeffs[1][3] = 0.0;
 bndCoeffs[2][0] = 0.0;
 bndCoeffs[2][1] = 0.0;
 bndCoeffs[2][2] = 1.0;
 bndCoeffs[2][3] = 0.0;
 }

 public double terminal(double x) {
 double zero = 0.0;
 // Strike price
 double strikePrice = 10.0;
 // The payoff function
 double value = Math.max(strikePrice - x, zero);

 return value;
 }
};

FeynmanKac.PdeCoefficients pdeCoefficients = new FeynmanKac.PdeCoefficients() {
 // The coefficient sigma(x)

 public double sigma(double x, double t) {
double sigma = 0.4;
return (sigma * x);
}

// The coefficient derivative d(sigma) / dx
public double sigmaPrime(double x, double t) {
 double sigma = 0.4;
 return sigma;
}

// The coefficient mu(x)
public double mu(double x, double t) {
 double interestRate = 0.1;
 double dividend = 0.0;
 return ((interestRate - dividend) * x);
}

// The coefficient kappa(x)
public double kappa(double x, double t) {
 double interestRate = 0.1;
 return interestRate;
}

FeynmanKac.ForcingTerm forceTerm = new FeynmanKac.ForcingTerm() {
 public void force(int interval, double[] y, double time,
 double width, double[] xlocal, double[] qw,
 double[][] u, double[] phi, double[][] dphi) {
 final int local = 6;
 final double zero = 0.0, one = 1.0;
 double[] yl = new double[local];
 double[] bf = new double[local];
 double value, strikePrice, interestRate;
 double rt, mu;
 int ndeg = xlocal.length;

 for (int i = 0; i < local; i++) {
 yl[i] = y[3 * interval - 3 + i];
 phi[i] = zero;
 }
 strikePrice = 10.0;
 interestRate = 0.1;
 value = 1.0e-5;
 mu = 2.0;
 // This is the local definition of the forcing term
 for (int j = 1; j <= local; j++) {
 for (int l = 1; l <= ndeg; l++) {
 bf[0] = u[0][l - 1];
 bf[1] = u[1][l - 1];
 bf[2] = u[2][l - 1];
 bf[3] = u[6][l - 1];
 bf[4] = u[7][l - 1];
 bf[5] = u[8][l - 1];
 rt = 0.0;
 for (int k = 0; k < local; k++) {
\[
\begin{align*}
rt &= yl[k] \times bf[k]; \\
\end{align*}
\]

\[
rt = \frac{value}{(rt + value - (strikePrice - xlocal[l - 1]))}; \\
phi[j - 1] &= qw[l - 1] \times bf[j - 1] \times Math.pow(rt, mu); \\
\}
\]

for (int i = 0; i < local; i++) {
 phi[i] = -phi[i] \times width \times interestRate \times strikePrice;
}

// This is the local derivative matrix for the forcing term
for (int i = 0; i < local; i++) {
 for (int j = 0; j < local; j++) {
 dphi[i][j] = zero;
 }
}

for (int j = 1; j <= local; j++) {
 for (int i = 1; i <= local; i++) {
 for (int l = 1; l <= ndeg; l++) {
 bf[0] = u[0][l - 1];
 bf[1] = u[1][l - 1];
 bf[2] = u[2][l - 1];
 bf[3] = u[3][l - 1];
 bf[4] = u[4][l - 1];
 bf[5] = u[5][l - 1];
 rt = 0.0;
 for (int k = 0; k < local; k++) {
 rt += yl[k] \times bf[k];
 }
 rt = one / (rt + value - (strikePrice - xlocal[l - 1]));
 dphi[j - 1][i - 1] = qw[l - 1] \times bf[i - 1] \times bf[j - 1] \times Math.pow(rt, mu + 1.0);
 }
 }
}

for (int i = 0; i < local; i++) {
 for (int j = 0; j < local; j++) {
 dphi[i][j] = mu \times dphi[i][j] \times width \times Math.pow(value, mu) \times interestRate \times strikePrice;
 }
}

FeynmanKac european = new FeynmanKac(pdeCoefficients);
FeynmanKac american = new FeynmanKac(pdeCoefficients);
american.setForcingTerm(forceTerm);
european.computeCoefficients(nlbc, nrbc, boundaries, xGrid, tGrid);
american.computeCoefficients(nlbc, nrbc, boundaries, xGrid, tGrid);

// Evaluate solutions at vector of points evaluationPoints, at each
// time value prior to expiration.
double[][] europeanCoefficients = european.getSplineCoefficients();
double[][] americanCoefficients = american.getSplineCoefficients();

double[][] splineValuesEuropean = new double[nt][];
double[][] splineValuesAmerican = new double[nt][];

for (int i = 0; i < nt; i++) {
 splineValuesEuropean[i] = european.getSplineValue(evaluationPoints,
 europeanCoefficients[i + 1], 0);
 splineValuesAmerican[i] = american.getSplineValue(evaluationPoints,
 americanCoefficients[i + 1], 0);
}

System.out.printf("American Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry%n";
System.out.printf("Number of equally spaced spline knots:" + "%d%n", nxGrid);
System.out.printf("Number of unknowns:%d%n", n);
System.out.printf("Strike=%f, sigma=%f," + " Interest Rate=%f%n", KS, sigma, r);
System.out.printf("Underlying", "European", "American");
for (int i = 0; i < nv; i++) {
 System.out.printf(Locale.ENGLISH, "%10.4f%10.4f%10.4f%10.4f%10.4f%10.4f%n", evaluationPoints[i],
 splineValuesEuropean[0][i], splineValuesEuropean[1][i],
 splineValuesAmerican[0][i], splineValuesAmerican[1][i]);
}

Output

American Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry
Number of equally spaced spline knots: 61
Number of unknowns: 183
Strike= 10.00, sigma= 0.40, Interest Rate= 0.10

<table>
<thead>
<tr>
<th>Underlying</th>
<th>European</th>
<th>American</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>9.7531</td>
<td>10.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>7.7531</td>
<td>8.0000</td>
</tr>
<tr>
<td>4.0000</td>
<td>5.7531</td>
<td>6.0000</td>
</tr>
<tr>
<td>6.0000</td>
<td>3.7569</td>
<td>4.0000</td>
</tr>
<tr>
<td>8.0000</td>
<td>1.9024</td>
<td>2.0202</td>
</tr>
<tr>
<td>10.0000</td>
<td>0.6694</td>
<td>0.9218</td>
</tr>
<tr>
<td>12.0000</td>
<td>0.1675</td>
<td>0.3624</td>
</tr>
<tr>
<td>14.0000</td>
<td>0.0326</td>
<td>0.1321</td>
</tr>
<tr>
<td>16.0000</td>
<td>0.0054</td>
<td>0.0461</td>
</tr>
</tbody>
</table>
Example 2: A diffusion model for Call Options

In Beckers (1980) there is a model for a Stochastic Differential Equation of option pricing. The idea is a “constant elasticity of variance diffusion (or CEV) class”

\[dS = \mu S \, dt + \sigma S^{\alpha/2} \, dW, \quad 0 \leq \alpha < 2. \]

The Black-Scholes model is the limiting case \(\alpha \to 2 \). A numerical solution of this diffusion model yields the price of a call option. Various values of the strike price \(K \), time values, \(\sigma \) and power coefficient \(\alpha \) are used to evaluate the option price at values of the underlying price. The sets of parameters in the computation are:

1. power \(\alpha = 2.0, 1.0, 0.0 \)
2. strike price \(K = 15.0, 20.0, 25.0 \)
3. volatility \(\sigma = 0.2, 0.3, 0.4 \)
4. times until expiration = \{1/12, 4/12, 7/12\}
5. underlying prices = \{19.0, 20.0, 21.0\}
6. interest rate \(r = 0.05 \)
7. \(x_{\text{min}} = 0, x_{\text{max}} = 60 \)
8. \(nx = 121, n = 3 \times nx = 363 \)

With this model the Feynman-Kac differential equation is defined by identifying:

- \(x : S \)
- \(\sigma(x,t) : \sigma x^{\alpha/2}; \quad \frac{\partial \sigma}{\partial x} = \frac{a\sigma}{2} x^{\alpha/2-1} \)
- \(\mu(x,t) : rx \)
- \(\kappa(x,t) : r \)
- \(\phi(f,x,t) \equiv 0 \)

The payoff function is the “vanilla option”, \(p(x) = \max(x - K, 0) \).

import com.imsl.math.*;
import java.util.*;

public class FeynmanKacEx2 {

 public static void main(String args[]) throws Exception {
 // Compute Constant Elasticity of Variance Model for Vanilla Call
 // The set of strike prices
 double[] strikePrices = {15.0, 20.0, 25.0};
 // The set of sigma values
 double[] sigma = {0.2, 0.3, 0.4};
 }
}
// The set of model diffusion powers
double[] alpha = {2.0, 1.0, 0.0};
// Time values for the options
int nt = 3;
double[] tGrid = {1.0 / 12.0, 4.0 / 12.0, 7.0 / 12.0};
// Values of the underlying where evaluations are made
double[] evaluationPoints = {19.0, 20.0, 21.0};
// Value of the interest rate and continuous dividend
double r = 0.05, dividend = 0.0;
// Values of the min and max underlying values modeled
double xMin = 0.0, xMax = 60.0;
// Define parameters for the integration step. */
int nxGrid = 121;
int ntGrid = 3;
int nv = 3;
int nint = nxGrid - 1, n = 3 * nxGrid;
double[] xGrid = new double[nxGrid];
double dx;
// Number of left/right boundary conditions
int nlbcd = 3, nrbcd = 3;
// Time dependency
boolean[] timeDependence = new boolean[7];
double[] userData = new double[6];
int j;
// Define equally-spaced grid of points for the underlying price
dx = (xMax - xMin) / ((double) nint);
xGrid[0] = xMin;
xGrid[nxGrid - 1] = xMax;
for (int i = 2; i <= nxGrid - 1; i++) {
 xGrid[i - 1] = xGrid[i - 2] + dx;
}
System.out.printf("%2sConstant Elasticity of Variance Model" + " for Vanilla Call\n", " ");
System.out.printf(Locale.ENGLISH,
"%7sInterest Rate:%7.3f Continuous Dividend:%7.3f\n", " ", r, dividend);
System.out.printf(Locale.ENGLISH,
"%7sMinimum and Maximum Prices of Underlying:%7.2f%7.2f\n", " ", xMin, xMax);
System.out.printf("%7sNumber of equally spaced spline knots:%4d\n", " ", nxGrid - 1);
System.out.printf("%7sNumber of unknowns:%4d\n", " ", n);
System.out.printf(Locale.ENGLISH,
"%7sTime in Years Prior to Expiration: %7.4f%7.4f%7.4f\n", " ", tGrid[0], tGrid[1], tGrid[2]);
System.out.printf(Locale.ENGLISH,
"%7sOption valued at Underlying Prices:%7.2f%7.2f%7.2f\n", " ", evaluationPoints[0], evaluationPoints[1], evaluationPoints[2]);
for (int i1 = 1; i1 <= 3; i1++) /* Loop over power */ {
 for (int i2 = 1; i2 <= 3; i2++) /* Loop over volatility */ {
 for (int i3 = 1; i3 <= 3; i3++) /* Loop over strike price */ {
 // Pass data through into evaluation methods.
 userData[0] = strikePrices[i3 - 1];
userData[1] = xMax;
userData[2] = sigma[i2 - 1];
userData[3] = alpha[i1 - 1];
userData[4] = r;
userData[5] = dividend;

FeynmanKac callOption = new FeynmanKac(
 new MyCoefficients(userData));

// Right boundary condition is time-dependent
timeDependence[5] = true;
callOption.setTimeDependence(timeDependence);
callOption.computeCoefficients(nlbcd, nrbcd,
 new MyBoundaries(userData), xGrid, tGrid);

double[][] optionCoefficients = callOption.getSplineCoefficients();
double[][] splineValuesOption = new double[ntGrid][];

// Evaluate solution at vector evaluationPoints, at each time
// value prior to expiration.
for (int i = 0; i < ntGrid; i++) {
 splineValuesOption[i] = callOption.getSplineValue(
 evaluationPoints, optionCoefficients[i + 1], 0);
}

System.out.printf(Locale.ENGLISH, "%2sStrike=%5.2f, Sigma="
 + "%5.2f, Alpha=%5.2f%n", " ", strikePrices[i3 - 1],
 sigma[i2 - 1], alpha[i1 - 1]);

for (int i = 0; i < nv; i++) {
 System.out.printf("%23sCall Option Values%2s",
 " ", " ");
 for (j = 0; j < nt; j++) {
 System.out.printf(Locale.ENGLISH, "%7.4f ",
 splineValuesOption[j][i]);
 }
 System.out.printf("%n");
}
System.out.println("%n");

static class MyCoefficients implements FeynmanKac.PdeCoefficients {

 final double zero = 0.0, half = 0.5;
 private double sigma, strikePrice, interestRate;
 private double alpha, dividend;

 public MyCoefficients(double[] myData) {
 this.strikePrice = myData[0];
 this.sigma = myData[2];
 this.alpha = myData[3];
 this.interestRate = myData[4];
 this.dividend = myData[5];
 }
}
// The coefficient \(\sigma(x) \)
public double sigma(double x, double t) {
 return (sigma * Math.pow(x, alpha * half));
}

// The coefficient derivative \(d(\sigma) / dx \)
public double sigmaPrime(double x, double t) {
 return (half * alpha * sigma * Math.pow(x, alpha * half - 1.0));
}

// The coefficient \(\mu(x) \)
public double mu(double x, double t) {
 return ((interestRate - dividend) * x);
}

// The coefficient \(\kappa(x) \)
public double kappa(double x, double t) {
 return interestRate;
}

static class MyBoundaries implements FeynmanKac.Boundaries {
 private double xMax, df, interestRate, strikePrice;

 public MyBoundaries(double[] myData) {
 this.strikePrice = myData[0];
 this.xMax = myData[1];
 this.interestRate = myData[4];
 }

 public void leftBoundaries(double time, double[][] bndCoeffs) {
 bndCoeffs[0][0] = 1.0;
 bndCoeffs[0][1] = 0.0;
 bndCoeffs[0][2] = 0.0;
 bndCoeffs[0][3] = 0.0;
 bndCoeffs[1][0] = 0.0;
 bndCoeffs[1][1] = 1.0;
 bndCoeffs[1][2] = 0.0;
 bndCoeffs[1][3] = 0.0;
 bndCoeffs[2][0] = 0.0;
 bndCoeffs[2][1] = 0.0;
 bndCoeffs[2][2] = 1.0;
 bndCoeffs[2][3] = 0.0;
 }

 public void rightBoundaries(double time, double[][] bndCoeffs) {
 df = Math.exp(interestRate * time);
 bndCoeffs[0][0] = 1.0;
 bndCoeffs[0][1] = 0.0;
 bndCoeffs[0][2] = 0.0;
 bndCoeffs[0][3] = xMax - df * strikePrice;
 bndCoeffs[1][0] = 0.0;
 bndCoeffs[1][1] = 1.0;
 bndCoeffs[1][2] = 0.0;
 }
}
bndCoeffs[1][3] = 1.0;
bndCoeffs[2][0] = 0.0;
bndCoeffs[2][1] = 0.0;
bndCoeffs[2][2] = 1.0;
bndCoeffs[2][3] = 0.0;
}

public double terminal(double x) {
 double zero = 0.0;
 // The payoff function
 double value = Math.max(x - strikePrice, zero);
 return value;
}

Output

Constant Elasticity of Variance Model for Vanilla Call
Interest Rate: 0.050 Continuous Dividend: 0.000
Minimum and Maximum Prices of Underlying: 0.00 60.00
Number of equally spaced spline knots: 120
Number of unknowns: 363

Time in Years Prior to Expiration: 0.0833 0.3333 0.5833
Option valued at Underlying Prices: 19.00 20.00 21.00

Strike=15.00, Sigma= 0.20, Alpha= 2.00
Call Option Values 4.0624 4.2576 4.4734
Call Option Values 5.0624 5.2505 5.4492
Call Option Values 6.0624 6.2486 6.4386

Strike=20.00, Sigma= 0.20, Alpha= 2.00
Call Option Values 0.1312 0.5951 0.9693
Call Option Values 0.5024 1.0880 1.5093
Call Option Values 1.1980 1.7478 2.1745

Strike=25.00, Sigma= 0.20, Alpha= 2.00
Call Option Values 0.0000 0.0111 0.0751
Call Option Values 0.0000 0.0376 0.1630
Call Option Values 0.0006 0.1036 0.3150

Strike=15.00, Sigma= 0.30, Alpha= 2.00
Call Option Values 4.0636 4.3405 4.6627
Call Option Values 5.0625 5.2951 5.5794
Call Option Values 6.0624 6.2712 6.5248

Strike=20.00, Sigma= 0.30, Alpha= 2.00
Call Option Values 0.3107 1.0261 1.5479
Call Option Values 0.7317 1.5404 2.0999
Call Option Values 1.3762 2.1674 2.7362

Strike=25.00, Sigma= 0.30, Alpha= 2.00
Call Option Values 0.0005 0.1124 0.3564
Call Option Values 0.0035 0.2184 0.5565

Differential Equations

FeynmanKac • 271
<table>
<thead>
<tr>
<th>Strike</th>
<th>Sigma</th>
<th>Alpha</th>
<th>Call Option Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.00</td>
<td>0.40</td>
<td>2.00</td>
<td>0.0184 0.3869 0.8230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.0755 4.5143 4.9673</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0660 5.4210 5.8328</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.0633 6.3588 6.7306</td>
</tr>
<tr>
<td>20.00</td>
<td>0.40</td>
<td>2.00</td>
<td>0.5109 1.4625 2.1260</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.9611 1.9934 2.6915</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5807 2.6088 3.3202</td>
</tr>
<tr>
<td>25.00</td>
<td>0.40</td>
<td>2.00</td>
<td>0.0081 0.3302 0.7795</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0287 0.5178 1.0656</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0820 0.7690 1.4097</td>
</tr>
<tr>
<td>15.00</td>
<td>0.20</td>
<td>1.00</td>
<td>4.0624 4.2479 4.4312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0624 5.2479 5.4312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.0624 6.2479 6.4312</td>
</tr>
<tr>
<td>20.00</td>
<td>0.20</td>
<td>1.00</td>
<td>0.0000 0.0219 0.1051</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1497 0.4107 0.6484</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0832 1.3314 1.5773</td>
</tr>
<tr>
<td>25.00</td>
<td>0.20</td>
<td>1.00</td>
<td>0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td>15.00</td>
<td>0.30</td>
<td>1.00</td>
<td>4.0624 4.2479 4.4312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0624 5.2479 5.4312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.0624 6.2479 6.4312</td>
</tr>
<tr>
<td>20.00</td>
<td>0.30</td>
<td>1.00</td>
<td>0.0010 0.0786 0.2208</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1993 0.4997 0.7539</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0835 1.3444 1.6022</td>
</tr>
<tr>
<td>25.00</td>
<td>0.30</td>
<td>1.00</td>
<td>0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0000 0.0004</td>
</tr>
<tr>
<td>15.00</td>
<td>0.40</td>
<td>1.00</td>
<td>4.0624 4.2479 4.4312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0624 5.2479 5.4312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.0624 6.2479 6.4312</td>
</tr>
<tr>
<td>20.00</td>
<td>0.40</td>
<td>1.00</td>
<td>0.0072 0.1540 0.3446</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2498 0.5950 0.8728</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0868 1.3795 1.6586</td>
</tr>
<tr>
<td>Strike</td>
<td>Sigma</td>
<td>Alpha</td>
<td>Call Option Values</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>25.00</td>
<td>0.40</td>
<td>1.00</td>
<td>0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0000 0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0002 0.0057</td>
</tr>
<tr>
<td>15.00</td>
<td>0.40</td>
<td>0.00</td>
<td>0.0000 0.0000 0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0002 0.0057</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.0000 0.0000 -0.0000</td>
</tr>
<tr>
<td>20.00</td>
<td>0.40</td>
<td>0.00</td>
<td>0.0000 0.0000 0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 0.0002 0.0057</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.0000 0.0000 -0.0000</td>
</tr>
<tr>
<td>25.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td>15.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td>20.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td>25.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000 -0.0000 -0.0000</td>
</tr>
</tbody>
</table>

Differential Equations

FeynmanKac • 273
Example 3: European Option with two payoff strategies

This example evaluates the price of a European Option using two payoff strategies: Cash-or-Nothing and Vertical Spread. In the first case the payoff function is

\[p(x) = \begin{cases}
0, & x \leq K \\
B, & x > K
\end{cases} \]

The value \(B \) is regarded as the bet on the asset price, see Wilmott et al. (1995, p. 39-40). The second case has the payoff function

\[p(x) = \max(x - K_1) - \max(x - K_2), K_2 > K_1. \]

Both problems use the same boundary conditions. Each case requires a separate integration of the Black-Scholes differential equation, but only the payoff function evaluation differs in each case. The sets of parameters in the computation are:

1. Strike and bet prices \(K_1 = 10.0, K_2 = 15.0, \text{and} B = 2.0. \)
2. Volatility \(\sigma = 0.4 \)
3. Times until expiration = \(\{1/4, 1/2\} \)
4. Interest rate \(r = 0.1 \)
5. \(x_{\min} = 0.0, x_{\max} = 30.0 \)
6. \(nx = 61, n = 3 \times nx = 183 \)

```java
import com.imsl.math.*;
import java.util.*;
public class FeynmanKacEx3 {
    public static void main(String args[]) throws Exception {
        int i;
        int nxGrid = 61;
        int ntGrid = 2;
        int nv = 12;
        // The strike price
        double strikePrice = 10.0;
        // The spread value
        double spreadValue = 15.0;
        // The Bet for the Cash-or-Nothing Call
        double bet = 2.0;
        // The sigma value
        double sigma = 0.4;
        // Time values for the options
        int nt = 2;
        double[] tGrid = {0.25, 0.5};
        // Values of the underlying where evaluations are made
        double[] evaluationPoints = new double[nv];
        // Value of the interest rate and continuous dividend
        System.out.println("Example 3: European Option with two payoff strategies");
```
double r = 0.1, dividend = 0.0;
// Values of the min and max underlying values modeled
double xMin = 0.0, xMax = 30.0;
// Define parameters for the integration step.
int nint = nxGrid - 1, n = 3 * nxGrid;
double[] xGrid = new double[nxGrid];
double dx;
// Number of left/right boundary conditions.
int nlbcd = 3, nrbcd = 3;
// Structure for the evaluation methods.
int iData;
double[] rData = new double[7];
boolean[] timeDependence = new boolean[7];

// Define an equally-spaced grid of points for the underlying price
dx = (xMax - xMin) / ((double) (nint));
xGrid[0] = xMin;
xGrid[nxGrid - 1] = xMax;
for (i = 2; i <= nxGrid - 1; i++) {
xGrid[i - 1] = xGrid[i - 2] + dx;
}
for (i = 1; i <= nv; i++) {
evaluationPoints[i - 1] = 2.0 + (i - 1) * 2.0;
}
rData[0] = strikePrice;
rData[1] = bet;
rData[2] = spreadValue;
rData[3] = xMax;
rData[4] = sigma;
rData[5] = r;
rData[6] = dividend;
// Flag the difference in payoff functions
// 1 for the Bet, 2 for the Vertical Spread
// In both cases, no time dependencies for
// the coefficients and the left boundary
// conditions
timeDependence[5] = true;
iData = 1;
FeynmanKac betOption = new FeynmanKac(new MyCoefficients(rData));
betOption.setTimeDependence(timeDependence);
betOption.computeCoefficients(nlbcd, nrbcd,
 new MyBoundaries(rData, iData), xGrid, tGrid);
double[][] betOptionCoefficients = betOption.getSplineCoefficients();
double[][] splineValuesBetOption = new double[ntGrid][];

iData = 2;
FeynmanKac spreadOption = new FeynmanKac(new MyCoefficients(rData));

spreadOption.setTimeDependence(timeDependence);
spreadOption.computeCoefficients(nlbcd, nrbcd,
 new MyBoundaries(rData, iData), xGrid, tGrid);
double[][] spreadOptionCoefficients
 = spreadOption.getSplineCoefficients();
double[][] splineValuesSpreadOption = new double[ntGrid][];
// Evaluate solutions at vector evaluationPoints, at each time value
// prior to expiration.
for (i = 0; i < ntGrid; i++) {
 splineValuesBetOption[i] = betOption.getSplineValue(evaluationPoints,
 betOptionCoefficients[i + 1], 0);
 splineValuesSpreadOption[i] = spreadOption.getSplineValue(
 evaluationPoints, spreadOptionCoefficients[i + 1], 0);
}

System.out.printf("%2sEuropean Option Value for A Bet%n", " ");
System.out.printf("%3sand a Vertical Spread, 3 and 6 Months "
 + "Prior to Expiry%n", " ");
System.out.printf("%5sNumber of equally spaced spline knots:%4d%n",
 " ", nxGrid);
System.out.printf("%5sNumber of unknowns:%4d%n", " ", n);
System.out.printf(Locale.ENGLISH,
 "%5sStrike=%5.2f, Sigma=%5.2f, Interest Rate=" + "%5.2f\%", " ",
 strikePrice, sigma, r);
System.out.printf(Locale.ENGLISH,
 "%5sBet=%5.2f, Spread Value=%5.2f\%\%n", " ", bet, spreadValue);
System.out.printf("%5sUnderlying", "A Bet",
 "Vertical Spread");
for (i = 0; i < nv; i++) {
 System.out.printf(Locale.ENGLISH,
 "%8s%9.4f%9.4f%9.4f%9.4f%9.4f%n", ",
 evaluationPoints[i],
 splineValuesBetOption[0][i],
 splineValuesBetOption[1][i],
 splineValuesSpreadOption[0][i],
 splineValuesSpreadOption[1][i]);
}

// These classes define the coefficients, payoff, boundary conditions
// and forcing term for American and European Options.
static class MyCoefficients implements FeynmanKac.PdeCoefficients {

 final double zero = 0.0;
 double sigma, strikePrice, interestRate;
 double spread, bet, dividend;
 int dataInt;
 double value = 0.0;

 public MyCoefficients(double[] rData) {
 this.strikePrice = rData[0];
 this.bet = rData[1];
 this.spread = rData[2];
 this.sigma = rData[4];
 this.interestRate = rData[5];
 this.dividend = rData[6];
 }

 // The coefficient sigma(x)
 public double sigma(double x, double t) {
return (sigma * x);
}

// The coefficient derivative d(sigma) / dx
class MyBoundaries extends FeynmanKac.Boundaries {
 private double strikePrice, spread, bet, interestRate, df;
 private int dataInt;
 public MyBoundaries(double[] rData, int iData) {
 this.strikePrice = rData[0];
 this.bet = rData[1];
 this.spread = rData[2];
 this.interestRate = rData[5];
 this.dataInt = iData;
 }
 public void leftBoundaries(double time, double[][] bndCoeffs) {
 bndCoeffs[0][0] = 1.0;
 bndCoeffs[0][1] = 0.0;
 bndCoeffs[0][2] = 0.0;
 bndCoeffs[0][3] = 0.0;
 bndCoeffs[1][0] = 0.0;
 bndCoeffs[1][1] = 1.0;
 bndCoeffs[1][2] = 0.0;
 bndCoeffs[1][3] = 0.0;
 bndCoeffs[2][0] = 0.0;
 bndCoeffs[2][1] = 0.0;
 bndCoeffs[2][2] = 1.0;
 bndCoeffs[2][3] = 0.0;
 }
 public void rightBoundaries(double time, double[][] bndCoeffs) {
 // This is the discount factor using the risk-free
 // interest rate
 df = Math.exp(interestRate * time);
 // Use flag passed to decide on boundary condition
 switch (dataInt) {
 case 1:
 bndCoeffs[0][0] = 1.0;
 bndCoeffs[0][1] = 0.0;
 break;
 }
 }
}

public class FeynmanKac {
 public static void main(String[] args) {
 double strikePrice = 100.0;
 double spread = 0.05;
 double bet = 1.0;
 double interestRate = 0.05;
 double dividend = 0.0;
 int dataInt = 1;

bndCoeffs[0][2] = 0.0;
bndCoeffs[0][3] = bet * df;
break;
case 2:
bndCoeffs[0][0] = 1.0;
bndCoeffs[0][1] = 0.0;
bndCoeffs[0][2] = 0.0;
bndCoeffs[0][3] = (spread - strikePrice) * df;
break;
}
bndCoeffs[1][0] = 0.0;
bndCoeffs[1][1] = 1.0;
bndCoeffs[1][2] = 0.0;
bndCoeffs[1][3] = 0.0;
bndCoeffs[2][0] = 0.0;
bndCoeffs[2][1] = 0.0;
bndCoeffs[2][2] = 1.0;
bndCoeffs[2][3] = 0.0;
}

public double terminal(double x) {
 final double zero = 0.0;
 double value = 0.0;
 switch (dataInt) {
 // The payoff function - Use flag passed to decide which
 case 1:
 // After reaching the strike price the payoff jumps
 // from zero to the bet value.
 value = zero;
 if (x > strikePrice) {
 value = bet;
 }
 break;
 case 2:
 /* Function is zero up to strike price.
 Then linear between strike price and spread.
 Then has constant value Spread-Strike Price after
 the value Spread. */
 value = Math.max(x - strikePrice, zero)
 - Math.max(x - spread, zero);
 break;
 }
 return value;
}

Output

European Option Value for A Bet
and a Vertical Spread, 3 and 6 Months Prior to Expiry
Number of equally spaced spline knots: 61
Number of unknowns: 183
Strike=10.00, Sigma= 0.40, Interest Rate= 0.10
Bet= 2.00, Spread Value=15.00
Example 4: Convertible bonds

This example evaluates the price of a convertible bond. Here, convertibility means that the bond may, at any time of the holder’s choosing, be converted to a multiple of the specified asset. Thus a convertible bond with price \(x \) returns an amount \(K \) at time \(T \) unless the owner has converted the bond to \(\nu x \), \(\nu \geq 1 \) units of the asset at some time prior to \(T \). This definition, the differential equation and boundary conditions are given in Chapter 18 of Wilmott et al. (1996). Using a constant interest rate and volatility factor, the parameters and boundary conditions are:

1. Bond face value \(K = 1 \), conversion factor \(\nu = 1.125 \)
2. Volatility \(\sigma = 0.25 \)
3. Times until expiration = \{1/2, 1\}
4. Interest rate \(r = 0.1 \), dividend \(D = 0.02 \)
5. \(x_{\text{min}} = 0, x_{\text{max}} = 4 \)
6. \(nx = 61, n = 3 \times nx = 183 \)
7. Boundary conditions \(f(0,t) = K \exp(r - (T - t)), f(x_{\text{max}},t) = \nu x_{\text{max}} \)
8. Terminal data \(f(x,T) = \max(K, \nu x) \)
9. Constraint for bond holder \(f(x,t) \geq \nu x \)

Note that the error tolerance is set to a pure absolute error of value \(10^{-3} \). The free boundary constraint \(f(x,t) \geq \nu x \) is achieved by use of a non-linear forcing term in interface ForcingTerm. The coefficient values of the Hermite quintic spline representing the approximate solution of the differential equation at the initial time point are provided with the interface InitialData.

```java
import com.imsl.math.*;
import java.util.*;

public class FeynmanKacEx4 {
```
public static void main(String args[]) throws Exception {
 int i;
 int nxGrid = 61;
 int ntGrid = 2;
 int nv = 13;

 // Compute value of a Convertible Bond
 // The face value
 double KS = 1.0;
 // The sigma or volatility value
 double sigma = 0.25;
 // Time values for the options
 double[] tGrid = {0.5, 1.0};
 // Values of the underlying where evaluation are made
 double[] evaluationPoints = new double[nv];
 // Value of the interest rate, continuous dividend and factor
 double r = 0.1, dividend = 0.02, factor = 1.125;
 // Values of the min and max underlying values modeled
 double xMin = 0.0, xMax = 4.0;

 // Define parameters for the integration step.
 int nint = nxGrid - 1, n = 3 * nxGrid;
 double[] xGrid = new double[nxGrid];
 double[] rData = new double[8];
 double dx, atol;
 // Number of left/right boundary conditions.
 int nlbcd = 3, nrbcd = 3;
 boolean[] timeDependence = new boolean[7];

 /*
 * Define an equally-spaced grid of points for the
 * underlying price
 */
 dx = (xMax - xMin) / ((double) nint);
 xGrid[0] = xMin;
 xGrid[nxGrid - 1] = xMax;
 for (i = 2; i <= nxGrid - 1; i++) {
 xGrid[i - 1] = xGrid[i - 2] + dx;
 }
 for (i = 1; i <= nv; i++) {
 evaluationPoints[i - 1] = (i - 1) * 0.25;
 }

 // Pass the data for evaluation
 rData[0] = KS;
 rData[1] = xMax;
 rData[2] = sigma;
 rData[3] = r;
 rData[4] = dividend;
 rData[5] = factor;

 // Use a pure absolute error tolerance for the integration
 atol = 1.0e-3;
 rData[6] = atol;

 // Compute value of convertible bond
 FeynmanKac convertibleBond = new FeynmanKac(new MyCoefficients(rData));
}
MyForcingTerm forceTerm = new MyForcingTerm(rData);
MyInitialData initialData = new MyInitialData(rData);

convertibleBond.setForcingTerm(forceTerm);
convertibleBond.setInitialData(initialData);
//convertibleBond.setErrorTolerances(1.0e-3, 0.0);
convertibleBond.setAbsoluteErrorTolerances(1.0e-3);
convertibleBond.setRelativeErrorTolerances(0.0);

// Only the left boundary conditions are time dependent
 timeDependence[4] = true;
 convertibleBond.setTimeDependence(timeDependence);

convertibleBond.computeCoefficients(nlbc, nrbc,
 new MyBoundaries(rData), xGrid, tGrid);
double[][] bondCoefficients = convertibleBond.getSplineCoefficients();

double[][] bondSplineValues = new double[ntGrid + 1][];
/*
 * Evaluate and display solutions at vector of points XS(:,),
 * at each time value prior to expiration.
 */
for (i = 0; i <= ntGrid; i++) {
 bondSplineValues[i] = convertibleBond.getSplineValue(evaluationPoints,
 bondCoefficients[i], 0);
}

System.out.printf("%sConvertible Bond Value, 0+, 6 and 12 Months "
 + "Prior to Expiry\n","
 System.out.printf("%sNumber of equally spaced spline knots:%4d\n",
 " ", nxGrid);
 System.out.printf("%sNumber of unknowns:%4d\n", " ", n);
 System.out.printf(Locale.ENGLISH, "%5sStrike=%5.2f, Sigma=%5.2f\n",
 " ", KS, sigma);
 System.out.printf(Locale.ENGLISH, "%5sInterest Rate=%5.2f, Dividend=%5.2f, Factor=%6.3f\n%n",
 " ", r, dividend, factor);
 System.out.printf("%15s%18s
", "Underlying", "Bond Value");
 for (i = 0; i < nv; i++) {
 System.out.printf(Locale.ENGLISH, "%7s%8.4f%8.4f%8.4f%8.4f\n",
 " ", evaluationPoints[i],
 bondSplineValues[0][i],
 bondSplineValues[1][i],
 bondSplineValues[2][i]);
 }
} /*
 * These classes define the coefficients, payoff, boundary conditions
 * and forcing term.
 */
static class MyCoefficients implements FeynmanKac.PdeCoefficients {
 private double sigma, strikePrice, interestRate;
 Differential Equations
 FeynmanKac • 281
private double dividend, factor, zero = 0.0;
private double value = 0.0;

public MyCoefficients(double[] rData) {
 this.strikePrice = rData[0];
 this.sigma = rData[2];
 this.interestRate = rData[3];
 this.dividend = rData[4];
 this.factor = rData[5];
}

// The coefficient sigma(x)
public double sigma(double x, double t) {
 return (sigma * x);
}

// The coefficient derivative d(sigma) / dx
public double sigmaPrime(double x, double t) {
 return sigma;
}

// The coefficient mu(x)
public double mu(double x, double t) {
 return ((interestRate - dividend) * x);
}

// The coefficient kappa(x)
public double kappa(double x, double t) {
 return interestRate;
}

static class MyBoundaries implements FeynmanKac.Boundaries {

 private double interestRate, strikePrice, dp, factor, xMax;

 public MyBoundaries(double[] rData) {
 this.strikePrice = rData[0];
 this.xMax = rData[1];
 this.interestRate = rData[3];
 this.factor = rData[5];
 }

 public void leftBoundaries(double time, double[][] bndCoeffs) {
 dp = strikePrice * Math.exp(time * interestRate);
 bndCoeffs[0][0] = 1.0;
 bndCoeffs[0][1] = 0.0;
 bndCoeffs[0][2] = 0.0;
 bndCoeffs[0][3] = dp;
 bndCoeffs[1][0] = 0.0;
 bndCoeffs[1][1] = 1.0;
 bndCoeffs[1][2] = 0.0;
 bndCoeffs[1][3] = 0.0;
 bndCoeffs[2][0] = 0.0;
 bndCoeffs[2][1] = 0.0;
 bndCoeffs[2][2] = 1.0;
 }
}

282 • FeynmanKac

JMSL
bndCoeffs[2][3] = 0.0;
}

public void rightBoundaries(double time, double[][] bndCoeffs) {
 bndCoeffs[0][0] = 1.0;
 bndCoeffs[0][1] = 0.0;
 bndCoeffs[0][2] = 0.0;
 bndCoeffs[0][3] = factor * xMax;
 bndCoeffs[1][0] = 0.0;
 bndCoeffs[1][1] = 1.0;
 bndCoeffs[1][2] = 0.0;
 bndCoeffs[1][3] = factor;
 bndCoeffs[2][0] = 0.0;
 bndCoeffs[2][1] = 0.0;
 bndCoeffs[2][2] = 1.0;
 bndCoeffs[2][3] = 0.0;
}

public double terminal(double x) {
 // The payoff function
 double value = Math.max(factor * x, strikePrice);
 return value;
}

static class MyForcingTerm implements FeynmanKac.ForcingTerm {
 private final double zero = 0.0, one = 1.0;
 private double value, strikePrice, interestRate;
 private double rt, mu, factor;
 public MyForcingTerm(double[] rData) {
 this.value = rData[6];
 this.strikePrice = rData[0];
 this.interestRate = rData[3];
 this.factor = rData[5];
 }
 public void force(int interval, double[] y, double time, double width,
 double[] xlocal, double[] qw, double[][] u,
 double[] phi, double[][] dphi) {
 final int local = 6;
 int ndeg = xlocal.length;
 double[] yl = new double[6];
 double[] bf = new double[6];
 for (int i = 0; i < local; i++) {
 yl[i] = y[3 * interval - 3 + i];
 phi[i] = zero;
 }
 for (int i = 0; i < local; i++) {
 for (int j = 0; j < local; j++) {
 dphi[i][j] = zero;
 }
 }
 mu = 2.0;
for (int j = 1; j <= local; j++) {
 for (int l = 1; l <= ndeg; l++) {
 bf[0] = u[0][l - 1];
 bf[1] = u[1][l - 1];
 bf[2] = u[2][l - 1];
 bf[3] = u[6][l - 1];
 bf[4] = u[7][l - 1];
 bf[5] = u[8][l - 1];
 rt = 0.0;
 for (int k = 0; k < local; k++) {
 rt += yl[k] * bf[k];
 }
 rt = value / (rt + value - factor * xlocal[l - 1]);
 phi[j - 1] += qw[l - 1] * bf[j - 1] * Math.pow(rt, mu);
 }
}
for (int i = 0; i < local; i++) {
 phi[i] = -phi[i] * width * factor * strikePrice;
}

for (int j = 1; j <= local; j++) {
 for (int i = 1; i <= local; i++) {
 for (int l = 1; l <= ndeg; l++) {
 bf[0] = u[0][l - 1];
 bf[1] = u[1][l - 1];
 bf[2] = u[2][l - 1];
 bf[3] = u[6][l - 1];
 bf[4] = u[7][l - 1];
 bf[5] = u[8][l - 1];
 rt = 0.0;
 for (int k = 0; k < local; k++) {
 rt += yl[k] * bf[k];
 }
 rt = one / (rt + value - factor * xlocal[l - 1]);
 dphi[j - 1][i - 1] += qw[l - 1] * bf[i - 1] *
 Math.pow(value * rt, mu) * rt;
 }
 }
}
for (int i = 0; i < local; i++) {
 for (int j = 0; j < local; j++) {
 dphi[i][j] = -mu * dphi[i][j] * width
 * factor * strikePrice;
 }
}
}

static class MyInitialData implements FeynmanKac.InitialData {
private double[] data;

public MyInitialData(double[] rData) {
 data = new double[rData.length];
 for (int i = 0; i < rData.length; i++) {
 data[i] = rData[i];
 }
}

public void init(double[] xGrid, double[] tGrid, double tp, double[] yprime, double[] y, double[] atol, double[] rtol) {
 int nxGrid = xGrid.length;
 if (tp == 0.0) { // Set initial data precisely.
 for (int i = 1; i <= nxGrid; i++) {
 if (xGrid[i - 1] * data[5] < data[0]) {
 y[3 * i - 3] = data[0];
 y[3 * i - 2] = 0.0;
 y[3 * i - 1] = 0.0;
 } else {
 y[3 * i - 3] = xGrid[i - 1] * data[5];
 y[3 * i - 2] = data[5];
 y[3 * i - 1] = 0.0;
 }
 }
 }
}

Output

Convertible Bond Value, 0+, 6 and 12 Months Prior to Expiry
Number of equally spaced spline knots: 61
Number of unknowns: 183
Strike= 1.00, Sigma= 0.25
Interest Rate= 0.10, Dividend= 0.02, Factor= 1.125

<table>
<thead>
<tr>
<th>Underlying</th>
<th>Bond Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.2500</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.5000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.7500</td>
<td>1.0000</td>
</tr>
<tr>
<td>1.0000</td>
<td>1.1250</td>
</tr>
<tr>
<td>1.2500</td>
<td>1.4063</td>
</tr>
<tr>
<td>1.5000</td>
<td>1.6875</td>
</tr>
<tr>
<td>1.7500</td>
<td>1.9688</td>
</tr>
<tr>
<td>2.0000</td>
<td>2.2500</td>
</tr>
<tr>
<td>2.2500</td>
<td>2.5313</td>
</tr>
<tr>
<td>2.5000</td>
<td>2.8125</td>
</tr>
<tr>
<td>2.7500</td>
<td>3.0938</td>
</tr>
<tr>
<td>3.0000</td>
<td>3.3750</td>
</tr>
</tbody>
</table>
Example 5: Calculating the Greeks using the Feynman-Kac Class

In this example, the Feynman-Kac (FK) class is used to solve for the Greeks, i.e. various derivatives of FK solutions applicable to the pricing of options and related financial derivatives. In order to illustrate and verify these calculations, the Greeks are calculated by two methods. The first method involves the FK solution to the diffusion model for call options given in Example 2 for the Black-Scholes (BS) case, i.e. $\alpha = 2$. The second method calculates the Greeks using the closed-form BS evaluations which can be found at http://en.wikipedia.org/wiki/The_Greeks.

Example 5 calculates FK and BS solutions $V(S,t)$ to the BS problem and the following Greeks:

- **Delta** = $\frac{\partial V}{\partial S}$; is the first derivative of the Value, $V(S,t)$, of a portfolio of derivative security derived from underlying instrument with respect to the underlying instrument’s price S;

- **Gamma** = $\frac{\partial^2 V}{\partial S^2}$; is the second derivative of Value with respect to underlying instrument’s price S;

- **Theta** = $-\frac{\partial V}{\partial t}$; is the negative first derivative of V with respect to time t;

- **Charm** = $\frac{\partial^3 V}{\partial S \partial t}$; is the third derivative of Value with respect to underlying instrument’s price S and time t;

- **Color** = $\frac{\partial^3 V}{\partial S^2 \partial t}$; is the third derivative of Value with respect to underlying instrument’s price S and time t;

- **Rho** = $-\frac{\partial V}{\partial r}$; is the first derivative of V with respect to risk free rate r;

- **Vega** = $\frac{\partial V}{\partial \sigma}$; measures sensitivity to volatility parameter σ of the underlying S;

- **Volga** = $\frac{\partial^2 V}{\partial \sigma^2}$; is the second derivative of Vega with respect to volatility σ;

- **Vanna** = $\frac{\partial^2 V}{\partial S \partial \sigma}$; is the second derivative of Vega with respect to underlying instrument’s price S and volatility σ;

- **Speed** = $\frac{\partial^3 V}{\partial S^3}$; is the third derivative of Value with respect to underlying instrument’s price S.

Intrinsic Greeks include derivatives involving only S and t, the intrinsic FK arguments. In the above list, Value, Delta, Gamma, Theta, Charm, Color, and Speed are all intrinsic Greeks. As is discussed in Hanson, R. (2008) Integrating Feynman-Kac equations Using Hermite Quintic Finite Elements, the expansion of the FK solution function $V(S,t)$ in terms of quintic polynomial functions defined on S-grid subintervals and subject to continuity constraints in derivatives 0, 1, and 2 across the boundaries of these subintervals allows Value, Delta, Gamma,Theta, Charm, and Color to be calculated directly by the FK class methods getSplineCoefficients, getSplineCoefficientsPrime, and getSplineValue.

Non-intrinsic Greeks are derivatives of V involving FK parameters other than the intrinsic arguments S and t, such as r and σ. Non-intrinsic Greeks in the above list include Rho, Vega, Volga, and Vanna. In order to calculate non-intrinsic Greek (parameter) derivatives or intrinsic Greek S- derivatives beyond the second (such as Speed) or t- derivatives beyond the first, the entire FK solution must be calculated 3 times (for a parabolic fit) or five times (for a quartic fit), at the point where the derivative is to be evaluated and at nearby points located symmetrically on either side.
Using a Taylor series expansion of \(f(\sigma + \varepsilon) \) truncated to \(m+1 \) terms (to allow an \(m \)-degree polynomial fit of \(m+1 \) data points):

\[
f(\sigma + \varepsilon) = \sum_{n=0}^{m} \frac{f^{(n)}(\sigma)}{n!} \varepsilon^n
\]

we are able to derive the following parabolic (3 point) estimation of first and second derivatives \(f^{(1)}(\sigma) \) and \(f^{(2)}(\sigma) \) in terms of the three values: \(f(\sigma - \varepsilon), f(\sigma), \) and \(f(\sigma + \varepsilon) \), where \(\varepsilon = \varepsilon_{frac} \sigma \) and \(0 < \varepsilon_{frac} \ll 1 \):

\[
f^{(1)}(\sigma) \approx \frac{\partial f(\sigma)}{\partial \sigma} \approx f^{[1]}(\sigma, \varepsilon) \equiv \frac{f(\sigma + \varepsilon) - f(\sigma - \varepsilon)}{2\varepsilon}
\]

\[
f^{(2)}(\sigma) \approx \frac{\partial^2 f(\sigma)}{\partial \sigma^2} \approx f^{[2]}(\sigma, \varepsilon) \equiv \frac{f(\sigma + \varepsilon) + f(\sigma - \varepsilon) - 2f(\sigma)}{\varepsilon^2}
\]

Similarly, the quartic (5 point) estimation of \(f^{(1)}(\sigma) \) and \(f^{(2)}(\sigma) \) in terms of \(f(\sigma - 2\varepsilon), f(\sigma - \varepsilon), f(\sigma), f(\sigma + \varepsilon), \) and \(f(\sigma + 2\varepsilon) \) is:

\[
f^{(1)}(\sigma) \approx \frac{4}{3} f^{[1]}(\sigma, \varepsilon) - \frac{1}{3} f^{[1]}(\sigma, 2\varepsilon)
\]

\[
f^{(2)}(\sigma) \approx \frac{4}{3} f^{[2]}(\sigma, \varepsilon) - \frac{1}{3} f^{[2]}(\sigma, 2\varepsilon)
\]

For our example, the quartic estimate does not appear to be significantly better than the parabolic estimate, so we have produced only parabolic estimates by setting variable \(i\text{quart} \) to 0. The user may try the example with the quartic estimate simply by setting \(i\text{quart} \) to 1.

As is pointed out in Integrating Feynman-Kac equations Using Hermite Quintic Finite Elements, the quintic polynomial expansion function used by Feynman-Kac only allows for continuous derivatives through the second derivative. While up to fifth derivatives can be calculated from the quintic expansion (indeed class FeynmanKac method getSplineValue will allow the third derivative to be calculated by setting parameter iderv to 3, as is done in Example 5), the accuracy is compromised by the inherent lack of continuity across grid points (i.e. subinterval boundaries).

The accurate second derivatives in \(S \) returned by FK method getSplineValue can be leveraged into a third derivative estimate by calculating three FK second derivative solutions, the first solution for grid and evaluation point sets \{ \(S, f^{(2)}(S) \) \} and the second and third solutions for solution grid and evaluation point sets \{ \(S + \varepsilon, f^{(2)}(S + \varepsilon) \) \} and \{ \(S - \varepsilon, f^{(2)}(S - \varepsilon) \) \}, where the solution grid and evaluation point sets are shifted up and down by \(\varepsilon \). In Example 5, \(\varepsilon \) is set to \(\varepsilon_{frac} \bar{S} \), where \(\bar{S} \) is the average value of \(S \) over the range of grid values and \(0 < \varepsilon_{frac} \ll 1 \). The third derivative solution can then be obtained using the parabolic estimate:

\[
f^{(3)}(S) = \frac{\partial f^{(2)}(S)}{\partial S} \approx \frac{f^{(2)}(S + \varepsilon) - f^{(2)}(S - \varepsilon)}{2\varepsilon}
\]
This procedure is implemented in Example 5 to calculate the Greek Speed. (For comparison purposes, Speed is also calculated directly in Example 5 by setting the getSplineValue input S derivative parameter iSDeriv to 3. The output from this direct calculation is called “Speed2”.)

The average and maximum relative errors (defined as the absolute value of the difference between the BS and FK values divided by the BS value) for each of the Greeks is given at the end of the output. (These relative error statistics are given for nine combinations of Strike Price and Volatility, but only one of the nine combinations is actually printed in the output.) Both intrinsic and non-intrinsic Greeks have good accuracy (average relative error is in the range 0.01 – 0.0001) except for Volga, which has an average relative error of about 0.05. This is probably a result of the fact that Volga involves differences of differences, which will more quickly erode accuracy than calculations using only one difference to approximate a derivative. Possible ways to improve upon the 2 to 4 significant digits of accuracy achieved in Example 5 include increasing FK integration accuracy by reducing the initial step size (using method setInitialStepsize), by choosing more closely spaced S and t grid points (by adjusting method computeCoefficients input parameter arrays xGrid and tGrid), and by adjusting \(E_{frac} \) so that the central differences used to calculate the derivatives are not too small to compromise accuracy.

```java
import com.imsl.math.*;
import com.imsl.stat.*;
import java.util.*;

public class FeynmanKacEx5 {
    private static double[] strikePrices = {15.0, 20.0, 25.0};
    // The set of sigma values
    private static double[] sigma = {0.2, 0.3, 0.4};
    // The set of model diffusion powers: alpha = 2.0 <=> Black Scholes
    private static double[] alpha = {2.0, 1.0, 0.0};
    // Time values for the options
    private static double[] tGrid = {1.0 / 12.0, 4.0 / 12.0, 7.0 / 12.0};
    // Values of the min and max underlying values modeled
    private static double xMin = 0.0, xMax = 60.0;
    // Value of the interest rate and continuous dividend
    private static double r = 0.05, dividend = 0.0;
    // Define parameters for the integration step.
    private static int nXGgrid = 121, nTGrid = 3, nv = 3;
    private static int nint = nXGgrid - 1, n = 3 * nXGgrid;
    private static double[] xGrid = new double[nXGgrid];
    private static double dx;
    // Time dependency
    private static boolean[] timeDependence = new boolean[7];
    // Number of left/right boundary conditions
    private static int nlbcd = 3, nrbcd = 3;
    // Values of the underlying price where evaluations are made
    private static double[] evaluationPoints = {19.0, 20.0, 21.0};
    private static double dx2 = epsfrac * 0.5; //used to calc derivatives
    private static double sqrt2pi = Math.sqrt(2. * Math.PI);
    private static String greekName[] = {
        " Value", " Delta", " Gamma", " Theta", " Charm",
        " Color", " Vega", " Volga", " Vanna", " Rho", " Speed", "Speed2"};
    // Time values for the options
```
private static int nt = 3;
private static double[] rex = new double[greekName.length];
private static double[] reavg = new double[greekName.length];
private static int[] irect = new int[greekName.length];

// Compute Constant Elasticity of Variance Model for Vanilla Call
public static void main(String args[]) throws Exception {
 // Define equally-spaced grid of points for the underlying price
 dx = (xMax - xMin) / ((double) nint);
xGrid[0] = xMin;
xGrid[nXGgrid - 1] = xMax;

 for (int i = 2; i <= nXGgrid - 1; i++) {
 xGrid[i - 1] = xGrid[i - 2] + dx;
 }

 System.out.printf(" Constant Elasticity of Variance Model"
 + " for Vanilla Call Option%n")
 System.out.printf(Locale.ENGLISH,
 "%7sInterest Rate:%7.3f Continuous Dividend:%7.3f%n", " ", r, dividend);
 System.out.printf(Locale.ENGLISH,
 "%7sMinimum and Maximum Prices of Underlying:%7.2f%7.2f%n", " ", xMin, xMax);
 System.out.printf(Locale.ENGLISH,
 "%7sNumber of equally spaced spline knots:%4d%n", " ", nXGgrid - 1);
 System.out.printf(Locale.ENGLISH,
 "%7sNumber of unknowns:%4d%n%n", " ", n);
 System.out.printf(Locale.ENGLISH,
 "%7sTime in Years Prior to Expiration: %7.4f%7.4f%7.4f%n", " ", tGrid[0], tGrid[1], tGrid[2]); // tGrid[] = tau == T - t
 System.out.printf(Locale.ENGLISH,
 "%7sOption valued at Underlying Prices:%7.2f%7.2f%7.2f%n%n", " ", evaluationPoints[0], evaluationPoints[1], evaluationPoints[2]);

 /*
 * iquart = 0 : derivatives estimated with 3-point fitted parabola
 * iquart = 1 : derivatives estimated with 5-point fitted quartic
 * polynomial
 */
 int iquart = 0;
 if (iquart == 0) {
 System.out.printf(Locale.ENGLISH,
 " 3 point (parabolic) estimate of "
 + "parameter derivatives;%n")
 } else {
 System.out.printf(Locale.ENGLISH,
 " 5 point (quartic) estimate of "
 + "parameter derivatives;%n")
 }

 System.out.printf(Locale.ENGLISH, " epsfrac = %11.8f%n", epsfrac);
 //alpha: Black-Scholes
 for (int i2 = 1; i2 <= 3; i2++) /* Loop over volatility */ {
 for (int i3 = 1; i3 <= 3; i3++) /* Loop over strike price */ {
 calculateGreeks(i2, i3, iquart);
 }
 }
}
System.out.println();
for (int ig = 0; ig < 12; ig++) {
 reavg[ig] /= irect[ig];
 System.out.printf(Locale.ENGLISH, "\n Greek: " + greekName[ig] + " \n avg rel err: %15.12f" + " \n max rel err: %15.12f", reavg[ig], rex[ig]);
}
System.out.println();
} // end main

private static void calculateGreeks(int volatility, int strikePrice, int iquart) throws Exception {
 int i1 = 1;
 int nt = 3;
 if ((volatility == 1) && (strikePrice == 1)) {
 System.out.printf(Locale.ENGLISH, "\n Strike=%5.2f, Sigma="
 + "%5.2f, Alpha=%5.2f:",
 strikePrices[strikePrice - 1], sigma[volatility - 1],
 alpha[i1 - 1]);
 System.out.printf(Locale.ENGLISH, "\n years to expiration: "
 + " %7.4f %7.4f %7.4f
 + " %7.4f
 + " %7.4f %7.4f %7.4f",
 tGrid[0], tGrid[1], tGrid[2]);
 }
 /* Loop over t derivative index */
 for (int iTDeriv = 0; iTDeriv < 2; iTDeriv++) {
 int iSDerivMax = 4 - iTDeriv;
 /* Loop over S derivative index */
 for (int iSDeriv = 0; iSDeriv < iSDerivMax; iSDeriv++) {
 int iSigDerivMax = 1;
 if (iTDeriv == 0) {
 if (iSDeriv == 0) {
 iSigDerivMax = 3;
 } else if (iSDeriv == 1) {
 iSigDerivMax = 2;
 }
 } else if (iSDeriv == 1) {
 iSigDerivMax = 2;
 }
 }
 // Loop over sigma deriv index
 for (int iSigDeriv = 0; iSigDeriv < iSigDerivMax; iSigDeriv++) {
 int iRDerivMax = 1;
 if (iTDeriv == 0 && iSDeriv == 0 && iSigDeriv == 0) { iRDerivMax = 2; }
 }
 // Loop over r derivative index
 for (int iRDeriv = 0; iRDeriv < iRDerivMax; iRDeriv++) {
 int ispeedmin = 0;
 int ispeedmax = 1;
 if (iTDeriv == 0 && iSDeriv == 2) { ispeedmax = 2; }
 if (iTDeriv == 0 && iSDeriv == 3) { ispeedmin = 2; ispeedmax = 3; }
// Loop over speed index
for (int ispeed = ispeedmin; ispeed < ispeedmax;
ispeed++) {
 // Pass data through into evaluation methods.
 double[] userData = new double[6];
 userData[0] = strikePrices[strikePrice - 1];
 userData[1] = xMax;
 userData[2] = sigma[volatility - 1];
 userData[3] = alpha[i1 - 1];
 userData[4] = r;
 userData[5] = dividend;
 double[][] splineValuesOption
 = new double[nTGrid][nv];
 double[][] splineValuesOptionP
 = new double[nTGrid][];
 double[][] splineValuesOptionM
 = new double[nTGrid][];
 double[][] splineValuesOptionPP
 = new double[nTGrid][];
 double[][] splineValuesOptionMM
 = new double[nTGrid][];
 double[] xGridP = new double[nXGgrid];
 double[] xGridM = new double[nXGgrid];
 double[] evaluationPointsP = new double[nv];
 double[] evaluationPointsM = new double[nv];
 double[] xGridPP = new double[nXGgrid];
 double[] xGridMM = new double[nXGgrid];
 double[] evaluationPointsPP = new double[nv];
 double[] evaluationPointsMM = new double[nv];
 double xMaxP = xMax;
 double xMaxM = xMax;
 double xMaxPP = xMax, xMaxMM = xMax;

 // Evaluate FK solution at vector evaluationPoints,
 // at each time value prior to expiration.
 if ((iSigDeriv != 1 || iSDeriv == 1 || iRDeriv != 1)
 && (ispeed == 0 || ispeed == 2)) {
 FeynmanKac callOption = new FeynmanKac(
 new MyCoefficients(userData));
 // Right boundary condition time-dependent
 timeDependence[5] = true;
 callOption.setTimeDependence(timeDependence);
 callOption.computeCoefficients(nlbcd, nrbcd,
 new MyBoundaries(userData), xGrid,
 tGrid);
 double[][] optionCoefficients
 = new double[tGrid.length + 1][3 * xGrid.length];
 if (iTDeriv == 0) {
 optionCoefficients
 = callOption.
 getSplineCoefficients();
 } else {
 optionCoefficients
 = callOption.
 getSplineCoefficients();
 }
 }
}
= callOption.
 getSplineCoefficientsPrime();
}
for (int i = 0; i < nTGrid; i++) {
 // FK option values for tau = tGrid[i]:
 splineValuesOption[i]
 = callOption.getSplineValue(
 evaluationPoints,
 optionCoefficients[i + 1],
 iSDeriv);
}
}
if (iSigDeriv > 0 || iRDeriv > 0 || ispeed == 1) {
 System.arraycopy(xGrid, 0, xGridP, 0, nXGgrid);
 System.arraycopy(xGrid, 0, xGridM, 0, nXGgrid);
 System.arraycopy(evaluationPoints, 0,
 evaluationPointsP, 0, nv);
 System.arraycopy(evaluationPoints, 0,
 evaluationPointsM, 0, nv);
 if (ispeed == 1) {
 for (int i = 0; i < nXGgrid; i++) {
 xGridP[i] = xGrid[i] + dx2;
 xGridM[i] = xGrid[i] - dx2;
 }
 for (int i = 0; i < nv; i++) {
 evaluationPointsP[i] = evaluationPoints[i] + dx2;
 evaluationPointsM[i] = evaluationPoints[i] - dx2;
 }
 xMaxP = xMax + dx2;
 xMaxM = xMax - dx2;
 }
 userData[1] = xMaxP;
 // calculate spline values for
 // sigmaP = sigma[i2-1]*(1. + epsfrac)
 // or rP = r*(1. + epsfrac)
 if (iSigDeriv > 0) {
 userData[2] = sigma[volatility-1] * (1. + epsfrac);
 } else if (iRDeriv > 0) {
 userData[4] = r * (1. + epsfrac);
 }
 FeynmanKac callOptionP
 = new FeynmanKac(
 new MyCoefficients(userData));
 //Right boundary condition time-dependent
timeDependence[5] = true;
callOptionP.setTimeDependence(timeDependence);
callOptionP.computeCoefficients(nlbcd, nrbcd,
 new MyBoundaries(userData), xGridP,
 tGrid);
 double[][] optionCoefficientsP
 = new double[tGrid.length + 1][3 * xGrid.length];
if (iTDeriv == 0) {
 optionCoefficientsP
 = callOptionP.
 getSplineCoefficients();
} else {
 optionCoefficientsP
 = callOptionP.
 getSplineCoefficientsPrime();
}

for (int i = 0; i < nTGrid; i++) {
 // FK option values for tau = tGrid[i]:
 splineValuesOptionP[i]
 = callOptionP.getSplineValue(
 evaluationPointsP,
 optionCoefficientsP[i + 1],
 iSDeriv);
}

userData[1] = xMaxM;
// calculate spline values for
// sigmaM = sigma[i2-1]*(1. - epsfrac) or
// rM = r*(1. - epsfrac):
if (iSigDeriv > 0) {
 (userData[2] = sigma[volatility - 1]
 * (1. - epsfrac);
} else {
 userData[4] = r * (1. - epsfrac);
}

FeynmanKac callOptionM
 = new FeynmanKac(
 new MyCoefficients(userData));
// Right boundary condition time-dependent
 timeDependence[5] = true;
 callOptionM.setTimeDependence(timeDependence);
 callOptionM.computeCoefficients(nlbcd, nrbcd,
 new MyBoundaries(userData), xGridM,
 tGrid);

double[][] optionCoefficientsM
 = new double[tGrid.length + 1][3]
 * xGrid.length];
if (iTDeriv == 0) {
 optionCoefficientsM
 = callOptionM.
 getSplineCoefficients();
} else {
 optionCoefficientsM
 = callOptionM.
 getSplineCoefficientsPrime();
}

for (int i = 0; i < nTGrid; i++) {
 // FK option values for tau = tGrid[i]:
 splineValuesOptionM[i]
 = callOptionM.
 getSplineValue(
 evaluationPointsM,
 optionCoefficientsM[i + 1],
 iSDeriv),
if (iquart == 1) {
 System.arraycopy(xGrid, 0, xGridPP, 0, nXGgrid);
 System.arraycopy(xGrid, 0, xGridMM, 0, nXGgrid);
 System.arraycopy(evaluationPoints, 0, evaluationPointsPP, 0, nv);
 System.arraycopy(evaluationPoints, 0, evaluationPointsMM, 0, nv);
 if (ispeed == 1) {
 for (int i = 0; i < nXGgrid; i++) {
 xGridPP[i] = xGrid[i] + 2. * dx2;
 xGridMM[i] = xGrid[i] - 2. * dx2;
 }
 for (int i = 0; i < nv; i++) {
 evaluationPointsPP[i] = evaluationPoints[i] + 2. * dx2;
 evaluationPointsMM[i] = evaluationPoints[i] - 2. * dx2;
 }
 xMaxPP = xMax + 2. * dx2;
 xMaxMM = xMax - 2. * dx2;
 }
 userData[1] = xMaxPP;
 if (iSigDeriv > 0) {
 // calculate spline values for
 // sigmaPP = sigma[i2-1]
 // *(1. + 2.*epsfrac):
 userData[2] = sigma[volatility - 1] * (1. + 2. * epsfrac);
 } else if (iRDeriv > 0) {
 // calculate spline values for
 // rPP = r*(1. + 2.*epsfrac):
 userData[4] = r * (1. + 2. * epsfrac);
 }
 FeynmanKac callOptionPP = new FeynmanKac(
 new MyCoefficients(userData));
 //Right boundary condition time-dependent
 timeDependence[5] = true;
 callOptionPP.setTimeDependence(timeDependence);
 callOptionPP.computeCoefficients(nlbcd, nrbcd,
 new MyBoundaries(userData), xGridPP, tGrid);
 double[][] optionCoefficientsPP = new double[tGrid.length + 1][3 * xGrid.length];
 if (iTDeriv == 0) {
for (int i = 0; i < nTGrid; i++) {
 // FK option values for tau = tGrid[i]:
 splineValuesOptionPP[i] = callOptionPP.getSplineValue(
 evaluationPointsPP, optionCoefficientsPP[i + 1], iSDeriv);
}

userData[1] = xMaxMM;
// calculate spline values for
// sigmaMM = sigma[i2-1]*(1. - 2.*epsfrac)
// or rMM = r*(1. - 2.*epsfrac)
if (iSigDeriv > 0) {
 userData[2] = sigma[volatility - 1] * (1. - 2. * epsfrac);
} else if (iRDeriv > 0) {
 userData[4] = r * (1. - 2. * epsfrac);
}
FeynmanKac callOptionMM = new FeynmanKac(
 new MyCoefficients(userData));
//Right boundary condition time-dependent
timeDependence[5] = true;
callOptionMM.setTimeDependence(timeDependence);
callOptionMM.computeCoefficients(nlbcd, nrbcd, new MyBoundaries(userData), xGridMM, tGrid);
double[][] optionCoefficientsMM = new double[tGrid.length + 1][3 * xGrid.length];
if (iTDeriv == 0) {
 optionCoefficientsMM = callOptionMM.getSplineCoefficients();
} else {
 optionCoefficientsMM = callOptionMM.getSplineCoefficientsPrime();
}
for (int i = 0; i < nTGrid; i++) {
 // FK option values for tau = tGrid[i]:
 splineValuesOptionMM[i] = callOptionMM.getSplineValue(
 Differential Equations FeynmanKac • 295
if (iSigDeriv == 1 || iRDeriv == 1 || ispeed == 1) {
 double eps = 0., f11 = 0., f12 = 0.;
 if (iSigDeriv == 1) {
 eps = sigma[volatility - 1] * epsfrac;
 }
 if (iRDeriv == 1) {
 eps = r * epsfrac;
 }
 if (ispeed == 1) {
 eps = dx2;
 }
 for (int i = 0; i < nTGrid; i++) {
 for (int j = 0; j < nv; j++) {
 f11 = (splineValuesOptionP[i][j] - splineValuesOptionM[i][j]) / (2. * eps);
 if (iquart == 0) {
 splineValuesOption[i][j] = f11;
 } else {
 f12 = (splineValuesOptionPP[i][j] - splineValuesOptionMM[i][j]) / (4. * eps);
 splineValuesOption[i][j] = (4. * f11 - f12) / 3.;
 }
 }
 }
}

if (iSigDeriv == 2) {
 double eps = sigma[volatility - 1] * epsfrac;
 double f21 = 0.;
 double f22 = 0.;
 for (int i = 0; i < nTGrid; i++) {
 for (int j = 0; j < nv; j++) {
 f21 = (splineValuesOptionP[i][j] + splineValuesOptionM[i][j] - 2. * splineValuesOption[i][j]) / (eps * eps);
 if (iquart == 0) {
 splineValuesOption[i][j] = f21;
 } else {
 f22 = (splineValuesOptionPP[i][j] + splineValuesOptionMM[i][j] - 2. * splineValuesOption[i][j]) / (4. * eps * eps);
 splineValuesOption[i][j] = (4. * f21 - f22) / 3.;
 }
 }
 }
}
Evaluate BS solution at vector evaluationPoints, at each time value prior to expiration.

```java
double[][] BSValuesOption = new double[nTGrid][nv];
for (int i = 0; i < nTGrid; i++) {
    /*
    * Black-Scholes (BS) European call option
    * value = ValBSEC(S,t) =
    * exp(-q*tau)*S*N01CDF(d1) -
    * exp(-r*tau)*K*N01CDF(d2),
    * where:
    *  tau = time to maturity = T - t;
    *    q = annual dividend yield;
    *    r = risk free rate;
    *    K = strike price;
    *    S = stock price;
    *    N01CDF(x) = N(0,1)_CDF(x);
    *    d1 = ( log( S/K ) +
    *    ( r - q + 0.5*sigma**2 )*tau ) /
    *    ( sigma*sqrt(tau) );
    *    d2 = d1 - sigma*sqrt(tau)
    */
    // BS option values for tau = tGrid[i]:
    double tau = tGrid[i];
    double sigsqttau = Math.pow(sigma[volatility - 1], 2)
        * tau;
    double sqrt_sigsqttau = Math.sqrt(sigsqttau);
    double sigsqt = sigma[volatility - 1]
        * sigma[volatility - 1];
    for (int j = 0; j < nv; j++) {
        // Values of the underlying price where evaluations are made:
        double S = evaluationPoints[j];
        double d1 = (Math.log(S
            / strikePrices[strikePrice - 1])
            + (r - dividend) * tau + 0.5
            * sigsqttau) / sqrt_sigsqttau;
        double n01pdf_d1 = Math.exp(-0.5 * d1 * d1)
            / sqrt2pi;
        double nu = Math.exp(-dividend * tau) * S
            * n01pdf_d1 * Math.sqrt(tau);
        if (iTDeriv == 0) {
            if (iSDeriv == 0) {
                if (iSigDeriv == 0) {
                    if (iRDeriv == 0) {
                        BSValuesOption[i][j]
                            = Math.exp(-dividend
                                * tau) * S
                            * Cdf.normal(d1)
                            - Math.exp(-r * tau)
                            * Cdf.normal(d2);
* strikePrices[strikePrice - 1]
* Cdf.normal(d2);
}
}
}
}
}
}
}
}
}
} else if (iSigDeriv == 1) {
  // greek = Vega
  BSValuesOption[i][j] = nu;
} else if (iSigDeriv == 2) {
  // greek = Volga
  BSValuesOption[i][j] = nu * d1 * d2 / sigma[volatility - 1];
}
}
} else if (iSDeriv == 1) {
  // greek = delta
  if (iSigDeriv == 0) {
    BSValuesOption[i][j] = Math.exp(-dividend * tau) * Cdf.normal(d1);
  } else if (iSigDeriv == 1) {
    // greek = Vanna
    BSValuesOption[i][j] = (nu / S) * (1. - d1 / sqrt_sigsqtau);
  }
}
}
} else if (iSDeriv == 2) {
  if (ispeed == 0) { // greek = gamma
    BSValuesOption[i][j] = Math.exp(-dividend * tau) * n01pdf_d1 / (S * sqrt_sigsqtau);
  } else { // greek = speed
    BSValuesOption[i][j] = -Math.exp(-dividend * tau) * n01pdf_d1 * (1. + d1 / sqrt_sigsqtau) / (S * S * sqrt_sigsqtau);
  }
}
}
} else if (iSDeriv == 3 && ispeed == 2) {
  // greek = speed
  BSValuesOption[i][j] = -Math.exp(-dividend * tau) * n01pdf_d1 * (1. + d1 / sqrt_sigsqtau) / (S * S * sqrt_sigsqtau);
}
}
}\text{ else if (iTDeriv == 1) }
\begin{align*}
&\text{double d2 = d1 - sqrt_sigsqtau;} \\
&\text{if (iSDeriv == 0) } //\text{greek = theta} \\
&\quad \text{BSValuesOption[i][j]} \\
&\quad \quad = \text{Math.exp(-dividend * tau)} \\
&\quad \quad \times S \\
&\quad \quad \times (\text{dividend} \times \text{Cdf.normal(d1)} \\
&\quad \quad \quad - 0.5 \times \text{sigsq} \\
&\quad \quad \quad \times \text{n01pdf_d1 / sqrt_sigsqtau}) \\
&\quad \quad \times \text{r * Math.exp(-r * tau)} \\
&\quad \quad \times \text{strikePrices[strikePrice - 1]} \\
&\quad \quad \times \text{Cdf.normal(d2);} \\
&\text{else if (iSDeriv == 1) } //\text{greek = charm} \\
&\quad \text{BSValuesOption[i][j]} \\
&\quad \quad = \text{Math.exp(-dividend * tau)} \\
&\quad \quad \times (-\text{dividend} \times \text{Cdf.normal(d1)} \\
&\quad \quad \quad + \text{n01pdf_d1} \times ((r \\
&\quad \quad \quad \quad - \text{dividend}) \times \text{tau} - 0.5 \\
&\quad \quad \quad \quad \times \text{d2 * sqrt_sigsqtau}) \\
&\quad \quad \quad / (\text{tau} \times \text{sqrt_sigsqtau});)
\end{align*}
\text{else if (iSDeriv == 2) } //\text{greek = color} \\
\begin{align*}
&\text{BSValuesOption[i][j]} \\
&\quad = \text{-Math.exp(-dividend * tau)} \\
&\quad \times \text{n01pdf_d1} \\
&\quad \times (2. \times \text{dividend} \times \text{tau} + 1. \\
&\quad \quad + \text{d1} \times (2. \times (r \times \text{dividend}) \\
&\quad \quad \times \text{tau} - \text{d2} \times \text{sqrt_sigsqtau}) \\
&\quad \quad \times \text{sqrt_sigsqtau}) \\
&\quad \quad / (2. \times \text{S} \times \text{tau} \\
&\quad \quad \times \text{sqrt_sigsqtau});)
\end{align*}
\text{}}
\}
\}

double relerrmax = 0.;
int gNi = 3 + iTDeriv + iSDeriv;
\text{if (iSigDeriv == 1 && iSDeriv == 0) } \\
\quad gNi = 6; //vega \\
\}
\text{if (iSigDeriv == 2 && iSDeriv == 0) } \\
\quad gNi = 7; //volga \\
\}
\text{if (iSigDeriv == 1 && iSDeriv == 1) } \\
\quad gNi = 8; //vanna \\
\}
\text{if (iRDerv == 1) } \\
\quad gNi = 9; //rho \\
\}
\text{if (ispeed >= 1) } \\
\quad gNi = 9 + ispeed; //speed \\
\}
\text{for (int i = 0; i < nv; i++) }
{
for (int j = 0; j < nt; j++) {
    double sVo = splineValuesOption[j][i], BSVo = BSValuesOption[j][i];
    // greeks(itd=1) ~ d/dtau = -d/dt
    // for iSDeriv > 0:
    if (iTDeriv == 1 && iSDeriv > 0) {
        sVo = -sVo;
    }
    double relerr = Math.abs((sVo - BSVo) / BSVo);
    if (relerr > relerrmax) {
        relerrmax = relerr;
    }
    reavg[gNi] += relerr;
    irect[gNi] += 1;
}
if (relerrmax > rex[gNi]) {
    rex[gNi] = relerrmax;
}

if ((volatility == 1) && (strikePrice == 1)) {
    for (int i = 0; i < nv; i++) {
        System.out.printf("underlying price:
            + ";
        for (int j = 0; j < nt; j++) {
            double sVo = splineValuesOption[j][i];
            // greeks(itd=1) ~ d/dtau = -d/dt
            // for isd > 0:
            if (iTDeriv == 1 && iSDeriv > 0) {
                sVo = -sVo;
            }
            System.out.printf(Locale.ENGLISH,
                "%13.10f ", sVo);
        }
        System.out.println();
    }
    System.out.println();
    System.out.printf("BS "
        + greekName[gNi] + ": ");
    for (int j = 0; j < nt; j++) {
        System.out.printf(Locale.ENGLISH,
            "%13.10f ",
            BSValuesOption[j][i]);
    }
    System.out.println();
}
}
}

static class MyCoefficients implements FeynmanKac.PdeCoefficients {
final double zero = 0.0, half = 0.5;
private double sigma, strikePrice, interestRate;
private double alpha, dividend;

public MyCoefficients(double[] myData) {
    this.strikePrice = myData[0];
    this.sigma = myData[2];
    this.alpha = myData[3];
    this.interestRate = myData[4];
    this.dividend = myData[5];
}

// The coefficient sigma(x)
public double sigma(double x, double t) {
    return (sigma * Math.pow(x, alpha * half));
}

// The coefficient derivative d(sigma) / dx
public double sigmaPrime(double x, double t) {
    return (half * alpha * sigma * Math.pow(x, alpha * half - 1.0));
}

// The coefficient mu(x)
public double mu(double x, double t) {
    return ((interestRate - dividend) * x);
}

// The coefficient kappa(x)
public double kappa(double x, double t) {
    return interestRate;
}

static class MyBoundaries implements FeynmanKac.Boundaries {
    private double xMax, df, interestRate, strikePrice;

    public MyBoundaries(double[] myData) {
        this.strikePrice = myData[0];
        this.xMax = myData[1];
        this.interestRate = myData[4];
    }

    public void leftBoundaries(double time, double[][] bndCoeffs) {
        bndCoeffs[0][0] = 1.0;
        bndCoeffs[0][1] = 0.0;
        bndCoeffs[0][2] = 0.0;
        bndCoeffs[0][3] = 0.0;
        bndCoeffs[1][0] = 0.0;
        bndCoeffs[1][1] = 1.0;
        bndCoeffs[1][2] = 0.0;
        bndCoeffs[1][3] = 0.0;
        bndCoeffs[2][0] = 0.0;
        bndCoeffs[2][1] = 0.0;
        bndCoeffs[2][2] = 1.0;
    }
}
public void rightBoundaries(double time, double[][] bndCoeffs) {
    df = Math.exp(interestRate * time);
    bndCoeffs[0][0] = 1.0;
    bndCoeffs[0][1] = 0.0;
    bndCoeffs[0][2] = 0.0;
    bndCoeffs[0][3] = xMax - df * strikePrice;
    bndCoeffs[1][0] = 0.0;
    bndCoeffs[1][1] = 1.0;
    bndCoeffs[1][2] = 0.0;
    bndCoeffs[1][3] = 1.0;
    bndCoeffs[2][0] = 0.0;
    bndCoeffs[2][1] = 0.0;
    bndCoeffs[2][2] = 1.0;
    bndCoeffs[2][3] = 0.0;
}

public double terminal(double x) {
    double zero = 0.0;
    // The payoff function
    double value = Math.max(x - strikePrice, zero);
    return value;
}

Output

Constant Elasticity of Variance Model for Vanilla Call Option
Interest Rate: 0.050  Continuous Dividend: 0.000
Minimum and Maximum Prices of Underlying: 0.00 60.00
Number of equally spaced spline knots: 120
Number of unknowns: 363

Time in Years Prior to Expiration: 0.0833 0.3333 0.5833
Option valued at Underlying Prices: 19.00 20.00 21.00

3 point (parabolic) estimate of parameter derivatives;
epsfrac = 0.00100000

<table>
<thead>
<tr>
<th>Time in Years</th>
<th>Underlying Price</th>
<th>FK Value</th>
<th>BS Value</th>
<th>Strike=15.00, Sigma= 0.20, Alpha= 2.00:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0833</td>
<td>19.00</td>
<td>4.0623732450 4.2575922184 4.4733805278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3333</td>
<td>20.00</td>
<td>4.0623732509 4.2575929678 4.4733814062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5833</td>
<td>21.00</td>
<td>4.0623700127 5.2505145764 5.4492418798</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

302 • FeynmanKac  JMSL
<table>
<thead>
<tr>
<th>Underlying Price</th>
<th>BS Rho</th>
<th>FK Vega</th>
<th>BS Vega</th>
<th>FK Volga</th>
<th>BS Volga</th>
<th>FK Delta</th>
<th>BS Delta</th>
<th>FK Vanna</th>
<th>BS Vanna</th>
<th>FK Gamma</th>
<th>BS Gamma</th>
<th>FK Speed</th>
<th>BS Speed</th>
<th>FK Speed2</th>
<th>BS Speed2</th>
<th>FK Theta</th>
<th>BS Theta</th>
<th>FK Charm</th>
<th>BS Charm</th>
<th>FK Color</th>
<th>BS Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0</td>
<td>1.2448024996</td>
<td>4.9107310444</td>
<td>0.3487168323</td>
<td>0.3487535601</td>
<td>0.3487974472</td>
<td>0.302875297</td>
<td>0.3028692419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>0.0003289870</td>
<td>0.3487168323</td>
<td>0.3487535601</td>
<td>0.3487974472</td>
<td>0.302875297</td>
<td>0.3028692419</td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>0.000056652</td>
<td>0.3487168323</td>
<td>0.3487535601</td>
<td>0.3487974472</td>
<td>0.302875297</td>
<td>0.3028692419</td>
<td></td>
</tr>
</tbody>
</table>

**Differential Equations**

FeynmanKac ⋄ 303
public interface com.imsl.math.FeynmanKac.PdeCoefficients

Public interface for user supplied PDE coefficients in the Feynman-Kac PDE.

Methods

kappa
public double kappa(double x, double t)

Description
Returns the value of the $\kappa$ coefficient at the given point. Time dependency of $\kappa$ can be controlled via method `setTimeDependence`. Use of this method will usually yield a more efficient algorithm because some finite element matrices do not have to be reassembled for each $t$ value.

Parameters
- $x$ – a double, the point in space at which $\kappa$ is to be evaluated.
- $t$ – a double, the time point at which $\kappa$ is to be evaluated.

Returns
a double, the value of $\kappa$ at $(x,t)$. 
**mu**

public double mu(double x, double t)

**Description**

Returns the value of the $\mu$ coefficient at the given point.

Time dependency of $\mu$ can be controlled via method `setTimeDependence`. Use of this method will usually yield a more efficient algorithm because some finite element matrices do not have to be reassembled for each $t$ value.

**Parameters**

- $x$ – a double, the point in space at which $\mu$ is to be evaluated.
- $t$ – a double, the time point at which $\mu$ is to be evaluated.

**Returns**

a double, the value of $\mu$ at $(x,t)$.

**sigma**

public double sigma(double x, double t)

**Description**

Returns the value of the $\sigma$ coefficient at the given point.

Time dependency of $\sigma$ can be controlled via method `setTimeDependence`. Use of this method will usually yield a more efficient algorithm because some finite element matrices do not have to be reassembled for each $t$ value.

**Parameters**

- $x$ – a double, the point in space at which $\sigma$ is to be evaluated.
- $t$ – a double, the time point at which $\sigma$ is to be evaluated.

**Returns**

a double, the value of $\sigma$ at $(x,t)$.

**sigmaPrime**

public double sigmaPrime(double x, double t)

**Description**

Returns the value of $\sigma' = \frac{\partial \sigma(x,t)}{\partial x}$ at the given point.

Time dependency of $\sigma'$ can be controlled via method `setTimeDependence`. Use of this method will usually yield a more efficient algorithm because some finite element matrices do not have to be reassembled for each $t$ value.

**Parameters**

- $x$ – a double, the point in space at which $\sigma'$ is to be evaluated.
- $t$ – a double, the time point at which $\sigma'$ is to be evaluated.
Returns
a double, the value of $\sigma'$ at $(x,t)$.

---

**FeynmanKac.Boundaries interface**

```java
public interface com.imsl.math.FeynmanKac.Boundaries

Public interface for user supplied boundary coefficients and terminal condition the PDE must satisfy.

Methods

leftBoundaries
```java
public void leftBoundaries(double time, double[][] coefficients)
```

Description
Returns the coefficient values of the left boundary conditions. There are `numLeftBounds` conditions specified at the left end, x_{min}. The left boundary conditions are

$$a_i(x,t)f + b_i(x,t)f_x + c_i(x,t)f_{xx} = d_i(x,t), x = x_{min}, 1 \leq i \leq \text{numLeftBounds}.$$

Time dependency of the boundary coefficients can be controlled via method `setTimeDependence`. Use of this method will usually yield a more efficient algorithm because some finite element matrices do not have to be reassembled for each t value.

Parameters

- `time` - a double, the time point at which the boundary coefficients are to be evaluated.
- `coefficients` - an output double array of dimension `numLeftBounds` by 4 containing the computed boundary coefficient values. The coefficients are stored row-wise according to the matrix scheme

$$(a_i(x_{min},t), b_i(x_{min},t), c_i(x_{min},t), d_i(x_{min},t))_{1 \leq i \leq \text{numLeftBounds}}.$$

rightBoundaries
```java
public void rightBoundaries(double time, double[][] coefficients)
```

Description
Returns the coefficient values of the right boundary conditions. There are `numRightBounds` conditions specified at the right end, x_{max}. The right boundary conditions are

$$a_i(x,t)f + b_i(x,t)f_x + c_i(x,t)f_{xx} = d_i(x,t), x = x_{max}, 1 \leq i \leq \text{numRightBounds}.$$

Time dependency of the boundary coefficients can be controlled via method `setTimeDependence`. Use of this method will usually yield a more efficient algorithm because some finite element matrices do not have to be reassembled for each t value.
Parameters

time – a double, the time point at which the boundary coefficients are to be evaluated.
coefficients – an output double array of dimension numRightBounds by 4, containing the computed boundary coefficient values. The coefficients are stored row-wise according to the matrix scheme

\[(a_i(x_{\text{max}},t), b_i(x_{\text{max}},t), c_i(x_{\text{max}},t), d_i(x_{\text{max}},t)) \text{ for } 1 \leq i \leq \text{numRightBounds} \]

terminal

public double terminal(double z)

Description

Returns the terminal condition value.

Parameter

z – a double scalar, the point in x-direction, where the terminal condition is evaluated.

Returns

a double scalar, the value of the terminal condition \(p(x)\) at point \(z\).

FeynmanKac.InitialData interface

public interface com.imsl.math.FeynmanKac.InitialData

Public interface for adjustment of initial data or as an opportunity for output during the integration steps.

Method

init

public void init(double[] xGrid, double[] tGrid, double time, double[] yprime, double[] y, double[] absoluteErrorTolerance, double[] relativeErrorTolerance)

Description

Method that allows for adjustment of initial data or as an opportunity for output during the integration steps.

Parameters

xGrid – a double array containing the grid points in the x-direction.
tGrid – a double array containing the grid points in the t-direction.
time – a double, containing the time point for the evaluation.
yprime – a double array of length 3*grid.length containing the derivatives of the Hermite quintic spline coefficients at time point time.

y – a double array of length 3*grid.length containing the coefficients of the Hermite quintic spline at time point time.

absoluteErrorTolerance – a double array of length 3*grid.length containing absolute error tolerances.

relativeErrorTolerance – a double array of length 3*grid.length containing relative error tolerances.

FeynmanKac.ForcingTerm interface

```java
public interface com.imsl.math.FeynmanKac.ForcingTerm
```

Public interface for non-zero forcing term in the Feynman-Kac equation.

Method

```java
public void force(int interval, double[] y, double time, double width, double[] xlocal, double[] qw, double[][] u, double[] phi, double[][] dphi)
```

Description

Computes approximations to the forcing term $\phi(f,x,t)$ and its derivative $\partial \phi / \partial y$.

Parameters

- **interval** – an int, the index related to the integration interval [grid[interval-1], grid[interval]].
- **y** – an input double array of length 3*grid.length containing the coefficients of the Hermite quintic spline representing the solution of the Feynman-Kac equation at time point time. For each $x \in [x_i, x_{i+1}]$, $h_i = x_{i+1} - x_i$, $z_i = (x - x_i)/h_i$, $i = 1, \ldots, grid.length - 1$

 the approximate solution is locally defined by

 $$f(x,t) = f_i b_0(z) + f_{i+1} b_0(1-z) + h_i f'_i b_1(z) - h_i f'_{i+1} b_1(1-z) + h_i^2 f''_i b_2(z) + h_i^2 f''_{i+1} b_2(1-z).$$

 The values $y_i = f_i$, $y_{i+1} = f'_i$, $y_{i+2} = f''_i$, $i = 1,4,7,\ldots,3 \cdot grid.length - 2$, are stored as successive triplets in y.
- **time** – a double, the time point.
- **width** – a double, the width of the integration interval.

 width=xgrid[interval-1]-xgrid[interval-1].
xlocal – an input double array containing the Gauss-Legendre points translated and normalized to the interval [xGrid[interval-1], xGrid[interval]].
qw – an input double array containing the Gauss-Legendre weights.
u – an input double array of dimension 12 by xlocal.length containing the basis function values that define \(\tilde{\beta}(x) \) at the Gauss-Legendre points xlocal.

Setting \(u_{k,i} := u[k][i] \) and \(x_i := xlocal[i] \),

vector \(\tilde{\beta}(x_i) \) is defined as

\[
\tilde{\beta}(x_i) := (\beta_{3(interval-1)}(x_i), \ldots, \beta_{3(interval+2)}(x_i))^T = (u_{0,i}, u_{1,i}, u_{2,i}, u_{6,i}, u_{7,i}, u_{8,i})^T.
\]

phi – an output double array of length 6 containing Gauss-Legendre approximations for the local contributions

\[
\phi_i := \int_{xgrid[interval-1]}^{xgrid[interval]} \phi(f,x,t)\tilde{\beta}(x)dx,
\]

where \(t=\text{time} \) and \(\tilde{\beta}(x) := (\beta_{3(interval-1)}(x), \ldots, \beta_{3(interval+2)}(x))^T \). Denoting by degree the number of Gauss-Legendre points (xlocal.length) and setting \(x_j := xlocal[j] \), vector phi contains elements

\[
\phi[i] = \text{width} \times \sum_{j=0}^{\text{degree}-1} qw[j] \tilde{\beta}(x_j) \phi(f,x_j,t)
\]

for \(i=0, \ldots, 5 \).

dphi – an output double array of dimension 6 by 6 containing a Gauss-Legendre approximation for the Jacobian of the local contributions \(\phi_t \) at time point \(t=\text{time} \),

\[
\frac{\partial \phi_t}{\partial y} = \int_{xgrid[interval-1]}^{xgrid[interval]} \frac{\partial \phi(f,x,t)}{\partial f} \tilde{\beta}(x) \tilde{\beta}^T(x)dx.
\]

The approximation to this symmetric matrix is stored row-wise, i.e.

\[
dphi[i][j] = \text{width} \times \sum_{k=0}^{\text{degree}-1} qw[k] \tilde{\beta}(x_k) \tilde{\beta}_j(x_k) \frac{\partial \phi}{\partial f} \bigg|_{x=xlocal[k], t=\text{time}}
\]

for \(i,j=0, \ldots, 5 \).

FeynmanKac.ToleranceTooSmallException class

static public class com.imsl.math.FeynmanKac.ToleranceTooSmallException extends com.imsl.IMSLException

Tolerance is too small.
FeynmanKac.ToleranceTooSmallException

public FeynmanKac.ToleranceTooSmallException(String key, Object[] arguments)

Description
Tolerance is too small.

Parameters
- key – the String key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string

FeynmanKac.TooManyIterationsException class

static public class com.imsl.math.FeynmanKac.TooManyIterationsException extends com.imsl.IMSLException
Too many iterations required by the DAE solver.

Constructor

FeynmanKac.TooManyIterationsException

public FeynmanKac.TooManyIterationsException(String key, Object[] arguments)

Description
Too many iterations required by the DAE solver.

Parameters
- key – the String key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string

FeynmanKac.ErrorTestException class

static public class com.imsl.math.FeynmanKac.ErrorTestException extends com.imsl.IMSLException
Error test failure detected.
Constructor

FeynmanKac>ErrorTestException

```java
public FeynmanKac.ErrorTestException(String key, Object[] arguments)
```

Description

Error test failure detected.

Parameters

- `key` – the String key of the error message in the resource bundle
- `arguments` – an array containing arguments used within the error message string

FeynmanKac.CorrectorConvergenceException

```java
static public class com.imsl.math.FeynmanKac.CorrectorConvergenceException
extends com.imsl.IMSLException
```

Corrector failed to converge.

Constructor

FeynmanKac.CorrectorConvergenceException

```java
public FeynmanKac.CorrectorConvergenceException(String key, Object[] arguments)
```

Description

Corrector failed to converge.

Parameters

- `key` – the String key of the error message in the resource bundle
- `arguments` – an array containing arguments used within the error message string
FeynmanKac.IterationMatrixSingularException class

static public class com.imsl.math.FeynmanKac.IterationMatrixSingularException extends com.imsl.IMSLException
Iteration matrix is singular.

Constructor

FeynmanKac.IterationMatrixSingularException
public FeynmanKac.IterationMatrixSingularException(String key, Object[] arguments)

Description
Iteration matrix is singular.

Parameters
- key – the String key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string

FeynmanKacTimeIntervalTooSmallException class

static public class com.imsl.math.FeynmanKac TimeIntervalTooSmallException extends com.imsl.IMSLException
Distance between starting time point and end point for the integration is too small.

Constructor

FeynmanKacTimeIntervalTooSmallException
public FeynmanKacTimeIntervalTooSmallException(String key, Object[] arguments)
Description
Distance between starting time point and end point for the integration is too small.

Parameters
- **key** – the String key of the error message in the resource bundle
- **arguments** – an array containing arguments used within the error message string

FeynmanKac.TcurrentTstopInconsistentException class

```java
static public class com.imsl.math.FeynmanKac.TcurrentTstopInconsistentException extends com.imsl.IMSLException
```

The end value for the integration in time, t_{out}, is not consistent with the current time value, t.

Constructor

```java
public FeynmanKac.TcurrentTstopInconsistentException(String key, Object[] arguments)
```

Description
The end value for the integration in time, t_{out}, is not consistent with the current time value, t.

Parameters
- **key** – the String key of the error message in the resource bundle
- **arguments** – an array containing arguments used within the error message string

FeynmanKac.TEqualsToutException class

```java
static public class com.imsl.math.FeynmanKac.TEqualsToutException extends com.imsl.IMSLException
```

The current integration point in time and the end point are equal.

Differential Equations
Constructor

FeynmanKac.TEqualsToutException

```java
class FeynmanKac.TEqualsToutException extends com.imsl.IMSLException

public FeynmanKac.TEqualsToutException(String key, Object[] arguments)
```

Description
The current integration point in time and the end point are equal.

Parameters
- `key` – the String key of the error message in the resource bundle
- `arguments` – an array containing arguments used within the error message string

FeynmanKac.InitialConstraintsException class

```java
static public class com.imsl.math.FeynmanKac.InitialConstraintsException extends com.imsl.IMSLException
```

The constraints at the initial point are inconsistent.

Constructor

FeynmanKac.InitialConstraintsException

```java
class FeynmanKac.InitialConstraintsException extends com.imsl.IMSLException

public FeynmanKac.InitialConstraintsException(String key, Object[] arguments)
```

Description
The constraints at the initial point are inconsistent.

Parameters
- `key` – the String key of the error message in the resource bundle
- `arguments` – an array containing arguments used within the error message string

FeynmanKac.ConstraintsInconsistentException class

```java
static public class com.imsl.math.FeynmanKac.ConstraintsInconsistentException extends com.imsl.IMSLException
```

314 • FeynmanKac
The constraints are inconsistent.

Constructor

FeynmanKac.ConstraintsInconsistentException

public FeynmanKac.ConstraintsInconsistentException(String key, Object[] arguments)

Description
The constraints are inconsistent.

Parameters
- `key` – the String key of the error message in the resource bundle
- `arguments` – an array containing arguments used within the error message string

FeynmanKac.BoundaryInconsistentException

class

static public class com.imsl.math.FeynmanKac.BoundaryInconsistentException
extends com.imsl.IMSLException

The boundary conditions are inconsistent.

Constructor

FeynmanKac.BoundaryInconsistentException

public FeynmanKac.BoundaryInconsistentException(String key, Object[] arguments)

Description
The boundary conditions are inconsistent.

Parameters
- `key` – the String key of the error message in the resource bundle
- `arguments` – an array containing arguments used within the error message string
Chapter 7: Transforms

Types

class FFT ... 318
class ComplexFFT ... 322

Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed efficiently. Basically, the straightforward method for computing the Fourier transform takes approximately n^2 operations where n is the number of points in the transform, while the FFT (which computes the same values) takes approximately $n \log n$ operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965) algorithm. Hence, these functions are most efficient for integers that are highly composite; that is, integers that are a product of small primes.

For the two classes, FFT and ComplexFFT, a single instance can be used to transform multiple sequences of the same length. In this situation, the constructor computes the initial setup once. This may result in substantial computational savings. For more information on the use of these classes consult the documentation under the appropriate class name.

Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the continuous Fourier transform. Recall that the continuous Fourier transform is defined (Brigham 1974) as

$$\hat{f}(\omega) = (\mathcal{F}f)(\omega) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i \omega t} dt$$

We begin by making the following approximation:

$$\hat{f}(\omega) \approx \int_{-T/2}^{T/2} f(t)e^{-2\pi i \omega t} dt$$
\[
\begin{align*}
&= \int_0^T f(t - T/2)e^{-2\pi i \omega (t - T/2)} dt \\
&= e^{\pi i \omega T} \int_0^T f(t - T/2)e^{-2\pi i \omega t} dt
\end{align*}
\]

If we approximate the last integral using the rectangle rule with spacing \(h = T/n \), we have

\[
\hat{f}(\omega) \approx e^{\pi i \omega T} h \sum_{k=0}^{n-1} e^{-2\pi \omega kh} f(kh - T/2)
\]

Finally, setting \(\omega = j/T \) for \(j = 0, \ldots, n-1 \) yields

\[
\hat{f}(j/T) \approx e^{\pi ij h} \sum_{k=0}^{n-1} e^{-2\pi jk/n} f(kh - T/2) = (-1)^j \sum_{k=0}^{n-1} e^{-2\pi jk/n} f_k^h
\]

where the vector \(f^h = (f(-T/2), \ldots, f((n-1)h - T/2)) \). Thus, after scaling the components by \((-1)^h\), the discrete Fourier transform, as computed in ComplexFFT (with input \(f^h \)) is related to an approximation of the continuous Fourier transform by the above formula.

FFT class

```java
public class com.imsl.math.FFT implements Serializable, Cloneable

FFT functions.

Class FFT computes the discrete Fourier transform of a real vector of size \( n \). The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when \( n \) is a product of small prime factors. If \( n \) satisfies this condition, then the computational effort is proportional to \( n \log n \).

The `forward` method computes the forward transform. If \( n \) is even, then the forward transform is

\[
q_{2m-1} = \sum_{k=0}^{n-1} p_k \cos \frac{2\pi km}{n} \quad m = 1, \ldots, n/2
\]

\[
q_{2m-2} = -\sum_{k=0}^{n-1} p_k \sin \frac{2\pi km}{n} \quad m = 1, \ldots, n/2 - 1
\]

\[
q_0 = \sum_{k=0}^{n-1} p_k
\]

```
If \(n \) is odd, \(q_m \) is defined as above for \(m \) from 1 to \((n - 1)/2\).

Let \(f \) be a real valued function of time. Suppose we sample \(f \) at \(n \) equally spaced time intervals of length \(\delta \) seconds starting at time \(t_0 \). That is, we have

\[
p_i := f(t_0 + i\Delta) \quad i = 0, 1, \ldots, n - 1
\]

We will assume that \(n \) is odd for the remainder of this discussion. The class FFT treats this sequence as if it were periodic of period \(n \). In particular, it assumes that \(f(t_0) = f(t_0 + n\Delta) \). Hence, the period of the function is assumed to be \(T = n\Delta \). We can invert the above transform for \(p \) as follows:

\[
p_m = \frac{1}{n} \left[q_0 + 2 \sum_{k=0}^{(n-3)/2} q_{2k+1} \cos \frac{2\pi (k + 1)m}{n} - 2 \sum_{k=0}^{(n-3)/2} q_{2k+2} \sin \frac{2\pi (k + 1)m}{n} \right]
\]

This formula is very revealing. It can be interpreted in the following manner. The coefficients \(q \) produced by FFT determine an interpolating trigonometric polynomial to the data. That is, if we define

\[
p(t) = \frac{1}{n} \left[q_0 + 2 \sum_{k=0}^{(n-3)/2} q_{2k+1} \cos \frac{2\pi (k + 1)(t - t_0)}{n\Delta} - 2 \sum_{k=0}^{(n-3)/2} q_{2k+2} \sin \frac{2\pi (k + 1)(t - t_0)}{n\Delta} \right]
\]

\[
P_0 := |q_0|
\]

\[
P_k := \sqrt{q_{2k-2}^2 + q_{2k-1}^2} \quad k = 1, 2, \ldots, (n - 1)/2
\]

These numbers correspond to the energy in the spectrum of the signal. In particular, \(P_k \) corresponds to the energy level at frequency

\[
\frac{k}{T} = \frac{k}{n\Delta} \quad k = 0, 1, \ldots, \frac{n - 1}{2}
\]

Transforms
Furthermore, note that there are only \((n + 1)/2 \approx T/(2\Delta)\) resolvable frequencies when \(n\) observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete sampling of a continuous signal. Similar relations hold for the case when \(n\) is even.

If the backward method is used, then the backward transform is computed. If \(n\) is even, then the backward transform is

\[
q_m = p_0 + (-1)^m p_{n-1} + 2 \sum_{k=0}^{n/2-1} p_{2k+1} \cos \frac{2\pi (k + 1) m}{n} - 2 \sum_{k=0}^{n/2-2} p_{2k+2} \sin \frac{2\pi (k + 1) m}{n}
\]

If \(n\) is odd,

\[
q_m = p_0 + 2 \sum_{k=0}^{(n-3)/2} p_{2k+1} \cos \frac{2\pi (k + 1) m}{n} - 2 \sum_{k=0}^{(n-3)/2} p_{2k+2} \sin \frac{2\pi (k + 1) m}{n}
\]

The backward Fourier transform is the unnormalized inverse of the forward Fourier transform.

FFT is based on the real FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Constructor

FFT

```java
public FFT(int n)
```

Description

Constructs an FFT object.

Parameter

- \(n\) – is the length of the sequence to be transformed

Methods

backward

```java
public double[] backward(double[] coef)
```

Description

Compute the real periodic sequence from its Fourier coefficients.

Parameter

- `coef` – a `double` array containing the Fourier coefficients
Returns
a double array containing the periodic sequence

forward

public double[] forward(double[] seq)

Description
Compute the Fourier coefficients of a real periodic sequence.

Parameter

seq – a double array containing the sequence to be transformed

Returns
a double array containing the transformed sequence

Example: Fast Fourier Transform
The Fourier coefficients of a periodic sequence are computed. The coefficients are then used to reproduce the periodic sequence.

```java
import com.imsl.math.*;

public class FFTEx1 {
    public static void main(String args[]) {
        double x[] = {1, 2, 3, 4, 5, 6, 7, 8};
        FFT fft = new FFT(x.length);
        double y[] = fft.forward(x);
        double z[] = fft.backward(y);
        for (int i = 0; i < x.length; i++) {
            z[i] = z[i] / x.length;
        }
        new PrintMatrix("x").print(x);
        new PrintMatrix("y").print(y);
        new PrintMatrix("z").print(z);
    }
}
```

Output

```
x
  0
  0 1
  1 2
  2 3
  3 4
  4 5
  5 6
  6 7
```

Transforms
ComplexFFT class

public class com.imsl.math.ComplexFFT implements Serializable, Cloneable

ComplexFFT computes the discrete complex Fourier transform of a complex vector of size \(N \). The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when \(N \) is a product of small prime factors. If \(N \) satisfies this condition, then the computational effort is proportional to \(N \log N \). This considerable savings has historically led people to refer to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an \(N \)-vector \(x \), method \texttt{forward} returns

\[
c_m = \sum_{n=0}^{N-1} x_n e^{-2\pi i m n / N}
\]

Furthermore, a vector of Euclidean norm \(S \) is mapped into a vector of norm

\[
\sqrt{N}S
\]
Finally, note that we can invert the Fourier transform as follows:

\[x_n = \frac{1}{N} \sum_{j=0}^{N-1} c_m e^{2\pi inj/N} \]

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has the coefficients for a trigonometric interpolating polynomial to the data. An unnormalized inverse is implemented in `backward`. `ComplexFFT` is based on the complex FFT in FFTPACK. The package, FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Specifically, given an \(N \)-vector \(c \), `backward` returns

\[s_m = \sum_{n=0}^{N} c_n e^{2\pi imn/N} \]

Furthermore, a vector of Euclidean norm \(S \) is mapped into a vector of norm \(\sqrt{NS} \)

Finally, note that we can invert the inverse Fourier transform as follows:

\[c_n = \frac{1}{N} \sum_{m=0}^{N-1} s_m e^{-2\pi imn/N} \]

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has the coefficients for a trigonometric interpolating polynomial to the data. `backward` is based on the complex inverse FFT in FFTPACK. The package, FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Constructor

ComplexFFT

```java
public ComplexFFT(int n)
```

Description

Constructs a complex FFT object.

Parameter

\(n \) – is the array size that this object can handle.
Methods

backward
public Complex[] backward(Complex[] coef)

Description
Compute the complex periodic sequence from its Fourier coefficients.

Parameter
 coef – Complex array of Fourier coefficients

Returns
Complex array containing the periodic sequence

forward
public Complex[] forward(Complex[] seq)

Description
Compute the Fourier coefficients of a complex periodic sequence.

Parameter
 seq – is the Complex array containing the sequence to be transformed.

Returns
a Complex array containing the transformed sequence.

Example: Complex FFT
The Fourier coefficients of a complex periodic sequence are computed. Then the coefficients are used to try to reproduce the periodic sequence.

import com.imsl.math.*;

public class ComplexFFTEx1 {
 public static void main(String args[]) {
 Complex x[] = {
 new Complex(1, 8),
 new Complex(2, 7),
 new Complex(3, 6),
 new Complex(4, 5),
 new Complex(5, 4),
 new Complex(6, 3),
 new Complex(7, 2),
 new Complex(8, 1)
 };
 ComplexFFT fft = new ComplexFFT(x.length);
 Complex y[] = fft.forward(x);
 }
}
Complex z[] = fft.backward(y);
for (int i = 0; i < x.length; i++) {
 z[i] = Complex.divide(z[i], x.length);
}

new PrintMatrix("z").print(x);
new PrintMatrix("y").print(y);
new PrintMatrix("z").print(z);

Output

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1+8i</td>
</tr>
<tr>
<td>1</td>
<td>2+7i</td>
</tr>
<tr>
<td>2</td>
<td>3+6i</td>
</tr>
<tr>
<td>3</td>
<td>4+5i</td>
</tr>
<tr>
<td>4</td>
<td>5+4i</td>
</tr>
<tr>
<td>5</td>
<td>6+3i</td>
</tr>
<tr>
<td>6</td>
<td>7+2i</td>
</tr>
<tr>
<td>7</td>
<td>8+i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>36+36i</td>
</tr>
<tr>
<td>1</td>
<td>5.657+13.657i</td>
</tr>
<tr>
<td>2</td>
<td>+8i</td>
</tr>
<tr>
<td>3</td>
<td>-2.343+5.657i</td>
</tr>
<tr>
<td>4</td>
<td>-4+4i</td>
</tr>
<tr>
<td>5</td>
<td>-5.657+2.343i</td>
</tr>
<tr>
<td>6</td>
<td>-8</td>
</tr>
<tr>
<td>7</td>
<td>-13.657+5.657i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1+8i</td>
</tr>
<tr>
<td>1</td>
<td>2+7i</td>
</tr>
<tr>
<td>2</td>
<td>3+6i</td>
</tr>
<tr>
<td>3</td>
<td>4+5i</td>
</tr>
<tr>
<td>4</td>
<td>5+4i</td>
</tr>
<tr>
<td>5</td>
<td>6+3i</td>
</tr>
<tr>
<td>6</td>
<td>7+2i</td>
</tr>
<tr>
<td>7</td>
<td>8+i</td>
</tr>
</tbody>
</table>
Chapter 8: Nonlinear Equations

Types

class ZeroPolynomial ... 328
class ZerosFunction ... 333
class ZeroSystem ... 339

Usage Notes

Zeros of a Polynomial
A polynomial function of degree n can be expressed as follows:

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$$

where $a_n \neq 0$. The class finds zeros of a polynomial with real or complex coefficients using Aberth’s method.

Zeros of a Function
The class uses Muller’s method to find the real zeros of a real-valued function.

Root of System of Equations
A system of equations can be stated as follows:

$$f_i(x) = 0, \text{ for } i = 1, 2, \ldots, n$$

where $x \in \mathbb{R}^n$, and $f_i : \mathbb{R}^n \to \mathbb{R}$. The ZeroSystem class uses a modified hybrid method due to M.J.D. Powell to find the zero of a system of nonlinear equations.
ZeroPolynomial class

public class com.imsl.math.ZeroPolynomial implements Serializable, Cloneable

The ZeroPolynomial class computes the zeros of a polynomial with complex coefficients, Aberth’s method. This class is a Java translation of a Fortran code written by Dario Andrea Bini, University of Pisa, Italy (bini@dm.unipi.it). Numerical computation of polynomial zeros by means of Aberth’s method, Numerical Algorithms, 13 (1996), pp. 179-200. The original Fortran code includes the following notice.

All the software contained in this library is protected by copyright Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire notice is included in all copies of any software which is or includes a copy or modification of this software and in all copies of the supporting documentation for such software.

Field

EPSILON_SMALL

static final public double EPSILON_SMALL

The smallest relative spacing for doubles.

Constructor

ZeroPolynomial

public ZeroPolynomial()

Description

Creates an instance of the solver.
Methods

computeRoots
public Complex[] computeRoots(Complex[] coef) throws
ZeroPolynomial.DidNotConvergeException

Description
Computes the roots of the polynomial with Complex coefficients.

\[p(x) = \text{coef}[n] \times x^n + \text{coef}[n-1] \times x^{n-1} + \ldots + \text{coef}[0] \]

Parameter
\text{coef} – a Complex array containing the polynomial coefficients.

Returns
a Complex array containing the roots of the polynomial.

computeRoots
public Complex[] computeRoots(double[] coef) throws
ZeroPolynomial.DidNotConvergeException

Description
Computes the roots of the polynomial with real coefficients.

\[p(x) = \text{coef}[n] \times x^n + \text{coef}[n-1] \times x^{n-1} + \ldots + \text{coef}[0] \]

Parameter
\text{coef} – a double array containing the polynomial coefficients

Returns
a Complex array containing the roots of the polynomial

getRadius
public double getRadius(int index)

Description
Returns an a-posteriori absolute error bound on the root.

Parameter
\text{index} – an int specifying the (0-based) index of the root whose error bound is to be returned

Nonlinear Equations
Returns a double representing the error bound on the index-th root. NaN is returned if the corresponding root cannot be represented as floating point due to overflow or underflow or if the roots have not yet been computed.

```java
public Complex getRoot(int index)
```

Description
Returns a zero of the polynomial.

Parameter
- `index` – an int which specifies the (0-based) index of the root to be returned

Returns
a Complex which represents the index-th root of the polynomial

```java
public Complex[] getRoots()
```

Description
Returns the zeros of the polynomial.

Returns
a Complex array containing the roots of the polynomial

```java
public boolean getStatus(int index)
```

Description
Returns the error status of a root.

Parameter
- `index` – an int representing the (0-based) index of the root whose error status is to be returned

Returns
a boolean representing the error status on the index-th root. It is false if the approximation of the index-th root has been carried out successfully, for example, the computed approximation can be viewed as the exact root of a slightly perturbed polynomial. It is true if more iterations are needed for the index-th root.

```java
public void setMaxIterations(int maxIterations)
```

Description
Sets the maximum number of iterations allowed. The default value is 30.

Parameter
- `maxIterations` – an int which specifies the maximum number of iterations allowed
Exception

IllegalArgumentException is thrown if maxIterations is less than or equal to zero.

Example 1: Zeros of a Polynomial

The zeros of a polynomial with real coefficients are computed.

```java
import com.imsl.math.*;

public class ZeroPolynomialEx1 {
    public static void main(String[] args) throws ZeroPolynomial.DidNotConvergeException {
        double[] coef = {-2, 4, -3, 1};
        ZeroPolynomial zp = new ZeroPolynomial();
        Complex[] root = zp.computeRoots(coef);
        for (int k = 0; k < root.length; k++) {
            System.out.println("root = " + root[k]);
            System.out.println("radius = " + zp.getRadius(k));
            System.out.println("status = " + zp.getStatus(k));
        }
    }
}
```

Output

root = 0.9999999999999999-0.9999999999999997i
radius = 1.9197212602501468E-14
status = false
root = 1.0000000000000004+1.0000000000000002i
radius = 1.9618522761623435E-14
status = false
root = 1.0000000000000002-3.3087224502121107E-24i
radius = 2.5512925105887074E-14
status = false

Example 2: Zeros of a Polynomial with Complex Coefficients

The zeros of a polynomial with Complex coefficients are computed.

```java
import com.imsl.math.*;

public class ZeroPolynomialEx2 {
    public static void main(String[] args) throws ZeroPolynomial.DidNotConvergeException {
        // Find zeros of z^3-(3+6i)*z^2+(-8+12i)*z+10
        Complex[] coef = {
            new Complex(10),
            new Complex(-3, 6),
            new Complex(-8, 12),
            new Complex(10)};
        ZeroPolynomial zp = new ZeroPolynomial();
        Complex[] root = zp.computeRoots(coef);
        for (int k = 0; k < root.length; k++) {
            System.out.println("root = " + root[k]);
            System.out.println("radius = " + zp.getRadius(k));
            System.out.println("status = " + zp.getStatus(k));
        }
    }
}
```
new Complex(-8, 12),
new Complex(-3, -6),
new Complex(1)
);

ZeroPolynomial zp = new ZeroPolynomial();
Complex root[] = zp.computeRoots(coef);

for (int k = 0; k < root.length; k++) {
 System.out.println("root = " + root[k]);
 System.out.println(" radius = " + zp.getRadius(k));
 System.out.println(" status = " + zp.getStatus(k));
}

_output:
root = 1.0+1.0i
 radius = 6.105673569140261E-14
 status = false
root = 1.0000000000000002+2.0000000000000004i
 radius = 1.9846776908049295E-13
 status = false
root = 0.9999999999999992+2.999999999999999i
 radius = 1.5275632034267045E-13
 status = false

ZeroPolynomial.DidNotConvergeException class

static public class com.imsl.math.ZeroPolynomial.DidNotConvergeException
 extends com.imsl.IMSLException

The iteration did not converge

Constructors

ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException(String message)

ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException(String key, Object[] arguments)
public class com.imsl.math.ZerosFunction implements Serializable, Cloneable

Finds the real zeros of a real, continuous, univariate function, f(x).

ZerosFunction computes n real zeros of a real, continuous, univariate function f. The search for the zeros of the function can be limited to a specified interval, or extended over the entire real line. The algorithm is generally more efficient if an interval is specified. The user supplied function, f(x), must return valid results for all values in the specified interval. If no interval is given, the user-supplied function must return valid results for all real numbers.

The function has two convergence criteria. The first criterion accepts a root, x, if

|f(x)| ≤ τ

where τ = error, see method setError.

The second criterion accepts a root if it is known to be inside of an interval of length at most errorAbsolute, see method setAbsoluteError.

A root is accepted if it satisfies either criteria and is not within minSeparation of another accepted root, see method setMinimumSeparation.

If initial guesses for the roots are given, Müller’s method (Müller 1956) is used for each of these guesses. For each guess, the Müller iteration is stopped if the next step would be outside of the bound, if given. The iteration is also stopped if the algorithm cannot make further progress in finding a root.

If no guesses for the zeros were given, or if Müller’s method with the guesses did not find the requested number of roots, a meta-algorithm, combining Müller’s and Brent’s methods, is used. Müller’s method is used primarily to find the roots of functions, such as f(x) = x^2, where the function does not cross the y=0 line. Brent’s method is used to find other types of roots.

The meta-algorithm successively refines the interval using a one-dimensional Faure low-discrepancy sequence. The Faure sequence may be scaled by setting the bound interval [a,b] using the setBounds method. The Faure sequence will be scaled from (0,1) to (a,b).

If no bound on the function’s domain is given, the entire real line must be searched for roots. In this case the Faure sequence is scaled from (0, 1) to (−∞, +∞) using the mapping

h(u) = xScale \cdot \tan(\pi(u - 1/2))

where xScale is set by the setXScale method.

At each step of the iteration, the next point in the Faure sequence is added to the list of breakpoints defining the subintervals. Call the points x_0 = a, x_1 = b, x_2, x_3, ... The new point, x_s, splits an existing subinterval, [x_p, x_q].

The function is evaluated at x_s. If its value is small enough, specifically if

|f(x_s)| < mullerTolerance

Nonlinear Equations
then Müller’s method is used with x_p, x_q and x_s as starting values. If a root is found, it is added to the list of roots. If more roots are required, the new Faure point is used.

If Müller’s method did not find a root using the new point, the function value at the point is compared with the function values at the endpoints of the subinterval it divides. If $f(x_p)f(x_s) < 0$ and no root has previously been found in $[x_p, x_s]$, then Brent’s method is used to find a root in this interval. Similarly, if the function changes sign over the interval $[x_s, x_q]$, and a root has not already been found in the subinterval, Brent’s method is used.

Constructor

ZerosFunction

```java
public ZerosFunction()
```

Description

Creates an instance of the solver.

Methods

allConverged

```java
public boolean allConverged()
```

Description

Returns true if the iterations for all of the roots have converged.

computeZeros

```java
public double[] computeZeros(ZerosFunction.Function objectF)
```

Description

Returns the zeros of a univariate function.

Parameter

- `objectF` – contains the function for which the zeros will be found

Returns

A double array containing the zero of the univariate function.

getMaxEvaluations

```java
public int getMaxEvaluations()
```

Description

Returns the maximum number of function evaluations allowed.
Returns
an int containing the maximum number of function evaluations allowed

getNumberOfEvaluations
public int getNumberOfEvaluations()

Description
Returns the actual number of function evaluations performed.

Returns
an int containing the actual number of function evaluations performed

getNumberOfRoots
public int getNumberOfRoots()

Description
Returns the requested number of roots to be found.

Returns
an int containing the requested number of roots to be found

getNumberOfRootsFound
public int getNumberOfRootsFound()

Description
Returns the number of zeros found.

Returns
an int containing the number of roots found

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description
Sets the second convergence criterion.
The second criterion accepts a root if the root is known to be inside an interval of length at most errorAbsolute.

Parameter
errorAbsolute – a double value specifying the second convergence criterion. A root is accepted
if the absolute value of the function at the point is less than or equal to errorAbsolute.
errorAbsolute must be greater than or equal to 0.0. Default: errorAbsolute = 2.22e-14

setBounds
public void setBounds(double lowerBound, double upperBound)

Description
Sets the closed interval in which to search for the roots. The function must be defined for all values in this interval.
Parameters

lowerBound – a double containing the lower interval bound. lowerBound cannot be greater than or equal to upperBound.

upperBound – a double containing the upper interval bound. By default the search for the roots is not bounded.

setError

public void setError(double error)

Description

Sets the first convergence criterion. A root is accepted if it is bracketed within an interval of length error.

\[|f(x)| \leq \tau \]

where \(\tau = error \).

Parameter

error – a double containing the first convergence criterion. error must be greater than or equal to 0.0. By default, error = 2.0e-8/xScale.

setGuess

public void setGuess(double[] guess)

Description

Sets the initial guess for the zeros.

Parameter

guess – a double array containing the initial guesses for the number of zeros to be found. If a bound on the zeros is also given, the guesses must satisfy the bound condition.

setMaxEvaluations

public void setMaxEvaluations(int maxEvaluations)

Description

Sets the maximum number of function evaluations allowed. Methods allConverged and getNumberOfRootsFound can be used to confirm whether or not the number of roots requested were found within the maximum evaluations specified. maxEvaluations must be greater than or equal to 0.0.

Parameter

maxEvaluations – an int containing the maximum number of function evaluations allowed. Once this limit is reached, the roots found are returned.

setMinimumSeparation

public void setMinimumSeparation(double minSeparation)
Description
Sets the minimum separation between accepted roots.

Parameter
\texttt{minSeparation} – a \texttt{double} containing the minimum separation between accepted roots. If two points satisfy the convergence criteria, but are within \texttt{minSeparation} of each other, only one of the roots is accepted. \texttt{minSeparation} must be greater than or equal to 0.0. By default, \texttt{minSeparation} = 1.0e-8/xScale.

\texttt{setMullerTolerance}
\texttt{public void setMullerTolerance(double mullerTolerance)}

Description
Sets the tolerance used during refinement to determine if Müller's method is started. Müller's method is started if, during refinement, a point is found for which the absolute value of the function is less than \texttt{mullerTolerance} and the point is not near an already discovered root. If \texttt{mullerTolerance} is less than or equal to zero, Müller's method is never used.

Parameter
\texttt{mullerTolerance} – a \texttt{double} containing the tolerance used during refinement to determine when the Müller's method is used. By default, \texttt{mullerTolerance} = 1.0e-8/errorAbsolute

\texttt{setNumberOfRoots}
\texttt{public void setNumberOfRoots(int numRoots)}

Description
Sets the number of roots to be found.

Parameter
\texttt{numRoots} – an \texttt{int} containing the number of roots to be found. \texttt{numRoots} must be greater than or equal to zero. By default, \texttt{numRoots} = 1.

\texttt{setXScale}
\texttt{public void setXScale(double xScale)}

Description
Sets the the scaling in the x-coordinate.

If no bound on the function’s domain is given, the entire real line must be searched for roots. In this case the Faure sequence is scaled from (0, 1) to (−∞, ∞) using the mapping

\[h(u) = xScale \cdot \tan\left(\pi\left(u - \frac{1}{2}\right)\right) \]

Parameter
\texttt{xScale} – a \texttt{double} containing the scaling in the x-coordinate. The absolute value of the roots divided by \texttt{xScale} should be about one. \texttt{xScale} must be greater than 0.0. By default, \texttt{xScale} = 1.0.
Example: Zeros of a Univariate Function

In this example 3 zeros of the sin function are found.

```java
import com.imsl.math.*;

public class ZerosFunctionEx1 {
    public static void main(String args[]) {
        ZerosFunction.Function fcn = new ZerosFunction.Function() {
            public double f(double x) {
                return Math.sin(x);
            }
        };

        ZerosFunction zf = new ZerosFunction();
        double guess[] = {5, 18, -6};
        zf.setGuess(guess);
        double zeros[] = zf.computeZeros(fcn);
        for (int k = 0; k < zeros.length; k++) {
            System.out.println(zeros[k] + " = " + (zeros[k] / Math.PI) + " pi");
        }
    }
}
```

Output

-2.953824405025999E-22 = -9.40231510170729E-23 pi
3.1415926535897936 = 1.0000000000000002 pi
6.283185307179586 = 2.0 pi

ZerosFunction.Function interface

```java

Public interface for the user supplied function to ZerosFunction.

The user supplied function, \( f(x) \), must return valid results for all values in the specified interval. If no interval is given, the user-supplied function must return valid results for all real numbers.

Method

\( f \)
```
Description
Returns the value of the function at the given point.

Parameter
- \(x\) – a double specifying the point at which the function is to be evaluated

Returns
a double containing the value of the function at \(x\)

ZeroSystem class

```
public class com.imsl.math.ZeroSystem implements Serializable, Cloneable
```

Solves a system of \(n\) nonlinear equations \(f(x) = 0\) using a modified Powell hybrid algorithm.

ZeroSystem is based on the MINPACK subroutine HYBRDJ, which uses a modification of M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which uses a finite-difference approximation to the Jacobian and takes precautions to avoid large step sizes or increasing residuals. For further description, see More et al. (1980).

A finite-difference method is used to estimate the Jacobian. Whenever the exact Jacobian can be easily provided, \(\text{objectF}\) should implement \(\text{ZeroSystem.Jacobian}\).

Note that one can use the JDK 1.4 JAVA Logging API to generate intermediate output for the solver. Accumulated levels of detail correspond to JAVA’s CONFIG, FINE, FINER, and FINEST logging levels with CONFIG yielding the smallest amount of information and FINEST yielding the most. The levels of output yield the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG</td>
<td>Iteration increments are printed.</td>
</tr>
<tr>
<td>FINE</td>
<td>Prints convergence tests.</td>
</tr>
<tr>
<td>FINER</td>
<td>Intermediate solution values are provided.</td>
</tr>
<tr>
<td>FINEST</td>
<td>Tracks progress through internal methods.</td>
</tr>
</tbody>
</table>

Constructor

```
public ZeroSystem(int n)
```

Description
Creates an object to find the zeros of a system of \(n\) equations.
Parameter

n – an int indicating the number of equations to be solved and the number of unknowns.

Methods

getLogger

```java
public Logger getLogger()
```

Description

Returns the logger object.

Returns

a `java.util.logging.Logger` object, if present, or `null`.

setGuess

```java
public void setGuess(double[] xguess)
```

Description

Sets the initial estimate of the root. The default is to set $xguess$ to all zeros.

Parameter

$xguess$ – a `double` array containing the initial guess. The length of $xguess$ must be equal to the number of equations.

setMaxIterations

```java
public void setMaxIterations(int maxIterations)
```

Description

Sets the maximum number of iterations allowed. The default value is 200.

Parameter

$maxIterations$ – an int specifying the maximum number of iterations allowed

Exception

`IllegalArgumentException` is thrown if $maxIterations$ is less than or equal to zero.

setRelativeError

```java
public void setRelativeError(double errorRelative)
```

Description

Sets the relative error tolerance. The root is accepted if the relative error between two successive approximations to this root is within $errorRelative$. The default is the square root of the precision, about $1.0e-08$.

Parameter

$errorRelative$ – a `double` specifying the relative error tolerance
Exception

IllegalArgumentException is thrown if errorRelative is less than 0 or greater than 1.

solve

public double[] solve(ZeroSystem.Function objectF) throws
ZeroSystem.TooManyIterationsException, ZeroSystem.ToleranceTooSmallException,
ZeroSystem.DidNotConvergeException

Description
Solve a system of nonlinear equations using the modified Powell hybrid algorithm

Parameter
objectF – a ZeroSystem.Function that defines the function whose zero is to be found. If
objectF implements a Jacobian then its Jacobian is used. Otherwise a finite difference is
computed.

Returns
a double array containing the solution

Exceptions
TooManyIterationsException is thrown if the maximum number of iterations is exceeded
ToleranceTooSmallException is thrown if the error tolerance is too small
DidNotConvergeException is thrown if the algorithm does not converge

Example 1: Solve a System of Nonlinear Equations

A system of nonlinear equations is solved.

```java
import com.imsl.math.*;

public class ZeroSystemEx1 {

    public static void main(String args[]) throws com.imsl.IMSLException {

        ZeroSystem.Function fcn = new ZeroSystem.Function() {
            public void f(double x[], double f[]) {
                f[0] = x[0] + Math.exp(x[0] - 1.0)
                        + (x[1] + x[2]) * (x[1] + x[2]) - 27.0;
            }
        };

        ZeroSystem zf = new ZeroSystem(3);
        double guess[] = {4, 4, 4};
        zf.setGuess(guess);
        new PrintMatrix("zeros").print(zf.solve(fcn));
    }
}
```

Nonlinear Equations ZeroSystem • 341
Example 2: Solve a System of Nonlinear Equations with Logging

A system of nonlinear equations is solved with reduced accuracy and logging enabled.

```java
import com.imsl.math.*;
import java.util.logging.*;

public class ZeroSystemEx2 {
    public static void main(String args[]) throws com.imsl.IMSLException {
        ZeroSystem.Function fcn = new ZeroSystem.Function() {
            public void f(double x[], double f[]) {
                f[0] = 0.5 * x[0] + x[1] + 0.5 * x[2] - x[5] / x[6];
            }
        };
        ZeroSystem zf = new ZeroSystem(7);
        zf.setRelativeError(1e-2); // reduced accuracy
        double guess[] = {0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 2.0};
        zf.setGuess(guess);
        Logger logger = zf.getLogger();
        ConsoleHandler ch = new ConsoleHandler();
        ch.setLevel(Level.ALL); // default ConsoleHandler Level is INFO
        logger.setLevel(Level.FINER);
        logger.addHandler(ch);
        ch.setFormatter(new com.imsl.IMSLFormatter());
        new PrintMatrix("zeros").print(zf.solve(fcn));
    }
}
```

Output

zeros
0
0 1
1 2
2 3
Output

Iteration 1
Current Solution

0 0.5
1 0
2 0
3 0.5
4 0
5 0.5
6 2

Convergence if 0.21430593494374664 <= 0.02179449471770337
Convergence if 881.8545798486278 == 0.0
Convergence if 0.4286118698874933 <= 0.023714058983732928
Convergence if 62.20236343524046 == 0.0

Iteration 2
Current Solution

0 0.4519416338243868
1 0.00047570035964456
2 0.00811462449691682
3 0.5413220960737729
4 -0.0070751790387463
5 0.52093167770542504
6 2.20336087353378

Convergence if 0.21430593494374664 <= 0.023714058983732928
Convergence if 62.20236343524046 == 0.0
Convergence if 0.21430593494374664 <= 0.025668928384900824
Convergence if 48.631150262832776 == 0.0

Iteration 3
Current Solution

0 0.4103556836647792
1 0.00345389046504245
2 0.0205011507011974
3 0.5643329875514621
4 -0.00193459468156145
5 0.535747665118313
6 2.4113510334391686

Convergence if 0.10715296747187332 <= 0.025668928384900824
Convergence if 48.631150262832776 == 0.0
Convergence if 0.21430593494374667 <= 0.026655240629937994
Convergence if 24.594369376894957 == 0.0

Iteration 4
Current Solution

0 0.38976301357761567
1 0.00475347250310963
2 0.02636818944534906

Nonlinear Equations

ZeroSystem • 343
Convergence if 0.1071529674718733 <= 0.026655240629937994
Convergence if 24.594369376894957 == 0.0
Convergence if 0.2143059349437467 <= 0.027655165558489504
Convergence if 11.2333567341594 == 0.0

Iteration 5
Current Solution
0 0.37141787401480864
1 0.00596373459917273
2 0.0317691311146456
3 0.5853405218780866
4 0.00345206419996186
5 0.5483732628042493
6 2.620255151899655

Convergence if 0.10715296747187338 <= 0.027655165558489504
Convergence if 11.2333567341594 == 0.0
Convergence if 0.05357648373593669 <= 0.028667286402919635
Convergence if 4.273723534011024 == 0.0

Iteration 6
Current Solution
0 0.35522919183046353
1 0.00699109092408178
2 0.03660354056250206
3 0.5951581971633527
4 0.00460693872783803
5 0.5557202116250662
6 2.725343495169716

Convergence if 0.10715296747187338 <= 0.028667286402919635
Convergence if 4.273723534011024 == 0.0

Iteration 6
Current Solution
0 0.35522919183046353
1 0.00699109092408178
2 0.03660354056250206
3 0.5951581971633527
4 0.00460693872783803
5 0.5557202116250662
6 2.725343495169716

Convergence if 0.10715296747187338 <= 0.02917820821842807
Convergence if 1.3397448169540218 == 0.0
Iteration 7
Current Solution

0 0.3478531575077773
1 0.00752847153174577
2 0.0386774311942223
3 0.6004623965959569
4 0.00437003290309475
5 0.5601127012361977
6 2.777917247138637

Convergence if 0.05357648373593669 <= 0.02917820821842807
Convergence if 1.3397448169540218 == 0.0
Convergence if 0.05357648373593669 <= 0.02969087049889735
Convergence if 1.2190150551287604 == 0.0

Iteration 8
Current Solution

0 0.3410446926772013
1 0.0080070341885894
2 0.04065623471212016
3 0.6052985736893154
4 0.00418754444673453
5 0.564491500544133
6 2.830617394205158

Convergence if 0.02678824186796834 <= 0.02969087049889735
Convergence if 1.2190150551287604 == 0.0

zeros

0 0.341
1 0.008
2 0.041
3 0.605
4 0.004
5 0.564
6 2.831

ZeroSystem.DidNotConvergeException class

The iteration did not converge.
Constructors

ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException(String message)

ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException(String key, Object[] arguments)

ZeroSystem.Function interface

Public interface for user supplied function to ZeroSystem object.

Method

f
public void f(double[] x, double[] f)

Description
Returns the value of the function at the given point.

Parameters
x – a double array of length n which contains the point at which the functions are to be evaluated.
The contents of this array must not be altered by this function.
f – a double array of length n which contains the value of the function at x.

ZeroSystem.Jacobian interface

Public interface for user supplied function to ZeroSystem object.
Method

jacobian
public void jacobian(double[] x, double[][] jac)

Description
Returns the value of the Jacobian at the given point.

Parameters

x – a double array of length n which contains the point at which the Jacobian is to be evaluated. The contents of this array must not be altered by this function.

jac – a double n by n matrix which contains the value of the Jacobian at x. The value of jac[i][j] is the derivative of f[i] with respect to x[j].

ZeroSystem.ToleranceTooSmallException class

Tolerance too small

Constructor

ZeroSystem.ToleranceTooSmallException
public ZeroSystem.ToleranceTooSmallException(String key, Object[] arguments)

ZeroSystem.TooManyIterationsException class

Too many iterations.
Constructors

ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException()

ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException(Object[] arguments)

ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException(String key, Object[] arguments)
Chapter 9: Optimization

Types

class MinUncon ... 351
class MinUnconMultiVar .. 357
class NonlinLeastSquares .. 369
class SparseLP ... 380
class DenseLP ... 406
class QuadraticProgramming ... 421
class MinConGenLin ... 429
class BoundedLeastSquares ... 441
class BoundedVariableLeastSquares 451
class NonNegativeLeastSquares .. 456
class MinConNLP ... 461
class NumericalDerivatives .. 490

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

where \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is continuous and has derivatives of all orders required by the algorithms. The functions for unconstrained minimization are grouped into three categories: univariate functions, multivariate functions, and nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified interval. For discussion on unimodality, see Brent (1973).

The *class* MinUnconMultiVar finds the minimum of a multivariate function using a quasi-Newton method. The default is to use a finite-difference approximation of the gradient of \(f(x) \). Here, the gradient is defined to be the vector
\[\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right] \]

However, when the exact gradient can be easily provided, the gradient should be provided by implementing the interface MinUnconMultiVar.Gradient. The NumericalDerivatives class can also be used in computing the gradient for MinUnconMultiVar as well as other classes. For an example, see NumericalDerivatives Example 6.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The most common application of the function is the nonlinear data-fitting problem where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function may have many local minima. Try different initial points and intervals to obtain a better local solution.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

\[\min_{x \in \mathbb{R}^n} f(x) \]
\[\text{subject to } A_1 x = b_1 \]

where \(f : \mathbb{R}^n \to \mathbb{R} \), \(A_1 \) and \(A_2 \) are coefficient matrices, and \(b_1 \) and \(b_2 \) are vectors. If \(f(x) \) is linear, then the problem is a linear programming problem. If \(f(x) \) is quadratic, the problem is a quadratic programming problem.

The class SparseLP uses an infeasible primal-dual interior-point method to solve sparse linear programming problems of all sizes. The constraint matrix is stored in sparse coordinate storage format.

The class DenseLP uses an active set strategy to solve small- to medium-sized linear programming problems. No sparsity is assumed since the coefficients are stored in full matrix form.

The class QuadraticProgramming is designed to solve convex quadratic programming problems using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then QuadraticProgramming modifies it to be positive definite. In this case, output should be interpreted with care because the problem has been changed slightly. Here, the Hessian of \(f(x) \) is defined to be the \(n \times n \) matrix

\[\nabla^2 f(x) = \left[\frac{\partial^2}{\partial x_i \partial x_j} f(x) \right] \]

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

\[\min_{x \in \mathbb{R}^n} f(x) \]
\[\text{subject to } g_i(x) = 0 \text{ for } i = 1, 2, \ldots, m_1 \]
\[g_i(x) \geq 0 \text{ for } i = m_1 + 1, \ldots, m \]
where \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) and \(g_i : \mathbb{R}^n \rightarrow \mathbb{R} \), for \(i = 1, 2, \ldots, m \).

The class \texttt{MinConNLP} uses a sequential equality constrained quadratic programming algorithm to solve this problem. A more complete discussion of this algorithm can be found in the documentation.

Return Values from User-Supplied Functions

All values returned by user-supplied functions must be valid real numbers. It is the user’s responsibility to check that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

Example: Minimum of a smooth function

The minimum of \(e^x - 5x \) is found using function evaluations only.

```java
import com.imsl.math.*;

public class OptimizationIntroEx1 {
    public static void main(String args[]) {
        MinUncon zf = new MinUncon();
        zf.setGuess(0.0);
        zf.setAccuracy(0.001);
        MinUncon.Function fcn = new MinUncon.Function() {
            public double f(double x) {
                double y = Math.exp(x) - 5.*x;
                if(!Double.isNaN(y)) {
                    return y;
                } else {
                    return 0.0;
                }
            }
        }
        System.out.println("Minimum is " + zf.computeMin(fcn));
    }
}
```

MinUncon class

public class com.imsl.math.MinUncon implements Serializable, Cloneable

Unconstrained minimization.

MinUncon uses two separate algorithms to compute the minimum depending on what the user supplies as the function \(f \).

If \(f \) defines the function whose minimum is to be found, MinUncon uses a safeguarded quadratic interpolation method to find a minimum point of a univariate function. Both the code and the underlying algorithm are based on the routine ZLXF written by M.J.D. Powell at the University of Cambridge.

MinUncon finds the least value of a univariate function, \(f \), where \(f \) implements \texttt{MinUnconFunction} \(f \).
Optional data include an initial estimate of the solution, and a positive number bound, specified by the `setBound` method. Let \(x_0 = x_{\text{guess}} \) where \(x_{\text{guess}} \) is specified by the `setGuess` method and \(b = \text{bound} \), then \(x \) is restricted to the interval \([x_0 - b, x_0 + b]\). Usually, the algorithm begins the search by moving from \(x_0 \) to \(x = x_0 + s \), where \(s = \text{step} \). `step` is set by the `setStep` method. If `setStep` is not called then `step` is set to \(0.1 \). `step` may be positive or negative. The first two function evaluations indicate the direction to the minimum point, and the search strides out along this direction until a bracket on a minimum point is found or until \(x \) reaches one of the bounds \(x_0 \pm b \). During this stage, the step length increases by a factor of between two and nine per function evaluation; the factor depends on the position of the minimum point that is predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, \(x_1, x_2, \) and \(x_3 \), with \(x_1 < x_2 < x_3 \) and \(f(x_2) \leq f(x_1) \) and \(f(x_2) \leq f(x_3) \). There are three main ingredients in the technique for choosing the new \(x \) from these three points. They are (i) the estimate of the minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance parameter \(\epsilon \), that depends on the closeness of \(f \) to a quadratic, and (iii) whether \(x_2 \) is near the center of the range between \(x_1 \) and \(x_3 \) or is relatively close to an end of this range. In outline, the new value of \(x \) is as near as possible to the predicted minimum point, subject to being at least \(\epsilon \) from \(x_2 \), and subject to being in the longer interval between \(x_1 \) and \(x_3 \) or \(x_2 \) and \(x_3 \) when \(x_2 \) is particularly close to \(x_1 \) or \(x_3 \). There is some elaboration, however, when the distance between these points is close to the required accuracy; when the distance is close to the machine precision; or when \(\epsilon \) is relatively large.

The algorithm is intended to provide fast convergence when \(f \) has a positive and continuous second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such as

\[
f(x) = x + 1.001 |x|
\]

The algorithm can make \(\epsilon \) large automatically in the pathological cases. In this case, it is usual for a new value of \(x \) to be at the midpoint of the longer interval that is adjacent to the least calculated function value. The midpoint strategy is used frequently when changes to \(f \) are dominated by computer rounding errors, which will almost certainly happen if the user requests an accuracy that is less than the square root of the machine precision. In such cases, the routine claims to have achieved the required accuracy if it knows that there is a local minimum point within distance \(\delta \) of \(x \), where \(\delta = x_{\text{acc}} \), specified by the `setAccuracy` method even though the rounding errors in \(f \) may cause the existence of other local minimum points nearby. This difficulty is inevitable in minimization routines that use only function values, so high precision arithmetic is recommended.

If \(f \) implements `MinUnconDerivative` then `MinUncon` uses a descent method with either the secant method or cubic interpolation to find a minimum point of a univariate function. It starts with an initial guess and two endpoints. If any of the three points is a local minimum point and has least function value, the routine terminates with a solution. Otherwise, the point with least function value will be used as the starting point.

From the starting point, say \(x_c \), the function value \(f_c = f(x_c) \), the derivative value \(g_c = g(x_c) \), and a new point \(x_n \) defined by \(x_n = x_c - g_c \) are computed. The function \(f_n = f(x_n) \), and the derivative \(g_n = g(x_n) \) are then evaluated. If either \(f_n \geq f_c \) or \(g_n \) has the opposite sign of \(g_c \), then there exists a minimum point between \(x_c \) and \(x_n \); and an initial interval is obtained. Otherwise, since \(x_c \) is kept as the point that has lowest function value, an interchange between \(x_n \) and \(x_c \) is performed. The secant method is then used to
get a new point

\[x_n = x_c - g_c \frac{g_n - g_c}{x_n - x_c} \]

Let \(x_n \leftarrow x_s \) and repeat this process until an interval containing a minimum is found or one of the convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1:

\[|x_c - x_n| \leq \varepsilon_c \]

Criterion 2:

\[|g_c| \leq \varepsilon_g \]

where \(\varepsilon_c = \max \{1.0, |x_c|\} \varepsilon, \varepsilon \) is a relative error tolerance and \(\varepsilon_g \) is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. Function and derivative are then evaluated at that point; and accordingly, a smaller interval that contains a minimum point is chosen. A safeguarded method is used to ensure that the interval reduces by at least a fraction of the previous interval. Another cubic interpolation is then performed, and this procedure is repeated until one of the stopping criteria is met.

Constructor

MinUncon

```java
public MinUncon()
```

Description

Unconstrained minimum constructor for a smooth function of a single variable of type `double`.

Methods

computeMin

```java
public double computeMin(MinUncon.Function F)
```

Description

Return the minimum of a smooth function of a single variable of type `double` using function values only or using function values and derivatives.

Parameter

\(F \) – defines the function whose minimum is to be found. If \(F \) implements `Derivative` then derivatives are used. Otherwise, an attempt to find the minimum is made using function values only.
Returns
a double scalar value containing the minimum of the input function

```
setAccuracy
public void setAccuracy(double xacc)
```

Description
Set the required absolute accuracy in the final value returned by member function computeMin. If this member function is not called, the required accuracy is set to 1.0e-8.

Parameter
- `xacc` – a double scalar value specifying the required absolute accuracy in the final value returned by member function computeMin.

```
setBound
public void setBound(double bound)
```

Description
Set the amount by which X may be changed from its initial value, xguess. If this member function is not called, bound is set to 100.

Parameter
- `bound` – a double scalar value specifying the amount by which X may be changed from its initial value. In other words, X is restricted to the interval [xguess - bound, xguess + bound].

```
setDerivtol
public void setDerivtol(double gtol)
```

Description
Set the derivative tolerance used by member function computeMin to decide if the current point is a local minimum. This is the second stopping criterion. x is returned as a solution when G(x) is less than or equal to gtol. gtol should be nonnegative, otherwise zero will be used. If this member function is not called, the derivative tolerance is set to 1.0e-8.

Parameter
- `gtol` – a double scalar value specifying the derivative tolerance used by member function computeMin.

```
setGuess
public void setGuess(double xguess)
```

Description
Set the initial guess of the minimum point of the input function. If this member function is not called, an initial guess of 0.0 is used.
Parameter
 \texttt{xguess} – a \texttt{double} scalar value specifying the initial guess of the minimum point of the input function

\textbf{setStep}

\texttt{public void setStep(double step)}

\textbf{Description}
Set the stepsize to use when changing \texttt{x}. If this member function is not called, \texttt{step} is set to 0.1.

\textbf{Parameter}
 \texttt{step} – a \texttt{double} scalar value specifying the order of magnitude estimate of the required change in \texttt{x} when stepping towards the minimum

\textbf{Example 1: Minimum of a smooth function}
The minimum of $e^x - 5x$ is found using function evaluations only.

\begin{verbatim}
import com.ims1.math.*;

public class MinUnconEx1 {
 public static void main(String args[]) {
 MinUncon zf = new MinUncon();
 zf.setGuess(0.0);
 zf.setAccuracy(0.001);
 MinUncon.Function fcn = new MinUncon.Function() {
 public double f(double x) {
 return Math.exp(x) - 5. * x;
 }
 };
 System.out.println("Minimum is " + zf.computeMin(fcn));
 }
}
\end{verbatim}

\textbf{Output}
Minimum is 1.6094175999200164

\textbf{Example 2: Minimum of a smooth function}
The minimum of $e^x - 5x$ is found using function evaluations and first derivative evaluations.

\begin{verbatim}
import com.ims1.math.*;

public class MinUnconEx2 implements MinUncon.Derivative {
 public double f(double x) {
 return Math.exp(x) - 5. * x;
 }

 public double d(double x) {
 return Math.exp(x) - 5.0;
 }
}
\end{verbatim}
```java
public double g(double x) {
    return Math.exp(x) - 5.;
}

public static void main(String args[]) {
    int n = 1;
    double xinit = 0.;
    double x[] = {0.};
    MinUncon zf = new MinUncon();
    zf.setGuess(xinit);
    zf.setAccuracy(.001);
    MinUnconEx2 fcn = new MinUnconEx2();
    x[0] = zf.computeMin(fcn);
    for (int k = 0; k < n; k++) {
        System.out.println("x[" + k + "] = " + x[k]);
    }
}
```

Output

```
x[0] = 1.6100113162270329
```

MinUncon.Function interface

```java
public interface com.imsl.math.MinUncon.Function

Public interface for the user supplied function to the MinUncon object.

Method

f

public double f(double x)

Description

Public interface for the smooth function of a single variable to be minimized.

Parameter

- x – a double, the point at which the function is to be evaluated

Returns

- a double, the value of the function at x
```
MinUncon.Derivative interface

Public interface for the user supplied function to the MinUncon object.

Method

g
public double g(double x)

Description
Public interface for the smooth function of a single variable to be minimized.

Parameter
 x – a double, the point at which the derivative of the function is to be evaluated

Returns
a double, the value of the derivative of the function at x

MinUnconMultiVar class

public class com.imsl.math.MinUnconMultiVar implements Serializable, Cloneable

Unconstrained multivariate minimization.

Class MinUnconMultiVar uses a quasi-Newton method to find the minimum of a function f(x) of n variables. The problem is stated as follows:

$$\min_{x \in \mathbb{R}^n} f(x)$$

Given a starting point \(x_c\), the search direction is computed according to the formula

$$d = -B^{-1}g_c$$

where \(B\) is a positive definite approximation of the Hessian, and \(g_c\) is the gradient evaluated at \(x_c\). A line search is then used to find a new point.
\[x_n = x_c + \lambda d, \lambda > 0 \]

such that

\[f(x_n) \leq f(x_c) + \alpha g^T d, \alpha \in (0, 0.5) \]

Finally, the optimality condition \(||g(x)|| \leq \epsilon \) where \(\epsilon \) is a gradient tolerance, is sought.

When optimality is not achieved, \(B \) is updated according to the BFGS formula

\[
B \leftarrow B - \frac{B s s^T B s^T + y y^T}{s^T B s}
\]

where \(s = x_n - x_c \) and \(y = g_n - g_c \). Another search direction is then computed to begin the next iteration.

For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for MinUnconMultivar occurs when the norm of the gradient is less than the given gradient tolerance \(\text{gradientTolerance} \). The second stopping criterion for MinUnconMultivar occurs when the scaled distance between the last two steps is less than the step tolerance \(\text{stepTolerance} \).

Since by default, a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. Supply the gradient for a more accurate gradient evaluation (setGradient).

The user may also choose to supply the Hessian. If, during intermediate calculations, the user supplied Hessian becomes non-symmetric positive definite, then the algorithm will resort to using the default approximate Hessian.

Constructor

MinUnconMultiVar

```java
public MinUnconMultiVar(int n)
```

Description

Unconstrained minimum constructor for a function of \(n \) variables of type double.

Parameter

\(n \) – An int scalar value which defines the number of variables of the function whose minimum is to be found.
Methods

computeMin

```java
public double[] computeMin(MinUnconMultiVar.Function F) throws
MinUnconMultiVar.FalseConvergenceException,
MinUnconMultiVar.MaxIterationsException,
MinUnconMultiVar.UnboundedBelowException
```

Description

Return the minimum point of a function of n variables of type `double` using a finite-difference gradient or using a user-supplied gradient.

Parameter

F – defines the function whose minimum is to be found. F can be used to supply a gradient of the function. If F implements `Gradient` then the user-supplied gradient is used. Otherwise, an attempt to find the minimum is made using a finite-difference gradient. If F implements `Hessian` then the user-supplied gradient and Hessian are used. Otherwise, an approximate Hessian is used during computation.

Returns

a `double` array containing the point at which the minimum of the input function occurs.

getErrorStatus

```java
public int getErrorStatus()
```

Description

Returns the non-fatal error status.

Returns

an `int` specifying the non-fatal error status:

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The last global step failed to locate a lower point than the current x value. The current x may be an approximate local minimizer and no more accuracy is possible or the step tolerance may be too large.</td>
</tr>
<tr>
<td>2</td>
<td>Relative function convergence; both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance.</td>
</tr>
<tr>
<td>3</td>
<td>Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or the step tolerance is too big.</td>
</tr>
</tbody>
</table>

getIterations

```java
public int getIterations()
```
Returns the number of iterations used to compute a minimum.

Returns
an int specifying the number of iterations used to compute the minimum.

getNumberOfThreads

```
public int getNumberOfThreads()
```

Description
Returns the number of `java.lang.Thread` instances used for parallel processing.

Returns
an int containing the number of `java.lang.Thread` instances used for parallel processing.

setDigits

```
public void setDigits(double fdigit)
```

Description
Set the number of good digits in the function. If this member function is not called, fdigit is set to 15.0.

Parameter

- `fdigit` – a double scalar value specifying the number of good digits in the user supplied function

Exception

`IllegalArgumentException` is thrown if `fdigit` is less than or equal to 0

setFscale

```
public void setFscale(double fscale)
```

Description
Set the function scaling value for scaling the gradient. If this member function is not called, the value of this scalar is set to 1.0.

Parameter

- `fscale` – a double scalar specifying the function scaling value for scaling the gradient

Exception

`IllegalArgumentException` is thrown if `fscale` is less than or equal to 0.

setGradientTolerance

```
public void setGradientTolerance(double gradientTolerance)
```

Description
Sets the gradient tolerance. This first stopping criterion for this optimizer is that the norm of the gradient be less than the gradient tolerance. If this member function is not called, the cube root of machine precision squared is used to compute the gradient.
Parameter

gradientTolerance – a double specifying the gradient tolerance used to compute the gradient

Exception

IllegalArgumentException is thrown if gradientTolerance is less than or equal to 0

setGuess

class

public void setGuess(double[] xguess)

Description

Set the initial guess of the minimum point of the input function. If this member function is not called, the elements of this array are set to 0.0.

Parameter

xguess – a double array specifying the initial guess of the minimum point of the input function

setIhess

class

public void setIhess(int ihess)

Description

Set the Hessian initialization parameter. If this member function is not called, ihess is set to 0.0 and the Hessian is initialized to the identity matrix. If this member function is called and ihess is set to anything other than 0.0, the Hessian is initialized to the diagonal matrix containing max(abs(f(xguess)),fscale)*xscale*xscale

Parameter

ihess – an int scalar value specifying the Hessian initialization parameter. If ihess = 0.0 the Hessian is initialized to the identity matrix. Otherwise, the Hessian is initialized to the diagonal matrix containing max(abs(f(xguess)),fscale)*xscale*xscale where xguess is the initial guess of the computed solution and xscale is the scaling vector for the variables.

setMaxIterations

class

public void setMaxIterations(int maxIterations)

Description

Set the maximum number of iterations allowed. If this member function is not called, the maximum number of iterations is set to 100.

Parameter

maxIterations – an int specifying the maximum number of iterations allowed

Exception

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setMaximumStepsize

class

public void setMaximumStepsize(double maximumStepsize)
Description
Set the maximum allowable stepsize to use. If this member function is not called, maximum stepsize is set to a default value based on a scaled xguess.

Parameter
maximumStepsize – a nonnegative double value specifying the maximum allowable stepsize

Exception
IllegalArgumentException is thrown if maximumStepsize is less than or equal to 0

setNumberOfThreads
public void setNumberOfThreads(int numberOfThreads)

Description
Sets the number of java.lang.Thread instances to be used for parallel processing.

Parameter
numberOfThreads – an int specifying the number of java.lang.Thread instances to be used for parallel processing. If numberOfThreads is greater than 1, then interface Function.f is evaluated in parallel and Function.f must be thread-safe. Otherwise, unexpected behavior can occur.
Default: numberOfThreads = 1.

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description
Set the scaled step tolerance to use when changing x. If this member function is not called, the scaled step tolerance is set to 3.66685e-11.

The second stopping criterion for this optimizer is that the scaled distance between the last two steps be less than the step tolerance.

Parameter
stepTolerance – a double scalar value specifying the scaled step tolerance. The i-th component of the scaled step between two points x and y is computed as abs(x(i)-y(i))/max(abs(x(i)),1/xscale(i)) where xscale is the scaling vector for the variables.

Exception
IllegalArgumentException is thrown if stepTolerance is less than or equal to 0

setXscale
public void setXscale(double[] xscale)

Description
Set the diagonal scaling matrix for the variables. If this member function is not called, the elements of this array are set to 1.0..
Parameter

xscale – a double array specifying the diagonal scaling matrix for the variables

Exception

IllegalArgumentException is thrown if any of the elements of xscale is less than or equal to 0

Example 1: Minimum of a multivariate function

The minimum of $100(x_2 - x_1^2)^2 + (1 - x_1)^2$ is found using function evaluations only.

```java
import com.imsl.math.*;

public class MinUnconMultiVarEx1 {
    public static void main(String args[]) throws Exception {
        MinUnconMultiVar solver = new MinUnconMultiVar(2);
        solver.setGuess(new double[]{1.2, 1.0});
        double x[] = solver.computeMin(new MinUnconMultiVar.Function() {
            public double f(double[] x) {
                return 100. * ((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0]) + (1. - x[0]) * (1. - x[0]));
            }
        });
        System.out.println("Minimum point is ", x[0], ", ", x[1]);
    }
}
```

Output

Minimum point is (0.9999999672651304, 0.9999999330452095)

Example 2: Minimum of a multivariate function

The minimum of $100(x_2 - x_1^2)^2 + (1 - x_1)^2$ is found using function evaluations and a user supplied gradient.

```java
import com.imsl.math.*;

public class MinUnconMultiVarEx2 {
    static class MyFunction implements MinUnconMultiVar.Gradient {
        public double f(double[] x) {
            return 100. * ((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0]) + (1. - x[0]) * (1. - x[0]));
        }
        public void gradient(double[] x, double[] gp) {
            gp[0] = -400. * (x[1] - x[0] * x[0]) * x[0] - 2. * (1. - x[0]);
        }
    }
    public static void main(String args[]) throws Exception {
        MinUnconMultiVar solver = new MinUnconMultiVar(2);
        solver.setGuess(new double[]{1.2, 1.0});
        MinUnconMultiVar.Function ff = new MinUnconMultiVar.Function() {
            public double f(double[] x) {
                return 100. * ((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0]) + (1. - x[0]) * (1. - x[0]));
            }
        };
        double x[] = solver.computeMin(ff);
        System.out.println("Minimum point is ", x[0], ", ", x[1]);
    }
}
```

Output

Minimum point is (0.9999999672651304, 0.9999999330452095)

Optimization

MinUnconMultiVar • 363
```java
public static void main(String args[]) throws Exception {
    MinUnconMultiVar solver = new MinUnconMultiVar(2);
    solver.setGuess(new double[]{1.2, 1.0});
    double x[] = solver.computeMin(new MyFunction());
    System.out.println("Minimum point is (" + x[0] + ", " + x[1] + ")");
}
```

Output

Minimum point is (0.99999966823014, 0.999999322542452)

Example 3: Minimum of a multivariate function

The minimum of \(100(x_2 - x_1^2)^2 + (1 - x_1)^2\) is found using function evaluations and a user supplied Hessian.

```java
import com.imsl.math.*;

public class MinUnconMultiVarEx3 {
    static class MyFunction implements MinUnconMultiVar.Hessian {
        public double f(double[] x) {
            return 100. * ((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])
                        + (1. - x[0]) * (1. - x[0]));
        }
        public void gradient(double[] x, double[] gp) {
            gp[0] = -400. * (x[1] - x[0] * x[0]) * x[0] - 2. * (1. - x[0]);
        }
        public void hessian(double[] x, double[][] hess) {
            hess[0][0] = -4. * x[1] + 1.2e3 * x[0] * x[0] + 2.e0;
            hess[1][0] = -4.e2 * x[0];
            hess[0][1] = hess[1][0];
            hess[1][1] = 2.e2;
        }
    }
    public static void main(String args[]) throws Exception {
        MinUnconMultiVar solver = new MinUnconMultiVar(2);
        solver.setGuess(new double[]{-1.2, 1.0});
        double x[] = solver.computeMin(new MyFunction());
        System.out.println("Minimum point is (" + x[0] + ", " + x[1] + ")");
    }
}
```

364 • MinUnconMultiVar

JMSL
MinUnconMultiVar.Function interface

public interface com.imsl.math.MinUnconMultiVar.Function

Public interface for the user supplied function to the MinUnconMultiVar object.

Method

f
public double f(double[] x)

Description
Public interface for the multivariate function to be minimized.

Parameter
 x – a double array, the point at which the function is to be evaluated

Returns
 a double, the value of the function at x

MinUnconMultiVar.Gradient interface

Public interface for the user supplied gradient to the MinUnconMultiVar object.

Method

gradient
public void gradient(double[] x, double[] gradient)
Description
Public interface for the gradient of the multivariate function to be minimized.

Parameters
- \(x \) – a double array, the point at which the gradient of the function is to be evaluated
- \(\text{gradient} \) – a double array, the value of the gradient of the function at \(x \)

MinUnconMultiVar.Hessian interface

Public interface for the user supplied Hessian to the MinUnconMultiVar object.

Method

hessian
public void hessian(double[] \(x \), double[][] \(\text{hess} \))

Description
Public interface for the Hessian of the multivariate function to be minimized.

Parameters
- \(x \) – a double array, the point at which the Hessian of the function is to be evaluated
- \(\text{hess} \) – a double matrix, the value of the Hessian of the function at \(x \)

MinUnconMultiVar.ApproximateMinimumException class

static public class com.imsl.math.MinUnconMultiVar.ApproximateMinimumException
extends com.imsl.IMSLException

Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or the scaled step tolerance is too big.
Constructors

MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(String message)

Description
Constructs a ApproximateMinimumException object.

Parameter
message – a String containing the error message

MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(String key, Object[] arguments)

Description
Constructs a ApproximateMinimumException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinUnconMultiVar.FalseConvergenceException
class

static public class com.imsl.math.MinUnconMultiVar.FalseConvergenceException
extends com.imsl.IMSLException

False convergence error; the iterates appear to be converging to a noncritical point. Possibly incorrect gradient information is used, or the function is discontinuous, or the other stopping tolerances are too tight.

Constructors

MinUnconMultiVar.FalseConvergenceException
public MinUnconMultiVar.FalseConvergenceException(String message)

Description
Constructs a FalseConvergenceException object.
Parameter

message – a String containing the error message

MinUnconMultiVar.FalseConvergenceException
default MinUnconMultiVar.FalseConvergenceException(String key, Object[] arguments)

Description
Constructs a FalseConvergenceException object.

Parameters

key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinUnconMultiVar.MaxIterationsException class

default public class com.imsl.math.MinUnconMultiVar.MaxIterationsException
extends com.imsl.IMSLException

Maximum number of iterations exceeded.

Constructors

MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException(String message)

Description
Constructs a MaxIterationsException object.

Parameter

message – a String containing the error message

MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException(String key, Object[] arguments)

Description
Constructs a MaxIterationsException object.

Parameters

key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
MinUnconMultiVar.UnboundedBelowException class

static public class com.imsl.math.MinUnconMultiVar.UnboundedBelowException
extends com.imsl.IMSLException

Five consecutive steps of the maximum allowable stepsize have been taken, either the function is
unbounded below, or has a finite asymptote in some direction or the maximum allowable step size is too small.

Constructors

MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(String message)

Description
Constructs a UnboundedBelowException object.

Parameter
message – a String containing the error message

MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(String key, Object[] arguments)

Description
Constructs a UnboundedBelowException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

NonlinLeastSquares class

public class com.imsl.math.NonlinLeastSquares implements Serializable,
Cloneable

Nonlinear least squares.
NonlinLeastSquares is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem is stated as follows:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} F(x)^T F(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2$$

where $m \geq n$, $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$, and $f_i(x)$ is the i-th component function of $F(x)$. From a current point, the algorithm uses the trust region approach:

$$\min_{x_n \in \mathbb{R}^n} \| F(x_c) + J(x_c)(x_n - x_c) \|_2$$

subject to

$$\| x_n - x_c \|_2 \leq \delta_c$$

to get a new point x_n, which is computed as

$$x_n = x_c - \left(J(x_c)^T J(x_c) + \mu_c I \right)^{-1} J(x_c)^T F(x_c)$$

where $\mu_c = 0$ if $\delta_c \geq \left\| J(x_c)^T J(x_c)^{-1} J(x_c)^T F(x_c) \right\|_2$ and $\mu_c > 0$ otherwise. $F(x_c)$ and $J(x_c)$ are the function values and the Jacobian evaluated at the current point x_c. This procedure is repeated until the stopping criteria are satisfied. The first stopping criteria occurs when the norm of the function is less than the value set in method setAbsoluteTolerance. The second stopping criteria occurs when the norm of the scaled gradient is less than the value set in method setGradientTolerance. The third stopping criteria occurs when the scaled distance between the last two steps is less than the value set by method setStepTolerance. For more details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

A finite-difference method is used to estimate the Jacobian when the user supplied function, f, defines the least-squares problem. Whenever the exact Jacobian can be easily provided, f should implement NonlinLeastSquares.Jacobian.

Constructor

NonlinLeastSquares

```java
public NonlinLeastSquares(int m, int n)
```

Description

Creates an object to solve a nonlinear least squares problem.
Parameters

- **m** – is the number of functions
- **n** – is the number of variables. *n* must be less than or equal to *m*.

Methods

getErrorStatus

```java
class NonlinLeastSquares {
    public int getErrorStatus() {
        // Implementation
    }
}
```

Description

Get information about the performance of NonlinLeastSquares.

Returns

An int specifying information about convergence.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All convergence tests were met.</td>
</tr>
<tr>
<td>1</td>
<td>Scaled step tolerance was satisfied. The current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or StepTolerance is too big.</td>
</tr>
<tr>
<td>2</td>
<td>Scaled actual and predicted reductions in the function are less than or equal to the relative function convergence tolerance RelativeTolerance.</td>
</tr>
<tr>
<td>3</td>
<td>Iterates appear to be converging to a noncritical point. Incorrect gradient information, a discontinuous function, or stopping tolerances being too tight may be the cause.</td>
</tr>
<tr>
<td>4</td>
<td>Five consecutive steps with the maximum stepsize have been taken. Either the function is unbounded below, or has a finite asymptote in some direction, or the maximum stepsize is too small.</td>
</tr>
</tbody>
</table>

getNumberOfThreads

```java
class NonlinLeastSquares {
    public int getNumberOfThreads() {
        // Implementation
    }
}
```

Description

Returns the number of `java.lang.Thread` instances used for parallel processing.

Returns

An int containing the number of `java.lang.Thread` instances used for parallel processing.

setAbsoluteTolerance

```java
class NonlinLeastSquares {
    public void setAbsoluteTolerance(double absoluteTolerance) {
        // Implementation
    }
}
```

Description

Set absolute tolerance for the optimization process.

Returns

The method does not return anything.
Description
Set the absolute function tolerance.

Parameter
 - `absoluteTolerance` – a double scalar value specifying the absolute function tolerance. When the norm of the function is less than `absoluteTolerance` the procedure stops.
 Default: `absoluteTolerance = 1.0e-32`

Exception
 - `IllegalArgumentException` is thrown if `absoluteTolerance` is less than or equal to 0

setDigits

```java
public void setDigits(int ngood)
```

Description
Set the number of good digits in the function. If this member function is not called, the number of good digits is set to 7.

Parameter
 - `ngood` – an int specifying the number of good digits in the user supplied function which defines the least-squares problem

Exception
 - `IllegalArgumentException` is thrown if `ngood` is less than or equal to 0

setFalseConvergenceTolerance

```java
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)
```

Description
Set the false convergence tolerance. If this member function is not called, 100.0e-16 is used as the false convergence tolerance.

Parameter
 - `falseConvergenceTolerance` – a double scalar value specifying the false convergence tolerance

Exception
 - `IllegalArgumentException` is thrown if `falseConvergenceTolerance` is less than or equal to 0

setFscale

```java
public void setFscale(double[] fscale)
```

Description
Set the diagonal scaling matrix for the functions.

Parameter
 - `fscale` – a double array specifying the diagonal scaling matrix for the functions. The i-th component of `fscale` is a positive scalar specifying the reciprocal magnitude of the i-th component function of the problem. By default, the identity is used.
setGradientTolerance

```java
public void setGradientTolerance(double gradientTolerance)
```

Description

Set the scaled gradient tolerance stopping criterion.

Parameter

- `gradientTolerance` – a `double` specifying the scaled gradient tolerance used in stopping criteria. The i-th component of the scaled gradient at x is calculated as

\[
\frac{|g_i| \cdot \max(|x_i|, \frac{1}{h_i})}{\frac{1}{2}||F(x)||^2_2}
\]

where

\[
g_i = (J(x)^T F(x))_i \cdot (f_i)_i^2,
\]

$J(x)$ is the Jacobian, $s = xscale$, $f = fscale$, and

\[
||F(x)||^2_2 = \sum_{i=1}^{m} f_i(x)^2.
\]

When the norm of the scaled gradient is less than `gradientTolerance` the procedure stops. By default, `gradientTolerance = \sqrt{\varepsilon}` where ε is machine precision.

Exception

`IllegalArgumentException` is thrown if `gradientTolerance` is less than or equal to 0

setGuess

```java
public void setGuess(double[] xguess)
```

Description

Set the initial guess of the minimum point of the input function. If this member function is not called, an initial guess of 0.0 is used.

Parameter

- `xguess` – a `double` array specifying the initial guess of the minimum point of the input function

setInitialTrustRegion

```java
public void setInitialTrustRegion(double initialTrustRegion)
```

Description

Set the initial trust region radius. If this member function is not called, a default is set based on the initial scaled Cauchy step.
Parameter

initialTrustRegion – a double scalar value specifying the initial trust region radius

Exception

IllegalArgumentException is thrown if initialTrustRegion is less than or equal to 0

setMaxIterations

public void setMaxIterations(int maxIterations)

Description

Set the maximum number of iterations allowed. If this member function is not called, the maximum number of iterations is set to 100.

Parameter

maxIterations – an int specifying the maximum number of iterations allowed

Exception

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setMaximumStepsize

public void setMaximumStepsize(double maximumStepsize)

Description

Set the maximum allowable stepsize to use. If this member function is not called, maximum stepsize is set to a default value based on a scaled xguess.

Parameter

maximumStepsize – a nonnegative double value specifying the maximum allowable stepsize.

Exception

IllegalArgumentException is thrown if maximumStepsize is less than or equal to 0

setNumberOfThreads

public void setNumberOfThreads(int numberOfThreads)

Description

Sets the number of java.lang.Thread instances to be used for parallel processing.

Parameter

numberOfThreads – an int specifying the number of java.lang.Thread instances to be used for parallel processing. If numberOfThreads is greater than 1, then interface Function.f is evaluated in parallel and Function.f must be thread-safe. Otherwise, unexpected behavior can occur. Default: numberOfThreads = 1.

setRelativeTolerance

public void setRelativeTolerance(double relativeTolerance)
Description
Set the relative function tolerance.

Parameter
relativeTolerance – a double scalar value specifying the relative function tolerance
Default: relativeTolerance = 1.0e-20

Exception
IllegalArgumentException is thrown if relativeTolerance is less than or equal to 0

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description
Set the scaled step tolerance.

Parameter
stepTolerance – a double scalar value specifying the scaled step tolerance used in stopping criteria. The i-th component of the scaled step between two points x and y is computed as

$$\frac{|x_i - y_i|}{\max(|x_i|, s_i)}$$

where s = xscale. When the scaled distance between the last two steps is less than stepTolerance the procedure stops.
By default, stepTolerance = $3\sqrt{\epsilon}$ where ϵ is machine precision.

Exception
IllegalArgumentException is thrown if stepTolerance is less than or equal to 0

setXscale
public void setXscale(double[] xscale)

Description
Set the diagonal scaling matrix for the variables.

Parameter
xscale – a double array specifying the diagonal scaling matrix for the variables. xscale is used in scaling the gradient and the distance between two points. See methods setGradientTolerance and setStepTolerance for more detail. By default, the identity is used.

Exception
IllegalArgumentException is thrown if any of the elements of xscale is less than or equal to 0

solve
public double[] solve(NonlinLeastSquares.Function F) throws NonlinLeastSquares.TooManyIterationsException
Description
Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a Jacobian.

Parameter
F – User supplied function that defines the least-squares problem. If F implements Jacobian then its Jacobian is used. Otherwise, a finite difference Jacobian is used.

Returns
a double array of length n containing the approximate solution

Exception
TooManyIterationsException is thrown if the number of iterations exceeds MaxIterations. MaxIterations is set to 100 by default.

Example 1: Nonlinear least-squares problem
A nonlinear least-squares problem is solved using a finite-difference Jacobian.

```java
import com.imsl.math.*;

public class NonlinLeastSquaresEx1 {

    public static void main(String args[])
        throws NonlinLeastSquares.TooManyIterationsException {
            NonlinLeastSquares.Function zsf = new NonlinLeastSquares.Function() {
                public void f(double x[], double f[]) {
                    f[0] = 10. * (x[1] - x[0] * x[0]);
                    f[1] = 1. - x[0];
                }
            };

            int m = 2;
            int n = 2;
            double xguess[] = {-1.2, 1.};
            double xscale[] = {1., 1.};
            double fscale[] = {1., 1.};

            NonlinLeastSquares zs = new NonlinLeastSquares(m, n);
            zs.setGuess(xguess);
            zs.setXscale(xscale);
            zs.setFscale(fscale);
            double[] x = zs.solve(zsf);

            for (int k = 0; k < n; k++) {
                System.out.println("x[" + k + "] = " + x[k]);
            }
        }
}
```
Example 2: Nonlinear least-squares problem

A nonlinear least-squares problem is solved using a user-supplied Jacobian.

```java
import com.imsl.math.*;

public class NonlinLeastSquaresEx2 {
    public static void main(String args[])
        throws NonlinLeastSquares.TooManyIterationsException {
                public void f(double x[], double f[]) {
                    f[0] = 10. * (x[1] - x[0] * x[0]);
                    f[1] = 1. - x[0];
                }
                public void jacobian(double x[], double fjac[][]) {
                    fjac[0][0] = -20. * x[0];
                    fjac[1][0] = 10.;
                    fjac[0][1] = -1.;
                    fjac[1][1] = 0.;
                }
            };

            int m = 2;
            int n = 2;
            double xguess[] = {-1.2, 1.};
            double xscale[] = {1., 1.};
            double fscale[] = {1., 1.};

            NonlinLeastSquares zs = new NonlinLeastSquares(m, n);
            zs.setGuess(xguess);
            zs.setXscale(xscale);
            zs.setFscale(fscale);
            double[] x = zs.solve(zsj);
            for (int k = 0; k < n; k++) {
                System.out.println("x[" + k + "] = " + x[k]);
            }
        }
    }
}
```

Output

```
x[0] = 1.0
x[1] = 1.0
```
NonlinLeastSquares.TooManyIterationsException class

Too many iterations.

Constructors

NonlinLeastSquares.TooManyIterationsException

public NonlinLeastSquares.TooManyIterationsException()

Description

Constructs a TooManyIterationsException object.

NonlinLeastSquares.TooManyIterationsException

public NonlinLeastSquares.TooManyIterationsException(Object[] arguments)

Description

Constructs a TooManyIterationsException object.

Parameter

arguments – an Object array containing arguments used within the error message string

NonlinLeastSquares.TooManyIterationsException

public NonlinLeastSquares.TooManyIterationsException(String key, Object[] arguments)

Description

Constructs a TooManyIterationsException object.

Parameters

key – a String containing the error message

arguments – an Object array containing arguments used within the error message string

NonlinLeastSquares.Function interface

Public interface for the user supplied function to the NonlinLeastSquares object.

Method

f

```java
public void f(double[] x, double[] f)
```

Description

Public interface for the nonlinear least-squares function.

Parameters

- `x` – a `double` array containing the point at which the function is to be evaluated. The contents of this array must not be altered by this function.
- `f` – a `double` array containing the returned value of the function at `x`.

NonlinLeastSquares.Jacobian interface

```java
```

Public interface for the user supplied function to the NonlinLeastSquares object.

Method

jacobian

```java
public void jacobian(double[] x, double[][] jacobian)
```

Description

Public interface for the nonlinear least squares function.

Parameters

- `x` – is a `double` array containing the point at which the Jacobian of the function is to be evaluated
- `jacobian` – is a `double` matrix containing the returned value of the Jacobian of the function at `x`
SparseLP class

Solves a sparse linear programming problem by an infeasible primal-dual interior-point method.

Class SparseLP uses an infeasible primal-dual interior-point method to solve linear programming problems, i.e., problems of the form

\[
\begin{align*}
\min c^T x & \quad \text{subject to} \quad \begin{array}{l}
b_l \leq Ax \leq b_u \\
x \in \mathbb{R}^n \\
x_l \leq x \leq x_u
\end{array}
\end{align*}
\]

where \(c\) is the objective coefficient vector, \(A\) is the coefficient matrix, and the vectors \(b_l, b_u, x_l, \) and \(x_u\) are the lower and upper bounds on the constraints and the variables, respectively.

Internally, SparseLP transforms the problem given by the user into a simpler form that is computationally more tractable. After redefining the notation, the new form reads

\[
\begin{align*}
\min c^T x & \quad \text{subject to} \quad Ax = b \\
x_i + s_i = u_i, & \quad x, s_i \geq 0, \quad i \in I_u \\
x_j \geq 0, & \quad j \in I_s
\end{align*}
\]

Here, \(I_u \cup I_s = \{1, \ldots, n\}\) is a partition of the index set \(\{1, \ldots, n\}\) into upper bounded and standard variables.

In order to simplify the description it is assumed in the following that the problem above contains only variables with upper bounds, i.e., is of the form

\[
(P) \quad \min c^T x \quad \text{subject to} \quad Ax = b \\
x + s = u, \\
x, s \geq 0
\]

The corresponding dual problem is

\[
(D) \quad \max b^T y - u^T w \quad \text{subject to} \quad A^T y + z - w = c, \\
z, w \geq 0
\]

The Karush-Kuhn-Tucker (KKT) optimality conditions for \((P)\) and \((D)\) are
where $X = \text{diag}(x), Z = \text{diag}(z), S = \text{diag}(s), W = \text{diag}(w)$ are diagonal matrices and $e = (1, \ldots, 1)^T$ is a vector of ones.

Class SparseLP, like all infeasible interior-point methods, generates a sequence \((x_k, s_k, y_k, z_k, w_k), \quad k = 0, 1, \ldots\)
of iterates that satisfy \((x_k, s_k, y_k, z_k, w_k) > 0\) for all \(k\), but are in general not feasible, i.e. the linear constraints (1.1)-(1.3) are only satisfied in the limiting case \(k \to \infty\).

The barrier parameter \(\mu\), defined by

\[
\mu = \frac{x^T z + s^T w}{2n}
\]

measures how good the complementarity conditions (1.4), (1.5) are satisfied.

Mehrotra’s predictor-corrector algorithm is a variant of Newton’s method applied to the KKT conditions (1.1)-(1.5). Class SparseLP uses a modified version of this algorithm to compute the iterates \((x_k, s_k, y_k, z_k, w_k)\). In every step of the algorithm, the search direction vector

\[
\Delta := (\Delta x, \Delta s, \Delta y, \Delta z, \Delta w)
\]
is decomposed into two parts, \(\Delta = \Delta_a + \Delta_c^o\), where \(\Delta_a\) and \(\Delta_c^o\) denote the affine-scaling and the weighted centering components, respectively. Here,

\[
\Delta_c^o := (\omega_p \Delta x_c, \omega_p \Delta s_c, \omega_p \Delta y_c, \omega_p \Delta z_c, \omega_p \Delta w_c)
\]

where \(\omega_p\) and \(\omega_d\) denote the primal and dual corrector weights, respectively.

The vectors \(\Delta_a\) and \(\Delta_c := (\Delta x_c, \Delta s_c, \Delta y_c, \Delta z_c, \Delta w_c)\) are determined by solving the linear system

\[
\begin{bmatrix}
A & 0 & 0 & 0 & 0 \\
I & 0 & I & 0 & 0 \\
0 & A^T & 0 & I & -I \\
Z & 0 & 0 & X & 0 \\
0 & 0 & W & 0 & S
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta s \\
\Delta y \\
\Delta z \\
\Delta w
\end{bmatrix} =
\begin{bmatrix}
r_p \\
r_u \\
\Delta c \\
r_{rz} \\
r_{ws}
\end{bmatrix}
\]

for two different right-hand sides.
For Δu, the right-hand side is defined as

$$(rb, ru, re, rz, rw) = (b - Ax, u - x - s, c - A^T y - z + w, -XZe, -WSe).$$

Here, rb and ru are the violations of the primal constraints and re defines the violations of the dual constraints.

The resulting direction Δu is the pure Newton step applied to the system (1.1)-(1.5).

In order to obtain the corrector direction Δc, the maximum stepsizes αP in the primal and αD in the dual space preserving nonnegativity of (x, s) and (z, w) respectively, are determined, and the predicted complementarity gap

$$g_a = (x + \alpha_P \Delta x_a)^T (z + \alpha_D \Delta z_a) + (s + \alpha_P \Delta s_a)^T (w + \alpha_D \Delta w_a)$$

is computed. It is then used to determine the barrier parameter

$$\hat{\mu} = \left(\frac{g_a}{g} \right)^2 \frac{g_a}{2n},$$

where $g = x^T z + s^T w$ denotes the current complementarity gap.

The direction Δc is then computed by choosing

$$(rb, ru, re, rz, rw) = (0, 0, 0, \hat{\mu} e - \Delta Xe, \hat{\mu} e - \Delta We)$$

as the right-hand side in the linear system (2).

Class SparseLP now uses a line search to find the optimal weight $\hat{w} = (\hat{\omega}_p, \hat{\omega}_d)$ that maximizes the stepsizes (α_P, α_D) in the primal and dual directions of $\Delta = \Delta_u + \Delta_c$, respectively.

A new iterate is then computed using a step reduction factor $\alpha_0 = 0.99995$:

$$(x_{k+1}, s_{k+1}, y_{k+1}, z_{k+1}, w_{k+1}) = (x_k, s_k, y_k, z_k, w_k) + \alpha_0 (\alpha_P \Delta x, \alpha_P \Delta s, \alpha_D \Delta y, \alpha_D \Delta z, \alpha_D \Delta w)$$

In addition to the weighted Mehrotra predictor-corrector, SparseLP also uses multiple centrality correctors to enlarge the primal-dual stepsizes per iteration step and to reduce the overall number of iterations required to solve an LP problem. The maximum number of centrality corrections depends on the ratio of the factorization and solve efforts for system (2) and is therefore problem dependent. For a detailed description of multiple centrality correctors, refer to Gondzio (1994).

The linear system (2) can be reduced to more compact forms, the augmented system (AS)

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix}$$

or further by elimination of Δx to the normal equations (NE) system.
\[A\Theta A^T \Delta y = A\Theta r + h, \quad (4) \]

where

\[\Theta = (X^{-1}Z + S^{-1}W)^{-1}, r = r_c - X^{-1}r_{xz} + S^{-1}r_{ws} - S^{-1}WR, h = r_b. \]

The matrix on the left-hand side of (3), which is symmetric indefinite, can be transformed into a symmetric quasidefinite matrix by regularization. Since these types of matrices allow for a Cholesky-like factorization, the resulting linear system can be solved easily for \((\Delta x, \Delta y)\) by triangular substitutions. For more information on the regularization technique, see Altman and Gondzio (1998). For the NE system, matrix \(A\Theta A^T\) is positive definite, and therefore a sparse Cholesky algorithm can be used to factor \(A\Theta A^T\) and solve the system for \(\Delta y\) by triangular substitutions with the Cholesky factor \(L\).

In class SparseLP, both approaches are implemented. The AS approach is chosen if \(A\) contains dense columns, if there are a considerable number of columns in \(A\) that are much denser than the remaining ones, or if there are many more rows than columns in the structural part of \(A\). Otherwise, the NE approach is selected.

Class SparseLP stops with optimal termination status if the current iterate satisfies the following three conditions:

\[\frac{\mu}{1 + 0.5(\|c^T x\| + \|b^T y - u^T w\|)} \leq \text{optimalityTolerance} \]

\[\frac{\| (b - Ax, x + s - u) \|}{1 + \| (b, u) \|} \leq \text{primalTolerance} \]

and

\[\frac{\| c - A^T y - z + w \|}{1 + \| c \|} \leq \text{dualTolerance} \]

where \text{primalTolerance}, \text{dualTolerance} and \text{optimalityTolerance} are primal infeasibility, dual infeasibility and optimality tolerances, respectively. The default value is 1.0e-10 for \text{optimalityTolerance} and 1.0e-8 for the other two tolerances.

Class SparseLP is based on the code HOPDM developed by Jacek Gondzio et al., see the HOPDM User’s Guide (1995).

Constructors

SparseLP

public SparseLP(MPSReader mps)
Description

Constructs a SparseLP object using an MPSReader object.

Parameter

mps – an MPSReader object specifying the Linear Programming problem

SparseLP

public SparseLP(SparseMatrix a, double[] b, double[] c)

Description

Constructs a SparseLP object.

Parameters

- a – a SparseMatrix object containing the location and value of each nonzero coefficient in the constraint matrix \(A \). If there is no constraint matrix, set \(a = null \).
- b – a double array of length \(m \), the number of constraints, containing the right-hand side of the constraints. If there are limits on both sides of the constraints, then \(b \) contains the lower limit of the constraints.
- c – a double array of length \(n \), the number of variables, containing the coefficients of the objective function

SparseLP

public SparseLP(int[] colPtr, int[] rowInd, double[] values, double[] b, double[] c)

Description

Constructs a SparseLP object using Compressed Sparse Column (CSC), or Harwell-Boeing format. See Compressed Sparse Column (CSC) Format, Chapter 1.

Parameters

- colPtr – an int array containing the location in values in which to place the first nonzero value of each succeeding column of the constraint matrix \(A \). colPtr, rowInd and values specify the location and value of each nonzero coefficient in the constraint matrix \(A \) in CSC format.
- rowInd – an int array containing a list of the row indices of each column of the constraint matrix \(A \). colPtr, rowInd and values specify the location and value of each nonzero coefficient in the constraint matrix \(A \) in CSC format.
- values – a double array containing the value of each nonzero coefficient in the constraint matrix \(A \). colPtr, rowInd and values specify the location and value of each nonzero coefficient in the constraint matrix \(A \) in CSC format.
- b – a double array of length \(m \), number of constraints, containing the right-hand side of the constraints; if there are limits on both sides of the constraints, then \(b \) contains the lower limit of the constraints.
- c – a double array of length \(n \), the number of variables, containing the coefficients of the objective function
Methods

getConstant
public double getConstant()

Description
Returns the value of the constant term in the objective function.

Returns
a double scalar containing the value of the constant term in the objective function

getConstraintType
public int[] getConstraintType()

Description
Returns the types of general constraints in the matrix A. See setConstraintType.

Returns
an int array containing the types of general constraints in the matrix A

getDualInfeasibility
public double getDualInfeasibility()

Description
Returns the dual infeasibility of the solution.

Returns
a double scalar containing the dual infeasibility of the solution, \(\| c - A^T y - z + w \| \)

getDualInfeasibilityTolerance
public double getDualInfeasibilityTolerance()

Description
Returns the dual infeasibility tolerance.

Returns
a double scalar containing the dual infeasibility tolerance

getDualSolution
public double[] getDualSolution()

Description
Returns the dual solution.

Returns
a double array containing the dual solution

getIterationCount
public int getIterationCount()
Description
Returns the number of iterations used by the primal-dual solver.

Returns
an int scalar containing the number of iterations used by the primal-dual solver

gLargestCPRatio
public double getLargestCPRatio()

Description
Returns the ratio of the largest complementarity product to the average.

Returns
a double scalar containing the ratio of the largest complementarity product to the average

gLowerBound
public double[] getLowerBound()

Description
Returns the lower bound on the variables.

Returns
a double array containing the lower bound on the variables

getMaxIterations
public int getMaxIterations()

Description
Returns the maximum number of iterations allowed for the primal-dual solver.

Returns
an int scalar containing the maximum number of iterations allowed for the primal-dual solver

getOptimalValue
public double getOptimalValue()

Description
Returns the optimal value of the objective function.

Returns
a double scalar containing the optimal value of the objective function

getPreordering
public int getPreordering()

Description
Returns the variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal equations or augmented system matrix. See setPreordering.
Returns
an int scalar containing the variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal equations or augmented system matrix

```java
getPresolve
public int getPresolve()
```

Description
Returns the presolve option. See `setPresolve`.

Returns
an int scalar containing the presolve option

```java
getPrimalInfeasibility
public double getPrimalInfeasibility()
```

Description
Returns the primal infeasibility of the solution.

Returns
a double scalar containing the primal infeasibility of the solution, $\| x + s - u \|$

```java
getPrimalInfeasibilityTolerance
public double getPrimalInfeasibilityTolerance()
```

Description
Returns the primal infeasibility tolerance.

Returns
a double scalar containing the primal infeasibility tolerance

```java
getPrintLevel
public int getPrintLevel()
```

Description
Returns the print level. See `setPrintLevel`.

Returns
an int scalar containing the print level

```java
getRelativeOptimalityTolerance
public double getRelativeOptimalityTolerance()
```

Description
Returns the relative optimality tolerance.
Returns a double scalar containing the relative optimality tolerance.

getSmallestCPRatio
public double getSmallestCPRatio()

Description
Returns the ratio of the smallest complementarity product to the average.

Returns
a double scalar containing the ratio of the smallest complementarity product to the average.

getSolution
public double[] getSolution()

Description
Returns the solution \(x \) of the linear programming problem.

Returns
a double array containing the solution \(x \) of the linear programming problem.

getTerminationStatus
public int getTerminationStatus()

Description
Returns the termination status for the problem.

Returns
an int scalar containing the termination status for the problem.

<table>
<thead>
<tr>
<th>status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Optimal solution found.</td>
</tr>
<tr>
<td>1</td>
<td>The problem is primal infeasible (or dual unbounded).</td>
</tr>
<tr>
<td>2</td>
<td>The problem is primal unbounded (or dual infeasible).</td>
</tr>
<tr>
<td>3</td>
<td>Suboptimal solution found (accuracy problems).</td>
</tr>
<tr>
<td>4</td>
<td>Iterations limit maxIterations exceeded.</td>
</tr>
<tr>
<td>5</td>
<td>An error outside of the solution phase of the algorithm, e.g. a user input or a memory allocation error.</td>
</tr>
</tbody>
</table>

getUpperBound
public double[] getUpperBound()

Description
Returns the upper bound on the variables.
Returns
a double array containing the upper bound on the variables

getUpperLimit
public double[] getUpperLimit()

Description
Returns the upper limit of the constraints that have both a lower and an upper bound.

Returns
a double array containing the upper limit of the constraints that have both a lower and an upper bound.
Returns null if the upper limit has not been set.

getViolation
public double getViolation()

Description
Returns the violation of the variable bounds.

Returns
a double scalar containing the violation of the variable bounds, \(\| b - Ax \| \)

setConstant
public void setConstant(double c0)

Description
Sets the value of the constant term in the objective function.

Parameter
c0 – a double scalar containing the value of the constant term in the objective function
Default: c0 = 0

setConstraintType
public void setConstraintType(int[] constraintType)

Description
Sets the types of general constraints in the matrix A.

Parameter
constraintType – an int array of length m containing the types of general constraints in the matrix A. Let \(r_i = a_{i1}x_1 + \ldots + a_{in}x_n \). Then, the value of constraintType[i] signifies the following:

<table>
<thead>
<tr>
<th>constraintType</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(r_i = b_i)</td>
</tr>
<tr>
<td>1</td>
<td>(r_i \leq b_i)</td>
</tr>
<tr>
<td>2</td>
<td>(r_i \geq b_i)</td>
</tr>
<tr>
<td>3</td>
<td>(b_i \leq r_i \leq b_i)</td>
</tr>
<tr>
<td>4</td>
<td>Ignore this constraint</td>
</tr>
</tbody>
</table>

Optimization SparseLP • 389
Note that constraintType[i] = 3 should only be used for constraints i with both a finite lower and a finite upper bound. For one-sided constraints, use constraintType[i] = 1 or constraintType[i] = 2. For free constraints, use constraintType[i] = 4.

Default: constraintType[i] = 0

setDualInfeasibilityTolerance

public void setDualInfeasibilityTolerance(double dualTolerance)

Description

Sets the dual infeasibility tolerance.

Parameter

dualTolerance – a double scalar containing the dual infeasibility tolerance

Default: dualTolerance = 1.0e-8

setLowerBound

public void setLowerBound(double[] lowerBound)

Description

Sets the lower bound on the variables.

Parameter

lowerBound – a double array of length n containing the lower bound \(x_l \) on the variables. If there is no lower bound on a variable, then -1.0e30 should be set as the lower bound.

Default: lowerBound[i] = 0

setMaxIterations

public void setMaxIterations(int maxIterations)

Description

Sets the maximum number of iterations allowed for the primal-dual solver.

Parameter

maxIterations – an int scalar containing the maximum number of iterations allowed for the primal-dual solver

Default: maxIterations = 200

setPreordering

public void setPreordering(int preorder)

Description

Sets the variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal equations or augmented system matrix.
Parameter

preorder – an int scalar containing the variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal equations or augmented system matrix

<table>
<thead>
<tr>
<th>preorder</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A variant of the MDO algorithm using pivotal cliques.</td>
</tr>
<tr>
<td>1</td>
<td>A variant of George and Liu's Quotient Minimum Degree algorithm.</td>
</tr>
</tbody>
</table>

Default: preorder = 0

setPresolve

public void setPresolve(int presolve)

Description

Sets the presolve option.

Parameter

presolve – an int containing the presolve option to resolve the LP problem in order to reduce the problem size or to detect infeasibility or unboundedness of the problem. Depending on the number of presolve techniques used, different presolve levels can be chosen:

<table>
<thead>
<tr>
<th>presolve</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No presolving.</td>
</tr>
<tr>
<td>1</td>
<td>Eliminate singleton rows.</td>
</tr>
<tr>
<td>2</td>
<td>In addition to 1, eliminate redundant (and forcing) rows.</td>
</tr>
<tr>
<td>3</td>
<td>In addition to 1 and 2, eliminate dominated variables.</td>
</tr>
<tr>
<td>4</td>
<td>In addition to 1, 2, and 3, eliminate singleton columns.</td>
</tr>
<tr>
<td>5</td>
<td>In addition to 1, 2, 3, and 4, eliminate doubleton rows.</td>
</tr>
<tr>
<td>6</td>
<td>In addition to 1, 2, 3, 4, and 5, eliminate aggregate columns.</td>
</tr>
</tbody>
</table>

Default: presolve = 0

setPrimalInfeasibilityTolerance

public void setPrimalInfeasibilityTolerance(double primalTolerance)

Description

Sets the primal infeasibility tolerance.

Parameter

primalTolerance – a double scalar containing the primal infeasibility tolerance

Default: primalTolerance = 1.0e-8

setPrintLevel

public void setPrintLevel(int printLevel)

Description

Sets the print level.
Parameter

printLevel – an int containing the print level

<table>
<thead>
<tr>
<th>printLevel</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printing.</td>
</tr>
<tr>
<td>1</td>
<td>Prints statistics on the LP problem and the solution process.</td>
</tr>
</tbody>
</table>

Default: printLevel = 0

setRelativeOptimalityTolerance

public void setRelativeOptimalityTolerance(double optimalityTolerance)

Description

Sets the relative optimality tolerance.

Parameter

optimalityTolerance – a double scalar containing the relative optimality tolerance

Default: optimalityTolerance = 1.0e-10

setUpUpperBound

public void setUpUpperBound(double[] upperBound)

Description

Sets the upper bound on the variables.

Parameter

upperBound – a double array of length n containing the upper bound x_u on the variables. If there is no upper bound on a variable, then 1.0e30 should be set as the upper bound.

Default: None of the variables has an upper bound

setUpUpperLimit

public void setUpUpperLimit(double[] bu)

Description

Sets the upper limit of the constraints that have both a lower and an upper bound.

Parameter

bu – a double array of length m containing the upper limit b_u of the constraints that have both a lower and an upper bound. If such a constraint exists, then method setConstraintType must be used to define the type of the constraints. If constraintType[i] != 3, i.e. if constraint i is not two-sided, then the corresponding entry in bu, bu[i], is ignored.

Default: None of the constraints has an upper limit
solve

public void solve() throws SparseLP.DiagonalWeightMatrixException,
SparseLP.CholeskyFactorizationAccuracyException,
SparseLP.PrimalUnboundedException, SparseLP.PrimalInfeasibleException,
SparseLP.DualInfeasibleException, SparseLP.InitialSolutionInfeasibleException,
SparseLP.TooManyIterationsException, SparseLP.ProblemUnboundedException,
SparseLP.ZeroColumnException, SparseLP.ZeroRowException,
SparseLP.IncorrectlyEliminatedException, SparseLP.IncorrectlyActiveException,
SparseLP.IllegalBoundsException

Description
Solves the sparse linear programming problem by an infeasible primal-dual interior-point method.

Exceptions
- **DiagonalWeightMatrixException** is thrown if a diagonal element of the diagonal weight matrix is too small
- **CholeskyFactorizationAccuracyException** is thrown if the Cholesky factorization failed because of accuracy problems
- **PrimalUnboundedException** is thrown if the primal problem is unbounded
- **PrimalInfeasibleException** is thrown if the primal problem is infeasible
- **DualInfeasibleException** is thrown if the dual problem is infeasible
- **InitialSolutionInfeasibleException** is thrown if the initial solution for the one-row linear program is infeasible
- **TooManyIterationsException** is thrown if the maximum number of iterations has been exceeded
- **ProblemUnboundedException** is thrown if the problem is unbounded
- **ZeroColumnException** is thrown if a column of the constraint matrix has no entries
- **ZeroRowException** is thrown if a row of the constraint matrix has no entries
- **IncorrectlyEliminatedException** is thrown if one or more LP variables are falsely characterized by the internal presolver
- **IncorrectlyActiveException** is thrown if one or more LP variables are falsely characterized by the internal presolver
- **IllegalBoundsException** is thrown if the lower bound is greater than the upper bound

Example 1: Sparse Linear Programming

The linear programming problem

\[
\begin{align*}
\min f(x) &= 2x_1 - 8x_2 + 3x_3 \\
\text{subject to} & \quad x_1 + 3x_2 \leq 3 \\
& \quad 2x_2 + 3x_3 \leq 6 \\
& \quad x_1 + x_2 + x_3 \geq 2 \\
& \quad -1 \leq x_1 \leq 5 \\
& \quad 0 \leq x_2 \leq 7 \\
& \quad 0 \leq x_3 \leq 9
\end{align*}
\]
is solved.

```java
import com.imsl.math.*;

public class SparseLPEx1 {
    public static void main(String args[]) throws Exception {
        double[] b = {3.0, 6.0, 2.0};
        double[] c = {2.0, -8.0, 3.0};
        double[] xlb = {-1.0, 0.0, 0.0};
        double[] xub = {5.0, 7.0, 9.0};
        int[] irtype = {1, 1, 2};

        SparseMatrix a = new SparseMatrix(3, 3);
        a.set(0, 0, 1.0);
        a.set(0, 1, 3.0);
        a.set(1, 1, 2.0);
        a.set(1, 2, 3.0);
        a.set(2, 0, 1.0);
        a.set(2, 1, 1.0);
        a.set(2, 2, 1.0);

        // Solve problem.
        SparseLP lp = new SparseLP(a, b, c);
        lp.setLowerBound(xlb);
        lp.setUpperBound(xub);
        lp.setConstraintType(irtype);
        lp.solve();

        // Print solution.
        PrintMatrixFormat mf = new PrintMatrixFormat();
        mf.setNoColumnLabels();
        new PrintMatrix("Solution").print(mf, lp.getSolution());
        System.out.printf("Objective: %.2f\n", lp.getOptimalValue());
    }
}
```

Output

```
Solution

0  -0.375
1   1.125
2   1.25

Objective: -6.00
```

Example 2: Solve Problem Defined In an MPS File

This example demonstrates how the class MPSReader can be used with SparseLP to solve a linear programming problem defined in an MPS file. The MPS file used in this example is an uncompressed version of the file 'afiro', available from http://www.netlib.org/lp/data/.
import com.imsl.io.*;
import com.imsl.math.*;
import java.io.*;
import java.text.*;

public class SparseLPEx2 {
 public static void main(String args[]) throws Exception {
 // Read from MPS file.
 InputStream stream = SparseLPEx2.class.getResourceAsStream("afiro");
 Reader reader = new InputStreamReader(stream);
 MPSReader mps = new MPSReader();
 mps.read(reader);

 // Solve problem.
 SparseLP lp = new SparseLP(mps);
 lp.setPresolve(6);
 lp.solve();

 // Print solution.
 System.out.println("Problem Name: " + mps.getName());
 System.out.printf("Objective: %.2f\n", lp.getOptimalValue());

 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(1);
 nf.setMinimumFractionDigits(1);

 PrintMatrixFormat mf = new PrintMatrixFormat();
 mf.setNumberFormat(nf);
 mf.setNoColumnLabels();

 new PrintMatrix("Solution:").print(mf, lp.getSolution());

 // Close all resources.
 reader.close();
 stream.close();
 }
}

Output
Problem Name: AFIRO
Objective: -464.75
Solution:

0 80.0
1 25.5
2 54.5
3 84.8
4 65.4
5 0.0
6 0.0
7 0.0
8 0.0
9 0.0
SparseLP.DiagonalWeightMatrixException class

static public class com.imsl.math.SparseLP.DiagonalWeightMatrixException
extends com.imsl.IMSLException

A diagonal element of the diagonal weight matrix is too small.

Constructors

 SparseLP.DiagonalWeightMatrixException
public SparseLP.DiagonalWeightMatrixException(String message)

Description
A diagonal element of the diagonal weight matrix is too small.

Parameter
message – a String containing the error message

 SparseLP.DiagonalWeightMatrixException
public SparseLP.DiagonalWeightMatrixException(String key, Object[] arguments)
Description
A diagonal element of the diagonal weight matrix is too small.

Parameters

- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

SparseLP.CholeskyFactorizationAccuracyException class

static public class com.imsl.math.SparseLP.CholeskyFactorizationAccuracyException extends com.imsl.IMSLException

The Cholesky factorization failed because of accuracy problems.

Constructors

SparseLP.CholeskyFactorizationAccuracyException

public SparseLP.CholeskyFactorizationAccuracyException(String message)

Description
The Cholesky factorization failed because of accuracy problems.

Parameter

- message – a String containing the error message

SparseLP.CholeskyFactorizationAccuracyException

public SparseLP.CholeskyFactorizationAccuracyException(String key, Object[] arguments)

Description
The Cholesky factorization failed because of accuracy problems.

Parameters

- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

Optimization SparseLP • 397
SparseLP.PrimalUnboundedException class

static public class com.imsl.math.SparseLP.PrimalUnboundedException extends com.imsl.IMSLException

The primal problem is unbounded.

Constructors

SparseLP.PrimalUnboundedException
public SparseLP.PrimalUnboundedException(String message)

Description
The primal problem is unbounded.

Parameter
message – a String containing the error message

SparseLP.PrimalUnboundedException
public SparseLP.PrimalUnboundedException(String key, Object[] arguments)

Description
The primal problem is unbounded.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

SparseLP.PrimalInfeasibleException class

static public class com.imsl.math.SparseLP.PrimalInfeasibleException extends com.imsl.IMSLException

The primal problem is infeasible.
Constructors

SparseLP.PrimalInfeasibleException

public SparseLP.PrimalInfeasibleException(String message)

Description
The primal problem is infeasible.

Parameter

message – a String containing the error message

SparseLP.PrimalInfeasibleException

public SparseLP.PrimalInfeasibleException(String key, Object[] arguments)

Description
The primal problem is infeasible.

Parameters

key – a String containing the error message

arguments – an Object array containing arguments used within the error message string

SparseLP.DualInfeasibleException class

static public class com.imsl.math.SparseLP.DualInfeasibleException extends com.imsl.IMSLException

The dual problem is infeasible.

Constructors

SparseLP.DualInfeasibleException

public SparseLP.DualInfeasibleException(String message)

Description
The dual problem is infeasible.

Parameter

message – a String containing the error message

SparseLP.DualInfeasibleException

public SparseLP.DualInfeasibleException(String key, Object[] arguments)
Description
The dual problem is infeasible.

Parameters

- `key` – a String containing the error message
- `arguments` – an Object array containing arguments used within the error message string

SparseLP.InitialSolutionInfeasibleException class

static public class com.imsl.math.SparseLP.InitialSolutionInfeasibleException
 extends com.imsl.IMSLException

The initial solution for the one-row linear program is infeasible.

Constructors

SparseLP.InitialSolutionInfeasibleException

public SparseLP.InitialSolutionInfeasibleException(String message)

Description

The initial solution for the one-row linear program is infeasible.

Parameter

- `message` – a String containing the error message

SparseLP.InitialSolutionInfeasibleException

public SparseLP.InitialSolutionInfeasibleException(String key, Object[] arguments)

Description

The initial solution for the one-row linear program is infeasible.

Parameters

- `key` – a String containing the error message
- `arguments` – an Object array containing arguments used within the error message string
SparseLP.TooManyIterationsException class

static public class com.imsl.math.SparseLP.TooManyIterationsException extends com.imsl.IMSLException

The maximum number of iterations has been exceeded.

Constructors

SparseLP.TooManyIterationsException

public SparseLP.TooManyIterationsException(String message)

Description
The maximum number of iterations has been exceeded.

Parameter
- message – a String containing the error message

SparseLP.TooManyIterationsException

public SparseLP.TooManyIterationsException(String key, Object[] arguments)

Description
The maximum number of iterations has been exceeded.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

SparseLP.ProblemUnboundedException class

static public class com.imsl.math.SparseLP.ProblemUnboundedException extends com.imsl.IMSLException

The problem is unbounded.
Constructors

SparseLP.ProblemUnboundedException

public SparseLP.ProblemUnboundedException(String message)

Description
The problem is unbounded.

Parameter

message – a String containing the error message

SparseLP.ProblemUnboundedException

public SparseLP.ProblemUnboundedException(String key, Object[] arguments)

Description
The problem is unbounded.

Parameters

key – a String containing the error message

arguments – an Object array containing arguments used within the error message string

SparseLP.ZeroColumnException class

static public class com.imsl.math.SparseLP.ZeroColumnException extends com.imsl.IMSLException

A column of the constraint matrix has no entries.

Constructors

SparseLP.ZeroColumnException

public SparseLP.ZeroColumnException(String message)

Description
A column of the constraint matrix has no entries.

Parameter

message – a String containing the error message

SparseLP.ZeroColumnException

public SparseLP.ZeroColumnException(String key, Object[] arguments)
A column of the constraint matrix has no entries.

Parameters

- **key** – a **String** containing the error message
- **arguments** – an **Object** array containing arguments used within the error message string

SparseLP.ZeroRowException

```java
static public class com.imsl.math.SparseLP.ZeroRowException extends com.imsl.IMSLException
```

A row of the constraint matrix has no entries.

Constructors

- **SparseLP.ZeroRowException**
  ```java
  public SparseLP.ZeroRowException(String message)
  ```

 Description
 A row of the constraint matrix has no entries.

 Parameter
 - **message** – a **String** containing the error message

- **SparseLP.ZeroRowException**
  ```java
  public SparseLP.ZeroRowException(String key, Object[] arguments)
  ```

 Description
 A row of the constraint matrix has no entries.

 Parameters
 - **key** – a **String** containing the error message
 - **arguments** – an **Object** array containing arguments used within the error message string
SparseLP.IncorrectlyEliminatedException class

static public class com.imsl.math.SparseLP.IncorrectlyEliminatedException extends com.imsl.IMSLException
One or more LP variables are falsely characterized by the internal presolver.

Constructors

SparseLP.IncorrectlyEliminatedException

public SparseLP.IncorrectlyEliminatedException(String message)

Description
One or more LP variables are falsely characterized by the internal presolver.

Parameter
- message – a String containing the error message

SparseLP.IncorrectlyEliminatedException

public SparseLP.IncorrectlyEliminatedException(String key, Object[] arguments)

Description
One or more LP variables are falsely characterized by the internal presolver.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

SparseLP.IncorrectlyActiveException class

static public class com.imsl.math.SparseLP.IncorrectlyActiveException extends com.imsl.IMSLException
One or more LP variables are falsely characterized by the internal presolver.
Constructors

SparseLP.IncorrectlyActiveException

```java
public SparseLP.IncorrectlyActiveException(String message)
```

Description

One or more LP variables are falsely characterized by the internal presolver.

Parameter

- `message` – a `String` containing the error message

```java
public SparseLP.IncorrectlyActiveException(String key, Object[] arguments)
```

Description

One or more LP variables are falsely characterized by the internal presolver.

Parameters

- `key` – a `String` containing the error message
- `arguments` – an `Object` array containing arguments used within the error message string

SparseLP.IllegalBoundsException class

```java
static public class com.imsl.math.SparseLP.IllegalBoundsException extends com.imsl.IMSLException
```

The lower bound is greater than the upper bound.

Constructors

SparseLP.IllegalBoundsException

```java
public SparseLP.IllegalBoundsException(String message)
```

Description

The lower bound is greater than the upper bound.

Parameter

- `message` – a `String` containing the error message

```java
public SparseLP.IllegalBoundsException(String key, Object[] arguments)
```

Optimization

SparseLP • 405
Description
The lower bound is greater than the upper bound.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

DenseLP class

public class com.imsl.math.DenseLP implements Serializable, Cloneable

Solves a linear programming problem using an active set strategy.

Class DenseLP uses an active set strategy to solve linear programming problems, i.e., problems of the form

\[
\min_{x \in \mathbb{R}^n} c^T x
\]

subject to

\[
b_l \leq A x \leq b_u
\]

\[
x_l \leq x \leq x_u
\]

where \(c \) is the objective coefficient vector, \(A \) is the coefficient matrix, and the vectors \(b_l, b_u, x_l, \) and \(x_u \) are the lower and upper bounds on the constraints and the variables, respectively.

If the linear constraints are infeasible an \(L_1 \) solution to the constraints are used as a replacement for the stated constraints. An exception is thrown but a generalized solution is computed and available using methods getPrimalSolution or getDualSolution. Similar comments hold for any of the three additional conditions: (1) There are multiple solutions; (2) some constraints are discarded, or (3) cycling in the algorithm is identified.

Refer to the following paper for further information:

Krogh, Fred, T. (2005), see An Algorithm for Linear Programming
Constructors

DenseLP

public DenseLP(MPSReader mps)

Description
Constructor using an MPSReader object.

Parameter

mps – An MPSReader object specifying the Linear Programming problem.

Exception

IllegalArgumentException is thrown if the problem dimensions are not consistent.

DenseLP

public DenseLP(double[][] a, double[] b, double[] c)

Description
Constructor variables of type double.

Parameters

a – A double matrix with coefficients of the constraints.
b – A double array containing the right-hand side of the constraints.
c – A double array containing the coefficients of the objective function.

Exception

IllegalArgumentException is thrown if the dimensions of a, b.length, and c.length are not consistent.

Methods

clone

public Object clone()

Description
Creates and returns a copy of this object.

getDualSolution

public double[] getDualSolution()

Description
Returns the dual solution.
Returns
a double array containing the dual solution of the linear programming problem.

getIterationCount
public int getIterationCount()

Description
Returns the iteration count.

Returns
an int scalar containing the iteration count.

getOptimalValue
public double getOptimalValue()

Description
Returns the optimal value of the objective function.

Returns
a double scalar containing the optimal value of the objective function. If a solution has not been computed, Double.NaN is returned.

getPrimalSolution
public double[] getPrimalSolution()

Description
Returns the solution x of the linear programming problem.

Returns
a double array containing the solution x of the linear programming problem.

setConstraintType
public void setConstraintType(int[] constraintType)

Description
Sets the types of general constraints in the matrix a.

Parameter
constraintType – an int array containing the types of general constraints. Let
\[r_i = a_{i1}x_1 + \ldots + a_{in}x_n. \] Then the value of constraintType[i] signifies the following:

<table>
<thead>
<tr>
<th>constraintType</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[r_i = b_i]</td>
</tr>
<tr>
<td>1</td>
<td>[r_i \leq b_i \text{ or } r_i \leq b_u \text{ if supplied}]</td>
</tr>
<tr>
<td>2</td>
<td>[r_i \geq b_i]</td>
</tr>
<tr>
<td>3</td>
<td>[b_i \leq r_i \leq b_u]</td>
</tr>
</tbody>
</table>

Default=0.
setLowerBound

```java
public void setLowerBound(double[] lowerBound)
```

Description

Sets the lower bound, \(x_l\), on the variables. If there is no lower bound on a variable, then \(1.0e30\) should be set as the lower bound.

Parameter

- `lowerBound` – a `double` array containing the lower bound on the variables. Default = 0.

setRefinementType

```java
public void setRefinementType(int iRefinement)
```

Description

Set the type of refinement used.

Parameter

- `iRefinement` – An `int` scalar value which defines the type of refinement to be used. The possible settings are:

<table>
<thead>
<tr>
<th>iRefinement</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No refinement. Always compute dual. Default.</td>
</tr>
<tr>
<td>1</td>
<td>Iterative refinement.</td>
</tr>
<tr>
<td>2</td>
<td>Use extended refinement. Iterate until no more progress.</td>
</tr>
</tbody>
</table>

If refinement is used, the coefficient matrices and other data are saved at the beginning of the computation. When finished this data together with the solution obtained is checked for consistency. If the discrepancy is too large, the solution process is restarted using the problem data just after processing the equalities, but with the final \(x\) values and final active set.

setUpperBound

```java
public void setUpperBound(double[] upperBound)
```

Description

Sets the upper bound, \(x_u\), on the variables. If there is no upper bound on a variable, then \(-1.0e30\) should be set as the upper bound.

Parameter

- `upperBound` – a `double` array containing the upper bound on the variables. The default is no upper bound.

setUpperLimit

```java
public void setUpperLimit(double[] upperLimit)
```

Description

Sets the upper limit of the constraints.
Parameter

upperLimit – a double array containing the upper limit, b_u, of the constraints.

solve

final public void solve() throws DenseLP.BoundsInconsistentException, DenseLP.NoAcceptablePivotException, DenseLP.ProblemUnboundedException, DenseLP.ProblemVacuousException, DenseLP.AllConstraintsNotSatisfiedException, DenseLP.MultipleSolutionsException, DenseLP.SomeConstraintsDiscardedException, DenseLP.CyclingOccurringException

Description

Solves the problem using an active set method. solve must be invoked prior to calling any of the “get” methods.

Exceptions

BoundsInconsistentException is thrown if the bounds are inconsistent.
NoAcceptablePivotException is thrown if an acceptable pivot could not be found.
ProblemUnboundedException is thrown if there is no finite solution to the problem.
ProblemVacuousException is thrown if the problem is vacuous.
AllConstraintsNotSatisfiedException is thrown if all constraints are not satisfied.

Example 1: Linear Programming

The linear programming problem in the standard form

$$\min f(x) = -x_1 - 3x_2$$

subject to:

$x_1 + x_2 + x_3 = 1.5$

$x_1 + x_2 - x_4 = 0.5$

$x_1 + x_5 = 1.0$

$x_2 + x_6 = 1.0$

$x_i \geq 0$, for $i = 1, \ldots, 6$

is solved.

import com.imsl.math.*;

public class DenseLPEx1 {

 public static void main(String args[]) throws Exception {
 double[][] a = {
 {1.0, 1.0, 1.0, 0.0, 0.0, 0.0},
 {1.0, 1.0, 0.0, -1.0, 0.0, 0.0},
 {1.0, 0.0, 0.0, 0.0, 1.0, 0.0},
 {0.0, 1.0, 0.0, 0.0, 0.0, 1.0}
 };
 }
}
Example 2: Linear Programming

The linear programming problem

\[
\begin{align*}
\text{min } f(x) &= -x_1 - 3x_2 \\
\text{subject to:} \\
0.5 &\leq x_1 + x_2 \leq 1.5 \\
0 &\leq x_1 \leq 1.0 \\
0 &\leq x_2 \leq 1.0
\end{align*}
\]

is solved.

```java
import com.imsl.math.*;

public class DenseLPEx2 {
    public static void main(String[] args) throws Exception {
        int[] constraintType = {3};
        double[] upperBound = {1.0, 1.0};
        double[][] a = {{1.0, 1.0}};
        double[] b = {0.5};
        double[] upperLimit = {1.5};
        double[] c = {-1.0, -3.0};
        DenseLP zf = new DenseLP(a, b, c);
        zf.setUpperLimit(upperLimit);
    }
}
```
Example 3: Linear Programming Maximize Example

Maximize the linear programming problem

$$\text{max } f(x) = 10x_1 + 15x_2 + 15x_3 + 13x_4 + 9x_5$$

subject to the following set of restrictions:

$$100x_1 + 50x_2 + 50x_3 + 40x_4 + 120x_5 \leq 300$$
$$40x_1 + 50x_2 + 50x_3 + 15x_4 + 30x_5 \leq 40$$
$$0 \leq x_1 \leq 1.0; 0 \leq x_2 \leq 1.0; 0 \leq x_3 \leq 1.0; 0 \leq x_4 \leq 1.0; 0 \leq x_5 \leq 1.0$$

Since DenseLP minimizes, the sign of the objective function must be changed to compute this solution. The signs of the dual solution components and the optimal value must also be changed. Because x_2 and x_3 are not uniquely determined within the bounds, this problem has a convex family of solutions. DenseLP issues an exception, MultipleSolutionsException. A particular solution is available and retrieved in the finally block.

```java
import com.imsl.math.*;

public class DenseLPEx3 {

    public static void main(String[] args) throws Exception {

        int[] constraintType = {1, 1}; /* Ax <= b */
        double[] lowerVariableBound = {0.0, 0.0, 0.0, 0.0, 0.0};
        double[] upperVariableBound = {1.0, 1.0, 1.0, 1.0, 1.0};
```
double[][] A = {
 {100.0, 50.0, 50.0, 40.0, 120.0},
 {40.0, 50.0, 50.0, 15.0, 30.0}
};
double[] b = {300.0, 40.0}; /* constraint type Ax <= b */
double[] c = {10.0, 15.0, 15.0, 13.0, 9.0};
/* Since DenseLP minimizes, change signs of the objective coefficients. */
double[] negC = new double[c.length];
for (int i = 0; i < c.length; i++) {
 negC[i] = -c[i];
}
DenseLP zf = new DenseLP(A, b, negC);
zf.setLowerBound(lowerVariableBound);
zf.setConstraintType(constraintType);
zf.setUpperBound(upperVariableBound);
try {
 zf.solve();
 /* x_2 and x_3 are not uniquely determined, expect multiple solutions. */
 if (zf.hasMultipleSolutions()) {
 System.out.println("Multiple solutions giving "+"essentially the same minimum exist.");
 } finally {
 double[] dSolution = zf.getDualSolution();
 /* Change the sign of the dual solution and optimal value * since DenseLP minimizes. */
 for (int i = 0; i < dSolution.length; i++) {
 dSolution[i] = -dSolution[i];
 }
 double optimalValue = -zf.getOptimalValue();
 new PrintMatrix("Solution").print(zf.getPrimalSolution());
 new PrintMatrix("Dual Solution").print(dSolution);
 System.out.println("Optimal Value = " + optimalValue);
 }
}

Output

Multiple solutions giving essentially the same minimum exist.
Solution
0 0
1 0.257
2 0.243
3 1
4 0

Dual Solution
Optimal Value = 20.5

DenseLP.WrongConstraintTypeException class

static public class com.imsl.math.DenseLP.WrongConstraintTypeException extends com.imsl.IMSLException

Constructors

DenseLP.WrongConstraintTypeException
public DenseLP.WrongConstraintTypeException(String message)

DenseLP.WrongConstraintTypeException
public DenseLP.WrongConstraintTypeException(String key, Object[] arguments)

DenseLP.BoundsInconsistentException class

static public class com.imsl.math.DenseLP.BoundsInconsistentException extends com.imsl.IMSLException

The bounds given are inconsistent.

Constructors

DenseLP.BoundsInconsistentException
public DenseLP.BoundsInconsistentException(String message)

Description

The bounds given are inconsistent.
Parameter

message – a String containing the error message

DenseLP.BoundsInconsistentException

class

public DenseLP.BoundsInconsistentException(String key, Object[] arguments)

Description

The bounds given are inconsistent.

Parameters

key – a String containing the exception message
arguments – an array containing arguments used within the error message string

DenseLP.NoAcceptablePivotException class

static public class com.imsl.math.DenseLP.NoAcceptablePivotException extends com.imsl.IMSLException

No acceptable pivot could be found.

Constructors

DenseLP.NoAcceptablePivotException

public DenseLP.NoAcceptablePivotException()

Description

No acceptable pivot could be found.

DenseLP.NoAcceptablePivotException

public DenseLP.NoAcceptablePivotException(String message)

Description

No acceptable pivot could be found.

Parameter

message – a String containing the error message

DenseLP.NoAcceptablePivotException

public DenseLP.NoAcceptablePivotException(String key, Object[] arguments)
Description
No acceptable pivot could be found.

Parameters
- **key** – a String containing the exception message
- **arguments** – an array containing arguments used within the error message string

DenseLP.ProblemUnboundedException class

```java
static public class com.imsl.math.DenseLP.ProblemUnboundedException extends com.imsl.IMSLException

The problem is unbounded.
```

Constructors

DenseLP.ProblemUnboundedException

```java
public DenseLP.ProblemUnboundedException()

Description
The problem is unbounded.
```

DenseLP.ProblemUnboundedException

```java
public DenseLP.ProblemUnboundedException(String message)

Description
The problem is unbounded.

Parameter
- **message** – a String containing the error message
```

DenseLP.ProblemUnboundedException

```java
public DenseLP.ProblemUnboundedException(String key, Object[] arguments)

Description
The problem is unbounded.

Parameters
- **key** – a String containing the exception message
- **arguments** – an array containing arguments used within the error message string
```
DenseLP.ProblemVacuousException class

static public class com.imsl.math.DenseLP.ProblemVacuousException extends com.imsl.IMSLException

The problem is vacuous.

Constructors

DenseLP.ProblemVacuousException
public DenseLP.ProblemVacuousException()

Description
The problem is vacuous.

DenseLP.ProblemVacuousException
public DenseLP.ProblemVacuousException(String message)

Description
The problem is vacuous.

Parameter
message – a String containing the error message

DenseLP.ProblemVacuousException
public DenseLP.ProblemVacuousException(String key, Object[] arguments)

Description
The problem is vacuous.

Parameters
key – a String containing the exception message
arguments – an array containing arguments used within the error message string

DenseLP.MultipleSolutionsException class

static public class com.imsl.math.DenseLP.MultipleSolutionsException extends com.imsl.IMSLException

The problem has multiple solutions giving essentially the same minimum.
Constructors

DenseLP.MultipleSolutionsException
public DenseLP.MultipleSolutionsException()

Description
The problem has multiple solutions giving essentially the same minimum.

DenseLP.MultipleSolutionsException
public DenseLP.MultipleSolutionsException(String message)

Description
The problem has multiple solutions giving essentially the same minimum.

Parameter
 message – a String containing the error message

DenseLP.MultipleSolutionsException
public DenseLP.MultipleSolutionsException(String key, Object[] arguments)

Description
The problem has multiple solutions giving essentially the same minimum.

Parameters
 key – a String containing the exception message
 arguments – an array containing arguments used within the error message string

DenseLP.AllConstraintsNotSatisfiedException

class

static public class com.imsl.math.DenseLP.AllConstraintsNotSatisfiedException
extends com.imsl.IMSLException

All constraints are not satisfied.
L1 minimization was applied to all constraints (including bounds and simple variables) but the
equalities, to approximate violated non-equalities as well as possible. If a feasible solution is possible
then try using refinement.
Constructors

DenseLP.AllConstraintsNotSatisfiedException

```java
public DenseLP.AllConstraintsNotSatisfiedException()
```

Description

All constraints are not satisfied.

```java
public DenseLP.AllConstraintsNotSatisfiedException(String message)
```

Description

All constraints are not satisfied.

Parameter

- `message` – a `String` containing the error message

```java
public DenseLP.AllConstraintsNotSatisfiedException(String key, Object[] arguments)
```

Description

All constraints are not satisfied.

Parameters

- `key` – a `String` containing the exception message
- `arguments` – an array containing arguments used within the error message string

DenseLP.SomeConstraintsDiscardedException

class

```java
static public class com.ims1.math.DenseLP.SomeConstraintsDiscardedException
extends com.ims1.IMSLError
```

Some constraints were discarded because they were too linearly dependent on other active constraints.

Constructors

DenseLP.SomeConstraintsDiscardedException

```java
public DenseLP.SomeConstraintsDiscardedException()
```
Description
Some constraints were discarded because they were too linearly dependent on other active constraints.

DenseLP.SomeConstraintsDiscardedException
public DenseLP.SomeConstraintsDiscardedException(String message)

Description
Some constraints were discarded because they were too linearly dependent on other active constraints.

Parameter
message – a String containing the error message

DenseLP.SomeConstraintsDiscardedException
public DenseLP.SomeConstraintsDiscardedException(String key, Object[] arguments)

Description
Some constraints were discarded because they were too linearly dependent on other active constraints.

Parameters
key – a String containing the exception message
arguments – an array containing arguments used within the error message string

DenseLP.CyclingOccurringException class

static public class com.ims1.math.DenseLP.CyclingOccurringException extends com.ims1.IMSLException

The algorithm appears to be cycling. Using refinement may help.

Constructors

DenseLP.CyclingOccurringException
public DenseLP.CyclingOccurringException()

Description
The algorithm appears to be cycling. Using refinement may help.

DenseLP.CyclingOccurringException
public DenseLP.CyclingOccurringException(String message)
Description
The algorithm appears to be cycling. Using refinement may help.

Parameter
message – a String containing the error message

DenseLP.CyclingOccurringException
public DenseLP.CyclingOccurringException(String key, Object[] arguments)

Description
The algorithm appears to be cycling. Using refinement may help.

Parameters
key – a String containing the exception message
arguments – an array containing arguments used within the error message string

QuadraticProgramming class

public class com.imsl.math.QuadraticProgramming
Solves the convex quadratic programming problem subject to equality or inequality constraints.

Class QuadraticProgramming is based on M.J.D. Powell’s implementation of the Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP problems subject to general linear equality/inequality constraints (Goldfarb and Idnani 1983); i.e., problems of the form

\[
\min_{x \in \mathbb{R}^n} g^T x + \frac{1}{2} x^T H x
\]

subject to

\[
A_1 x = b_1
\]

\[
A_2 x \geq b_2
\]

given the vectors \(b_1, b_2,\) and \(g,\) and the matrices \(H, A_1,\) and \(A_2.\) \(H\) is required to be positive definite. In this case, a unique \(x\) solves the problem or the constraints are inconsistent. If \(H\) is not positive definite, a positive definite perturbation of \(H\) is used in place of \(H.\) For more details, see Powell (1983, 1985).

If a perturbation of \(H, H + \alpha I,\) is used in the QP problem, then \(H + \alpha I\) also should be used in the definition of the Lagrange multipliers.

If the constraints are infeasible an exception is thrown. See Example 3 where the exception is caught and printed.
Field

EPSILON_SMALL

static final public double EPSILON_SMALL

The smallest relative spacing for doubles.

Constructor

QuadraticProgramming

public QuadraticProgramming(double[][] h, double[] g, double[][] aEquality, double[] bEquality, double[][] aInequality, double[] bInequality) throws QuadraticProgramming.InconsistentSystemException, QuadraticProgramming.ProblemUnboundedException, QuadraticProgramming.NoLPSolutionException, QuadraticProgramming.SolutionNotFoundException

Description

Solve a quadratic programming problem.

Parameters

- **h** – is square array containing the Hessian. It must be positive definite.
- **g** – contains the coefficients of the linear term of the objective function.
- **aEquality** – is a rectangular matrix containing the equality constraints. It can be null if there are no equality constraints.
- **bEquality** – contains the right-side of the equality constraints. It can be null if there are no equality constraints.
- **aInequality** – is a rectangular matrix containing the inequality constraints. It can be null if there are no inequality constraints.
- **bInequality** – contains the right-side of the inequality constraints. It can be null if there are no inequality constraints.

Exception

- **InconsistentSystemException** if the system of constraints is inconsistent and there is no solution.

Methods

getDual

public double[] getDual()
Description
Returns the dual (Lagrange multipliers).

getOptimalValue
public double getOptimalValue()

Description
Returns the optimal value.

Returns
a double, the optimal value.

getSolution
public double[] getSolution()

Description
Returns the solution.

isNoMoreProgress
public boolean isNoMoreProgress()

Description
Returns true if due to computer rounding error, a change in the variables fail to improve the objective function. Usually the solution is close to optimum.

Example 1: Solve a Quadratic Programming Problem
The quadratic programming problem is to minimize

\[x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 - 2x_0x_2 - 2x_3x_4 - 2x_0 \]

subject to

\[x_0 + x_1 + x_2 + x_3 + x_4 = 5 \]

\[x_2 - 2x_3 - 2x_4 = -3 \]

import com.imsl.math.*;

public class QuadraticProgrammingEx1 {
 public static void main(String args[]) throws Exception {
 double h[][] = {
 {2, 0, 0, 0, 0},
 {0, 2, -2, 0, 0},
 {0, -2, 2, 0, 0},
 {0, 0, 0, 2, -2},
 };
double aeq[][] = {
 {1, 1, 1, 1, 1},
 {0, 0, 1, -2, -2}
};
double beq[] = {5, -3};
double g[] = {-2, 0, 0, 0, 0};

QuadraticProgramming qp
 = new QuadraticProgramming(h, g, aeq, beq, null, null);
 // Print the solution and its dual
 new PrintMatrix("x").print(qp.getSolution());
 new PrintMatrix("dual").print(qp.getDual());
}

Output

x
0
0 1
1 1
2 1
3 1
4 1

dual
0
0 0
1 -0

Example 2: Solve a Quadratic Programming Problem

The quadratic programming problem is to minimize

\[x_0^2 + x_1^2 + x_2^2 \]

subject to

\[x_0 + 2x_1 - x_2 = 4 \]

\[x_0 - x_1 + x_2 = -2 \]

import com.imsl.math.*;

class QuadraticProgrammingEx2 {
public static void main(String args[]) throws Exception {
 double h[][] = {
 {2, 0, 0},
 {0, 2, 0},
 {0, 0, 2}
 };
 double aeq[][] = {{1, 2, -1}, {1, -1, 1}};
 double beq[] = {4, -2};
 double g[] = {0, 0, 0};
 QuadraticProgramming qp
 = new QuadraticProgramming(h, g, aeq, beq, null, null);
 // Print the solution and its dual
 new PrintMatrix("x").print(qp.getSolution());
 new PrintMatrix("dual").print(qp.getDual());
}

Output

x
0 0.286
1 1.429
2 -0.857
dual
0 1.143
1 -0.571

Example 3: Solve a Quadratic Programming Problem with Inconsistent System Constraints

In the quadratic programming problem variables 2 and 6 are fixed at the value zero by the equality constraints. The inequalities propose that the sums of the variables are at least 5.1 and no more than 4.9. These last two are inconsistent conditions, causing the NoLPSolutionException to be thrown.

import com.imsl.math.*;

public class QuadraticProgrammingEx3 {
 public static void main(String[] args) {
 double[][] h = {
 {2.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000},
 {0.000, 2.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000},
 {0.000, 0.000, 2.000, 0.000, 0.000, 0.000, 0.000, 0.000},
 {0.000, 0.000, 0.000, 2.000, 0.000, 0.000, 0.000, 0.000},
 {0.000, 0.000, 0.000, 0.000, 2.000, 0.000, 0.000, 0.000},
 {0.000, 0.000, 0.000, 0.000, 0.000, 2.000, 0.000, 0.000},
 {0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 2.000, 0.000},
 {0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 2.000}
 };
 }
}
\[
\begin{align*}
g & = \{5.000, 5.000, 5.000, 5.000, 5.000, 5.000\}; \\
a_{\text{Equality}} & = \\
& \begin{bmatrix}
0.000, 1.000, 0.000, 0.000, 0.000, 0.000 \\
0.000, 0.000, 0.000, 0.000, 0.000, 1.000
\end{bmatrix} \\
b_{\text{Equality}} & = \{0.000, 0.000\}; \\
a_{\text{Inequality}} & = \\
& \begin{bmatrix}
1.000, 1.000, 1.000, 1.000, 1.000, 1.000 \\
-1.000, -1.000, -1.000, -1.000, -1.000, -1.000
\end{bmatrix} \\
b_{\text{Inequality}} & = \{5 + \text{delta}, -5 + \text{delta}\}; \\
\end{align*}
\]

\[
\begin{align*}
& \text{double} \, \text{delta} = 0.1; \quad \text{// change to 0.0 to pass} \\
& \text{try} \{
\quad \text{QuadraticProgramming qp} \\
\quad = \text{new QuadraticProgramming(h, g, a_{\text{Equality}}, b_{\text{Equality}},} \\
\quad \text{a_{\text{Inequality}}, b_{\text{Inequality}});} \\
\quad \text{double x[6] = qp.getSolution();} \\
\quad \text{new com.imsl.math.PrintMatrix("Solution").print(x);} \\
\} \text{ catch (Exception e)} \{
\quad \text{WriteCutString(e.getMessage(), 72);} \\
\}
\end{align*}
\]

public static void WriteCutString(String value, int interval) {
 \begin{align*}
 \text{int rem} & = \text{value.length()} \% \text{interval;} \\
 \text{int len} & = \text{value.length()} / \text{interval} + \text{rem} / (1 > \text{rem} ? 1 : \text{rem}); \\
 \text{for} (\text{int i} = 0; \text{i} < \text{len}; \text{i}++) \{
 \quad \text{System.out.println(value.substring(i * interval,} \\
 \quad \text{(i * interval) + (interval < (value.length() - i * interval)} \\
 \quad \text{? interval : (value.length() - i * interval))));}
 \}
 \}
\]

Output

No solution for the LP problem was found. All constraints are not satisfied. L1 minimization was applied to all constraints (including bounds and simple variables) but the equalities, to approximate violated non-equalities as well as possible. If a feasible solution is possible then try using refinement.
QuadraticProgramming.InconsistentSystemException class

static public class

The system of constraints is inconsistent. There is no solution.

Constructors

QuadraticProgramming.InconsistentSystemException
public QuadraticProgramming.InconsistentSystemException()

Description
The system of constraints is inconsistent. There is no solution.

QuadraticProgramming.InconsistentSystemException
public QuadraticProgramming.InconsistentSystemException(String message)

QuadraticProgramming.ProblemUnboundedException class

static public class
com.imsl.math.QuadraticProgramming.ProblemUnboundedException extends com.imsl.IMSLException

The object value for the problem is unbounded.

Constructors

QuadraticProgramming.ProblemUnboundedException
public QuadraticProgramming.ProblemUnboundedException()
Description
The object value for the problem is unbounded. Numerical difficulty has occurred.

QuadraticProgramming.ProblemUnboundedException
public QuadraticProgramming.ProblemUnboundedException(String message)

Description
The object value for the problem is unbounded. Numerical difficulty has occurred.

Parameter
message – a string containing the exception message.

QuadraticProgramming.NoLPSolutionException
class

static public class com.imsl.math.QuadraticProgramming.NoLPSolutionException
extends com.imsl.IMSLException

No solution for the LP problem with h = 0 was found by DenseLP.

Constructors

QuadraticProgramming.NoLPSolutionException
public QuadraticProgramming.NoLPSolutionException()

Description
No solution for the LP problem with h = 0 was found by DenseLP.

QuadraticProgramming.NoLPSolutionException
public QuadraticProgramming.NoLPSolutionException(String message)

Description
No solution for the LP problem with h = 0 was found by DenseLP.

Parameter
message – a string containing the exception message.

QuadraticProgramming.NoLPSolutionException
public QuadraticProgramming.NoLPSolutionException(String key, Object[] arguments)
No solution for the LP problem with $h = 0$ was found by DenseLP.

Parameters

- key – a string containing the exception message.
- arguments – An Object containing the exception message from DenseLP.

QuadraticProgramming.SolutionNotFoundException class

```java
static public class com.imsl.math.QuadraticProgramming.SolutionNotFoundException extends com.imsl.IMSLException

A solution was not found. Try using DenseLP.
```

Constructors

- **QuadraticProgramming.SolutionNotFoundException**
  ```java
  public QuadraticProgramming.SolutionNotFoundException()
  ```

 Description

 A solution was not found. Try using DenseLP.

- **QuadraticProgramming.SolutionNotFoundException**
  ```java
  public QuadraticProgramming.SolutionNotFoundException(String message)
  ```

 Description

 A solution was not found. Try using DenseLP.

 Parameter

 message – a string containing the exception message.

MinConGenLin class

```java
public class com.imsl.math.MinConGenLin implements Serializable, Cloneable
```
Minimizes a general objective function subject to linear equality/inequality constraints.

The class `MinConGenLin` is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained optimization problems, i.e., problems of the form

\[
\min f(x)
\]

subject to

\[
A_1 x = b_1
\]
\[
A_2 x \leq b_2
\]
\[
x_l \leq x \leq x_u
\]
given the vectors \(b_1, b_2, x_l, \) and \(x_u\) and the matrices \(A_1\) and \(A_2\).

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality constraints are consistent, the method will revise \(x^0\), the initial guess, to satisfy

\[
A_1 x = b_1
\]

Next, \(x^0\) is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible \(x^k\), let \(J_k\) be the set of indices of inequality constraints that have small residuals. Here, the simple bounds are treated as inequality constraints. Let \(I_k\) be the set of indices of active constraints. The following quadratic programming problem

\[
\min f(x^k) + d^T \nabla f(x^k) + \frac{1}{2} d^T B^k d
\]

subject to

\[
a_j d = 0, \ j \in I_k
\]
\[
a_j d \leq 0, \ j \in J_k
\]

is solved to get \((d^k, \lambda^k)\) where \(a_j\) is a row vector representing either a constraint in \(A_1\) or \(A_2\) or a bound constraint on \(x\). In the latter case, the \(a_j = e_i\) for the bound constraint \(x_i \leq (x_u)_i\); and \(a_j = -e_i\) for the constraint \(-x_i \leq (x_l)_i\). Here, \(e_i\) is a vector with 1 as the \(i\)-th component, and zeros elsewhere. Variables \(\lambda^k\) are the Lagrange multipliers, and \(B^k\) is a positive definite approximation to the second derivative \(\nabla^2 f(x^k)\).
After the search direction d^k is obtained, a line search is performed to locate a better point. The new point $x^{k+1} = x^k + \alpha^k d^k$ has to satisfy the conditions

$$f(x^k + \alpha^k d^k) \leq f(x^k) + 0.1 \alpha^k (d^k)^T \nabla f(x^k)$$

and

$$(d^k)^T \nabla f(x^k + \alpha^k d^k) \geq 0.7 (d^k)^T \nabla f(x^k)$$

The main idea in forming the set J_k is that, if any of the equality constraints restricts the step-length α^k, then its index is not in J_k. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation B^k, is updated by the BFGS formula, if the condition

$$(d^k)^T \nabla f(x^k + \alpha^k d^k) - \nabla f(x^k) > 0$$

holds. Let $x^k \leftarrow x^{k+1}$, and start another iteration.

The iteration repeats until the stopping criterion

$$\| \nabla f(x^k) - A^k \lambda^k \|_2 \leq \tau$$

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 1989).

Constructor

MinConGenLin

```java
public MinConGenLin(MinConGenLin.Function fcn, int nvar, int ncon, int neq, double[] a, double[] b, double[] lowerBound, double[] upperBound)
```

Description

Constructor for MinConGenLin.

Parameters

- `fcn` – A Function object, user-supplied function to evaluate the function to be minimized.
- `nvar` – An int scalar containing the number of variables.
- `ncon` – An int scalar containing the number of linear constraints (excluding simple bounds).
- `neq` – An int scalar containing the number of linear equality constraints.
- `a` – A double array containing the equality constraint gradients in the first neq rows followed by the inequality constraint gradients. `a.length = ncon * nvar`
- `b` – A double array containing the right-hand sides of the linear constraints.
lowerBound – A double array containing the lower bounds on the variables. Choose a very large negative value if a component should be unbounded below or set lowerBound[i] = upperBound[i] to freeze the i-th variable. lowerBound.length = nvar

upperBound – A double array containing the upper bounds on the variables. Choose a very large positive value if a component should be unbounded above. upperBound.length = nvar

Exception
IllegalArgumentException is thrown if the dimensions of nvar, ncon, neq, a.length, b.length, lowerBound.length and upperBound.length are not consistent.

Methods

getFinalActiveConstraints
public int[] getFinalActiveConstraints()

Description
Returns the indices of the final active constraints.

Returns
an int array containing the indices of the final active constraints.

getFinalActiveConstraintsNum
public int getFinalActiveConstraintsNum()

Description
Returns the final number of active constraints.

Returns
an int scalar containing the final number of active constraints.

getLagrangeMultiplierEst
public double[] getLagrangeMultiplierEst()

Description
Returns the Lagrange multiplier estimates of the final active constraints.

Returns
a double array containing the Lagrange multiplier estimates of the final active constraints.

getNumberOfThreads
public int getNumberOfThreads()

Description
Returns the number of java.lang.Thread instances used for parallel processing.
Returns an int containing the number of `java.lang.Thread` instances used for parallel processing.

getObjectiveValue

```java
public double getObjectiveValue()
```

Description

Returns the value of the objective function.

Returns

a double scalar containing the value of the objective function.

getSolution

```java
public double[] getSolution()
```

Description

Returns the computed solution.

Returns

a double array containing the computed solution.

setGuess

```java
public void setGuess(double[] guess)
```

Description

Sets an initial guess of the solution.

Parameter

- `guess` – a double array containing an initial guess.

setNumberOfThreads

```java
public void setNumberOfThreads(int numberOfThreads)
```

Description

Sets the number of `java.lang.Thread` instances to be used for parallel processing.

Parameter

- `numberOfThreads` – an int specifying the number of `java.lang.Thread` instances to be used for parallel processing. If `numberOfThreads` is greater than 1, then interface `Function.f` is evaluated in parallel and `Function.f` must be thread-safe. Otherwise, unexpected behavior can occur.
 - Default: `numberOfThreads = 1`.

setTolerance

```java
public void setTolerance(double tolerance)
```

Description

Sets the nonnegative tolerance on the first order conditions at the calculated solution.
Parameter

tolerance – a double scalar containing the tolerance.

solve

final public void solve() throws MinConGenLin.ConstraintsInconsistentException,
MinConGenLin.VarBoundsInconsistentException,
MinConGenLin.ConstraintsNotSatisfiedException,
MinConGenLin.EqualityConstraintsException

Description

Minimizes a general objective function subject to linear equality/inequality constraints.

Example 1: Linear Constrained Optimization

The problem

\[\min f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 2x_2x_3 - 2x_4x_5 - 2x_1 \]

subject to

\[x_1 + x_2 + x_3 + x_4 + x_5 = 5 \]

\[x_3 - 2x_4 - 2x_5 = -3 \]

\[0 \leq x \leq 10 \]

is solved.

import com.imsl.math.*;
public class MinConGenLinEx1 {
 public static void main(String args[]) throws Exception {
 int neq = 2;
 int ncon = 2;
 int nvar = 5;
 double a[] = {1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, -2.0};
 double b[] = {5.0, -3.0};
 double xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};
 double xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};

 MinConGenLin.Function fcn = new MinConGenLin.Function() {
 public double f(double[] x) {
 }
 };
 }
}

```java
- 2.0 * x[0];
}
);
MinConGenLin zf
    = new MinConGenLin(fcn, nvar, ncon, neq, a, b, xlb, xub);
zf.solve();
new PrintMatrix("Solution").print(zf.getSolution());
```

Output

Solution

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Example 2: Linear Constrained Optimization

The problem

\[
\min f(x) = -x_0 x_1 x_2
\]

subject to

\[
-x_0 - 2x_1 - 2x_2 \leq 0
\]

\[
x_0 + 2x_1 + 2x_2 \leq 72
\]

\[
0 \leq x_0 \leq 20
\]

\[
0 \leq x_1 \leq 11
\]

\[
0 \leq x_2 \leq 42
\]

is solved with an initial guess of \(x_0 = 10, x_1 = 10\) and \(x_2 = 10\).
import com.imsl.math.*;

public class MinConGenLinEx2 {
 public static void main(String args[]) throws Exception {
 int neq = 0;
 int ncon = 2;
 int nvar = 3;
 double a[] = {-1.0, -2.0, -2.0, 1.0, 2.0, 2.0};
 double xlb[] = {0.0, 0.0, 0.0};
 double xub[] = {20.0, 11.0, 42.0};
 double xguess[] = {10.0, 10.0, 10.0};
 double b[] = {0.0, 72.0};

 MinConGenLin.Gradient grad = new MinConGenLin.Gradient() {
 public double f(double[] x) {
 return -x[0] * x[1] * x[2];
 }

 public void gradient(double[] x, double[] g) {
 g[0] = -x[1] * x[2];
 g[1] = -x[0] * x[2];
 g[2] = -x[0] * x[1];
 }
 };

 MinConGenLin zf = new MinConGenLin(grad, nvar, ncon, neq, a, b, xlb, xub);
 zf.setGuess(xguess);
 zf.solve();
 new PrintMatrix("Solution").print(zf.getSolution());
 System.out.println("Objective value = " + zf.getObjectiveValue());
 }
}

Output
Solution
 0
 0 20
 1 11
 2 15

Objective value = -3300.0
MinConGenLin.Function interface

public interface com.imsl.math.MinConGenLin.Function
Public interface for the user-supplied function to evaluate the function to be minimized.

Method

\[f \]

\[
\text{f}
\]

public double f(double[] x)

Description
Public interface for the function to be minimized.

Parameter
x – a double array, the point at which the function is evaluated. x.length equals the number of variables.

Returns
a double scalar, the function value at x

MinConGenLin.Gradient interface

Public interface for the user-supplied function to compute the gradient.

Method

\[\text{gradient} \]

\[
\text{gradient}
\]

public void gradient(double[] x, double[] g)

Description
Public interface for the user-supplied function to compute the gradient at point x.
Parameters

- \(x \) – a double array, the point at which the gradient is evaluated. \(x.length \) equals the number of variables.

- \(g \) – a double array, the values of the gradient of the objective function.

MinConGenLin.ConstraintsInconsistentException class

```java
static public class com.imsl.math.MinConGenLin.ConstraintsInconsistentException extends com.imsl.IMSLException

The equality constraints are inconsistent.
```

Constructors

MinConGenLin.ConstraintsInconsistentException

```java
public MinConGenLin.ConstraintsInconsistentException(String message)
```

Description

Constructs a ConstraintsInconsistentException object.

Parameter

- message – a String containing the error message

MinConGenLin.ConstraintsInconsistentException

```java
public MinConGenLin.ConstraintsInconsistentException(String key, Object[] arguments)
```

Description

Constructs a ConstraintsInconsistentException object.

Parameters

- key – a String containing the error message

- arguments – an Object array containing arguments used within the error message string
MinConGenLin.VarBoundsInconsistentException class

static public class com.imsl.math.MinConGenLin.VarBoundsInconsistentException
extends com.imsl.IMSLException

The equality constraints and the bounds on the variables are found to be inconsistent.

Constructors

MinConGenLin.VarBoundsInconsistentException
public MinConGenLin.VarBoundsInconsistentException(String message)

Description
Constructs a VarBoundsInconsistentException object.
Parameter

message – a String containing the error message

MinConGenLin.VarBoundsInconsistentException
public MinConGenLin.VarBoundsInconsistentException(String key, Object[] arguments)

Description
Constructs a VarBoundsInconsistentException object.
Parameters

key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinConGenLin.ConstraintsNotSatisfiedException class

static public class com.imsl.math.MinConGenLin.ConstraintsNotSatisfiedException
extends com.imsl.IMSLException

No vector x satisfies all of the constraints.
Constructors

MinConGenLin.ConstraintsNotSatisfiedException
public MinConGenLin.ConstraintsNotSatisfiedException(String message)

Description
Constructs a ConstraintsNotSatisfiedException object.

Parameter
message – a String containing the error message

MinConGenLin.ConstraintsNotSatisfiedException
public MinConGenLin.ConstraintsNotSatisfiedException(String key, Object[] arguments)

Description
Constructs a ConstraintsNotSatisfiedException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinConGenLin.EqualityConstraintsException

class
static public class com.imsl.math.MinConGenLin.EqualityConstraintsException
extends com.imsl.IMSLException

the variables are determined by the equality constraints.

Constructors

MinConGenLin.EqualityConstraintsException
public MinConGenLin.EqualityConstraintsException(String message)

Description
Constructs a EqualityConstraintsException object.
Parameter

message – a String containing the error message

MinConGenLin.EqualityConstraintsException

public MinConGenLin.EqualityConstraintsException(String key, Object[] arguments)

Description

Constructs a EqualityConstraintsException object.

Parameters

key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

BoundedLeastSquares class

public class com.imsl.math.BoundedLeastSquares implements Serializable, Cloneable

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm.

Class BoundedLeastSquares uses a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear least-squares problems subject to simple bounds on the variables. The problem is stated as follows:

$$\min \frac{1}{2} F(x)^T F(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2$$

subject to

$$l \leq x \leq u$$

where $$m \geq n$$, $$F : \mathbb{R}^n \rightarrow \mathbb{R}^m$$, and $$f_i(x)$$ is the $$i$$-th component function of $$F(x)$$. From a given starting point, an active set $$IA$$, which contains the indices of the variables at their bounds, is built. A variable is called a “free variable” if it is not in the active set. The routine then computes the search direction for the free variables according to the formula

$$d = -(J^T J + \mu I)^{-1} J^T F$$

where $$\mu$$ is the Levenberg-Marquardt parameter, $$F = F(x)$$, and $$J$$ is the Jacobian with respect to the free variables. The search direction for the variables in $$IA$$ is set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality conditions are checked. The conditions are:
\[\|g(x_i)\| \leq \varepsilon, l_i < x_i < u_i \]

\[g(x_i) < 0, x_i = u_i \]

\[g(x_i) > 0, x_i = l_i \]

where \(\varepsilon \) is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in \(\mathbf{IA} \), the active set. In the latter case, a variable that violates the optimality condition will be dropped out of \(\mathbf{IA} \). For more details on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see Gill and Murray (1976).

Constructor

BoundedLeastSquares

```
public BoundedLeastSquares(BoundedLeastSquares.Function function, int mFunctions, int nVariables, int boundType, double[] lowerBound, double[] upperBound)
```

Description

Constructor for BoundedLeastSquares.

Parameters

- `function` – a `Function` object, user-supplied function to evaluate the function
- `mFunctions` – an `int` scalar containing the number of functions
- `nVariables` – an `int` scalar containing the number of variables
- `boundType` – an `int` scalar containing the types of bounds on the variable

<table>
<thead>
<tr>
<th><code>boundType</code></th>
<th><code>Action</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User will supply all the bounds.</td>
</tr>
<tr>
<td>1</td>
<td>All variables are nonnegative.</td>
</tr>
<tr>
<td>2</td>
<td>All variables are nonpositive.</td>
</tr>
<tr>
<td>3</td>
<td>User supplies only the bounds on first variable, all other variables will have the same bounds.</td>
</tr>
</tbody>
</table>

- `lowerBound` – a `double` array containing the lower bounds on the variables
- `upperBound` – a `double` array containing the upper bounds on the variables

Exception

`IllegalArgumentException` is thrown if the dimensions of `mFunctions`, `nVariables`, `boundType`, `lowerBound.length` and `upperBound.length` are not consistent
Methods

getJacobian
public double[][] getJacobian()

Description
Returns the Jacobian at the approximate solution.

Returns
a mFunctions x nVariables double matrix containing the Jacobian at the approximate solution

getNumberOfThreads
public int getNumberOfThreads()

Description
Returns the number of java.lang.Thread instances used for parallel processing.

Returns
an int containing the number of java.lang.Thread instances used for parallel processing.

getResiduals
public double[] getResiduals()

Description
Returns the residuals at the approximate solution.

Returns
a double array containing the residuals at the approximate solution

getSolution
public double[] getSolution()

Description
Returns the solution.

Returns
a double array containing the computed solution

setAbsoluteFcnTol
public void setAbsoluteFcnTol(double absoluteFcnTol)

Description
Sets the absolute function tolerance. If this member function is not called, a value of Math.max(1.0e-10, Math.pow(2.2204460492503131e-16, 2.0/3.0)), is used.

Parameter

 - absoluteFcnTol – a double scalar containing the absolute function tolerance

setDiagonalScalingMatrix
public void setDiagonalScalingMatrix(double[] diagonalScalingMatrix)
Description
Sets the diagonal scaling matrix for the functions. The i-th component of the array is a positive scalar specifying the reciprocal magnitude of the i-th component function of the problem. If this member function is not called, an initial scaling of 1.0 is used.

Parameter
diagonalScalingMatrix – a double array containing the diagonal scaling for the functions

/setGoodDigit
public void setGoodDigit(int goodDigit)

Description
Sets the number of good digits in the function. If this member function is not called, a value of (int)(-Sfun.log10(2.2204460492503131e-16) + 0.1e0) is used.

Parameter
goodDigit – an int scalar containing the number of good digits

/setGradientTol
public void setGradientTol(double gradientTol)

Description
Sets the scaled gradient tolerance. If this member function is not called, a value of Math.pow(2.2204460492503131e-16, 1.0e0/3.0e0) is used.

Parameter
gradientTol – a double scalar containing the scaled gradient tolerance

/setGuess
public void setGuess(double[] guess)

Description
Sets the initial guess of the solution. If this member function is not called, an initial scaling of 1.0 is used.

Parameter
guess – a double array containing an initial guess

/setInternalScale
public void setInternalScale()

Description
Sets the internal variable scaling option. With this option, scaling for the variables is set internally.

/setJacobian
public void setJacobian(BoundedLeastSquares.Jacobian jacobian)
Description
Sets the Jacobian.

Parameter
 jacobian – a Jacobian object to compute the Jacobian.

setMaximumFunctionEvals
public void setMaximumFunctionEvals(int evaluations)

Description
Sets the maximum number of function evaluations. If this member function is not called, a value of 400 is used.

Parameter
 evaluations – an int scalar containing the maximum number of function evaluations

setMaximumIteration
public void setMaximumIteration(int iterations)

Description
Sets the maximum number of iterations. If this member function is not called, a value of 100 is used.

Parameter
 iterations – an int scalar containing the maximum number of iterations

setMaximumJacobianEvals
public void setMaximumJacobianEvals(int evaluations)

Description
Sets the maximum number of Jacobian evaluations. If this member function is not called, a value of 400 is used.

Parameter
 evaluations – an int scalar containing the maximum number of Jacobian evaluations

setMaximumStepSize
public void setMaximumStepSize(double stepSize)

Description
Sets the maximum allowable step size.

Parameter
 stepSize – a double scalar containing the maximum allowable step size

setNumberOfThreads
public void setNumberOfThreads(int numberOfThreads)
Description
Sets the number of java.lang.Thread instances to be used for parallel processing.

Parameter
- `numberOfThreads` – an int specifying the number of java.lang.Thread instances to be used for parallel processing. If `numberOfThreads` is greater than 1, then interface `Function.compute` is evaluated in parallel and `Function.compute` must be thread-safe. Otherwise, unexpected behavior can occur.

 Default: `numberOfThreads = 1`.

setRelativeFcnTol
```java
public void setRelativeFcnTol(double relativeFcnTol)
```

Description
Sets the relative function tolerance. If this member function is not called, a value of `Math.pow(2.2204460492503131e-16, 2.0e0/3.0e0)` is used.

Parameter
- `relativeFcnTol` – a double scalar containing the relative function tolerance

setScaledStepTol
```java
public void setScaledStepTol(double scaledStepTol)
```

Description
Sets the scaled step tolerance. If this member function is not called, a value of `Math.max(1.0e-10, Math.pow(2.2204460492503131e-16, 2.0e0/3.0e0))` is used.

Parameter
- `scaledStepTol` – a double scalar containing the scaled step tolerance

setScalingVector
```java
public void setScalingVector(double[] scalingVector)
```

Description
Sets the scaling vector for the variables. If this member function is not called, an initial scaling of 1.0 is used.

Parameter
- `scalingVector` – a double array containing the scaling vector for the variables

setTrustRegion
```java
public void setTrustRegion(double trustRegion)
```

Description
Sets the size of initial trust region radius. If this member function is not called, the value is based on the initial scaled Cauchy step.
Parameter

trustRegion – a double scalar containing the initial trust region radius

solve

final public void solve() throws BoundedLeastSquares.FalseConvergenceException

Description

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified
Levenberg-Marquardt algorithm.

Exception

FalseConvergenceException is thrown when the iterates appear to be converging to a
noncritical point.

Example 1: Bounded Least Squares

The nonlinear least-squares problem

\[
\min \frac{1}{2} \sum_{i=0}^{1} f_i(x)^2
\]

\[-2 \leq x_0 \leq 0.5\]

\[-1 \leq x_1 \leq 2\]

where

\[f_0(x) = 10(x_1 - x_0^2)\] and \[f_1(x) = (1 - x_0)\]

is solved.

import com.imsl.math.*;

public class BoundedLeastSquaresEx1 {

 public static void main(String args[]) throws Exception {
 int m = 2;
 int n = 2;
 int ibtype = 0;
 double[] xlb = {-2.0, -1.0};
 double[] xub = {0.5, 2.0};

 BoundedLeastSquares.Function rosbck
 = new BoundedLeastSquares.Function() {
 public void compute(double[] x, double[] f) {
 f[0] = 10.0 * (x[1] - x[0] * x[0]);
 f[1] = 1.0 - x[0];
 }
 };

 // Optimization
 BoundedLeastSquares • 447
BoundedLeastSquares zf
 = new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);
 zf.solve();
 new PrintMatrix("Solution").print(zf.getSolution());
}

Output
Solution
 0
 0 0.5
 1 0.25

Example 2: Bounded Least Squares

The nonlinear least-squares problem

$$
\min \frac{1}{2} \sum_{i=0}^{1} f_i(x)^2
$$

$$
-2 \leq x_0 \leq 0.5
$$

$$
-1 \leq x_1 \leq 2
$$

where

$$
f_0(x) = 10(x_1 - x_0^2) \text{ and } f_1(x) = (1 - x_0)
$$

is solved. An initial guess (-1.2, 1.0) is supplied, as well as the analytic Jacobian. The residual at the approximate solution is returned.
double[] xguess = {-1.2, 1.0};

BoundedLeastSquares.Function rosbck
 = new BoundedLeastSquares.Function()
 { public void compute(double[] x, double[] f) {
 f[0] = 10.0 * (x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
 }
 };

BoundedLeastSquares.Jacobian jacob
 = new BoundedLeastSquares.Jacobian()
 { public void compute(double[] x, double[] fjac) {
 fjac[0] = -20.0 * x[0];
 fjac[1] = 10.0;
 fjac[2] = -1.0;
 fjac[3] = 0.0;
 }
 };

BoundedLeastSquares zf
 = new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);

zf.setJacobian(jacob);
zf.setGuess(xguess);
zf.solve();
new PrintMatrix("Solution").print(zf.getSolution());
new PrintMatrix("Residuals").print(zf.getResiduals());

Output

Solution
 0
 0 0.5
 1 0.25

Residuals
 0
 0 0
 1 0.5

BoundedLeastSquares.Function interface

Public interface for the user-supplied function to evaluate the function that defines the least-squares
Method

compute
public void compute(double[] x, double[] f)

Description
Public interface for the user-supplied function to evaluate the function that defines the least-squares problem.

Parameters
- x – a double array containing the point at which the function is to be evaluated. x.length = nVariables
- f – a double array which contains the function values at point x. f.length = mFunctions

BoundedLeastSquares.Jacobian interface

Public interface for the user-supplied function to compute the Jacobian.

Method

compute
public void compute(double[] x, double[] fjac)

Description
Public interface for the user-supplied function to compute the Jacobian.

Parameters
- x – a double array, the point at which the Jacobian is to be evaluated. x.length = nVariables
- fjac – a double array, the computed Jacobian at the point x. fjac.length = mFunctions x nVariables
BoundedLeastSquares.FalseConvergenceException class

False convergence - The iterates appear to be converging to a noncritical point.

Constructors

BoundedLeastSquares.FalseConvergenceException

public BoundedLeastSquares.FalseConvergenceException(String message)

Description

Constructs an FalseConvergenceException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter

message – the detail message

BoundedLeastSquares.FalseConvergenceException

public BoundedLeastSquares.FalseConvergenceException(String key, Object[] arguments)

Description

Constructs an FalseConvergenceException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

BoundedVariableLeastSquares class

public class com.imsl.math.BoundedVariableLeastSquares implements Serializable, Cloneable
Solve a linear least-squares problem with bounds on the variables. `BoundedVariableLeastSquares` solves the least-squares problem

\[\min_x \|Ax - b\|^2 \]

subject to the conditions

\[\alpha_k \leq x_k \leq \beta_k \]

for all \(k \).

This algorithm is a generalization of `com.imsl.math.NonNegativeLeastSquares` (p. 456), that solves the least-squares problem, \(Ax = b \), subject to all \(x_j \geq 0 \). `NonNegativeLeastSquares` is based on the subroutine `NNLS` which appeared in Lawson and Hanson (1974). The additional work on bounded variable least squares was published in a later reprint (Lawson and Hanson, 1995).

Constructor

`BoundedVariableLeastSquares`

```java
public BoundedVariableLeastSquares(double[][] a, double[] b, double[] lowerBound, double[] upperBound)
```

Description

Construct a new `BoundedVariableLeastSquares` instance to solve \(Ax - b \) subject to bounds on the variables. Each upper bound must be greater than or equal to the corresponding lower bound.

Parameters

- `a` – the double input matrix.
- `b` – a double array of length `a.length`.
- `lowerBound` – a double array of length `n` containing lower bounds. Use `Double.NEGATIVE_INFINITY` for variables which are not bounded below.
- `upperBound` – a double array of length `n` containing upper bounds. Use `Double.POSITIVE_INFINITY` for variables which are not bounded above.

Methods

`getDualSolution`

```java
public double[] getDualSolution()
```

Description

Returns the dual solution vector, \(w \). If \(x_j \) is at neither its upper nor lower bound then \(w_j = 0 \). If \(x_j \) is at its lower bound then \(w_j \leq 0 \). If \(x_j \) is at its upper bound then \(w_j \geq 0 \). If the upper and lower bound for the \(j \)-th variable are equal, fixing the value of \(x_j \), then the value of \(w_j \) is arbitrary.
Returns
a double array containing the dual solution vector, \(w \).

getIterations

```java
public int getIterations()
```

Description

Returns the number of iterations used to find the solution.

Returns

an int containing the number of iterations.

getResidualNorm

```java
public double getResidualNorm()
```

Description

Returns the euclidean norm of the residual vector, \(\|Ax - b\|_2 \).

Returns

a double containing the euclidean norm of the residual vector.

getSolution

```java
public double[] getSolution()
```

Description

Returns the solution to the problem.

Returns

a double array containing the solution.

setMaxIterations

```java
public void setMaxIterations(int maxIterations)
```

Description

Sets the maximum number of iterations.

Parameter

maxIterations – an int specifying the maximum number of iterations. The default is three times \(a[0].\text{length} \).

setTolerance

```java
public void setTolerance(double tolerance)
```

Description

Sets the internal tolerance used to determine the relative linear dependence of a column vector for a variable moved from its initial value.
Parameter

 tolerance – a double value specifying the tolerance. The default value is 1.0e-7.

solve

public void solve() throws BoundedVariableLeastSquares.TooManyIterException

Description

Find the solution \(x \) to the problem for the current constraints.

Example 1: Bounded Value Least Squares

The following example solves a linear least squares problem with bounds on the variables and compares the result to its unbounded solution. The normal of the residuals is 0.0 for the exact solution.

```java
import com.imsl.math.*;

public class BoundedVariableLeastSquaresEx1 {

    public static void main(String args[]) throws Exception {
        double a[][] = {
            {1, -3, 2},
            {-3, 10, -5},
            {2, -5, 6}
        };
        double b[] = {27, -78, 64};
        double xlb[] = {-1, -1, -1};
        double xub[] = {5, 5, 5};
        double xl_ub[] = {Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY};
        double xu_ub[] = {Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY};

        // compute the bounded solution
        BoundedVariableLeastSquares bvls = new BoundedVariableLeastSquares(a, b, xlb, xub);
        bvls.solve();
        double[] x_bounded = bvls.getSolution();
        new PrintMatrix("Bounded Solution").print(x_bounded);
        System.out.println("Norm of the Residuals = " + bvls.getResidualNorm());

        // compute the unbounded solution
        bvls = new BoundedVariableLeastSquares(a, b, xl_ub, xu_ub);
        bvls.solve();
        double[] x_unbounded = bvls.getSolution();
        new PrintMatrix("Unbounded Solution").print(x_unbounded);
        System.out.println("Norm of the Residuals = " + bvls.getResidualNorm());
    }
}
```

Output

Bounded Solution

| 454 | BoundedVariableLeastSquares | JMSL |
Norm of the Residuals = 35.0142828000232

Unbounded Solution

```
0 5
1 -1
2 7
```

Norm of the Residuals = 0.0

BoundedVariableLeastSquares.TooManyIterException class

```
```

Maximum number of iterations exceeded.

Constructors

BoundedVariableLeastSquares.TooManyIterException

```
public BoundedVariableLeastSquares.TooManyIterException(String message)
```

Description

The maximum number of iterations has exceeded.

Parameter

- `message` – a String containing the error message

BoundedVariableLeastSquares.TooManyIterException

```
public BoundedVariableLeastSquares.TooManyIterException(String key, Object[] arguments)
```

Description

The maximum number of iterations has exceeded.
Parameters

key – a String containing the exception message
arguments – an array containing arguments used within the error message string

NonNegativeLeastSquares class

class com.imsl.math.NonNegativeLeastSquares implements Serializable, Cloneable

Solves a linear least squares problem with nonnegativity constraints. NonNegativeLeastSquares solves the problem

$$\min_x \|Ax - b\|^2$$

subject to the condition $x \geq 0$.

If a starting point x_0 is provided, those entries of x_0 that are > 0 are first combined with a descent gradient component. The start point is the origin. When x_0 is not provided the algorithm uses only the gradient to verify that an optimum has been found. The algorithm completes using only the gradient components to reach an optimum. For more information, see Lawson and Hanson (1974).

Constructor

NonNegativeLeastSquares

class NonNegativeLeastSquares(double[].a, double[] b)

Description

Construct a new NonNegativeLeastSquares instance to solve $Ax-b$ where x is a vector of n unknowns.

Parameters

a – the double input matrix.
b – a double array of length a.length.

Methods

getDualSolution

class double[] getDualSolution()

Description

Returns the dual solution vector, w. If $x_j = 0$ then $w_j \leq 0$, otherwise $w_j = 0$.
Returns
a double array containing the dual solution vector, \(w \).

getIterations
public int getIterations()

Description
Returns the number of iterations used to find the solution.

Returns
an int containing the number of iterations.

getResidualNorm
public double getResidualNorm()

Description
Returns the euclidean norm of the residual vector, \(\|Ax - b\|^2 \).

Returns
a double containing the euclidean norm of the residual vector.

getSolution
public double[] getSolution()

Description
Returns the solution to the problem, \(x \).

Returns
a double array containing the solution.

setDualTolerance
public void setDualTolerance(double dualTolerance)

Description
Sets the dual tolerance. The computation stops if largest gradient is smaller than this. The default value is 0.

Parameter
dualTolerance – a double containing the dual tolerance.

setGuess
public void setGuess(double[] guess)

Description
Sets the initial guess.
Parameter
 guess – a double array containing the initial guess. If set, the guess is used in a two-phase
 algorithm where the positive components are matched with positive gradients to choose an
 incoming column. If not set, the algorithm uses only the gradient to verify that an optimum has
 been found.

setMaxIterations
public void setMaxIterations(int maxIterations)

Description
Sets the maximum number of iterations.

Parameter
 maxIterations – an int specifying the maximum number of iterations. The default is three
times a[0].length.

setMaximumTime
public void setMaximumTime(long maximumTime)

Description
Sets the maximum time allowed for the solve step.

Parameter
 maximumTime – a long value specifying the maximum time, in milliseconds, to be allowed for the
 solve step. If maximumTime is less than or equal to zero, then no time limit is imposed. By default,
 there is no time limit.

setNormTolerance
public void setNormTolerance(double normTolerance)

Description
Sets the residual norm tolerance.

Parameter
 normTolerance – a double containing the residual norm tolerance. The computation stops if
 \(||rnorm||^2 \leq \text{normTolerance} \times ||b|| \), where \(rnorm \) is the residual norm. By default, the value is 0.

setRankTolerance
public void setRankTolerance(double rankTolerance)

Description
Sets the tolerance used for the incoming column rank deficient check.

Parameter
 rankTolerance – a double value used to check for rank deficiency. The default value is
 2.220e-016.

solve
public void solve() throws NonNegativeLeastSquares.TooManyIterException,
NonNegativeLeastSquares.TooMuchTimeException
Description
Finds the solution to the problem for the current constraints.

Exceptions

TooManyIterationsException is thrown if the maximum number of iterations is exceeded.
TooMuchTimeException is thrown if the maximum time allowed for solve is exceeded.

Example 1: Non-negative Least Squares
Consider the following problem:
\[
\begin{bmatrix}
1 & -3 & 2 \\
-3 & 10 & -5 \\
2 & -5 & 6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
27 \\
-78 \\
64
\end{bmatrix}
\]
Subject to the constraint \(x \geq 0\). The NonNegativeLeastSquares class is used to compute a solution, which is compared to the exact solution of \(\{1, -4, 7\}\).

```java
import com.imsl.math.*;

public class NonNegativeLeastSquaresEx1 {
    public static void main(String args[]) throws Exception {
        double a[][] = {
            {1, -3, 2},
            {-3, 10, -5},
            {2, -5, 6}
        };
        double b[] = {27, -78, 64};

        NonNegativeLeastSquares nnls = new NonNegativeLeastSquares(a, b);
        nnls.solve();
        double[] x = nnls.getSolution();

        new PrintMatrix("Solution").print(x);

        // compare solution with exact answer
        double[][] compare = new double[2][];
        compare[0] = Matrix.multiply(a, x);
        compare[1] = Matrix.multiply(a, new double[]{1, -4, 7});

        PrintMatrixFormat pmf = new PrintMatrixFormat();
        pmf.setColumnLabels(new String[] {"x >= 0", "exact"});
        PrintMatrix pm = new PrintMatrix("Comparison of 'b'");
        pm.print(pmf, Matrix.transpose(compare));
    }
}
```

Output
Solution
\(0\)

Optimization NonNegativeLeastSquares • 459
Comparison of 'b'
\[x \geq 0 \text{ exact} \]

0 18.449
1 0
2 4.507

NonNegativeLeastSquares.TooManyIterException class

Maximum number of iterations has been exceeded.

Constructors

NonNegativeLeastSquares.TooManyIterException
public NonNegativeLeastSquares.TooManyIterException(String message)

Description
The maximum number of iterations has been exceeded.

Parameter
message – a String containing the error message

NonNegativeLeastSquares.TooManyIterException
public NonNegativeLeastSquares.TooManyIterException(String key, Object[] arguments)

Description
The maximum number of iterations has been exceeded.

Parameters
key – the String key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string
NonNegativeLeastSquares.TooMuchTimeException class

Maximum time allowed for solve is exceeded.

Constructors

NonNegativeLeastSquares.TooMuchTimeException

public NonNegativeLeastSquares.TooMuchTimeException(String message)

Description
The maximum time allowed for solve is exceeded.

Parameter
message – a String containing the error message

NonNegativeLeastSquares.TooMuchTimeException

public NonNegativeLeastSquares.TooMuchTimeException(String key, Object[] arguments)

Description
The maximum time allowed for solve is exceeded.

Parameters
key – the String key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

MinConNLP class

public class com.imsl.math.MinConNLP implements Serializable, Cloneable

General nonlinear programming solver.

MinConNLP is based on the FORTRAN subroutine, DONLP2, by Peter Spellucci and licensed from TU Darmstadt. MinConNLP uses a sequential equality constrained quadratic programming method with an active set technique, and an alternative usage of a fully regularized mixed constrained subproblem in
case of nonregular constraints (i.e. linear dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved Armijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in the following two papers:

The problem is stated as follows:

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

subject to

\[
g_j(x) = 0, \text{ for } j = 1, \ldots, m_e
\]

\[
g_j(x) \geq 0, \text{ for } j = m_e + 1, \ldots, m
\]

\[
x_l \leq x \leq x_u
\]

where all problem functions are assumed to be continuously differentiable. Although default values are provided for optional input arguments, it may be necessary to adjust these values for some problems. Through the use of member functions, MinConNLP allows for several parameters of the algorithm to be adjusted to account for specific characteristics of problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies for maximizing the performance of the algorithm. In addition, the following are a number of guidelines to consider when using MinConNLP:

- A good initial starting point is very problem specific and should be provided by the calling program whenever possible. See method setGuess.

- Gradient approximation methods can have an effect on the success of MinConNLP. Selecting a higher order approximation method may be necessary for some problems. See method setDifferentiationType.

- If a two sided constraint \(l_i \leq g_i(x) \leq u_i \) is transformed into two constraints, \(g_2i(x) \geq 0 \) and \(g_{2i+1}(x) \geq 0 \), then choose \(\delta_{el0} < 1/2(u_i - l_i)/\max\{1, \|\nabla g_i(x)\|\} \), or at least try to provide an estimate for that value. This will increase the efficiency of the algorithm. See method setBindingThreshold.

- The parameter ierr provided in the interface to the user supplied function FCN can be very useful in cases when evaluation is requested at a point that is not possible or reasonable. For example, if evaluation at the requested point would result in a floating point exception, then setting ierr to true and returning without performing the evaluation will avoid the exception. MinConNLP will
then reduce the stepsize and try the step again. Note, if ierr is set to true for the initial guess, then an error is issued.

The solver terminates if there is an error or if one of the following three terminations conditions is satisfied. The method getTerminationCondition returns the termination condition index.

- **Termination condition 10:** Kuhn-Tucker conditions are satisfied.
 \[\|g(x)^-\|_1 \leq \text{violationBound} \]
 \[\|\lambda^-\|_\infty \leq \text{multiplierError} \]
 \[\|\nabla L(x, \mu, \lambda)\| \leq \varepsilon_x (1 + \|\nabla f(x)\|) \]
 \[|\lambda^T g(x)| \leq \text{violationBound} \times \text{multiplierError} \times M \]
 where \(L(x, \mu, \lambda) = f(x) - \lambda^T g(x) \), \(M \) is the number of constraints, and \(\varepsilon_x = 10^{-5} \). The notation \(y^- \) means a vector whose negative elements are the same as the vector \(y \), but with zeros in place of \(y \)'s positive values.

- **Termination condition 11:** Computed correction is small.
 \[d \leq \varepsilon_x (\|x\| + \varepsilon_x) \]
 \[\|\nabla L(x, \mu, \lambda)\| \leq \varepsilon_x (1 + \|\nabla f(x)\|) \]
 \[\|g(x)^-\|_1 \leq \text{violationBound} \]
 \[\|\lambda^-\|_\infty \leq \text{multiplierError} \]
 where \(d \) is the computed correction for the current solution \(x \).

- **Termination condition 12:** \(x \) is almost feasible, directional derivative is very small. Further progress cannot be expected.
 \[D\Phi(x; d) \geq -100(|\Phi(x)| + 1)\varepsilon_x \]
 where \(\Phi \) is the current penalty function, and \(D\Phi \) is the directional derivative of \(\Phi \). This usually occurs as a termination condition for ill-conditioned problems.

Note that one can use the JDK 1.4 JAVA Logging API to generate intermediate output for the solver. Accumulated levels of detail correspond to JAVA’s CONFIG, FINE, FINER, and FINEST logging levels with CONFIG yielding the smallest amount of information and FINEST yielding the most. The levels of output yield the following:
<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG</td>
<td>One line of intermediate results is printed with each iteration. A summary report is printed upon completion.</td>
</tr>
<tr>
<td>FINE</td>
<td>Lines of intermediate results giving the most important data for each step are printed after each step. A summary report is printed upon completion.</td>
</tr>
<tr>
<td>FINER</td>
<td>Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking, etc. are printed. A summary report is printed upon completion.</td>
</tr>
<tr>
<td>FINEST</td>
<td>Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking, the gradients in the working set, the quasi-Newton updated, etc. are printed. A summary report is printed upon completion.</td>
</tr>
</tbody>
</table>

Constructor

MinConNLP

```java
public MinConNLP(int mTotalConstraints, int mEqualityConstraints, int nVariables) throws IllegalArgumentException
```

Description

Nonlinear programming solver constructor.

Parameters

- `mTotalConstraints` – An int scalar value which defines the total number of constraints
- `mEqualityConstraints` – An int scalar value which defines the number of equality constraints
- `nVariables` – An int scalar value which defines the number of variables.

Methods

getConstraintResiduals

```java
public double[] getConstraintResiduals()
```

Description

Returns the constraint residuals.

Returns

A double array containing the constraint residuals.
getIterations

public int getIterations()

Description

Returns the actual number of iterations used.

Returns

the number of iterations used.

getLagrangeMultiplierEst

public double[] getLagrangeMultiplierEst()

Description

Returns the Lagrange multiplier estimates of the constraints.

Returns

a double array containing the Lagrange multiplier estimates of the constraints.

getLogger

public Logger getLogger()

Description

Returns the logger object. Logger support requires JDK1.4. Use with earlier versions returns null.

Returns

the logger object, if present, or null.

getMaximumTime

public long getMaximumTime()

Description

Returns the maximum time allowed for the solve step.

Returns

the maximum time, in milliseconds, to be allowed for the solve step. If less than or equal to zero then no time limit is imposed. The default value is -1 (no time limit).

getNumberOfThreads

public int getNumberOfThreads()

Description

Returns the number of java.lang.Thread instances used for parallel processing.

Returns

an int containing the number of java.lang.Thread instances used for parallel processing.

getOptimalValue

public double getOptimalValue()
Description
Returns the value of the objective function.

Returns
a `double`, the value of the objective function.

getSolution
public double[] getSolution()

Description
Returns the last computed solution. This is the same solution as returned by the `solve` method.

Returns
a `double` array containing the solution.

getTerminationCriterion
public int getTerminationCriterion()

Description
Returns the reason the `solve` step terminated.

Returns
an `int` that indicates the reason the `solve` method terminated.

getTolerance
public double getTolerance()

Description
Returns the desired precision of the solution.

Returns
a `double` that is the desired precision of the solution.

setBindingThreshold
public void setBindingThreshold(double del0)

Description
Set the binding threshold for constraints. In the initial phase of minimization a constraint is considered binding if
\[
\frac{g(x)}{\max_i |\nabla g_i(x)|} \leq \text{del0} \quad i = M_c + 1, \ldots, M
\]

Good values are between .01 and 1.0. If `del0` is chosen too small then identification of the correct set of binding constraints may be delayed. Contrary, if `del0` is too large, then the method will often escape to the full regularized SQP method, using individual slack variables for any active constraint, which is quite costly. For well scaled problems `del0 = 1.0` is reasonable. If this member function is not called, `del0` is set to `.5 * \tau_0`.

Parameter
`del0` – a `double` scalar value specifying the binding threshold for constraints.
setBoundViolationBound
public void setBoundViolationBound(double taubnd)

Description
Set the amount by which bounds may be violated during numerical differentiation. If this member function is not called, taubnd is set to 1.0.

Parameter

taubnd – a double scalar value specifying the amount by which bounds may be violated during numerical differentiation.

Exception
IllegalArgumentException is thrown if taubnd is less than or equal to 0.0

setDifferentiationType
public void setDifferentiationType(int idtype)

Description
Set the type of numerical differentiation to be used.

Parameter

idtype – an int scalar value specifying the type of numerical differentiation to be used. If this member function is not called, idtype is set to 1.

<table>
<thead>
<tr>
<th></th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use a forward difference quotient with discretization step-size 0.1 (\left(\text{epsfcn}^{1/2}\right)) componentwise relative. This is the default value used.</td>
</tr>
<tr>
<td>2</td>
<td>Use the symmetric difference quotient with discretization stepsize 0.1 (\left(\text{epsfcn}^{1/3}\right)) componentwise relative.</td>
</tr>
<tr>
<td>3</td>
<td>Use the sixth order approximation computing a Richardson extrapolation of three symmetric difference quotient values. This uses a discretization stepsize 0.01 (\left(\text{epsfcn}^{1/7}\right))</td>
</tr>
</tbody>
</table>

Exception
IllegalArgumentException is thrown if idtype is less than or equal to 0 or greater than or equal to 4.

setFunctionPrecision
public void setFunctionPrecision(double epsfcn)
Description
Set the relative precision of the function evaluation routine. If this member function is not called, epsfcn is set to 2.2e-16.

Parameter
epsfcn – a double scalar value specifying the relative precision of the function evaluation routine.

Exception
IllegalArgumentException is thrown if epsfcn is less than or equal to 0.0

setGradientPrecision
public void setGradientPrecision(double epsdif)

Description
Set the relative precision in gradients. If this member function is not called, epsdif is set to 2.2e-16.

Parameter
epsdif – a double scalar value specifying the relative precision in gradients.

Exception
IllegalArgumentException is thrown if epsdif is less than or equal to 0.0

setGuess
public void setGuess(double[] xguess)

Description
Set the initial guess of the minimum point of the input function. If this member function is not called, the elements of this array are set to x, (with the smallest value of ∥x∥₂) that satisfies the bounds.

Parameter
xguess – a double array specifying the initial guess of the minimum point of the input function

setMaxIterations
public void setMaxIterations(int maxIterations)

Description
Set the maximum number of iterations allowed. If this member function is not called, the maximum number of iterations is set to 200.

Parameter
maxIterations – an int specifying the maximum number of iterations allowed

Exception
IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setMaximumTime
public void setMaximumTime(long maximumTime)
Description
Sets the maximum time allowed for the solve step.

Parameter
- `maximumTime` – is the maximum time, in milliseconds, to be allowed for the solve step. If less than or equal to zero then no time limit is imposed.

setMultiplierError
public void setMultiplierError(double smallw)

Description
Set the error allowed in the multipliers. A negative multiplier of an inequality constraint is accepted (as zero) if its absolute value is less than `smallw`. If this member function is not called, it is set to $e^{2\log \epsilon/3}$.

Parameter
- `smallw` – a double scalar value specifying the error allowed in the multipliers.

Exception
- `IllegalArgumentException` is thrown if `smallw` is less than or equal to 0.0

setNumberOfThreads
public void setNumberOfThreads(int numberOfThreads)

Description
Sets the number of `java.lang.Thread` instances to be used for parallel processing.

Parameter
- `numberOfThreads` – an int specifying the number of `java.lang.Thread` instances to be used for parallel processing. If `numberOfThreads` is greater than 1, then interface `Function.f` is evaluated in parallel and `Function.f` must be thread-safe. Otherwise, unexpected behavior can occur.
- Default: `numberOfThreads = 1`.

setPenaltyBound
public void setPenaltyBound(double tau0)

Description
Set the universal bound for describing how much the unscaled penalty-term may deviate from zero. A small `tau0` diminishes the efficiency of the solver because the iterates then will follow the boundary of the feasible set closely. Conversely, a large `tau0` may degrade the reliability of the code. If this member function is not called, `tau0` is set to 1.0.

Parameter
- `tau0` – a double scalar value specifying the universal bound for describing how much the unscaled penalty-term may deviate from zero.
setScalingBound
public void setScalingBound(double scbnd)

Description
Set the scaling bound for the internal automatic scaling of the objective function. If this member
function is not called, scbnd is set to 1.0e4.

Parameter
 scbnd – a double scalar value specifying the scaling variable for the problem function.

setTolerance
public void setTolerance(double epsx)

Description
Set the desired precision of the solution.

Parameter
 epsx – is the the desired precision of the solution. For a well scaled and well-conditioned problem
 it essentially specifies a desired relative precision in the solution. It should never be chosen less
 than the square root of the machine precision since the control of progress in the method is based
 on the comparison of function values usually taken from the constraining manifold where the
 objective function varies like $O(||x^k - x^*||^2)$. Even this requirement may be too strong. The default
 value of 1.0e-5 is approximately the third root of the machine precision. The user should be aware
 of the fact that the precision requirement is automatically relaxed if the solver considers a problem
 “singular”. If the precision seems to be too poor in such a case a decrease of epsx might help.
 Default: 1.0e-5.

setViolationBound
public void setViolationBound(double delmin)

Description
Set the scalar which defines allowable constraint violations of the final accepted result. Constraints are
satisfied if $|g_i(x)| \leq \text{delmin}$, and $g_i(x) \geq -\text{delmin}$ respectively. If this member function is not called,
the default value is set to $\min(\text{del0}/10, \max(\text{epsdif}, \min(\text{del0}/10, \max((1.\text{e} - 6)\text{del0}, \text{small})))$).

Parameter
 delmin – a double scalar value specifying the allowable constraint violations of the final accepted
 result.
Exception

IllegalArgumentException is thrown if delmin is less than or equal to 0.0

setXlowerBound

public void setXlowerBound(double[] xlb)

Description

Set the lower bounds on the variables. If this member function is not called, the elements of this array are set to -1.79e308.

Parameter

xlb – a double array specifying the lower bounds on the variables

setXscale

public void setXscale(double[] xscale)

Description

Set the internal scaling of the variables. The initial value given and the objective function and gradient evaluations, however, are always given in the original unscaled variables. The first internal variable is obtained by dividing the values x[i] by xscale[i]. If this member function is not called, xscale[i] is set to 1.0.

Parameter

xscale – a double array specifying the internal scaling of the variables.

Exception

IllegalArgumentException is thrown if xscale is less than or equal to 0.0

setXupperBound

public void setXupperBound(double[] xub)

Description

Set the upper bounds on the variables. If this member function is not called, the elements of this array are set to 1.79e308.

Parameter

xub – a double array specifying the upper bounds on the variables

solve

public double[] solve(MinConNLP.Function F) throws
MinConNLP.ConstraintEvaluationException,
MinConNLP.ObjectiveEvaluationException, MinConNLP.WorkingSetSingularException,
MinConNLP.QPInfeasibleException,
MinConNLP.PenaltyFunctionPointInfeasibleException,
MinConNLP.LimitingAccuracyException, MinConNLP.TooManyIterationsException,
MinConNLP.BadInitialGuessException, MinConNLP.IllConditionedException,
MinConNLP.SingularException, MinConNLP.LinearlyDependentGradientsException,
MinConNLP.NoAcceptableStepsizeException,
MinConNLP.TerminationCriteriaNotSatisfiedException
Description
Solve a general nonlinear programming problem using the successive quadratic programming algorithm with a finite-difference gradient or with a user-supplied gradient.

Parameter
F – defines the user-supplied function to evaluate the function at a given point. F can be used to supply a gradient of the function. If F implements Gradient the user-supplied gradient is used. Otherwise, an attempt to solve the problem is made using a finite-difference gradient.

Returns
a double array containing the solution of the nonlinear programming problem.

Example 1: Solving a general nonlinear programming problem
A general nonlinear programming problem is solved using a finite difference gradient. The problem

\[
\begin{align*}
\min F(x) &= (x_1 - 2)^2 + (x_2 - 1)^2 \\
\text{subject to} \\
g_1(x) &= x_1 - 2x_2 + 1 = 0 \\
g_2(x) &= -\frac{x_1^2}{4} - x_2^2 + 1 \geq 0
\end{align*}
\]

is solved.

```java
import com.imsl.math.*;
public class MinConNLPEx1 implements MinConNLP.Function {
    public double f(double[] x, int iact, boolean[] ierr) {
        double result;
        ierr[0] = false;
        if (iact == 0) {
            result = (x[0] - 2.e0) * (x[0] - 2.e0) + (x[1] - 1.e0) * (x[1] - 1.e0);
            return result;
        } else {
            switch (iact) {
            case 1:
                result = (x[0] - 2.e0 * x[1] + 1.e0);
                return result;
            case 2:
                result = (-x[0] * x[0]) / 4.e0 - (x[1] * x[1]) + 1.e0;
                return result;
            default:
```
Example 2: Solving a general nonlinear programming problem

A general nonlinear programming problem is solved using a user-supplied gradient. The problem

\[
\min F(x) = (x_1 - 2)^2 + (x_2 - 1)^2
\]

subject to

\[
g_1(x) = x_1 - 2x_2 + 1 = 0
\]

\[
g_2(x) = -x_1^2/4 - x_2^2 + 1 \geq 0
\]

is solved.

```java
import com.imsl.math.*;

public class MinConNLPEx2 implements MinConNLP.Gradient {
    public double f(double[] x, int iact, boolean[] ierr) {
        double result;
        ierr[0] = false;
        if (iact == 0) {
            result = (x[0] - 2) * (x[0] - 2) + (x[1] - 1) * (x[1] - 1);
            ierr[0] = true;
        }
        return result;
    }
    public double g(double[] x, int iact, boolean[] ierr) {
        double result;
        ierr[0] = false;
        if (iact == 0) {
            result = (x[0] - 2) + (x[1] - 1);
            ierr[0] = true;
        }
        return result;
    }
}
```
result = (x[0] - 2.e0) * (x[0] - 2.e0)
+ (x[1] - 1.e0) * (x[1] - 1.e0);
return result;
} else {
switch (iact) {
case 1:
result = (x[0] - 2.e0 * x[1] + 1.e0);
return result;
case 2:
result =(-(x[0] * x[0]) / 4.e0 - (x[1] * x[1]) + 1.e0);
return result;
default:
 ierr[0] = true;
 return 0.e0;
}
}

public void gradient(double[] x, int iact, double[] result) {
if (iact == 0) {
 result[0] = 2.e0 * (x[0] - 2.e0);
 result[1] = 2.e0 * (x[1] - 1.e0);
} else {
switch (iact) {
case 1:
result[0] = 1.e0;
result[1] = -2.e0;
break;
case 2:
result[0] = -0.5e0 * x[0];
result[1] = -2.e0 * x[1];
break;
}
}

public static void main(String args[]) throws Exception {
int m = 2;
int me = 1;
int n = 2;
MinConNLP minconnon = new MinConNLP(m, me, n);
minconnon.setGuess(new double[]{2., 2.});
MinConNLPEx2 grad = new MinConNLPEx2();
double x[] = minconnon.solve(grad);
System.out.println("x is " + x[0] + " " + x[1]);
}

Output
x is 0.8228756555325117 0.9114378277662558
Example 3: Solving a general nonlinear programming problem with logging

A general nonlinear programming problem is solved using a finite difference gradient. Intermediate output is captured in a file named MinConNLPlog.txt. The level of output requested is FINE. The problem

\[
\min F(x) = (x_1 - 2)^2 + (x_2 - 1)^2
\]

subject to

\[
g_1(x) = x_1 - 2x_2 + 1 = 0
\]

\[
g_2(x) = -x_1^2/4 - x_2^2 + 1 \geq 0
\]

is solved.

import com.imsl.math.*;
import java.util.logging.Logger;
import java.util.logging.Level;
import java.util.logging.Handler;
public class MinConNLPEx3 implements MinConNLP.Function {
 public double f(double[] x, int iact, boolean[] ierr) {
 double result;
 ierr[0] = false;
 if (iact == 0) {
 result = (x[0] - 2.e0) * (x[0] - 2.e0) + (x[1] - 1.e0) * (x[1] - 1.e0);
 return result;
 } else {
 switch (iact) {
 case 1:
 result = (x[0] - 2.e0 * x[1] + 1.e0);
 return result;
 case 2:
 result = (-x[0] * x[0]) / 4.e0 - (x[1] * x[1]) + 1.e0;
 return result;
 default:
 ierr[0] = true;
 return 0.e0;
 }
 }
 }
 public static void main(String args[]) throws Exception {
 int m = 2;
 int me = 1;
 int n = 2;
 }
}
double xinit[] = {2., 2.};
MinConNLP minconnon = new MinConNLP(m, me, n);
minconnon.setGuess(xinit);
MinConNLPEx3 fcn = new MinConNLPEx3();
Logger logger = minconnon.getLogger();
Handler h = new java.util.logging.FileHandler("MinConNLPlog.txt");
logger.addHandler(h);
logger.setLevel(Level.FINE);
h.setFormatter(new MinConNLP.Formatter());
double[] x = minconnon.solve(fcn);

System.out.println("x is " + x[0] + " " + x[1]);

Output

x is 0.8228756555325116 0.9114378277662559

Contents of the file MinConNLPlog.txt after execution:

ITSTEP= 1 FX= 0.0 UPSI= 5.0 B2N=-1.0 UMI= 0.0 NR= 2 SI= -1
ITSTEP= 2 FX= 0.472 222222222222204 UPSI= 0.8055555555555558 B2N=7.447602459741819E-16 UMI= 0.0 NR= 2 SI= -1
ITSTEP= 3 FX= 1.2261822533163689 UPSI= 0.096535353175589195 B2N=3.3036690738764696E-16 UMI= 0.0 NR= 2 SI= -1
ITSTEP= 4 FX= 1.393242278445973 UPSI= 1.2061157826948055E-4 B2N=1.33688555457667E-15 UMI= 0.0 NR= 2 SI= -1
N= 2 M= 2 ME= 1
EPSX= 1.0E-5 SIGSM= 1.4901161193847656E-8

STARTVALUE

0.02.0
EPS= 2.220446049250313E-16 TOL= 2.225073855072014E-308 DEL0= 0.5 DELM= 5.0E-7 TAU0= 1.0
TAU= 0.1 SD= 0.1 SW= 5.47320730701446E-33 RH0= 1.0E-6 RH01= 1.0E-10
SCFM= 10000.0 CID= 0.01 EPDI= 2.220446049250313E-16
NRE= 2 ANAL= false
VBND= 1.0 EFCN= 2.220446049250313E-16 DIFF= 1
TERMINATION REASON:
KT-CONDITIONS SATISFIED, NO FURTHER CORRECTION COMPUTED
EVALUATIONS OF F 18
EVALUATIONS OF GRAD F 0
EVALUATIONS OF CONSTRAINTS 48
EVALUATIONS OF GRADS OF CONSTRAINTS 0
FINAL SCALING OF OBJECTIVE 1.0
NORM OF GRAD(F) 2.360902457120518
LAGRANGIAN VIOLATION 9.992007221626409E-16
FEASIBILITY VIOLATION 2.866595849582154E-13
DUAL FEASIBILITY VIOLATION 0.0
OPTIMIZER RUNTIME SEC S

OPTIMAL VALUE OF F = 1.3934649806887736

OPTIMAL SOLUTION
X =
0.822875655325116 0.9114378277662559

MULTIPLIERS ARE RELATIVE TO SCF=1

NR. CONSTRAINT NORMGRAD (OR 1) MULTIPLIER
1 -2.220446049250313E-16 2.23606797749979 -1.5944911588359063
2 -2.864375403532904E-13 1.8687312653198707 1.846591532074269

EVALUATIONS OF RESTRICTIONS AND THEIR GRADIENTS
(24.0, 0.0)

LAST ESTIMATE OF CONDITION OF ACTIVE GRADIENTS 1.958467797854007
LAST ESTIMATE OF CONDITION OF APPROX. HESSIAN 1.35887639762172

ITERATIVE STEPS TOTAL 4
OF RESTARTS 0
OF FULL REGULAR UPDATES 3
OF UPDATES 3
OF FULL REGULARIZED SQP-STEPS 0

FX= 1 SCF= 5.0 PSI= 1.8687312653198707 UPS= 1.8465915320074269
DEL= 5.0E-5 B20= 0.0 B2N= -1.0 NR= 2
SI= -1 U=- 0.0 C-R= 1.536590742821477 C-D= 1.0
XN= 2.8284271247461903 DN= 1.0671873729054746 PHA= -1 CL= 0
SKM= 0.0 SIG= 1.0 CF+= 0.0 DIR= -5.0
DSC= 0.0 COS= 1.0 VIO= 0.0
UPD= 0 TK= 0.0 XSI= 0.0

FX= 2 SCF= 0.8055555555555558 PSI= 0.0 UPS= 0
DEL= 0.05 B20= 0.0 B2N= 7.44760245974189E-16 NR= 2
SI= -1 U=- 0.0 C-R= 1.4798927762262672 C-D= 1.0
XN= 1.77169068791085 DN= 0.4912534684068885 PHA= 1 CL= 1
SKM= 1.4727272299765986 SIG= 1.0 CF+= 1.0 DIR= -0.6737373565183514
DSC= 1.4727272299765986 COS= 1.0 VIO= 0.9079593845004515
UPD= 1 TK= 0.2413378083025844 XSI= 0.0

FX= 3 SCF= 0.09653353175869195 PSI= 0.0 UPS= 0
DEL= 0.05 B20= 0.0 B2N= 3.300669073875696E-16 NR= 2
SI= -1 U=- 0.0 C-R= 1.9355267257931226 C-D= 1.4591929871177434
XN= 1.3022592967558884 DN= 0.07742644541830818 PHA= 1 CL= 1
SKM= 3.4500004422141627 SIG= 1.0 CF+= 2.0 DIR= -0.17617369749845635
DSC= 3.4500004422141627 COS= 1.0 VIO= 1.0000000000000002
UPD= 1 TK= 0.005994854450114255 XSI= 0.0

FX= 4 SCF= 1.206157826980586E-4 PSI= 0.0 UPS= 0
DEL= 0.05 B20= 0.0 B2N= 1.33688555457667E-15 NR= 2
SI= -1 U=- 0.0 C-R= 1.958467797854007 C-D= 1.35887639762172
XN= 1.2280376253662906 DN= 1.0192836585976224E-4 PHA= 2 CL= 1
SKM= 3.89258402679591 SIG= 1.0 CF+= 2.0 DIR= -2.46806509292623E-4
DSC= 3.89258402679591 COS= 1.0 VIO= 1.0000000000000002
UPD= 1 TK= 0.1039391766841544E-8 XSI= 0.0
MinConNLP.Function interface

public interface com.imsl.math.MinConNLP.Function

Public interface for the user supplied function to the MinConNLP object.

Method

f

public double f(double[] x, int iact, boolean[] ierr)

Description

Compute the value of the function at the given point.

Parameters

x – an input double array, the point at which the objective function or constraint is to be evaluated

iact – an input int value indicating whether evaluation of the objective function is requested or evaluation of a constraint is requested. If iact is zero, then an objective function evaluation is requested. If iact is nonzero then the value of iact indicates the index of the constraint to evaluate. (1 indicates the first constraint, 2 indicates the second, etc.)

ierr – an input/output boolean array of length 1. On input ierr[0] is set to false. If an error or other undesirable condition occurs during evaluation, then ierr[0] should be set to true. Setting ierr[0] to true will result in the step size being reduced and the step being tried again. (If ierr[0] is set to true for xguess, then an error is issued.)

Returns

a double. If iact is zero, then the value of the objective function at x is returned. If iact is nonzero, then the computed constraint value at the point x is returned.

MinConNLP.Gradient interface

Public interface for the user supplied function to compute the gradient for MinConNLP object.
Method

gradient

```java
public void gradient(double[] x, int iact, double[] result)
```

Description

Computes the value of the gradient of the function at the given point.

Parameters

- `x` – an input `double` array, the point at which the gradient of the objective function or gradient of a constraint is to be evaluated
- `iact` – an input `int` value indicating whether evaluation of the objective function gradient is requested or evaluation of a constraint gradient is requested. If `iact` is zero, then an objective function gradient evaluation is requested. If `iact` is nonzero then the value of `iact` indicates the index of the constraint gradient to evaluate. (1 indicates the first constraint, 2 indicates the second, etc.)
- `result` – a `double` array. If `iact` is zero, then the value of the objective function gradient at `x` is returned in `result`. If `iact` is nonzero, then the computed gradient of the requested constraint value at the point `x` is returned in `result`.

MinConNLP.ConstraintEvaluationException class

```java
static public class com.imsl.math.MinConNLP.ConstraintEvaluationException extends com.imsl.IMSLException
```

Constraint evaluation returns an error with current point.

Constructors

MinConNLP.ConstraintEvaluationException

```java
public MinConNLP.ConstraintEvaluationException(String message)
```

Description

Constructs a `ConstraintEvaluationException` object.

Parameter

- `message` – a `String` containing the error message

MinConNLP.ConstraintEvaluationException

```java
public MinConNLP.ConstraintEvaluationException(String key, Object[] arguments)
```
Description
Constructs a ConstraintEvaluationException object.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

MinConNLP.ObjectiveEvaluationException class

static public class com.imsl.math.MinConNLP.ObjectiveEvaluationException
extends com.imsl.IMSLException

Objective evaluation returns an error with current point.

Constructors

MinConNLP.ObjectiveEvaluationException
public MinConNLP.ObjectiveEvaluationException(String message)

Description
Constructs a ObjectiveEvaluationException object.

Parameter
- message – a String containing the error message

MinConNLP.ObjectiveEvaluationException
public MinConNLP.ObjectiveEvaluationException(String key, Object[] arguments)

Description
Constructs a ObjectiveEvaluationException object.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string
MinConNLP.NoAcceptableStepsizeException class

static public class com.imsl.math.MinConNLP.NoAcceptableStepsizeException
extends com.imsl.IMSLException
No acceptable stepsize in [SIGMA, SIGLA].

Constructors

MinConNLP.NoAcceptableStepsizeException
public MinConNLP.NoAcceptableStepsizeException(String message)

Description
Constructs a NoAcceptableStepsizeException object.

Parameter
message – a String containing the error message

MinConNLP.NoAcceptableStepsizeException
public MinConNLP.NoAcceptableStepsizeException(String key, Object[] arguments)

Description
Constructs a NoAcceptableStepsizeException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinConNLP.WorkingSetSingularException class

static public class com.imsl.math.MinConNLP.WorkingSetSingularException
extends com.imsl.IMSLException

Working set is singular in dual extended QP.
Constructors

MinConNLP.WorkingSetSingularException

`public MinConNLP.WorkingSetSingularException(String message)`

Description

Constructs a WorkingSetSingularException object.

Parameter

message – a String containing the error message

MinConNLP.WorkingSetSingularException

`public MinConNLP.WorkingSetSingularException(String key, Object[] arguments)`

Description

Constructs a WorkingSetSingularException object.

Parameters

key – a String containing the error message

arguments – an Object array containing arguments used within the error message string

MinConNLP.QPInfeasibleException class

`static public class com.ims1.math.MinConNLP.QPInfeasibleException extends com.ims1.IMSELException`

QP problem seemingly infeasible.

Constructors

MinConNLP.QPInfeasibleException

`public MinConNLP.QPInfeasibleException(String message)`

Description

Constructs a QPInfeasibleException object.

Parameter

message – a String containing the error message

MinConNLP.QPInfeasibleException

`public MinConNLP.QPInfeasibleException(String key, Object[] arguments)`
Description
Constructs a QPInfeasibleException object.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

MinConNLP.PenaltyFunctionPointInfeasibleException

static public class
com.imsl.math.MinConNLP.PenaltyFunctionPointInfeasibleException extends
com.imsl.IMSLException

Penalty function point infeasible.

Constructors

MinConNLP.PenaltyFunctionPointInfeasibleException
public MinConNLP.PenaltyFunctionPointInfeasibleException(String message)

Description
Constructs a PenaltyFunctionPointInfeasibleException object.

Parameter
- message – a String containing the error message

MinConNLP.PenaltyFunctionPointInfeasibleException
public MinConNLP.PenaltyFunctionPointInfeasibleException(String key, Object[] arguments)

Description
Constructs a PenaltyFunctionPointInfeasibleException object.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string
MinConNLP.LimitingAccuracyException class

static public class com.imsl.math.MinConNLP.LimitingAccuracyException extends com.imsl.IMSLException

Limiting accuracy reached for a singular problem.

Constructors

MinConNLP.LimitingAccuracyException

public MinConNLP.LimitingAccuracyException(String message)

Description

Constructs a LimitingAccuracyException object.

Parameter

message – a String containing the error message

MinConNLP.LimitingAccuracyException

public MinConNLP.LimitingAccuracyException(String key, Object[] arguments)

Description

Constructs a LimitingAccuracyException object.

Parameters

key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinConNLP.TooManyIterationsException class

static public class com.imsl.math.MinConNLP.TooManyIterationsException extends com.imsl.IMSLException

Maximum number of iterations exceeded.
Constructors

MinConNLP.TooManyIterationsException

```java
public MinConNLP.TooManyIterationsException(String message)
```

Description

Constructs a TooManyIterationsException object.

Parameter

- `message` – a String containing the error message

```java
public MinConNLP.TooManyIterationsException(String key, Object[] arguments)
```

Description

Constructs a TooManyIterationsException object.

Parameters

- `key` – a String containing the error message
- `arguments` – an Object array containing arguments used within the error message string

MinConNLP.TooMuchTimeException class

```java
```

Maximum time allowed for solve exceeded. This class extends TooManyIterationsException to keep the solve method backward compatible.

Constructor

```java
public MinConNLP.TooMuchTimeException(long maximumTime)
```

Description

Constructs a TooMuchTimeException object.

Parameter

- `maximumTime` – a long containing the maximum allowed time
MinConNLP.BadInitialGuessException class

```java
static public class com.imsl.math.MinConNLP.BadInitialGuessException extends com.imsl.IMSLException

Penalty function point infeasible for original problem. Try new initial guess.
```

Constructors

```java
MinConNLP.BadInitialGuessException
public MinConNLP.BadInitialGuessException(String message)

Description
Constructs a BadInitialGuessException object.

Parameter
message – a String containing the error message
```

```java
MinConNLP.BadInitialGuessException
public MinConNLP.BadInitialGuessException(String key, Object[] arguments)

Description
Constructs a BadInitialGuessException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
```

MinConNLP.IllConditionedException class

```java
static public class com.imsl.math.MinConNLP.IllConditionedException extends com.imsl.IMSLException

Problem is singular or ill-conditioned.
```
Constructors

MinConNLP.IllConditionedException
public MinConNLP.IllConditionedException(String message)

Description
Constructs an IllConditionedException object.

Parameter
message – a String containing the error message

MinConNLP.IllConditionedException
public MinConNLP.IllConditionedException(String key, Object[] arguments)

Description
Constructs an IllConditionedException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinConNLP.SingularException class

static public class com.imsl.math.MinConNLP.SingularException extends com.imsl.IMSLException

Problem is singular.

Constructors

MinConNLP.SingularException
public MinConNLP.SingularException(String message)

Description
Constructs a SingularException object.

Parameter
message – a String containing the error message

MinConNLP.SingularException
public MinConNLP.SingularException(String key, Object[] arguments)
Description
Constructs a `SingularException` object.

Parameters
- **key** – a `String` containing the error message
- **arguments** – an `Object` array containing arguments used within the error message string

MinConNLP.LinearlyDependentGradientsException class

```
static public class com.imsl.math.MinConNLP.LinearlyDependentGradientsException
extends com.imsl.IMSLException
```

Working set gradients are linearly dependent.

Constructors

`MinConNLP.LinearlyDependentGradientsException`

```
public MinConNLP.LinearlyDependentGradientsException(String message)
```

Description
Constructs a `LinearlyDependentGradientsException` object.

Parameter
- **message** – a `String` containing the error message

`MinConNLP.LinearlyDependentGradientsException`

```
public MinConNLP.LinearlyDependentGradientsException(String key, Object[] arguments)
```

Description
Constructs a `LinearlyDependentGradientsException` object.

Parameters
- **key** – a `String` containing the error message
- **arguments** – an `Object` array containing arguments used within the error message string
MinConNLP.TerminationCriteriaNotSatisfiedException class

static public class com.ims1.math.MinConNLP.TerminationCriteriaNotSatisfiedException extends com.ims1.IMSLException

Termination criteria are not satisfied.

Constructors

MinConNLP.TerminationCriteriaNotSatisfiedException
public MinConNLP.TerminationCriteriaNotSatisfiedException(String message)

Description
Constructs a TerminationCriteriaNotSatisfiedException object.

Parameter
message – a String containing the error message

MinConNLP.TerminationCriteriaNotSatisfiedException
public MinConNLP.TerminationCriteriaNotSatisfiedException(String key, Object[] arguments)

Description
Constructs a TerminationCriteriaNotSatisfiedException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MinConNLP.Formatter class

static public class com.ims1.math.MinConNLP.Formatter extends java.util.logging.Formatter

Simple formatter for MinConNLP logging
Constructor

MinConNLP.Formatter

```java
public MinConNLP.Formatter()
```

Method

format

```java
public String format(LogRecord record)
```

NumericalDerivatives class

```java
public class com.imsl.math.NumericalDerivatives implements Serializable, Cloneable
```

Compute the Jacobian matrix for a function \(f(y) \) with \(m \) components in \(n \) independent variables.

NumericalDerivatives uses divided finite differences to compute the Jacobian. This class is designed for use in numerical methods for solving nonlinear problems where a Jacobian is evaluated repeatedly at neighboring arguments. For example this occurs in a Gauss-Newton method for solving non-linear least squares problems or a non-linear optimization method.

NumericalDerivatives is suited for applications where the Jacobian is a dense matrix. All cases \(m < n, m = n, \) or \(m > n \) are allowed. Both one-sided and central divided differences can be used.

The divided differences are computed using values of the independent variables at the initial point \(y_e = y, \) and differenced points \(y_e = y + \text{del} \times e_j. \) Here the \(e_j, j = 1, \ldots, n, \) are the unit coordinate vectors. The value for each difference \(\text{del} \) depends on the variable \(j, \) the differencing method, and the scaling for that variable. This difference is computed internally. See **setPercentageFactor** for computational details. The evaluation of \(f(y_e) \) is normally done by the user-provided method **NumericalDerivatives.Function.f**, using the values \(y_e. \) The index \(j \) and values \(y_e \) are arguments to **NumericalDerivatives.Function.f**.

The computational kernel of **evaluateJ** performs the following steps:
1. evaluate the equations at the point y using `NumericalDerivatives.Function.f`.

2. compute the Jacobian.

3. compute the difference at y_e.

By default, `evaluateJ` uses `NumericalDerivatives.Function.f` in step 3. The user may choose to override the `evaluateF` method to extend the capability of the class beyond the default.

There are six examples provided which illustrate various ways to use `NumericalDerivatives`. A discussion of the expected errors for these difference methods is found in *A First Course in Numerical Analysis*, Anthony Ralston, McGraw-Hill, NY, (1965).

Fields

- **ACCUMULATE**

 static final public int ACCUMULATE

 Indicates the accumulation of the result from whatever type of differences have been specified previously into initial values of the Jacobian.

- **CENTRAL**

 static final public int CENTRAL

 Indicates central differences.

- **ONE_SIDED**

 static final public int ONE_SIDED

 Indicates one sided differences.

- **SKIP**

 static final public int SKIP

 Indicates a variable to be skipped.

Constructor

- **NumericalDerivatives**

 Description

 Constructor for `NumericalDerivatives`.

 Parameter

 fcn – a `Function` object which is a user-supplied function to evaluate the equations at the point y.

 Optimization

 `NumericalDerivatives` • 491
Methods

evaluateF

```java
protected double[] evaluateF(int varIndex, double[] y)
```

Description

This method is provided by the user to compute the function values at the current independent variable values \(y \). If the user does not override the `evaluateF` method, then `NumericalDerivatives.Function.f` is used to compute the function values.

Parameters

- `varIndex` – an `int` which indicates the index of the variable to perturb.
- `y` – a `double` array of length \(n \), the point at which the function is to be evaluated.

Returns

A `double` array of length \(m \). The equations evaluated at the point \(y \).

evaluateJ

```java
public double[][] evaluateJ(double[] y)
```

Description

Evaluates the Jacobian for a system of \(m \) equations in \(n \) variables.

Parameter

- `y` – a `double` array of length \(n \), the point at which the Jacobian is to be evaluated.

Returns

A `double` matrix containing the Jacobian. Columns that are accumulated must have the additive term defined on entry or else be set to zero. Columns that are skipped can be defined either before or after the `evaluateJ` method is invoked.

getPercentageFactor

```java
public double[] getPercentageFactor()
```

Description

Returns the percentage factor for differencing.

Returns

A `double` array containing the percentage factor for differencing. See `setPercentageFactor` for more detail.

getScalingFactors

```java
public double[] getScalingFactors()
```

Description

Returns the scaling factors for the \(y \) values.
Returns

a double array containing the scaling factors.

getStatus

public int[] getStatus()

Description

Returns status information. This information might prove useful to the user wanting to gain better control over the differencing parameters. This information can often be ignored.

Returns

an int array containing the ten diagnostic values described in the following table. These values can be used to monitor the progress or expense of the Jacobian computation.
<table>
<thead>
<tr>
<th>index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>the number of times a function evaluation was computed.</td>
</tr>
<tr>
<td>1</td>
<td>the number of columns in which three attempts were made to increase a percentage factor for differencing (i.e. a component in the factor array) but the computed del remained unacceptably small relative to y[j-1] or scale[j-1]. In such cases the percentage factor is set to 1.490116193847656e-8, which is the square root of machine precision.</td>
</tr>
<tr>
<td>2</td>
<td>the number of columns in which the computed del was zero to machine precision because y[j-1] or scale[j-1] was zero. In such cases del is set to 1.490116193847656e-8, which is the square root of machine precision.</td>
</tr>
</tbody>
</table>
| 3 | the number of Jacobian columns which had to be recomputed because the largest difference formed in the column was close to zero relative to scale, where

\[
\text{scale} = \max \left(|f_i(y)|, |f_i(y + del \times e_j)| \right)
\]

and i denotes the row index of the largest difference in the column currently being processed. index = 9 gives the last column where this occurred. |
| 4 | the number of columns whose largest difference is close to zero relative to scale after the column has been recomputed. |
| 5 | the number of times scale information was not available for use in the roundoff and truncation error tests. This occurs when

\[
\min \left(|f_i(y)|, |f_i(y + del \times e_j)| \right) = 0
\]

where i is the index of the largest difference for the column currently being processed. |
6	the number of times the increment for differencing (del) was computed and had to be increased because (scale[j-1]+del) - scale[j-1] was too small relative to y[j-1] or scale[j-1].
7	the number of times a component of the factor array was reduced because changes in function values were large and excess truncation error was suspected. index = 8 gives the last column in which this occurred.
8	the index of the last column where the corresponding component of the factor array had to be reduced because excessive truncation error was suspected.
9	the index of the last column where the difference was small and the column had to be recomputed with an adjusted increment (see index = 3). The largest derivative in this column may be inaccurate due to excessive round-off error.

setDifferencingMethods

public void setDifferencingMethods(int[] options)

Description

Sets the methods used to compute the derivatives.

Parameter

options – an int array of length n, containing the methods used to compute the derivatives.
options[i] is the method to be used for the i-th variable. options[i] can be one of the values in the table which follows. The default is to use \textsc{One-Sided} differences for each variable.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textsc{One-Sided}</td>
<td>Indicates one sided differences.</td>
</tr>
<tr>
<td>\textsc{Central}</td>
<td>Indicates central differences.</td>
</tr>
<tr>
<td>\textsc{Accumulate}</td>
<td>Indicates the accumulation of the result from whatever type of differences have been specified previously into initial values of the Jacobian.</td>
</tr>
<tr>
<td>\textsc{Skip}</td>
<td>Indicates a variable to be skipped.</td>
</tr>
</tbody>
</table>

\textbf{setInitialF}

\texttt{public void setInitialF(double[]} valueF\texttt{)}

\textbf{Description}

Set the initial function values. Use the values $f(y_0)$, where y_0 is the initial value of the independent variables located in array y.

\textbf{Parameter}

\texttt{valueF} – a double\ array of length m containing the initial function values, y_0. Default: all values are 0.0.

\textbf{setPercentageFactor}

\texttt{public void setPercentageFactor(double[]} factor\texttt{)}

\textbf{Description}

Sets the percentage factor for differencing.

For each divided difference for variable j the increment used is del. The value of del is computed as follows: First define $\sigma = \text{sign}(\text{scale}[j-1])$. If the user has set the elements of array scale to non-default values, then define $y_a = |\text{scale}[j-1]|$. Otherwise $y_a = |y[j-1]|$ and $\sigma = 1$. Finally compute $\text{del} = \sigma y_a \text{factor}[j-1]$. By changing the sign of $\text{scale}[j-1]$, the difference del can have any desired orientation, such as staying within bounds on variable j. For central differences, a reduced factor is used for del that normally results in relative errors as small as machine precision to the 2/3 power.

\textbf{Parameter}

\texttt{factor} – a double\ array of length n containing the percentage factor for differencing. Except for initialization, the factor array should not be altered in the \texttt{evaluateF} method. The elements of \texttt{factor} must be such that

$$1.8189894035458565 \times 10^{-12} \leq \text{factor}[j-1] \leq 0.1$$

where $1.8189894035458565 \times 10^{-12}$ is machine precision to the three-fourths power.

Default: all elements of factor are set to $1.4901161193847656 \times 10^{-8}$, which is the square root of machine precision.

\textbf{setScalingFactors}

\texttt{public void setScalingFactors(double[] scale)}
Description
Sets the scaling factors for the y values. The user can also use scale to provide appropriate signs for the increments.

Parameter
scale – a double array of length n containing the scaling factors. Default: all values are 1.0.

Example 1: One-Sided Differences
A simple use of NumericalDerivatives is shown. The gradient of the function
\[f(y_1, y_2) = a \exp(by_1) + c y_1^2 \]
is required for values \(a = 2.5 \times 10^6, b = 3.4, c = 4.5, y_1 = 2.1, y_2 = 3.2 \).

The numerical gradient is compared to the analytic gradient, cast as a 1 by 2 Jacobian:
\[
\text{grad}(f) = \begin{bmatrix} \exp(by_1) & c y_1^2 \\ 2cy_1 y_2 \end{bmatrix}
\]

This analytic gradient is expected to approximately agree with the numerical differentiation gradient. Relative agreement should be approximately the square root of machine precision. That is achieved here. Generally this is the most accuracy one can expect using one-sided divided differences.

```java
import com.imsl.math.*;
import java.text.*;

public class NumericalDerivativesEx1 {
    static private int m = 1, n = 2;
    static private double a, b, c;

    public static void main(String args[]) {
        double u;
        double[] y = new double[n];
        double[] scale = new double[n];
        double[][] actual = new double[m][n];
        double[] re = new double[2];

        // Define data and point of evaluation:
        a = 2.5e6;
        b = 3.4e0;
        c = 4.5e0;
        y[0] = 2.1e0;
        y[1] = 3.2e0;

        // Precision for measuring errors
        u = Math.sqrt(2.220446049250313e-016);

        // Set scaling:
        scale[0] = 1.0e0;
        // Increase scale to account for large value of a.
        scale[1] = 8.0e3;

        // Compute true values of partials.
        actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1];
        actual[0][1] = 2 * c * y[0] * y[1];
    }
}
```
// This sets the function value used in forming one-sided differences.
 { public double[] f(int varIndex, double[] y) {
 double[] tmp = new double[m];
 tmp[0] = a * Math.exp(b * y[0])
 + c * y[0] * y[1] * y[1];
 return tmp;
 });
NumericalDerivatives derv = new NumericalDerivatives(fcn);
derv.setScalingFactors(scale);
double[] jacobian = derv.evaluateJ(y);
NumberFormat nf = NumberFormat.getInstance();
f.setMaximumFractionDigits(2);
f.setMinimumFractionDigits(2);
PrintMatrixFormat pmf = new PrintMatrixFormat();
new PrintMatrix("Numerical gradient:").print(pmf, jacobian);
new PrintMatrix("Analytic gradient:").print(pmf, actual);

// Check the relative accuracy of one-sided differences.
// They should be good to about half-precision.
jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0];
jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1];
re[0] = jacobian[0][0];
re[1] = jacobian[0][1];
System.out.println("Relative accuracy:");
System.out.println("df/dy_1 df/dy_2");
System.out.printf(" %.2fu %.2fu\n", re[0] / u, re[1] / u);
System.out.printf("%.3e %.3e\n", re[0], re[1]);

Output

Numerical gradient:
0 1
0 10,722,141,696.00 60.48

Analytic gradient:
0 1
0 10,722,141,353.42 60.48

Relative accuracy:
df/dy_1 df/dy_2
2.14u -0.00u
(3.195e-08) (-1.175e-16)
Example 2: Skipping A Gradient Component

This example uses the same data as in the One-Sided Differences example. Here we assume that the second component of the gradient is analytically known. Therefore only the first gradient component needs numerical approximation. The input values of array options specify that numerical differentiation with respect to y_2 is skipped.

```java
import com.imsl.math.*;
import java.text.*;

public class NumericalDerivativesEx2 {
    static private int m = 1, n = 2;
    static private double a, b, c;

    public static void main(String args[]) {
        int[] options = new int[n];
        double u;
        double[] y = new double[n];
        double[] valueF = new double[m];
        double[] scale = new double[n];
        double[] actual = new double[m][n];
        double[] re = new double[2];

        // Define data and point of evaluation:
        a = 2.5e6;
        b = 3.4e0;
        c = 4.5e0;
        y[0] = 2.1e0;
        y[1] = 3.2e0;

        // Precision, for measuring errors
        u = Math.sqrt(2.220446049250313e-016);

        // Set scaling:
        scale[0] = 1.e0;
        // Increase scale to account for large value of a.
        scale[1] = 8.e3;

        // compute true values of partials.
        actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1];
        actual[0][1] = 2 * c * y[0] * y[1];

        options[0] = NumericalDerivatives.ONE_SIDED;
        options[1] = NumericalDerivatives.SKIP;

        valueF[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1];

        NumericalDerivatives.Jacobian fcn
            = new NumericalDerivatives.Jacobian() {
                public double[] f(int varIndex, double[] y) {
                    double[] tmp = new double[m];
                    tmp[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1];
                    return tmp;
                }
            }
```

498 • NumericalDerivatives JMSL
public double[][] jacobian(double[] y) {
 double[][] tmp = new double[m][n];

 // The second component partial is skipped,
 // since it is known analytically
 tmp[0][1] = 2.e0 * c * y[0] * y[1];

 return tmp;
}

NumericalDerivatives derv = new NumericalDerivatives(fcn);
derv.setDifferencingMethods(options);
derv.setScaleFactors(scale);
derv.setInitialValue(valueF);
double[][] jacobian = derv.evaluateJ(y);

NumberFormat nf = NumberFormat.getInstance();
f.setMaximumFractionDigits(2);
f.setMinimumFractionDigits(2);

PrintMatrixFormat pmf = new PrintMatrixFormat();
new PrintMatrix("Numerical gradient:").print(pmf, jacobian);
new PrintMatrix("Analytic gradient:").print(pmf, actual);

jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0];
jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1];
re[0] = jacobian[0][0];
re[1] = jacobian[0][1];

System.out.println("Relative accuracy:");
System.out.println("df/dy_1 df/dy_2");
System.out.printf(" %.2fu %.2fu\n", re[0] / u, re[1] / u);
System.out.printf(" (%.3e) (%.3e)\n", re[0], re[1]);

Output
Numerical gradient:
0 1
0 10,722,141,696.00 60.48

Analytic gradient:
0 1
0 10,722,141,353.42 60.48

Relative accuracy:
df/dy_1 df/dy_2
2.14u 0.00u
(3.195e-08) (0.000e+00)
Example 3: Accumulation Of A Component

This example uses the same data as in the One-Sided Differences example. An alternate examination of the function \(f(y_1, y_2) = a \exp(by_1) + cy_1^2 \) shows that the first term on the right-hand side need be evaluated just when computing the first partial. The additive term \(cy_1^2 \) occurs when computing the partial with respect to \(y_1 \). Also the first term does not depend on the second variable. Thus the first term can be left out of the function evaluation when computing the partial with respect to \(y_2 \), potentially avoiding cancellation errors. The input values of array options allow \texttt{NumericalDerivatives} to use these facts and obtain greater accuracy using a minimum number of computations of the exponential function.

```java
import com.imsl.math.*;
import java.text.*;

public class NumericalDerivativesEx3 {
    static private int m = 1, n = 2;
    static private double a, b, c, f2 = 0.0;

    public static void main(String args[]) {
        int[] options = new int[n];
        double u;
        double[] y = new double[n];
        double[] valueF = new double[m];
        double[] scale = new double[n];
        double[][] actual = new double[m][n];
        double[] re = new double[2];

        // Define data and point of evaluation:
        a = 2.5e6;
b = 3.4e0;
c = 4.5e0;
y[0] = 2.1e0;
y[1] = 3.2e0;

        // Precision, for measuring errors
        u = Math.sqrt(2.220446049250313e-016);

        // Set scaling:
        scale[0] = 1.e0;
        // Increase scale to account for large value of a.
        scale[1] = 8.e3;

        // Compute true values of partials.
        actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1];
        actual[0][1] = 2 * c * y[0] * y[1];

        options[0] = NumericalDerivatives.ACCUMULATE;
        options[1] = NumericalDerivatives.ONE_SIDED;

        valueF[0] = a * Math.exp(b * y[0]);
        scale[1] = 1.e0;
            .evaluate options, valueF, scale,
            actual, re, u, u, scale, options, actual
```
public double[] f(int varIndex, double[] y) {
 double[] tmp = new double[m];
 if (varIndex != 2) {
 tmp[0] = a * Math.exp(b * y[0]);
 } else {
 // This is the function value for the partial wrt y_2.
 tmp[0] = c * y[0] * y[1] * y[1];
 }
 return tmp;
}

public double[][] jacobian(double[] y) {
 double[][] tmp = new double[m][n];
 // Start with part of the derivative that is known.
 tmp[0][0] = c * y[1] * y[1];
 return tmp;
}

NumericalDerivatives derv = new NumericalDerivatives(fcn);
derv.setDifferencingMethods(options);
derv.setScaleFactors(scale);
derv.setInitialF(valueF);
double[][] jacobian = derv.evaluateJ(y);

NumberFormat nf = NumberFormat.getInstance();
f.setMaximumFractionDigits(2);
f.setMinimumFractionDigits(2);

PrintMatrixFormat pmf = new PrintMatrixFormat();
new PrintMatrix("Numerical gradient:").print(pmf, jacobian);
new PrintMatrix("Analytic gradient:").print(pmf, actual);

jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0];
jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1];
re[0] = jacobian[0][0];
re[1] = jacobian[0][1];

System.out.println("Relative accuracy:");
System.out.println("%2fu %2fu\n", re[0] / u, re[1] / u);
System.out.printf("(%.3e) (%.3e)\n", re[0], re[1]);
}

Output

Numerical gradient:
0 1
0 10,722,141,710.08 60.48
Example 4: Central Differences

This example uses the same data as in the One-Sided Differences example. Agreement should be approximately the two-thirds power of machine precision. That agreement is achieved here. Generally this is the most accuracy one can expect using central divided differences. Note that using central differences requires essentially twice the number of evaluations of the function compared with obtaining one-sided differences. This can be a significant issue for functions that are expensive to evaluate. This example shows how to override evaluateF.

```java
import com.imsl.math.*;
import java.text.*;

public class NumericalDerivativesEx4 extends NumericalDerivatives {
    static private int m = 1, n = 2;
    static private double a, b, c, v = 0.0;

    public NumericalDerivativesEx4(NumericalDerivatives.Function fcn) {
        super(fcn);
    }

    // Override evaluateF.
    public double[] evaluateF(int varIndex, double[] y) {
        double[] valueF = new double[m];
        valueF[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1];
        return valueF;
    }

    public static void main(String args[]) {
        int[] options = new int[n];
        double u;
        double[] y = new double[n];
        double[] scale = new double[n];
        double[][] actual = new double[m][n];
        double[] re = new double[2];

        // Define data and point of evaluation:
        a = 2.5e6;
        b = 3.4e0;
        c = 4.5e0;
        y[0] = 2.1e0;
        y[1] = 3.2e0;
    }
}
Machine precision, for measuring errors
u = 2.220446049250313e-016;
v = Math.pow(3.e0 * u, 2.e0 / 3.e0);

// Set scaling:
scale[0] = 1.e0;
// Increase scale to account for large value of a.
scale[1] = 8.e3;

// Compute true values of partials.
actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1];
actual[0][1] = 2 * c * y[0] * y[1];

options[0] = NumericalDerivatives.CENTRAL;
options[1] = NumericalDerivatives.CENTRAL;

// Set the increment used at the default value.
scale[1] = 8.e3;
    public double[] f(int varIndex, double[] y) {
        return new double[m];
    }
};
NumericalDerivativesEx4 derv = new NumericalDerivativesEx4(fcn);
derv.setDifferencingMethods(options);
derv.setScalingFactors(scale);
double[][] jacobian = derv.evaluateJ(y);

NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(2);
nf.setMinimumFractionDigits(2);
PrintMatrixFormat pmf = new PrintMatrixFormat();

System.out.println("Relative accuracy:");
System.out.println("df/dy_1   df/dy_2");
System.out.printf("%2fv   %.2fv \n", re[0] / v, re[1] / v);
System.out.printf("%.3e  %.3e \n", re[0], re[1]);
Output

Numerical gradient:
0 1
0 10,722,141,354.39 60.48

Analytic gradient:
0 1
0 10,722,141,353.42 60.48

Relative accuracy:
df/dy_1 df/dy_2
1.19v 0.27v
(9.100e-11) (2.045e-11)

Example 5: Hessian Approximation

This example uses the same data as in the One-Sided Differences example. In this example numerical differentiation is used to approximate the Hessian matrix of \( f(y_1,y_2) \). This symmetric Hessian matrix is

\[
H_f = \begin{bmatrix}
\frac{\partial^2 f}{\partial y_1^2} & \frac{\partial^2 f}{\partial y_1 \partial y_2} \\
\frac{\partial^2 f}{\partial y_1 \partial y_2} & \frac{\partial^2 f}{\partial y_2^2}
\end{bmatrix}
\]

Our method is based on casting the matrix \( H_f \) as the 2 by 2 Jacobian matrix of the gradient function. Each inner evaluation of the gradient function is itself computed using NumericalDerivatives. Central differences are used for both the inner and outer numerical differentiation. Because of the inherent error in both processes, the expected accuracy is about the \( 4/9 = (2/3)^2 \) power of machine precision. Note that the approximation obtained is not symmetric. However, the difference between the off-diagonal elements provides an error estimate of that term.

```java
import com.imsl.math.*;
import java.text.*;

public class NumericalDerivativesEx5 extends NumericalDerivatives {
 static private int m = 1, n = 2;
 static private double a, b, c, v = 0.0;

 class InnerNumericalDerivatives extends NumericalDerivatives {
 public InnerNumericalDerivatives(NumericalDerivatives.Function fcn) {
 super(fcn);
 }
 // Override evaluateF.
 public double[] evaluateF(int varIndex, double[] y) {
 double[] valueF = new double[m];
 valueF[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1];

```
public NumericalDerivativesEx5(NumericalDerivatives.Function fcn) {
    super(fcn);
}

// Override evaluateF.
public double[] evaluateF(int varIndex, double[] y) {
    int[] iopt = new int[n];
    double[] valueF = new double[m];
    double[] scale = new double[n];
    double[] fac = new double[n];

    // This is the analytic gradient. for comparison only.
    // stateh(1)=a*b*exp(b*y(1))+c*y(2)**2
    // stateh(2)=2*c*y(1)*y(2)
    // Each request for a gradient evaluation uses the
    // functionality of numerical evaluation, but with
    // the same numerical code.
    iopt[0] = NumericalDerivatives.CENTRAL;
    iopt[1] = NumericalDerivatives.CENTRAL;

    // Set the increment used at the default value.
    // Set defaults for increments and scaling:
    fac[0] = 1.4901161193847656E-8;
    fac[1] = 1.4901161193847656E-8;
    // Change scale to account for large value of a.
    switch (varIndex) {
        case 1:
            scale[0] = 1.e0;
            scale[1] = 8.e8;
            break;
        case 2:
            scale[0] = 1.e4;
            scale[1] = 8.e8;
            break;
    }

    NumericalDerivatives.Function fcn
        = new NumericalDerivatives.Function() {
            public double[] f(int varIndex, double[] y) {
                return new double[m];
            }
        };

    InnerNumericalDerivatives deriv = new InnerNumericalDerivatives(fcn);
    deriv.setPercentageFactor(fac);
    deriv.setDifferencingMethods(iopt);
    deriv.setScaleFactors(scale);
    deriv.setInitialF(valueF);
    double[][] fjac = deriv.evaluateJ(y);

    // Since the function is never evaluated at the
double[] tmp = new double[n];
for (int i = 0; i < n; i++) {
    tmp[i] = fjac[0][i];
}
return tmp;

public static void main(String args[]) {
    int[] iopth = new int[n];
    double u;
    double[] fach = new double[n];
    double[] stateh = new double[n];
    double[] scaleh = new double[n];
    double[][] actual = new double[n][n];
    double[] y = new double[n];

    // Define data and point of evaluation:
    a = 2.5e6;
    b = 3.4e0;
    c = 4.5e0;
    y[0] = 2.1e0;
    y[1] = 3.2e0;

    // Machine precision, for measuring errors
    u = 2.220446049250313e-016;
    v = Math.pow(3.e0 * u, 2.e0 / 3.e0);
    v = Math.pow(3 * v, 2. / 3.);

    // Set increments and scaling:
    fach[0] = 1.4901161193847656E-8;
    fach[1] = 1.4901161193847656E-8;
    iopth[0] = NumericalDerivatives.CENTRAL;
    iopth[1] = NumericalDerivatives.CENTRAL;

    // Compute true values of partials.
    actual[0][0] = a * b * b * Math.exp(b * y[0]);
    actual[1][0] = 2 * c * y[1];
    actual[0][1] = 2 * c * y[1];
    actual[1][1] = 2 * c * y[0];

    // Set the increment used at the default value.
    scaleh[0] = 1;
    scaleh[1] = 8.e5;

    NumericalDerivatives.Function fcn
        = new NumericalDerivatives.Function() {
            public double[] f(int varIndex, double[] y) {
                return new double[n];
            }
        };
NumericalDerivativesEx5 derv2 = new NumericalDerivativesEx5(fcn);
derv2.setPercentageFactor(fach);
derv2.setDifferencingMethods(iopth);
derv2.setScalingFactors(scaleh);
derv2.setInitialF(stateh);
double[][] h = derv2.evaluateJ(y);

NumberFormat nf = NumberFormat.getInstance();
f.setMaximumFractionDigits(2);
f.setMinimumFractionDigits(2);

PrintMatrixFormat pmf = new PrintMatrixFormat();

new PrintMatrix("Numerical Hessian:").print(pmf, h);
new PrintMatrix("Analytic Hessian:").print(pmf, actual);

// Since the function is never evaluated at the
// initial point, hold back until the request is made.
// Subtract the actual hessian matrix values and check.

h[0][0] = (h[0][0] - actual[0][0]) / h[0][0] / v;

h[1][0] = (h[1][0] - actual[1][0]) / h[1][0] / v;

h[0][1] = (h[0][1] - actual[0][1]) / h[0][1] / v;

h[1][1] = (h[1][1] - actual[1][1]) / h[1][1] / v;

new PrintMatrix("Hessian Matrix, Expected Normalized "+
+ "Relative Error, |all entries|").print(h);
}

Output

Numerical Hessian:

0 1
0 36,455,292,905.82 28.80
1 28.80 18.90

Analytic Hessian:

0 1
0 36,455,280,444.94 28.80
1 28.80 18.90

Hessian Matrix, Expected Normalized Relative Error, |all entries|

0 1
0 0.914 0.037
1 0.036 0

Example 6: Usage With Class MinUnconMultiVar

The minimum of 100(x_2 - x_1^2)^2 + (1 - x_1)^2 is found using MinUnconMultiVar. NumericalDerivatives is used to compute the numerical gradients.
import com.imsl.math.*;

public class NumericalDerivativesEx6 {

    static private int m = 1, n = 2;

    static double fcnEvaluation(double[] x) {
        return 100. * ((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])
                       + (1.0 - x[0]) * (1.0 - x[0]));
    }

    static class MyFunction implements MinUnconMultiVar.Gradient {
        public double f(double[] x) {
            return fcnEvaluation(x);
        }

        public void gradient(double[] x, double[] gp) {
                public double[] f(int varIndex, double[] y) {
                    double[] tmp = new double[m];
                    tmp[0] = fcnEvaluation(y);
                    return tmp;
                }
            };

            NumericalDerivatives nderv = new NumericalDerivatives(fcn);
            double[][] jacobian = nderv.evaluateJ(x);
            gp[0] = jacobian[0][0];
            gp[1] = jacobian[0][1];
        }
    }

    public static void main(String args[]) throws Exception {
        MinUnconMultiVar solver = new MinUnconMultiVar(n);
        solver.setGuess(new double[]{1.2, 1.0});
        double x[] = solver.computeMin(new MyFunction());
        System.out.println("Minimum point is (" + x[0] + ", " + x[1] + ")");
    }
}

Output

Minimum point is (0.9999986118580241, 0.9999972746481575)
**NumericalDerivatives.Function interface**

```java
```

Public interface function.

**Method**

```java
f
public double[] f(int varIndex, double[] y)
```

**Description**

Returns the equations evaluated at the point \( y \). If the user does not override the `evaluateF` method, then `f` is also used to compute the function values at the current independent variable values \( y \).  

**Parameters**

- `varIndex` – an int indicating the index of the variable to perturb. \( \text{varIndex} = 1 \) indicates variable 1 in \( y[0] \).
- `y` – a double array of length \( n \), the point at which the Jacobian is to be evaluated.

**Returns**

a double array of length \( m \). The equations evaluated at the point \( y \).

**NumericalDerivatives.Jacobian interface**

```java
```

Public interface for the user-supplied function to compute the Jacobian.

**Method**

```java
jacobian
public double[][] jacobian(double[] y)
```

**Optimization**

NumericalDerivatives • 509
Description
User-supplied function to compute the Jacobian.

Parameter
\( y \) – a double array of length \( n \), the point at which the Jacobian is to be evaluated.

Returns
a double \( m \) by \( n \) matrix containing the Jacobian. Columns that are accumulated must have the analytic part defined on entry or else be set to zero. Columns that are skipped can be defined either before or after the evaluateJ method is invoked.
Chapter 10: Special Functions

Types

class Sfun ................................................................. 511
class Bessel ............................................................. 528
class JMath .............................................................. 534
class IEEE ............................................................... 542
class Hyperbolic ....................................................... 544

Sfun class

public class com.imsl.math.Sfun
Collection of special functions.

Fields

**EPSILON_LARGE**
static final public double EPSILON_LARGE
The largest relative spacing for doubles.

**EPSILON_SMALL**
static final public double EPSILON_SMALL
The smallest relative spacing for doubles.
Methods

beta
static public double beta(double a, double b)

Description
Returns the value of the beta function. The beta function is defined to be

\[ B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 t^{a-1}(1-t)^{b-1}dt \]

See com.imsl.math.Sfun.gamma (p. 521) for the definition of \( \Gamma(x) \).

The method beta requires that both arguments be positive.

Parameters
- a – a double value
- b – a double value

Returns
a double value specifying the Beta function

betaincomplete
static public double betaincomplete(double x, double p, double q)

Description
Returns the incomplete beta function ratio. The incomplete beta function is defined to be

\[ I_x(p, q) = \frac{\beta_x(p, q)}{\beta(p, q)} = \frac{1}{\beta(p, q)} \int_0^x t^{p-1}(1-t)^{q-1}dt \text{ for } 0 \leq x \leq 1, p > 0, q > 0 \]

See com.imsl.math.Sfun.beta (p. 512) for the definition of \( \beta(p, q) \).

The parameters \( p \) and \( q \) must both be greater than zero. The argument \( x \) must lie in the range 0 to 1. The incomplete beta function can underflow for sufficiently small \( x \) and large \( p \); however, this underflow is not reported as an error. Instead, the value zero is returned as the function value.

The method betaincomplete is based on the work of Bosten and Battiste (1974).

Parameters
- x – a double value specifying the upper limit of integration. It must be in the interval [0.1] inclusive.
- p – a double value specifying the first Beta parameter. It must be positive.
- q – a double value specifying the second Beta parameter. It must be positive.

Returns
a double value specifying the incomplete Beta function ratio

cot
static public double cot(double x)
**Description**
Returns the cotangent of a double.

**Parameter**
- \( x \) – a double value

**Returns**
a double value specifying the cotangent of \( x \). If \( x \) is NaN, the result is NaN.

```java
static public double erf(double x)
```

**Description**
Returns the error function of a double.
The error function method, \( \text{erf}(x) \), is defined to be

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
\]

All values of \( x \) are legal.
Parameter

\( x \) – a double value

Returns

A double value specifying the error function of \( x \)
erfInverse

static public double erfInverse(double x)

Description

Returns the inverse of the error function.

The erfInverse method computes the inverse of the error function erf x, defined in

The method erfInverse(x) is defined for \( x_{\text{max}} < |x| < 1 \), then the answer will be less accurate than
half precision. Very approximately,

\[
x_{\text{max}} \approx 1 - \sqrt{\epsilon/(4\pi)}
\]

where \( \epsilon \) is the machine precision (approximately 1.11e-16).
Parameter

\( x \) – a double value

Returns

A double value specifying the inverse of the error function of \( x \).
erfc
static public double erfc(double x)

Description
Returns the complementary error function of a double.
The complementary error function method, \( \text{erfc}(x) \), is defined to be

\[
erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \, dt
\]

The argument \( x \) must not be so large that the result underflows. Approximately, \( x \) should be less than

\[
[-\ln(\sqrt{s})]^{1/2}
\]

where \( s = \text{java.lang.Double.MIN\_VALUE} \) is the smallest representable positive floating-point number.
Parameter

x – a double value

Returns

a double value specifying the complementary error function of x

erfInverese

static public double erfInverese(double x)
**Description**

Returns the inverse of the complementary error function.

The \texttt{erfcinverse} method computes the inverse of the complementary error function \texttt{erfc} \( x \), defined in \texttt{erfc}.

\texttt{erfcinverse}(x) is defined for \( 0 < x < 2 \). If \( x_{\text{max}} < x < 2 \), then the answer will be less accurate than half precision. Very approximately,

\[
x_{\text{max}} \approx 2 - \sqrt{\varepsilon/(4 \pi)}
\]

where \( \varepsilon \) = machine precision (approximately 1.11e-16).
Parameter

\[ x - \text{a double value, } 0 \leq x \leq 2. \]

Returns

A double value specifying the inverse of the error function of \( x \).
erfce
static public double erfce(double x)

Description
Returns the exponentially scaled complementary error function.
The exponentially scaled complementary error function is defined as
\[ e^{x^2} \text{erfc}(x) \]
where \( \text{erfc}(x) \) is the complementary error function. See `com.imsl.math.Sfun.erfc (p. 517)` for its definition.
To prevent the answer from underflowing, \( x \) must be greater than
\[ x_{\text{min}} \approx -\sqrt{\ln(b/2)} = -26.618735713751487 \]
where \( b = \text{java.lang.Double.MAX\_VALUE} \) is the largest representable double precision number.

Parameter
\( x \) – a double value for which the function value is desired.

Returns
a double value specifying the exponentially scaled complementary error function of \( x \).

fact
static public double fact(int n)

Description
Returns the factorial of an integer.

Parameter
\( n \) – an int value

Returns
a double value specifying the factorial of \( n \), \( n! \). If \( n \) is negative, the result is NaN.

gamma
static public double gamma(double x)

Description
Returns the Gamma function of a double.
The gamma function, \( \Gamma(x) \), is defined to be
\[ \Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt \text{ for } x > 0 \]
For \( x < 0 \), the above definition is extended by analytic continuation.
The gamma function is not defined for integers less than or equal to zero. Also, the argument \( x \) must be greater than -170.56 so that \( \Gamma(x) \) does not underflow, and \( x \) must be less than 171.64 so that \( \Gamma(x) \) does not overflow. The underflow limit occurs first for arguments that are close to large negative half integers. Even though other arguments away from these half integers may yield machine-representable values of \( \Gamma(x) \), such arguments are considered illegal. Users who need such values should use the log gamma. Finally, the argument should not be so close to a negative integer that the result is less accurate than half precision.
Parameter

\( x \) – a double value

Returns

A double value specifying the Gamma function of \( x \). If \( x \) is a negative integer, the result is NaN.

gammaIncomplete

static public double gammaIncomplete(double a, double x)

Description

Evaluates the incomplete gamma function.

The lower limit of integration of the incomplete gamma function, \( \gamma(a, x) \), is defined to be

\[
\gamma(a, x) = \int_{0}^{x} t^{a-1} e^{-t} \, dt \quad \text{for } x \geq 0 \text{ and } a > 0
\]

Although \( \gamma(a, x) \) is well defined for \( x > -\infty \), this algorithm does not calculate \( \gamma(a, x) \) for negative \( x \). For large \( a \) and sufficiently large \( x \), \( \gamma(a, x) \) may overflow. \( \gamma(a, x) \) is bounded by \( \Gamma(a) \), and users may find this bound a useful guide in determining legal values for \( a \).

Note that the upper limit of integration of the incomplete gamma, \( \Gamma(a, x) \), is defined to be

\[
\Gamma(a, x) = \int_{x}^{\infty} t^{a-1} e^{-t} \, dt
\]

Therefore, by definition, the two incomplete gamma function forms satisfy the relationship

\[
\Gamma(a, x) + \gamma(a, x) = \Gamma(a)
\]

Parameters

\( a \) – a double value representing the integrand exponent parameter of the incomplete gamma function. It must be positive.

\( x \) – a double value specifying the point at which the incomplete gamma function is to be evaluated. It must be nonnegative.

Returns

A double value specifying the incomplete gamma function.

log10

static public double log10(double x)

Description

Returns the common (base 10) logarithm of a double.

Parameter

\( x \) – a double value
**Returns**

a double value specifying the common logarithm of \( x \).

**logBeta**

static public double logBeta(double a, double b)

**Description**

Returns the logarithm of the beta function.

Method logBeta computes \( \ln \beta(a,b) = \ln \beta(b,a) \). See com.imsl.math.Sfun.beta (p. 512) for the definition of \( \beta(a,b) \).

logBeta is defined for \( a > 0 \) and \( b > 0 \). It returns accurate results even when \( a \) or \( b \) is very small. It can overflow for very large arguments; this error condition is not detected except by the computer hardware.

**Parameters**

- a – a double value
- b – a double value

**Returns**

a double value specifying the natural logarithm of the beta function.

**logGamma**

static public double logGamma(double x)

**Description**

Returns the logarithm of the absolute value of the Gamma function.

Method logGamma computes \( \ln |\Gamma(x)| \). See com.imsl.math.Sfun.gamma (p. 521) for the definition of \( \Gamma(x) \).

The gamma function is not defined for integers less than or equal to zero. Also, \( |x| \) must not be so large that the result overflows. Neither should \( x \) be so close to a negative integer that the accuracy is worse than half precision.
Log Gamma Function

Parameter

\( x \) – a double value

Returns

a double, the natural logarithm of the Gamma function of \( x \). If \( x \) is a negative integer, the result is NaN.

poch
static public double poch(double a, double x)
Description
Returns a generalization of Pochhammer's symbol.

Method `poch` evaluates Pochhammer's symbol \((a)_n = (a)(a-1) \ldots (a-n+1)\) for \(n\) a nonnegative integer. Pochhammer's generalized symbol is defined to be

\[
(a)_x = \frac{\Gamma(a+x)}{\Gamma(a)}
\]

See `com.imsl.math.Sfun.gamma` (p. 521) for the definition of \(\Gamma(x)\).

Note that a straightforward evaluation of Pochhammer’s generalized symbol with either gamma or log gamma functions can be especially unreliable when \(a\) is large or \(x\) is small. Substantial loss can occur if \(a + x\) or \(a\) are close to a negative integer unless \(|x|\) is sufficiently small. To insure that the result does not overflow or underflow, one can keep the arguments \(a\) and \(a + x\) well within the range dictated by the gamma function method `gamma` or one can keep \(|x|\) small whenever \(a\) is large. `poch` also works for a variety of arguments outside these rough limits, but any more general limits that are also useful are difficult to specify.

Parameters
- \(a\) – a `double` value specifying the first argument
- \(x\) – a `double` value specifying the second, differential argument

Returns
a `double` value specifying the generalized Pochhammer symbol, \(\frac{\Gamma(a+x)}{\Gamma(a)}\)

**psi**
```java
static public double psi(double x)
```

Description
Returns the derivative of the log gamma function, also called the digamma function.

The psi function is defined to be

\[
\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}
\]

See `com.imsl.math.Sfun.gamma` (p. 521) for the definition of \(\Gamma(x)\).

The argument \(x\) must not be exactly zero or a negative integer, or \(\psi(x)\) is undefined. Also, \(x\) must not be too close to a negative integer such that the accuracy of the result is less than half precision.

Parameter
- \(x\) – a `double` value, the point at which the digamma function is to be evaluated.

Returns
a `double` value specifying the logarithmic derivative of the gamma function of \(x\). If \(x\) is a zero or a negative integer, the result is NaN. If \(x\) is too close to a negative integer the accuracy of the result will be less than half precision.

**psi1**
```java
static public double psi1(double x)
```
Description
Returns the $\psi_1$ function, also known as the trigamma function.
The trigamma function, $\psi_1(x)$, is defined to be

$$\psi_1(x) = \frac{d^2}{dx^2} \ln \Gamma(x)$$

The trigamma function is not defined for integers less than or equal to zero.

Parameter
$x$ – a double value, the point at which the trigamma function is to be evaluated.

Returns
a double value specifying the trigamma function of $x$. If $x$ is a negative integer or zero, the result is NaN.

sign
static public double sign(double x, double y)

Description
Returns the value of $x$ with the sign of $y$.

Parameters
$x$ – a double value
$y$ – a double value

Returns
a double value specifying the absolute value of $x$ and the sign of $y$.

Example: The Special Functions
Various special functions are exercised. Their use in this example typifies the manner in which other special functions in the Sfun class would be used.

```java
import com.imsl.math.*;

public class SfunEx1 {
 public static void main(String args[]) {
 double result;

 // Log base 10 of x
 double x = 100.;
 result = Sfun.log10(x);
 System.out.println("The log base 10 of 100. is " + result);

 // Factorial of 10
 int n = 10;
 result = Sfun.fact(n);
 }
}
```
System.out.println("10 factorial is " + result);

// Gamma of 5.0
double x1 = 5.;
result = Sfun.gamma(x1);
System.out.println("The Gamma function at 5.0 is " + result);

// LogGamma of 1.85
double x2 = 1.85;
result = Sfun.logGamma(x2);
System.out.println("The logarithm of the absolute value of the "
 + "Gamma function \n at 1.85 is " + result);

// Beta of (2.2, 3.7)
double a = 2.2;
double b = 3.7;
result = Sfun.beta(a, b);
System.out.println("Beta(2.2, 3.7) is " + result);

// LogBeta of (2.2, 3.7)
double a1 = 2.2;
double b1 = 3.7;
result = Sfun.logBeta(a1, b1);
System.out.println("logBeta(2.2, 3.7) is " + result);

Output
The log base 10 of 100. is 2.0
10 factorial is 3628800.0
The Gamma function at 5.0 is 24.0
The logarithm of the absolute value of the Gamma function
at 1.85 is -0.05592381301965721
Beta(2.2, 3.7) is 0.045375983484708095
logBeta(2.2, 3.7) is -3.0927723120378947

Bessel class

public class com.imsl.math.Bessel

Collection of Bessel functions.
Methods

static public double[] I(double x, int n)

Description
Evaluates a sequence of modified Bessel functions of the first kind with integer order and real argument. The Bessel function \( I_n(x) \) is defined to be

\[
I_n(x) = \frac{1}{\pi} \int_0^\pi e^{x \cos \theta} \cos(n \theta) \, d\theta
\]

The input \( x \) must satisfy \(|x| \leq \log(b)\) where \( b \) is the largest representable floating-point number. The algorithm is based on a code due to Sookne (1973b), which uses backward recursion.

Parameters
- \( x \) – a double representing the argument of the Bessel functions to be evaluated
- \( n \) – is the int order of the last element in the sequence

Returns
a double array of length \( n+1 \) containing the values of the function through the series. \( \text{Bessel.I}[i] \) contains the value of the Bessel function of order \( i \).

static public double[] I(double xnu, double x, int n)

Description
Evaluates a sequence of modified Bessel functions of the first kind with real order and real argument. The Bessel function \( I_\nu(x) \) is defined to be

\[
I_\nu(x) = \frac{1}{\pi} \int_0^\pi e^{x \cos \theta} \cos(\nu \theta) \, d\theta - \frac{\sin(\nu \pi)}{\pi} \int_0^\infty e^{-x \cosh t - \nu t} \, dt
\]

Here, argument \( xnu \) is represented by \( \nu \) in the above equation.

The input \( x \) must be nonnegative and less than or equal to \( \log(b) \) (\( b \) is the largest representable number). The argument \( \nu = xnu \) must satisfy \( 0 \leq \nu \leq 1 \).

This function is based on a code due to Cody (1983), which uses backward recursion.

Parameters
- \( xnu \) – a double representing the lowest order desired. \( xnu \) must be at least zero and less than 1
- \( x \) – a double representing the argument of the Bessel functions to be evaluated
- \( n \) – is the int order of the last element in the sequence
Returns
a double array of length n+1 containing the values of the function through the series. Bessel.I[i]
contains the value of the Bessel function of order i+xnu.

J
static public double[] J(double x, int n)

Description
Evaluates a sequence of Bessel functions of the first kind with integer order and real argument. The
Bessel function \( J_n(x) \), is defined to be

\[
J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(x \sin \theta - n \theta) \, d\theta
\]

The algorithm is based on a code due to Sookne (1973b) that uses backward recursion with strict error
control.

Parameters
- x – a double representing the argument for which the sequence of Bessel functions is to be
evaluated
- n – an int which specifies the order of the last element in the sequence

Returns
a double array of length n+1 containing the values of the function through the series. Bessel.J[i]
contains the value of the Bessel function of order i at x for i=0 to n.

J
static public double[] J(double xnu, double x, int n)

Description
Evaluate a sequence of Bessel functions of the first kind with real order and real positive argument. The
Bessel function \( J_v(x) \), is defined to be

\[
J_v(x) = \frac{(x/2)^v}{\sqrt{\pi \Gamma(v + 1/2)}} \int_0^\pi \cos(x \cos \theta) \sin^2 \theta \, d\theta
\]

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses backward recursion.

Parameters
- xnu – a double representing the lowest order desired. xnu must be at least zero and less than 1.
- x – a double representing the argument for which the sequence of Bessel functions is to be
evaluated
- n – an int representing the order of the last element in the sequence. If order is the highest order
desired, set n to int(order).
Returns
a double array of length n+1 containing the values of the function through the series. Bessel.J[I]
contains the value of the Bessel function of order I+v at x for I=0 to n.

**K**
static public double[] K(double x, int n)

**Description**
Evaluates a sequence of modified Bessel functions of the third kind with integer order and real argument.
This function uses \(e^{\nu}K_{\nu+k-1}\) for \(k = 1, \ldots, n\) and \(\nu = 0\). For the definition of \(K_\nu(x)\), see above.

**Parameters**
- \(x\) – a double representing the argument for which the sequence of Bessel functions is to be evaluated
- \(n\) – an int which specifies the order of the last element in the sequence

**Returns**
a double array of length n+1 containing the values of the function through the series

**Y**
static public double[] Y(double xnu, double x, int n)

**Description**
Evaluates a sequence of modified Bessel functions of the third kind with fractional order and real argument. The Bessel function \(K_\nu(x)\) is defined to be

\[
K_\nu(x) = \frac{\pi}{2} e^{\nu \pi i/2} [i J_\nu(ix) - Y_\nu(ix)] \quad \text{for} \quad -\pi < \arg x \leq \frac{\pi}{2}
\]

Currently, \(xnu\) (represented by \(\nu\) in the above equation) is restricted to be less than one in absolute value. A total of \(n\) values is stored in the result, \(K\).

\(K[0] = K_\nu(x), K[1] = K_{\nu+1}(x), \ldots, K[n-1] = K_{\nu+n-1}(x)\).

This method is based on the work of Cody (1983).

**Parameters**
- \(xnu\) – a double representing the fractional order of the function. \(xnu\) must be less than one in absolute value.
- \(x\) – a double representing the argument for which the sequence of Bessel functions is to be evaluated.
- \(n\) – an int representing the order of the last element in the sequence. If order is the highest order desired, set \(n\) to int(order).

**Returns**
a double array of length n+1 containing the values of the function through the series. Bessel.K[I]
contains the value of the Bessel function of order I+v at x for I=0 to n.
Description
Evaluate a sequence of Bessel functions of the second kind with real nonnegative order and real positive argument. The Bessel function $Y_v(x)$ is defined to be

$$Y_v(x) = \frac{1}{\pi} \int_0^\pi \cos(x \sin \theta - v \theta) d \theta$$

$$-\frac{1}{\pi} \int_0^\infty \left[ e^{\nu t} + e^{-\nu t} \cos(v \pi) \right] e^{-x \sinh t} dt$$

The variable xn (represented by $v$ in the above equation) must satisfy $0 \leq v < 1$. If this condition is not met, then $Y$ is set to NaN. In addition, $x$ must be in $[x_m, x_M]$ where $x_m = 6(16^{-32})$ and $x_M = 16^9$. If $x < x_m$, then the largest representable number is returned; and if $x < x_M$, then zero is returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969; NATS FUNPACK 1976). It uses a special series expansion for small arguments. For moderate arguments, an analytic continuation in the argument based on Taylor series with special rational minimax approximations providing starting values is employed. An asymptotic expansion is used for large arguments.

Parameters
- $xnu$ – a double representing the lowest order desired. $xnu$ must be at least zero and less than 1
- $x$ – a double representing the argument for which the sequence of Bessel functions is to be evaluated
- $n$ – an int such that $n+1$ elements will be evaluated in the sequence

Returns
a double array of length $n+1$ containing the values of the function through the series. Bessel.$K[I]$ contains the value of the Bessel function of order $I+v$ at $x$ for $I=0$ to $n$.

scaledK
static public double[] scaledK(double v, double x, int n)

Description
Evaluate a sequence of exponentially scaled modified Bessel functions of the third kind with fractional order and real argument. This function evaluates $e^x K_{i+1}(x)$, for $i=1,...,n$ where $K$ is the modified Bessel function of the third kind. Currently, $v$ is restricted to be less than 1 in absolute value. A total of $|n| + 1$ elements are returned in the array. This code is particularly useful for calculating sequences for large $x$ provided $n = x$. (Overflow becomes a problem if $n << x$.) $n$ must not be zero, and $x$ must be greater than zero. $|v|$ must be less than 1. Also, when $|n|$ is large compared with $x$, $|v+n|$ must not be so large that

$$e^x K_{v+n}(x) \approx e^x \frac{\Gamma(|v+n|)}{2(x/2)^{|v+n|}}$$

overflows. The code is based on work of Cody (1983).
Parameters

v – a double representing the fractional order of the function. v must be less than one in absolute value.

x – a double representing the argument for which the sequence of Bessel functions is to be evaluated.

n – an int representing the order of the last element in the sequence. If order is the highest order desired, set n to int(order).

Returns

a double array of length n+1 containing the values of the function through the series. If n is positive, Bessel.K[I] contains e^x times the value of the Bessel function of order I+v at x for I=0 to n. If n is negative, Bessel.K[I] contains e^x times the value of the Bessel function of order v-I at x for I=0 to n.

Example: The Bessel Functions

The Bessel functions I, J, and K are exercised for orders 0, 1, 2, and 3 at argument 10.e0.

```
import com.imsl.math.*;

public class BesselEx1 {

 public static void main(String args[]) {
 double x = 10.e0;
 int hiorder = 4;
 // Exercise some of the Bessel functions with argument 10.0
 double bi[] = Bessel.I(x, hiorder);
 double bj[] = Bessel.J(x, hiorder);
 double bk[] = Bessel.K(x, hiorder);

 for (int i = 0; i < 4; i++) {
 System.out.printf(" %d %10.4f %10.4f %10.4f\n",
 i, bi[i], bj[i], bk[i]);
 }
 }
}
```

Output

```
Order Bessel.I Bessel.J Bessel.K
0 2815.7166 -0.2459 0.0000
1 2670.9883 0.0435 0.0000
2 2281.5190 0.2546 0.0000
3 1758.3807 0.0584 0.0000
```
public final class com.imsl.math.JMath

Pure Java implementation of the standard java.lang.Math class. This Java code is based on C code in the package fdlibm, which can be obtained from www.netlib.org.

Fields

E
static final public double E

PI
static final public double PI

Methods

IEEEremainder
static public double IEEEremainder(double x, double p)

Description
Returns the IEEE remainder from \( x \) divided by \( p \). The IEEE remainder is \( x \% p = x - \lfloor x/p \rfloor \times p \) as if in infinite precise arithmetic, where \( \lfloor x/p \rfloor \) is the (infinite bit) integer nearest \( x/p \) (in half way case choose the even one).

Parameters

\( x \) – a double, the dividend

\( p \) – a double, the divisor

Returns
a double representing the remainder computed according to the IEEE 754 standard.

abs
static public double abs(double x)

Description
Returns the absolute value of a double.

Parameter

\( x \) – a double
Returns
a double representing $|x|$.

abs
static public float abs(float x)

Description
Returns the absolute value of a float.

Parameter
x – a float

Returns
a float representing $|x|$.

abs
static public int abs(int x)

Description
Returns the absolute value of an int.

Parameter
x – an int

Returns
an int representing $|x|$.

abs
static public long abs(long x)

Description
Returns the absolute value of a long.

Parameter
x – a long

Returns
a long representing $|x|$.

acos
static public double acos(double x)

Description
Returns the inverse (arc) cosine of a double.

Parameter
x – a double
Returns a double representing the angle, in radians, whose cosine is x. It is in the range \([0, \pi]\).

**asin**

```java
static public double asin(double x)
```

**Description**

Returns the inverse (arc) sine of a double.

**Parameter**

- \(x\) – a double

**Returns**

a double representing the angle, in radians, whose sine is x. It is in the range \([-\pi/2, \pi/2]\).

**atan**

```java
static public double atan(double x)
```

**Description**

Returns the inverse (arc) tangent of a double.

**Parameter**

- \(x\) – a double

**Returns**

a double representing the angle, in radians, whose tangent is x. It is in the range \([-\pi/2, \pi/2]\).

**atan2**

```java
static public double atan2(double y, double x)
```

**Description**

Returns the angle corresponding to a Cartesian point.

**Parameters**

- \(x\) – a double, the first argument
- \(y\) – a double, the second argument

**Returns**

a double representing the angle, in radians, the line from (0,0) to (x,y) makes with the x-axis. It is in the range \([-\pi, \pi]\).

**ceil**

```java
static public double ceil(double x)
```

**Description**

Returns the value of a double rounded toward positive infinity to an integral value.
Parameter

\[ x \] – a double

Returns

the smallest double, not less than \( x \), that is an integral value

**cos**

static public double cos(double x)

Description

Returns the cosine of a double.

Parameter

\[ x \] – a double, assumed to be in radians

Returns

a double, the cosine of \( x \)

**exp**

static public double exp(double x)

Description

Returns the exponential of a double. Special cases: \( e^\infty \) is \( \infty \), \( e^{\text{NaN}} \) is NaN; \( e^{-\infty} \) is 0, and for finite argument, only \( e^0 = 1 \) is exact.

Parameter

\[ x \] – a double.

Returns

a double representing \( e^x \).

**floor**

static public double floor(double x)

Description

Returns the value of a double rounded toward negative infinity to an integral value.

Parameter

\[ x \] – a double

Returns

the smallest double, not greater than \( x \), that is an integral value

**log**

static public double log(double x)

Description

Returns the natural logarithm of a double.
Parameter
  x – a double

Returns
a double representing the natural (base e) logarithm of x

max
static public double max(double x, double y)

Description
Returns the larger of two doubles.

Parameters
  x – a double
  y – a double

Returns
a double, the larger of x and y. This function considers -0.0 to be less than 0.0.

max
static public float max(float x, float y)

Description
Returns the larger of two floats.

Parameters
  x – a float
  y – a float

Returns
a float, the larger of x and y. This function considers -0.0f to be less than 0.0f.

max
static public int max(int x, int y)

Description
Returns the larger of two ints.

Parameters
  x – an int
  y – an int

Returns
an int, the larger of x and y

max
static public long max(long x, long y)
**Description**
Returns the larger of two longs.

**Parameters**
- x – a long
- y – a long

**Returns**
a long, the larger of x and y

**min**
static public double min(double x, double y)

**Description**
Returns the smaller of two doubles.

**Parameters**
- x – a double
- y – a double

**Returns**
a double, the smaller of x and y. This function considers -0.0 to be less than 0.0.

**min**
static public float min(float x, float y)

**Description**
Returns the smaller of two floats.

**Parameters**
- x – a float
- y – a float

**Returns**
a float, the smaller of x and y. This function considers -0.0f to be less than 0.0f.

**min**
static public int min(int x, int y)

**Description**
Returns the smaller of two ints.

**Parameters**
- x – an int
- y – an int
Returns an int representing the smaller of x and y

static public long min(long x, long y)

Description
Returns the smaller of two longs.

Parameters
x – a long
y – a long

Returns a long, the smaller of x and y

static public double pow(double x, double y)

Description
Returns x to the power y.

Parameters
x – a double, the base
y – a double, the exponent

Returns a double, x to the power y

static public double random()

Description
Returns a random number from a uniform distribution.

Returns a double representing a random number from a uniform distribution

static public double rint(double x)

Description
Returns the value of a double rounded toward the closest integral value.

Parameter
x – a double
**Returns**
the double closest to x that is an integral value

---

**round**
static public long round(double x)

**Description**
Returns the long closest to a given double.

**Parameter**
  x – a double

---

**Returns**
the long closest to x

---

**round**
static public int round(float x)

**Description**
Returns the integer closest to a given float.

**Parameter**
  x – a float

---

**Returns**
the int closest to x

---

**sin**
static public double sin(double x)

**Description**
Returns the sine of a double.

**Parameter**
  x – a double, assumed to be in radians

---

**Returns**
a double, the sine of x

---

**sqrt**
static public double sqrt(double x)

**Description**
Returns the square root of a double.

**Parameter**
  x – a double
Returns

da double representing the square root of x

tan
static public double tan(double x)

Description
Returns the tangent of a double.

Parameter
x – a double, assumed to be in radians

Returns
a double, the tangent of x

IEEE class

public class com.imsl.math.IEEE


This Java code is based on C code in the package fdlibm, which can be obtained from www.netlib.org. The original fdlibm C code contains the following notice.

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. Developed at SunSoft, a Sun Microsystems, Inc. business. Permission to use, copy, modify, and distribute this software is freely granted, provided that this notice is preserved.

Methods

copysign
static public double copysign(double x, double y)

Description
Returns a value with the magnitude of x and with the sign bit of y. If y is NaN then |x| is returned.

Parameters
x – a double from which the magnitude will be gleaned
y – a double from which the sign will be gleaned
Returns
a double value with magnitude x and sign of y

finite
static public boolean finite(double x)

Description
Finite number test on an argument of type double.

Parameter
x – the double which is to be tested

Returns
true if x is a finite number, false if x is a NaN or an infinity

ilogb
static public int ilogb(double x)

Description
Return the binary exponent of non-zero x.

Parameter
x – a double

Returns
an int representing the binary exponent of x. Special cases ilogb(0) = -Integer.MAX_VALUE and ilogb(∞) = ilogb(−∞) = ilogb(NaN) = Integer.MAX_VALUE.

isNaN
static public boolean isNaN(double x)

Description
NaN test on an argument of type double.

Parameter
x – the double which is to be tested

Returns
true if x is a NaN, false otherwise

nextAfter
static public double nextAfter(double x, double y)

Description
Returns the next machine floating-point number next to x in the direction toward y.
Parameters
x – a double
y – a double

Returns
a double which represents the value which is closest to x in the interval bounded by x and y

scalbn
static public double scalbn(double x, int n)

Description
Returns $2^n$ computed by exponent manipulation rather than by actually performing an exponentiation or a multiplication.

Parameters
x – a double
n – an int representing the power to which 2 is raised

Returns
a double representing $x \cdot 2^n$.

unordered
static public boolean unordered(double x, double y)

Description
Unordered test on a pair of doubles. Tests whether either of a pair of doubles is a NaN.

Parameters
x – a double
y – a double

Returns
true if either x or y is a NaN, false otherwise

Hyperbolic class

public class com.imsl.math.Hyperbolic

Pure Java implementation of the hyperbolic functions and their inverses.

This Java code is based on C code in the package fdlibm, which can be obtained from www.netlib.org. The original fdlibm C code contains the following notice.

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
Methods

acosh

static public double acosh(double x)

Description
Returns the inverse hyperbolic cosine of its argument. Specifically,
acosh(1) returns +0
acosh(±∞) returns +∞
acosh(x) returns NaN, if |x| < 1.

Parameter
x – a double value representing the argument.

Returns
a double value representing the number whose hyperbolic cosine is x.

asinh

static public double asinh(double x)

Description
Returns the inverse hyperbolic sine of its argument. Specifically,
asinh(±0) returns ±∞
asinh(±∞) returns ±∞

Parameter
x – a double value representing the argument.

Returns
a double value representing the number whose hyperbolic sine is x.

atanh

static public double atanh(double x)

Description
Returns the inverse hyperbolic tangent of its argument. Specifically,
atanh(±0) returns ±0
atanh(±1) returns +∞
atanh(x) returns NaN, if |x| > 1.
**Parameter**
- \( x \) – a double value representing the argument.

**Returns**
a double value representing the number whose hyperbolic tangent is \( x \).

**cosh**
static public double cosh(double \( x \))

**Description**
Returns the hyperbolic cosine of its argument. Specifically, 
cosh(±0) returns 1, cosh(±∞) returns +∞

**Parameter**
- \( x \) – a double value representing the argument.

**Returns**
a double value representing the hyperbolic cosine of \( x \).

**expm1**
static public double expm1(double \( x \))

**Description**
Returns \( \exp(x)-1 \), the exponential of \( x \) minus 1. Specifically, 
expm1(±0) returns ±0 
expm1(+∞) returns ±∞ 
expm1(−∞) returns -1.

**Parameter**
- \( x \) – a double specifying the argument.

**Returns**
a double value representing \( \exp(x)-1 \).

**log1p**
static public double log1p(double \( x \))

**Description**
Returns \( \log(1+x) \), the logarithm of \( (x+1) \). Specifically, 
log1p(±0) returns ±0 
log1p(−1) returns −∞ 
log1p(\( x \)) returns NaN, if \( x < -1 \). 
log1p(±∞) returns ±∞
Parameter

- $x$ – a double value representing the argument.

Returns

a double value representing $\log(1+x)$.

**sinh**

static public double sinh(double $x$)

Description

Returns the hyperbolic sine of its argument. Specifically,

- $\sinh(\pm 0)$ returns $\pm 0$
- $\sinh(\pm \infty)$ returns $\pm \infty$

Parameter

- $x$ – a double value representing the argument.

Returns

a double value representing the hyperbolic sine of $x$.

**tanh**

static public double tanh(double $x$)

Description

Returns the hyperbolic tangent of its argument. Specifically,

- $\tanh(\pm 0)$ returns $\pm 0$
- $\tanh(\pm \infty)$ returns $\pm 1$

Parameter

- $x$ – a double value representing the argument.

Returns

a double value representing the hyperbolic tangent of $x$.

**Example: The Hyperbolic Functions**

The Hyperbolic functions are exercised with argument 0.

```java
import com.imsl.math.*;

public class HyperbolicEx1 {
 public static void main(String args[]) {
 // Exercise the hyperbolic functions with argument 0.0
 System.out.println("sinh(0.) is "+ Hyperbolic.sinh(0.0));
 System.out.println("cosh(0.) is "+ Hyperbolic.cosh(0.0));
 }
}
```
System.out.println("tanh(0.) is " + Hyperbolic.tanh(0.0));
System.out.println("asinh(0.) is " + Hyperbolic.asinh(0.0));
System.out.println("acosh(0.) is " + Hyperbolic.acosh(0.0));
System.out.println("atanh(0.) is " + Hyperbolic.atanh(0.0));
}

Output

sinh(0.) is 0.0
cosh(0.) is 1.0
tanh(0.) is 0.0
asinh(0.) is 0.0
acosh(0.) is NaN
atanh(0.) is 0.0
Chapter 11: Miscellaneous

Types

class Complex ................................................................. 549
class Physical ................................................................. 569
class EpsilonAlgorithm ..................................................... 580

Complex class

public class com.imsl.math.Complex extends java.lang.Number implements Serializable, Cloneable

Set of mathematical functions for complex numbers. It provides the basic operations (addition, subtraction, multiplication, division) as well as a set of complex functions. The binary operations have the form, where op is add, subtract, multiply or divide.

    public static Complex op(Complex x, Complex y)  // x op y
    public static Complex op(Complex x, double y)   // x op y
    public static Complex op(double x, Complex y)   // x op y

Complex objects are immutable. Once created there is no way to change their value. The functions in this class follow the rules for complex arithmetic as defined C9x Annex G: IEC 559-compatible complex arithmetic. The API is not the same, but handling of infinities, NaNs, and positive and negative zeros is intended to follow the same rules.
Fields

i
static final public Complex i

The imaginary unit. This constant is set to new Complex(0,1).

suffix
static public String suffix

String used in converting Complex to String. Default is i, but sometimes j is desired. Note that this is set for the class, not for a particular instance of a Complex.

Constructors

Complex
public Complex()

Description
Constructs a Complex equal to zero.

Complex
public Complex(Complex z)

Description
Constructs a Complex equal to the argument.

Parameter
   z – a Complex object

Exception
   NullPointerException is thrown if z is null

Complex
public Complex(double re)

Description
Constructs a Complex with a zero imaginary part.

Parameter
   re – a double value equal to the real part of the Complex object

Complex
public Complex(double re, double im)
Description
Constructs a Complex with real and imaginary parts given by the input arguments.

Parameters
- \( re \) – a double value equal to the real part of the Complex object
- \( im \) – a double value equal to the imaginary part of the Complex object

Methods

abs
static public double abs(Complex z)

Description
Returns the absolute value (modulus) of a Complex, \(|z|\).

Parameter
- \( z \) – a Complex object

Returns
a double value equal to the absolute value of the argument

acos
static public Complex acos(Complex z)

Description
Returns the inverse cosine (arc cosine) of a Complex, with branch cuts outside the interval \([-1,1]\] along the real axis.

Specifically, if \( z = x + iy \).
- \( \text{acos}(\bar{z}) = \text{acos}(z) \).
- \( \text{acos}(\pm 0 + i0) \) returns \( \pi/2 - i0 \).
- \( \text{acos}(-\infty + i\infty) \) returns \( 3\pi/4 - i\infty \).
- \( \text{acos}(+\infty + i\infty) \) returns \( \pi/4 - i\infty \).
- \( \text{acos}(x + i0) \) returns \( \pi/2 - i0 \), for finite \( x \).
- \( \text{acos}(-\infty + iy) \) returns \( \pi - i\infty \), for positive-signed finite \( y \).
- \( \text{acos}(+\infty + iy) \) returns \( +0 - i\infty \), for positive-signed finite \( y \).
- \( \text{acos}(\pm\infty + iNaN) \) returns \( NaN \pm i\infty \) (where the sign of the imaginary part of the result is unspecified).
- \( \text{acos}(\pm 0 + iNaN) \) returns \( \pi/2 + iNaN \).
- \( \text{acos}(NaN + iNaN) \) returns \( NaN - i\infty \).
- \( \text{acos}(x + iNaN) \) returns \( NaN + iNaN \), for nonzero finite \( x \).
- \( \text{acos}(NaN + iy) \) returns \( NaN + iNaN \), for finite \( y \).
- \( \text{acos}(NaN + iNaN) \) returns \( NaN + iNaN \).

Parameter
- \( z \) – a Complex object

Miscellaneous
**Returns**
A newly constructed `Complex` initialized to the inverse (arc) cosine of the argument. The real part of the result is in the interval $[0, \pi]$.

**acosh**
static public `Complex` `acosh(Complex z)`

**Description**
Returns the inverse hyperbolic cosine (arc cosh) of a `Complex`, with a branch cut at values less than one along the real axis.

Specifically, if $z = x+iy$,

\[
\text{acosh}(\bar{z}) = \text{acosh}(z).
\]

\[
\text{acosh}(\pm 0 + i0) \text{ returns } +0 + i\pi/2.
\]

\[
\text{acosh}(-\infty + i\infty) \text{ returns } +\infty + i3\pi/4.
\]

\[
\text{acosh}(+\infty + i\infty) \text{ returns } +\infty + i\pi/4.
\]

\[
\text{acosh}(x + i\infty) \text{ returns } +\infty + i\pi/2, \text{ for finite } x.
\]

\[
\text{acosh}(-\infty + iy) \text{ returns } +\infty + i\pi, \text{ for positive-signed finite } y.
\]

\[
\text{acosh}(+\infty + iy) \text{ returns } +\infty + i0, \text{ for positive-signed finite } y.
\]

\[
\text{acosh}(\text{NaN} + iy) \text{ returns } +\infty + i\text{NaN}.
\]

\[
\text{acosh}(\pm \infty + iy) \text{ returns } +\infty + iy, \text{ for finite } y.
\]

\[
\text{acosh}(\text{NaN} + i\text{NaN}) \text{ returns } +\infty + i\text{NaN}.
\]

**Parameter**

- z – a `Complex` object

**Returns**
A newly constructed `Complex` initialized to the inverse (arc) hyperbolic cosine of the argument. The real part of the result is non-negative and its imaginary part is in the interval $[-i\pi, i\pi]$.

**add**
static public `Complex` `add(Complex x, Complex y)`

**Description**
Returns the sum of two `Complex` objects, $x+y$.

**Parameters**

- x – a `Complex` object
- y – a `Complex` object

**Returns**
a newly constructed `Complex` initialized to $x+y$

**add**
static public `Complex` `add(Complex x, double y)`

---

552 • Complex
Description
Returns the sum of a Complex and a double, \(x+y\).

Parameters
- \(x\) – a Complex object
- \(y\) – a double value

Returns
a newly constructed Complex initialized to \(x+y\)

add
static public Complex add(double x, Complex y)

Description
Returns the sum of a double and a Complex, \(x+y\).

Parameters
- \(x\) – a double value
- \(y\) – a Complex object

Returns
a newly constructed Complex initialized to \(x+y\)

argument
static public double argument(Complex z)

Description
Returns the argument (phase) of a Complex, in radians, with a branch cut along the negative real axis.

Parameter
- \(z\) – a Complex object

Returns
A double value equal to the argument (or phase) of a Complex. It is in the interval \([-\pi, \pi]\).

asin
static public Complex asin(Complex z)

Description
Returns the inverse sine (arc sine) of a Complex, with branch cuts outside the interval \([-1,1]\) along the real axis. The value of asin is defined in terms of the function asinh, by \(\text{asin}(z) = -i \text{asinh}(iz)\).

Parameter
- \(z\) – a Complex object

Miscellaneous
Returns
A newly constructed Complex initialized to the inverse (arc) sine of the argument. The real part of the result is in the interval $[-\pi/2, +\pi/2]$.

\textbf{asinh}
static public Complex asinh(Complex z)

\textbf{Description}
Returns the inverse hyperbolic sine (arc sinh) of a Complex, with branch cuts outside the interval [-i,i].
Specifically, if $z = x+iy$,
\begin{align*}
\text{asinh}(\bar{z}) &= \text{asinh}(z) \\
\text{asinh}(+0+0i) &= 0+0i \\
\text{asinh}(\infty+0i) &= +\infty+i\pi/4 \\
\text{asinh}(x+i\infty) &= +\infty+i\pi/2 \text{ for positive-signed finite } x \\
\text{asinh}(+\infty+i\infty) &= +\infty+i0 \\
\text{asinh}(\text{NaN}+i\infty) &= \text{NaN}+i\pi/4 \\
\text{asinh}(x+i\text{NaN}) &= +\infty+i\text{NaN}, \text{ for finite } x \\
\text{asinh}(\text{NaN}+i\text{NaN}) &= \text{NaN}+i\text{NaN}.
\end{align*}

\textbf{Parameter}
\begin{itemize}
\item \textit{z} – a Complex object
\end{itemize}

\textbf{Returns}
A newly constructed Complex initialized to the inverse (arc) hyperbolic sine of the argument. Its imaginary part is in the interval $[-i\pi/2,i\pi/2]$.

\textbf{atan}
static public Complex atan(Complex z)

\textbf{Description}
Returns the inverse tangent (arc tangent) of a Complex, with branch cuts outside the interval [-i,i] along the imaginary axis. The value of atan is defined in terms of the function atanh, by \(\text{atan}(z) = -i\text{atanh}(iz)\).

\textbf{Parameter}
\begin{itemize}
\item \textit{z} – a Complex object
\end{itemize}

\textbf{Returns}
A newly constructed Complex initialized to the inverse (arc) tangent of the argument. Its real part is in the interval $[-\pi/2,\pi/2]$.

\textbf{atanh}
static public Complex atanh(Complex z)
**Description**

Returns the inverse hyperbolic tangent (arc tanh) of a Complex, with branch cuts outside the interval [-1,1] on the real axis.

Specifically, if \( z = x + iy \),
\[
\text{atanh}(\bar{z}) = \text{atanh}(\bar{z})\text{ and }\text{atanh} \text{ is odd.}
\]
\[
\text{atanh}(+0 + i0) \text{ returns } +0 + i0.
\]
\[
\text{atanh}(+\infty + i\infty) \text{ returns } +0 + i\pi/2.
\]
\[
\text{atanh}(+\infty + iy) \text{ returns } +0 + i\pi/2, \text{ for finite positive-signed } y.
\]
\[
\text{atanh}(x + i\infty) \text{ returns } +0 + i\pi/2, \text{ for finite positive-signed } x.
\]
\[
\text{atanh}(+0 + iNaN) \text{ returns } +0 + iNaN.
\]
\[
\text{atanh}(NaN + i\infty) \text{ returns } \pm 0 + i\pi/2 \text{ (where the sign of the real part of the result is unspecified).}
\]
\[
\text{atanh}(+\infty + iNaN) \text{ returns } +0 + iNaN.
\]
\[
\text{atanh}(NaN + iy) \text{ returns } NaN + iNaN, \text{ for finite } y.
\]
\[
\text{atanh}(x + iNaN) \text{ returns } NaN + iNaN, \text{ for nonzero finite } x.
\]
\[
\text{atanh}(NaN + iNaN) \text{ returns } NaN + iNaN.
\]

**Parameter**

- \( z \) – a Complex object

**Returns**

A newly constructed Complex initialized to the inverse (arc) hyperbolic tangent of the argument. The imaginary part of the result is in the interval \([-i\pi/2, i\pi/2]\).

**byteValue**

```java
public byte byteValue()
```

**Description**

Returns the value of the real part as a byte.

**Returns**

a byte representing the value of the real part of a Complex object

**compareTo**

```java
public int compareTo(Complex z)
```

**Description**

Compares two Complex objects.

A lexicographical ordering is used. First the real parts are compared in the sense of Double.compareTo. If the real parts are unequal this is the return value. If the return parts are equal then the comparison of the imaginary parts is returned.

**Parameter**

- \( z \) – a Complex to be compared

---

**Miscellaneous**
Returns
The value 0 if \( z \) is equal to this \texttt{Complex}; a value less than 0 if this \texttt{Complex} is less than \( z \); and a value greater than 0 if this \texttt{Complex} is greater than \( z \).

\texttt{compareTo}
public int compareTo(Object \( \text{obj} \))

Description
Compares this \texttt{Complex} to another \texttt{Object}. If the \texttt{Object} is a \texttt{Complex}, this function behaves like \texttt{compareTo(Complex)}. Otherwise, it throws a \texttt{ClassCastException} (as \texttt{Complex} objects are comparable only to other \texttt{Complex} objects).

Parameter
\begin{itemize}
\item \( \text{obj} \) – an \texttt{Object} to be compared
\end{itemize}

Returns
an int, 0 if \( \text{obj} \) is equal to this \texttt{Complex}; a value less than 0 if this \texttt{Complex} is less than \( \text{obj} \); and a value greater than 0 if this \texttt{Complex} is greater than \( \text{obj} \).

Exception
\texttt{ClassCastException} is thrown if \( \text{obj} \) is not a \texttt{Complex} object

\texttt{conjugate}
static public Complex conjugate(Complex \( \text{z} \))

Description
Returns the complex conjugate of a \texttt{Complex} object.

Parameter
\begin{itemize}
\item \( \text{z} \) – a \texttt{Complex} object
\end{itemize}

Returns
a newly constructed \texttt{Complex} initialized to the complex conjugate of \texttt{Complex} argument, \( \text{z} \)

\texttt{COS}
static public Complex cos(Complex \( \text{z} \))

Description
Returns the cosine of a \texttt{Complex}. The value of \texttt{cos} is defined in terms of the function \texttt{cosh}, by \( \text{cos}(z) = \text{cosh}(iz) \).

Parameter
\begin{itemize}
\item \( \text{z} \) – a \texttt{Complex} object
\end{itemize}

Returns
a newly constructed \texttt{Complex} initialized to the cosine of the argument

\texttt{cosh}
static public Complex cosh(Complex \( \text{z} \))
Description

Returns the hyperbolic cosh of a Complex.

If \( z = x + iy \),
\[
cosh(z) = \overline{cosh(\overline{z})} \quad \text{and} \quad \text{cosh is even.}
\]
cosh(\( +0 + i0 \)) returns \( 1 + i0 \).
cosh(\( +0 + i\infty \)) returns \( \text{NaN} \pm i0 \) (where the sign of the imaginary part of the result is unspecified).
cosh(\( +\infty + i0 \)) returns \( +\infty + i0 \).
cosh(\( +\infty + i\infty \)) returns \( +\infty + i\text{NaN} \).
\( \cosh(x + i\infty) \) returns \( \text{NaN} + i\text{NaN} \), for finite nonzero \( x \).
cosh(\( +\infty + iy \)) returns \( +\infty [\cos(y) + i\sin(y)] \), for finite nonzero \( y \).
cosh(\( +0 + i\text{NaN} \)) returns \( \text{NaN} \pm i0 \) (where the sign of the imaginary part of the result is unspecified).
cosh(\( +\infty + i\text{NaN} \)) returns \( +\infty + i\text{NaN} \).
cosh(\( x + i\text{NaN} \)) returns \( \text{NaN} + i\text{NaN} \), for finite nonzero \( x \).
cosh(\( \text{NaN} + i0 \)) returns \( \text{NaN} \pm i0 \) (where the sign of the imaginary part of the result is unspecified).
cosh(\( \text{NaN} + iy \)) returns \( \text{NaN} + i\text{NaN} \), for all nonzero numbers \( y \).
cosh(\( \text{NaN} + i\text{NaN} \)) returns \( \text{NaN} + i\text{NaN} \).

Parameter

\( z \) – a Complex object

Returns

a newly constructed Complex initialized to the hyperbolic cosine of the argument

divide

static public Complex divide(Complex x, Complex y)

Description

Returns the result of a Complex object divided by a Complex object, \( x/y \).

Parameters

\( x \) – a Complex object representing the numerator
\( y \) – a Complex object representing the denominator

Returns

a newly constructed Complex initialized to \( x/y \)

divide

static public Complex divide(Complex x, double y)

Description

Returns the result of a Complex object divided by a double, \( x/y \).

Parameters

\( x \) – a Complex object representing the numerator
\( y \) – a double representing the denominator
Returns
a newly constructed Complex initialized to \( \frac{x}{y} \)

\textbf{divide}
static public Complex divide(double x, Complex y)

\textbf{Description}
Returns the result of a double divided by a Complex object, \( \frac{x}{y} \).

\textbf{Parameters}
\begin{itemize}
  \item \( x \) – a double value
  \item \( y \) – a Complex object representing the denominator
\end{itemize}

\textbf{Returns}
a newly constructed Complex initialized to \( \frac{x}{y} \)

\textbf{doubleValue}
public double doubleValue()

\textbf{Description}
Returns the value of the real part as a double.

\textbf{Returns}
a double representing the value of the real part of a Complex object

\textbf{equals}
public boolean equals(Complex z)

\textbf{Description}
Compares with another Complex.
\textit{Note: To be useful in hashtables this method considers two NaN double values to be equal. This is not according to IEEE specification.}

\textbf{Parameter}
\begin{itemize}
  \item \( z \) – a Complex object
\end{itemize}

\textbf{Returns}
true if the real and imaginary parts of this object are equal to their counterparts in the argument; false, otherwise

\textbf{equals}
public boolean equals(Object obj)

\textbf{Description}
Compares this object against the specified object.
\textit{Note: To be useful in hashtables this method considers two NaN double values to be equal. This is not according to IEEE specification}
Parameter
   obj – the object to compare with

Returns
true if the objects are the same; false otherwise

static public Complex exp(Complex z)

Description
Returns the exponential of a Complex z, exp(z).
Specifically, if \( z = x + iy \),
\[ \exp(\bar{z}) = \exp(z) \]
\[ \exp(\pm 0 + i0) = 1 + i0. \]
\[ \exp(+\infty + i0) = +\infty + i0. \]
\[ \exp(-\infty + i\infty) = \pm 0 \pm i0 \] (where the signs of the real and imaginary parts of the result are unspecified).
\[ \exp(+\infty + i\infty) = \pm \infty + i\text{NaN} \] (where the sign of the real part of the result is unspecified).
\[ \exp(x + i\text{NaN}) = \text{NaN} + i\text{NaN}, \] for finite x.
\[ \exp(-\infty + iy) = +0[\cos(y) + i\sin(y)], \] for finite y.
\[ \exp(+\infty + iy) = +\infty[\cos(y) + i\sin(y)], \] for finite nonzero y.
\[ \exp(-\infty + i\text{NaN}) = \pm 0 \pm i0 \] (where the signs of the real and imaginary parts of the result are unspecified).
\[ \exp(+\infty + i\text{NaN}) = \pm \infty + i\text{NaN} \] (where the sign of the real part of the result is unspecified).
\[ \exp(x + i0) = \text{NaN} + i0. \]
\[ \exp(\text{NaN} + iy) = \text{NaN} + i\text{NaN}, \] for all non-zero numbers y.
\[ \exp(x + i\text{NaN}) = \text{NaN} + i\text{NaN}, \] for finite x.

Parameter
   z – a Complex object

Returns
a newly constructed Complex initialized to the exponential of the argument

public float floatValue()

Description
Returns the value of the real part as a float.

Returns
a float representing the value of the real part of a Complex object

public int hashCode()
**Description**
Returns a hashcode for this Complex.

**Returns**
a hash code value for this object

**imag**
public double imag()

**Description**
Returns the imaginary part of a Complex object.

**Returns**
a double representing the imaginary part of a Complex object, \( z \)

**imag**
static public double imag(Complex \( z \))

**Description**
Returns the imaginary part of a Complex object.

**Parameter**
   \( z \) – a Complex object

**Returns**
a double representing the imaginary part of the Complex object, \( z \)

**intValue**
public int intValue()

**Description**
Returns the value of the real part as an int.

**Returns**
an int representing the value of the real part of a Complex object

**log**
static public Complex log(Complex \( z \))

**Description**
Returns the logarithm of a Complex \( z \), with a branch cut along the negative real axis.

Specifically, if \( z = x + iy \),
\[ \log(\bar{z}) = \log(z). \]
\[ \log(0 + i0) \text{ returns } -\infty + i\pi. \]
\[ \log(+0 + i0) \text{ returns } -\infty + i0. \]
\[ \log(-\infty + i\infty) \text{ returns } +\infty + i3\pi/4. \]
\[ \log(+\infty + i\infty) \text{ returns } +\infty + i\pi/4. \]
\[ \log(x + i\infty) \text{ returns } +\infty + i\pi/2, \text{ for finite } x. \]
\log(-\infty + iy) \text{ returns } +\infty + i\pi, \text{ for finite positive-signed } y.
\log(+\infty + iy) \text{ returns } +\infty + i0, \text{ for finite positive-signed } y.
\log(\pm\infty + i\text{NaN}) \text{ returns } +\infty + i\text{NaN}.
\log(\text{NaN} + i\infty) \text{ returns } +\infty + i\text{NaN}.
\log(x + i\text{NaN}) \text{ returns NaN + iNaN, for finite } x.
\log(\text{NaN} + iy) \text{ returns NaN + iNaN, for finite } y.
\log(\text{NaN} + i\text{NaN}) \text{ returns NaN + iNaN.}

Parameter

\text{ z – a Complex object}

Returns

A newly constructed Complex initialized to the logarithm of the argument. Its imaginary part is in the interval \([-i\pi, i\pi]\).
Returns
a newly constructed Complex initialized to \( x \times y \)

**multiply**
static public Complex multiply(double x, Complex y)

**Description**
Returns the product of a double and a Complex object, \( x \times y \).

**Parameters**
- \( x \) – a double value
- \( y \) – a Complex object

**Returns**
a newly constructed Complex initialized to \( x \times y \)

**multiplyImag**
static public Complex multiplyImag(Complex x, double y)

**Description**
Returns the product of a Complex object and a pure imaginary double, \( x \times iy \).

**Parameters**
- \( x \) – a Complex object
- \( y \) – a double value representing a pure imaginary

**Returns**
a newly constructed Complex initialized to \( x \times iy \)

**multiplyImag**
static public Complex multiplyImag(double x, Complex y)

**Description**
Returns the product of a pure imaginary double and a Complex object, \( ix \times y \).

**Parameters**
- \( x \) – a double value representing a pure imaginary
- \( y \) – a Complex object

**Returns**
a newly constructed Complex initialized to \( ix \times y \).

**negate**
static public Complex negate(Complex z)

**Description**
Returns the negative of a Complex object, \(-z\).
Parameter
   z – a Complex object

Returns
a newly constructed Complex initialized to the negative of the Complex argument, z

pow
static public Complex pow(Complex x, Complex y)

Description
Returns the Complex x raised to the Complex y power. The value of pow is defined in terms of the functions exp and log, by pow(x,y) = exp(ylog(x)).

Parameters
   x – a Complex object
   y – a Complex object

Returns
a newly constructed Complex initialized to x^y.

pow
static public Complex pow(Complex z, double x)

Description
Returns the Complex z raised to the x power, with a branch cut for the first parameter (z) along the negative real axis.

Parameters
   z – a Complex object
   x – a double value

Returns
a newly constructed Complex initialized to z to the power x

real
double real()

Description
Returns the real part of a Complex object.

Returns
a double representing the real part of a Complex object, z

real
static public double real(Complex z)
**Description**  
Returns the real part of a Complex object.

**Parameter**  
\[ z \] – a Complex object

**Returns**  
a double representing the real part of the Complex object, \( z \)

**shortValue**  
public short shortValue()

**Description**  
Returns the value of the real part as a short.

**Returns**  
a short representing the value of the real part of a Complex object

**sin**  
static public Complex sin(Complex z)

**Description**  
Returns the sine of a Complex. The value of \( \sin \) is defined in terms of the function \( \sinh \), by \( \sin(z) = -i\sinh(iz) \).

**Parameter**  
\[ z \] – a Complex object

**Returns**  
a newly constructed Complex initialized to the sine of the argument

**sinh**  
static public Complex sinh(Complex z)

**Description**  
Returns the hyperbolic sine of a Complex.

If \( z = x+iy \),
\[
\sinh(z) = \sinh(x) \text{ and sinh is odd.}
\]
\[
\sinh(0) \text{ returns } 0 + 0i.
\]
\[
\sinh(\pm i\infty) \text{ returns } \pm 0 + i\text{NaN (where the sign of the real part of the result is unspecified).}
\]
\[
\sinh(\pm \infty + i0) \text{ returns } \pm \infty + i0.
\]
\[
\sinh(\pm \infty + i\infty) \text{ returns } \pm \infty + i\text{NaN (where the sign of the real part of the result is unspecified).}
\]
\[
\sinh(\pm \infty + iy) \text{ returns } \pm \infty [\cos(y) + i\sin(y)], \text{ for positive finite } y.
\]
\[
\sinh(x + i\infty) \text{ returns NaN + iNaN, for positive finite } x.
\]
\[
\sinh(\pm 0 + i\text{NaN}) \text{ returns } \pm 0 + i\text{NaN (where the sign of the real part of the result is unspecified).}
\]
\[
\sinh(\pm \infty + i\text{NaN}) \text{ returns } \pm \infty + i\text{NaN (where the sign of the real part of the result is unspecified).}
\]
\[
\sinh(x + i\text{NaN}) \text{ returns NaN + iNaN, for finite nonzero } x.
\]
\( \sinh(\text{NaN} + i0) \) returns \( \text{NaN} + i0 \).
\( \sinh(\text{NaN} + iy) \) returns \( \text{NaN} + i\text{NaN} \), for all nonzero numbers \( y \).
\( \sinh(\text{NaN} + i\text{NaN}) \) returns \( \text{NaN} + i\text{NaN} \).

**Parameter**

\( z \) – a Complex object

**Returns**
a newly constructed Complex initialized to the hyperbolic sine of the argument

**sqrt**

\[
\text{static public Complex sqrt(Complex } z)\]

**Description**

Returns the square root of a Complex, with a branch cut along the negative real axis.
Specifically, if \( z = x+iy \),
\[
\sqrt{z} = \sqrt{r} e^{i \theta/2},
\]
where \( r = |z| \) and \( \theta = \arg(z) \).
\( \sqrt{\pm 0 + i0} \) returns \( +0 + i0 \).
\( \sqrt{\pm \infty + iy} \) returns \( +\infty + i\infty \), for finite positive-signed \( y \).
\( \sqrt{(-\infty + iy)} \) returns \( +0 - i\infty \), for finite negative-signed \( y \).
\( \sqrt{x + i\infty} \) returns \( +\infty + i\infty \), for all \( x \) (including \( \text{NaN} \)).
\( \sqrt{(-\infty + i\text{NaN})} \) returns \( \text{NaN} \pm i\infty \) (where the sign of the imaginary part of the result is unspecified).
\( \sqrt{(+\infty + i\text{NaN})} \) returns \( +\infty + i\text{NaN} \).
\( \sqrt{x + i\text{NaN}} \) returns \( \text{NaN} + i\text{NaN} \) and optionally raises the invalid exception, for finite \( x \).
\( \sqrt{\text{NaN} + iy} \) returns \( \text{NaN} + i\text{NaN} \) and optionally raises the invalid exception, for finite \( y \).
\( \sqrt{\text{NaN} + i\text{NaN}} \) returns \( \text{NaN} + i\text{NaN} \).

**Parameter**

\( z \) – a Complex object

**Returns**

A newly constructed Complex initialized to square root of \( z \).

**subtract**

\[
\text{static public Complex subtract(Complex } x, \text{ Complex } y)\]

**Description**

Returns the difference of two Complex objects, \( x - y \).

**Parameters**

\( x \) – a Complex object
\( y \) – a Complex object

---

**Miscellaneous**
Returns
a newly constructed Complex initialized to x-y

subtract
static public Complex subtract(Complex x, double y)

Description
Returns the difference of a Complex object and a double, x-y.

Parameters
  x – a Complex object
  y – a double value

Returns
a newly constructed Complex initialized to x-y

subtract
static public Complex subtract(double x, Complex y)

Description
Returns the difference of a double and a Complex object, x-y.

Parameters
  x – a double value
  y – a Complex object

Returns
a newly constructed Complex initialized to x-y

tan
static public Complex tan(Complex z)

Description
Returns the tangent of a Complex. The value of tan is defined in terms of the function tanh, by
\[ \tan(z) = -i \tanh(iz). \]

Parameter
  z – a Complex object

Returns
a newly constructed Complex initialized to the tangent of the argument

tanh
static public Complex tanh(Complex z)
Description
Returns the hyperbolic tanh of a Complex.

If \( z = x + iy \),
\[
\tanh(z) = \tanh(z) \text{ and tanh is odd.}
\]
\[
\tanh(0 + 0\,i) \text{ returns } 0 + 0\,i.
\]
\[
\tanh(+\infty + iy) \text{ returns } 1 + 0\,i, \text{ for all positive-signed numbers } y.
\]
\[
\tanh(x + \infty) \text{ returns } \text{NaN} + i\text{NaN}, \text{ for finite } x.
\]
\[
\tanh(+\infty + i(\text{NaN})) \text{ returns } 1 \pm i0 \text{ (where the sign of the imaginary part of the result is unspecified).}
\]
\[
\tanh(\text{NaN} + i0) \text{ returns } \text{NaN} + i0.
\]
\[
\tanh(\text{NaN} + i\,y) \text{ returns } \text{NaN} + i\text{NaN}, \text{ for all nonzero numbers } y.
\]
\[
\tanh(x + i\text{NaN}) \text{ returns } \text{NaN} + i\text{NaN}, \text{ for finite } x.
\]
\[
\tanh(\text{NaN} + i\text{NaN}) \text{ returns } \text{NaN} + i\text{NaN}.
\]

Parameter
- \( z \) – a Complex object

Returns
a newly constructed Complex initialized to the hyperbolic tangent of the argument

toString
public String toString()

Description
Returns a String representation for the specified Complex.

Returns
a String representation for this object

valueOf
static public Complex valueOf(String s) throws NumberFormatException

Description
 Parses a String into a Complex.

Parameter
- \( s \) – the String to be parsed

Returns
a newly constructed Complex initialized to the value represented by the String argument

Exceptions
- NumberFormatException if the string does not contain a parsable Complex number
- NullPointerException if the input argument is null

Miscellaneous
Complex • 567
Example: LU Decomposition of a Complex Matrix

The Complex class is used to convert a real matrix to a Complex matrix. An LU decomposition of the matrix is performed and the determinant and condition number of the matrix are obtained.

```java
import com.imsl.math.*;

public class ComplexEx1 {

 public static void main(String args[]) throws SingularMatrixException {
 double ar[][] = {
 {1, 3, 3},
 {1, 3, 4},
 {1, 4, 3}
 };
 double br[] = {12, 13, 14};
 Complex a[][] = new Complex[3][3];
 Complex b[] = new Complex[3];
 for (int i = 0; i < 3; i++) {
 b[i] = new Complex(br[i]);
 for (int j = 0; j < 3; j++) {
 a[i][j] = new Complex(ar[i][j]);
 }
 }
 // Compute the LU factorization of A
 ComplexLU clu = new ComplexLU(a);

 // Solve Ax = b
 Complex x[] = clu.solve(b);
 System.out.println("The solution is:");
 System.out.println(" ");
 new PrintMatrix("x").print(x);
 // Find the condition number of A.
 double condition = clu.condition(a);
 System.out.println("The condition number = " + condition);
 System.out.println();
 // Find the determinant of A.
 Complex determinant = clu.determinant();
 System.out.println("The determinant = " + determinant);
 }
}
```

Output

The solution is:

```
x
 0
 0 3
 1 2
```
The condition number = 0.014886731391585757

The determinant = -0.9999999999999998

Physical class

public class com.imsl.math.Physical extends java.lang.Number implements Serializable, Cloneable

Return the value of various mathematical and physical constants. The case of the String specifying the name of the physical constant does not matter. The names 'PI', 'Pi', 'pI' and 'pi' are equivalent. The units of the physical constants are in SI units, (meter-kilogram-second). The names allowed are as follows:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>Atomic mass unit</td>
<td>1.6605402E-27 kg</td>
<td>[1]</td>
</tr>
<tr>
<td>ATM</td>
<td>Standard atm pressure</td>
<td>1.01325E+5 N/m²</td>
<td>[1]</td>
</tr>
<tr>
<td>AU</td>
<td>Astronomical unit</td>
<td>1.496E+11 m</td>
<td>[1]</td>
</tr>
<tr>
<td>Avogadro</td>
<td>Avogadro’s number</td>
<td>6.0221367E+23 1/mole</td>
<td>[1]</td>
</tr>
<tr>
<td>Boltzman</td>
<td>Boltzman’s constant</td>
<td>1.380658E-23 J/K</td>
<td>[1]</td>
</tr>
<tr>
<td>C</td>
<td>Speed of light</td>
<td>2.997924580E+8 m/s</td>
<td>[1]</td>
</tr>
<tr>
<td>Catalán</td>
<td>Catalán’s constant</td>
<td>0.915965...</td>
<td>[3]</td>
</tr>
<tr>
<td>E</td>
<td>Base of natural logs</td>
<td>2.718...</td>
<td>[3]</td>
</tr>
<tr>
<td>Electron Charge</td>
<td>Electron charge</td>
<td>1.60217733E-19 C</td>
<td>[1]</td>
</tr>
<tr>
<td>Euler</td>
<td>Euler’s constant gamma</td>
<td>0.577...</td>
<td>[3]</td>
</tr>
<tr>
<td>Faraday</td>
<td>Faraday constant</td>
<td>9.6485309E+4 C/mole</td>
<td>[1]</td>
</tr>
<tr>
<td>FineStructure</td>
<td>Fine structure</td>
<td>7.29735308E-3</td>
<td>[1]</td>
</tr>
<tr>
<td>Gamma</td>
<td>Euler’s constant</td>
<td>0.577...</td>
<td>[3]</td>
</tr>
<tr>
<td>Gas</td>
<td>Gas constant</td>
<td>8.314510 J/mole/K</td>
<td>[1]</td>
</tr>
<tr>
<td>Gravity</td>
<td>Gravitational constant</td>
<td>6.67259E-11 Nm²/kg²</td>
<td>[1]</td>
</tr>
<tr>
<td>Hbar</td>
<td>Planck constant / 2 pi</td>
<td>1.05457266E-34 J*s</td>
<td>[1]</td>
</tr>
<tr>
<td>Perfect Gas Volume</td>
<td>Std vol ideal gas</td>
<td>2.241383E-2 m³/mole</td>
<td>[*]</td>
</tr>
<tr>
<td>Pi</td>
<td>Pi</td>
<td>3.141...</td>
<td>[3]</td>
</tr>
<tr>
<td>Planck</td>
<td>Planck’s constant h</td>
<td>6.6260755E-34 J*s</td>
<td>[1]</td>
</tr>
<tr>
<td>Proton Mass</td>
<td>Proton mass</td>
<td>1.6726231E-27 kg</td>
<td>[1]</td>
</tr>
<tr>
<td>Rydberg</td>
<td>Rydberg’s constant</td>
<td>1.0973731534E+7 /m</td>
<td>[1]</td>
</tr>
<tr>
<td>Speed Light</td>
<td>Speed of light</td>
<td>2.997924580E+8 m/s</td>
<td>[1]</td>
</tr>
<tr>
<td>Standard Gravity</td>
<td>Standard g</td>
<td>9.80665 m/s²</td>
<td>[2]</td>
</tr>
<tr>
<td>Standard Pressure</td>
<td>Standard atm pressure</td>
<td>1.01325E+5 N/m²</td>
<td>[2]</td>
</tr>
<tr>
<td>Stefan Boltzmann</td>
<td>Stefan-Boltzmann</td>
<td>5.67051E-8 W/K⁰/m²</td>
<td>[1]</td>
</tr>
<tr>
<td>Water Triple</td>
<td>Triple point of water</td>
<td>2.7316E+2 K</td>
<td>[2]</td>
</tr>
</tbody>
</table>

The reference for constants are indicated by the code in the [] comment above.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2]</td>
<td>Liepman (1964)</td>
</tr>
<tr>
<td>[3]</td>
<td>Precomputed mathematical constants</td>
</tr>
</tbody>
</table>

The constants marked with an E before the [] are exact (to machine precision).

1. Units strings have the form U1*U2*...*Um/V1/.../Vn, where Ui and Vi are the names of basic units or are the names of basic units raised to a power. Examples are, 'METER*KILOGRAM/SECOND', 'M*KG/S', 'METER', or 'M/KG²'. These strings are case insensitive.

2. The basic unit names allowed are as follows.
   Units of time
   day, hour = hr, min = minute, s = sec = second, year
Units of frequency
Hertz = Hz

Units of mass
AMU, g = gram, lb = pound, ounce = oz, slug

Units of distance
Angstrom, AU, ft = feet = foot, in = inch, m = meter = metre, micron, mile, mill, parsec, yard

Units of area
acre

Units of volume
l = liter = litre

Units of force
dyne, N = Newton, poundal

Units of energy
BTU(thermochemical), Erg, J = Joule

Units of work
W = watt

Units of pressure
ATM = atmosphere, bar, Pascal

Units of temperature
degC = Celsius, degF = Fahrenheit, degK = Kelvin

Units of viscosity
poise, stoke

Units of charge
Abcoulomb, C = Coulomb, statcoulomb

Units of current
A = ampere, abampere, statampere

Units of voltage
Abvolt, V = volt

Units of magnetic induction
T = Tesla, Wb = Weber

Other units
1, farad, mole, Gauss, Henry, Maxwell, Ohm

The following metric prefixes may be used with the above units. Note that the one or two letter prefixes may only be used with one letter unit abbreviations.

A = atto = 1.E-18
F = femto = 1.E-15
P = pico = 1.E-12
N = nano = 1.E-9
U = micro = 1.E-6
M = milli = 1.E-3
C = centi = 1.E-2
D = deci = 1.E-1
DK = deca = 1.E+1
K = kilo = 1.E+3
myria = 1.E+4 (no single letter prefix; M means milli)
mega = 1.E+6 (no single letter prefix; M means milli)
G = giga = 1.E+9
T = tera = 1.E+12

Fields

CURRENT
static final protected int CURRENT

LENGTH
static final protected int LENGTH

MASS
static final protected int MASS

TEMPERATURE
static final protected int TEMPERATURE

TIME
static final protected int TIME

dim
protected int[] dim

value
protected double value

Constructors

Physical
public Physical()

Description
Constructs a new 0-valued, dimensionless object.
**Physical**
public Physical(Physical copy)

**Description**
Constructs a copy of a Physical object.

**Parameter**
copy – Physical object from which a copy is made

**Physical**
public Physical(double value, String units)

**Description**
Constructs a new Physical object and initializes this object to a double value.

**Parameters**
value – double value to which the copy of the object is initialized
units – String specifying the unit

**Physical**
public Physical(double value, int length, int mass, int time, int current, int temperature)

**Description**
Constructs a new Physical object and initializes this object to a double value along with int values for length, mass, time, current, and temperature.

**Parameters**
value – double value to which this object is initialized
length – int value assigned to this object’s length
mass – int value assigned to this object’s mass
time – int value assigned to this object’s time
current – int value assigned to this object’s current
temperature – int value assigned to this object’s temperature

**Methods**

**add**
static public Physical add(Physical x, Physical y)

**Description**
Add two compatible Physical objects.

**Miscellaneous**

Physical • 573
Parameters
x – Physical object which is to be added
y – Physical object which is to be added

Returns
Physical object which is the sum of x + y

Exception
IllegalArgumentException is thrown if x and y are not compatible

checkCompatibility
static public void checkCompatibility(Physical x, Physical y)

Description
Checks the compatibility of two Physical objects.

Parameters
  x – a Physical object
  y – a Physical object to be checked against x

Exception
IllegalArgumentException is thrown if the two Physical objects are incompatible

constant
static public Physical constant(String name)

Description
Returns the value of a constant, given its name.

Parameter
  name – is a String representing the name of the constant to be returned

Returns
the Physical object containing the value of the constant, in its default units

Exception
IllegalArgumentException is thrown when the name given is undefined

constant
static public double constant(String name, String units)

Description
Returns the value of a constant, given its name, in the specified units.

Parameters
  name – is a String representing the name of the constant to be returned.
  units – is a String representing the units in which the constant is to be returned.
Returns
a double containing the value of the constant in the specified units

Exception
IllegalArgumentException is thrown if the constant name is undefined

convert
static public Physical convert(Physical pOld, String unitsNew)

Description
Converts a value to a different set of units.

Parameters
pOld – a Physical object specifying the value to be converted
unitsNew – a String specifying the units to which pOld is to be converted

Returns
a Physical object containing the value of pOld converted to the new units

Exception
IllegalArgumentException is thrown if the new and old units are incompatible

defineConstant
static public void defineConstant(String name, Physical value)

Description
Defines a new constant.

Parameters
name – a String specifying the name of the constant to be defined
value – a Physical object defining the value of the new constant

definePrefix
static public void definePrefix(String name, double value)

Description
Defines a new prefix.

Parameters
name – a String specifying the name of the prefix to be defined
value – the double value of the prefix

defineUnit
static public void defineUnit(String name, Physical value)

Description
Defines a new unit.
Parameters

name – a String specifying the name of the unit to be defined
value – a Physical object defining the value of one unit in terms of SI units

divide
divide(Physical x, Physical y)

Description
Divide two Physical objects.

Parameters

x – Physical object which is the numerator
y – Physical object which is the divisor

Returns
Physical object which is the result of x/y

divide
divide(Physical x, double y)

Description
Divide a Physical object by a double.

Parameters

x – Physical object which is the numerator
y – double object which is the divisor

Returns
Physical object which is the result of x/y

divide
divide(double x, Physical y)

Description
Divide a double by a Physical object.

Parameters

x – double which is the numerator
y – Physical object which is the divisor

Returns
Physical object which is the result of x/y

doubleValue
doubleValue()
Description
Returns the value of this dimensionless object.

Returns
the double value of the dimensionless object

Exception
  IllegalArgumentException is thrown if the this object is not dimensionless

floatValue
public float floatValue()

Description
Returns the value of this dimensionless object.

Returns
the float value of the dimensionless object

Exception
  IllegalArgumentException is thrown if the this object is not dimensionless

intValue
public int intValue()

Description
Returns the value of this dimensionless object.

Returns
the int value of the dimensionless object

Exception
  IllegalArgumentException is thrown if the this object is not dimensionless

longValue
public long longValue()

Description
Returns the value of this dimensionless object.

Returns
the long value of the dimensionless object

Exception
  IllegalArgumentException is thrown if the this object is not dimensionless

multiply
static public Physical multiply(Physical x, Physical y)
Description
Multiply two Physical objects.

Parameters
- x – Physical object which is to be multiplied
- y – Physical object which is to be multiplied

Returns
Physical object which is the product of x and y

multiply
static public Physical multiply(Physical x, double y)

Description
Multiply a Physical object and a double

Parameters
- x – Physical object which is to be multiplied
- y – double which is to be multiplied

Returns
Physical object which is the product of x and y

multiply
static public Physical multiply(double x, Physical y)

Description
Multiply a double and a Physical object

Parameters
- x – double which is to be multiplied
- y – Physical object which is to be multiplied

Returns
Physical object which is the product of x and y

negate
static public Physical negate(Physical x)

Description
Negate a Physical object.

Parameter
- x – Physical object which is to be negated
Returns
Physical object which has been negated

subtract
static public Physical subtract(Physical x, Physical y)

Description
Subtract two compatible Physical objects.

Parameters
x – Physical object
y – Physical object which is to be subtracted from x

Returns
Physical object which is the result of x - y

Exception
IllegalArgumentException is thrown if x and y are not compatible

toString
public String toString()

Description
Returns a String containing the value and units, if any.

Returns
a String specifying the value and units, if any, of this Physical object

unitsString
public String unitsString()

Description
Returns a String containing the units only.

Returns
a String specifying the units of this Physical object

Example: The Physical Constants
The value of the physical constant PI is printed.

import com.imsl.math.*;

public class PhysicalEx1 {
    public static void main(String args[]) {
        System.out.println("The value of the physical constant PI is " + Physical.constant("PI"));
    }
}

Miscellaneous

Physical ● 579
The value of the physical constant PI is 3.141592653589793

EpsilonAlgorithm class

public class com.imsl.math.EpsilonAlgorithm

The class is used to determine the limit of a sequence of approximations, by means of the Epsilon algorithm of P. Wynn. An estimate of the absolute error is also given. The condensed Epsilon table is computed. Only those elements needed for the computation of the next diagonal are preserved.

Constructors

EpsilonAlgorithm
public EpsilonAlgorithm()

Description
Initializes an EpsilonAlgorithm with a maximum table size of 50.

EpsilonAlgorithm
public EpsilonAlgorithm(int maxTableSize)

Description
Initializes an EpsilonAlgorithm.

Parameter
maxTableSize – The maximum table size.

Methods

extrapolate
public double extrapolate(double x)

Description
Extrapolates the convergence limit of a sequence.

Parameter
x – is the next point in the original series.
Returns

an estimate of the limit of the series.

getErrorEstimate

public double getErrorEstimate()

Description

Returns the current error estimate.

Example: The Epsilon Algorithm

The Epsilon algorithm is used to accelerate a series of partial sums of an infinite sum. The error shows
that the Epsilon algorithm is effective.

import com.imsl.math.*;
import java.text.DecimalFormat;

public class EpsilonAlgorithmEx1 {

    static public void main(String arg[]) {
        EpsilonAlgorithm eps = new EpsilonAlgorithm();

        int n = 100;
        double sum = 0.0;
        for (int i = 1; i < n; i++) {
            sum += 1.0 / (i * i);
            eps.extrapolate(sum);
        }
        sum += 1.0 / (n * n);
        double extrapolated = eps.extrapolate(1.0 / (n * n));
        double expected = Math.PI * Math.PI / 6.0;
        double exError = expected - extrapolated;
        double sumError = expected - sum;
        DecimalFormat format = new DecimalFormat("0.00000");
        System.out.println("Expected 	" + format.format(expected));
        System.out.println("Extrapolated 	" + format.format(extrapolated));
        System.out.println(" 	error =" + format.format(exError));
        System.out.println(" 	error =" + format.format(sumError));
    }
}

Output

Expected 1.64493
Extrapolated 1.64278 error =0.00216
Sum 1.63498 error =0.00995
Chapter 12: Printing Functions

Types

class PrintMatrix ................................................................. 583
class PrintMatrixFormat ....................................................... 588

PrintMatrix class

public class com.imsl.math.PrintMatrix
Matrix printing utilities.

Fields

FULL
static final public int FULL

This flag as the argument to setMatrixType, indicates that the full matrix is to be printed.

LOWER_TRIANGULAR
static final public int LOWER_TRIANGULAR

This flag as the argument to setMatrixType, indicates that only the lower triangular elements of the
matrix are to be printed. The matrix still must be a rectangular matrix.

STRICT_LOWER_TRIANGULAR
static final public int STRICT_LOWER_TRIANGULAR
This flag as the argument to setMatrixType, indicates that only the strict lower triangular elements of the matrix are to be printed. The matrix still must be a rectangular matrix.

STRICT UPPER_TRIANGULAR
static final public int STRICT UPPER_TRIANGULAR

This flag as the argument to setMatrixType, indicates that only the strict upper triangular elements of the matrix are to be printed. The matrix still must be a rectangular matrix.

UPPER_TRIANGULAR
static final public int UPPER_TRIANGULAR

This flag as the argument to setMatrixType, indicates that only the upper triangular elements of the matrix are to be printed. The matrix still must be a rectangular matrix.

Constructors

PrintMatrix
public PrintMatrix()

Description
Creates an instance of the PrintMatrix class.

PrintMatrix
public PrintMatrix(PrintStream out)

Description
Creates an instance of the PrintMatrix class with the specified PrintStream.

Parameter
out – a PrintStream

PrintMatrix
public PrintMatrix(String title)

Description
Creates a PrintMatrix object and sets its title.

Parameter
title – a String specifying the title

PrintMatrix
public PrintMatrix(PrintStream out, String title)

Description
Creates a PrintMatrix object with the specified PrintStream and sets its title.
Parameters

out – a PrintStream
title – a String specifying the title

Methods

print
public void print(Object array)

Description
Prints a matrix with a default format.

Parameter

array – a two-dimensional, non-empty, rectangular array

print
protected void print(String string)

Description
Print a string. This function can be overridden to print to something other than a PrintStream.

Parameter

string – the String to be printed

print
public void print(PrintMatrixFormat pmf, Object array)

Description
Prints a matrix with specified format.

Parameters

pmf – a PrintMatrixFormat matrix format
array – a two-dimensional, non-empty, rectangular array

printHTML
public void printHTML(PrintMatrixFormat pmf, Object array, int nRows, int nColumns)

Description
Prints an nRows by nColumns matrix with specified format for HTML output.
**Parameters**

- `pmf` – a `PrintMatrixFormat` matrix format
- `nRows` – an `int` specifying the number of rows in the matrix
- `nColumns` – an `int` specifying the number of columns in the matrix

**println**

protected void println()

**Description**

Print a newline. This function can be overridden to print to something other than a PrintStream.

**setColumnSpacing**

public `PrintMatrix` setColumnSpacing(`int` columnSpacing)

**Description**

Sets the number of spaces between columns. The default value is 2.

**Parameter**

- `columnSpacing` – an `int` specifying the number of spaces between columns, default is 2

**Returns**

the `PrintMatrix` object

**setEqualColumnWidths**

public `PrintMatrix` setEqualColumnWidths(`boolean` equalColumnWidths)

**Description**

Force all of the columns to have the same width.

**Parameter**

- `equalColumnWidths` – a `boolean` which specifies that all column widths will be equal

**Returns**

the `PrintMatrix` object

**setMatrixType**

public `PrintMatrix` setMatrixType(`int` matrixType)

**Description**

Set matrix type.

**Parameter**

- `matrixType` – `int` specifying the matrix type. Values for `matrixType` are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FULL</td>
</tr>
<tr>
<td>1</td>
<td>UPPER_TRIANGULAR</td>
</tr>
<tr>
<td>2</td>
<td>LOWER_TRIANGULAR</td>
</tr>
<tr>
<td>3</td>
<td>STRICT_UPPER_TRIANGULAR</td>
</tr>
<tr>
<td>4</td>
<td>STRICT_LOWER_TRIANGULAR</td>
</tr>
</tbody>
</table>
Returns the PrintMatrix object

**setPageWidth**

public PrintMatrix setPageWidth(int pageWidth)

**Description**

Sets the page width. The default value is the largest possible integer.

**Parameter**

pageWidth – an int specifying the page width, default is the largest possible integer

Returns the PrintMatrix object

**setTitle**

public PrintMatrix setTitle(String title)

**Description**

Sets matrix title

**Parameter**

title – a String specifying the title of the matrix

Returns the PrintMatrix object

**Example: Matrix and PrintMatrix**

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is printed using the PrintMatrix class.

```java
import com.imsl.math.*;

public class PrintMatrixEx1 {
 public static void main(String args[]) {
 double nrm1;
 double a[][] = {
 {0., 1., 2., 3.},
 {4., 5., 6., 7.},
 {8., 9., 8., 1.},
 {6., 3., 4., 3.}
 };

 // Get the 1 norm of matrix a
 nrm1 = Matrix.oneNorm(a);

 // Construct a PrintMatrix object with a title
 PrintMatrix p = new PrintMatrix("A Simple Matrix");
 }
}
```
// Print the matrix and its 1 norm
p.print(a);
System.out.println("The 1 norm of the matrix is " + nrm1);
}

Output
A Simple Matrix
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3
The 1 norm of the matrix is 20.0

PrintMatrixFormat class

public class com.imsl.math.PrintMatrixFormat

This class can be used to customize the actions of PrintMatrix. By default, entries are formatted using
the default NumberFormat for the current default locale. As of JDK1.3, none of these NumberFormat
objects support scientific notation. To enable scientific notation, set the NumberFormat property to null.
There is no way to simultaneously support scientific notation and locale-correct formatting.

Fields

BEGIN_COLUMN_LABEL
static final public int BEGIN_COLUMN_LABEL

This flag as the type argument to format, indicates that the formatting string for ending a column label is
to be returned.

BEGIN_COLUMN_LABELS
static final public int BEGIN_COLUMN_LABELS

This flag as the type argument to format, indicates that the formatting string for beginning a column label
row is to be returned.

BEGIN_ENTRY
static final public int BEGIN_ENTRY

588 • PrintMatrixFormat
This flag as the type argument to format, indicates that the formatted string for beginning an entry is to be returned.

**BEGIN_MATRIX**
static final public int BEGIN MATRIX

This flag as the type argument to format, indicates that the formatting string for beginning a matrix is to be returned.

**BEGIN_ROW**
static final public int BEGIN_ROW

This flag as the type argument to format, indicates that the formatting string for beginning a row is to be returned.

**BEGIN_ROW_LABEL**
static final public int BEGIN_ROW_LABEL

This flag as the type argument to format, indicates that the formatting string for beginning a row label is to be returned.

**COLUMN_LABEL**
static final public int COLUMN_LABEL

This flag as the type argument to format, indicates that the formatted string for a given column label is to be returned.

**END_COLUMN_LABEL**
static final public int END_COLUMN_LABEL

This flag as the type argument to format, indicates that the formatting string for ending a column label is to be returned.

**END_COLUMN_LABELS**
static final public int END_COLUMN_LABELS

This flag as the type argument to format, indicates that the formatting string for ending a column label row is to be returned.

**END_ENTRY**
static final public int END_ENTRY

This flag as the type argument to format, indicates that the formatted string for ending an entry is to be returned.

**END_MATRIX**
static final public int END_MATRIX

This flag as the type argument to format, indicates that the formatting string for ending a matrix is to be returned.
This flag as the type argument to format, indicates that the formatting string for ending a row is to be returned.

This flag as the type argument to format, indicates that the formatting string for ending a row label is to be returned.

This flag as the type argument to format, indicates that the formatted string for a given entry is to be returned.

This flag as the type argument to format, indicates that the formatted string for a given row label is to be returned.

The NumberFormat to be used in formatting double and Complex entries.

**Constructor**

**PrintMatrixFormat**

public PrintMatrixFormat()

**Description**

Constructs a PrintMatrixFormat object.

**Methods**

**format**

public String format(int type, Object entry, int row, int col, ParsePosition pos)
Description

Returns a formatted string. This method is used by the methods print and printHTML in PrintMatrix. This method can be overridden to gain finer control over printing.

Parameters

- **type** – is the type of string requested.

<table>
<thead>
<tr>
<th>type</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEGIN_MATRIX</td>
<td>Tag for the beginning of the matrix.</td>
</tr>
<tr>
<td>END_MATRIX</td>
<td>Tag for the end of the matrix.</td>
</tr>
<tr>
<td>BEGIN_COLUMN_LABELS</td>
<td>Tag for the beginning of the column labels row.</td>
</tr>
<tr>
<td>END_COLUMN_LABELS</td>
<td>Tag for the end of the column labels row.</td>
</tr>
<tr>
<td>BEGIN_COLUMN_LABEL</td>
<td>Tag for the beginning of a column label.</td>
</tr>
<tr>
<td>END_COLUMN_LABEL</td>
<td>Tag for the end of a column label.</td>
</tr>
<tr>
<td>COLUMN_LABEL</td>
<td>The label of the specified column.</td>
</tr>
<tr>
<td>BEGIN_ROW</td>
<td>Tag for the beginning of a row.</td>
</tr>
<tr>
<td>END_ROW</td>
<td>Tag for the end of a row.</td>
</tr>
<tr>
<td>BEGIN_ROW_LABEL</td>
<td>Tag for the beginning of a row label.</td>
</tr>
<tr>
<td>END_ROW_LABEL</td>
<td>Tag for the end of a row label.</td>
</tr>
<tr>
<td>ROW_LABEL</td>
<td>The label of the specified row.</td>
</tr>
<tr>
<td>ENTRY</td>
<td>The row-col entry of the matrix</td>
</tr>
</tbody>
</table>

- **entry** – is the entry to be formatted. This is only used if type equals ENTRY. For other values of type, this can be set to null.

- **row** – is the (0-based) row number of the element to be formatted. This is -1 if there is no row number associated with this request.

- **col** – is the (0-based) column number of the element to be formatted. This is -1 if there is no column number associated with this request.

- **pos** – is a ParsePosition object used to indicate the alignment center of the return string. This is used only if type==ENTRY. If the entry is a double then the index is the position of the decimal point. If the entry is an int then the index is the position of the end of the formatted integer.

Returns

- **getNumberFormat**

  public NumberFormat getNumberFormat()

  Description

  Returns the NumberFormat to be used in formatting double and Complex entries.

- **setColumnLabels**

  public void setColumnLabels(String[] columnLabels)

  Description

  Turns on column labeling using the given labels.

Printing Functions
Parameter

    columnLabels – is an array of Strings to be used as column labels. If there are more columns than labels, the labels are reused.

**setFirstColumnNumber**

    public void setFirstColumnNumber(int firstColumnNumber)

Description

Turns on column labeling with index numbers and sets the index for the label of the first column.

Parameter

    firstColumnNumber – is the number for the first column label. This is usually 0 or 1. The default is 0.

**setFirstRowNumber**

    public void setFirstRowNumber(int firstRowNumber)

Description

Turns on row labeling with index numbers and sets the index for the label of the first row.

Parameter

    firstRowNumber – is the number for the first row label. This is usually 0 or 1. The default is 0.

**setNoColumnLabels**

    public void setNoColumnLabels()

Description

Turns off column labels.

**setNoRowLabels**

    public void setNoRowLabels()

Description

Turns off row labels.

**setNumberFormat**

    public void setNumberFormat(NumberFormat numberFormat)

Description

Sets the NumberFormat to be used in formatting double and Complex entries.

Parameter

    numberFormat – a NumberFormat or null. If null then numbers will be formatted using java.lang.Integer.toString, or java.lang.Object.toString.
Example: Matrix Formatting

A simple matrix is printed using the default format with the PrintMatrix class. The PrintMatrixFormat class is then used to change the default format.

```java
import com.imsl.math.*;

public class PrintMatrixFormatEx1 {
 public static void main(String args[]) {
 double a[][] = {
 {0., 1., 2., 3.},
 {4., 5., 6., 7.},
 {8., 9., 8., 1.},
 {6., 3., 4., 3.}
 };

 // Construct a PrintMatrix object with a title
 PrintMatrix p = new PrintMatrix("A Simple Matrix");

 // Print the matrix
 p.print(a);

 // Turn row and column labels off
 PrintMatrixFormat mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();

 // Print the matrix
 p.print(mf, a);
 }
}
```

Output

```
A Simple Matrix
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3

A Simple Matrix
0 1 2 3
4 5 6 7
8 9 8 1
6 3 4 3
```
Example: Matrix Formatting
A matrix is printed in CSV (comma separated value) format. This is done by overriding the format
method of PrintMatrixFormat to add commas after all but the last number in each row.
import com.imsl.math.*;
import java.text.*;
public class PrintMatrixFormatEx2 extends PrintMatrixFormat {
private int ncols;
public PrintMatrixFormatEx2(int ncols) {
this.ncols = ncols;
}
public String format(int type, Object entry,
int row, int col, ParsePosition pos) {
String text = super.format(type, entry, row, col, pos);
if (type == ENTRY) {
if (col < ncols - 1) {
text += ",";
}
}
return text;
}
public static void main(String args[]) {
double a[][] = {
{0., 1., 2.},
{4., 5., 6.},
{8., 9., 8.},
{6., 3., 4.}
};
PrintMatrixFormat mf = new PrintMatrixFormatEx2(3);
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the matrix
new PrintMatrix().print(mf, a);
}
}

Output
0,
4,
8,
6,

1,
5,
9,
3,

2
6
8
4

594 • PrintMatrixFormat

JMSL


Chapter 13: Basic Statistics

Types

class Summary ................................................................. 595
class Covariances ............................................................. 607
class PartialCovariances ...................................................... 617
class PooledCovariances ...................................................... 623
class NormOneSample .......................................................... 632
class NormTwoSample .......................................................... 638
class Sort ............................................................................ 650
class Ranks .......................................................................... 659
class EmpiricalQuantiles ....................................................... 668
class TableOneWay .............................................................. 671
class TableTwoWay .............................................................. 676
class TableMultiWay ............................................................ 682

Usage Notes

The methods/classes for the computations of basic statistics generally have relatively simple arguments. Most of the methods/classes in this chapter allow for missing values. Missing value codes can be set by using Double.NaN.

Several methods/classes in this chapter perform statistical tests. These methods in the classes generally return a “p-value” for the test. The p-value is between 0 and 1 and is the probability of observing data that would yield a test statistic as extreme or more extreme under the assumption of the null hypothesis. Hence, a small p-value is evidence for the rejection of the null hypothesis.

Summary class

public class com.imsl.stat.Summary implements Serializable, Cloneable
Computes basic univariate statistics.

For the data in \( x \). Summary computes the sample mean, variance, minimum, maximum, and their basic statistics. It also computes confidence intervals for the mean and variance if the sample is assumed to be from a normal population.

Missing values, that is, values equal to NaN (not a number), are excluded from the computations. The sum of the weights is used only in computing the mean (of course, then the weighted mean is used in computing the central moments). The definitions of some of the statistics are given below in terms of a single variable \( x \). The \( i \)-th datum is \( x_i \), with corresponding weight \( w_i \). If weights are not specified, the \( w_i \) are identically one. The summation in each case is over the set of valid observations, based on the presence of missing values in the data.

Number of nonmissing observations,

\[
n = \sum f_i
\]

Mean,

\[
\bar{x}_w = \frac{\sum f_i w_i x_i}{\sum f_i w_i}
\]

Variance,

\[
s^2_w = \frac{\sum f_i w_i (x_i - \bar{x}_w)^2}{n - 1}
\]

Skewness,

\[
\frac{\sum f_i w_i (x_i - \bar{x}_w)^3}{\left[ \sum f_i w_i (x_i - \bar{x}_w)^2 / n \right]^{3/2}}
\]

Excess or Kurtosis,

\[
\frac{\sum f_i w_i (x_i - \bar{x}_w)^4}{\left[ \sum f_i w_i (x_i - \bar{x}_w)^2 / n \right]^2} - 3
\]

Minimum,

\[
x_{\min} = \min(x_i)
\]

Maximum,

\[
x_{\max} = \max(x_i)
\]
Constructor

Summary
public Summary()

Description
Constructs a new summary statistics object.

Methods

confidenceMean
public double[] confidenceMean(double p)

Description
Returns the confidence interval for the mean (assuming normality).

Parameter
p – a double, the confidence level desired, usually 0.90, 0.95 or 0.99.

Returns
a double array of length 2 which contains the lower and upper confidence limits for the mean

confidenceVariance
public double[] confidenceVariance(double p)

Description
Returns the confidence interval for the variance (assuming normality).

Parameter
p – a double, the confidence level desired, usually 0.90, 0.95 or 0.99.

Returns
a double array of length 2 which contains the lower and upper confidence limits for the variance

getKurtosis
public double getKurtosis()

Description
Returns the kurtosis.

Returns
a double representing the kurtosis

getMaximum
public double getMaximum()
Description
Returns the maximum.

Returns
a double representing the maximum

getMean
public double getMean()

Description
Returns the population mean.

Returns
a double representing the population mean

getMinimum
public double getMinimum()

Description
Returns the minimum.

Returns
a double representing the minimum

getNumberOfObservations
public int getNumberOfObservations()

Description
Returns the number of non-missing observations.

Returns
an int, the number of non-missing observations in the Summary object.

getSampleStandardDeviation
public double getSampleStandardDeviation()

Description
Returns the sample standard deviation.

Returns
a double representing the sample standard deviation

getSampleVariance
public double getSampleVariance()

Description
Returns the sample variance.
Returns
a double representing the sample variance

**getSkewness**
public double getSkewness()

**Description**
Returns the skewness.

**Returns**
a double representing the skewness

**getStandardDeviation**
public double getStandardDeviation()

**Description**
Returns the population standard deviation.

**Returns**
a double representing the population standard deviation

**getVariance**
public double getVariance()

**Description**
Returns the population variance.

**Returns**
a double representing the population variance

**kurtosis**
static public double kurtosis(double[] x)

**Description**
Returns the kurtosis of the given data set.

**Parameter**

- x – a double array containing the data set whose kurtosis is to be found

**Returns**
a double, the kurtosis of the given data set

**kurtosis**
static public double kurtosis(double[] x, double[] weight)

**Description**
Returns the kurtosis of the given data set and associated weights.

---

Basic Statistics

Summary • 599
Parameters
x – a double array containing the data set whose kurtosis is to be found
weight – a double array containing the weights associated with the data points x

Returns
a double, the kurtosis of the given data set

maximum
static public double maximum(double[] x)

Description
Returns the maximum of the given data set.

Parameter
x – a double array containing the data set whose maximum is to be found

Returns
a double, the maximum of the given data set

maximum
static protected int maximum(int[] x)

Description
Returns the maximum of the given data set.

Parameter
x – an int array containing the data set whose maximum is to be found

Returns
an int, the maximum of the given data set

mean
static public double mean(double[] x)

Description
Returns the mean of the given data set.

Parameter
x – a double array containing the data set whose mean is to be found

Returns
a double, the mean of the given data set

mean
static public double mean(double[] x, double[] weight)

Description
Returns the mean of the given data set with associated weights.
Parameters

- $x$ – a double array containing the data set whose mean is to be found
- $weight$ – a double array containing the weights associated with the data points $x$

Returns

a double, the mean of the given data set

---

**median**

static public double median(double[] $x$)

Description

Returns the median of the given data set.

Parameter

$x$ – a double array containing the data set whose median is to be found

Returns

a double, the median of the given data set

---

**median**

static public double median(double[] $x$, double[] $weight$)

Description

Returns the weighted median of the given data set and associated weights.

Parameters

- $x$ – a double array containing the data set whose median is to be found
- $weight$ – a double array containing the weights associated with the data

Returns

a double, the weighted median of the given data set

---

**minimum**

static public double minimum(double[] $x$)

Description

Returns the minimum of the given data set.

Parameter

$x$ – a double array containing the data set whose minimum is to be found

Returns

a double, the minimum of the given data set

---

**minimum**

static protected int minimum(int[] $x$)

---

**Basic Statistics**

Summary • 601
Description
Returns the minimum of the given data set.

Parameter
   x – an int array containing the data set whose minimum is to be found

Returns
an int, the minimum of the given data set

mode
static public double mode(double[] x)

Description
Returns the mode of the given data set. Ties are broken at random.

Parameter
   x – a double array containing the data set whose mode is to be found

Returns
a double, the mode of the given data set

numberOfObservations
static public int numberOfObservations(double[] x)

Description
Returns the number of non-missing observations in the given data set.

Parameter
   x – a double array containing the data set.

Returns
an int, the number of non-missing observations in the given data set.

quantile
static public double quantile(double[] x, double[] weight, double alpha)

sampleStandardDeviation
static public double sampleStandardDeviation(double[] x)

Description
Returns the sample standard deviation of the given data set.

Parameter
   x – a double array containing the data set whose sample standard deviation is to be found
Returns a double, the sample standard deviation of the given data set

**sampleStandardDeviation**

static public double sampleStandardDeviation(double[] x, double[] weight)

Description

Returns the sample standard deviation of the given data set and associated weights.

**Parameters**

- x – a double array containing the data set whose sample standard deviation is to be found
- weight – a double array containing the weights associated with the data points x.

Returns a double, the sample standard deviation of the given data set

**sampleVariance**

static public double sampleVariance(double[] x)

Description

Returns the sample variance of the given data set.

**Parameter**

- x – a double array containing the data set whose sample variance is to be found

Returns a double, the sample variance of the given data set

**sampleVariance**

static public double sampleVariance(double[] x, double[] weight)

Description

Returns the sample variance of the given data set and associated weights.

**Parameters**

- x – a double array containing the data set whose sample variance is to be found
- weight – a double array containing the weights associated with the data points x

Returns a double, the sample variance of the given data set

**skewness**

static public double skewness(double[] x)

Description

Returns the skewness of the given data set.
Parameter

- \( x \) – a double array containing the data set whose skewness is to be found

Returns

a double, the skewness of the given data set

**skewness**

```
static public double skewness(double[] x, double[] weight)
```

Description

Returns the skewness of the given data set and associated weights.

Parameters

- \( x \) – a double array containing the data set whose skewness is to be found
- \( \text{weight} \) – a double array containing the weights associated with the data points \( x \)

Returns

a double, the skewness of the given data set

**standardDeviation**

```
static public double standardDeviation(double[] x)
```

Description

Returns the population standard deviation of the given data set.

Parameter

- \( x \) – a double array containing the data set whose standard deviation is to be found

Returns

a double, the population standard deviation of the given data set

**standardDeviation**

```
static public double standardDeviation(double[] x, double[] weight)
```

Description

Returns the population standard deviation of the given data set and associated weights.

Parameters

- \( x \) – a double array containing the data set whose standard deviation is to be found
- \( \text{weight} \) – a double array containing the weights associated with the data points \( x \)

Returns

a double, the population standard deviation of the given data set

**update**

```
public void update(double x)
```

604 • Summary
**Description**  
Adds an observation to the Summary object.

**Parameter**  
  
  - `x` – a double, the data observation to be added

**update**  
`public void update(double[] x)`

**Description**  
Adds a set of observations to the Summary object.

**Parameter**  
  
  - `x` – a double array of data observations to be added

**update**  
`public void update(double x, double weight)`

**Description**  
Adds an observation and associated weight to the Summary object.

**Parameters**  
  
  - `x` – a double, the data observation to be added
  - `weight` – a double, the weight associated with the observation

**update**  
`public void update(double[] x, double[] weight)`

**Description**  
Adds a set of observations and associated weights to the Summary object.

**Parameters**  
  
  - `x` – a double array of data observations to be added
  - `weight` – a double array of weights associated with the observations

**variance**  
`static public double variance(double[] x)`

**Description**  
Returns the population variance of the given data set.

**Parameter**  
  
  - `x` – a double array containing the data set whose population variance is to be found

**Returns**  
a double, the population variance of the given data set

**variance**  
`static public double variance(double[] x, double[] weight)`
Description
Returns the population variance of the given data set and associated weights.

Parameters
- x – a double array containing the data set whose population variance is to be found
- weight – a double array containing the weights associated with the data points x

Returns
da double, the population variance of the given data set

Example: Summary Statistics
Summary statistics for a small data set are computed.

```java
import com.imsl.stat.*;

public class SummaryEx1 {

 static final double data1[] = {
 3, 6.4, 2, 1.6, -8, 12, -7, 6.4, 22, 1, 0, -3.2
 };

 public static void main(String args[]) {
 Summary summary = new Summary();
 summary.update(data1);

 System.out.println("The minimum is " + summary.getMinimum());
 System.out.println();

 System.out.println("The maximum is " + summary.getMaximum());
 System.out.println();

 System.out.println("The mean is " + summary.getMean());
 System.out.println();

 System.out.println("The variance is " + summary.getVariance());
 System.out.println();

 System.out.println("The sample variance is "
 + summary.getSampleVariance());
 System.out.println();

 System.out.println("The standard deviation is "
 + summary.getStandardDeviation());
 System.out.println();

 System.out.println("The skewness is " + summary.getSkewness());
 System.out.println();

 System.out.println("The kurtosis is " + summary.getKurtosis());
 System.out.println();

 double confmn[] = summary.confidenceMean(0.95);
 }
}
```
Output
The minimum is -8.0
The maximum is 22.0
The mean is 3.016666666666666
The variance is 61.70972222222223
The sample variance is 67.31969696969698
The standard deviation is 7.855553591073148
The skewness is 0.8632224134285833
The kurtosis is 0.5677060483851211
The confidence Mean is {-2.1964514686012353, 8.229784801934567}
The confidence Variance is {33.7826187272066625, 194.0685332772439}

Covariances class

public class com.imsl.stat.Covariances implements Serializable, Cloneable

Computes the sample variance-covariance or correlation matrix.

Class Covariances computes estimates of correlations, covariances, or sums of squares and crossproducts for a data matrix x. Weights and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed using the method of provisional means. Let $x_{ki}$ denote the mean based on $i$ observations for the $k$-th variable, $f_i$ denote the frequency of the $i$-th observation, $w_i$ denote the weight of the $i$-th observations, and $c_{jki}$ denote the sum of crossproducts (or sum of squares if $j = k$) based on $i$ observations. Then the method of provisional means finds new means and sums of crossproducts as shown in the example below.

The means and crossproducts are initialized as follows:
\[ x_{k0} = 0.0 \text{ for } k = 1, \ldots, p \]

\[ c_{jk0} = 0.0 \text{ for } j, k = 1, \ldots, p \]

where \( p \) denotes the number of variables. Letting \( x_{k,i+1} \) denote the \( k \)-th variable of observation \( i + 1 \), each new observation leads to the following updates for \( x_{ki} \) and \( c_{jki} \) using the update constant \( r_{i+1} \):

\[
    r_{i+1} = \frac{f_{i+1}w_{i+1}}{\sum_{l=1}^{f} f_l w_l}
\]

\[
    \bar{x}_{k,i+1} = \bar{x}_{k,i} + (x_{k,i+1} - \bar{x}_{k,i}) r_{i+1}
\]

\[
    c_{j,k,i+1} = c_{j,k,i} + f_{i+1}w_{i+1} (x_{j,i+1} - \bar{x}_{ji}) (x_{k,i+1} - \bar{x}_{ki}) (1 - r_{i+1})
\]

The default value for weights and frequencies is 1. Means and variances are computed based on the valid data for each variable or, if required, based on all the valid data for each pair of variables.

**Fields**

**CORRECTED_SSCP_MATRIX**

static final public int CORRECTED_SSCP_MATRIX

Indicates corrected sums of squares and crossproducts matrix.

**CORRELATION_MATRIX**

static final public int CORRELATION_MATRIX

Indicates correlation matrix.

**STDEV_CORRELATION_MATRIX**

static final public int STDEV_CORRELATION_MATRIX

Indicates correlation matrix except for the diagonal elements which are the standard deviations

**VARIANCE_COVARIANCE_MATRIX**

static final public int VARIANCE_COVARIANCE_MATRIX

Indicates variance-covariance matrix.
Constructor

Covariances
public Covariances(double[][] x)

Description
Constructor for Covariances.

Parameter
x – A double matrix containing the data.

Exception
IllegalArgumentException is thrown if x.length and x[0].length are equal to 0.

Methods

compute
final public double[][] compute(int matrixType) throws Covariances.NonnegativeFreqException, Covariances.NonnegativeWeightException, Covariances.TooManyObsDeletedException, Covariances.MoreObsDelThanEnteredException, Covariances.DiffObsDeletedException

Description
Computes the matrix.

Parameter
matrixType – An int scalar indicating the type of matrix to compute. Uses class member VARIANCE_COVARIANCE_MATRIX, CORRECTED_SSCP_MATRIX, CORRELATION_MATRIX, STDEV_CORRELATION_MATRIX for matrixType.

Returns
A double matrix containing computed result.

Exceptions
NonnegativeFreqException is thrown if the frequencies are negative.
NonnegativeWeightException is thrown if the weights are negative.
TooManyObsDeletedException is thrown if more observations have been deleted than were originally entered, i.e. the sum of frequencies has become negative.
MoreObsDelThanEnteredException is thrown if more observations are being deleted from “variance-covariance” matrix than were originally entered. The corresponding row,column of the incidence matrix is less than zero.
DiffObsDeletedException is thrown if different observations are being deleted than were originally entered.
getIncidenceMatrix
public int[][] getIncidenceMatrix()

Description
Returns the incidence matrix. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
An int matrix containing the incidence matrix. If method is 0, incidence matrix is 1 × 1 and contains the number of valid observations; otherwise, incidence matrix is x[0].length × x[0].length and contains the number of pairs of valid observations used in calculating the crossproducts for covariance.

getMeans
public double[] getMeans()

Description
Returns the means of the variables in x. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
A double array containing the means of the variables in x. The components of the array correspond to the columns of x.

getNumRowMissing
public int getNumRowMissing()

Description
Returns the total number of observations that contain any missing values (Double.NaN). Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
An int scalar containing the total number of observations that contain any missing values (Double.NaN).

getObservations
public int getObservations()

Description
Returns the sum of the frequencies. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
An int scalar containing the sum of the frequencies. If missingValueMethod = 0, observations with missing values are not included; otherwise, all observations are included except for observations with missing values for the weight or the frequency.

getSumOfWeights
public double getSumOfWeights()
Description

Returns the sum of the weights of all observations. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns

A double scalar containing the sum of the weights of all observations. If missingValueMethod = 0, observations with missing values are not included. Otherwise, all observations are included except for observations with missing values for the weight or the frequency.

setFrequencies

public void setFrequencies(double[] frequencies)

Description

Sets the frequency for each observation.

Parameter

frequencies – A double array of size x.length containing the frequency for each observation. Default: frequencies[] = 1.

setMissingValueMethod

public void setMissingValueMethod(int missingValueMethod)

Description

Sets the method used to exclude missing values in x from the computations, where Double.NaN is interpreted as the missing value code.

Parameter

missingValueMethod – An int scalar indicating the method to use. The methods are as follows:

<table>
<thead>
<tr>
<th>missingValueMethod</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exclusion is listwise, default. (The entire row of x is excluded if any of the values of the row is equal to the missing value code.)</td>
</tr>
<tr>
<td>1</td>
<td>Raw crossproducts are computed from all valid pairs and means, and variances are computed from all valid data on the individual variables. Corrected crossproducts, covariances, and correlations are computed using these quantities.</td>
</tr>
<tr>
<td>2</td>
<td>Raw crossproducts, means, and variances are computed as in the case of method = 1. However, corrected crossproducts and covariances are computed only from the valid pairs of data. Correlations are computed using these covariances and the variances from all valid data.</td>
</tr>
<tr>
<td>3</td>
<td>Raw crossproducts, means, variances, and covariances are computed as in the case of method = 2. Correlations are computed using these covariances, but the variances used are computed from the valid pairs of data.</td>
</tr>
</tbody>
</table>

Basic Statistics Covariances • 611
setWeights
public void setWeights(double[] weights)

Description
Sets the weight for each observation.

Parameter
weights – A double array of size x.length containing the weight for each observation. Default: weights[] = 1.

Example: Covariances
This example illustrates the use of Covariances class for the first 50 observations in the Fisher iris data (Fisher 1936). Note that the first variable is constant over the first 50 observations.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class CovariancesEx1 {
    public static void main(String args[]) throws Exception {
        double[][] x = {
            {1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
            {1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
            {1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
            {1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
            {1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
            {1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
            {1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
            {1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
            {1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
            {1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
            {1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
            {1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
            {1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
            {1.0, 5.0, 3.4, 1.6, .4}, {1.0, 5.2, 3.5, 1.5, .2},
            {1.0, 5.2, 3.4, 1.4, .2}, {1.0, 4.7, 3.2, 1.6, .2},
            {1.0, 4.8, 3.1, 1.6, .2}, {1.0, 5.4, 3.4, 1.5, .4},
            {1.0, 5.2, 4.1, 1.5, .1}, {1.0, 5.5, 4.2, 1.4, .2},
            {1.0, 4.9, 3.1, 1.5, .2}, {1.0, 5.0, 3.2, 1.2, .2},
            {1.0, 5.5, 3.5, 1.3, .2}, {1.0, 4.9, 3.6, 1.4, .1},
            {1.0, 4.4, 3.0, 1.3, .2}, {1.0, 5.1, 3.4, 1.5, .2},
            {1.0, 5.0, 3.5, 1.3, .3}, {1.0, 4.5, 2.3, 1.3, .3},
            {1.0, 4.4, 3.2, 1.3, .2}, {1.0, 5.0, 3.5, 1.6, .6},
            {1.0, 5.1, 3.8, 1.9, .4}, {1.0, 4.8, 3.0, 1.4, .3},
            {1.0, 5.1, 3.8, 1.6, .2}, {1.0, 4.6, 3.2, 1.4, .2},
            {1.0, 5.3, 3.7, 1.5, .2}, {1.0, 5.0, 3.3, 1.4, .2}
        };
        Covariances co = new Covariances(x);
PrintMatrix pm = new PrintMatrix("Sample Variances-covariances Matrix");
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
PrintMatrixFormat pmf = new PrintMatrixFormat();
  pmf.setNumberFormat(nf);
  pm.setMatrixType(PrintMatrix.UPPER_TRIANGULAR);
  pm.print(pmf, co.compute(Covariances.VARIANCE_COVARIANCE_MATRIX));
}

Output
Sample Variances-covariances Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0.1242</td>
<td>0.0992</td>
<td>0.0164</td>
<td>0.0103</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1437</td>
<td>0.0117</td>
<td>0.0093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0302</td>
<td>0.0061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Covariances.NonnegativeFreqException class

static public class com.imsl.stat.Covariances.NonnegativeFreqException extends com.imsl.IMSLException

Frequencies must be nonnegative.

Constructors

Covariances.NonnegativeFreqException
public Covariances.NonnegativeFreqException(String message)

Description
Constructs a NonnegativeFreqException object.

Parameter
message – a String containing the error message
Covariances.NonnegativeFreqException
public Covariances.NonnegativeFreqException(String key, Object[] arguments)

Description
Constructs a NonnegativeFreqException object.
Parameters
  key – a String containing the error message
  arguments – an Object array containing arguments used within the error message string

Covariances.NonnegativeWeightException class
static public class com.imsl.stat.Covariances.NonnegativeWeightException
extends com.imsl.IMSLException
Weights must be nonnegative.

Constructors
Covariances.NonnegativeWeightException
public Covariances.NonnegativeWeightException(String message)

Description
Constructs a NonnegativeWeightException object.
Parameter
  message – a String containing the error message

Covariances.NonnegativeWeightException
public Covariances.NonnegativeWeightException(String key, Object[] arguments)

Description
Constructs a NonnegativeWeightException object.
Parameters
  key – a String containing the error message
  arguments – an Object array containing arguments used within the error message string
Covariances.TooManyObsDeletedException class

static public class com.imsl.stat.Covariances.TooManyObsDeletedException
extends com.imsl.IMSLException

Constructors

Covariances.TooManyObsDeletedException
public Covariances.TooManyObsDeletedException(String message)

Description
Constructs a TooManyObsDeletedException object.

Parameter
message – a String containing the error message

Covariances.TooManyObsDeletedException
public Covariances.TooManyObsDeletedException(String key, Object[] arguments)

Description
Constructs a TooManyObsDeletedException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

Covariances.MoreObsDelThanEnteredException class

static public class com.imsl.stat.Covariances.MoreObsDelThanEnteredException
extends com.imsl.IMSLException

Constructors

Covariances.MoreObsDelThanEnteredException
public Covariances.MoreObsDelThanEnteredException(String message)
Description
Constructs a MoreObsDelThanEnteredException object.

Parameter
message – a String containing the error message

Covariances.MoreObsDelThanEnteredException
public Covariances.MoreObsDelThanEnteredException(String key, Object[] arguments)

Description
Constructs a MoreObsDelThanEnteredException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

Covariances.DiffObsDeletedException class
static public class com.imsl.stat.Covariances.DiffObsDeletedException extends com.imsl.IMSLException

Constructors

Covariances.DiffObsDeletedException
public Covariances.DiffObsDeletedException(String message)

Description
Constructs a DiffObsDeletedException object.

Parameter
message – a String containing the error message

Covariances.DiffObsDeletedException
public Covariances.DiffObsDeletedException(String key, Object[] arguments)

Description
Constructs a DiffObsDeletedException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
PartialCovariances class

public class com.imsl.stat.PartialCovariances implements Serializable

Class PartialCovariances computes the partial covariances or partial correlations from an input covariance or correlation matrix. If the “independent” variables (the linear “effect” of the independent variables is removed in computing the partial covariances/correlations) are linearly related to one another, PartialCovariances detects the linearity and eliminates one or more of the independent variables from the list of independent variables. The number of variables eliminated, if any, can be determined from getPartialDegreesOfFreedom.

Given a covariance or correlation matrix \( \Sigma \) partitioned as

\[
\begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{pmatrix}
\]

class PartialCovariances computes the partial covariances (of the standardized variables if \( \Sigma \) is a correlation matrix) as

\[
\Sigma_{22}|_1 = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}
\]

A positive semidefinite solver is used to compute \( \Sigma_{11}^{-1}\Sigma_{12} \).

If partial correlations are desired, these are computed as

\[
P_{22}|_1 = \left[\text{diag}(\Sigma_{22}|_1)\right]^{-1/2}\Sigma_{22}|_1 \left[\text{diag}(\Sigma_{22}|_1)\right]^{-1/2}
\]

where \( \text{diag}(\Sigma) \) denotes the matrix containing the diagonal of its argument along its diagonal with zeros off the diagonal. If \( \Sigma_{11} \) is singular, then as many variables as required are deleted from \( \Sigma_{11} \) (and \( \Sigma_{12} \)) in order to eliminate the linear dependencies. The computations then proceed as above.

The \( p \)-value for a partial covariance tests the null hypothesis \( H_0 : \sigma_{ij|1} = 0 \), where \( \sigma_{ij|1} \) is the \((i,j)\) element in matrix \( \Sigma_{22}|_1 \). The \( p \)-value for a partial correlation tests the null hypothesis \( H_0 : \rho_{ij|1} = 0 \), where \( \rho_{ij|1} \) is the \((i,j)\) element in matrix \( P_{22}|_1 \). The \( p \)-values are returned by getPValues. If the degrees of freedom for sigma, df, is not known, the resulting \( p \)-values may be useful for comparison, but they should not by used as an approximation to the actual probabilities.

Constructors

PartialCovariances

public PartialCovariances(int nIndependent, double[][] sigma, int df) throws PartialCovariances.InvalidMatrixException,
PartialCovariances.InvalidPartialCorrelationException

Description

Creates a PartialCovariances object from a covariance or correlation matrix with a the independent variables in the initial columns and the dependent variables in the final columns.
Parameters

\texttt{nIndependent} – is the number of “independent” variables to be used in the partial covariances/correlations. The partial covariances/correlations are the covariances/correlations between the dependent variables after removing the linear effect of the independent variables.

\texttt{sigma} – is a correlation or covariance matrix. The rows/columns must be ordered such that the first \texttt{nIndependent} rows/columns contain the independent variables, followed by the row/columns containing the dependent variables. The matrix must always be symmetric, positive semidefinite.

\texttt{df} – is an \texttt{int} indicating the number of degrees of freedom associated with the input matrix. If the number of degrees of freedom in the matrix varies from element to element, then a conservative choice for \texttt{df} is the minimum degrees of freedom for all elements in the matrix. The value of \texttt{df} must be at least one.

Exceptions

\texttt{com.imsl.stat.PartialCovariances.InvalidMatrixException} is thrown if a computed correlation is greater than one for some pair of variables.

\texttt{com.imsl.stat.PartialCovariances.InvalidPartialCorrelationException} is thrown if a computed partial correlation is greater than one for some pair of variables. The input matrix to the constructor was not positive semidefinite.

PartialCovariances

public \texttt{PartialCovariances} (\texttt{int}[] \texttt{xIndices}, \texttt{double}[][] \texttt{sigma}, \texttt{int} \texttt{df}) throws \texttt{PartialCovariances.InvalidMatrixException}, \texttt{PartialCovariances.InvalidPartialCorrelationException}

Description

Creates a \texttt{PartialCovariances} object from a covariance or correlation matrix with a mix of dependent and independent variables.

Parameters

\texttt{xIndices} – is an array containing values indicating the status of the variable. If the \texttt{i}-th entry is 0 then the \texttt{i}-th column of the matrix contains a dependent variable. If the \texttt{i}-th entry is positive then the \texttt{i}-th column of the matrix contains an independent variable. If the \texttt{i}-th entry is negative then the \texttt{i}-th column of the matrix is not used in the analysis.

\texttt{sigma} – is a correlation or covariance matrix. The number of rows and columns in \texttt{sigma} must equal the length of the array \texttt{xIndices}. The matrix must always be symmetric, positive semidefinite.

\texttt{df} – is an \texttt{int} indicating the number of degrees of freedom associated with the input matrix. If the number of degrees of freedom in the matrix varies from element to element, then a conservative choice for \texttt{df} is the minimum degrees of freedom for all elements in the matrix. The value of \texttt{df} must be at least one.

Exceptions

\texttt{com.imsl.stat.PartialCovariances.InvalidMatrixException} is thrown if a computed correlation is greater than one for some pair of variables.
com.imsl.stat.PartialCovariances.InvalidPartialCorrelationException is thrown if a computed partial correlation is greater than one for some pair of variables. The input matrix to the constructor was not positive semidefinite.

Methods

**getPValues**

```java
public double[][] getPValues()
```

**Description**

Calculates the \( p \)-values for testing the null hypothesis that the associated partial covariance/correlation is zero. It is assumed that the observations from which \( \sigma \) was computed follows a multivariate normal distribution and that each element in \( \sigma \) has \( df \) degrees of freedom.

**Returns**

A square array of type double containing the \( p \)-values. The order of the matrix equals the number of dependent variables.

If the partial degrees of freedom is not greater than one then there are not enough degrees of freedom for hypothesis testing. The returned matrix will be set to all NaN values in this case. A warning is also issued in this case.

**getPartialCorrelationMatrix**

```java
public double[][] getPartialCorrelationMatrix()
```

**Description**

Returns the partial correlation matrix. This is valid only if the input to the constructor was a correlation matrix.

**Returns**

The partial correlation matrix.

**getPartialCovarianceMatrix**

```java
public double[][] getPartialCovarianceMatrix()
```

**Description**

Returns the partial covariance matrix. This is valid only if the input to the constructor was a covariance matrix.

**Returns**

The partial covariance matrix.
Description
Returns the degrees of freedom in the test that the partial correlation (covariance) is zero. This will usually be \( df \) minus the rank of the the independent variables. number of independent variables, but will be greater than this value if the independent variables are computationally linearly related.

Returns
An int scalar value representing the degrees of freedom. If this value is not greater than one then there are not enough degrees of freedom for hypothesis testing. A warning is also issued in this case.

Example 1
This example computes partial covariances, scaled from a nine-variable correlation matrix originally given by Emmett (1949). The first three rows and columns contain the independent variables and the final six rows and columns contain the dependent variables.

```java
import com.imsl.stat.PartialCovariances;
import com.imsl.math.PrintMatrix;

public class PartialCovariancesEx1 {
 static public void main(String arg[]) throws Exception {
 double sigma[][] = {
 {6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363},
 {3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077},
 {1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673},
 {3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910},
 {1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687},
 {2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754},
 {2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309},
 {1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458},
 {4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400}
 };
 int nIndependent = 3, df = 30;
 PartialCovariances pcov = new PartialCovariances(nIndependent, sigma, df);
 double covar[][] = pcov.getPartialCovarianceMatrix();
 new PrintMatrix("Partial Covariances").print(covar);
 int pdf = pcov.getPartialDegreesOfFreedom();
 System.out.println("Partial Degrees of Freedom " + pdf);
 System.out.println();
 double pvalues[][] = pcov.getPValues();
 new PrintMatrix("p Values").print(pvalues);
 }
}
```

Output
Partial Covariances
Example 2

This example computes partial correlations from a 9 variable correlation matrix originally given by Emmett (1949). The partial correlations between the remaining variables, after adjusting for variables 1, 3 and 9, are computed. Note in the output that the row and column labels are numbers, not variable numbers. The corresponding variable numbers would be 2, 4, 5, 6, 7 and 8, respectively.

import com.imsl.stat.PartialCovariances;
import com.imsl.math.PrintMatrix;

public class PartialCovariancesEx2 {
    
    static public void main(String arg[]) throws Exception {
        double sigma[][] = {
            {1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639},
            {0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645},
            {0.395, 0.479, 1.000, 0.355, 0.270, 0.254, 0.452, 0.219, 0.504},
            {0.471, 0.506, 0.355, 1.000, 0.791, 0.443, 0.285, 0.505},
            {0.346, 0.418, 0.270, 0.691, 1.000, 0.679, 0.383, 0.149, 0.409},
            {0.426, 0.462, 0.254, 0.791, 0.679, 1.000, 0.372, 0.314, 0.472},
            {0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680},
            {0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470},
            {0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, 1.000}
        };
        
        int xIndices[] = {1, 0, 1, 0, 0, 0, 0, 1};
        int df = 30;

        PartialCovariances pcov = new PartialCovariances(xIndices, sigma, df);

        double correl[][] = pcov.getPartialCorrelationMatrix();
        new PrintMatrix("Partial Correlations").print(correl);

        double pValues[][] = pcov.getPValues();
    }
}
new PrintMatrix("P-Values").print(pValues);
}

Output

<table>
<thead>
<tr>
<th>Partial Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0    1    2    3    4    5</td>
</tr>
<tr>
<td>0  1</td>
</tr>
<tr>
<td>1  0.224 1   0.605</td>
</tr>
<tr>
<td>2  0.194</td>
</tr>
<tr>
<td>3  0.211</td>
</tr>
<tr>
<td>4  0.125</td>
</tr>
<tr>
<td>5  -0.061</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0    1    2    3    4    5</td>
</tr>
<tr>
<td>0  0</td>
</tr>
<tr>
<td>1  0.252</td>
</tr>
<tr>
<td>2  0.323</td>
</tr>
<tr>
<td>3  0.28</td>
</tr>
<tr>
<td>4  0.525</td>
</tr>
<tr>
<td>5  0.758</td>
</tr>
</tbody>
</table>

PartialCovariances.InvalidMatrixException class

static public class com.imsl.stat.PartialCovariances.InvalidMatrixException extends com.imsl.IMSLException

Exception thrown if a computed correlation is greater than one for some pair of variables.

Constructor

PartialCovariances.InvalidMatrixException

public PartialCovariances.InvalidMatrixException(int var1, int var2)

Description

Creates an InvalidMatrixException thrown if a computed correlation is greater than one for some pair of variables.

Parameters

var1 – is the index of the first variable in the pair.
var2 – is the index of the second variable in the pair.

PartialCovariances.InvalidPartialCorrelationException class

static public class com.imsl.stat.PartialCovariances.InvalidPartialCorrelationException extends com.imsl.IMSLException

Exception thrown if a computed partial correlation is greater than one for some pair of variables.

Constructor

PartialCovariances.InvalidPartialCorrelationException

public PartialCovariances.InvalidPartialCorrelationException(int var1, int var2)

Description

Creates an InvalidPartialCorrelationException thrown if a computed partial correlation is greater than one for some pair of variables.

Parameters

var1 – is the index of the first variable in the pair.
var2 – is the index of the second variable in the pair.

PooledCovariances class

public class com.imsl.stat.PooledCovariances implements Serializable, Cloneable

Computes a pooled variance-covariance matrix from one or more sets of observations.

Class PooledCovariances computes the pooled variance-covariance matrix from one or more matrices of observations. The within-groups means are also computed. Listwise deletion of missing values is assumed so that all observations used are complete; for any row of x, if any element of the observation is missing (with a value of Double.NaN), the row is not used. This class should be used whenever the user suspects that the data has been sampled from populations with different means but identical
variance-covariance matrices. If these assumptions cannot be made, a different variance-covariance matrix should be estimated within each group.

Group observation totals, \( T_i \) for \( i = 1, \ldots, g \), where \( g \) is the number of groups, are computed as:

\[
T_i = \sum_j w_{ij} f_{ij} x_{ij}
\]

where \( w_{ij} \) is the observation weight, \( x_{ij} \) is the \( j \)-th observation in the \( i \)-th group, and \( f_{ij} \) is the observation frequency.

Modified Givens rotations are used in computing the Cholesky decomposition of the pooled sums of squares and crossproducts matrix (Golub and Van Loan 1983).

The group means and the pooled sample covariance matrix \( S \) are computed from intermediate results. These quantities are defined by

\[
\bar{x}_i = \frac{T_i}{\sum_j w_{ij} f_{ij}}
\]

\[
S = \frac{1}{\sum_{ij} f_{ij} - g} \sum_{ij} w_{ij} f_{ij} (x_{ij} - \bar{x}_i) (x_{ij} - \bar{x}_i)^T
\]

### Constructor

**PooledCovariances**

```java
public PooledCovariances(int nGroups)
```

**Description**

Constructor for PooledCovariances.

**Parameter**

- `nGroups` – an int, the number of groups in the data. The groups are numbered 1, 2,..., nGroups.

### Methods

**getGroupCounts**

```java
public int[] getGroupCounts()
```

**Description**

Returns the number of observations in each group.
Returns
an int array of length nGroups containing the number of observations in each group

getMeans
public double[][] getMeans()

Description
Returns the means of each group.
Note that one of the update methods must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.

Returns
a double matrix with nGroups rows. The i-th row contains the group i variable means.

getNumberOfGroups
public int getNumberOfGroups()

Description
Returns the number of groups used in the analysis.

Returns
an int, the number of groups

getNumberOfMissingRows
public int getNumberOfMissingRows()

Description
Returns the total number of observations that contain missing values (Double.NaN or group[i] == 0).

Returns
an int containing the total number of observations with missing values

getNumberOfVariables
public int getNumberOfVariables()

Description
Returns the number of variables used in the analysis.

Returns
an int, the number of variables

getPooledCovariances
public double[][] getPooledCovariances()

Description
Computes and returns the pooled covariances.
Note that one of the update methods must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.
Returns a square double matrix of order nVar, the number of observation variables, containing the pooled covariances.

getSumOfWeights

public double[] getSumOfWeights()

Description

Returns the sum of the weights times the frequencies in the groups.

Returns

a double array of length nGroups containing the sum of the weights times the frequencies in the groups

getTotalNumberOfObservations

public int getTotalNumberOfObservations()

Description

Returns the total number of observations used in the analysis.

Returns

an int, the total number of observations from all update invocations

getU

public double[][] getU()

Description

Returns the lower matrix $U$, the lower triangular for the pooled sample crossproducts matrix. $U$ is computed from the pooled sample covariance matrix, $S$, as $S = U^T U$.

Note that one of the update methods must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.

Returns

a square double matrix of order nVar, the number of observation variables, containing $U$

update

public void update(double[][] x)

Description

Updates the pooled covariances with new observations from one group.

Parameter

x – a double matrix containing the observed data. Each row of x contains one observation consisting of x[0].length variables. If x[i][j] has value Double.NaN, then row i of the observations will be skipped and counted as missing.

The number of observation variables is determined in the first call to any of the update methods. In all subsequent update calls, the number of observation variables must be the same.

This method assumes that all observations belong to group 1 and have frequencies and weights of 1.0.
update
public void update(double[][] x, int[] groups)

Description
Updates the pooled covariances with new group observations.

Parameters
x – a double matrix containing the observed data. Each row of x contains one observation consisting of x[0].length variables. If x[i][j] has value Double.NaN, then row i of the observations will be skipped and counted as missing.

The number of observation variables is determined in the first call to any of the update methods. In all subsequent update calls, the number of observation variables must be the same.

This method assumes that all observations have frequencies and weights of 1.0.

groups – an int array containing the group number of the observations in x. Group numbers must be numbered 1, 2,..., nGroups. If groups[i] == 0, the row of observations will be skipped and counted as missing. For groups[i] < 0 or groups[i] > nGroups, a warning will be issued indicating that the row of observations will be skipped (not marked as missing).

update
public void update(double[][] x, int[] groups, double frequency, double weight)

Description
Updates the pooled covariances with new group observations and a scalar frequency and weight.

Parameters
x – a double matrix containing the observed data. Each row of x contains one observation consisting of x[0].length variables. If x[i][j] has value Double.NaN, then row i of the observations will be skipped and counted as missing.

The number of observation variables is determined in the first call to any of the update methods. In all subsequent update calls, the number of observation variables must be the same.

groups – an int array containing the group number of the observations in x. Group numbers must be numbered 1, 2,..., nGroups. If groups[i] == 0, the row of observations will be skipped and counted as missing. For groups[i] < 0 or groups[i] > nGroups, a warning will be issued indicating that the row of observations will be skipped (not marked as missing).

frequency – a positive double containing the frequency valid for each observation

weight – a positive double containing the weight valid for each observation

update
public void update(double[][] x, int[] groups, double frequency, double[] weights)

Description
Updates the pooled covariances with new group observations, a scalar frequency and weights.

Basic Statistics PooledCovariances • 627
Parameters

`x` – a double matrix containing the observed data. Each row of `x` contains one observation consisting of `x[0].length` variables. If `x[i][j]` has value `Double.NaN`, then row `i` of the observations will be skipped and counted as missing.

The number of observation variables is determined in the first call to any of the `update` methods. In all subsequent `update` calls, the number of observation variables must be the same.

`groups` – an int array containing the group number of the observations in `x`. Group numbers must be numbered `1, 2,..., nGroups`. If `groups[i] == 0`, the row of observations will be skipped and counted as missing. For `groups[i] < 0` or `groups[i] > nGroups`, a warning will be issued indicating that the row of observations will be skipped (not marked as missing).

`frequencies` – a double array of size `x.length` containing the frequency for each observation. Each value must be positive. Any `Double.NaN` value results in that observation being skipped and marked missing.

`weights` – a double array of size `x.length` containing the weight for each observation. Each value must be positive. Any `Double.NaN` value results in that observation being skipped and marked missing.

update

```java
public void update(double[][] x, int[] groups, double[] frequencies, double[] weights)
```

Description

Updates the pooled covariances with new group observations, frequencies and weights.

Parameters

`x` – a double matrix containing the observed data. Each row of `x` contains one observation consisting of `x[0].length` variables. If `x[i][j]` has value `Double.NaN`, then row `i` of the observations will be skipped and counted as missing.

The number of observation variables is determined in the first call to any of the `update` methods. In all subsequent `update` calls, the number of observation variables must be the same.

`groups` – an int array containing the group number of the observations in `x`. Group numbers must be numbered `1, 2,..., nGroups`. If `groups[i] == 0`, the row of observations will be skipped and counted as missing. For `groups[i] < 0` or `groups[i] > nGroups`, a warning will be issued indicating that the row of observations will be skipped (not marked as missing).

`frequencies` – a double array of size `x.length` containing the frequency for each observation. Each value must be positive. Any `Double.NaN` value results in that observation being skipped and marked missing.

`weights` – a positive double containing the weight valid for each observation.
**Parameters**

- **x** – a double matrix containing the observed data. Each row of *x* contains one observation consisting of *x*[0].length variables. If *x*[i][j] has value Double.NaN, then row *i* of the observations will be skipped and counted as missing.
- **groups** – an int array containing the group number of the observations in *x*. Group numbers must be numbered 1, 2,..., nGroups. If groups[i] == 0, the row of observations will be skipped and counted as missing. For groups[i] < 0 or groups[i] > nGroups, a warning will be issued indicating that the row of observations will be skipped (not marked as missing).
- **frequencies** – a double array of size *x*.length containing the frequency for each observation. Each value must be positive. Any Double.NaN value results in that observation being skipped and marked missing.
- **weights** – a double array of size *x*.length containing the weight for each observation. Each value must be positive. Any Double.NaN value results in that observation being skipped and marked missing.

**Example 1**

This example computes a pooled variance-covariance matrix.

```java
import com.ims1.stat.PooledCovariances;
import com.ims1.math.PrintMatrix;

public class PooledCovariancesEx1 {
 static public void main(String arg[]) {
 double[][] x = {
 {2.2, 5.6}, {3.4, 2.3}, {1.2, 7.8},
 {3.2, 2.1}, {4.1, 1.6}, {3.7, 2.2}
 };
 int[] groups = {1, 1, 1, 2, 2, 2};
 int nGroups = 2;
 PooledCovariances pc = new PooledCovariances(nGroups);
 pc.update(x, groups);
 double covar[][] = pc.getPooledCovariances();
 new PrintMatrix("Pooled Covariances").print(covar);
 }
}
```

**Output**

Pooled Covariances

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.708</td>
</tr>
<tr>
<td>1</td>
<td>-1.575</td>
</tr>
</tbody>
</table>

**Basic Statistics**

**PooledCovariances** • 629
Example 2

This example computes a pooled variance-covariance matrix for the Fisher iris data. The data are not processed as a whole but consecutively in blocks of 10 observations. In each update call, the pooled variance-covariance matrix is internally updated with the new block of observations. The final matrix and the group variable means are printed.

```java
import com.imsl.stat.PooledCovariances;
import com.imsl.math.PrintMatrix;

public class PooledCovariancesEx2 {

 static public void main(String arg[]) {

 double[][] x = {
 {5.100, 3.500, 1.400, 0.200}, {4.900, 3.000, 1.400, 0.200},
 {4.700, 3.200, 1.300, 0.200}, {4.600, 3.100, 1.500, 0.200},
 {5.000, 3.600, 1.400, 0.200}, {5.400, 3.900, 1.700, 0.400},
 {4.400, 2.900, 1.400, 0.200}, {4.900, 3.100, 1.500, 0.100},
 {5.400, 3.700, 1.500, 0.200}, {4.800, 3.400, 1.600, 0.200},
 {4.800, 3.000, 1.400, 0.100}, {4.300, 3.000, 1.100, 0.100},
 {5.800, 4.000, 1.200, 0.200}, {5.700, 4.400, 1.500, 0.400},
 {5.400, 3.900, 1.300, 0.400}, {5.100, 3.500, 1.400, 0.300},
 {5.700, 3.800, 1.700, 0.300}, {5.100, 3.800, 1.500, 0.300},
 {5.400, 3.400, 1.700, 0.200}, {5.100, 3.700, 1.500, 0.400},
 {4.600, 3.600, 1.000, 0.200}, {5.100, 3.300, 1.700, 0.500},
 {4.800, 3.400, 1.900, 0.200}, {5.000, 3.000, 1.600, 0.200},
 {5.000, 3.400, 1.600, 0.400}, {5.200, 3.500, 1.500, 0.200},
 {5.200, 3.400, 1.400, 0.200}, {4.700, 3.200, 1.600, 0.200},
 {4.800, 3.100, 1.600, 0.200}, {5.400, 3.400, 1.500, 0.400},
 {5.200, 4.100, 1.500, 0.100}, {5.500, 4.200, 1.400, 0.200},
 {4.900, 3.100, 1.500, 0.200}, {5.000, 3.200, 1.200, 0.200},
 {5.500, 3.500, 1.300, 0.200}, {4.900, 3.600, 1.400, 0.100},
 {4.400, 3.000, 1.300, 0.200}, {5.100, 3.400, 1.500, 0.200},
 {5.000, 3.500, 1.300, 0.300}, {4.500, 2.300, 1.300, 0.300},
 {4.400, 3.200, 1.300, 0.200}, {5.000, 3.500, 1.600, 0.600},
 {5.100, 3.800, 1.900, 0.400}, {4.800, 3.000, 1.400, 0.300},
 {5.100, 3.800, 1.600, 0.200}, {4.600, 3.200, 1.400, 0.200},
 {5.300, 3.700, 1.500, 0.200}, {5.000, 3.300, 1.400, 0.200},
 {7.000, 3.200, 4.700, 1.400}, {6.400, 3.200, 4.500, 1.500},
 {6.900, 3.100, 4.900, 1.500}, {5.500, 2.300, 4.000, 1.300},
 {6.500, 2.800, 4.600, 1.500}, {5.700, 2.800, 4.500, 1.300},
 {6.300, 3.300, 4.700, 1.600}, {4.900, 2.400, 3.300, 1.000},
 {6.600, 2.900, 4.600, 1.300}, {5.200, 2.700, 3.900, 1.400},
 {5.000, 2.000, 3.500, 1.000}, {5.900, 3.000, 4.200, 1.500},
 {6.000, 2.200, 4.000, 1.000}, {6.100, 2.900, 4.700, 1.400},
 {5.600, 2.900, 3.600, 1.300}, {6.700, 3.100, 4.400, 1.400},
 {5.600, 3.000, 4.500, 1.500}, {5.800, 2.700, 4.100, 1.000},
 {6.200, 2.200, 4.500, 1.500}, {5.600, 2.600, 3.900, 1.100},
 {5.900, 3.200, 4.800, 1.800}, {6.100, 2.800, 4.000, 1.300},
 {6.300, 2.500, 4.900, 1.500}, {6.100, 2.800, 4.700, 1.200},
 {6.400, 2.900, 4.300, 1.300}, {6.600, 3.000, 4.400, 1.400},
 {6.800, 2.800, 4.800, 1.400}, {6.700, 3.000, 5.000, 1.700},
 {6.000, 2.900, 4.500, 1.500}, {5.700, 2.600, 3.500, 1.000},
 {5.500, 2.400, 3.800, 1.100}, {5.500, 2.400, 3.700, 1.000},
 }
 }
}
```
Fisher Iris dataset contains three groups of 50 observations:
Group 1: Setosa, Group 2: Versicolor, Group 3: Virginica, 50 of each

```java
int nGroups = 3;
int[] groups = new int[x.length];
for (int i = 0; i < 50; i++) {
 groups[i] = 1;
 groups[i + 50] = 2;
 groups[i + 100] = 3;
}
```

```java
int blockGroups[] = new int[10];
int nrows = blockGroups.length, ncols = x[0].length;
double[][] blockObservations = new double[nrows][ncols];
```

// Create PooledCovariances object
PooledCovariances pc = new PooledCovariances(nGroups);

// Add 10 consecutive observations to the pooled Covariance matrix at
// a time
for (int i = 0; i < 15; i++) {
```
```java
for (int j = 0; j < nrows; j++) {
    blockGroups[j] = groups[i * 10 + j];
    System.arraycopy(x[i * 10 + j], 0, blockObservations[j], 0, 4);
}
// Update pooled covariance matrix with the new observations
pc.update(blockObservations, blockGroups);
}

double covar[][] = pc.getPooledCovariances();
new PrintMatrix("Pooled Covariances").print(covar);
new PrintMatrix("Means").print(pc.getMeans());
System.out.println("Total number of observations: "+
    + pc.getTotalNumberOfObservations());
}
```

Output

```
Pooled Covariances

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.265</td>
<td>0.093</td>
<td>0.168</td>
<td>0.038</td>
</tr>
<tr>
<td>1</td>
<td>0.093</td>
<td>0.115</td>
<td>0.055</td>
<td>0.033</td>
</tr>
<tr>
<td>2</td>
<td>0.168</td>
<td>0.055</td>
<td>0.185</td>
<td>0.043</td>
</tr>
<tr>
<td>3</td>
<td>0.038</td>
<td>0.033</td>
<td>0.043</td>
<td>0.042</td>
</tr>
</tbody>
</table>

Means

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.006</td>
<td>3.428</td>
<td>1.462</td>
<td>0.246</td>
</tr>
<tr>
<td>1</td>
<td>5.936</td>
<td>2.77</td>
<td>4.26</td>
<td>1.326</td>
</tr>
<tr>
<td>2</td>
<td>6.588</td>
<td>2.974</td>
<td>5.552</td>
<td>2.026</td>
</tr>
</tbody>
</table>

Total number of observations: 150
```

NormOneSample class

```java
public class com.imsl.stat.NormOneSample implements Serializable, Cloneable

Computes statistics for mean and variance inferences using a sample from a normal population.

The statistics for mean and variance inferences are computed by using a sample from a normal population, including methods for the confidence intervals and tests for both mean and variance. The definitions of mean and variance are given below. The summation in each case is over the set of valid observations, based on the presence of missing values in the data.

Method `getMean`, returns value

\[
\bar{x} = \frac{\sum x_i}{n}
\]```
\[ \Delta_t Z_t \]

Method `getStandardDeviation`, returns value

\[ s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \]

The method `getTTestStat` returns the \( t \) statistic for the two-sided test concerning the population mean which is given by

\[ t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \]

where \( s \) and \( \bar{x} \) are given above. This quantity has a \( T \) distribution with \( n - 1 \) degrees of freedom. The method `getTTestDF` returns the degree of freedom.

The method `getChiSquaredTestStat` returns the chi-squared statistic for the two-sided test concerning the population variance which is given by

\[ \chi^2 = \frac{(n-1)s^2}{\sigma^2_0} \]

where \( s \) is given above. This quantity has a \( \chi^2 \) distribution with \( n - 1 \) degrees of freedom. The method `getChiSquaredTestDF` returns the degrees of freedom.

### Constructor

**NormOneSample**

```java
public NormOneSample(double[] x)
```

**Description**

Constructor to compute statistics for mean and variance inferences using a sample from a normal population.

**Parameter**

- \( x \) – is a one-dimension `double` array containing the observations.

### Methods

**getChiSquaredTest**

```java
public double getChiSquaredTest()
```
Description
Returns the test statistic associated with the chi-squared test for variances. The chi-squared test is a test of the hypothesis $\omega^2 = \omega_0^2$ where $\omega_0^2$ is the null hypothesis value as described in setChiSquaredTestNull.

Returns
a double containing the test statistic for the chi-squared test.

getChiSquaredTestDF
public int getChiSquaredTestDF()

Description
Returns the degrees of freedom associated with the chi-squared test for variances. The chi-squared test is a test of the hypothesis $\omega^2 = \omega_0^2$ where $\omega_0^2$ is the null hypothesis value as described in setChiSquaredTestNull.

Returns
an int the degrees of freedom for the chi-squared test.

getChiSquaredTestP
public double getChiSquaredTestP()

Description
Returns the probability of a larger chi-squared associated with the chi-squared test for variances. The chi-squared test is a test of the hypothesis $\omega^2 = \omega_0^2$ where $\omega_0^2$ is the null hypothesis value as described in setChiSquaredTestNull.

Returns
a double containing the probability of a larger chi-squared for the chi-squared test for variances.

getLowerCIMean
public double getLowerCIMean()

Description
Returns the lower confidence limit for the mean.

Returns
a double containing the lower confidence limit for the mean.

getLowerCIVariance
public double getLowerCIVariance()

Description
Returns the lower confidence limits for the variance.

Returns
a double containing the lower confidence limits for the variance.

getMean
public double getMean()
Description
Returns the mean of the sample.

Returns
a double containing the mean.

__getStdDev__
```
public double getStdDev()
```

Description
Returns the standard deviation of the sample.

Returns
a double containing the standard deviation of the sample.

__getTTest__
```
public double getTTest()
```

Description
Returns the test statistic associated with the t test. The t test is a test, against a two-sided alternative, of the null hypothesis value described in setTTestNull.

Returns
a double containing the test statistic for the t test.

__getTTestDF__
```
public int getTTestDF()
```

Description
Returns the degrees of freedom associated with the t test for the mean. The t test is a test, against a two-sided alternative, of the null hypothesis value described in setTTestNull.

Returns
an int containing the degrees of freedom for the t test.

__getTTestP__
```
public double getTTestP()
```

Description
Returns the probability associated with the t test of a larger t in absolute value. The t test is a test, against a two-sided alternative, of the null hypothesis value described in setTTestNull.

Returns
a double containing the probability for the t test.

__getUpperCIMean__
```
public double getUpperCIMean()
```

Basic Statistics

NormOneSample • 635
Description
Returns the upper confidence limit for the mean.

Returns
a double containing the upper confidence limit for the mean.

**getUpperCIVariance**
public double getUpperCIVariance()

Description
Returns the upper confidence limits for the variance.

Returns
a double the upper confidence limits for the variance.

**setChiSquaredTestNull**
public void setChiSquaredTestNull(double chiSqrTestNull)

Description
Sets the null hypothesis value for the chi-squared test. The default is 1.0.

Parameter

chiSqrTestNull – double containing the null hypothesis value for the chi-squared test.

**setConfidenceMean**
public void setConfidenceMean(double confidenceMean)

Description
Sets the confidence level (in percent) for a two-sided interval estimate of the mean.

Parameter

confidenceMean – double containing the confidence level of the mean.

confidenceMean must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. For a one-sided confidence interval with confidence level c less than 50 percent, set confidenceMean =1.0-2.0*(c/100).

This effectively gives the one-sided confidence interval for both c% and (100-c)%.

For example, for a one-sided t-test with confidence level of 40, set confidenceMean = .2. This means that 40% of the distribution is lower than confidence limit for the mean (getLowerCIMean) and 40% of the distribution is greater than the upper confidence limit for the mean (getUpperCIMean). It also means that 60% of the distribution is greater than the lower confidence limit for the mean and 60% is lower than upper confidence limit for the mean. If the confidence mean is not specified, a 95-percent confidence interval is computed.

**setConfidenceVariance**
public void setConfidenceVariance(double confidenceVariance)
Description
Sets the confidence level (in percent) for two-sided interval estimate of the variances. Argument confidenceVariance must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. For a one-sided confidence interval with confidence level c (at least 50 percent), set confidenceVariance=1.0-2.0 \times (1.0 - c). If the confidence mean is not specified, a 95-percent confidence interval is computed.

Parameter
confidenceVariance – double containing the confidence level of the variance.

setTTestNull
public void setTTestNull(double meanHypothesis)

Description
Sets the Null hypothesis value for \( t \) test for the mean. meanHypothesis=0.0 by default.

Parameter
meanHypothesis – double containing the hypothesis value.

Example 1: NormOneSample
This example uses data from Devore (1982, p335), which is based on data published in the Journal of Materials. There are 15 observations. The hypothesis \( H_0 : \mu = 20.0 \) is tested. The extremely large \( t \) value and the correspondingly small \( p \)-value provide strong evidence to reject the null hypothesis.

```java
import com.ims1.stat.*;

public class NormOneSampleEx1 {
 public static void main(String args[]) {
 double mean, stdev, lomean, upmean, t, pvalue;
 int df;
 double[] x = {
 26.7, 25.8, 24.0, 24.9, 26.4,
 25.9, 24.4, 21.7, 24.1, 25.9,
 27.3, 26.9, 27.3, 24.8, 23.6
 };

 /* Perform Analysis*/
 NormOneSample n1samp = new NormOneSample(x);
 mean = n1samp.getMean();
 stdev = n1samp.getStdDev();
 lomean = n1samp.getLowerCIMean();
 upmean = n1samp.getUpperCIMean();
 n1samp.setTTestNull(20.0);
 df = n1samp.getTTestDF();
 t = n1samp.getTTest();
 pvalue = n1samp.getTTestP();

 /* Print results */
 System.out.println("Sample Mean = " + mean);
 System.out.println("Sample Standard Deviation = " + stdev);
 }
}
```
System.out.println("95% CI for the mean is " + lomean + " + upmean);
System.out.println("T Test results");
System.out.println("df = " + df);
System.out.println("t = " + t);
System.out.println("pvalue = " + pvalue);
System.out.println(");

/* CI variance */
double ciLoVar = n1samp.getLowerCIVariance();
double ciUpVar = n1samp.getUpperCIVariance();
System.out.println("CI variance is " + ciLoVar + " + ciUpVar);

/* chi-squared test */
  df = n1samp.getChiSquaredTestDF();
  t = n1samp.getChiSquaredTest();
  pvalue = n1samp.getChiSquaredTestP();
System.out.println("Chi-squared Test results");
System.out.println("Chi-squared df = " + df);
System.out.println("Chi-squared t = " + t);
System.out.println("Chi-squared pvalue = " + pvalue);
}

**Output**

Sample Mean = 25.313333333333336
Sample Standard Deviation = 1.5788181233652814
95% CI for the mean is 24.43901299970965 26.187653666957022
T Test results
df = 14
t = 13.03408619922945
pvalue = 3.2147173398634027E-9

CI variance is 1.3360926049992239 6.199863467239491
Chi-squared Test results
Chi-squared df = 14
Chi-squared t = 34.8973333333332
Chi-squared pvalue = 0.0015223176141821789

---

NormTwoSample class

```java
public class com.imsl.stat.NormTwoSample implements Serializable, Cloneable

Computes statistics for mean and variance inferences using samples from two normal populations.

Class NormTwoSample computes statistics for making inferences about the means and variances of two
normal populations, using independent samples in x1 and x2. Missing values, that is, values equal to
NaN (not a number), are excluded from the computations. For inferences concerning parameters of a
single normal population, see class NormOneSample.
```
Let $\mu_1$ and $\sigma_1^2$ be the mean and variance of the first population, and let $\mu_2$ and $\sigma_2^2$ be the corresponding quantities of the second population. The function contains test confidence intervals for difference in means, equality of variances, and the pooled variance.

The means and variances for the two samples are as follows:

$$\bar{x}_1 = \left( \sum x_{1i} / n_1 \right), \quad \bar{x}_2 = \left( \sum x_{2i} / n_2 \right)$$

and

$$s_1^2 = \sum (x_{1i} - \bar{x}_1)^2 / (n_1 - 1), \quad s_2^2 = \sum (x_{2i} - \bar{x}_2)^2 / (n_2 - 1)$$

**Inferences about the Means**

The test that the difference in means equals a certain value, for example, $\mu_0$, depends on whether or not the variances of the two populations can be considered equal. If the variances are equal and $\text{meanHypothesis}$ equals 0, the test is the two-sample $t$-test, which is equivalent to an analysis-of-variance test. The pooled variance for the difference-in-means test is as follows:

$$s^2 = \frac{(n_1 - 1)s_1 + (n_2 - 1)s_2}{n_1 + n_2 - 2}$$

The $t$ statistic is as follows:

$$t = \frac{\bar{x}_1 - \bar{x}_2 - \mu_0}{s \sqrt{1/n_1} + (1/n_2)}$$

Also, the confidence interval for the difference in means can be obtained by first assigning the unequal variances flag to false. This can be done by calling the `setUnequalVariances` method. The confidence interval can then be obtained by the `getLowerCIDiff` and `getUpperCIDiff` methods.

If the population variances are not equal, the ordinary $t$ statistic does not have a $t$ distribution and several approximate tests for the equality of means have been proposed. (See, for example, Anderson and Bancroft 1952, and Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A procedure used in the `getTTest`, `getLowerCIDiff` and `getUpperCIDiff` methods assuming unequal variances are specified is the Satterthwaite’s procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite (Anderson and Bancroft 1952, p. 83). Use `setUnequalVariances` true to obtain results assuming unequal variances.

The test statistic is

$$t' = (\bar{x}_1 - \bar{x}_2 - \mu_0) / s_d$$

where

$$s_d = \sqrt{\left( s_1^2 / n_1 \right) + \left( s_2^2 / n_2 \right)}$$
Under the null hypothesis of $\mu_1 - \mu_2 = c$, this quantity has an approximate $t$ distribution with degrees of freedom $df$, given by the following equation:

$$df = \frac{s_d^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}$$

**Inferences about Variances**

The $F$ statistic for testing the equality of variances is given by $F = \frac{s_{\text{max}}^2}{s_{\text{min}}^2}$, where $s_{\text{max}}^2$ is the larger of $s_1^2$ and $s_2^2$. If the variances are equal, this quantity has an $F$ distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom.

It is generally not recommended that the results of the $F$ test be used to decide whether to use the regular $t$-test or the modified $t'$ on a single set of data. The modified $t'$ (Satterthwaite’s procedure) is the more conservative approach to use if there is doubt about the equality of the variances.

**Constructor**

**NormTwoSample**

```java
public NormTwoSample(double[] x, double[] y)
```

**Description**

Constructor to compute statistics for mean and variance inferences using samples from two normal populations.

**Parameters**

- $x$ – is a double array containing the first sample.
- $y$ – is a double array containing the second sample.

**Methods**

**downdateX**

```java
public void downdateX(double[] x)
```

**Description**

Removes the observations in $x$ from the first sample.

**Parameter**

- $x$ – is a double array containing the values to remove from the first sample.

**downdateY**

```java
public void downdateY(double[] y)
```
Description
Removes the observations in \( y \) from the second sample.

Parameter
\( y \) – is a double array containing the values to remove from the second sample.

getChiSquaredTest
public double getChiSquaredTest()

Description
Returns the test statistic associated with the chi-squared test for common, or pooled, variances. The chi-squared test is a test of the hypothesis \( \omega^2 = \omega_0^2 \) where \( \omega_0^2 \) is the null hypothesis value as described in setChiSquaredTestNull.

Returns
a double containing the test statistic for the chi-squared test.

getChiSquaredTestDF
public int getChiSquaredTestDF()

Description
Returns the degrees of freedom associated with the chi-squared test for the common, or pooled, variances. The chi-squared test is a test of the hypothesis \( \omega^2 = \omega_0^2 \) where \( \omega_0^2 \) is the null hypothesis value as described in setChiSquaredTestNull.

Returns
an int containing the degrees of freedom for the chi-squared test.

getChiSquaredTestP
public double getChiSquaredTestP()

Description
Returns the probability of a larger chi-squared associated with the chi-squared test for common, or pooled, variances. The chi-squared test is a test of the hypothesis \( \omega^2 = \omega_0^2 \) where \( \omega_0^2 \) is the null hypothesis value as described in setChiSquaredTestNull.

Returns
a double containing the probability of a larger chi-squared for the chi-squared test for variances.

diffMean
public double getDiffMean()

Description
Returns the difference in means, mean of \( x \) - mean of \( y \).

Returns
a double containing the difference in mean.

getFTest
public double getFTest()
**Description**
Returns the $F$ test value of the $F$ test for equality of variances.

**Returns**
a double containing the $F$ test value of the $F$ test for equality of variances.

**getFTestDFdenominator**
public int getFTestDFdenominator()

**Description**
Returns the denominator degrees of freedom of the $F$ test for equality of variances.

**Returns**
an int containing the denominator degrees of freedom.

**getFTestDFnumerator**
public int getFTestDFnumerator()

**Description**
Returns the numerator degrees of freedom of the $F$ test for equality of variances.

**Returns**
an int containing the numerator degrees of freedom.

**getFTestP**
public double getFTestP()

**Description**
Returns the probability of a larger $F$ in absolute value for the $F$ test for equality of variances, assuming equal variances.

**Returns**
a double containing the probability of a larger $F$ in absolute value, assuming equal variances.

**getLowerCICommonVariance**
public double getLowerCICommonVariance()

**Description**
Returns the lower confidence limits for the common, or pooled, variance.

**Returns**
a double containing the lower confidence limits for the variance.

**getLowerCIDiff**
public double getLowerCIDiff()

**Description**
Returns the lower confidence limit for the mean of the first population minus the mean of the second for equal or unequal variances depending on the value set by setUnequalVariances. setUnequalVariances
Returns a double containing the lower confidence limit for the mean of the first sample minus the mean of the second sample.

**getLowerCIRatioVariance**
public double getLowerCIRatioVariance()

**Description**
Returns the approximate lower confidence limit for the ratio of the variance of the first population to the second.

**Returns**
a double containing the approximate lower confidence limit variance.

**getMeanX**
public double getMeanX()

**Description**
Returns the mean of the first sample, x.

**Returns**
a double containing the mean.

**getMeanY**
public double getMeanY()

**Description**
Returns the mean of the second sample, y.

**Returns**
a double containing the mean.

**getPooledVariance**
public double getPooledVariance()

**Description**
Returns the Pooled variance for the two samples.

**Returns**
a double containing the Pooled variance for the two samples.

**getStdDevX**
public double getStdDevX()

**Description**
Returns the standard deviation of the first sample.
Returns
a double containing the standard deviation of the first sample.

```java
public double getStdDevY()
```

Description
Returns the standard deviation of the second sample.

Returns
a double containing the standard deviation of the second sample.

```java
public double getTTest()
```

Description
Returns the test statistic for the Satterthwaite’s approximation. The value returned will be based on assumption of equal or unequal variances based on the value set by `setUnequalVariances`.

Returns
a double containing the test statistic for the t-test.

```java
public double getTTestDF()
```

Description
Returns the degrees of freedom for the Satterthwaite’s approximation for t-test for either equal or unequal variances, depending on the value set by `setUnequalVariances`.

Returns
an double containing the degrees of freedom for the t-test.

```java
public double getTTestP()
```

Description
Returns the approximate probability of a larger t for the Satterthwaite’s approximation for equal or unequal variances.

Returns
a double containing the probability for the t-test.

```java
public double getUpperCICommonVariance()
```

Description
Returns the upper confidence limits for the common, or pooled, variance.
Returns a double containing the upper confidence limits for the variance.

**getUpperCI.Diff**

```java
public double getUpperCI.Diff()
```

**Description**

Returns the upper confidence limit for the mean of the first population minus the mean of the second for equal or unequal variances depending on the value set by `setUnequalVariances`.

Returns a double containing the upper confidence limit for the mean of the first sample minus the mean of the second sample.

**getUpperCI.RatioVariance**

```java
public double getUpperCI.RatioVariance()
```

**Description**

Returns the approximate upper confidence limit for the ratio of the variance of the first population to the second.

Returns a double containing the approximate upper confidence limit variance.

**setChiSquaredTestNull**

```java
public void setChiSquaredTestNull(double varianceHypothesisValue)
```

**Description**

Sets the null hypothesis value for the chi-squared test. The default is 1.0.

**Parameter**

- `varianceHypothesisValue` – a double containing the null hypothesis value for the chi-squared test.

**setConfidenceMean**

```java
public void setConfidenceMean(double confidenceMean)
```

**Description**

Sets the confidence level (in percent) for a two-sided interval estimate of the mean of `x` - the mean of `y`, in percent. Argument `confidenceMean` must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. For a one-sided confidence interval with confidence level `c` (at least 50 percent), set `confidenceMean = 1.0 - 2.0(1.0 - c)`. If the confidence mean is not specified, a 95-percent confidence interval is computed. Default: `confidenceMean = .95`

**Parameter**

- `confidenceMean` – double containing the confidence level of the mean.

**setConfidenceVariance**

```java
public void setConfidenceVariance(double confidenceVariance)
```

---

Basic Statistics NormTwoSample • 645
Description
Sets the confidence level (in percent) for two-sided interval estimate of the variances. Under the
assumption of equal variances, the pooled variance is used to obtain a two-sided confidence
interval for the common variance with getLowerCICommonVariance or
getUpperCICommonVariance. Without making the assumption of equal variances, setUnequalVariances,
the ratio of the variances is of interest. A two-sided confidence interval for the ratio of the variance of the first sample to that of the second sample is given by the
getLowerCIRatioVariance and getUpperCIRatioVariance. See setUnequalVariances and
getUpperCIRatioVariance. The confidence intervals are symmetric in probability. Argument
certaintyVariance must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. The default is 0.95.

Parameter
   confidenceVariance – double containing the confidence level of the variance.

setTTestNull
public void setTTestNull(double meanHypothesis)
Description
Sets the Null hypothesis value for t-test for the mean. meanHypothesis=0.0 by default.

Parameter
   meanHypothesis – double containing the hypothesis value.

setUnequalVariances
public void setUnequalVariances(boolean eqVar)
Description
Specifies whether to return statistics based on equal or unequal variances. The default is to return
statistics for equal variances. if eqVar is True then statistics for unequal variances will be returned.

Parameter
   eqVar – a boolean containing a true or false value. A value of true will cause results for unequal
   variances to be returned. A value of false will cause results for equal variances to be returned.

update
public void update(double[] x, double[] y)
Description
Concatenates samples x and y to the samples provided in the constructor.
This method updates the test results to include a new subset of the data. This is useful when the data is
too large to fit into memory or when all of the data is not available at one time or location.

Parameters
   x – is a double array containing updates to the first sample.
   y – is a double array containing updates to the second sample.

updateX
public void updateX(double[] x)
**Description**
Concatenates the values in x to the first sample provided in the constructor.
This method updates the test results to include a new subset of the data. This is useful when the data is too large to fit into memory or when all of the data is not available at one time or location.

**Parameter**
- x – is a double array containing updates for the first sample.

```java
public void updateY(double[] y)
```

**Description**
Concatenates the values in y to the second sample provided in the constructor.
This method updates the test results to include a new subset of the data. This is useful when the data is too large to fit into memory or when all of the data is not available at one time or location.

**Parameter**
- y – is a double array containing updates for the second sample.

**Example 1: NormTwoSample**
This example taken from Conover and Iman (1983, p294), involves scores on arithmetic tests of two grade-school classes.

<table>
<thead>
<tr>
<th>Scores for Standard Group</th>
<th>Scores for Experimental Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>111</td>
</tr>
<tr>
<td>75</td>
<td>118</td>
</tr>
<tr>
<td>77</td>
<td>128</td>
</tr>
<tr>
<td>80</td>
<td>138</td>
</tr>
<tr>
<td>104</td>
<td>140</td>
</tr>
<tr>
<td>110</td>
<td>150</td>
</tr>
<tr>
<td>125</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>169</td>
</tr>
</tbody>
</table>

The question is whether a group taught by an experimental method has a higher mean score. The difference in means and the t test are output. The variances of the two populations are assumed to be equal. It is seen from the output that there is strong reason to believe that the two means are different (t value of -4.804). Since the lower 97.5-percent confidence limit does not include 0, the null hypothesis is that $\mu_1 \leq \mu_2$ would be rejected at the 0.05 significance level. (The closeness of the values of the sample variances provides some qualitative substantiation of the assumption of equal variances.)

```java
import com.imsl.stat.*;

public class NormTwoSampleEx1 {
```
public static void main(String args[]) {
    double x1[] = {72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
    double x2[] = {
        111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0, 164.0, 169.0
    };

    /* Perform Analysis for one sample x2*/
    NormTwoSample n2samp = new NormTwoSample(x1, x2);
    double mean = n2samp.getDiffMean();
    System.out.println("x1mean-x2mean = " + mean);
    System.out.println("X1 mean = " + n2samp.getMeanX());
    System.out.println("X2 mean = " + n2samp.getMeanY());

    double pVar = n2samp.getPooledVariance();
    System.out.println("pooledVar = " + pVar);

    double loCI = n2samp.getLowerCIDiff();
    double upCI = n2samp.getUpperCIDiff();
    System.out.println("95% CI for the mean is "
                        + loCI + " " + upCI);

    System.out.println("95% CI for the ueq mean is "
                        + loCI + " " + upCI);

    System.out.println("T Test Results");
    double tDF = n2samp.getTTestDF();
    double tT = n2samp.getTTest();
    double tPval = n2samp.getTTestP();
    System.out.println("T default = " + tDF);
    System.out.println("t = " + tT);
    System.out.println("p-value = " + tPval);

    double stdevX = n2samp.getStdDevX();
    double stdevY = n2samp.getStdDevY();
    System.out.println("stdev x1 = " + stdevX);
    System.out.println("stdev x2 = " + stdevY);
}

Output
x1mean-x2mean = -50.476190476190496
X1 mean = 91.85714285714285
X2 mean = 142.33333333333334
pooledVar = 434.6326530612244
95% CI for the mean is -73.01001962529507 -27.942361327085916
95% CI for the ueq mean is -73.01001962529507 -27.942361327085916
T Test Results
T default = 14.0
t = -4.8043615047163355
p-value = 2.8025836567727923E-4
stdev x1 = 20.87605144201182
stdev x2 = 20.87605144201182
stdev x2 = 20.826665599658526

Example 2: NormTwoSample

The same data is used for this example as for the initial example.

This example demonstrates how the analysis can be applied to subsets of the original data sets using different update methods. These techniques may be useful when analyzing data sets too large to fit into memory.

```java
import com.ims1.stat.*;

public class NormTwoSampleEx2 {
 public static void main(String args[]) {
 // Bring in first group of observations on x1 and x2.
 double[] x1blk = {72.0, 75.0};
 double[] x2blk = {111.0, 118.0};
 NormTwoSample n2samp = new NormTwoSample(x1blk, x2blk);

 // Use different update methods.
 double[] x1blk1 = {77.0};
 double[] x2blk1 = {128.0};
 n2samp.updateX(x1blk1);
 n2samp.updateY(x2blk1);

 // Second group.
 double[] x1blk2 = {80.0, 104.0, 110.0, 125.0};
 double[] x2blk2 = {138.0, 140.0, 150.0, 163.0};
 n2samp.update(x1blk2, x2blk2);

 // Third group.
 double[] x2blk3 = {164.0, 169.0};
 n2samp.updateY(x2blk3);

 double mean = n2samp.getDiffMean();
 System.out.println("x1mean-x2mean = " + mean);
 System.out.println("X1 mean = " + n2samp.getMeanX());
 System.out.println("X2 mean = " + n2samp.getMeanY());

 double pVar = n2samp.getPooledVariance();
 System.out.println("pooledVar = " + pVar);

 double loCI = n2samp.getLowerCIDiff();
 double upCI = n2samp.getUpperCIDiff();
 System.out.println("95% CI for the mean is " + loCI + " " + upCI);

 System.out.println("95% CI for the ueq mean is " + loCI + " " + upCI);
 }
}
```
System.out.println("T Test Results");
double tDF = n2samp.getTTestDF();
double tT = n2samp.getTTest();
double tPval = n2samp.getTTestP();
System.out.println("T default = " + tDF);
System.out.println("t = " + tT);
System.out.println("p-value = " + tPval);

double stdevX = n2samp.getStdDevX();
double stdevY = n2samp.getStdDevY();
System.out.println("stdev x1 = " + stdevX);
System.out.println("stdev x2 = " + stdevY);

Output

x1mean-x2mean = -50.476190476190496
X1 mean = 91.85714285714285
X2 mean = 142.33333333333334
pooledVar = 434.6326530612244
95% CI for the mean is -73.01001962529507 -27.942361327085916
95% CI for the ueq mean is -73.01001962529507 -27.942361327085916
T Test Results
T default = 14.0
t = -4.8043615047163355
p-value = 2.8025836567727923E-4
stdev x1 = 20.87605144201182
stdev x2 = 20.826665599658526

Sort class

public class com.imsl.stat.Sort
A collection of sorting functions.
Class Sort contains ascending and descending methods for sorting elements of an array or a matrix.
The QuickSort algorithm is used, except for short sequences that are handled using an insertion sort.
The QuickSort algorithm is a randomized QuickSort with 3-way partitioning. Basic QuickSort is slow if
the sequence to be sorted contains many duplicate keys. The 3-way partitioning algorithm eliminates this
problem. The pivot is chosen as the middle element of three potential pivots chosen at random.
The matrix ascending method sorts the rows of real matrix x using a particular column or columns in x
as the keys. The sort is algebraic with the first key as the most significant, the second key as the next
most significant, etc. When x is sorted in ascending order, the resulting sorted array is such that the
following is true:

- For $i = 0, 1, \ldots, nObs - 2$, $x[i][\text{indKeys}[0]] \leq x[i+1][\text{indKeys}[0]]$, where $nObs$ is the number of observations.

- For $k = 1, \ldots, nKeys - 1$, if $x[i][\text{indKeys}[j]] = x[i+1][\text{indKeys}[j]]$ for $j = 0, 1, \ldots, k - 1$, then $x[i][\text{indKeys}[k]] = x[i+1][\text{indKeys}[k]]$

The observations also can be sorted in descending order. The rows of $x$ containing the missing value code NaN in at least one of the specified columns are considered as an additional group. These rows are moved to the end of the sorted $x$.

If all of the sort keys in a pair of rows are equal then the rows keep their original relative order.

The sorting algorithm is based on a quicksort method given by Singleton (1969) with modifications, see Bentley and Sedgewick (1997).

**Methods**

```java
static public void ascending(double[] ra)
```

**Description**
Sorts an array into ascending order.

**Parameter**
- `ra` – a double array to be sorted into ascending order

```java
static public void ascending(int[] ia)
```

**Description**
Sorts an integer array into ascending order.

**Parameter**
- `ia` – an int array to be sorted into ascending order

```java
static public void ascending(double[] ra, int[] iPerm)
```

**Description**
Sorts an array into ascending order and returns the permutation vector.
Parameters
ra – a double array to be sorted into ascending order
iPerm – an int array that on input is the same length as ra and contains the values 0, 1, .... On output, the values represent the permutation of the values in ra, that is, the re-ordering of those values in terms of their previous position.

ascending
static public void ascending(double[][] ra, int nKeys)

Description
Sorts a matrix into ascending order by the first nKeys.

Parameters
ra – a double matrix to be sorted into ascending order
nKeys – an int, the number of keys. The first nKeys columns of ra are to be used as the sorting keys.

ascending
static public void ascending(double[][] ra, int[] indKeys)

Description
Sorts a matrix into ascending order by specified keys.

Parameters
ra – a double matrix to be sorted into ascending order
indKeys – an int array containing the order into which the columns of ra are to be sorted. These values must be between 0 and one less than the number of columns in ra.

ascending
static public void ascending(int[] ia, int[] iPerm)

Description
Sorts an integer array into ascending order and returns the permutation vector.

Parameters
ia – an int array to be sorted into ascending order
iPerm – an int array that on input is the same length as ia and contains the values 0, 1, .... On output, the values represent the permutation of the values in ia, that is, the re-ordering of those values in terms of their previous position.

ascending
static public void ascending(int[][] ia, int nKeys)

Description
Sorts a matrix into ascending order by the first nKeys.
**Parameters**

- `ia` – an `int` matrix to be sorted into ascending order
- `nKeys` – an `int`, the number of keys. The first `nKeys` columns of `ia` are to be used as the sorting keys.

**ascending**

```java
static public void ascending(double[][] ra, int nKeys, int[] iPerm)
```

**Description**

Sorts a matrix into ascending order according to the first `nKeys` keys and returns the permutation vector.

**Parameters**

- `ra` – a `double` matrix to be sorted into ascending order
- `nKeys` – an `int`, the number of keys. The first `nKeys` columns of `ra` are to be used as the sorting keys.
- `iPerm` – an `int` array that on input is the same length as `ra` and contains the values 0, 1, .... On output, the values represent the permutation of the values in `ra`, that is, the re-ordering of those values in terms of their previous position.

**ascending**

```java
static public void ascending(double[][] ra, int[] indKeys, int[] iPerm)
```

**Description**

Sorts a matrix into ascending order by specified keys and returns the permutation vector.

**Parameters**

- `ra` – a `double` matrix to be sorted into ascending order
- `indKeys` – an `int` array containing the order into which the columns of `ra` are to be sorted. These values must be between 0 and one less than the number of columns in `ra`.
- `iPerm` – an `int` array that on input is the same length as `ra` and contains the values 0, 1, .... On output, the values represent the permutation of the values in `ra`, that is, the re-ordering of those values in terms of their previous position.

**ascending**

```java
static public void ascending(int[][] ia, int nKeys, int[] iPerm)
```

**Description**

Sorts a matrix into ascending order according to the first `nKeys` keys and returns the permutation vector.

**Parameters**

- `ia` – an `int` matrix to be sorted into ascending order
- `nKeys` – an `int`, the number of keys. The first `nKeys` columns of `ia` are to be used as the sorting keys.
- `iPerm` – an `int` array that on input is the same length as `ia` and contains the values 0, 1, .... On output, the values represent the permutation of the values in `ia`, that is, the re-ordering of those values in terms of their previous position.
ascending
static public void ascending(int[][] ia, int[] indKeys, int[] iPerm)

Description
Sorts a matrix into ascending order by specified keys and returns the permutation vector.

Parameters
- ia – an int matrix to be sorted into ascending order
- indKeys – an int array containing the order into which the columns of ia are to be sorted. These values must be between 0 and one less than the number of columns in ia.
- iPerm – an int array that on input is the same length as ia and contains the values 0, 1, .... On output, the values represent the permutation of the values in ia, that is, the re-ordering of those values in terms of their previous position.

descending
static public void descending(double[] ra)

Description
Sorts an array into descending order.

Parameter
- ra – a double array to be sorted into descending order

descending
static public void descending(int[] ra)

Description
Sorts an integer array into descending order.

Parameter
- ra – an int array to be sorted into descending order

descending
static public void descending(double[] ra, int[] iPerm)

Description
Sorts an array into descending order and returns the permutation vector.

Parameters
- ra – a double array to be sorted into descending order
- iPerm – an int array that on input is the same length as ra and contains the values 0, 1, .... On output, the values represent the permutation of the values in ra, that is, the re-ordering of those values in terms of their previous position.

descending
static public void descending(double[][] ra, int nKeys)

654 • Sort JMSL
Description
Sorts a matrix into descending order by the first \texttt{nkays}.

Parameters
\texttt{ra} – a double matrix to be sorted into descending order
\texttt{nkays} – an int, the number of keys. The first \texttt{nkays} columns of \texttt{ra} are to be used as the sorting keys.

\texttt{descending}
static public void descending(double[][] ra, int[] indKeys)

Description
Sorts a matrix into descending order by specified keys.

Parameters
\texttt{ra} – a double matrix to be sorted into descending order
\texttt{indKeys} – an int array containing the order into which the columns of \texttt{ra} are to be sorted. These values must be between 0 and one less than the number of columns in \texttt{ra}.

\texttt{descending}
static public void descending(int[] ra, int[] iPerm)

Description
Sorts an integer array into descending order and returns the permutation vector.

Parameters
\texttt{ra} – an int array to be sorted into descending order
\texttt{iPerm} – an int array that on input is the same length as \texttt{ra} and contains the values 0, 1, .... On output, the values represent the permutation of the values in \texttt{ra}, that is, the re-ordering of those values in terms of their previous position.

\texttt{descending}
static public void descending(double[][] ra, int nKeys, int[] iPerm)

Description
Sorts a matrix into descending order by the first \texttt{nkays} and returns the permutation vector.

Parameters
\texttt{ra} – a double matrix to be sorted into descending order
\texttt{nKeys} – an int, the number of keys. The first \texttt{nKeys} columns of \texttt{ra} are to be used as the sorting keys.
\texttt{iPerm} – an int array that on input is the same length as \texttt{ra} and contains the values 0, 1, .... On output, the values represent the permutation of the values in \texttt{ra}, that is, the re-ordering of those values in terms of their previous position.

\texttt{descending}
static public void descending(double[][] ra, int[] indKeys, int[] iPerm)
**Description**
Sorts a matrix into descending order by specified keys and return the permutation vector.

**Parameters**
- `ra` – a double matrix to be sorted into descending order
- `indKeys` – an int array containing the order into which the columns of `ra` are to be sorted. These values must be between 0 and one less than the number of columns in `ra`.
- `iPerm` – an int array that on input is the same length as `ra` and contains the values 0, 1, ... On output, the values represent the permutation of the values in `ra`, that is, the re-ordering of those values in terms of their previous position.

**Example 1: Sorting**
An array is sorted by increasing value. A permutation array is also computed. Note that the permutation array begins at 0 in this example.

```java
import com.imsl.math.*;
import com.imsl.stat.*;

public class SortEx1 {

 public static void main(String args[]) {
 double ra[] = {10., -9., 8., -7., 6., 5., 4., -3., -2., -1.};
 int iperm[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 PrintMatrix pm = new PrintMatrix("The Input Array");
 PrintMatrixFormat mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 // Print the array
 pm.print(mf, ra);
 System.out.println()
 // Sort the array
 Sort.ascending(ra, iperm);

 pm = new PrintMatrix("The Sorted Array - Lowest to Highest");
 mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 // Print the array
 pm.print(mf, ra);

 pm = new PrintMatrix("The Resulting Permutation Array");
 mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 // Print the array
 pm.print(mf, iperm);
 }
}
```

656 • Sort

---

JMSL
Output

The Input Array

10
-9
8
-7
6
5
4
-3
-2
-1

The Sorted Array - Lowest to Highest

-9
-7
-3
-2
-1
4
5
6
8
10

The Resulting Permutation Array

1
3
7
8
9
6
5
4
2
0

Example 2: Sorting

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 and 1 as the keys. There are two missing values (NaNs) in the keys. The observations containing these values are moved to the end of the sorted array.

```java
import com.imsl.math.*;
import com.imsl.stat.*;

public class SortEx2 {
```
public static void main(String args[]) {
    int nKeys = 2;
    double x[][] = {
        {1.0, 1.0, 1.0},
        {2.0, 1.0, 2.0},
        {1.0, 1.0, 3.0},
        {1.0, 1.0, 4.0},
        {2.0, 2.0, 5.0},
        {1.0, 2.0, 6.0},
        {1.0, 2.0, 7.0},
        {1.0, 1.0, 8.0},
        {2.0, 2.0, 9.0},
        {1.0, 1.0, 9.0}
    };
    int iperm[] = new int[x.length];
    x[4][1] = Double.NaN;
    x[6][0] = Double.NaN;

    PrintMatrix pm = new PrintMatrix("The Input Array");
    PrintMatrixFormat mf = new PrintMatrixFormat();
    mf.setNoRowLabels();
    mf.setNoColumnLabels();
    // Print the array
    pm.print(mf, x);
    System.out.println();

    try {
        Sort.ascending(x, nKeys, iperm);
    } catch (Exception e) {

    }

    pm = new PrintMatrix("The Sorted Array - Lowest to Highest");
    mf = new PrintMatrixFormat();
    mf.setNoRowLabels();
    mf.setNoColumnLabels();
    // Print the array
    pm.print(mf, x);

    pm = new PrintMatrix("The permutation array");
    mf = new PrintMatrixFormat();
    mf.setNoRowLabels();
    mf.setNoColumnLabels();
    pm.print(mf, iperm);
}

Output
The Input Array
1 1 1
The Sorted Array - Lowest to Highest

1 1 1
1 1 3
1 1 4
1 1 8
1 1 9
1 2 6
2 1 2
2 2 9
2 7 5
? 2 7

The permutation array

0
2
3
7
9
5
1
8
4
6

---

Ranks class

public class com.imsl.stat.Ranks

Compute the ranks, normal scores, or exponential scores for a vector of observations.

The class Ranks can be used to compute the ranks, normal scores, or exponential scores of the data in \( X \). Ties in the data can be resolved in four different ways, as specified by member function setTieBreaker. The type of values returned can vary depending on the member function called:

GetRanks: Ordinary Ranks
For this member function, the values output are the ordinary ranks of the data in X. If X[i] has the smallest value among those in X and there is no other element in X with this value, then getRanks(i) = 1. If both X[i] and X[j] have the same smallest value, then

if TieBreaker = 0, Ranks[i] = getRanks(j) = 1.5
if TieBreaker = 1, Ranks[i] = Ranks[j] = 2.0
if TieBreaker = 2, Ranks[i] = Ranks[j] = 1.0
if TieBreaker = 3, Ranks[i] = 1.0 and Ranks[j] = 2.0
or Ranks[i] = 2.0 and Ranks[j] = 1.0.

When the ties are resolved by use of function setRandom, different results may occur when running the same program at different times unless the “seed” of the random number generator is set explicitly by use of Random method setSeed. Ordinarily, there is no need to call the routine to set the seed, even if there are ties in the data.

getBlomScores: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of order statistics from a normal distribution. The simplest approximations are obtained by evaluating the inverse cumulative normal distribution function, inverseNormal, at the ranks scaled into the open interval (0, 1). In the Blom version (see Blom 1958), the scaling transformation for the rank \( r_i \) (1 ≤ \( r_i \) ≤ \( n \)), where \( n \) is the sample size is

\[
\frac{r_i - 3/8}{n + 1/4}
\]

The Blom normal score corresponding to the observation with rank \( r_i \) is

\[
\Phi^{-1}\left(\frac{r_i - 3/8}{n + 1/4}\right)
\]

where \( \Phi(\cdot) \) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if X[i] equals X[j] (within fuzz) and their value is the k-th smallest in the data set, the Blom normal scores are determined for ranks of k and k + 1, and then these normal scores are averaged or selected in the manner specified by TieBreaker, which is set by the method setTieBreaker. (Whether the transformations are made first or ties are resolved first makes no difference except when averaging is done.)

getTukeyScores: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank \( r_i \) is \( (r_i - 1/3)/(n + 1/3) \). The Tukey normal score corresponding to the observation with rank \( r_i \) is

\[
\Phi^{-1}\left(\frac{r_i - 1/3}{n + 1/3}\right)
\]

Ties are handled in the same way as discussed above for the Blom normal scores.

getVanDerWaerdenScores: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling transformation for the rank \( r_i \) is \( r_i/(n + 1) \). The Van der Waerden normal score corresponding to the observation with rank \( r_i \) is
\[ \Phi^{-1} \left( \frac{r_i}{n+1} \right) \]

Ties are handled in the same way as discussed above for the Blom normal scores.

**getNormalScores: Expected Value of Normal Order Statistics**

The method `getNormalScores` returns the expected values of the normal order statistics. If the value in \( X[i] \) is the \( k \)-th smallest, then the value `getNormalScores[i]` is \( E(Z_k) \), where \( E(\cdot) \) is the expectation operator and \( Z_k \) is the \( k \)-th order statistic in a sample of size NOBS from a standard normal distribution. Ties are handled in the same way as discussed above for the Blom normal scores.

**getSavageScores: Savage Scores**

The method `getSavageScores` returns the expected values of the exponential order statistics. These values are called Savage scores because of their use in a test discussed by Savage (1956) (see Lehman 1975). If the value in \( X[i] \) is the \( k \)-th smallest, then the \( i \)-th output value output is \( E(Y_k) \), where \( Y_k \) is the \( k \)-th order statistic in a sample of size \( n \) from a standard exponential distribution. The expected value of the \( k \)-th order statistic from an exponential sample of size \( n \) is

\[ \frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{n-k+1} \]

Ties are handled in the same way as discussed above for the Blom normal scores.

**Fields**

- **TIE_AVERAGE**
  
  static final public int TIE_AVERAGE

  In case of ties, use the average of the scores of the tied observations.

- **TIE_HIGHEST**
  
  static final public int TIE_HIGHEST

  In case of ties, use the highest score in the group of ties.

- **TIE_LOWEST**
  
  static final public int TIE_LOWEST

  In case of ties, use the lowest score in the group of ties.

- **TIE_RANDOM**
  
  static final public int TIE_RANDOM

  In case of ties, use one of the group of ties chosen at random.
Constructor

**Ranks**

public Ranks()

**Description**

Constructor for the Ranks class.

Methods

**expectedNormalOrderStatistic**

static public double expectedNormalOrderStatistic(int i, int n)

**Description**

Returns the expected value of a normal order statistic.

**Parameters**

- i – an int, the rank of the order statistic
- n – an int, the sample size

**Returns**

a double, the expected value of the i-th order statistic in a sample of size n from the standard normal distribution

**getBlomScores**

public double[] getBlomScores(double[] x)

**Description**

Gets the Blom version of normal scores for each observation.

**Parameter**

- x – a double array which contains the observations to be ranked

**Returns**

a double array which contains the Blom version of normal scores for each observation in x

**getNormalScores**

public double[] getNormalScores(double[] x)

**Description**

Gets the expected value of normal order statistics (for tied observations, the average of the expected normal scores).

**Parameter**

- x – a double array which contains the observations
Returns
a double array which contains the expected value of normal order statistics for the observations in x (for tied observations, the average of the expected normal scores)

getRanks
public double[] getRanks(double[] x)

Description
Gets the rank for each observation.

Parameter
x – a double array which contains the observations to be ranked

Returns
a double array which contains the rank for each observation in x

getSavageScores
public double[] getSavageScores(double[] x)

Description
Gets the Savage scores (the expected value of exponential order statistics).

Parameter
x – a double array which contains the observations

Returns
a double array which contains the Savage scores for the observations in x. (the expected value of exponential order statistics)

getTukeyScores
public double[] getTukeyScores(double[] x)

Description
Gets the Tukey version of normal scores for each observation.

Parameter
x – a double array which contains the observations to be ranked

Returns
a double array which contains the Tukey version of normal scores for each observation in x

getVanDerWaerdenScores
public double[] getVanDerWaerdenScores(double[] x)

Description
Gets the Van der Waerden version of normal scores for each observation.
Parameter

x – a double array which contains the observations to be ranked

Returns

a double array which contains the Van der Waerden version of normal scores for each observation in x

setFuzz

public void setFuzz(double fuzz)

Description

Sets the fuzz factor used in determining ties.

Parameter

fuzz – a double which represents the fuzz factor

setRandom

public void setRandom(Random random)

Description

Sets the Random object.

Parameter

random – a Random object used in breaking ties

setTieBreaker

public void setTieBreaker(int iTie)

Description

Sets the tie breaker for Ranks.

Parameter

iTie – an int which represents the tie breaker

Example: Ranks

In this data from Hinkley (1977) note that the fourth and sixth observations are tied and that the third and twentieth are tied.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class RanksEx1 {

 public static void main(String args[]) {
 double x[] = {
 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05
 }
```
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();

Ranks ranks = new Ranks();
double score[] = ranks.getRanks(x);
new PrintMatrix("The Ranks of the Observations - 
 + "Ties Averaged").print(mf, score);
System.out.println();

ranks = new Ranks();
ranks.setTieBreaker(Ranks.TIE_HIGHEST);
score = ranks.getBlomScores(x);
new PrintMatrix("The Blom Scores of the Observations - 
 + "Highest Score used in Ties").print(mf, score);
System.out.println();

ranks = new Ranks();
ranks.setTieBreaker(Ranks.TIE_LOWEST);
score = ranks.getTukeyScores(x);
new PrintMatrix("The Tukey Scores of the Observations - 
 + "Lowest Score used in Ties").print(mf, score);
System.out.println();

ranks = new Ranks();
ranks.setTieBreaker(Ranks.TIE_RANDOM);
Random random = new Random();
random.setSeed(123457);
random.setMultiplier(16807);
ranks.setRandom(random);
score = ranks.getVanDerWaerdenScores(x);
new PrintMatrix("The Van Der Waerden Scores of the "
 + "Observations - Ties untied by Random").print(mf, score);
}
}

Output

The Ranks of the Observations - Ties Averaged

5
18
6.5
11.5
21
11.5
2
15
29
24
27
28
16
The Blom Scores of the Observations - Highest Score used in Ties

-1.024
0.209
-0.776
-0.294
0.473
-0.294
-1.61
-0.041
1.61
0.776
1.176
1.361
0.041
0.668
-1.361
0.125
-0.209
-2.04
-1.176
-0.776
1.024
0.294
-0.473
-0.125
2.04
0.893
-0.568
0.382
-0.668
0.568

The Tukey Scores of the Observations - Lowest Score used in Ties

-1.02
0.208
-0.89
-0.381
0.471
-0.381
-1.599
-0.041
1.599
0.773
1.171
1.354
0.041
0.666
-1.354
0.124
-0.208
-2.015
-1.171
-0.89
1.02
0.293
-0.471
-0.124
2.015
0.89
-0.566
0.381
-0.666
0.666
0.666

The Van Der Waerden Scores of the Observations - Ties untied by Random

-0.989
0.204
-0.865
-0.287
0.46
-0.372
-1.518
-0.04
1.518
0.753
1.131
1.3
0.04
0.649
-1.3
0.122
-0.204
-1.849
-1.131
-0.753
0.989
0.287
-0.46
EmpiricalQuantiles class

public class com.imsl.stat.EmpiricalQuantiles implements Serializable, Cloneable

Computes empirical quantiles.

The class EmpiricalQuantiles determines the empirical quantiles, as indicated in the array qProp, from the data in x. The algorithm first checks to see if x is sorted; if x is not sorted, the algorithm does either a complete or partial sort, depending on how many order statistics are required to compute the quantiles requested. The algorithm returns the empirical quantiles and, for each quantile, the two order statistics from the sample that are at least as large and at least as small as the quantile. For a sample of size n, the quantile corresponding to the proportion p is defined as

\[ Q(p) = (1 - f)x_{(j)} + fx_{(j+1)} \]

where \( j = \lfloor p(n+1) \rfloor \), \( f = p(n + 1) - j \), and \( x_{(j)} \), is the j-th order statistic, if \( 1 \leq j \leq n \); otherwise, the empirical quantile is the smallest or largest order statistic.

Constructor

EmpiricalQuantiles

public EmpiricalQuantiles(double[] x, double[] qProp)

Description

Constructor for EmpiricalQuantiles.

Parameters

\( x \) – A double array containing the data.

\( qProp \) – A double array containing the quantile proportions.
Methods

getQ
final public double[] getQ()

Description
Returns the empirical quantiles.

Returns
A double array containing the empirical quantiles. Q[i] corresponds to the empirical quantile at proportion qProp[i]. The quantiles are determined by linear interpolation between adjacent ordered sample values.

getTotalMissing
public int getTotalMissing()

Description
Returns the total number of missing values.

Returns
an int scalar value representing the total number of missing values (NaN) in input x.

g getXHi
final public double[] getXHi()

Description
Returns the smallest element of x greater than or equal to the desired quantile.

Returns
A double array containing the smallest element of x greater than or equal to the desired quantile.

g getXLo
final public double[] getXLo()

Description
Returns the largest element of x less than or equal to the desired quantile.

Returns
A double array containing the largest element of x less than or equal to the desired quantile.

Example 1: Empirical Quantiles

In this example, five empirical quantiles from a sample of size 30 are obtained. Notice that the 0.5 quantile corresponds to the sample median. The data are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the measurements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years.
import java.text.*;
import com.imsl.stat.*;

public class EmpiricalQuantilesEx1 {

    public static void main(String args[]) {
        String fmt = "0.00";
        DecimalFormat df = new DecimalFormat(fmt);

        double[] x = {
            0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
            2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
            0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
            2.05
        };
        double[] qProp = {0.01, 0.5, 0.90, 0.95, 0.99};

        EmpiricalQuantiles eq = new EmpiricalQuantiles(x, qProp);
        double[] Q = eq.getQ();
        double[] XLo = eq.getXLo();
        double[] XHi = eq.getXHi();
        System.out.println(" Smaller "
            + "Empirical Larger");
        System.out.println(" Quantile Datum "
            + "Quantile Datum");
        for (int i = 0; i < qProp.length; i++) {
            System.out.println(df.format(qProp[i]) + "
                + df.format(XLo[i]) + "
                + df.format(Q[i])
                + " + df.format(XHi[i])");
        }
    }
}

Output

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Smaller</th>
<th>Empirical</th>
<th>Larger</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>0.50</td>
<td>1.43</td>
<td>1.47</td>
<td>1.51</td>
</tr>
<tr>
<td>0.90</td>
<td>3.00</td>
<td>3.08</td>
<td>3.09</td>
</tr>
<tr>
<td>0.95</td>
<td>3.37</td>
<td>3.99</td>
<td>4.75</td>
</tr>
<tr>
<td>0.99</td>
<td>4.75</td>
<td>4.75</td>
<td>4.75</td>
</tr>
</tbody>
</table>
EmpiricalQuantiles.ScaleFactorZeroException class

static public class com.imsl.stat.EmpiricalQuantiles.ScaleFactorZeroException extends com.imsl.IMSLException

The computations cannot continue because a scale factor is zero.

Constructor

EmpiricalQuantiles.ScaleFactorZeroException
public EmpiricalQuantiles.ScaleFactorZeroException(int index)

Description
Constructs a ScaleFactorZeroException.

Parameter

index – An int which specifies the index of the scale factor array at which scale factor is zero.

TableOneWay class

public class com.imsl.stat.TableOneWay implements Serializable, Cloneable

Class TableOneWay calculates a frequency table for a data array. A one-way frequency table can be used to visualize the shape of the data distribution and look for anomalies in the data. There are many approaches to constructing frequency tables. Four approaches are implemented in this class:

1. equal width class intervals based upon the smallest and largest observations,
2. equal width class intervals based upon a user provided minimum and maximum,
3. class intervals defined from user provided class midpoints, and
4. class intervals defined from user provided class boundaries.

The TableOneWay class implements the first two approaches by overloading the getFrequencyTable method. If getFrequencyTable() is used without input arguments, nIntervals of equal length are formed between the minimum and maximum values in the data. The frequency table returned from this
method contains tallies of the number of observations in each interval. The data minimum and maximum can be obtained using getMinimum and getMaximum.

Instead of using the minimum and maximum to define the boundaries of the smallest and largest classes, specified boundaries can be used by calling getFrequencyTable(lower_bound, upper_bound). This method tallies all data less than or equal to the lower_bound into the first class, and all data greater than or equal to upper_bound into the last class.

The third approach is implemented using the getFrequencyTableUsingClassmarks method. Equally spaced intervals can be defined using class marks. In this approach a double precision array of length nIntervals containing the class midpoints is passed to the getFrequencyTableUsingClassmarks(classmarks[]). The class marks, or midpoints, must be equally spaced.

Finally in those applications where unequal length intervals are preferred, the getFrequencyTableUsingCutpoints(cutpoints[]) method can be used. The double precision array cutpoints has length nIntervals-1 and contains the class boundaries listed in ascending order. The first cut point defines the first class which is used to tally all data less than or equal to the first cut point value. The last cut point defines the last class which is used to tally all data greater than or equal to the last cut point value.

Constructor

TableOneWay
public TableOneWay(double[] x, int nIntervals)

Description
Constructor for TableOneWay.

Parameters
x – A double array containing the observations.

nIntervals – An int scalar containing the number of intervals (bins).

Methods

getFrequencyTable
public double[] getFrequencyTable()

Description
Returns the one-way frequency table. nIntervals intervals of equal length are used with the initial interval starting with the minimum value in x and the last interval ending with the maximum value in x. The initial interval is closed on the left and the right. The remaining intervals are open on the left and the closed on the right. Each interval is of length (max-min)/nIntervals, where max is the maximum value of x and min is the minimum value of x.
Returns
double array containing the one-way frequency table.

**getFrequencyTable**
public double[] getFrequencyTable(double lower_bound, double upper_bound)

**Description**
Returns a one-way frequency table using known bounds. The one-way frequency table is computed using two semi-infinite intervals as the initial and last intervals. The initial interval is closed on the right and includes lower_bound as its right endpoint. The last interval is open on the left and includes all values greater than upper_bound. The remaining nIntervals - 2 intervals are each of length (upper_bound - lower_bound)/ (nIntervals - 2) and are open on the left and closed on the right. nIntervals must be greater than or equal to 3.

**Parameters**
- lower_bound – double specifies the right endpoint.
- upper_bound – double specifies the left endpoint.

**Returns**
double array containing the one-way frequency table.

**getFrequencyTableUsingClassmarks**
public double[] getFrequencyTableUsingClassmarks(double[] classmarks)

**Description**
Returns the one-way frequency table using class marks. Equally spaced class marks in ascending order must be provided in the array classmarks of length nIntervals. The class marks are the midpoints of each of the nIntervals. Each interval is assumed to have length classmarks[1] - classmarks[0]. nIntervals must be greater than or equal to 2.

**Parameter**
- classmarks – double array containing either the cutpoints or the class marks.

**Returns**
double array containing the one-way frequency table.

**getFrequencyTableUsingCutpoints**
public double[] getFrequencyTableUsingCutpoints(double[] cutpoints)

**Description**
Returns the one-way frequency table using cutpoints. The cutpoints are boundaries that must be provided in the array cutpoints of length nIntervals-1. This option allows unequal interval lengths. The initial interval is closed on the right and includes the initial cutpoint as its right endpoint. The last interval is open on the left and includes all values greater than the last cutpoint. The remaining nIntervals-2 intervals are open on the left and closed on the right. Argument nIntervals must be greater than or equal to 3 for this option.
**Parameter**

`cutpoints` – double array containing the cutpoints.

**Returns**

double array containing the one-way frequency table.

**getMaximum**

`public double getMaximum()`

**Description**

Returns maximum value of `x`.

**Returns**

a double containing the maximum data bound.

**getMinimum**

`public double getMinimum()`

**Description**

Returns the minimum value of `x`.

**Returns**

a double containing the minimum data bound.

**Example: TableOneWay**

The data for this example is from Hinkley (1977) and Belleman and Hoaglin (1981). The measurement (in inches) are for precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years.

The first test uses the default tally method which may be appropriate when the range of data is unknown. The minimum and maximum data bounds are displayed.

The second test computes the table using known bounds, where the lower bound is 0.5 and the upper bound is 4.5. The eight interior intervals each have width `(4.5 - 0.5)/(10-2) = 0.5`. The 10 intervals are `(-\infty, 0.5]`, `(0.5,1.0]`,...,`(4.0,4.5]`, and `(4.5,\infty]`.

In the third test, 10 class marks, 0.25, 0.75, 1.25,...,4.75, are input. This defines the class intervals `(0.0,0.5]`, `(0.5,1.0]`,...,`(4.0,4.5]`, `(4.5,5.0]`. Note that unlike the previous test, the initial and last intervals are the same length as the remaining intervals.

In the fourth test, cutpoints, 0.5,1.0, 1.5, 2.0, ...,4.5, are input to define the same 10 intervals as in the second test. Here again, the initial and last intervals are semi-infinite intervals.

```java
import com.imsl.stat.*;

public class TableOneWayEx1 {
 public static void main(String args[]) {
 int nIntervals = 10;
```
```java
double[] x = {
 0.77, 1.74, 0.81, 1.20, 1.96, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.9, 2.05
};
double[] cutPoints = {
 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5
};
double[] classMarks = {
 0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25, 4.75
};
TableOneWay fTbl = new TableOneWay(x, nIntervals);
//double[] table = new double[nIntervals];
table = fTbl.getFrequencyTable();
System.out.println("Example 1");
for (int i = 0; i < table.length; i++) {
 System.out.println(i + " + table[i]);
}
System.out.println("--------------------------");
System.out.println("Lower bounds= " + fTbl.getMinimum());
System.out.println("Upper bounds= " + fTbl.getMaximum());
System.out.println("--------------------------");
/* getFrequencyTable using a set of known bounds */
table = fTbl.getFrequencyTable(0.5, 4.5);
for (int i = 0; i < table.length; i++) {
 System.out.println(i + " + table[i])
}
System.out.println("---------------------");
table = fTbl.getFrequencyTableUsingClassmarks(classMarks);
for (int i = 0; i < table.length; i++) {
 System.out.println(i + " + table[i]);
}
System.out.println("--------------------");
table = fTbl.getFrequencyTableUsingCutpoints(cutPoints);
for (int i = 0; i < table.length; i++) {
 System.out.println(i + " + table[i]);
}
```

**Output**

```
Example 1
0 4.0
1 8.0
```

<p>| Basic Statistics | TableOneWay | 675 |</p>
<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**TableTwoWay class**

```java
public class com.imsl.stat.TableTwoWay implements Serializable, Cloneable
```

---

676 • TableTwoWay  JMSL
Class TableTwoWay calculates a two-dimensional frequency table for a data array based upon two variables.

A two-way frequency table can be used to visualize the shape of the bivariate distribution and look for anomalies in the data. There are many approaches to constructing two-way frequency tables. Four approaches are implemented in this class:

1. equal width class intervals based upon the smallest and largest observations,
2. equal width class intervals based upon a user provided minimum and maximum,
3. class intervals defined from user provided class midpoints, and
4. class intervals defined from user provided class boundaries.

The TableTwoWay class implements the first two approaches by overloading the getFrequencyTable method. If getFrequencyTable() is used without input arguments, xIntervals intervals of equal length are formed between the minimum and maximum values in x, and similarly, yIntervals intervals are formed for y. The frequency table returned from this method contains tallies of the number of observations in each interval. The data minimum and maximum can be obtained using getMinimumX, getMinimumY, getMaximumX and getMaximumY.

Instead of using the minimum and maximum to define the boundaries of the smallest and largest classes, specified boundaries can be used by calling getFrequencyTable(xLowerBound, xUpperBound, yLowerBound, yUpperBound). This method tallies all data less than or equal to the xLowerBound and yLowerBound into the first class, and all data greater than or equal to xUpperBound and yUpperBound into the last class.

The third approach is implemented using the getFrequencyTableUsingClassmarks method. Equally spaced intervals can be defined using class marks. In this approach two double precision arrays of length xIntervals and yIntervals containing the class midpoints for x and y respectively are passed to the getFrequencyTableUsingClassmarks(cx[], cy[]). The class marks, or midpoints, must be equally spaced.

Finally in those applications where unequal length intervals are preferred, the getFrequencyTableUsingCutpoints(cx[], cy[]) method can be used. The double precision arrays cx and cy with lengths xIntervals-1 and yIntervals-1 respectively contain the class boundaries listed in ascending order. The first cut point defines the first class which is used to tally all data less than or equal to the first cut point value. The last cut point defines the last class which is used to tally all data greater than or equal to the last cut point value.

### Constructor

**TableTwoWay**

```java
public TableTwoWay(double[] x, int xIntervals, double[] y, int yIntervals)
```

**Description**

Constructor for TableTwoWay.
Parameters

- **x** – A double array containing the data for the first variable.
- **xIntervals** – An int scalar containing the number of intervals (bins) for variable **x**.
- **y** – A double array containing the data for the second variable.
- **yIntervals** – An int scalar containing the number of intervals (bins) for variable **y**.

Methods

**getFrequencyTable**

```java
public double[][] getFrequencyTable()
```

**Description**

Returns the two-way frequency table. Intervals of equal length are used. Let \( \text{ xmin } \) and \( \text{ xmax } \) be the minimum and maximum values in \( x \), respectively, with similar meanings for \( \text{ ymin } \) and \( \text{ ymax } \). Then, the first row of the output table is the tally of observations with the \( x \) value less than or equal to \( \text{ xmin } + \frac{(\text{ xmax } - \text{ xmin})}{\text{xIntervals}} \), and the \( y \) value less than or equal to \( \text{ ymin } + \frac{(\text{ ymax } - \text{ ymin})}{\text{yIntervals}} \).

**Returns**

A two-dimensional double array containing the two-way frequency table.

**getFrequencyTable**

```java
public double[][] getFrequencyTable(double xLowerBound, double xUpperBound, double yLowerBound, double yUpperBound)
```

**Description**

Compute a two-way frequency table using intervals of equal length and user supplied upper and lower bounds, \( x\text{LowerBound} \), \( x\text{UpperBound} \), \( y\text{LowerBound} \), \( y\text{UpperBound} \). The first and last intervals for both variables are semi-infinite in length. \( x\text{Intervals} \) and \( y\text{Intervals} \) must be greater than or equal to 3.

**Parameters**

- **xLowerBound** – double specifies the right endpoint for \( x \).
- **xUpperBound** – double specifies the left endpoint for \( x \).
- **yLowerBound** – double specifies the right endpoint for \( y \).
- **yUpperBound** – double specifies the left endpoint for \( y \).

**Returns**

A two dimensional double array containing the two-way frequency table.

**getFrequencyTableUsingClassmarks**

```java
public double[][] getFrequencyTableUsingClassmarks(double[] cx, double[] cy)
```
Description
Returns the two-way frequency table using class marks. Class marks are the midpoints of xIntervals and yIntervals. Equally spaced class marks in ascending order must be provided in the arrays cx and cy. The class marks are the midpoints of each interval. Each interval is taken to have length cx[1] - cx[0] in the x direction and cy[1] - cy[0] in the y direction. The total number of elements in the output table may be less than the number of observations of input data. Arguments xIntervals and yIntervals must be greater than or equal to 2 for this option.

Parameters
- cx – double array containing the class marks for x.
- cy – double array containing the class marks for y.

Returns
A two dimensional double array containing the two-way frequency table.

getFrequencyTableUsingCutpoints
public double[][] getFrequencyTableUsingCutpoints(double[] cx, double[] cy)

Description
Returns the two-way frequency table using cutpoints. The cutpoints (boundaries) must be provided in the arrays cx and cy, of length (xIntervals-1) and (yIntervals-1) respectively. The first row of the output table is the tally of observations for which the x value is less than or equal to cx[0], and the y value is less than or equal to cy[0]. This option allows unequal interval lengths. Arguments cx and cy must be greater than or equal to 2.

Parameters
- cx – double array containing the cutpoints for x.
- cy – double array containing the cutpoints for y.

Returns
A two dimensional double array containing the two-way frequency table.

getMaximumX
public double getMaximumX()

Description
Returns the maximum value of x.

Returns
a double containing the maximum data bound for x.

getMaximumY
public double getMaximumY()

Description
Returns the maximum value of y.
Returns a double containing the maximum data bound for y.

getMinimumX
public double getMinimumX()

Description
Returns the minimum value of x.

Returns a double containing the minimum data bound for x.

getMinimumY
public double getMinimumY()

Description
Returns the minimum value of y.

Returns a double containing the minimum data bound for y.

Example: TableTwoWay
The data for x in this example is from Hinkley (1977) and Bellemann and Hoaglin (1981). The measurement (in inches) are for precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years. The data for y were created by adding small integers to the data in x.

The first test uses the default tally method which may be appropriate when the range of data is unknown. The minimum and maximum data bounds are displayed.

The second test computes the table using known bounds, where the x lower, x upper, y lower, y upper bounds are chosen so that the intervals will be 0 to 1, 1 to 2, and so on for x and 1 to 2, 2 to 3 and so on for y.

In the third test, the class boundaries are input as the same intervals as in the second test. The first element of cmx and cmy specify the first cutpoint between classes.

The fourth test uses the cutpoints tally option with cutpoints such that the intervals are specified as in the previous tests.

import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class TableTwoWayEx1 {
    public static void main(String args[]) {
        int nx = 5, ny = 6;
        double table[][];

        double[] x = {
            0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
double y[] = {
1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.9,
5.05
};

TableTwoWay fTbl = new TableTwoWay(x, nx, y, ny);

System.out.println("Example 1 ");
System.out.println("Use Min and Max for bounds");
new PrintMatrix("counts").print(table);
 System.out.println("--------------------------");
System.out.println("Lower xbounds= " + fTbl.getMinimumX());
System.out.println("Upper xbounds= " + fTbl.getMaximumX());
System.out.println("Lower ybounds= " + fTbl.getMinimumY());
System.out.println("Upper ybounds= " + fTbl.getMaximumY());
System.out.println("--------------------------");

double xlo = 1.0;
double xhi = 4.0;
double ylo = 2.0;
double yhi = 6.0;
System.out.println("Use Known bounds");
new PrintMatrix("counts").print(table);

double cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5};
double cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
new PrintMatrix("counts").print(table);

double cpx[] = {1, 2, 3, 4};
double cpy[] = {2, 3, 4, 5, 6};
new PrintMatrix("counts").print(table);

Output
Example 1
Use Min and Max for bounds
counts
0 1 2 3 4 5
0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1

--------------------------
Lower xbounds= 0.32
Upper xbounds= 4.75
Lower ybounds= 1.47
Upper ybounds= 6.37
--------------------------
Use Known bounds
counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Use Class Marks
counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Use Cutpoints
counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

---

**TableMultiWay class**

public class com.imsl.stat.TableMultiWay implements Serializable, Cloneable
Tallies observations into a multi-way frequency table.

The `TableMultiWay` class determines the distinct values in multivariate data and computes frequencies for the data. This class accepts the data in the matrix `x`, but performs computations only for the variables (columns) in the first `nKeys` columns of `x` or by the variables specified in `indkeys`. In general, the variables for which frequencies should be computed are discrete; they should take on a relatively small number of different values. Variables that are continuous can be grouped first. `TableMultiWay` can be used to group variables and determine the frequencies of groups.

When method `getBalancedTable` is called, the inner class `BalancedTable` fills the vector values with the unique values in the vector of the variables and tallies the number of unique values of each variable table. Each combination of one value from each variable forms a cell in a multi-way table. The frequencies of these cells are entered in a table so that the first variable cycles through its values exactly once, and the last variable cycles through its values most rapidly. Some cells cannot correspond to any observations in the data; in other words, “missing cells” are included in table and have a value of 0. The frequency table is returned by the `BalancedTable` method `getTable`.

When method `getUnbalancedTable` is called, an instance of inner class `UnbalancedTable` is created, the frequency of each cell is entered in the unbalanced table so that the first variable cycles through its values exactly once and the last variable cycles through its values most rapidly. `table` is returned by `UnbalancedTable` method `getTable`. All cells have a frequency of at least 1, i.e., there is no “missing cell.” The array `listCells`, returned by method `getListCells` can be considered “parallel” to `table` because row `i` of `listCells` is the set of `nKeys` values that describes the cell for which row `i` of `table` contains the corresponding frequency.

### Constructors

**TableMultiWay**

```java
public TableMultiWay(double[][] x, int nKeys)
```

**Description**
Constructor for `TableMultiWay`.

**Parameters**
- `x` – A `double` matrix containing the observations and variables.
- `nKeys` – `int` equal to the number of keys. The first `nKeys` variables (columns) of `x` are to be used as the sorting keys.

**TableMultiWay**

```java
public TableMultiWay(double[][] x, int[] indkeys)
```

**Description**
Constructor for `TableMultiWay`.

**Parameters**
- `x` – A `double` matrix containing the observations and variables.
- `indkeys` – `int` array containing the variables (columns) which are to be used as the sorting keys.
Methods

getBalancedTable
public TableMultiWay.BalancedTable getBalancedTable()

Description
Returns an object containing the balanced table.

Returns
a TableBalanced object.

getGroups
public int[] getGroups()

Description
Returns the number of observations (rows) in each group. The number of groups is the length of the
returned array. A group contains observations in x that are equal with respect to the method of
comparison. If n contains the returned integer array, then the first n[0] rows of the sorted x are group
number 1. The next n[1] rows of the sorted x are group number 2, etc. The last n[n.length - 1]
rows of the sorted x are group number n.length.

Returns
an int array containing the number of observations (row) in each group.

getUnbalancedTable
public TableMultiWay.UnbalancedTable getUnbalancedTable()

Description
Returns an object containing the unbalanced table.

Returns
a TableUnBalanced object.

setFrequencies
public void setFrequencies(double[] frequencies)

Description
Sets the frequencies for each observation in x. The length of the input must be the same as the number
of observations or number of rows in x.

Parameter
    frequencies – a double array containing the frequency for each observation in x. Default
    frequencies[] = 1.
Example 1: TableMultiWay

The same data as used in SortEx2 is used in this example. It is a 10 x 3 matrix using Columns 0 and 1 as keys. There are two missing values (NaNs) in the keys. NaN is displayed as a ?. Table MultiWay determines the number of groups of different observations.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class TableMultiWayEx1 {

 public static void main(String args[]) {
 int nKeys = 2;
 double x[][] = {
 {1.0, 1.0, 1.0},
 {2.0, 1.0, 2.0},
 {1.0, 1.0, 3.0},
 {1.0, 1.0, 4.0},
 {2.0, 2.0, 5.0},
 {1.0, 2.0, 6.0},
 {1.0, 2.0, 7.0},
 {1.0, 1.0, 8.0},
 {2.0, 2.0, 9.0},
 {1.0, 1.0, 9.0}
 };
 x[4][1] = Double.NaN;
 x[6][0] = Double.NaN;

 PrintMatrix pm = new PrintMatrix("The Input Array");
 PrintMatrixFormat mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 // Print the array
 pm.print(mf, x);
 System.out.println();
 TableMultiWay tbl = new TableMultiWay(x, nKeys);
 int ngroups[] = tbl.getGroups();
 System.out.println(" ngroups");
 for (int i = 0; i < ngroups.length; i++) {
 System.out.println(ngroups[i] + " ");
 }
 System.out.println();
 }
}
```

Output

The Input Array

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Basic Statistics

TableMultiWay • 685
Example 2: TableMultiWay

The table of frequencies for a data matrix of size 30 x 2 is output.

```java
import com.imsl.stat.*;

public class TableMultiWayEx2 {

 public static void main(String args[]) {
 int indkeys[] = {0, 1};
 double x[][] = {
 {0.5, 1.5}, {1.5, 3.5}, {0.5, 3.5}, {1.5, 2.5}, {1.5, 3.5},
 {1.5, 4.5}, {0.5, 1.5}, {1.5, 3.5}, {3.5, 6.5}, {2.5, 3.5},
 {2.5, 4.5}, {3.5, 6.5}, {1.5, 2.5}, {2.5, 4.5}, {0.5, 3.5},
 {1.5, 2.5}, {1.5, 3.5}, {0.5, 3.5}, {0.5, 1.5}, {0.5, 2.5},
 {2.5, 5.5}, {1.5, 2.5}, {1.5, 3.5}, {1.5, 4.5}, {4.5, 5.5},
 {2.5, 4.5}, {0.5, 3.5}, {1.5, 2.5}, {0.5, 2.5}, {2.5, 5.5}
 };
 TableMultiWay tbl = new TableMultiWay(x, indkeys);
 int nvalues[] = tbl.getBalancedTable().getNvalues();
 double values[] = tbl.getBalancedTable().getValues();
 System.out.println(" row values");
 for (int i = 0; i < nvalues[0]; i++) {
 System.out.print(values[i] + " ");
 }
 System.out.println;
 System.out.println(" column values");
 for (int i = 0; i < nvalues[1]; i++) {
 System.out.print(values[i + nvalues[0]] + " ");
 }
 double table[] = tbl.getBalancedTable().getTable();
 System.out.println(" Table");
 }
}
```
System.out.print(" ");
for (int i = 0; i < nvalues[1]; i++) {
    System.out.print(values[i + nvalues[0]] + " ");
}
System.out.println(" ");
for (int i = 0; i < nvalues[0]; i++) {
    System.out.print(values[i] + " ");
    for (int j = 0; j < nvalues[1]; j++) {
        System.out.print(table[j + (nvalues[1] * i)] + " ");
    }
}
System.out.println(" ");

Output

row values
0.5 1.5 2.5 3.5 4.5

column values
1.5 2.5 3.5 4.5 5.5 6.5

Table
1.5 2.5 3.5 4.5 5.5 6.5
0.5 3.0 2.0 4.0 0.0 0.0 0.0
1.5 0.0 5.0 5.0 2.0 0.0 0.0
2.5 0.0 0.0 1.0 3.0 2.0 0.0
3.5 0.0 0.0 0.0 0.0 0.0 2.0
4.5 0.0 0.0 0.0 0.0 1.0 0.0

Example 3: TableMultiWay

The unbalanced table of frequencies for a data matrix of size 4 x 3 is output.

import com.imsl.stat.*;
import com.imsl.math.*;

public class TableMultiWayEx3 {

    public static void main(String args[]) {
        int indkeys[] = {0, 1};
        double x[][] = {
            {2.0, 5.0, 1.0}, {1.0, 5.0, 2.0},
            {1.0, 6.0, 3.0}, {2.0, 6.0, 4.0}
        };
        double frq[] = {1.0, 2.0, 3.0, 4.0};

        TableMultiWay tbl = new TableMultiWay(x, indkeys);
        tbl.setFrequencies(frq);
        double listCells[] = tbl.getUnbalancedTable().getListCells();
    }
}
double table[] = tbl.getUnbalancedTable().getTable();

PrintMatrix pm = new PrintMatrix("List Cells");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
// Print the array
pm.print(mf, listCells);
System.out.println();

pm = new PrintMatrix("Unbalanced Table");
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the array
pm.print(mf, table);
System.out.println();

} }

Output

List Cells

1
5
1
6
2
5
2
6

Unbalanced Table

2
3
1
4

TableMultiWay.BalancedTable class

The MultiWay.BalancedTable class tallies the number of unique values of each variable.
Methods

getNvalues
public int[] getNvalues()

Description
Returns an array of length nKeys containing in its i-th element (i=0,1,...nKeys-1), the number of levels or categories of the i-th classification variable (column).

Returns
an int array containing the number of levels or for each variable (column) in x.

getTable
public double[] getTable()

Description
Returns an array containing the frequencies for each variable. The array is of length nValues[0] x nValues[1] x ... x nValues[nKeys] containing the frequencies in the cells of the table to be fit, where nValues contains the result from getNValues.

Empty cells are included in table, and each element of table is nonnegative. The cells of table are sequenced so that the first variable cycles through its nValues[0] categories one time, the second variable cycles through its nValues[1] categories nValues[0] times, the third variable cycles through its nValues[2] categories nValues[0] x nValues[1] times, etc., up to the nKeys-th variable, which cycles through its nValues[nKeys - 1] categories nValues[0] x nValues[1] x ... x nValues[nKeys - 2] times.

Returns
a double array containing the frequencies for each variable in x.

getValues
public double[] getValues()

Description
Returns the values of the classification variables. getValues returns an array of length nValues[0] + nValues[1] + ... + nValues[nKeys - 1] The first nValues[0] elements contain the values for the first classification variable. The next nValues[1] contain the values for the second variable. The last nValues[nKeys - 1] positions contain the values for the last classification variable, where nValues contains the result from getNValues.

Returns
a double array containing the values of the classification variables.
TableMultiWay.UnbalancedTable class

public class com.imsl.stat.TableMultiWay.UnbalancedTable
Tallies the frequency of each cell in x.

Methods

gListCells
public double[] getListCells()

Description
Returns for each row, a list of the levels of nKeys corresponding classification variables that describe a cell.

Returns
double array containing the list of levels of nKeys corresponding classification variables that describe a cell.

getNCells
public int getNCells()

Description
Returns the number of non-empty cells.

Returns
an int containing the number of non-empty cells.

getTable
public double[] getTable()

Description
Returns the frequency for each cell.

Returns
double array containing the frequency for each cell.
Chapter 14: Regression

Types

- class RegressorsForGLM ................................................................. 698
- class LinearRegression ................................................................. 708
- class NonlinearRegression ............................................................. 720
- class UserBasisRegression ............................................................. 736
- interface RegressionBasis ............................................................. 741
- class SelectionRegression ............................................................ 741
- class StepwiseRegression ............................................................. 756

Usage Notes

The regression models in this chapter include the simple and multiple linear regression models, the multivariate general linear model, and the nonlinear regression model. Functions for fitting regression models, computing summary statistics from a fitted regression, computing diagnostics, and computing confidence intervals for individual cases are provided. This chapter also provides methods for building a model from a set of candidate variables.

Simple and Multiple Linear Regression

The simple linear regression model is

\[ y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad i = 1, 2, \ldots, n \]

where the observed values of the \( y_i \)'s constitute the responses or values of the dependent variable, the \( x_i \)'s are the settings of the independent (explanatory) variable, \( \beta_0 \) and \( \beta_1 \) are the intercept and slope parameters (respectively) and the \( \epsilon_i \)'s are independently distributed normal errors, each with mean 0 and variance \( \sigma^2 \).

The multiple linear regression model is

\[ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \epsilon_i \quad i = 1, 2, \ldots, n \]

where the observed values of the \( y_i \)'s constitute the responses or values of the dependent variable; the
\( x_1 \)'s, \( x_2 \)'s, \ldots, \( x_k \)'s are the settings of the \( k \) independent (explanatory) variables; \( \beta_0, \beta_1, \ldots, \beta_k \) are the regression coefficients; and the \( \epsilon_i \)'s are independently distributed normal errors, each with mean 0 and variance \( \sigma^2 \).

The class \texttt{LinearRegression} fits both the simple and multiple linear regression models using a fast Given’s transformation and includes an option for excluding the intercept \( \beta_0 \). The responses are input in array \( y \), and the independent variables are input in array \( x \), where the individual cases correspond to the rows and the variables correspond to the columns.

After the model has been fitted using the \texttt{LinearRegression} class, member “get” methods such as \texttt{getCoefficientTTests()} can be used to retrieve summary statistics. Predicted values, confidence intervals, and case statistics for the fitted model can be obtained from inner class \texttt{LinearRegression.CaseStatistics}.

### No Intercept Model

Several functions provide the option for excluding the intercept from a model. In most practical applications, the intercept should be included in the model. For functions that use the sums of squares and crossproducts matrix as input, the no-intercept case can be handled by using the raw sums of squares and crossproducts matrix as input in place of the corrected sums of squares and crossproducts. The raw sums of squares and crossproducts matrix can be computed as \((x_1, x_2, \ldots, x_k, y)^T (x_1, x_2, \ldots, x_k, y)\).

### Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification variables. Typically, multiple regression models use continuous variables, whereas analysis of variance models use classification variables. Although the notation used to specify analysis of variance models and multiple regression models may look quite different, the models are essentially the same. The term general linear model emphasizes that a common notational scheme is used for specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect is referred to in this text as a single variable or a product of variables. (The term effect is often used in a narrower sense, referring only to a single regression coefficient.) In particular, an effect is composed of one of the following:

1. a single continuous variable
2. a single classification variable
3. several different classification variables
4. several continuous variables, some of which may be the same
5. continuous variables, some of which may be the same, and classification variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the second type appear as main effects in analysis of variance models. Effects of the third type appear as interactions in analysis of variance models. Effects of the fourth type appear in polynomial models and response surface models as powers and crossproducts of some basic variables. Effects of the fifth type appear in one-way analysis of
covariance models as regression coefficients that indicate lack of parallelism of a regression function across the groups.

The analysis of a general linear model occurs in two stages. The first stage calls class `RegressorsForGLM` to specify all regressors except the intercept. The second stage uses `LinearRegression`, at which point the model will be specified as either having or not having an intercept.

Suppose the data matrix has as its first four columns two continuous variables in Columns 0 and 1 and two classification variables in Columns 2 and 3. The data might appear as follows:

<table>
<thead>
<tr>
<th>Column 0</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.23</td>
<td>1.23</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>12.12</td>
<td>2.34</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>12.34</td>
<td>2.34</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4.34</td>
<td>2.21</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>5.67</td>
<td>4.31</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4.12</td>
<td>5.34</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4.89</td>
<td>9.31</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>9.12</td>
<td>3.71</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Each distinct value of a classification variable determines a level. The classification variable in Column 2 has two levels. The classification variable in Column 3 has three levels. (Integer values are recommended, but not required, for values of the classification variables. The values of the classification variables corresponding to the same level must be identical.) Some examples of regression functions and their specifications are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Class Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_0 + \beta_1 x_1$</td>
<td>true</td>
<td>{}</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x_1 + \beta_2 x_1^2$</td>
<td>true</td>
<td>{}</td>
</tr>
<tr>
<td>$\mu + \alpha_i$</td>
<td>true</td>
<td>{2}</td>
</tr>
<tr>
<td>$\mu + \alpha_i + \beta_j + \gamma_{ij}$</td>
<td>true</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>$\mu_{ij}$</td>
<td>false</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$</td>
<td>true</td>
<td>{}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_0 + \beta_1 x_1$</td>
<td>{}</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x_1 + \beta_2 x_1^2$</td>
<td>{0}</td>
</tr>
<tr>
<td>$\mu + \alpha_i$</td>
<td>{}</td>
</tr>
<tr>
<td>$\mu + \alpha_i + \beta_j + \gamma_{ij}$</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>$\mu_{ij}$</td>
<td>{}</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$</td>
<td>{}</td>
</tr>
<tr>
<td>$\mu + \alpha_i + \beta_j + \gamma_{ij}$</td>
<td>{2, 0}</td>
</tr>
</tbody>
</table>

### Variable Selection

Variable selection can be performed by `SelectionRegression`, which computes all best-subset regression.
regressions, or by StepwiseRegression, which computes stepwise regression. The method used by SelectionRegression is generally preferred over that used by StepwiseRegression because SelectionRegression implicitly examines all possible models in the search for a model that optimizes some criterion while stepwise does not examine all possible models. However, the computer time and memory requirements for SelectionRegression can be much greater than that for StepwiseRegression when the number of candidate variables is large.

**Nonlinear Regression Model**

The nonlinear regression model is

\[ y_i = f(x_i; \theta) + \varepsilon_i \quad i = 1, 2, \ldots, n \]

where the observed values of the \( y_i \)'s constitute the responses or values of the dependent variable, the \( x_i \)'s are the known vectors of values of the independent (explanatory) variables, \( f \) is a known function of an unknown regression parameter vector \( \theta \), and the \( \varepsilon_i \)'s are independently distributed normal errors each with mean 0 and variance \( \sigma^2 \).

Class NonlinearRegression performs the least-squares fit to the data for this model.

**Weighted Least Squares**

Classes throughout the chapter generally allow weights to be assigned to the observations. A weight argument is used throughout to specify the weighting for particular rows of \( X \).

Computations that relate to statistical inference—e.g., \( t \) tests, \( F \) tests, and confidence intervals—are based on the multiple regression model except that the variance of \( \varepsilon_i \) is assumed to equal \( \sigma^2 \) times the reciprocal of the corresponding weight.

If a single row of the data matrix corresponds to \( n_i \) observations, the vector frequencies can be used to specify the frequency for each row of \( X \). Degrees of freedom for error are affected by frequencies but are unaffected by weights.

**Summary Statistics**

Methods LinearRegression.getANOVA(), LinearRegression.getCoefficientTTests(), NonlinearRegression.getR() and StepwiseRegression.getCoefficientVIF() can be used to compute statistics related to a regression for each of the dependent variables fitted by the indicated regression. The summary statistics include the model analysis of variance table, sequential sums of squares and \( F \)-statistics, coefficient estimates, estimated standard errors, \( t \)-statistics, variance inflation factors and estimated variance-covariance matrix of the estimated regression coefficients.

The summary statistics are computed under the model \( y = X \hat{\beta} + \varepsilon \), where \( y \) is the \( n \times 1 \) vector of responses, \( X \) is the \( n \times p \) matrix of regressors with rank (\( X \)) = \( r \), is the \( p \times 1 \) vector of regression coefficients, and \( \varepsilon \) is the \( n \times 1 \) vector of errors whose elements are independently normally distributed with mean 0 and variance \( \sigma^2/w_i \).

Given the results of a weighted least-squares fit of this model (with the \( w_i \)'s as the weights), most of the computed summary statistics are output in the following variables:

ANOVA Class
The `getANOVA()` methods in several of the regression classes return an `ANOVA` object. Summary statistics can be retrieved via specific "get" methods or the `ANOVA.getArray()` method. This returns a one-dimensional array. In `StepwiseRegression`, `ANOVA.getArray()` returns `Double.NaN` for the last two elements of the array because they cannot be computed from the input. The array contains statistics related to the analysis of variance. The sources of variation examined are the regression, error, and total. The first 10 elements of the `ANOVA.getArray()` and the notation frequently used for these is described in the following table (here, `AOV = ANOVA.getArray()`):

<table>
<thead>
<tr>
<th>Variation Src.</th>
<th>Deg. of Freedom</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
</table>

If the model has an intercept (default), the total sum of squares is the sum of squares of the deviations of $y_i$ from its (weighted) mean $\bar{y}$—the so-called corrected total sum of squares, denoted by the following:

$$SST = \sum_{i=1}^{n} w_i (y_i - \bar{y})^2$$

If the model does not have an intercept (hasIntercept = false), the total sum of squares is the sum of squares of $y_i$—the so-called uncorrected total sum of squares, denoted by the following:

$$SST = \sum_{i=1}^{n} w_i y_i^2$$

The error sum of squares is given as follows:

$$SSE = \sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2$$

The error degrees of freedom is defined by $DFE = n - r$.

The estimate of $\sigma^2$ is given by $s^2 = SSE/DFE$, which is the error mean square.

The computed $F$ statistic for the null hypothesis, $H_0 : \beta_1 = \beta_2 = \ldots = \beta_k = 0$, versus the alternative that at least one coefficient is nonzero is given by $F = s^2 = MSR/s^2$. The p-value associated with the test is the probability of an $F$ larger than that computed under the assumption of the model and the null hypothesis. A small p-value (less than 0.05) is customarily used to indicate there is sufficient evidence from the data to reject the null hypothesis.

The remaining five elements in `AOV` frequently are displayed together with the actual analysis of variance table. The quantities $R$-squared ($R^2 = AOV[10]$) and adjusted $R$-squared

$$R^2_a = (AOV[11])$$
are expressed as a percentage and are defined as follows:

\[ R^2 = 100 \left( \frac{SSR}{SST} \right) = 100 \left( 1 - \frac{SSE}{SST} \right) \]

\[ R_a^2 = 100 \max \left\{ 0, 1 - \frac{s^2}{SST/DFT} \right\} \]

The square root of \( s^2 \) is frequently referred to as the estimated standard deviation of the model error.

The overall mean of the responses \( \bar{y} \) is output in AOV[13].

The coefficient of variation \( (CV = AOV[14]) \) is expressed as a percentage and defined by \( CV = 100s/\bar{y} \).

**LinearRegression.CoefficientTTests**

A nested class within the LinearRegression and StepwiseRegression classes. The statistics (estimated standard error, \( t \) statistic and \( p \)-value) associated with each coefficient can be retrieved via associated “get” methods.

**getR()**

Estimated variance-covariance matrix of the estimated regression coefficients.

**Diagnostics for Individual Cases**

Diagnostics for individual cases (observations) are computed by the LinearRegression.CaseStatistics class for linear regression.

Statistics computed include predicted values, confidence intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted regression.

The diagnostics are computed under the model \( y = X\beta + \epsilon \), where \( y \) is the \( n \times 1 \) vector of responses, \( X \) is the \( n \times p \) matrix of regressors with \( \text{rank}(X) = r \), \( \beta \) is the \( p \times 1 \) vector of regression coefficients, and \( \epsilon \) is the \( n \times 1 \) vector of errors whose elements are independently normally distributed with mean 0 and variance \( \phi^2/w_i \).

Given the results of a weighted least-squares fit of this model (with the \( w_i \)'s as the weights), the following five diagnostics are computed:

1. leverage
2. standardized residual
3. jackknife residual
4. Cook’s distance
5. DFFITS

The definition of these terms is given in the discussion that follows: Let \( x_i \) be a column vector containing the elements of the \( i \)-th row of \( X \). A case can be unusual either because of \( x_i \) or because of the response \( y_i \). The leverage \( h_i \) is a measure of uniqueness of the \( x_i \). The leverage is defined by
\[ h_i = [x_i^T (X^T W X)^{-1} x_i] w_i \]

where \( W = \text{diag}(w_1, w_2, \ldots, w_n) \) and \((X^T W X)^{-1}\) denotes a generalized inverse of \(X^T W X\). The average value of the \(h_i\)'s is \(r/n\). Regression functions declare \(x_i\) unusual if \(h_i > 2r/n\). Hoaglin and Welsch (1978) call a data point highly influential (i.e., a leverage point) when this occurs.

Let \(e_i\) denote the residual

\[ y_i - \hat{y}_i \]

for the \(i\)-th case. The estimated variance of \(e_i\) is \((1 - h_i)s^2 w_i\), where \(s^2\) is the residual mean square from the fitted regression. The \(i\)-th standard residual (also called the internally studentized residual) is by definition

\[ r_i = e_i \sqrt{\frac{w_i}{s^2 (1 - h_i)}} \]

and \(r_i\) follows an approximate standard normal distribution in large samples.

The \(i\)-th jackknife residual or deleted residual involves the difference between \(y_i\) and its predicted value, based on the data set in which the \(i\)-th case is deleted. This difference equals \(e_i / (1 - h_i)\). The jackknife residual is obtained by standardizing this difference. The residual mean square for the regression in which the \(i\)-th case is deleted is as follows:

\[ s_i^2 = \frac{(n - r)s^2 - w_i e_i^2 / (1 - h_i)}{n - r - 1} \]

The jackknife residual is defined as

\[ t_i = e_i \sqrt{\frac{w_i}{s_i^2 (1 - h_i)}} \]

and \(t_i\) follows a \(t_i\) distribution with \(n - r \times 1\) degrees of freedom.

Cook’s distance for the \(i\)-th case is a measure of how much an individual case affects the estimated regression coefficients. It is given as follows:

\[ D_i = \frac{w_i h_i e_i^2}{rs^2 (1 - h_i)^2} \]

Weisberg (1985) states that if \(D_i\) exceeds the 50-th percentile of the \(F(r, n - r)\) distribution, it should be considered large. (This value is about 1. This statistic does not have an \(F\) distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the \(i\)-th case, DFFITS is computed by the formula below.
Hoaglin and Welsch (1978) suggest that \( DFFITS \) greater than

\[
2 \sqrt{r/n}
\]

is large.

**Transformations**

Transformations of the independent variables are sometimes useful in order to satisfy the regression model. The inclusion of squares and crossproducts of the variables

\[
(x_1, x_2, x_1^2, x_2^2, x_1x_2)
\]

is often needed. Logarithms of the independent variables are used also. (See Draper and Smith 1981, pp. 218-222; Box and Tidwell 1962; Atkinson 1985, pp. 177-180; Cook and Weisberg 1982, pp. 78-86.)

When the responses are described by a nonlinear function of the parameters, a transformation of the model equation often can be selected so that the transformed model is linear in the regression parameters. For example, by taking natural logarithms on both sides of the equation, the exponential model

\[
y = e^{\beta_0 + \beta_1 x_1}
\]

can be transformed to a model that satisfies the linear regression model provided the \( \epsilon_i \)'s have a log-normal distribution (Draper and Smith, pp. 222-225).

When the responses are nonnormal and their distribution is known, a transformation of the responses can often be selected so that the transformed responses closely satisfy the regression model, assumptions.

The square-root transformation for counts with a Poisson distribution and the arc-sine transformation for binomial proportions are common examples (Snedecor and Cochran 1967, pp. 325-330; Draper and Smith, pp. 237-239).

**Missing Values**

\( NaN \) (Not a Number) is the missing value code used by the regression functions. Use field `Double.NaN` to retrieve `NaN`. Any element of the data matrix that is missing must be set to `Double.NaN`. In fitting regression models, any observation containing `NaN` for the independent, dependent, weight, or frequency variables is omitted from the computation of the regression parameters.

---

**RegressorsForGLM class**

```java
public class com.imsl.stat.RegressorsForGLM implements Serializable
```
Generates regressors for a general linear model.

Class RegressorsForGLM generates regressors for a general linear model from a data matrix. The data matrix can contain classification variables as well as continuous variables. Regressors for effects composed solely of continuous variables are generated as powers and crossproducts. Consider a data matrix containing continuous variables as Columns 3 and 4. The effect indices (3, 3) generate a regressor whose i-th value is the square of the i-th value in Column 3. The effect indices (3, 4) generates a regressor whose i-th value is the product of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification variable are generated using indicator variables. Let the classification variable A take on values a_1, a_2, ..., a_n. From this classification variable, RegressorsForGLM creates n indicator variables. For k = 1, 2, ..., n, we have

\[ I_k = \begin{cases} 
1 & \text{if } A = a_k \\
0 & \text{otherwise} 
\end{cases} \]

For each classification variable, another set of variables is created from the indicator variables. These new variables are called dummy variables. Dummy variables are generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables.
2. The dummies are the first n − 1 indicator variables.
3. The n − 1 dummies are defined in terms of the indicator variables so that for balanced data, the usual summation restrictions are imposed on the regression coefficients.

In particular, for dummy method ALL, the dummy variables are A_k = I_k (k = 1, 2, ..., n). For dummy method LEAVE_OUT_LAST, the dummy variables are A_k = I_k (k = 1, 2, ..., n − 1). For dummy method SUM_TO_ZERO, the dummy variables are A_k = I_k − I_n (k = 1, 2, ..., n − 1). The regressors generated for an effect composed of a single-classification variable are the associated dummy variables.

Let m_j be the number of dummies generated for the j-th classification variable. Suppose there are two classification variables A and B with dummies

\[ A_1, A_2, ..., A_{m_1} \]

and

\[ B_1, B_2, ..., B_{m_2} \]

The regressors generated for an effect composed of two classification variables A and B are

\[ A \otimes B = (A_1, A_2, ..., A_{m_1}) \otimes (B_1, B_2, ..., B_{m_2}) \]
\[ = (A_1B_1, A_1B_2, ..., A_{m_1}B_1, A_{m_1}B_2, ..., A_1B_2, A_1B_3, ..., A_{m_1}B_3, ..., A_1B_{m_2}, A_1B_{m_2}, ..., A_{m_1}B_{m_2}) \]

More generally, the regressors generated for an effect composed of several classification variables and several continuous variables are given by the Kronecker products of variables, where the order of the variables is specified in setEffects. Consider a data matrix containing classification variables in Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four columns A, B, X_1, and X_2. The regressors generated by the effect indices (0, 1, 2, 3) are A \otimes B \otimes X_1X_2.
Remarks

Let the data matrix \( x = (A, B, X_1) \), where \( A \) and \( B \) are classification variables and \( X_1 \) is a continuous variable. The model containing the effects \( A, B, AB, X_1, AX_1, BX_1, \) and \( ABX_1 \) is specified by setting \( nClassVariables=2 \) in the constructor and calling \( \text{setEffects} \)(effects), with

\[
\text{int effects[][]} = \{ \{0\}, \{1\}, \{0, 1\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\} \};
\]

For this model, suppose that variable \( A \) has two levels, \( A_1 \) and \( A_2 \), and that variable \( B \) has three levels, \( B_1, B_2, \) and \( B_3 \). For each dummy method option, the regressors in their order of appearance in regressors are given below.

<table>
<thead>
<tr>
<th>dummyMethod</th>
<th>Regressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>( A_1, \ A_2, \ B_1, \ B_2, \ B_3, \ A_1B_1, A_1B_2, \ A_1B_3, A_2B_1, A_2B_2, A_2B_3, X_1, A_1X_1, A_2X_1, B_1X_1, B_2X_1, B_3X_1, A_1B_1X_1, A_1B_2X_1, A_1B_3X_1, A_2B_1X_1, A_2B_2X_1, A_2B_3X_1 )</td>
</tr>
<tr>
<td>LEAVE_OUT_LAST</td>
<td>( A_1, B_1, B_2, A_1B_1, A_1B_2, X_1, A_1X_1, B_2X_1, A_1B_1X_1, A_1B_2X_1, A_1B_3X_1 )</td>
</tr>
<tr>
<td>SUM_TO.ZERO</td>
<td>( A_1 - A_2, B_1 - B_2, B_2 - B_3, (A_1 - A_2)(B_1 - B_2), (A_1 - A_2)(B_2 - B_3), X_1, (A_1 - A_2)X_1, (B_1 - B_3)X_1, (B_2 - B_3)X_1, (A_1 - A_2)(B_1 - B_2)X_1, (A_1 - A_2)(B_2 - B_3)X_1 )</td>
</tr>
</tbody>
</table>

Within a group of regressors corresponding to an interaction effect, the indicator variables composing the regressors vary most rapidly for the last classification variable, next most rapidly for the first to last classification variable, etc.

By default, \( \text{RegressorsForGLM} \) internally generates values for effects which correspond to a first order model with \( nEffects = nContinuousVariables + nClassVariables \), where \( nContinuousVariables \) is the number of continuous variables and \( nClassVariables \) is the number of classification variables. The variables then are used to create the regressor variables. The effects are ordered such that the first effect corresponds to the first column of \( x \), the second effect corresponds to the second column of \( x \), etc. A second order model corresponding to the columns (variables) of \( x \) is generated if \( \text{setModelOrder}(2) \) is used.

The effects array for a first or second order model can be obtained by first using \( \text{setModelOrder} \) followed by \( \text{getEffects} \). This array can then be modified and used as the argument to \( \text{setEffects} \). This may be an easier way of setting the effects for an almost linear or quadratic model than creating the effects array from scratch.

There are

\[
nEffects = nClassVariables + nContinuousVariables + \frac{nVar(nVar - 1)}{2}
\]
effects, where \( nVar = nClassVariables + nContinuousVariables \). The first \( nVar \) effects correspond to the columns of \( x \), such that the first effect corresponds to the first column of \( x \), the second effect corresponds to the second column of \( x \), ..., the \( nVar \)-th effect corresponds to the \( nVar \)-th column of \( x \) (i.e. \( x[nVar-1] \)). The next \( nContinuousVariables \) effects correspond to squares of the continuous variables. The last \( nVar(nVar - 1)/2 \) effects correspond to the two-variable interactions.
• Let the data matrix \( x = (A, B, X_1) \), where \( A \) and \( B \) are classification variables and \( X_1 \) is a continuous variable. The effects generated and order of appearance is
\[
A, B, X_1, X_1^2, AB, AX_1, BX_1
\]

• Let the data matrix \( x = (A, X_1, X_2) \), where \( A \) is a classification variable and \( X_1 \) and \( X_2 \) are continuous variables. The effects generated and order of appearance is
\[
A, X_1, X_2, X_1^2, X_2^2, AX_1, AX_2, X_1X_2
\]

• Let the data matrix \( x = (X_1, A, X_2) \), where \( A \) is a classification variable and \( X_1 \) and \( X_2 \) are continuous variables. The effects generated and order of appearance is
\[
X_1, A, X_2, X_1^2, X_2^2, X_1A, X_1X_2, AX_2
\]

Higher-order and more complicated models can be specified using \texttt{setEffects}.

### Fields

**ALL**

```
static final public int ALL
```

The \( n \) indicator variables are the dummy variables.

**LEAVE\_OUT\_LAST**

```
static final public int LEAVE_OUT_LAST
```

The dummies are the first \( n-1 \) indicator variables.

**SUM\_TO\_ZERO**

```
static final public int SUM_TO_ZERO
```

The \( n - 1 \) dummies are defined in terms of the indicator variables so that for balanced data, the usual summation restrictions are imposed on the regression coefficients.

### Constructors

**RegressorsForGLM**

```
public RegressorsForGLM(double[][] x, int nClassVariables)
```

**Description**

Constructor where the class columns are the first columns.
Parameters

\( x \) – is an \( n_{\text{Observations}} \times (n_{\text{ClassVariables}} + n_{\text{ContinuousVariables}}) \) array containing the data, where \( n_{\text{Observations}} \) is the number of observations. The columns must be ordered such that the first \( n_{\text{ClassVariables}} \) columns contain the class variables and the next \( n_{\text{ContinuousVariables}} \) columns contain the continuous variables.

\( n_{\text{ClassVariables}} \) – is number of class variables. The number of continuous variables is assumed to be the number of columns in \( x \)-\( n_{\text{ClassVariables}} \).

RegressorsForGLM

public RegressorsForGLM(double[][] \( x \), int[] classColumns)

Description

Constructor with an explicit set of class column indicies.

Parameters

\( x \) – is an \( n_{\text{Observations}} \times (n_{\text{ClassVariables}} + n_{\text{ContinuousVariables}}) \) array containing the data. The columns containing the class variables are specified by \texttt{classColumns}.

\( \texttt{classColumns} \) – is an array containing the columns indices, in \( x \), of the class variables.

Methods

getDummyMethod

public int getDummyMethod()

Description

Returns the dummy method.

Returns

One of \texttt{ALL} (the default), \texttt{LEAVE\_OUT\_LAST} or \texttt{SUM\_TO\_ZERO}.

getEffects

public int[][] getEffects()

Description

Returns the effects.

Returns

a jagged array containing the effects. The number of rows in the matrix is the number of effects. For each row, the values are the 0-based column numbers of \( x \).

getEffectsColumns

public int[][] getEffectsColumns()

Description

Returns a mapping of effects to regressor columns.
Returns
A jagged int array. The number of rows is equal to the number of effects. Each row contains the column numbers of the regressor matrix into which the corresponding effect is mapped.

**getNumberOfMissingRows**
public int getNumberOfMissingRows()

Description
Returns the number of rows in the regressors matrix containing NaN (not a number). A row of the regressors matrix contains NaN for a regressor when any of the variables involved in generation of the regressor equals NaN or if a value of one of the classification variables in the model is not given by effects.

Returns
The number of rows in the data matrix having missing data.

**getNumberOfRegressors**
public int getNumberOfRegressors()

Description
Returns the number regressors.

Returns
The number of regressors. This is the number of columns in the regressor matrix.

**getRegressors**
public double[][] getRegressors()

Description
Returns the regressor array.

Returns
An array of size number of observations by number of regressors.

**setDummyMethod**
public void setDummyMethod(int dummyMethod)

Description
Sets the dummy method.

Parameter
dummyMethod – must be one of ALL (the default), LEAVE_OUT_LAST or SUM_TO_ZERO.

**setEffects**
public void setEffects(int[][] effects)

Description
Set the effects. This overrides any previously set model order.
Parameter

-effects - is a jagged array. The number of rows in the matrix is the number of effects. For each row, the values are the 0-based column numbers of x.

```
setModelOrder
public void setModelOrder(int modelOrder)
```

Description

Sets the order of the model. Model order can be specified as 1 or 2. Use setEffects to specify more complicated models. This overrides previously set effects.

Parameter

-modelOrder - is one or two. The default effects are equivalent to model equal to one.

Example 1

In the following example, there are two classification variables, A and B, with two and three values, respectively. Regressors for a one-way model (the default model order) are generated using the the default dummy method. The five regressors generated are $A_1, A_2, B_1, B_2$ and $B_3$.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class RegressorsForGLMEx1 {

 public static void main(String args[]) {
 double x[][] = {
 {10.0, 5.0},
 {20.0, 15.0},
 {20.0, 10.0},
 {10.0, 10.0},
 {10.0, 15.0},
 {20.0, 5.0}
 };

 RegressorsForGLM r = new RegressorsForGLM(x, 2);
 double regressors[][] = r.getRegressors();
 int n = r.getNumberOfRegressors();
 System.out.println("Number of regressors = "+n);
 new PrintMatrix("Regressors").print(regressors);
 }
}
```

Output

```
Number of regressors = 5
Regressors
 0 1 2 3 4
0 1 0 1 0 0
1 0 1 0 0 1
2 0 1 0 1 0
```
Example 2

In this example, a two-way analysis of covariance model containing all the interaction terms is fit. First, RegressorsForGLM is used to produce a matrix of regressors, regressors, from the data x. Then, regressors is used as the input matrix into Regression to produce the final fit. The mapping from effects to columns in the matrix regressors is given by the jagged array returned by getEffectsColumns. Each row in this matrix gives the column number for the corresponding effect.

The regressors, generated using the dummy method LEAVE_OUT_LAST, are the model whose mean function is

\[ \mu + \alpha_i + \beta_j + \gamma_{ij} + \xi_{ij} + \eta_{ij} + \theta_{ij} \quad i = 1, 2; \quad j = 1, 2, 3 \]

where \( \alpha_2 = \beta_3 = \gamma_{21} + \gamma_{22} + \gamma_{23} + \xi_2 + \eta_3 + \theta_{21} + \theta_{22} + \theta_{23} = 0. \)

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class RegressorsForGLMEx2 {
 static public void main(String arg[]) {
 double x[][] = {
 {1.0, 1.0, 1.11},
 {1.0, 1.0, 2.22},
 {1.0, 1.0, 3.33},
 {1.0, 2.0, 1.11},
 {1.0, 2.0, 2.22},
 {1.0, 2.0, 3.33},
 {1.0, 3.0, 1.11},
 {1.0, 3.0, 2.22},
 {1.0, 3.0, 3.33},
 {2.0, 1.0, 1.11},
 {2.0, 1.0, 2.22},
 {2.0, 1.0, 3.33},
 {2.0, 2.0, 1.11},
 {2.0, 2.0, 2.22},
 {2.0, 2.0, 3.33},
 {2.0, 3.0, 1.11},
 {2.0, 3.0, 2.22},
 {2.0, 3.0, 3.33}
 };
 double y[] = {
 1.0, 2.0, 2.0, 4.0, 4.0, 6.0,
 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
 2.0, 3.0, 4.0, 5.0, 6.0, 7.0
 };
 int effects[][] = {
 {0},
 {1},
 }
 }
}
```
RegressorsForGLM r = new RegressorsForGLM(x, nClassVariables);
r.setDummyMethod(RegressorsForGLM.LEAVE_OUT_LAST);
r.setEffects(effects);

System.out.println("Mapping of Effects to Regressor Columns");
int col[][] = r.getEffectsColumns();
for (int iEffect = 0; iEffect < effects.length; iEffect++) {
    System.out.print("Effect \{");
    for (int j = 0; j < effects[iEffect].length; j++) {
        if (j > 0) {
            System.out.print(", ");
        }
        System.out.print(effects[iEffect][j]);
    }
    System.out.print("\} is in regressor column(s) \{");
    for (int j = 0; j < col[iEffect].length; j++) {
        if (j > 0) {
            System.out.print(", ");
        }
        System.out.print(col[iEffect][j]);
    }
    System.out.println("\}"");
}
System.out.println();

double regressors[][] = r.getRegressors();

PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setColumnLabels(new String[]{"Alpha1", "Beta1", "Beta2",
    "Gamma11", "Gamma12", "Delta", "Zeta1", "Eta1", "Eta2",
    "Theta11", "Theta12"});
new PrintMatrix("Regressors").print(pmf, regressors);

int nRegressors = r.getNumberOfRegressors();
LinearRegression regression = new LinearRegression(nRegressors, true);
regression.update(regressors, y);

System.out.println(" * * * Analysis of Variance * * *");
ANOVA anova = regression.getANOVA();

Object table[][] = new Object[15][2];
table[0][0] = "Degrees of freedom for the model ");
table[0][1] = anova.getDegreesOfFreedomForModel();
table[1][0] = "Degrees of freedom for the error ");
table[1][1] = anova.getDegreesOfFreedomForError();
table[2][0] = "Total degrees of freedom ");
table[2][1] = anova.getTotalDegreesOfFreedom();
table[3][0] = "Sum of squares for the model ";
        table[3][1] = anova.getSumOfSquaresForModel();
        table[4][0] = "Sum of squares for error ";
        table[4][1] = anova.getSumOfSquaresForError();
        table[5][0] = "Total sum of squares ";
        table[5][1] = anova.getTotalSumOfSquares();
        table[6][0] = "Model mean square ";
        table[6][1] = anova.getModelMeanSquare();
        table[7][0] = "Error mean square ";
        table[7][1] = anova.getErrorMeanSquare();
        table[8][0] = "F-statistic ";
        table[8][1] = anova.getF();
        table[9][0] = "p-value ";
        table[9][1] = anova.getP();
        table[10][0] = "R-squared ";
        table[10][1] = anova.getRSquared();
        table[11][0] = "Adjusted R-squared ";
        table[11][1] = anova.getAdjustedRSquared();
        table[12][0] = "Standard deviation for the model error ";
        table[12][1] = anova.getModelErrorStdev();
        table[13][0] = "Overall mean of y ";
        table[13][1] = anova.getMeanOfY();
        table[14][0] = "Coefficient of variation ";
        table[14][1] = anova.getCoefficientOfVariation();
        pmf = new PrintMatrixFormat();
        pmf.setNoColumnLabels();
        pmf.setNoRowLabels();
        pmf.setNumberFormat(new java.text.DecimalFormat("0.0000"));
        new PrintMatrix().print(pmf, table);
    }

Output

Mapping of Effects to Regressor Columns
Effect {0} is in regressor column(s) {0}
Effect {1} is in regressor column(s) {1, 2}
Effect {0, 1} is in regressor column(s) {3, 4}
Effect {2} is in regressor column(s) {5}
Effect {0, 2} is in regressor column(s) {6}
Effect {1, 2} is in regressor column(s) {7, 8}
Effect {0, 1, 2} is in regressor column(s) {9, 10}

<table>
<thead>
<tr>
<th></th>
<th>Alpha1</th>
<th>Beta1</th>
<th>Beta2</th>
<th>Gamma1</th>
<th>Gamma2</th>
<th>Delta</th>
<th>Zeta1</th>
<th>Eta1</th>
<th>Eta2</th>
<th>Theta1</th>
<th>Theta2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.11</td>
<td>1.11</td>
<td>1.11</td>
<td>0</td>
<td>1.11</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2.22</td>
<td>2.22</td>
<td>2.22</td>
<td>0</td>
<td>2.22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>0</td>
<td>3.33</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.11</td>
<td>1.11</td>
<td>0</td>
<td>1.11</td>
<td>0</td>
<td>1.11</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.22</td>
<td>2.22</td>
<td>0</td>
<td>2.22</td>
<td>0</td>
<td>2.22</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.33</td>
<td>3.33</td>
<td>0</td>
<td>3.33</td>
<td>0</td>
<td>3.33</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.11</td>
<td>1.11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.22</td>
<td>2.22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.11</td>
<td>0</td>
<td>1.11</td>
<td>0</td>
<td>1.11</td>
<td>0</td>
</tr>
</tbody>
</table>

Regression

RegressorsForGLM • 707
LinearRegression class

public class com.imsl.stat.LinearRegression implements Serializable, Cloneable

Fits a multiple linear regression model with or without an intercept. If the constructor argument hasIntercept is true, the multiple linear regression model is

\[ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \epsilon_i \quad i = 1, 2, \ldots, n \]

where the observed values of the \( y_i \)'s constitute the responses or values of the dependent variable, the \( x_{i1} \)'s, \( x_{i2} \)'s, \ldots, \( x_{ik} \)'s are the settings of the independent variables, \( \beta_0, \beta_1, \ldots, \beta_k \) are the regression coefficients, and the \( \epsilon_i \)'s are independently distributed normal errors each with mean zero and variance \( \sigma^2/w_i \). If hasIntercept is false, \( \beta_0 \) is not included in the model.

LinearRegression computes estimates of the regression coefficients by minimizing the sum of squares of the deviations of the observed response \( y_i \) from the fitted response

\[ \hat{y}_i \]
for the observations. This minimum sum of squares (the error sum of squares) is in the ANOVA output and denoted by

\[ SSE = \sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2 \]

In addition, the total sum of squares is output in the ANOVA table. For the case, hasIntercept is true; the total sum of squares is the sum of squares of the deviations of \( y_i \) from its mean

\[ \hat{y} \]

—the so-called corrected total sum of squares; it is denoted by

\[ SST = \sum_{i=1}^{n} w_i (y_i - \hat{y})^2 \]

For the case hasIntercept is false, the total sum of squares is the sum of squares of \( y_i \) – the so-called uncorrected total sum of squares; it is denoted by

\[ SST = \sum_{i=1}^{n} y_i^2 \]

See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analysis, and many examples.

In order to compute a least-squares solution, LinearRegression performs an orthogonal reduction of the matrix of regressors to upper triangular form. Givens rotations are used to reduce the matrix. This method has the advantage that the loss of accuracy resulting from forming the crossproduct matrix used in the normal equations is avoided, while not requiring the storage of the full matrix of regressors. The method is described by Lawson and Hanson, pages 207-212.

From a general linear model fitted using the \( w_i \)'s as the weights, inner class com.imsl.stat.LinearRegression.CaseStatistics (p. 717) can also compute predicted values, confidence intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted regression. Let \( x_i \) be a column vector containing elements of the \( i \)-th row of \( X \). Let \( W = diag(w_1, w_2, \ldots, w_n) \). The leverage is defined as

\[ h_i = \frac{[x_i^T (X^T WX)^{-1} x_i] w_i}{w_i} \]

(In the case of linear equality restrictions on \( \beta \), the leverage is defined in terms of the reduced model.) Put \( D = diag(d_1, d_2, \ldots, d_k) \) with \( d_j = 1 \) if the \( j \)-th diagonal element of \( R \) is positive and 0 otherwise. The leverage is computed as \( h_i = (a^T Da) w_i \) where \( a \) is a solution to \( R^T a = x_i \). The estimated variance of \( \hat{y}_i = x_i^T \hat{\beta} \) is given by \( h_i s^2 / w_i \), where \( s^2 = SSE / DFE \). The computation of the remainder of the case statistics follows easily from their definitions.

Let \( e_i \) denote the residual

\[ y_i - \hat{y}_i \]
for the $i$th case. The estimated variance of $e_i$ is $(1 - h_i)s^2 / w_i$ where $s^2$ is the residual mean square from the fitted regression. The $i$th standardized residual (also called the internally studentized residual) is by definition
\[ r_i = e_i \sqrt{\frac{w_i}{s^2(1 - h_i)}} \]
and $r_i$ follows an approximate standard normal distribution in large samples.

The $i$th jackknife residual or deleted residual involves the difference between $y_i$ and its predicted value based on the data set in which the $i$th case is deleted. This difference equals $e_i / (1 - h_i)$. The jackknife residual is obtained by standardizing this difference. The residual mean square for the regression in which the $i$th case is deleted is
\[ s_i^2 = \frac{(n - r)s^2 - w_i e_i^2 / (1 - h_i)}{n - r - 1} \]
The jackknife residual is defined to be
\[ t_i = e_i \sqrt{\frac{w_i}{s_i^2(1 - h_i)}} \]
and $t_i$ follows a $t$ distribution with $n - r - 1$ degrees of freedom.

Cook’s distance for the $i$th case is a measure of how much an individual case affects the estimated regression coefficients. It is given by
\[ D_i = \frac{w_i h_i e_i^2}{r s^2 / (1 - h_i)^2} \]
Weisberg (1985) states that if $D_i$ exceeds the 50-th percentile of the $F(r, n - r)$ distribution, it should be considered large. (This value is about 1. This statistic does not have an $F$ distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the $i$th case, DFFITS is computed by the formula
\[ DFFITS_i = e_i \sqrt{\frac{w_i h_i}{s_i^2(1 - h_i)^2}} \]
Hoaglin and Welsch (1978) suggest that $DFFITS_i$ greater than
\[ 2 \sqrt{r/n} \]
is large.

Often predicted values and confidence intervals are desired for combinations of settings of the effect variables not used in computing the regression fit. This can be accomplished using a single data matrix by including these settings of the variables as part of the data matrix and by setting the response equal to $\text{Double.NaN}$. $\text{LinearRegression}$ will omit the case when performing the fit and a predicted value and confidence interval for the missing response will be computed from the given settings of the effect variables.

**Constructor**

**LinearRegression**

```java
public LinearRegression(int nVariables, boolean hasIntercept)
```

710 • **LinearRegression**  JMSL
Description
Constructs a new linear regression object.

Parameters
- nVariables – int number of variables in the regression
- hasIntercept – boolean which indicates whether or not an intercept is in this regression model

Methods

getANOVA
public ANOVA getANOVA()

Description
Get an analysis of variance table and related statistics.

Returns
an ANOVA table and related statistics

getAddressStatistics
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double y)

Description
Returns the case statistics for an observation.

Parameters
- x – a double array containing the independent (explanatory) variables. Its length must be equal to the number of variables set in the LinearRegression constructor.
- y – a double representing the dependent (response) variable

Returns
the CaseStatistics for the observation.

getAddressStatistics
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double y, double w)

Description
Returns the case statistics for an observation and a weight.

Parameters
- x – a double array containing the independent (explanatory) variables. Its length must be equal to the number of variables set in the constructor.
- y – a double representing the dependent (response) variable
- w – a double representing the weight
Returns the case statistics for the observation.

**getCaseStatistics**

```java
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double y, int pred)
```

**Description**

Returns the case statistics for an observation and future response count for the desired prediction interval.

**Parameters**

- `x` – a `double` array containing the independent (explanatory) variables. Its length must be equal to the number of variables set in the constructor.
- `y` – a `double` representing the dependent (response) variable
- `pred` – an `int` representing the number of future responses for which the prediction interval is desired on the average of the future responses.

Returns the case statistics for the observation.

**getCaseStatistics**

```java
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double y, double w, int pred)
```

**Description**

Returns the case statistics for an observation, weight, and future response count for the desired prediction interval.

**Parameters**

- `x` – a `double` array containing the independent (explanatory) variables. Its length must be equal to the number of variables set in the constructor.
- `y` – a `double` representing the dependent (response) variable
- `w` – a `double` representing the weight
- `pred` – an `int` representing the number of future responses for which the prediction interval is desired on the average of the future responses

Returns the case statistics for the observation.

**getCoefficientTTests**

```java
public LinearRegression.CoefficientTTests getCoefficientTTests()
```

**Description**

Returns statistics relating to the regression coefficients.

**getCoefficients**

```java
public double[] getCoefficients()
```
**Description**

Returns the regression coefficients.

**Returns**

A double array containing the regression coefficients. If `hasIntercept` is `false` its length is equal to the number of variables. If `hasIntercept` is `true` then its length is the number of variables plus one and the 0-th entry is the value of the intercept. If the model is not full rank, the regression coefficients are not uniquely determined. In this case, a warning is issued and a solution with all linearly dependent regressors set to zero is returned.

**getR**

```java
public double[][] getR()
```

**Description**

Returns a copy of the $R$ matrix. $R$ is the upper triangular matrix containing the $R$ matrix from a QR decomposition of the matrix of regressors.

**Returns**

A double matrix containing a copy of the $R$ matrix

**getRank**

```java
public int getRank()
```

**Description**

Returns the rank of the matrix.

**Returns**

The int rank of the matrix

**update**

```java
public void update(double[] x, double y)
```

**Description**

Updates the regression object with a new observation.

**Parameters**

- `x` – A double array containing the independent (explanatory) variables. Its length must be equal to the number of variables set in the constructor.
- `y` – A double representing the dependent (response) variable

**update**

```java
public void update(double[][] x, double[] y)
```

**Description**

Updates the regression object with a new set of observations.
Parameters

- \( x \) – a double matrix containing the independent (explanatory) variables. The number of rows in \( x \) must equal the length of \( y \) and the number of columns must be equal to the number of variables set in the constructor.
- \( y \) – a double array containing the dependent (response) variables.

**update**

public void update(double[] x, double y, double w)

**Description**

Updates the regression object with a new observation and weight.

**Parameters**

- \( x \) – a double array containing the independent (explanatory) variables. Its length must be equal to the number of variables set in the constructor.
- \( y \) – a double representing the dependent (response) variable
- \( w \) – a double representing the weight

**update**

public void update(double[][] x, double[] y, double[] w)

**Description**

Updates the regression object with a new set of observations and weights.

**Parameters**

- \( x \) – a double matrix containing the independent (explanatory) variables. The number of rows in \( x \) must equal the length of \( y \) and the number of columns must be equal to the number of variables set in the constructor.
- \( y \) – a double array containing the dependent (response) variables.
- \( w \) – a double array representing the weights

### Example: Linear Regression

The coefficients of a simple linear regression model, without an intercept, are computed.

```java
import com.imsl.stat.*;

public class LinearRegressionEx1 {

 public static void main(String args[]) {
 // \(y = 4x0 + 3x1 \)
 LinearRegression r = new LinearRegression(2, false);
 double c[] = {4, 3};
 double x[][] = {{1, 5}, {0, 2}, {-1, 4}};

 r.update(x[0], 1 * c[0] + 5 * c[1]);
 r.update(x[1], 0 * c[0] + 2 * c[1]);
 }
}
```
Example 2: Linear Regression

Selected case statistics of a simple linear regression model, with an intercept, are computed.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class LinearRegressionEx2 {

 public static void main(String[] args) {
 LinearRegression r = new LinearRegression(2, true);
 double[] y = {3, 4, 5, 7, 7, 8, 9};
 double[][] x = {
 {1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {0, 6}, {1, 7}
 };
 double[] results = new double[7][5];
 double[] confint = new double[2];
 r.update(x, y);
 for (int k = 0; k < 7; k++) {
 LinearRegression.CaseStatistics cs = r.getCaseStatistics(x[k], y[k]);
 results[k][0] = cs.getJackknifeResidual();
 results[k][1] = cs.getCooksDistance();
 results[k][2] = cs.getDFFITS();
 confint = cs.getConfidenceInterval();
 results[k][3] = confint[0];
 results[k][4] = confint[1];
 }
 PrintMatrix p = new PrintMatrix("Selected Case Statistics");
 PrintMatrixFormat mf = new PrintMatrixFormat();
 String labels[] = {"Jackknife Residual.", "Cook’s D", "DFFITS",
 "[Conf. Interval", "on the Mean"]};
 mf.setColumnLabels(labels);
 p.print(mf, results);
 }
}
```

Output

Selected Case Statistics

<p>| Regression | LinearRegression • 715 |</p>
<table>
<thead>
<tr>
<th>Jackknife Residual</th>
<th>Cook's D</th>
<th>DFFITS</th>
<th>[Conf. Interval on the Mean]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.343</td>
<td>0.045</td>
<td>-0.324 2.261 3.996</td>
</tr>
<tr>
<td>1</td>
<td>-0.327</td>
<td>0.018</td>
<td>-0.207 3.467 4.818</td>
</tr>
<tr>
<td>2</td>
<td>-0.338</td>
<td>0.011</td>
<td>-0.161 4.613 5.702</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>0.276</td>
<td>? 5.648 6.695</td>
</tr>
<tr>
<td>4</td>
<td>-0.418</td>
<td>0.024</td>
<td>-0.237 6.563 7.808</td>
</tr>
<tr>
<td>6</td>
<td>-0.742</td>
<td>0.372</td>
<td>-0.996 8.201 10.227</td>
</tr>
</tbody>
</table>

**LinearRegression.CoefficientTTests class**

```java
public class com.imsl.stat.LinearRegression.CoefficientTTests implements Serializable
```

Contains statistics related to the regression coefficients.

**Methods**

**getCoefficient**

```java
public double getCoefficient(int i)
```

**Description**

Returns the estimate for a coefficient.

**Parameter**

- `i` – an int which specifies the index of the coefficient whose estimate is to be returned.

**Returns**

a double which contains the estimate for the `i`-th coefficient.

**getPValue**

```java
public double getPValue(int i)
```

**Description**

Returns the `p`-value for the two-sided test.

**Parameter**

- `i` – an int which specifies the index of the coefficient whose `p`-value is to be returned.
Returns
a double which contains the $p$-value for the $i$-th coefficient estimate.

**getStandardError**
public double getStandardError(int i)

**Description**
Returns the estimated standard error for a coefficient estimate.

**Parameter**
- $i$ – an int which specifies the index of the coefficient whose standard error estimate is to be returned.

**Returns**
a double which contains the estimated standard error for the $i$-th coefficient estimate.

**getTStatistic**
public double getTStatistic(int i)

**Description**
Returns the t-statistic for the test that the $i$-th coefficient is zero.

**Parameter**
- $i$ – an int specifying the index of the coefficient whose standard error estimate is to be returned.

**Returns**
a double which contains the estimated standard error for the $i$-th coefficient estimate.

---

**LinearRegression.CaseStatistics class**

public class com.imsl.stat.LinearRegression.CaseStatistics

Inner Class CaseStatistics allows for the computation of predicted values, confidence intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted regression.

**Methods**

**getConfidenceInterval**
public double[] getConfidenceInterval()
Description
Returns the Confidence Interval of the population mean for an observation.
The width of the confidence interval depends on the confidence level set by

Returns
da double[2] array containing the Confidence Interval of the population mean at the given observation.

getCooksDistance
public double getCooksDistance()

Description
Returns Cook’s Distance for an observation.

Returns
a double containing Cook’s Distance for an observation

getDFFITS
public double getDFFITS()

Description
Returns DFFITS for an observation.

Returns
a double containing the DFFITS value for an observation

getJackknifeResidual
public double getJackknifeResidual()

Description
Returns the Jackknife Residual for an observation.

Returns
a double containing the Jackknife Residual for an observation

getLeverage
public double getLeverage()

Description
Returns the Leverage for an observation.

Returns
a double containing the Leverage for an observation

getObservedResponse
public double getObservedResponse()

Description
Returns the observed response for an observation.
**Returns**

a double containing the observed response for an observation

**getPredictedResponse**

```java
public double getPredictedResponse()
```

**Description**

Returns the predicted response for an observation.

**Returns**

a double containing the predicted response for an observation

**getPredictionInterval**

```java
public double[] getPredictionInterval()
```

**Description**

Returns the Prediction Interval of the predicted response for an observation.

The width of the prediction interval depends on the confidence level set by `com.ims1.stat.LinearRegression.CaseStatistics.setConLevelPred (p. 720)`.

**Returns**

a double[2] array containing the Prediction Interval of the predicted response at the given observation

**getResidual**

```java
public double getResidual()
```

**Description**

Returns the Residual for an observation.

**Returns**

a double containing the residual for an observation

**getStandardizedResidual**

```java
public double getStandardizedResidual()
```

**Description**

Returns the Standardized Residual for an observation.

**Returns**

a double containing the Standardized Residual for an observation

**setConLevelMean**

```java
public void setConLevelMean(double conpcm)
```

**Description**

Sets the confidence level for two-sided confidence intervals of the population mean.
Parameter

conpcm – a double used to set the confidence level for two-sided confidence intervals of the population mean. Note that conpcm must be in the interval 0 to 1 inclusive. That is, it must be expressed as a probability.
Default: conpcm=.95.

setConLevelPred
public void setConLevelPred(double concp)

Description
Sets the confidence level for two-sided prediction intervals.

Parameter
concp – a double used to set the confidence level for two-sided prediction intervals of a predicted response. Note that concp must be in the interval 0 to 1 inclusive. That is, it must be expressed as a probability.
Default: concp=.95.

NonlinearRegression class

public class com.imsl.stat.NonlinearRegression

Fits a multivariate nonlinear regression model using least squares. The nonlinear regression model is

\[ y_i = f(x_i; \theta) + \varepsilon_i \quad i = 1, 2, \ldots, n \]

where the observed values of the \( y_i \) constitute the responses or values of the dependent variable, the known \( x_i \) are vectors of values of the independent (explanatory) variables, \( \theta \) is the vector of \( p \) regression parameters, and the \( \varepsilon_i \) are independently distributed normal errors each with mean zero and variance \( \sigma^2 \). For this model, a least squares estimate of \( \theta \) is also a maximum likelihood estimate of \( \theta \).

The residuals for the model are

\[ e_i(\theta) = y_i - f(x_i; \theta) \quad i = 1, 2, \ldots, n \]

A value of \( \theta \) that minimizes

\[ \sum_{i=1}^{n} [e_i(\theta)]^2 \]

is the least-squares estimate of \( \theta \) calculated by this class. NonlinearRegression accepts these residuals one at a time as input from a user-supplied function. This allows NonlinearRegression to handle cases where \( n \) is so large that data cannot reside in an array but must reside in a secondary storage device.
NonlinearRegression is based on MINPACK routines LMDIF and LMDER by More’ et al. (1980). NonlinearRegression uses a modified Levenberg-Marquardt method to generate a sequence of approximations to the solution. Let \( \hat{\theta}_c \) be the current estimate of \( \theta \). A new estimate is given by

\[
\hat{\theta}_c + s_c
\]

where \( s_c \) is a solution to

\[
(J(\hat{\theta}_c)^T J(\hat{\theta}_c) + \mu_c I)s_c = J(\hat{\theta}_c)^T e(\hat{\theta}_c)
\]

Here, \( J(\hat{\theta}_c) \) is the Jacobian evaluated at \( \hat{\theta}_c \).

The algorithm uses a “trust region” approach with a step bound of \( \delta_c \). A solution of the equations is first obtained for \( \mu_c = 0 \). If \( ||s_c||_2 < \delta_c \), this update is accepted; otherwise, \( \mu_c \) is set to a positive value and another solution is obtained. The method is discussed by Levenberg (1944), Marquardt (1963), and Dennis and Schnabel (1983, pages 129 - 147, 218 - 338).

Forward finite differences are used to estimate the Jacobian numerically unless the user supplied function computes the derivatives. In this case the Jacobian is computed analytically via the user-supplied function.

NonlinearRegression does not actually store the Jacobian but uses fast Givens transformations to construct an orthogonal reduction of the Jacobian to upper triangular form. The reduction is based on fast Givens transformations (see Golub and Van Loan 1983, pages 156-162, Gentleman 1974). This method has two main advantages: (1) the loss of accuracy resulting from forming the crossproduct matrix used in the equations for \( s_c \) is avoided, and (2) the \( n \times p \) Jacobian need not be stored saving space when \( n > p \).

A weighted least squares fit can also be performed. This is appropriate when the variance of \( \varepsilon_i \) in the nonlinear regression model is not constant but instead is \( \sigma^2/w_i \). Here, \( w_i \) are weights input via the user supplied function. For the weighted case, NonlinearRegression finds the estimate by minimizing a weighted sum of squares error.

**Programming Notes**

Nonlinear regression allows users to specify the model’s functional form. This added flexibility can cause unexpected convergence problems for users who are unaware of the limitations of the algorithm. Also, in many cases, there are possible remedies that may not be immediately obvious. The following is a list of possible convergence problems and some remedies. There is not a one-to-one correspondence between the problems and the remedies. Remedies for some problems may also be relevant for the other problems.

1. A local minimum is found. Try a different starting value. Good starting values often can be obtained by fitting simpler models. For example, for a nonlinear function

\[
f(x; \theta) = \theta_1 e^{\theta_2 x}
\]

good starting values can be obtained from the estimated linear regression coefficients \( \hat{\beta}_0 \) and \( \hat{\beta}_1 \) from a simple linear regression of \( ln y \) on \( ln x \). The starting values for the nonlinear regression in this case would be

\[
\theta_1 = e^{\hat{\beta}_0} \text{ and } \theta_2 = \hat{\beta}_1
\]
If an approximate linear model is unclear, then simplify the model by reducing the number of nonlinear regression parameters. For example, some nonlinear parameters for which good starting values are known could be set to these values. This simplifies the approach to computing starting values for the remaining parameters.

2. The estimate of $\theta$ is incorrectly returned as the same or very close to the initial estimate.
   
   • The scale of the problem may be orders of magnitude smaller than the assumed default of 1 causing premature stopping. For example, if the sums of squares for error is less than approximately $2.22e^{-16}$, the routine stops. See Example 3, which shows how to shut down some of the stopping criteria that may not be relevant for your particular problem and which also shows how to improve the speed of convergence by the input of the scale of the model parameters.
   
   • The scale of the problem may be orders of magnitude larger than the assumed default causing premature stopping. The information with regard to the input of the scale of the model parameters in Example 3 is also relevant here. In addition, the maximum allowable step size (com.imsl.stat.NonlinearRegression.setMaxStepsize (p. 726)) in Example 3 may need to be increased.
   
   • The residuals are input with accuracy much less than machine accuracy causing premature stopping because a local minimum is found. Again see Example 3 to see generally how to change some default tolerances. If you cannot improve the precision of the computations of the residual, you need to use method comb.imsl.stat.NonlinearRegression.setDigits (p. 725) to indicate the actual number of good digits in the residuals.

3. The model is discontinuous as a function of $\theta$. There may be a mistake in the user-supplied function. Note that the function $f(x; \theta)$ can be a discontinuous function of $x$.

4. The $R$ matrix returned by getR is inaccurate. If only a function is supplied try providing the com.imsl.stat.NonlinearRegression.Derivative (p. 735). If the derivative is supplied try providing only com.imsl.stat.NonlinearRegression.Function (p. 734).

5. Overflow occurs during the computations. Make sure the user-supplied functions do not overflow at some value of $\theta$.

6. The estimate of $\theta$ is going to infinity. A parameterization of the problem in terms of reciprocals may help.

7. Some components of $\theta$ are outside known bounds. This can sometimes be handled by making a function that produces artificially large residuals outside of the bounds (even though this introduces a discontinuity in the model function).

Note that the solve method must be called prior to calling the “get” member functions, otherwise a null is returned.
Constructor

NonlinearRegression
public NonlinearRegression(int nparm)

Description
Constructs a new nonlinear regression object.

Parameter
  nparm – An int which specifies the number of unknown parameters in the regression.

Methods

getCoefficient
public double getCoefficient(int i)

Description
Returns the estimate for a coefficient.

Parameter
  i – An int which specifies the index of a coefficient whose estimate is to be returned.

Returns
A double which contains the estimate for the i-th coefficient or null if solve has not been called.

getCoefficients
public double[] getCoefficients()

Description
Returns the regression coefficients.

Returns
A double array containing the regression coefficients or null if solve has not been called.

getDFError
public double getDFError()

Description
Returns the degrees of freedom for error.

Returns
A double which specifies the degrees of freedom for error or null if solve has not been called.

getErrorStatus
public int getErrorStatus()
Description
Gets information about the performance of `NonlinearRegression`.

Returns
An `int` specifying information about convergence.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All convergence tests were met.</td>
</tr>
<tr>
<td>1</td>
<td>Scaled step tolerance was satisfied. The current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or <code>StepTolerance</code> is too big.</td>
</tr>
<tr>
<td>2</td>
<td>Scaled actual and predicted reductions in the function are less than or equal to the relative function convergence tolerance <code>RelativeTolerance</code>.</td>
</tr>
<tr>
<td>3</td>
<td>Iterates appear to be converging to a noncritical point. Incorrect gradient information, a discontinuous function, or stopping tolerances being too tight may be the cause.</td>
</tr>
<tr>
<td>4</td>
<td>Five consecutive steps with the maximum stepsize have been taken. Either the function is unbounded below, or has a finite asymptote in some direction, or the <code>maxStepsize</code> is too small.</td>
</tr>
</tbody>
</table>

**getR**

```java
public double[][] getR()
```

Description
Returns a copy of the R matrix. R is the upper triangular matrix containing the R matrix from a QR decomposition of the matrix of regressors.

Returns
A two dimensional `double` array containing a copy of the R matrix or `null` if `solve` has not been called.

**getRank**

```java
public int getRank()
```

Description
Returns the rank of the matrix.

Returns
An `int` which specifies the rank of the matrix or `null` if `solve` has not been called.

**getSSE**

```java
public double getSSE()
```

Description
Returns the sums of squares for error.
Returns
A double which contains the sum of squares for error or null if solve has not been called.

**setAbsoluteTolerance**
public void setAbsoluteTolerance(double absoluteTolerance)

**Description**
Sets the absolute function tolerance.

**Parameter**
absoluteTolerance – A double scalar value specifying the absolute function tolerance. The tolerance must be greater than or equal to zero. The default value is 4.93e-32.

**Exception**
IllegalArgumentException is thrown if absoluteTolerance is less than 0

**setDigits**
public void setDigits(int nGood)

**Description**
Sets the number of good digits in the residuals.

**Parameter**
nGood – An int specifying the number of good digits in the residuals. The number of digits must be greater than zero. The default value is 15.

**Exception**
IllegalArgumentException is thrown if nGood is less than or equal to 0

**setFalseConvergenceTolerance**
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)

**Description**
Sets the false convergence tolerance.

**Parameter**
falseConvergenceTolerance – A double scalar value specifying the false convergence tolerance. The tolerance must be greater than or equal to zero. The default value is 2.22e-14.

**Exception**
IllegalArgumentException is thrown if falseConvergenceTolerance is less than 0

**setGradientTolerance**
public void setGradientTolerance(double gradientTolerance)

**Description**
Sets the gradient tolerance used to compute the gradient.
Parameter

gradientTolerance – A double specifying the gradient tolerance used to compute the gradient. The tolerance must be greater than or equal to zero. The default value is 6.055e-6.

Exception

IllegalArgumentException is thrown if gradientTolerance is less than 0

setGuess
public void setGuess(double[] thetaGuess)

Description
Sets the initial guess of the parameter values

Parameter

thetaGuess – A double array of initial values for the parameters. The default value is an array of zeroes.

setInitialTrustRegion
public void setInitialTrustRegion(double initialTrustRegion)

Description
Sets the initial trust region radius.

Parameter

initialTrustRegion – A double scalar value specifying the initial trust region radius. The initial trust radius must be greater than zero. If this member function is not called, a default is set based on the initial scaled Cauchy step.

Exception

IllegalArgumentException is thrown if initialTrustRegion is less than or equal to 0

setMaxIterations
public void setMaxIterations(int maxIterations)

Description
Sets the maximum number of iterations allowed during optimization

Parameter

maxIterations – An int specifying the maximum number of iterations allowed during optimization. The value must be greater than 0. The default value is 100.

Exception

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setMaxStepsize
public void setMaxStepsize(double maxStepsize)
Description
Sets the maximum allowable stepsize.

Parameter
maxStepsize – A nonnegative double value specifying the maximum allowable stepsize. The maximum allowable stepsize must be greater than zero. If this member function is not called, maximum stepsize is set to a default value based on a scaled \theta.

Exception
IllegalArgumentException is thrown if maxStepsize is less than or equal to 0

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Description
Sets the relative function tolerance

Parameter
relativeTolerance – A double scalar value specifying the relative function tolerance. The relative function tolerance must be greater than or equal to zero. The default value is 1.0e-20.

Exception
IllegalArgumentException is thrown if relativeTolerance is less than 0

setScale
public void setScale(double[] scale)

Description
Sets the scaling array for \theta.

Parameter
scale – A double array containing the scaling values for the parameters (\theta). The elements of the scaling array must be greater than zero. scale is used mainly in scaling the gradient and the distance between points. If good starting values of thetaGuess are known and are nonzero, then a good choice is scale[i]=1.0/thetaGuess[i]. Otherwise, if \theta is known to be in the interval (-10.e5, 10.e5), set scale[i]=10.e-5. By default, the elements of the scaling array are set to 1.0.

Exception
IllegalArgumentException is thrown if any of the elements of scale is less than or equal to 0

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description
Sets the step tolerance used to step between two points.
Parameter

stepTolerance – A double scalar value specifying the step tolerance used to step between two points. The step tolerance must be greater than or equal to zero. The default value is 3.667e-11.

Exception

IllegalArgumentException is thrown if stepTolerance is less than 0

solve

public double[] solve(NonlinearRegression.Function F) throws NonlinearRegression.TooManyIterationsException, NonlinearRegression.NegativeFreqException, NonlinearRegression.NegativeWeightException

Description

Solves the least squares problem and returns the regression coefficients.

Parameter

F – A NonlinearRegression.Function whose coefficients are to be computed.

Returns

A double array containing the regression coefficients.

Exceptions

TooManyIterationsException is thrown when the number of allowed iterations is exceeded

NegativeFreqException is thrown when the specified frequency is negative

NegativeWeightException is thrown when the weight is negative

Example 1: Nonlinear Regression using Finite Differences

In this example a nonlinear model is fitted. The derivatives are obtained by finite differences.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class NonlinearRegressionEx1 {

 public static void main(String args[]) throws Exception {
 NonlinearRegression.Function f = new NonlinearRegression.Function() {
 public boolean f(double theta[], int iobs, double frq[],
 double wt[], double e[]) {

 double ydata[] = {
 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0,
 16.0, 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0
 };
 double xdata[] = {
 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
 34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0
 }
```

```
```java
boolean iend;
int nobs = 15;

if (iobs < nobs) {
    wt[0] = 1.0;
    frq[0] = 1.0;
    iend = true;
} else {
    iend = false;
}
return iend;
}

int nparm = 2;
double theta[] = {60.0, -0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.setGuess(theta);
double coef[] = regression.solve(f);
System.out.println("The computed regression coefficients are \{" + coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();
System.out.println("The computed rank is \" + rank);
double dfe = regression.getDFError();
System.out.println("The degrees of freedom for error are \" + dfe);
double sse = regression.getSSE();
System.out.println("The sums of squares for error is \" + sse);
double r[][] = regression.getR();
new PrintMatrix("R from the QR decomposition ").print(r);
}
```

Output

The computed regression coefficients are \{58.60656294699903, -0.039586447308674395\}
The computed rank is 2
The degrees of freedom for error are 13.0
The sums of squares for error is 49.459299862471724
R from the QR decomposition
```
 0 1
0 1.874 1,139.928
1 0 1,139.798
```

Example 2: Nonlinear Regression with User-supplied Derivatives

In this example a nonlinear model is fitted. The derivatives are supplied by the user.

```java
import com.imsl.stat.*;
```
import com.imsl.math.*;

public class NonlinearRegressionEx2 {

 public static void main(String args[]) throws Exception {
 NonlinearRegression.Derivative deriv = new NonlinearRegression.Derivative() {
 double ydata[] = {
 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,
 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0
 };
 double xdata[] = {
 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
 38.0, 45.0, 52.0, 53.0, 60.0, 65.0
 };
 boolean iend;
 int nobs = 15;

 public boolean f(double theta[], int iobs, double frq[],
 double wt[], double e[]) {
 if (iobs < nobs) {
 wt[0] = 1.0;
 frq[0] = 1.0;
 iend = true;
 } else {
 iend = false;
 }
 return iend;
 }

 public boolean derivative(double theta[], int iobs,
 double frq[], double wt[], double de[]) {
 if (iobs < nobs) {
 wt[0] = 1.0;
 frq[0] = 1.0;
 iend = true;
 de[0] = -Math.exp(theta[1] * xdata[iobs]);
 } else {
 iend = false;
 }
 return iend;
 }

 int nparm = 2;
 double theta[] = {60.0, -0.03};
 NonlinearRegression regression = new NonlinearRegression(nparm);
 regression.setGuess(theta);
 double coef[] = regression.solve(deriv);
 System.out.println("The computed regression coefficients are \{" +
 coef[0] + ", " + coef[1] + "}");
 }
 }
}
int rank = regression.getRank();
System.out.println("The computed rank is " + rank);
double dfe = regression.getDFError();
System.out.println("The degrees of freedom for error are " + dfe);
double sse = regression.getSSE();
System.out.println("The sums of squares for error is " + sse);
double r[][] = regression.getR();
new PrintMatrix("R from the QR decomposition ").print(r);
}
}

Output
The computed regression coefficients are {58.60656292541919, -0.039586447277524736}
The computed rank is 2
The degrees of freedom for error are 13.0
The sums of squares for error is 49.459299862472186
R from the QR decomposition
0 1
0 1.874 1,139.928
1 0 1,139.798

Example 3: Nonlinear Regression using Set Methods
In this example some nondefault tolerances and scales are used to fit a nonlinear model. The data is 1.e-10 times the data of example 1. In order to fit this model without rescaling the data we first set the absolute function tolerance to 0.0. The default value would have caused the program to terminate after one iteration because the residual sum of squares is roughly 1.e-19. We also set the relative function tolerance to 0.0. The gradient tolerance is properly scaled for this problem so we leave it at “its default value. Finally, we set the elements of scale to be the absolute value of the reciprocal of the starting value. The derivatives are obtained by finite differences.

import com.imsl.stat.*;
public class NonlinearRegressionEx3 {
 public static void main(String args[]) throws Exception {
 NonlinearRegression.Function f = new NonlinearRegression.Function()

 public boolean f(double theta[], int iobs, double frq[], double wt[],
 double e[])
 {
 double ydata[] = {54.e-10, 50.e-10, 45.e-10, 37.e-10, 35.e-10,
 25.e-10, 20.e-10, 16.e-10, 18.e-10, 13.e-10, 8.e-10, 11.e-10,
 8.e-10, 4.e-10, 6.e-10};
 double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
 34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0};
 boolean iend;
 int nobs = 15;
 if (iobs < nobs) {
 wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
} else {
iend = false;
}
return iend;

int nparm = 2;
double theta[] = {6.e-9, -0.03};
double scale[] = new double[nparm];
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.setGuess(theta);
regression.setAbsoluteTolerance(0.0);
regression.setRelativeTolerance(0.0);
scale[0] = 1.0 / Math.abs(theta[0]);
scale[1] = 1.0 / Math.abs(theta[1]);
regression.setScale(scale);
double coef[] = regression.solve(f);
System.out.println("The computed regression coefficients are {" +
 " + coef[0] + ", " + coef[1] + "}\n");
int rank = regression.getRank();
System.out.println("The computed rank is "+ rank);
double dfe = regression.getDFError();
System.out.println("The degrees of freedom for error are "+ dfe);
double sse = regression.getSSE();
System.out.println("The sums of squares for error is "+ sse);
double r[][] = regression.getR();
System.out.println("R from the QR decomposition is "+
 " + r[0][0] + " + r[0][1]);
System.out.println(" + r[1][0] + " + r[1][1]);
}

Output
The computed regression coefficients are {5.7837836210879824E-9, -0.0396252538296399}
The computed rank is 2
The degrees of freedom for error are 13.0
The sums of squares for error is 5.166376610434158E-19
R from the QR decomposition is 1.873105632124423 5.7473458654105505E-9
0.0 5.837139910539398E-11
NonlinearRegression.NegativeFreqException class

static public class com.imsl.stat.NonlinearRegression.NegativeFreqException extends com.imsl.IMSLException
A negative frequency was encountered.

Constructor

NonlinearRegression.NegativeFreqException
public NonlinearRegression.NegativeFreqException(int rowIndex, int invocation, double value)

Description
Constructs a NegativeFreqException.

Parameters
- rowIndex – An int which specifies the row index of X for which the frequency is negative.
- invocation – An int which specifies the invocation number at which the error occurred. A 3 would indicate that the error occurred on the third invocation.
- value – An double which represents the value of the frequency encountered.

NonlinearRegression.NegativeWeightException class

static public class com.imsl.stat.NonlinearRegression.NegativeWeightException extends com.imsl.IMSLException
A negative weight was encountered.

Constructor

NonlinearRegression.NegativeWeightException
public NonlinearRegression.NegativeWeightException(int rowIndex, int invocation, double value)
Description
Constructs a NegativeWeightException.

Parameters
- `rowIndex` – An int which specifies the row index of X for which the weight is negative.
- `invocation` – An int which specifies the invocation number at which the error occurred. A 3 would indicate that the error occurred on the third invocation.
- `value` – An double which represents the value of the weight encountered.

NonlinearRegression.TooManyIterationsException class

static public class com.imsl.stat.NonlinearRegression.TooManyIterationsException extends com.imsl.IMSLException
The number of iterations has exceeded the maximum allowed.

Constructor

NonlinearRegression.TooManyIterationsException
public NonlinearRegression.TooManyIterationsException()

Description
Constructs a TooManyIterationsException.

NonlinearRegression.Function interface

public interface com.imsl.stat.NonlinearRegression.Function
Public interface for the user supplied function for NonlinearRegression.
Method

\[f \]

\[
\text{public boolean } f(\text{double[] theta, int iobs, double[] frq, double[] wt, double[] e})
\]

Description

Computes the weight, frequency, and residual given the parameter vector \(\text{theta} \) for a single observation.

Parameters

- \(\text{theta} \) – An input double array containing the parameter values of the model. The length of \(\text{theta} \) corresponds to the number of unknown parameters in the model.
- \(\text{iobs} \) – An input int value indicating the observation index. The function is evaluated at observation \(y[\text{iobs}] \).
- \(\text{frq} \) – An output double array of length 1 containing the frequency for observation \(y[\text{iobs}] \).
- \(\text{wt} \) – An output double array of length 1 containing the weight for observation \(y[\text{iobs}] \). Use \(\text{wt} = 1.0 \) for equal weighting (unweighted least squares).
- \(\text{e} \) – An output double array of length 1 which contains the error (residual) for observation \(y[\text{iobs}] \).

Returns

A boolean value representing the completion indicator. \text{true} indicates \(\text{iobs} \) is less than the number of observations. \text{false} indicates \(\text{iobs} \) is greater than or equal to the number of observations and \(\text{wt} \), \(\text{frq} \), and \(\text{e} \) are not output.

NonlinearRegression.Derivative interface

\[
\]

Public interface for the user supplied function to compute the derivative for NonlinearRegression.

Method

\[\text{derivative} \]

\[
\text{public boolean derivative(double[] theta, int iobs, double[] frq, double[] wt, double[] de)}
\]
Description
Computes the weight, frequency, and partial derivatives of the residual given the parameter vector \(\theta \) for a single observation.

Parameters
- **\(\theta \)** – An input double array which contains the parameter values of the regression function. The length of \(\theta \) corresponds to the number of unknown parameters in the regression function.
- **\(i_{\text{obs}} \)** – An input int value indicating the observation index. The function is evaluated at observation \(y[i_{\text{obs}}] \).
- **\(\text{frq} \)** – An output double array of length 1 containing the frequency for observation \(y[i_{\text{obs}}] \).
- **\(\text{wt} \)** – An output double array of length 1 containing the weight for the observation \(y[i_{\text{obs}}] \). Use \(\text{wt} = 1.0 \) for equal weighting (unweighted least squares).
- **\(\text{de} \)** – An output double array containing the partial derivatives of the error (residual) for observation \(y[i_{\text{obs}}] \). The length of \(\text{de} \) corresponds to the number of unknown parameters in the regression function.

Returns
A boolean value representing the completion indicator. \(\text{true} \) indicates \(i_{\text{obs}} \) is less than the number of observations. \(\text{false} \) indicates \(i_{\text{obs}} \) is greater than or equal to the number of observations and \(\text{wt}, \text{frq} \), and \(\text{de} \) are not output.

UserBasisRegression class

public class com.imsl.stat.UserBasisRegression

Fits a linear function of the form \(y = c_0 + c_1 f_1(x) + c_2 f_2(x) + \cdots + c_k f_k(x) + \epsilon \), where \(f_1(x), f_2(x), \ldots, f_k(x) \) are the user basis functions \(f_i(x) \) evaluated at index values \(i = 1, 2, \ldots, k \), \(c_0 \) is the intercept, \(c_1, c_2, \ldots, c_k \) are the coefficients associated with the basis functions, and is the random error associated with \(y \). The coefficients \(c_0, c_1, \ldots, c_k \) are determined by least squares.

Description
UserBasisRegression generalizes the concept of linear regression to user defined basis functions. The linear regression model is \(y = c_0 + c_1 x_1 + \cdots + c_k x_k + \epsilon \), where are the \(k \) independent variables.
UserBasisRegression generalizes this concept by setting \(x_i = f_i(x) \), where \(f_i(x) \) is any user defined function of \(x \).

This makes it easier for users to fit complex univariate models. For example, the LinearRegression class can be used to fit polynomials such as \(y = c_0 + c_1 x + c_2 x^2 + \cdots + c_k x^k + \epsilon \), but this requires an input matrix where the ith column of that array contains the values of \(x^i \).

With UserBasisRegression, these columns can be automatically generated. For this polynomial model, the user would define a user basis function \(f_i(x) = x^{i+1} \). The UserBasisRegression class
automatically inserts the necessary values into the regression equation and then calculates the coefficients and analysis of variance statistics.

Since the user provides a method for calculating the basis function, other more complex user basis functions are possible such as \(y = c_1 \sin(x) + c_2 \cos(x) + \epsilon \). In this example, \(n\text{Basis}=2 \), \(f_0(x) = \sin(x) \), and \(f_1(x) = \cos(x) \).

Constructor

UserBasisRegression

```java
public UserBasisRegression(RegressionBasis basis, int nBasis, boolean hasIntercept)
```

Description

Constructs a UserBasisRegression object

Parameters

- `basis` – a RegressionBasis basis function supplied by the user
- `nBasis` – an int which specifies the number of basis functions
- `hasIntercept` – a boolean which specifies whether or not the model has an intercept

Methods

getANOVA

```java
public ANOVA getANOVA()
```

Description

Get an analysis of variance table and related statistics.

Returns

an ANOVA table and related statistics

getCoefficients

```java
public double[] getCoefficients()
```

Description

Returns the regression coefficients.

Returns

A double array containing the regression coefficients. If hasIntercept is false its length is equal to the number of variables. If hasIntercept is true then its length is the number of variables plus one and the 0-th entry is the value of the intercept.
Exception

SingularMatrixException is thrown when the regression matrix is singular.

update

```java
public void update(double x, double y, double w)
```

Description

Adds a new observation and associated weight to the `RegressionBasis` object.

Parameters

- `x` – a `double` containing the independent (explanatory) variable.
- `y` – a `double` containing the dependent (response) variable.
- `w` – a `double` representing the weight

Example: Regression with User-supplied Basis Functions

In this example, we fit the function $1 + \sin(x) + 7 \cdot \sin(3x)$ with no error introduced. The function is evaluated at 90 equally spaced points on the interval $[0, 6]$. Four basis functions are used, $\sin(kx)$ for $k = 1,\ldots,4$ with no intercept.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class UserBasisRegressionEx1 {
    public static void main(String args[]) {
        import com.imsl.math.*;
        public class UserBasisRegressionEx1 {
            public static void main(String args[]) {
                class Basis1 implements RegressionBasis {
                    public double basis(int index, double x) {
                        return Math.sin((index + 1) * x);
                    }
                }

                UserBasisRegression ubr
                    = new UserBasisRegression(new Basis1(), 4, false);

                for (int k = 0; k < 90; k++) {
                    double x = 6.0 * k / 89.0;
                    double y = 1.0 + Math.sin(x) + 7.0 * Math.sin(3.0 * x);
                    ubr.update(x, y, 1.0);
                }

                double[] coef = ubr.getCoefficients();
                new PrintMatrix("The regression coefficients are: ").print(coef);
            }
        }
    }
}

Output

The regression coefficients are:

0
Example: Regression with User-supplied Basis Functions

In this example, we fit the polynomial \( y = c_0 + c_1 x + c_2 x^2 + \cdots + c_4 x^4 + \varepsilon \). For this model, the user basis function is \( f_i(x) = x^{i+1} \) with \( i = 0, 1, \cdots, nBasis = 4 \) and hasIntercept=true.

Data are generated using the model \( y = 10 + 2x + 5x^3 \) with \( x = 0, 1, \cdots, 9 \).

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class UserBasisRegressionEx2 {
 public static void main(String args[]) {
 class Basis implements RegressionBasis {
 public double basis(int index, double x) {
 // Notice zero-based indexing requires index be incremented
 return Math.pow(x, index + 1);
 }
 }

 UserBasisRegression ubr = new UserBasisRegression(new Basis(), 4, true);
 for (double x = 0; x < 10; x++) {
 double y = 10.0 + x + 3 * Math.pow(x, 3);
 ubr.update(x, y, 1.0);
 }

 // Print the regression coefficients
 double[] coef = ubr.getCoefficients();
 new PrintMatrix("The regression coefficients are:").print(coef);

 // Print the Anova Table
 ANOVA anovaTable = ubr.getANOVA();
 System.out.println("Degrees Of Freedom For Model:");
 System.out.println(" + anovaTable.getDegreesOfFreedomForModel()");
 System.out.println("Degrees Of Freedom For Error:");
 System.out.println(" + anovaTable.getDegreesOfFreedomForError()");
 System.out.println("Total (Corrected) Degrees Of Freedom: " + anovaTable.getTotalDegreesOfFreedom());
 System.out.println("Sum Of Squares For Model:");
 System.out.println(" + anovaTable.getSumOfSquaresForModel()");
 System.out.println("Sum Of Squares For Error:");
 System.out.println(" + anovaTable.getSumOfSquaresForError()");
 System.out.println("Total (Corrected) Sum Of Squares: " + anovaTable.getTotalSumOfSquares());
 }
}
```
Output

The regression coefficients are:

```
 0 0 10
 1 1
 2 -0
 3 3
 4 -0
```

```
Degrees Of Freedom For Model: 4.0
Degrees Of Freedom For Error: 5.0
Total (Corrected) Degrees Of Freedom: 9.0
Sum Of Squares For Model: 5152487.999999998
Sum Of Squares For Error: 1.862645149230957E-9
Total (Corrected) Sum Of Squares: 5152488.0
Model Mean Square: 1288121.9999999995
Error Mean Square: 3.7252902984619143E-10
F statistic: 3.4577761645363185E15
P value: 8.696627855641336E-39
R Squared (in percent): 99.99999999999997
Adjusted R Squared (in percent): 99.99999999999993
Model Error Standard deviation: 1.9301011109426144E-5
Mean Of Y: 622.0
Coefficient Of Variation (in percent): 3.10305644860795E-6
```
RegressionBasis interface

public interface com.imsl.stat.RegressionBasis

Public interface for user supplied function to UserBasisRegression object.

Method

basis
public double basis(int index, double x)

Description
Public interface for the nonlinear least-squares function.

Parameters
- index – an int which specifies the index of the basis function to be evaluated at x
- x – a double, the point at which the function is to be evaluated

Returns
a double, the returned value of the function at x

SelectionRegression class

public class com.imsl.stat.SelectionRegression implements Serializable, Cloneable

Selects the best multiple linear regression models.

Class SelectionRegression finds the best subset regressions for a regression problem with three or more independent variables. Typically, the intercept is forced into all models and is not a candidate variable. In this case, a sum of squares and crossproducts matrix for the independent and dependent variables corrected for the mean is computed internally. Optionally, SelectionRegression supports user-calculated sum-of-squares and crossproducts matrices; see the description of the compute method.

“Best” is defined by using one of the following three criteria:

- \( R^2 \) (in percent)

\[
R^2 = 100 \left(1 - \frac{\text{SSE}}{\text{SST}}\right)
\]
• $R^2_a$ (adjusted $R^2$)

$$R^2_a = 100 \left[ 1 - \frac{(n - 1) \text{SSE}_p}{n - p \text{SST}} \right]$$

Note that maximizing the $R^2_a$ is equivalent to minimizing the residual mean squared error:

$$\frac{\text{SSE}_p}{(n - p)}$$

• Mallow’s $C_p$ statistic

$$C_p = \frac{\text{SSE}_p}{s^2_k} + 2p - n$$

Here, $n$ is equal to the sum of the frequencies (or the number of rows in $X$ if frequencies are not specified in the compute method), and SST is the total sum of squares. $k$ is the number of candidate or independent variables, represented as the $n\text{Candidate}$ argument in the $\text{SelectionRegression}$ constructor. SSE$_p$ is the error sum of squares in a model containing $p$ regression parameters including $\beta_0$ (or $p - 1$ of the $k$ candidate variables). Variable $s^2_k$ is the error mean square from the model with all $k$ variables in the model. Hocking (1972) and Draper and Smith (1981, pp. 296-302) discuss these criteria.

Class SelectionRegression is based on the algorithm of Furnival and Wilson (1974). This algorithm finds the maximum number of good saved candidate regressions for each possible subset size. For more details, see method $\text{com.imsl.stat.SelectionRegression.setMaximumGoodSaved}$ (p. 747). These regressions are used to identify a set of best regressions. In large problems, many regressions are not computed. They may be rejected without computation based on results for other subsets; this yields an efficient technique for considering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix rather than allow it to be calculated. This can be accomplished using the appropriate compute method. Three situations in which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares and crossproducts matrix for the independent and dependent variables is required. Argument $n\text{Observations}$ must be set to 1 greater than the number of observations. Form $A^T A$, where $A = \{A, Y\}$, to compute the raw sum of squares and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares and crossproducts matrix for the constant regressor (= 1.0), independent, and dependent variables is required for $\text{cov}$. In this case, $\text{cov}$ contains one additional row and column corresponding to the constant regressor. This row and column contain the sum of squares and crossproducts of the constant regressor with the independent and dependent variables. The remaining elements in $\text{cov}$ are the same as in the previous case. Argument $n\text{Observations}$ must be set to 1 greater than the number of observations.
3. There are \( m \) variables that must be forced into the models. A sum of squares and crossproducts matrix adjusted for the \( m \) variables is required (calculated by regressing the candidate variables on the variables to be forced into the model). Argument \textit{nObservations} must be set to \( m \) less than the number of observations.

**Programming Notes**

\texttt{SelectionRegression} can save considerable CPU time over explicitly computing all possible regressions. However, the function has some limitations that can cause unexpected results for users who are unaware of the limitations of the software.

1. For \( k + 1 > - \log_2(\varepsilon) \), where \( \varepsilon \) is the largest relative spacing for double precision, some results can be incorrect. This limitation arises because the possible models indicated (the model numbers 1, 2, ..., \( 2^k \)) are stored as floating-point values; for sufficiently large \( k \), the model numbers cannot be stored exactly. On many computers, this means \texttt{SelectionRegression} (for \( k > 49 \)) can produce incorrect results.

2. \texttt{SelectionRegression} eliminates some subsets of candidate variables by obtaining lower bounds on the error sum of squares from fitting larger models. First, the full model containing all independent variables is fit sequentially using a forward stepwise procedure in which one variable enters the model at a time, and criterion values and model numbers for all the candidate variables that can enter at each step are stored. If linearly dependent variables are removed from the full model, a “VariablesDeleted” warning is issued. In this case, some submodels that contain variables removed from the full model because of linear dependency can be overlooked if they have not already been identified during the initial forward stepwise procedure. If this warning is issued and you want the variables that were removed from the full model to be considered in smaller models, you can rerun the program with a set of linearly independent variables.

**Fields**

- **\texttt{ADJUSTED_R_SQUARED_CRITERION}**
  
  \texttt{static final public int ADJUSTED_R_SQUARED_CRITERION}

  Indicates \( R^2_a \) (adjusted \( R^2 \)) criterion regression.

- **\texttt{MALLOWS_CP_CRITERION}**

  \texttt{static final public int MALLOWS_CP_CRITERION}

  Indicates Mallow’s \( C_p \) criterion regression.

- **\texttt{R_SQUARED_CRITERION}**

  \texttt{static final public int R_SQUARED_CRITERION}

  Indicates \( R^2 \) criterion regression.
Constructor

SelectionRegression
public SelectionRegression(int nCandidate)

Description
Constructs a new SelectionRegression object.

Parameter
nCandidate – An int containing the number of candidate variables (independent variables).
  nCandidate must be greater than 2.

Methods

compute
public void compute(double[][] x, double[] y) throws SelectionRegression.NoVariablesException,
Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException, Covariances.DiffObsDeletedException

Description
Computes the best multiple linear regression models.

Parameters
  x – A double matrix containing the observations of the candidate (independent) variables. The
    number of columns in x must be equal to the number of variables set in the constructor.
  y – A double array containing the observations of the dependent variable.

Exceptions
  NoVariablesException if no variables can enter any model
  Covariances.TooManyObsDeletedException more observations have been deleted than were
    originally entered
  Covariances.MoreObsDelThanEnteredException more observations are being deleted from
    the output covariance matrix than were originally entered
  Covariances.DiffObsDeletedException different observations are being deleted from return
    matrix than were originally entered

compute
public void compute(double[][] cv, int nObservations) throws SelectionRegression.NoVariablesException

Description
Computes the best multiple linear regression models using a user-supplied covariance matrix.
Parameters

cov – A double matrix containing a variance-covariance or sum of squares and crossproducts matrix, in which the last column must correspond to the dependent variable. cov can be computed using the Covariances class.

nObservations – An int containing the number of observations used to compute cov.

Exception

NoVariablesException if no variables can enter any model

compute

custom void compute(double[] x, double[] y, double[] weights) throws
SelectionRegression.NoVariablesException,
Covariances.NonnegativeWeightException, Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException, Covariances.DiffObsDeletedException

Description

Computes the best weighted multiple linear regression models.

Parameters

x – A double matrix containing the observations of the candidate (independent) variables. The number of columns in x must be equal to the number of variables set in the constructor.
y – A double array containing the observations of the dependent variable.
weights – A double array containing the weight for each of the observations.

Exceptions

NoVariablesException if no variables can enter any model

Covariances.NonnegativeWeightException weights must be nonnegative

Covariances.TooManyObsDeletedException more observations have been deleted than were originally entered

Covariances.MoreObsDelThanEnteredException more observations are being deleted from the output covariance matrix than were originally entered

Covariances.DiffObsDeletedException different observations are being deleted from return matrix than were originally entered

compute

public void compute(double[][] x, double[] y, double[] weights, double[] frequencies) throws SelectionRegression.NoVariablesException,
Covariances.NonnegativeFreqException, Covariances.NonnegativeWeightException,
Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException, Covariances.DiffObsDeletedException

Description

Computes the best weighted multiple linear regression models using frequencies for each observation.
Parameters

- **x** – A double matrix containing the observations of the candidate (independent) variables. The number of columns in \( x \) must be equal to the number of variables set in the constructor.
- **y** – A double array containing the observations of the dependent variable.
- **weights** – A double array containing the weight for each of the observations.
- **frequencies** – A double array containing the frequency for each of the observations of \( x \).

Exceptions

- **NoVariablesException** if no variables can enter any model
- **Covariances.NonnegativeFreqException** frequencies must be nonnegative
- **Covariances.NonnegativeWeightException** weights must be nonnegative
- **Covariances.TooManyObsDeletedException** more observations have been deleted than were originally entered
- **Covariances.MoreObsDelThanEnteredException** more observations are being deleted from the output covariance matrix than were originally entered
- **Covariances.DiffObsDeletedException** different observations are being deleted from return matrix than were originally entered

**getCriterionOption**

```java
public int getCriterionOption()
```

Description

Returns the criterion option used to calculate the regression estimates.

Returns

An int containing the criterion option.

**getStatistics**

```java
public SelectionRegression.Statistics getStatistics()
```

Description

Returns a new `Statistics` object.

Returns

A `Statistics` object containing the Coefficient statistics.

**setCriterionOption**

```java
public void setCriterionOption(int criterionOption)
```

Description

Sets the Criterion to be used. By default for all criteria, subset size 1, 2, ..., \( k = n \text{Candidate} \) are considered. However, for \( R^2 \) the maximum number of subsets can be restricted to `maxSubset` in the `com.imsl.stat.SelectionRegression.setMaximumSubsetSize` (p. 747) method.
<table>
<thead>
<tr>
<th>Criterion Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_SQUARED_CRITERION</td>
<td>For $R^2$, subset sizes 1, 2, ..., maxSubset are examined. This is the default with maxSubset = nCandidate.</td>
</tr>
<tr>
<td>ADJUSTED_R_SQUARED_CRITERION</td>
<td>For Adjusted $R^2$, subset sizes 1, 2, ..., nCandidate are examined.</td>
</tr>
<tr>
<td>MALLOWS_CP_CRITERION</td>
<td>For Mallow’s $C_p$ criteria are selected, the maxFound among all possible regressions are found.</td>
</tr>
</tbody>
</table>

**Parameter**

criterionOption – An int containing the criterion option used for the best subset regression selection.

**setMaximumBestFound**

public void setMaximumBestFound(int maxFound)

**Description**

Sets the maximum number of best regressions to be found.

If the $R^2$ criterion option is selected, the maxFound best regressions for each subset size examined are reported. If the adjusted $R^2$ or Mallow’s $C_p$ criteria are selected, the maxFound among all possible regressions are found.

**Parameter**

maxFound – An int containing the maximum number of best regressions to be reported. Default: maxFound = 1.

**setMaximumGoodSaved**

public void setMaximumGoodSaved(int maxSaved)

**Description**

Sets the maximum number of good regressions for each subset size saved.

Argument maxSaved must be greater than or equal to maxFound. Normally, maxSaved should be less than or equal to 10. It should never need be larger than maxSubset, the maximum number of subsets for any subset size. Computing time required is inversely related to maxSaved.

**Parameter**

maxSaved – An int containing the maximum number of good regressions saved for each subset size. Default: maxSaved = maximum(10, maxSubset).

**setMaximumSubsetSize**

public void setMaximumSubsetSize(int maxSubset)

**Description**

Sets the maximum subset size if $R^2$ criterion is used.
Parameter

maxSubset – An int containing the maximum subset size when $R^2$ criterion is used. Default: maxSubset = nCandidate.

**Example 1: SelectionRegression**

This example uses a data set from Draper and Smith (1981, pp. 629-630). The method `compute` is invoked to find the best regression for each subset size using the $R^2$ criterion.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class SelectionRegressionEx1 {

 public static void main(String[] args) throws Exception {
 double x[][] = {
 {7., 26., 6., 60.},
 {1., 29., 15., 52.},
 {11., 56., 8., 20.},
 {11., 31., 8., 47.},
 {7., 52., 6., 33.},
 {11., 55., 9., 22.},
 {3., 71., 17., 6.},
 {1., 31., 22., 44.},
 {2., 54., 18., 22.},
 {21., 47., 4., 26},
 {1., 40., 23., 34.},
 {11., 66., 9., 12.},
 {10.0, 68., 8., 12.}
 };

 double y[] = {
 78.5, 74.3, 104.3, 87.6,
 95.9, 109.2, 102.7, 72.5,
 93.1, 115.9, 83.8, 113.3, 109.4
 };

 String criterionOption;
 MessageFormat critMsg = new MessageFormat("Regressions with {0} variable(s) ({1})");
 MessageFormat critLabel = new MessageFormat(" Criterion Variables");
 MessageFormat coefMsg = new MessageFormat("Best Regressions with {0} variable(s) ({1})");
 MessageFormat coefLabel = new MessageFormat("Variable Coefficient Standard Error t-statistic p-value");

 SelectionRegression sr = new SelectionRegression(4);
 sr.compute(x, y);
 SelectionRegression.Statistics stats = sr.getStatistics();
 }
}
```
```java
criterionOption = "R-squared";

for (int i = 1; i <= 4; i++) {
 double[] tmpCrit = stats.getCriterionValues(i);
 int[][] indvar = stats.getIndependentVariables(i);

 Object p[] = {new Integer(i), criterionOption};
 System.out.println(critMsg.format(p));
 Object p1[] = {null};
 System.out.println(critLabel.format(p1));

 for (int j = 0; j < tmpCrit.length; j++) {
 System.out.print(" " + tmpCrit[j] + " ");
 for (int k = 0; k < indvar[j].length; k++) {
 System.out.print(indvar[j][k] + " ");
 }
 System.out.println();
 }
 System.out.println();
}

for (int i = 0; i < 4; i++) {
 System.out.println(" ");
 Object p[] = {new Integer(i + 1), criterionOption};
 System.out.println(coefMsg.format(p));
 Object p2[] = {null};
 System.out.println(coefLabel.format(p2));

 double[][] tmpCoef = stats.getCoefficientStatistics(i);
 PrintMatrix pm = new PrintMatrix();
 pm.setColumnSpacing(10);
 PrintMatrixFormat tst = new PrintMatrixFormat();
 tst.setNoColumnLabels();
 tst.setNoRowLabels();
 pm.print(tst, tmpCoef);
 System.out.println();
 System.out.println();
}
```

**Output**

Regressions with 1 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.45419641316094</td>
<td>4</td>
</tr>
<tr>
<td>66.6268257632938</td>
<td>2</td>
</tr>
<tr>
<td>53.39480238350332</td>
<td>1</td>
</tr>
<tr>
<td>28.58727312298116</td>
<td>3</td>
</tr>
</tbody>
</table>

Regressions with 2 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.86783745356314</td>
<td>1 2</td>
</tr>
<tr>
<td>97.24710477169312</td>
<td>1 4</td>
</tr>
<tr>
<td>93.52896406158074</td>
<td>3 4</td>
</tr>
</tbody>
</table>
Regressions with 3 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.233545</td>
<td>1 2 4</td>
</tr>
<tr>
<td>98.228468</td>
<td>1 2 3</td>
</tr>
<tr>
<td>98.128109</td>
<td>1 3 4</td>
</tr>
<tr>
<td>97.281962</td>
<td>2 3 4</td>
</tr>
</tbody>
</table>

Regressions with 4 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.237562</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Best Regressions with 1 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-0.738</td>
<td>0.155</td>
<td>-4.775</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Best Regressions with 2 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.468</td>
<td>0.121</td>
<td>12.105</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.662</td>
<td>0.046</td>
<td>14.442</td>
<td>0</td>
</tr>
</tbody>
</table>

Best Regressions with 3 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.452</td>
<td>0.117</td>
<td>12.41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.416</td>
<td>0.186</td>
<td>2.242</td>
<td>0.052</td>
</tr>
<tr>
<td>4</td>
<td>-0.237</td>
<td>0.173</td>
<td>-1.365</td>
<td>0.205</td>
</tr>
</tbody>
</table>

Best Regressions with 4 variable(s) (R-squared)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.551</td>
<td>0.745</td>
<td>2.083</td>
<td>0.071</td>
</tr>
<tr>
<td>2</td>
<td>0.51</td>
<td>0.724</td>
<td>0.705</td>
<td>0.501</td>
</tr>
<tr>
<td>3</td>
<td>0.102</td>
<td>0.755</td>
<td>0.135</td>
<td>0.896</td>
</tr>
<tr>
<td>4</td>
<td>-0.144</td>
<td>0.709</td>
<td>-0.203</td>
<td>0.844</td>
</tr>
</tbody>
</table>
Example 2: SelectionRegression

This example uses the same data set as the first example, but Mallow’s $C_p$ statistic is used as the criterion rather than $R^2$. Note that when Mallow’s $C_p$ statistic (or adjusted $R^2$) is specified, the method `setMaximumBestFound` is used to indicate the total number of “best” regressions (rather than indicating the number of best regressions per subset size, as in the case of the $R^2$ criterion). In this example, the three best regressions are found to be $(1, 2)$, $(1, 2, 4)$, and $(1, 2, 3)$.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class SelectionRegressionEx2 {
 public static void main(String[] args) throws Exception {
 double x[][] = {
 {7., 26., 6., 60.},
 {1., 29., 15., 52.},
 {11., 56., 8., 20.},
 {11., 31., 8., 47.},
 {7., 52., 6., 33.},
 {11., 55., 9., 22.},
 {3., 71., 17., 6.},
 {1., 31., 22., 44.},
 {2., 54., 18., 22.},
 {21., 47., 4., 26},
 {1., 40., 23., 34.},
 {11., 66., 9., 12.},
 {10.0, 68., 8., 12.}
 };

 double y[] = {
 78.5, 74.3, 104.3, 87.6,
 95.9, 109.2, 102.7, 72.5,
 93.1, 115.9, 83.8, 113.3,
 109.4
 };

 String criterionOption;
 MessageFormat critMsg
 = new MessageFormat("Regressions with {0} variable(s) ({1})");
 MessageFormat critLabel
 = new MessageFormat(" Criterion Variables");
 MessageFormat coefMsg = new MessageFormat("Best Regressions with
 + "{0} variable(s) ({1})");
 MessageFormat coefLabel = new MessageFormat("Variable Coefficient
 + " Standard Error t-statistic p-value");

 SelectionRegression sr = new SelectionRegression(4);
 sr.setCriterionOption(SelectionRegression.MALLOWS_CP_CRITERION);
 sr.setMaximumBestFound(3);
 sr.compute(x, y);
 SelectionRegression.Statistics stats = sr.getStatistics();
 criterionOption = "Mallows Cp";
 }
}
```
for (int i = 1; i <= 4; i++) {
    double[] tmpCrit = stats.getCriterionValues(i);
    int[][] indvar = stats.getIndependentVariables(i);
    Object p[] = {new Integer(i), criterionOption};
    System.out.println(critMsg.format(p));
    Object p1[] = {null};
    System.out.println(critLabel.format(p1));

    for (int j = 0; j < tmpCrit.length; j++) {
        System.out.println("\n" + tmpCrit[j] + " ");
        for (int k = 0; k < indvar[j].length; k++) {
            System.out.print(indvar[j][k] + " ");
        }
        System.out.println("\n");
    }
    System.out.println("\n");
}

for (int i = 0; i < 3; i++) {
    System.out.println("\n");
    double[][] tmpCoef = stats.getCoefficientStatistics(i);
    Object p[] = {new Integer(tmpCoef.length), criterionOption};
    System.out.println(coefMsg.format(p));
    Object p2[] = {null};
    System.out.println(coefLabel.format(p2));
    PrintMatrix pm = new PrintMatrix();
    pm.setColumnSpacing(10);
    NumberFormat nf = NumberFormat.getInstance();
    nf.setMinimumFractionDigits(4);
    PrintMatrixFormat tst = new PrintMatrixFormat();
    tst.setNoColumnLabels();
    tst.setNoRowLabels();
    tst.setNumberFormat(nf);
    pm.print(tst, tmpCoef);
    System.out.println();
    System.out.println();
}

Output

Regressions with 1 variable(s) (Mallows Cp)
Criterion	Variables
138.73083349167362 | 4
142.4864069369577 | 2
202.54876912344534 | 1
315.154284140073 | 3

Regressions with 2 variable(s) (Mallows Cp)
### Criterion Variables

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6782415983184045</td>
<td>1 2</td>
</tr>
<tr>
<td>5.495850824758396</td>
<td>1 4</td>
</tr>
<tr>
<td>22.37111196469674</td>
<td>3 4</td>
</tr>
<tr>
<td>138.22591975463834</td>
<td>2 4</td>
</tr>
<tr>
<td>198.09465256956904</td>
<td>1 3</td>
</tr>
</tbody>
</table>

#### Regressions with 3 variable(s) (Mallows Cp)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0182334734873084</td>
<td>1 2 4</td>
</tr>
<tr>
<td>3.04127972306423</td>
<td>1 2 3</td>
</tr>
<tr>
<td>3.496824423483164</td>
<td>1 3 4</td>
</tr>
<tr>
<td>7.337473995655756</td>
<td>2 3 4</td>
</tr>
</tbody>
</table>

#### Best Regressions with 2 variable(s) (Mallows Cp)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>1.4683</td>
<td>0.1213</td>
<td>12.1047</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>0.6623</td>
<td>0.0459</td>
<td>14.4424</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

#### Best Regressions with 3 variable(s) (Mallows Cp)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>1.4519</td>
<td>0.1170</td>
<td>12.4100</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>-0.2365</td>
<td>0.1733</td>
<td>-1.3650</td>
<td>0.2054</td>
</tr>
<tr>
<td>3.0000</td>
<td>-0.0226</td>
<td>0.0459</td>
<td>14.4424</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

#### Best Regressions with 3 variable(s) (Mallows Cp)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>1.6959</td>
<td>0.2046</td>
<td>8.2895</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>0.6569</td>
<td>0.0442</td>
<td>14.8508</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.0000</td>
<td>0.2500</td>
<td>0.1847</td>
<td>1.3536</td>
<td>0.2089</td>
</tr>
</tbody>
</table>
SelectionRegression.NoVariablesException class

static public class com.imsl.stat.SelectionRegression.NoVariablesException
extends com.imsl.IMSLException

No Variables can enter the model.

Constructor

SelectionRegression.NoVariablesException
public SelectionRegression.NoVariablesException()

Description
Constructs a NoVariablesException.

SelectionRegression.Statistics class

public class com.imsl.stat.SelectionRegression.Statistics implements Serializable

Statistics contains statistics related to the regression coefficients.

Methods

g.getCoefficientStatistics
public double[][] getCoefficientStatistics(int regressionIndex)

Description
Returns the coefficients statistics for each of the best regressions found for each subset considered.
The value set by method com.imsl.stat.SelectionRegression.setMaximumBestFound (p. 747)
determines the total number of best regressions to find. The number of best regression is equal to
(maxSubset x maxFound), if criterion R_SQUARED_CRITERION is specified or it is equal to maxFound if
either MALLOWS_CP_CRITERION or ADJUSTED_R_SQUARED_CRITERION is specified.
Each row contains statistics related to the regression coefficients of the best models. The regressions are
ordered so that the better regressions appear first. The statistic in the columns are as follows (inferences
are conditional on the selected model):
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>variable number</td>
</tr>
<tr>
<td>1</td>
<td>coefficient estimate</td>
</tr>
<tr>
<td>2</td>
<td>estimated standard error of the estimate</td>
</tr>
<tr>
<td>3</td>
<td>t-statistic for the test that the coefficient is 0</td>
</tr>
<tr>
<td>4</td>
<td>p-value for the two-sided t test</td>
</tr>
</tbody>
</table>

Parameter

regressionIndex – An int which specifies the index of the best regression statistics to return. There will be 0 to (maxSubset x maxFound - 1) best regressions if R_SQUARED_CRITERION is specified or 0 to (maxFound - 1) if either MALLOWS_CP_CRITERION or ADJUSTED_R_SQUARED_CRITERION is specified.

Returns

A two-dimensional double array containing the regression statistics.

getCriterionValues

public double[] getCriterionValues(int numVariables)

Description

Returns an array containing the values of the best criterion for the number of variables considered.

Parameter

numVariables – An int which specifies the number of variables considered.

Returns

A double array with maxSubset rows and nCandidate columns containing the criterion values.

getIndependentVariables

public int[][] getIndependentVariables(int numVariables)

Description

Returns the identification numbers for the independent variables for the number of variables considered and in the same order as the criteria returned by com.imsl.stat.SelectionRegression.Statistics.getCriterionValues (p. 755).

Parameter

numVariables – An int which specifies the number of variables considered.

Returns

An int matrix containing the identification numbers for the independent variables considered.
StepwiseRegression class

public class com.imsl.stat.StepwiseRegression implements Serializable, Cloneable

Builds multiple linear regression models using forward selection, backward selection, or stepwise selection.

Class StepwiseRegression builds a multiple linear regression model using forward selection, backward selection, or forward stepwise (with a backward glance) selection.

Levels of priority can be assigned to the candidate independent variables using the com.imsl.stat.StepwiseRegression.setLevels (p. 762) method. All variables with a priority level of 1 must enter the model before variables with a priority level of 2. Similarly, variables with a level of 2 must enter before variables with a level of 3, etc. Variables also can be forced into the model (com.imsl.stat.StepwiseRegression.setForce (p. 762)). Note that specifying “force” without also specifying the levels will result in all variables being forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In this case, a sum-of-squares and crossproducts matrix for the independent and dependent variables corrected for the mean is required. Other possibilities are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and crossproducts matrix for the independent and dependent variables is required as input in cov. Argument nObservations must be set to one greater than the number of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and crossproducts matrix for the constant regressor (=1), independent and dependent variables are required for cov. In this case, cov contains one additional row and column corresponding to the constant regressor. This row/column contains the sum-of-squares and crossproducts of the constant regressor with the independent and dependent variables. The remaining elements in cov are the same as in the previous case. Argument nObservations must be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). StepwiseRegression uses sweeps of the covariance matrix (input in cov, if the covariance matrix is specified, or generated internally) to move variables in and out of the model (Hemmerle 1967, Chapter 3). The SWEEP operator discussed in Goodnight (1979) is used. A description of the stepwise algorithm is also given by Kennedy and Gentle (1980, pp. 335-340). The advantage of stepwise model building over all possible regression (com.imsl.stat.SelectionRegression (p. 741)) is that it is less demanding computationally when the number of candidate independent variables is very large. However, there is no guarantee that the model selected will be the best model (highest $R^2$) for any subset size of independent variables.
Fields

**BACKWARD_REGRESSION**
static final public int BACKWARD_REGRESSION

Indicates backward regression. An attempt is made to remove a variable from the model. A variable is removed if its \( p \)-value is greater than \( pValueOut \). During initialization, all candidate independent variables enter the model.

**FORWARD_REGRESSION**
static final public int FORWARD_REGRESSION

Indicates forward regression. An attempt is made to add a variable to the model. A variable is added if its \( p \)-value is less than \( pValueIn \). During initialization, only forced variables enter the model.

**STEPWISE_REGRESSION**
static final public int STEPWISE_REGRESSION

Indicates stepwise regression. A backward step is attempted. After the backward step, a forward step is attempted. This is a stepwise step. Any forced variables enter the model during initialization.

Constructors

**StepwiseRegression**

public StepwiseRegression(double[][] x, double[] y) throws Covariances.TooManyObsDeletedException, Covariances.MoreObsDelThanEnteredException, Covariances.DiffObsDeletedException

Description

Creates a new instance of StepwiseRegression.

Parameters

- \( x \) – a double matrix of \( nObs \) by \( nVars \), where \( nObs \) is the number of observations and \( nVars \) is the number of independent variables
- \( y \) – a double array containing the observations of the dependent variable

Exceptions

- Covariances.TooManyObsDeletedException is thrown if more observations have been deleted than were originally entered, i.e. the sum of frequencies has become negative
- Covariances.MoreObsDelThanEnteredException is thrown if more observations are being deleted from “variance-covariance” matrix than were originally entered. The corresponding row, column of the incidence matrix is less than zero.
- Covariances.DiffObsDeletedException is thrown if different observations are being deleted than were originally entered
**StepwiseRegression**

public StepwiseRegression(double[][] cov, int nObservations)

**Description**

Creates a new instance of StepwiseRegression from a user-supplied variance-covariance matrix.

**Parameters**

cov – a double matrix containing a variance-covariance or sum of squares and crossproducts matrix, in which the last column must correspond to the dependent variable. cov can be computed using the com.imsl.stat.Covariances (p. 607) class.

nObservations – an int containing the number of observations associated with cov.

**StepwiseRegression**

public StepwiseRegression(double[][] x, double[] y, double[] weights) throws Covariances.NonnegativeWeightException, Covariances.TooManyObsDeletedException, Covariances.MoreObsDelThanEnteredException, Covariances.DiffObsDeletedException

**Description**

Creates a new instance of weighted StepwiseRegression.

**Parameters**

x – a double matrix of nObs by nVars, where nObs is the number of observations and nVars is the number of independent variables

y – a double array containing the observations of the dependent variable

weights – a double array containing the weight for each observation of x

**Exceptions**

Covariances.NonnegativeWeightException is thrown if the weights are negative

Covariances.TooManyObsDeletedException is thrown if more observations have been deleted than were originally entered, i.e. the sum of frequencies has become negative

Covariances.MoreObsDelThanEnteredException is thrown if more observations are being deleted from “variance-covariance” matrix than were originally entered. The corresponding row, column of the incidence matrix is less than zero

Covariances.DiffObsDeletedException is thrown if different observations are being deleted than were originally entered

**StepwiseRegression**

public StepwiseRegression(double[][] x, double[] y, double[] weights, double[] frequencies) throws Covariances.NonnegativeFreqException, Covariances.NonnegativeWeightException, Covariances.TooManyObsDeletedException, Covariances.MoreObsDelThanEnteredException, Covariances.DiffObsDeletedException

**Description**

Creates a new instance of weighted StepwiseRegression using observation frequencies.
Parameters

- **x** – a double matrix of **nObs** by **nVars**, where **nObs** is the number of observations and **nVars** is the number of independent variables
- **y** – a double array containing the observations of the dependent variable
- **weights** – a double array containing the weight for each observation of **x**
- **frequencies** – a double array containing the frequency for each row of **x**

Exceptions

- **Covariances.NonnegativeFreqException** is thrown if the frequencies are negative
- **Covariances.NonnegativeWeightException** is thrown if the weights are negative
- **Covariances.TooManyObsDeletedException** is thrown if more observations have been deleted than were originally entered, i.e. the sum of frequencies has become negative
- **Covariances.MoreObsDelThanEnteredException** is thrown if more observations are being deleted from “variance-covariance” matrix than were originally entered. The corresponding row, column of the incidence matrix is less than zero
- **Covariances.DiffObsDeletedException** is thrown if different observations are being deleted than were originally entered

Methods

**compute**

```java
public void compute() throws StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException
```

Description

Builds the multiple linear regression models using forward selection, backward selection, or stepwise selection.

Exceptions

- **NoVariablesEnteredException** is thrown if no variables entered the model. All elements of ANOVA table are set to NaN.
- **CyclingIsOccurringException** is thrown if cycling occurs

**getANOVA**

```java
public ANOVA getANOVA() throws StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException
```

Description

Gets an analysis of variance table and related statistics.
Returns
an ANOVA table and related statistics

coefficientTTests
public StepwiseRegression.CoefficientTTests getCoefficientTTests() throws StepwiseRegression.NoVariablesEnteredException, StepwiseRegression.CyclingIsOccurringException

Description
Returns the student-t test statistics for the regression coefficients.

Each row corresponding to a variable not in the model contains statistics for a model which includes the variables of the final model and the variable corresponding to the row in question.

Returns
a StepwiseRegression.CoefficientTTests object containing statistics relating to the regression coefficients

coefficientVIF
public double[] getCoefficientVIF() throws StepwiseRegression.NoVariablesEnteredException, StepwiseRegression.CyclingIsOccurringException

Description
Returns the variance inflation factors for the final model in this invocation.

The elements are in the same order as the independent variables in x (or, if the covariance matrix is specified, the elements are in the same order as the variables in cov). Each element corresponding to a variable not in the model contains statistics for a model which includes the variables of the final model and the variables corresponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all others can be obtained from the i-th element for the returned array by the following formula:

\[ 1.0 - \frac{1.0}{VIF} \]

Returns
a double array containing the variance inflation factors for the final model in this invocation

covariancesSwept
public double[][] getCovariancesSwept() throws StepwiseRegression.NoVariablesEnteredException, StepwiseRegression.CyclingIsOccurringException

Description
Returns the results after cov has been swept for the columns corresponding to the variables in the model.
Returns

a double matrix containing the results after cov has been swept on the columns corresponding to the variables in the model.

The estimated variance-covariance matrix of the estimated regression coefficients in the final model can be obtained by extracting the rows and columns corresponding to the independent variables in the final model and multiplying the elements of this matrix by the error mean square.

getHistory

public double[] getHistory() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Description

Returns the stepwise regression history for the independent variables.

Returns

a double array containing the recent history of the independent variables. The last element corresponds to the dependent variable.

<table>
<thead>
<tr>
<th>history[i]</th>
<th>Status of i-th Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>This variable has never been added to the model.</td>
</tr>
<tr>
<td>0.5</td>
<td>This variable was added to the model during initialization.</td>
</tr>
<tr>
<td>k &gt; 0.0</td>
<td>This variable was added to the model during the k-th step.</td>
</tr>
<tr>
<td>k &lt; 0.0</td>
<td>This variable was deleted from the model during the k-th step.</td>
</tr>
</tbody>
</table>

getIntercept

public double getIntercept() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Description

Returns the intercept.

The intercept is computed as follows:

$$
\beta_0 = \bar{y} - \sum_{i=1}^{n} \beta_i \bar{x}_{i-1}
$$

where $\bar{y}$ is the mean of the dependent variable $y$, $\beta_i$ are the coefficients, and $\bar{x}_i$ are the mean values for each independent variable $x_i$ in the final model. If the covariance matrix is used for input, use method setMean() to specify the means of the variables. If $x$ and $y$ are used for input, the means are computed internally and do not need to be specified.

Returns

a double containing the intercept
**getSwept**

```java
public double[] getSwept() throws StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException
```

**Description**

Returns an array containing information indicating whether or not a particular variable is in the model.

**Returns**

a double array with information to indicate the independent variables in the model

The last element corresponds to the dependent variable. A +1 in the \(i\)-th position indicates that the variable is in the selected model. A -1 indicates that the variable is not in the selected model.

**setForce**

```java
public void setForce(int force)
```

**Description**

Forces independent variables into the model based on their level assigned from `setLevels(int[])`.

**Parameter**

- `force` – an int specifying the upper bound on the variables forced into the model

Variables with levels 1, 2, ..., `force` are forced into the model as independent variables.

**setLevels**

```java
public void setLevels(int[] levels)
```

**Description**

Sets the levels of priority for variables entering and leaving the regression.

Each variable is assigned a positive value which indicates its level of entry into the model. A variable can enter the model only after all variables with smaller nonzero levels of entry have entered. Similarly, a variable can only leave the model after all variables with higher levels of entry have left. Variables with the same level of entry compete for entry (deletion) at each step. Argument `levels[i]=0` means the \(i\)-th variable never enters the model. Argument `levels[i]=-1` means the \(i\)-th variable is the dependent variable. The last element in `levels` must correspond to the dependent variable, except when the variance-covariance or sum of squares and crossproducts matrix is supplied.

**Parameter**

- `levels` – an int array containing the levels of entry into the model for each variable

Default: 1, 1, ..., 1, -1 where -1 corresponds to the dependent variable.

**setMeans**

```java
public void setMeans(double[] means)
```

**Description**

Sets the means of the variables.

This is required when the covariance array is input and the intercept `com.imsl.stat.StepwiseRegression.getIntercept` (p. 761) is requested. Otherwise, it is not used.

762 • StepwiseRegression
Parameter
means – a double array of length nVars+1, where nVars is the number of independent variables.
means[0] through means[nVars-1] are the means of the independent variables and
means[nVars] is the mean of the dependent variable.

setMethod
public void setMethod(int method)

Description
Specifies the stepwise selection method, forward, backward, or stepwise Regression.

Parameter
method – an int value between -1 and 1 specifying the stepwise selection method
Fields FORWARD_REGRESSION, BACKWARD_REGRESSION, and STEPWISE_REGRESSION should be
used. Default: STEPWISE_REGRESSION.

setPValueIn
public void setPValueIn(double pValueIn)

Description
Defines the largest p-value for variables entering the model.
Variables with p-value less than pValueIn may enter the model. Backward regression does not use this
value.

Parameter
pValueIn – a double containing the largest p-value for variables entering the model
Default: pValueIn = 0.05

setPValueOut
public void setPValueOut(double pValueOut)

Description
Defines the smallest p-value for removing variables.
Variables with p-values greater than pValueOut may leave the model. pValueOut must be greater than
or equal to pValueIn. A common choice for pValueOut is 2*pValueIn. Forward regression does not
use this value.

Parameter
pValueOut – a double containing the smallest p-value for removing variables from the model
Default: pValueOut = 0.10

setTolerance
public void setTolerance(double tolerance)

Description
The tolerance used to detect linear dependence among the independent variables.
**Parameter**

tolerance – a double containing the tolerance used for detecting linear dependence

Default: tolerance = 2.2204460492503e-16

**Example: StepwiseRegression**

This example uses a data set from Draper and Smith (1981, pp. 629-630). The method compute() is invoked to find the best regression subset from the four candidate variables. The getSwept() method is used to label the variables "in" or "out" of the final model.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class StepwiseRegressionEx1 {

 private static void print(String[] labels, ANOVA anova){
 double[] values = anova.getArray();
 for (int i=0; i<values.length-2; i++){
 System.out.printf("%41s%s
", labels[i], customDecimalFormat(values[i]));
 }
 System.out.println();
 }

 private static String customDecimalFormat(double value) {
 java.text.DecimalFormat df1 = new java.text.DecimalFormat("##,###.###");
 String s = df1.format(value);
 String[] toc = s.split("\.");
 if (toc.length == 1) {
 s = String.format("%6s", s);
 } else {
 toc[0] = String.format("%6s", toc[0]);
 toc[1] = String.format("%3s", toc[1]);
 s = toc[0] + "." + toc[1];
 }
 return s;
 }

 public static void main(String[] args) throws Exception {
 double x[][] = {
 {7., 26., 6., 60.}, {1., 29., 15., 52.}, {11., 56., 8., 20.},
 {11., 31., 8., 47.}, {7., 52., 6., 33.}, {11., 55., 9., 22.},
 {3., 71., 17., 6.}, {1., 31., 22., 44.}, {2., 54., 18., 22.},
 {21., 47., 4., 26}, {1., 40., 23., 34.}, {11., 66., 9., 12.},
 {10.0, 68., 8., 12.}
 };
 double y[] = {
 78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7,
 72.5, 93.1, 115.9, 83.8, 113.3, 109.4
 };
 }
}
```
String[] rowLabels = {
    "degrees of freedom for regression: ",
    "degrees of freedom for error: ",
    "total degrees of freedom: ",
    "sum of squares for regression: ",
    "sum of squares for error: ",
    "total sum of squares: ",
    "regression mean square: ",
    "error mean square: ",
    "F-statistic: ",
    "p-value: ",
    "R-squared (in percent): ",
    "adjusted R-squared (in percent): ",
    "est. standard deviation of within error: 
};

StepwiseRegression sr = new StepwiseRegression(x, y);
sr.compute();
System.out.printf("%20s\n", "*** ANOVA ***");
System.out.printf("%45s\n", "Value");

print(rowLabels, sr.getANOVA());

StepwiseRegression.CoefficientTTests coefT = sr.getCoefficientTTests();
double coef[][] = new double[4][4];
for (int i = 0; i < 4; i++) {
    coef[i][0] = coefT.getCoefficient(i);
    coef[i][1] = coefT.getStandardError(i);
    coef[i][2] = coefT.getTStatistic(i);
    coef[i][3] = coefT.getPValue(i);
}

String[] cLabels = {"Coef", "Std. Err", "T-Stat", "p-Value"};

PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setColumnLabels(cLabels);

pm.setTitle("*** Coef ***");
pm.print(pmf, coef);

pm.setTitle("*** History ***");
pm.print(sr.getHistory());

pm.setTitle("*** VIF ***");
pm.print(sr.getCoefficientVIF());

pm.setTitle("*** CovS ***");
pm.print(sr.getCovariancesSwept());

System.out.println("*** Intercept *** " + sr.getIntercept());

Output

*** ANOVA ***

| Regression | StepwiseRegression | 765 |
degrees of freedom for regression: 2
degrees of freedom for error: 10
total degrees of freedom: 12
sum of squares for regression: 2,641.001
sum of squares for error: 74.762
total sum of squares: 2,715.763
regression mean square: 1,320.5
error mean square: 7.476
F-statistic: 176.627
p-value: 0
R-squared (in percent): 97.247
adjusted R-squared (in percent): 96.697
est. standard deviation of within error: 2.734

*** Coef ***
<table>
<thead>
<tr>
<th>Coef</th>
<th>Std. Err</th>
<th>T-Stat</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.44</td>
<td>0.138</td>
<td>10.403</td>
</tr>
<tr>
<td>1</td>
<td>0.416</td>
<td>0.186</td>
<td>2.242</td>
</tr>
<tr>
<td>2</td>
<td>-0.41</td>
<td>0.199</td>
<td>-2.058</td>
</tr>
<tr>
<td>3</td>
<td>-0.614</td>
<td>0.049</td>
<td>-12.621</td>
</tr>
</tbody>
</table>

*** History ***
<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>0</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.064</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** VIF ***
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.064</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** CovS ***
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.003</td>
<td>-0.029</td>
<td>-0.946</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-0.029</td>
<td>154.72</td>
<td>-142.8</td>
<td>0.907</td>
</tr>
<tr>
<td>2</td>
<td>-0.946</td>
<td>-142.8</td>
<td>142.302</td>
<td>0.07</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.907</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1.44</td>
<td>64.381</td>
<td>-58.35</td>
<td>-0.614</td>
</tr>
</tbody>
</table>

*** Intercept *** 103.09738163667471

766 ● StepwiseRegression JMSL
StepwiseRegression.CyclingIsOccurringException class

static public class
com.ims1.stat.StepwiseRegression.CyclingIsOccurringException extends com.ims1.IMSLException

Cycling is occurring.

Constructor

StepwiseRegression.CyclingIsOccurringException
public StepwiseRegression.CyclingIsOccurringException(int nStep)

Description
Constructs a CyclingIsOccurringException.

Parameter
nStep – an int which specifies the number of steps taken.

StepwiseRegression.NoVariablesEnteredException class

static public class
com.ims1.stat.StepwiseRegression.NoVariablesEnteredException extends com.ims1.IMSLException

No Variables can enter the model.

Constructor

StepwiseRegression.NoVariablesEnteredException
public StepwiseRegression.NoVariablesEnteredException()
Description
Constructs a NoVariablesEnteredException.

StepwiseRegression.CoefficientTTests class

public class com.imsl.stat.StepwiseRegression.CoefficientTTests implements Serializable
CoefficientTTests() contains statistics related to the student-\(t\) test, for each regression coefficient.

Methods

getCoefficient
public double getCoefficient(int index)

Description
Returns the estimate for a coefficient of the independent variable.

Parameter
index – an int which specifies the index of the coefficient whose estimate is to be returned.
index must be between 1 and the number of independent variables.

Returns
a double which contains the estimate for the coefficient.

getPValue
public double getPValue(int index)

Description
Returns the \(p\)-value for the two-sided test \(H_0: \beta = 0\) vs. \(H_1: \beta \neq 0\).

Parameter
index – an int which specifies the index of the coefficient whose \(p\)-value is to be returned.
index must be between 1 and the number of independent variables.

Returns
a double which contains the estimated \(p\)-value for the coefficient.

getStandardError
public double getStandardError(int index)
**Description**
Returns the estimated standard error for a coefficient estimate.

**Parameter**
- `index` – an `int` which specifies the index of the coefficient whose standard error estimate is to be returned. `index` must be between 1 and the number of independent variables.

**Returns**
a `double` which contains the estimated standard error for the coefficient.

**getTStatistic**
`public double getTStatistic(int index)`

**Description**
Returns the student-\( t \) test statistic for testing the \( i \)-th coefficient equal to zero \( (\beta_{index} = 0) \).

**Parameter**
- `index` – an `int` which specifies the index of the coefficient whose \( t \)-test statistic is to be returned. `index` must be between 1 and the number of independent variables.

**Returns**
a `double` which contains the estimated \( t \)-test statistic for the coefficient.
Chapter 15: Analysis of Variance

Types

class ANOVA .......................................................... 771
class ANOVAFactorial ............................................... 781
class ANCOVA .......................................................... 791
class MultipleComparisons ........................................ 803

Usage Notes

The classes described in this chapter are for commonly-used experimental designs. Typically, responses are stored in the input vector \( y \) in a pattern that takes advantage of the balanced design structure. Consequently, the full set of model subscripts is not needed to identify each response. The classes assume the usual pattern, which requires that the last model subscript change most rapidly, followed by the model subscript next in line, and so forth, with the first subscript changing at the slowest rate. This pattern is referred to as lexicographical ordering.

ANOVA class allows missing responses if confidence interval information is not requested. Double.NaN (Not a Number) is the missing value code used by these classes. Any element of \( y \) that is missing must be set to NaN. Other classes described in this chapter do not allow missing responses because the classes generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, classes in this chapter typically perform a test for lack of fit when \( n(n > 1) \) responses are available in each cell of the experimental design.

ANOVA class

public class com.imsl.stat.ANOVA implements Serializable, Cloneable

Analysis of Variance table and related statistics.
Fields

**BONFERRONI**
static final public int BONFERRONI

The Bonferroni method

**DUNN_SIDAK**
static final public int DUNN_SIDAK

The Dunn-Sidak method

**ONE_AT_A_TIME**
static final public int ONE_AT_A_TIME

The One-at-a-Time (Fisher’s LSD) method

**SCHUEFFE**
static final public int SCHUEFFE

The Scheffe method

**TUKEY**
static final public int TUKEY

The Tukey method

**TUKEY_KRAMER**
static final public int TUKEY_KRAMER

The Tukey-Kramer method

Constructors

**ANOVA**
public ANOVA(double[][] y)

Description
Parameter

y – is a two-dimension double array containing the responses. The rows in y correspond to observation groups. Each row of y can contain a different number of observations.

**ANOVA**
public ANOVA(double dfr, double ssr, double dfe, double sse, double gmean)
Description
Construct an analysis of variance table and related statistics. Intended for use by the LinearRegression class.

Parameters
- dfr – a double scalar value representing the degrees of freedom for model.
- ssr – a double scalar value representing the sum of squares for model.
- dfe – a double scalar value representing the degrees of freedom for error.
- sse – a double scalar value representing the sum of squares for error.
- gmean – a double scalar value representing the grand mean. If the grand mean is not known it may be set to not-a-number.

Methods

getAdjustedRSquared
public double getAdjustedRSquared()

Description
Returns the adjusted R-squared (in percent).

Returns
a double scalar value representing the adjusted R-squared (in percent)

getArray
public double[] getArray()

Description
Returns the ANOVA values as an array.

Returns
a double[15] array containing the following values:
### getCoefficientOfVariation

**public double getCoefficientOfVariation()**

**Description**

Returns the coefficient of variation (in percent).

**Returns**

a double scalar value representing the coefficient of variation (in percent)

### getConfidenceInterval

**public double[] getConfidenceInterval(double conLevel, int i, int j, int compMethod)**

**Description**

Computes the confidence interval associated with the difference of means between two groups using a specified method.

**getConfidenceInterval** computes the simultaneous confidence interval on the pairwise comparison of means \( \mu_i \) and \( \mu_j \) in the one-way analysis of variance model. Any of several methods can be chosen. A good review of these methods is given by Stoline (1981). Also the methods are discussed in many elementary statistics texts, e.g., Kirk (1982, pages 114-127). Let \( s^2 \) be the estimated variance of a single observation. Let \( \nu \) be the degrees of freedom associated with \( s^2 \). Let

\[
\alpha = 1 - \frac{\text{conLevel}}{100.0}
\]

The methods are summarized as follows:

**Tukey method:** The Tukey method gives the narrowest simultaneous confidence intervals for the pairwise differences of means \( \mu_i - \mu_j \) in balanced \((n_1 = n_2 = \ldots = n_k = n)\) one-way designs. The
method is exact and uses the Studentized range distribution. The formula for the difference \( \mu_i - \mu_j \) is given by

\[
\bar{y}_i - \bar{y}_j \pm q_{1-\alpha,k,v} \sqrt{\frac{s^2}{n_i} + \frac{s^2}{n_j}}
\]

where \( q_{1-\alpha,k,v} \) is the \( (1 - \alpha) \) 100 percentage point of the Studentized range distribution with parameters \( k \) and \( v \). If the group sizes are unequal, the Tukey-Kramer method is used instead.

**Tukey-Kramer method:** The Tukey-Kramer method is an approximate extension of the Tukey method for the unbalanced case. (The method simplifies to the Tukey method for the balanced case.) The method always produces confidence intervals narrower than the Dunn-Sidak and Bonferroni methods. Hayter (1984) proved that the method is conservative, i.e., the method guarantees a confidence coverage of at least \( (1 - \alpha) \) 100%. Hayter’s proof gave further support to earlier recommendations for its use (Stoline 1981). (Methods that are currently better are restricted to special cases and only offer improvement in severely unbalanced cases, see, e.g., Spurrier and Isham 1985). The formula for the difference \( \mu_i - \mu_j \) is given by the following:

\[
\bar{y}_i - \bar{y}_j \pm q_{1-\alpha,k,v} \sqrt{\frac{s^2}{2n_i} + \frac{s^2}{2n_j}}
\]

**Dunn-Sidak method:** The Dunn-Sidak method is a conservative method. The method gives wider intervals than the Tukey-Kramer method. (For large \( v \) and small \( \alpha \) and \( k \), the difference is only slight.) The method is slightly better than the Bonferroni method and is based on an improved Bonferroni (multiplicative) inequality (Miller, pages 101, 254-255). The method uses the \( t \) distribution. The formula for the difference \( \mu_i - \mu_j \) is given by

\[
\bar{y}_i - \bar{y}_j \pm t_{\frac{1}{2} + \frac{1}{2}(1-\alpha)^{1/n},v} \sqrt{\frac{s^2}{n_i} + \frac{s^2}{n_j}}
\]

where \( t_{\frac{1}{2},v} \) is the \( 100\% \) percentage point of the \( t \) distribution with \( v \) degrees of freedom.

**Bonferroni method:** The Bonferroni method is a conservative method based on the Bonferroni (additive) inequality (Miller, page 8). The method uses the \( t \) distribution. The formula for the difference \( \mu_i - \mu_j \) is given by

\[
\bar{y}_i - \bar{y}_j \pm t_{\frac{1}{2} - \frac{\alpha}{2nk},v} \sqrt{\frac{s^2}{n_i} + \frac{s^2}{n_j}}
\]

**Scheffé method:** The Scheffé method is an overly conservative method for simultaneous confidence intervals on pairwise difference of means. The method is applicable for simultaneous confidence intervals on all contrasts, i.e., all linear combinations

\[
\sum_{i=1}^{k} c_i \mu_i
\]

where the following is true:

\[
\sum_{i=1}^{k} c_i = 0
\]
The method can be recommended here only if a large number of confidence intervals on contrasts in addition to the pairwise differences of means are to be constructed. The method uses the $F$ distribution. The formula for the difference $\mu_i - \mu_j$ is given by

$$\bar{y}_i - \bar{y}_j \pm (k-1) F_{1, \nu} \left( \frac{s^2}{n_i} + \frac{s^2}{n_j} \right)$$

where $F_{1, \nu}$ is the $(1 - \alpha)$ 100 percentage point of the $F$ distribution with $k - 1$ and $\nu$ degrees of freedom.

**One-at-a-time $t$ method (Fisher’s LSD):** The one-at-a-time $t$ method is the method appropriate for constructing a single confidence interval. The confidence percentage input is appropriate for one interval at a time. The method has been used widely in conjunction with the overall test of the null hypothesis $\mu_1 = \mu_2 = \ldots = \mu_k$ by the use of the $F$ statistic. Fisher’s LSD (least significant difference) test is a two-stage test that proceeds to make pairwise comparisons of means only if the overall $F$ test is significant. Milliken and Johnson (1984, page 31) recommend LSD comparisons after a significant $F$ only if the number of comparisons is small and the comparisons were planned prior to the analysis. If many unplanned comparisons are made, they recommend Scheffe’s method. If the $F$ test is insignificant, a few planned comparisons for differences in means can still be performed by using either Tukey, Tukey-Kramer, Dunn-Sidak or Bonferroni methods. Because the $F$ test is insignificant, Scheffe’s method will not yield any significant differences. The formula for the difference $\mu_i - \mu_j$ is given by

$$\bar{y}_i - \bar{y}_j \pm t_{1-\frac{\alpha}{2}, \nu} \sqrt{\frac{s^2}{n_i} + \frac{s^2}{n_j}}$$

**Parameters**

- conLevel – a double specifying the confidence level for simultaneous interval estimation. If the Tukey method for computing the confidence intervals on the pairwise difference of means is to be used, conLevel must be in the range [90.0, 99.0]. Otherwise, conLevel must be in the range [0.0, 100.0). One normally sets this value to 95.0.
- i – is an int indicating the $i$-th member of the pair difference, $\mu_i - \mu_j$. $i$ must be a valid group index.
- j – is an int indicating the $j$-th member of the pair difference, $\mu_i - \mu_j$. $j$ must be a valid group index.
- compMethod – must be one of the following:

<table>
<thead>
<tr>
<th>compMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUKEY</td>
<td>Uses the Tukey method. This method is valid for balanced one-way designs.</td>
</tr>
<tr>
<td>TUKEY_KRAMER</td>
<td>Uses the Tukey-Kramer method. This method simplifies to the Tukey method for the balanced case.</td>
</tr>
<tr>
<td>DUNN_SIDAK</td>
<td>Uses the Dunn-Sidak method.</td>
</tr>
<tr>
<td>BONFERRONI</td>
<td>Uses the Bonferroni method.</td>
</tr>
<tr>
<td>SCHEFFE</td>
<td>Uses the Scheffe method.</td>
</tr>
<tr>
<td>ONE_AT_A_TIME</td>
<td>Uses the One-at-a-Time (Fisher’s LSD) method.</td>
</tr>
</tbody>
</table>
Returns
a double array containing the group numbers, difference of means, and lower and upper confidence limits.

<table>
<thead>
<tr>
<th>Array Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Group number for the i-th mean.</td>
</tr>
<tr>
<td>1</td>
<td>Group number for the j-th mean.</td>
</tr>
<tr>
<td>2</td>
<td>Difference of means ((i-th \text{ mean}) - (j-th \text{ mean})).</td>
</tr>
<tr>
<td>3</td>
<td>Lower confidence limit for the difference.</td>
</tr>
<tr>
<td>4</td>
<td>Upper confidence limit for the difference.</td>
</tr>
</tbody>
</table>

getDegreesOfFreedomForError
public double getDegreesOfFreedomForError()

Description
Returns the degrees of freedom for error.

Returns
a double scalar value representing the degrees of freedom for error

getDegreesOfFreedomForModel
public double getDegreesOfFreedomForModel()

Description
Returns the degrees of freedom for model.

Returns
a double scalar value representing the degrees of freedom for model

getErrorMeanSquare
public double getErrorMeanSquare()

Description
Returns the error mean square.

Returns
a double scalar value representing the error mean square

getF
public double getF()

Description
Returns the F statistic.

Returns
a double scalar value representing the F statistic

getGroupInformation
public double[][] getGroupInformation()
Description
Returns information concerning the groups.

Returns
a two-dimension double array containing information concerning the groups. Row i contains information pertaining to the i-th group. The information in the columns is as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Group Number</td>
</tr>
<tr>
<td>1</td>
<td>Number of nonmissing observations</td>
</tr>
<tr>
<td>2</td>
<td>Group Mean</td>
</tr>
<tr>
<td>3</td>
<td>Group Standard Deviation</td>
</tr>
</tbody>
</table>

getMeanOfY
public double getMeanOfY()

Description
Returns the mean of the response (dependent variable).

Returns
a double scalar value representing the mean of the response (dependent variable)

getModelErrorStdev
public double getModelErrorStdev()

Description
Returns the estimated standard deviation of the model error.

Returns
a double scalar value representing the estimated standard deviation of the model error

getModelMeanSquare
public double getModelMeanSquare()

Description
Returns the model mean square.

Returns
a double scalar value representing the model mean square

getP
public double getP()

Description
Returns the p-value.
Returns a double scalar value representing the $p$-value

**getRSquared**

public double getRSquared()

**Description**

Returns the R-squared (in percent).

**Returns**

a double scalar value representing the $R$-squared (in percent)

**getSumOfSquaresForError**

public double getSumOfSquaresForError()

**Description**

Returns the sum of squares for error.

**Returns**

a double scalar value representing the sum of squares for error

**getSumOfSquaresForModel**

public double getSumOfSquaresForModel()

**Description**

Returns the sum of squares for model.

**Returns**

a double scalar value representing the sum of squares for model

**getTotalDegreesOfFreedom**

public double getTotalDegreesOfFreedom()

**Description**

Returns the total degrees of freedom.

**Returns**

a double scalar value representing the total degrees of freedom

**getTotalMissing**

public int getTotalMissing()

**Description**

Returns the total number of missing values.

**Returns**

an int scalar value representing the total number of missing values (NaN) in input $Y$. Elements of $Y$ containing NaN (not a number) are omitted from the computations.

**getTotalSumOfSquares**

public double getTotalSumOfSquares()
Returns the total sum of squares.

Example: ANOVA

This example computes a one-way analysis of variance for data discussed by Searle (1971, Table 5.1, pages 165-179). The responses are plant weights for 6 plants of 3 different types - 3 normal, 2 off-types, and 1 aberrant. The 3 normal plant weights are 101, 105, and 94. The 2 off-type plant weights are 84 and 88. The 1 aberrant plant weight is 32. Note in the results that for the group with only one response, the standard deviation is undefined and is set to NaN (not a number).

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class ANOVEx1 {
 public static void main(String args[]) {
 double y[][] = {
 {101, 105, 94},
 {84, 88},
 {32}
 };
 ANOVA anova = new ANOVA(y);
 double aov[] = anova.getArray();
 System.out.println("Degrees Of Freedom For Model = " + aov[0]);
 System.out.println("Degrees Of Freedom For Error = " + aov[1]);
 System.out.println("Total (Corrected) Degrees Of Freedom = " + aov[2]);
 System.out.println("Sum Of Squares For Model = " + aov[3]);
 System.out.println("Sum Of Squares For Error = " + aov[4]);
 System.out.println("Total (Corrected) Sum Of Squares = " + aov[5]);
 System.out.println("Model Mean Square = " + aov[6]);
 System.out.println("Error Mean Square = " + aov[7]);
 System.out.println("F statistic = " + aov[8]);
 System.out.println("P value = " + aov[9]);
 System.out.println("R Squared (in percent) = " + aov[10]);
 System.out.println("Adjusted R Squared (in percent) = " + aov[11]);
 System.out.println("Model Error Standard deviation = " + aov[12]);
 System.out.println("Mean Of Y = " + aov[13]);
 System.out.println("Coefficient Of Variation (in percent) = " + aov[14]);
 System.out.println("Total number of missing values = " + anova.getTotalMissing());

 PrintMatrixFormat pmf = new PrintMatrixFormat();
 String labels[] = {"Group", "N", "Mean", "Std. Deviation"};
 pmf.setColumnLabels(labels);
 pmf.setNumberFormat(null);
 new PrintMatrix("Group Information").print(pmf, anova.getGroupInformation());
 }
}
```
Degrees Of Freedom For Model = 2.0
Degrees Of Freedom For Error = 3.0
Total (Corrected) Degrees Of Freedom = 5.0
Sum Of Squares For Model = 3480.0
Sum Of Squares For Error = 70.0
Total (Corrected) Sum Of Squares = 3550.0
Model Mean Square = 1740.0
Error Mean Square = 23.333333333333332
F statistic = 74.57142857142857
P value= 0.002768882525349784

R Squared (in percent) = 98.02816901408451
Adjusted R Squared (in percent) = 96.71361502347418
Model Error Standard deviation = 4.83045891539648
Mean Of Y = 84.0
Coefficient Of Variation (in percent) = 5.750546327852952
Total number of missing values = 0

Group Information

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>3.0</td>
<td>5.5677643628300215</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>2.0</td>
<td>2.8284271247461903</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>1.0</td>
<td>NaN</td>
</tr>
</tbody>
</table>

**ANOVAFactorial class**

```java
public class com.imsl.stat.ANOVAFactorial implements Serializable, Cloneable

Analyzes a balanced factorial design with fixed effects.

Class ANOVAFactorial performs an analysis for an n-way classification design with balanced data. For balanced data, there must be an equal number of responses in each cell of the n-way layout. The effects are assumed to be fixed effects. The model is an extension of the two-way model to include n factors. The interactions (two-way, three-way, up to n-way) can be included in the model, or some of the higher-way interactions can be pooled into error. `setModelOrder` specifies the number of factors to be included in the highest-way interaction. For example, if three-way and higher-way interactions are to be pooled into error, specify `modelOrder = 2`. (By default, `modelOrder = nSubscripts - 1` with the last subscript being the error subscript.) `PURE_ERROR` indicates there are repeated responses within the n-way cell; `POOL_INTERACTIONS` indicates otherwise.

Class ANOVAFactorial requires the responses as input into a single vector y in lexicographical order, so that the response subscript associated with the first factor varies least rapidly, followed by the subscript associated with the second factor, and so forth. Hemmerle (1967, Chapter 5) discusses the computational
Fields

POOL_INTERACTIONS

static final public int POOL_INTERACTIONS

Indicates factor nSubscripts is not error.

PURE_ERROR

static final public int PURE_ERROR

Indicates factor nSubscripts is error.

Constructor

ANOVAFactorial

public ANOVAFactorial(int nSubscripts, int[] nLevels, double[] y)

Description

Constructor for ANOVAFactorial.

Parameters

- **nSubscripts** – an int scalar containing the number of subscripts. Number of factors in the model + 1 (for the error term).
- **nLevels** – an int array of length nSubscripts containing the number of levels for each of the factors for the first nSubscripts-1 elements. nLevels[nSubscripts-1] is the number of observations per cell.
- **y** – a double array of length nLevels[0] * nLevels[1] * ... * nLevels[nSubscripts-1] containing the responses. y must not contain NaN for any of its elements, i.e., missing values are not allowed.

Exception

IllegalArgumentException is thrown if nLevels.length, and y.length are not consistent

Methods

compute

final public double compute()
Description
Analyzes a balanced factorial design with fixed effects.

Returns
a double scalar containing the \(p \)-value for the overall \(F \) test

getANOVATable
public double[] getANOVATable()

Description
Returns the analysis of variance table. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
a double array containing the analysis of variance table. The analysis of variance statistics are given as follows:

<table>
<thead>
<tr>
<th>Element</th>
<th>Analysis of Variance Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>degrees of freedom for the model</td>
</tr>
<tr>
<td>1</td>
<td>degrees of freedom for error</td>
</tr>
<tr>
<td>2</td>
<td>total (corrected) degrees of freedom</td>
</tr>
<tr>
<td>3</td>
<td>sum of squares for the model</td>
</tr>
<tr>
<td>4</td>
<td>sum of squares for error</td>
</tr>
<tr>
<td>5</td>
<td>total (corrected) sum of squares</td>
</tr>
<tr>
<td>6</td>
<td>model mean square</td>
</tr>
<tr>
<td>7</td>
<td>error mean square</td>
</tr>
<tr>
<td>8</td>
<td>overall (F)-statistic</td>
</tr>
<tr>
<td>9</td>
<td>(p)-value</td>
</tr>
<tr>
<td>10</td>
<td>(R^2) (in percent)</td>
</tr>
<tr>
<td>11</td>
<td>adjusted (R^2) (in percent)</td>
</tr>
<tr>
<td>12</td>
<td>estimate of the standard deviation</td>
</tr>
<tr>
<td>13</td>
<td>overall mean of (y)</td>
</tr>
<tr>
<td>14</td>
<td>coefficient of variation (in percent)</td>
</tr>
</tbody>
</table>

getMeans
public double[] getMeans()

Description
Returns the subgroup means. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
a double array containing the subgroup means

getTestEffects
public double[][] getTestEffects()
Description

Returns statistics relating to the sums of squares for the effects in the model. Note that the \texttt{compute} method must be invoked first before invoking this method. Otherwise, the method throws a \texttt{NullPointerException} exception.

Returns

da double matrix containing statistics relating to the sums of squares for the effects in the model. Here,

$$NEF = \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{\min(n, |\text{modelOrder}|)}$$

where \(n\) is given by \texttt{nSubscripts} if \texttt{ANOVAFactorial.POOL_INTERACTIONS} is specified; otherwise, \texttt{nSubscripts} - 1. Suppose the factors are A, B, C, and error. With \texttt{modelOrder} = 3, rows 0 through NEF-1 would correspond to A, B, C, AB, AC, BC, and ABC, respectively.

The columns of the output matrix are as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>1</td>
<td>sum of squares</td>
</tr>
<tr>
<td>2</td>
<td>(F)-statistic</td>
</tr>
<tr>
<td>3</td>
<td>(p)-value</td>
</tr>
</tbody>
</table>

\texttt{setErrorIncludeType}

\texttt{public void setErrorIncludeType(int type)}

Description

Sets error included type.

Parameter

\texttt{type} – an int scalar. \texttt{ANOVAFactorial.PURE_ERROR}, the default option, indicates factor \texttt{nSubscripts} is error. Its main effect and all its interaction effects are pooled into the error with the other (\texttt{modelOrder} + 1)-way and higher-way interactions.

\texttt{ANOVAFactorial.POOL_INTERACTIONS} indicates factor \texttt{nSubscripts} is not error. Only (\texttt{modelOrder} + 1)-way and higher-way interactions are included in the error.

\texttt{setModelOrder}

\texttt{public void setModelOrder(int modelOrder)}

Description

Sets the number of factors to be included in the highest-way interaction in the model.

Parameter

\texttt{modelOrder} – an int scalar containing the number of factors to be included in the highest-way interaction in the model. \texttt{modelOrder} must be in the interval \([1, \texttt{nSubscripts} - 1]\). For example, a \texttt{modelOrder} of 1 indicates that a main effect model will be analyzed, and a \texttt{modelOrder} of 2 indicates that two-way interactions will be included in the model. Default: \texttt{modelOrder} = \texttt{nSubscripts} - 1
Example 1: Two-way Analysis of Variance

A two-way analysis of variance is performed with balanced data discussed by Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight gains (in grams) of rats that were fed diets varying in the source (A) and level (B) of protein. The model is

\[y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk} \quad i = 1, 2; j = 1, 2, 3; k = 1, 2, \ldots, 10 \]

where

\[\sum_{i=1}^{2} \alpha_i = 0; \sum_{j=1}^{3} \beta_j = 0; \sum_{i=1}^{2} \gamma_{ij} = 0 \quad \text{for} \quad j = 1, 2, 3; \]

and

\[\sum_{j=1}^{3} \gamma_{ij} = 0 \quad \text{for} \quad j = 1, 2 \]

The first responses in each cell in the two-way layout are given in the following table:

<table>
<thead>
<tr>
<th>Protein Level (B)</th>
<th>Protein Source (A)</th>
<th>Cereal</th>
<th>Pork</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Beef</td>
<td>73, 102, 118, 104, 81, 107, 100, 87, 117, 111</td>
<td>98, 74, 56, 111, 95, 88, 82, 77, 86, 92</td>
</tr>
<tr>
<td></td>
<td>Cereal</td>
<td>90, 76, 90, 64, 86, 51, 72, 90, 95, 78</td>
<td>107, 95, 97, 80, 98, 74, 67, 89, 58</td>
</tr>
<tr>
<td>Low</td>
<td>Beef</td>
<td>73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, 117.0, 111.0, 90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, 90.0, 95.0, 78.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, 77.0, 86.0, 92.0, 107.0, 95.0, 97.0, 80.0, 98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0, 108.0, 91.0, 120.0, 105.0, 49.0, 82.0, 73.0, 86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0</td>
<td></td>
</tr>
</tbody>
</table>

import java.text.*;
import com.imsl.stat.*;

public class ANOVAFactorialEx1 {

 public static void main(String args[]) {
 int nSubscripts = 3;
 int[] nLevels = {3, 2, 10};
 double[] y = {
 73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, 117.0, 111.0,
 90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, 90.0, 95.0, 78.0,
 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, 77.0, 86.0, 92.0,
 107.0, 95.0, 97.0, 80.0, 98.0, 74.0, 74.0, 67.0, 89.0, 58.0,
 94.0, 79.0, 96.0, 98.0, 102.0, 102.0, 108.0, 91.0, 120.0, 105.0,
 49.0, 82.0, 73.0, 86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0
 };
 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(6);
 ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);
System.out.println("P-value = " + nf.format(af.compute()));
}

Output
P-value = 0.002299

Example 2: Two-way Analysis of Variance

In this example, the same model and data is fit as in the example 1, but additional information is printed.

```java
import java.text.*;
import com.imsl.stat.*;

public class ANOVAFactorialEx2 {

    public static void main(String args[]) {
        int nSubscripts = 3, i;
        int[] nLevels = {3, 2, 10};
        double[] y = {
            73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, 117.0, 111.0,
            90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, 90.0, 95.0, 78.0,
            98.0, 74.0, 56.0, 111.0, 96.0, 88.0, 82.0, 77.0, 86.0, 92.0,
            107.0, 95.0, 97.0, 80.0, 98.0, 74.0, 74.0, 67.0, 89.0, 58.0,
            94.0, 79.0, 96.0, 98.0, 102.0, 102.0, 108.0, 91.0, 120.0, 105.0,
            49.0, 82.0, 73.0, 86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0
        };
        String[] labels = {
            "degrees of freedom for the model",
            "degrees of freedom for error",
            "total (corrected) degrees of freedom",
            "sum of squares for the model",
            "sum of squares for error",
            "total (corrected) sum of squares",
            "model mean square",
            "error mean square",
            "F-statistic",
            "p-value",
            "R-squared (in percent)",
            "Adjusted R-squared (in percent)",
            "est. standard deviation of the model error",
            "overall mean of y",
            "coefficient of variation (in percent)"
        };
        String[] rlabels = {"A", "B", "A*B"};
        String[] mlabels = {
            "grand mean", "A1", "A2",
            "A3", "B1", "B2",
        };
        NumberFormat nf = NumberFormat.getInstance();
    }
```
ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);

nf.setMinimumFractionDigits(6);
System.out.println("P-value = " + nf.format(af.compute()));

nf.setMaximumFractionDigits(4);
System.out.println("* * * Analysis of Variance * * *");
double[] anova = af.getANOVATable();
for (i = 0; i < anova.length; i++) {
 System.out.println(labels[i] + " " + nf.format(anova[i]));
}

System.out.println(
* * * Variation Due to the " + "Model * * *");
double[][] te = af.getTestEffects();
for (i = 0; i < te.length; i++) {
 System.out.println(rlabels[i] + " \t" + nf.format(te[i][0]) + "\t" + nf.format(te[i][1]) + "\t" + nf.format(te[i][2]) + "\t" + nf.format(te[i][3]));
}

System.out.println("* * * Subgroup Means * * *");
double[] means = af.getMeans();
for (i = 0; i < means.length; i++) {
 System.out.println(mlabels[i] + " " + nf.format(means[i]));
}

Output
P-value = 0.002299

* * * Analysis of Variance * * *
degrees of freedom for the model 5.0000
degrees of freedom for error 54.0000
total (corrected) degrees of freedom 59.0000
sum of squares for the model 4,612.9333
sum of squares for error 11,586.0000
total (corrected) sum of squares 16,198.9333
model mean square 922.5867
error mean square 214.5556
F-statistic 4.3000
p-value 0.0023
R-squared (in percent) 28.4768
Adjusted R-squared (in percent) 21.8543
est. standard deviation of the model error 14.6477
overall mean of y 87.8667
coefficient of variation (in percent) 16.6704

* * * Variation Due to the Model * * *
Source DF Sum of Squares Mean Square Prob. of Larger F
Example 3: Three-way Analysis of Variance

This example performs a three-way analysis of variance using data discussed by John (1971, pp. 91 92). The responses are weights (in grams) of roots of carrots grown with varying amounts of applied nitrogen (A), potassium (B), and phosphorus (C). Each cell of the three-way layout has one response. Note that the ABC interactions sum of squares, which is 186, is given incorrectly by John (1971, Table 5.2.) The three-way layout is given in the following table:

<table>
<thead>
<tr>
<th></th>
<th>A0</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>88.76</td>
<td>91.41</td>
<td>97.85</td>
</tr>
<tr>
<td>C1</td>
<td>87.45</td>
<td>98.27</td>
<td>95.85</td>
</tr>
<tr>
<td>C2</td>
<td>86.01</td>
<td>104.20</td>
<td>90.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>94.83</td>
<td>100.49</td>
<td>99.75</td>
</tr>
<tr>
<td>C1</td>
<td>84.57</td>
<td>97.20</td>
<td>112.30</td>
</tr>
<tr>
<td>C2</td>
<td>81.06</td>
<td>120.80</td>
<td>108.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>99.90</td>
<td>100.23</td>
<td>104.50</td>
</tr>
<tr>
<td>C1</td>
<td>92.98</td>
<td>107.77</td>
<td>110.94</td>
</tr>
<tr>
<td>C2</td>
<td>94.72</td>
<td>118.39</td>
<td>102.87</td>
</tr>
</tbody>
</table>

import java.text.*;
import com.imsl.stat.*;
public class ANOVAFactorialEx3 {

 public static void main(String args[]) {
 int nSubscripts = 3, i;
 int[] nLevels = {3, 3, 3};
 double[] y = {
 88.76, 87.45, 86.01, 98.27, 104.2, 97.85, 95.85,
 90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75, 112.3,
 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39, 104.51,
 110.94, 102.87
 };
 String[] labels = {
 "degrees of freedom for the model ",
 "degrees of freedom for error ",
 "total (corrected) degrees of freedom ",
 "sum of squares for the model ",
 "sum of squares for error ",
 "total (corrected) sum of squares ",
 "model mean square ",
 "error mean square ",
 "F-statistic ",
 "p-value ",
 "R-squared (in percent) ",
 "Adjusted R-squared (in percent) ",
 "est. standard deviation of the model error ",
 "overall mean of y ",
 "coefficient of variation (in percent)
 };
 NumberFormat nf = NumberFormat.getInstance();
 ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);
 af.setErrorIncludeType(ANOVAFactorial.POOL_INTERACTIONS);
 nf.setMinimumFractionDigits(6);
 System.out.println("P-value = " + nf.format(af.compute()));
 nf.setMaximumFractionDigits(4);
 System.out.println(" * * * Analysis of Variance * * *");
 double[] anova = af.getANOVATable();
 for (i = 0; i < anova.length; i++) {
 System.out.println(labels[i] + " " + nf.format(anova[i]));
 }
 System.out.println(" * * * Variation Due to the " + "Model * * *") ;
 System.out.println("Source\tDF\tSum of Squares\tMean Square\tProb. of Larger F") ;
 double[][] te = af.getTestEffects();
 for (i = 0; i < te.length; i++) {
 StringBuffer sb = new StringBuffer(rlabels[i]);
 int len = sb.length();
 for (int j = 0; j < (8 - len); j++) {
 sb.append(' ');
 }
 System.out.println(sb + "Source\tDF\tSum of Squares\tMean Square\tProb. of Larger F") ;
 }
 }
}

Analysis of Variance ANOVAFactorial • 789
sb.append(nf.format(te[i][0]));
len = sb.length();
for (int j = 0; j < (16 - len); j++) {
 sb.append(' ');
}
sb.append(nf.format(te[i][1]));
len = sb.length();
for (int j = 0; j < (32 - len); j++) {
 sb.append(' ');
}
sb.append(nf.format(te[i][2]));
len = sb.length();
for (int j = 0; j < (48 - len); j++) {
 sb.append(' ');
}
sb.append(nf.format(te[i][3]));
System.out.println(sb.toString());

Output

P-value = 0.008299

* * * Analysis of Variance * * *
degrees of freedom for the model 18.0000
degrees of freedom for error 8.0000
total (corrected) degrees of freedom 26.0000
sum of squares for the model 2,395.7290
sum of squares for error 185.7763
total (corrected) sum of squares 2,581.5052
model mean square 133.0961
error mean square 23.2220
F-statistic 5.7315
p-value 0.0083
R-squared (in percent) 92.8036
Adjusted R-squared (in percent) 76.6116
est. standard deviation of the model error 4.8189
overall mean of y 98.9619
coefficient of variation (in percent) 4.8695

* * * Variation Due to the Model * * *
Source DF Sum of Squares Mean Square Prob. of Larger F
A 2.0000 488.3675 10.5152 0.0058
B 2.0000 1,090.6564 23.4832 0.0004
C 2.0000 49.1485 1.0582 0.3911
A*B 4.0000 142.5853 1.5350 0.2804
A*C 4.0000 32.3474 0.3482 0.8383
B*C 4.0000 592.6238 6.3800 0.0131
ANCOVA class

public class com.imsl.stat.ANCOVA implements Serializable, Cloneable

Analyzes a one-way classification model with covariates. Class ANCOVA performs analysis for models that combine the features of a oneway analysis of variance model with that of a multiple linear regression model. The basic one-way analysis of covariance model is

\[y_{ij} = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \ldots + \beta_m x_{ijm} + \varepsilon_{ij} \]

where, \(n_{\text{group}} \) is the number of treatment groups, the observed value of \(y_{ij} \) constitutes the \(j \)-th response in the \(i \)-th group, \(\beta_0 \) denotes the y intercept for the regression function for the \(i \)-th group, \(\beta_1, \beta_2, \ldots, \beta_m \) are the regression coefficients for the covariates, and the \(\varepsilon_{ij} \)'s are independently distributed normal errors with mean zero and variance \(\sigma^2 \). This model allows the regression function for each group to have different intercepts. However, the remaining \(m \) regression coefficients are the same for each group, i.e., the regression functions are parallel.

In practice, sometimes the regression functions are not parallel. In addition to estimates for the model assuming parallelism (parallel regression planes), ANCOVA computes estimates and summary statistics for the separate regressions of each group. These estimates can be examined using the methods `getCoefficientTables` and `getANOVATables`.

Estimates for the \(\beta_0 \)'s and \(\beta_1, \beta_2, \ldots, \beta_m \) in the model assuming parallelism are returned using the method `getModelCoefficients`. Summary statistics are also computed for this model and returned by the `compute` method.

The adjusted group means, stored in the last column of `xyMean`, are computed using the formula:

\[\hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \hat{\beta}_2 \bar{x}_2 + \ldots + \hat{\beta}_{n_{\text{cov}}} \bar{x}_{n_{\text{cov}}} \]

where `xyMean` is the matrix returned by `getMeans` and \(n_{\text{cov}} \) is the number of covariates.

The estimated covariance between the \(i_1 \)-th and \(i_2 \)-th adjusted group mean is given by

\[\nu_{i_1 i_2} + \sum_{r=1}^{m} \sum_{s=1}^{m} x_{r} \nu_{r,s} x_{s} + \sum_{r=1}^{m} \bar{x}_{r} \nu_{r,1} + \sum_{r=1}^{m} \bar{x}_{r} \nu_{1,r} \]

where \(\nu_{pq} \) is the entry in `covb[p-1][q-1]`, where `covb` is returned by `getVarCovCoefficients` and is the estimated covariance between the \(p \)-th and \(q \)-th estimated coefficients in the regression function.

Constructor

```java
public ANCOVA(double[][] responses, double[][][] covariates)
```

Analysis of Variance

ANCOVA • 791
Constructs a one-way classification model with covariates.

Parameters

- **responses** – a double matrix containing the responses. Each row in `responses` corresponds to a treatment group. Each row of `responses` can contain a different number of observations. There must be at least two groups (`responses.length > 1`).

- **covariates** – is a three-dimensional double array containing the covariates. The first dimension corresponds to the number of covariates (consider each element an individual covariate matrix or `covariates.length = number of covariates`). Each row in `covariates[i]` corresponds to a treatment group. There must be the same number of rows, for each covariate, as there are in the responses matrix (`covariates[i].length = responses.length`). There must be at least one covariate (`covariate.length > 1`). Each row of `covariates[i]` must contain the same number of elements as the corresponding row in `responses` (`covariates[i][j].length = responses[j].length`).

Methods

compute

```java
public double[] compute()
```

Description

Performs one-way analysis of covariance assuming parallelism and returns an array containing the parallelism tests for the one-way analysis of covariance.

Returns

A double array containing the parallelism tests for the one-way analysis of covariance organized as follows:

<table>
<thead>
<tr>
<th>index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Extra degrees of freedom for model not assuming parallelism.</td>
</tr>
<tr>
<td>1</td>
<td>Degrees of freedom for error for model not assuming parallelism.</td>
</tr>
<tr>
<td>2</td>
<td>Degrees of freedom for error for model assuming parallelism.</td>
</tr>
<tr>
<td>3</td>
<td>Extra sum of squares for model not assuming parallelism.</td>
</tr>
<tr>
<td>4</td>
<td>Sum of squares for error for model not assuming parallelism.</td>
</tr>
<tr>
<td>5</td>
<td>Sum of squares for error for model assuming parallelism.</td>
</tr>
<tr>
<td>6</td>
<td>Mean square for <code>index = 0</code>.</td>
</tr>
<tr>
<td>7</td>
<td>Mean square for <code>index = 1</code>.</td>
</tr>
<tr>
<td>8</td>
<td>F statistic</td>
</tr>
<tr>
<td>9</td>
<td>p-value</td>
</tr>
</tbody>
</table>

getANCOVA

```java
public double[] getANCOVA()
```
Description
Returns an array containing the one-way analysis of covariance assuming parallelism.

Returns
a double array of length 15 containing the following values:

<table>
<thead>
<tr>
<th>index</th>
<th>ANCOVA Table Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Degrees of freedom for model</td>
</tr>
<tr>
<td>1</td>
<td>Degrees of freedom for error</td>
</tr>
<tr>
<td>2</td>
<td>Total degrees of freedom</td>
</tr>
<tr>
<td>3</td>
<td>Sum of squares for model</td>
</tr>
<tr>
<td>4</td>
<td>Sum of squares for error</td>
</tr>
<tr>
<td>5</td>
<td>Total sum of squares</td>
</tr>
<tr>
<td>6</td>
<td>Model mean square</td>
</tr>
<tr>
<td>7</td>
<td>Error mean square</td>
</tr>
<tr>
<td>8</td>
<td>F statistic</td>
</tr>
<tr>
<td>9</td>
<td>p-value</td>
</tr>
<tr>
<td>10</td>
<td>R-squared (in percent)</td>
</tr>
<tr>
<td>11</td>
<td>Adjusted R-squared (in percent)</td>
</tr>
<tr>
<td>12</td>
<td>Estimated standard deviation of the model error</td>
</tr>
<tr>
<td>13</td>
<td>Mean of the response (dependent variable)</td>
</tr>
<tr>
<td>14</td>
<td>Coefficient of variation (in percent)</td>
</tr>
</tbody>
</table>

getANOVATables
public double[][] getANOVATables()

Description
Returns a matrix of size ngroup by 15 containing the analysis of variance tables for each linear regression model fitted separately to each treatment group.

Returns
a double matrix containing the analysis of variance tables for each linear regression model fitted separately to each treatment group. The 15 values in the i-th row are for treatment group i organized as follows:
getAdjustedANOVA

public double[] getAdjustedANOVA()

Description

Returns the partial sum of squares for the one-way analysis of covariance.

Returns

A double array containing the partial sum of squares for the one-way analysis of covariance organized as follows:

<table>
<thead>
<tr>
<th>index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Degrees of freedom for model</td>
</tr>
<tr>
<td>1</td>
<td>Degrees of freedom for error</td>
</tr>
<tr>
<td>2</td>
<td>Total degrees of freedom</td>
</tr>
<tr>
<td>3</td>
<td>Sum of squares for model</td>
</tr>
<tr>
<td>4</td>
<td>Sum of squares for error</td>
</tr>
<tr>
<td>5</td>
<td>Total sum of squares</td>
</tr>
<tr>
<td>6</td>
<td>Model mean square</td>
</tr>
<tr>
<td>7</td>
<td>Error mean square</td>
</tr>
<tr>
<td>8</td>
<td>F statistic</td>
</tr>
<tr>
<td>9</td>
<td>p-value</td>
</tr>
<tr>
<td>10</td>
<td>R-squared (in percent)</td>
</tr>
<tr>
<td>11</td>
<td>Adjusted R-squared (in percent)</td>
</tr>
<tr>
<td>12</td>
<td>Estimated standard deviation of the model error</td>
</tr>
<tr>
<td>13</td>
<td>Mean of the response (dependent variable)</td>
</tr>
<tr>
<td>14</td>
<td>Coefficient of variation (in percent)</td>
</tr>
</tbody>
</table>

getCoefficientTable

public double[][] getCoefficientTable(int group)

Description

Returns a matrix of size \(ncov + 1 \) by 4 containing statistics for a linear regression model fitted separately for each of the \(n_{group} \) treatment groups.

Parameter

- **group** – an int specifying the group that regression statistics will be retrieved for.
getCoefficientTables

Description

Returns an array containing statistics for a linear regression model fitted separately for all \(n_{group} \) treatments.

Returns

a double[][][] array containing statistics for a linear regression model fitted separately for each of the \(n_{group} \) treatment groups. The 3 dimensional array organized with \(n_{group} \) rows, \(n_{cov} + 1 \) columns, and depth of 4. Each row corresponds to one of the \(n_{group} \) treatment groups. Each column corresponds to the model coefficients. For column = 0, the statistics relate to the intercept in the regression model. For column = 1, 2, ..., \(n_{cov} \), the statistics relate to the slopes for the covariates. The depth dimension corresponds to the columns described for `getModelCoefficients` as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Coefficient estimate.</td>
</tr>
<tr>
<td>1</td>
<td>Estimated standard error of the estimate.</td>
</tr>
<tr>
<td>2</td>
<td>(t)-statistic.</td>
</tr>
<tr>
<td>3</td>
<td>(p)-value.</td>
</tr>
</tbody>
</table>

getMeans

Description

Returns a matrix containing the unadjusted means for the covariates and the response variate and the means for the response variate adjusted for the covariates.

Returns

a double[][] matrix of size \(n_{group} + 1 \) by \(n_{cov} + 3 \) containing the unadjusted means for the covariates and the response variate and the means for the response variate adjusted for the covariates. Each row for \(i = 0, 1, ..., n_{group} - 1 \) corresponds to a group. Row \(n_{group} \) contains overall statistics. The means are organized in columns as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Coefficient estimate.</td>
</tr>
<tr>
<td>1</td>
<td>Estimated standard error of the estimate.</td>
</tr>
<tr>
<td>2</td>
<td>(t)-statistic.</td>
</tr>
<tr>
<td>3</td>
<td>(p)-value.</td>
</tr>
</tbody>
</table>
getModelCoefficients

public double[][] getModelCoefficients()

Description
Returns a matrix containing statistics for the regression coefficients for the model assuming parallelism.

Returns
a `double` matrix of size `ngroup + ncov` by 4 containing statistics for the regression coefficients for the model assuming parallelism. Each row corresponds to a coefficient in the model. For \(i = 0, 1, \ldots, ngroup - 1 \), row \(i \) is for the \(y \) intercept for the \(i \)-th group. The remaining \(ncov \) rows are for the covariate coefficients. The statistics in the columns are organized as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Coefficient estimate.</td>
</tr>
<tr>
<td>1</td>
<td>Estimated standard error of the estimate.</td>
</tr>
<tr>
<td>2</td>
<td>(t)-statistic.</td>
</tr>
<tr>
<td>3</td>
<td>(p)-value.</td>
</tr>
</tbody>
</table>

getNumberOfMissing

public int getNumberOfMissing()

Description
Returns the number of cases with missing values in covariates or responses. Cases with any missing values are not used in the analysis.

Returns
an `int` scalar value indicating the number of cases with missing values in covariates or responses.

getR

public double[][] getR()

Description
Returns the R matrix from the QR decomposition. The R matrix is from the regression assuming parallelism.

Returns
a `double` matrix of size `ngroup + ncov` by `ngroup + ncov` which contains the R from the QR decomposition. The R matrix is from the regression assuming parallelism.

getVarCovAdjustedMeans

public double[][] getVarCovAdjustedMeans()
Description
Returns a matrix containing the estimated variances and covariances for the adjusted means assuming parallelism.

Returns
a double matrix of size ngroup by ngroup containing the estimated variances and covariances for the adjusted means assuming parallelism.

getVarCovCoefficients
public double[][] getVarCovCoefficients()

Description
Returns a matrix containing the estimated variances and covariances for the coefficients returned using getModelCoefficients.

Returns
a matrix of size ngroup + ncov by ngroup + ncov containing the estimated variances and covariances for the coefficients returned using getModelCoefficients.

Example 1: One-way analysis of covariance model
This example fits a one-way analysis of covariance model assuming parallelism using data discussed by Snedecor and Cochran (Table 14.6.1, pages 432-436). The responses are concentrations of cholesterol (in mg/100 ml) in the blood of two groups of women: women from Iowa and women from Nebraska. The age of a woman is the single covariate. The cholesterol concentrations and ages of the women according to state are shown in the following table. (There are 11 Iowa women and 19 Nebraska women in the study. Only the first 5 women from each state are shown here.)

<table>
<thead>
<tr>
<th></th>
<th>Iowa</th>
<th>Nebraska</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Cholesterol</td>
<td>Age</td>
</tr>
<tr>
<td>46</td>
<td>181</td>
<td>18</td>
</tr>
<tr>
<td>52</td>
<td>228</td>
<td>44</td>
</tr>
<tr>
<td>39</td>
<td>182</td>
<td>33</td>
</tr>
<tr>
<td>65</td>
<td>249</td>
<td>78</td>
</tr>
<tr>
<td>54</td>
<td>259</td>
<td>51</td>
</tr>
</tbody>
</table>

There is no evidence from the data to indicate that the regression lines for cholesterol concentration as a function of age are not parallel for Iowa and Nebraska women (p-value is 0.5425). The parallel line model suggests that Nebraska women may have higher cholesterol concentrations than Iowa women. The cholesterol concentrations (adjusted for age) are 195.5 for Iowa women versus 224.2 for Nebraska women. The difference is 28.7 with an estimated standard error of

\[
\sqrt{170.4 + 97.4 - 2(2.9)} = 16.1
\]

```java
import com.ims1.stat.ANCOVA;
import com.ims1.math.PrintMatrix;
```
public class ANCOVAEx1 {

 public static void main(String args[]) {
 double y[] = {
 {181.0, 228.0, 182.0, 249.0, 259.0, 201.0, 121.0, 339.0, 224.0,
 112.0, 189.0},
 {137.0, 173.0, 177.0, 241.0, 225.0, 223.0, 190.0, 257.0, 337.0,
 189.0, 214.0, 140.0, 196.0, 262.0, 261.0, 356.0, 159.0, 191.0,
 197.0}};
 double x[][][] = new double[1][2][];
 x[0][0] = new double[] {46.0, 52.0, 39.0, 65.0, 54.0, 33.0, 49.0, 76.0,
 71.0, 41.0, 58.0};
 x[0][1] = new double[] {18.0, 44.0, 33.0, 78.0, 51.0, 43.0, 44.0, 63.0,
 19.0, 42.0, 30.0, 47.0, 58.0, 70.0, 67.0, 31.0, 21.0,
 56.0};
 ANCOVA awc = new ANCOVA(y, x);
 double testpl[] = awc.compute();
 double aov[] = awc.getANCOVA();
 System.out.println(" * * * Analysis of Variance * * *");
 System.out.println(" Sum of " + "Mean Prob of");
 System.out.printf("Source DF Squares Square Overall F Larger F
", aov[0], aov[3], aov[6], aov[8], aov[9]);
 System.out.printf("Error %3.0f %10.2f %9.2f
", aov[1], aov[4], aov[7]);
 System.out.printf("Total %3.0f %10.2f
", aov[2], aov[5]);
 System.out.println(" * * * Test for Parallelism * * *");
 System.out.printf("Test for Nonparallelism %3.0f %10.2f %7.2f %7.5f %5.4f
", testpl[0], testpl[3], testpl[6], testpl[8], testpl[9]);
 System.out.println("Extra Assuming");
 System.out.printf("Error Assuming %3.0f %10.2f %7.2f %n", testpl[1],
 testpl[4], testpl[7]);
 System.out.println("Parallelism Assuming");
 System.out.println("\nVar./Covar. Matrix of Adjusted Group Means")
 new PrintMatrix("XY Mean Matrix\n").print(awc.getMeans());
 new PrintMatrix("\n\nVar./Covar. Matrix of Adjusted Group Means")
 .print(awc.getVarCovAdjustedMeans());
 }
}

Output

* * * Analysis of Variance * * *
Example 2: One-way analysis of covariance model

This example fits a one-way analysis of covariance model and performs a test for parallelism using data discussed by Snedecor and Cochran (1967, Table 14.8.1, pages 438-443). The responses are weight gains (in pounds per day) of 40 pigs for four groups of pigs under varying treatments. Two covariates-initial age (in days) and initial weight (in pounds) are used. For each treatment, there are 10 pigs. Only the first 5 pigs from each treatment are shown here.
For these data, the test for non-parallelism is not statistically significant ($p = 0.901$). The one-way analysis of covariance test for the treatment means adjusted for the covariates, assuming parallel slopes, is statistically significant at a stated significance level of $\alpha = 0.05$, ($p = 0.04931$). Multiple comparisons can be done using the least significant difference approach of comparing each pair of treatment groups with the two-sample student-t test. Since the adjusted means in the one-way analysis of covariance are correlated, the standard error for these comparisons must be computed using the variances and covariances in covm. The standard errors for these comparisons are fairly similar ranging from 0.0630 to 0.0638. The Student’s t comparisons identify differences between groups 1 and 2, and 1 and 4 as being statistically significant with p-values of 0.01225 and 0.03854 respectively.

```java
import com.imsl.stat.ANCOVA;

public class ANCOVAEx2 {

    public static void main(String[] args) {

        int j;
        int ngroup = 4;
        double x1[][] = {
            {78.0, 90.0, 94.0, 71.0, 99.0, 80.0, 83.0, 75.0, 62.0, 67.0},
            {78.0, 99.0, 80.0, 75.0, 94.0, 91.0, 75.0, 63.0, 62.0, 67.0},
            {78.0, 83.0, 79.0, 70.0, 85.0, 83.0, 71.0, 66.0, 67.0, 67.0},
            {77.0, 71.0, 78.0, 70.0, 95.0, 71.0, 63.0, 62.0, 67.0}
        };
        double x2[][] = {
            {61.0, 59.0, 76.0, 50.0, 61.0, 54.0, 57.0, 45.0, 41.0, 40.0},
            {74.0, 75.0, 64.0, 48.0, 62.0, 42.0, 52.0, 43.0, 50.0, 40.0},
            {80.0, 61.0, 62.0, 47.0, 59.0, 42.0, 47.0, 42.0, 40.0, 40.0},
            {62.0, 55.0, 62.0, 43.0, 57.0, 51.0, 41.0, 40.0, 45.0, 39.0}
        };
        double y[] [] = {
            {1.40, 1.79, 1.72, 1.47, 1.26, 1.28, 1.34, 1.55, 1.57, 1.26},
            {1.61, 1.31, 1.12, 1.35, 1.29, 1.24, 1.29, 1.43, 1.29, 1.26},
            {1.67, 1.41, 1.73, 1.23, 1.49, 1.22, 1.39, 1.39, 1.56, 1.36},
            {1.40, 1.47, 1.37, 1.15, 1.22, 1.48, 1.31, 1.27, 1.22, 1.36}
        };
        double x[][][] = {x1, x2};
        /* setup covariate input matrix */

        ANCOVA awc = new ANCOVA(y, x);

        double testpl[] = awc.compute();
        double aov[] = awc.getANCOVA();
        double adjAov[] = awc.getAdjustedANOVA();
        double xymean[][] = awc.getMeans();
        double covm[][] = awc.getVarCovAdjustedMeans();

        System.out.println("\n * * * Test for Parallelism * * *\n");
        System.out.println("Sum of Mean " + "F Prob of" + ";
        System.out.println("Source DF Squares Square " + "Test Larger F" + ";
        System.out.println("Extra due to");
        System.out.printf("Nonparallelism %3.0f %10.2f %7.2f %7.5f " + "%5.3f\n", testpl[0], testpl[3], testpl[6], testpl[8],
```
testpl[9]);
System.out.println("Extra Assuming");
System.out.printf("Nonparallelism \%3.0f \%10.2f \%7.2f\n",
 testpl[1], testpl[4], testpl[7]);
System.out.println("Error Assuming");
System.out.printf("Parallelism \%3.0f \%10.2f \n\n\n",
 testpl[2],
 testpl[5]);
System.out.println(" * * * Analysis of Variance * * *");
System.out.println(" Sum of "
 + "Mean Prob of");
System.out.println("Source DF Squares Square ",
 + "Overall F Larger F");
System.out.printf("Model %3.0f %f %f %f %5.4f\n",
 aov[0], aov[3], aov[6], aov[8], aov[9]);
System.out.println("Error %3.0f %f %f
", aov[1],
 aov[4], aov[7]);
System.out.printf("Total %3.0f %f \n\n\n", aov[2], aov[5]);
System.out.println(" * * * Adjusted Analysis of Variance * ");
System.out.println(" Sum of "
 + "F Prob of");
System.out.println("Source DF Squares "
 + "Test Larger F");
System.out.printf("Groups after Covariates %3.0f %10.2f %7.5f
",
 adjAov[0], adjAov[2], adjAov[3], adjAov[5], adjAov[7]);
System.out.println(" * * * Group Means * * *");
System.out.println(" GROUP | Unadjusted | Adjusted | Std. Error ",
 + i + 1, xymean[i][ngroup - 1], xymean[i][ngroup], se);
System.out.println(" Student-t Multiple Comparisons * ",
 + "| Diff | Std. Error | Student-t | ",
 + "P-value");
for (int i = 0; i < ngroup; i++) {
 double se = Math.sqrt(covm[i][i]);
 System.out.printf(" %d | %5.4f | %5.4f | %7.4f\n",
 i + 1, xymean[i][ngroup - 1], xymean[i][ngroup], se);
}
System.out.println(" Student-t Multiple Comparisons * ")
 + "P-Value");
for (int i = 0; i < ngroup - 1; i++) {
 for (j = i + 1; j < ngroup; j++) {
 double delta = xymean[i][ngroup] - xymean[j][ngroup];
 double se = Math.sqrt(covm[i][i] + covm[j][j] - 2.0
 * covm[i][j]);
 double t = delta / se;
 double df = xymean[i][0] + xymean[j][0] - 2;
 double pvalue = 1.0 - com.imsl.stat.Cdf.studentsT(t, df);
 System.out.printf(" %d vs %d | %7.4f | %7.4f | %7.5f "
 + "| %7.5f\n",
 i + 1, j + 1, delta, se, t, pvalue);
 }
}
}

Analysis of Variance ANCOVA • 801
* * * Test for Parallelism * * *

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F</th>
<th>Prob of Larger F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra due to Nonparallelism</td>
<td>6</td>
<td>0.05</td>
<td>0.01</td>
<td>0.35534</td>
<td>0.901</td>
</tr>
</tbody>
</table>

* * * Analysis of Variance * * *

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>Overall F</th>
<th>Prob of Larger F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>0.352517</td>
<td>0.070503</td>
<td>3.576390</td>
<td>0.0105</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>0.670261</td>
<td>0.019714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>1.022777</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * * Adjusted Analysis of Variance * * *

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>F</th>
<th>Prob of Larger F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups after Covariates</td>
<td>3</td>
<td>0.17</td>
<td>2.90</td>
<td>0.04931</td>
</tr>
<tr>
<td>Covariates after Groups</td>
<td>2</td>
<td>0.17</td>
<td>4.44</td>
<td>0.01939</td>
</tr>
</tbody>
</table>

* * * Group Means * * *

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Unadjusted Mean</th>
<th>Adjusted Mean</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4640</td>
<td>1.4614</td>
<td>0.0448</td>
</tr>
<tr>
<td>2</td>
<td>1.3190</td>
<td>1.3068</td>
<td>0.0446</td>
</tr>
<tr>
<td>3</td>
<td>1.4450</td>
<td>1.4429</td>
<td>0.0447</td>
</tr>
<tr>
<td>4</td>
<td>1.3250</td>
<td>1.3418</td>
<td>0.0449</td>
</tr>
</tbody>
</table>

* * * Student-t Multiple Comparisons * * *

<table>
<thead>
<tr>
<th>Groups</th>
<th>Diff</th>
<th>Std. Error</th>
<th>Student-t</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vs 2</td>
<td>0.1546</td>
<td>0.0630</td>
<td>2.455</td>
<td>0.01225</td>
</tr>
<tr>
<td>1 vs 3</td>
<td>0.0185</td>
<td>0.0637</td>
<td>0.290</td>
<td>0.38750</td>
</tr>
<tr>
<td>1 vs 4</td>
<td>0.1196</td>
<td>0.0638</td>
<td>1.875</td>
<td>0.03854</td>
</tr>
<tr>
<td>2 vs 3</td>
<td>-0.1362</td>
<td>0.0632</td>
<td>-2.153</td>
<td>0.09743</td>
</tr>
<tr>
<td>2 vs 4</td>
<td>-0.0350</td>
<td>0.0638</td>
<td>-0.549</td>
<td>0.70528</td>
</tr>
<tr>
<td>3 vs 4</td>
<td>0.1011</td>
<td>0.0631</td>
<td>1.602</td>
<td>0.06330</td>
</tr>
</tbody>
</table>
MultipleComparisons class

public class com.imsl.stat.MultipleComparisons implements Serializable, Cloneable

Performs Student-Newman-Keuls multiple comparisons test.

Class MultipleComparisons performs a multiple comparison analysis of means using the Student-Newman-Keuls method. The null hypothesis is equality of all possible ordered subsets of a set of means. This null hypothesis is tested using the Studentized range of each of the corresponding subsets of sample means. The method is discussed in many elementary statistics texts, e.g., Kirk (1982, pp. 123-125).

Constructor

MultipleComparisons
public MultipleComparisons(double[] means, int df, double stdError)

Description
Constructor for MultipleComparisons.

Parameters

means – A double array containing the means.
df – An int scalar containing the degrees of freedom associated with stdError.
stdError – A double scalar containing the effective estimated standard error of a mean. In fixed effects models, stdError equals the estimated standard error of a mean. For example, in a one-way model stdError = \sqrt{s^2/n} where s^2 is the estimate of \sigma^2 and n is the number of responses in a sample mean. In models with random components, use stdError = sedif/\sqrt{2} where sedif is the estimated standard error of the difference of two means.

Methods

compute
final public int[] compute()

Description
Performs Student-Newman-Keuls multiple comparisons test.
Returns
An int array, call it `equalMeans` indicating the size of the groups of means declared to be equal. Value `equalMeans[I] = J` indicates the `I`-th smallest mean and the next `J-1` larger means are declared equal. Value `equalMeans[I] = 0` indicates no group of means starts with the `I`-th smallest mean.

setAlpha

```java
public void setAlpha(double alpha)
```

Description
Sets the significance level of the test

Parameter

- `alpha` – A double scalar containing the significance level of test. `alpha` must be in the interval `[0.01, 0.10]`. Default: `alpha = 0.01`

Example: Multiple Comparisons Test

A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp. 123-125). The results show that there are three groups of means with three separate sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class MultipleComparisonsEx1 {
    public static void main(String args[]) {
        double[] means = {36.7, 48.7, 43.4, 47.2, 40.3};

        /* Perform multiple comparisons tests */
        MultipleComparisons mc = new MultipleComparisons(means, 45, 1.6970563);

        new PrintMatrix("Size of Groups of Means").print(mc.compute());
    }
}
```

Output

```
Size of Groups of Means
0
0 3
1 3
2 3
3 0
```
Chapter 16: Categorical and Discrete Data Analysis

Types

class ContingencyTable ... 805
class CategoricalGenLinModel .. 818

Usage Notes

The ContingencyTable class computes many statistics of interest in a two-way table. Statistics computed by this routine include the usual chi-squared statistics, measures of association, Kappa, and many others.

The CategoricalGenLinModel class is concerned with generalized linear models in discrete data. This routine may be used to compute estimates and associated statistics in probit, logistic, minimum extreme value, Poisson, negative binomial (with known number of successes), and logarithmic models. Classification variables as well as weights, frequencies, and additive constants may be used so that quite general linear models can be fit. Residuals, a measure of influence, the coefficient estimates, and other statistics are returned for each model fit. When infinite parameter estimates are required, extended maximum likelihood estimation may be used. Log-linear models may be fit through the use of Poisson regression models. Results from Poisson regression models involving structural and sampling zeros will be identical to the results obtained from the log-linear model but will be fit by a quasi-Newton algorithm rather than through iterative proportional fitting.

ContingencyTable class

public class com.ims1.stat.ContingencyTable implements Serializable, Cloneable
Performs a chi-squared analysis of a two-way contingency table.
Class **ContingencyTable** computes statistics associated with an \(r \times c \) contingency table. The function computes the chi-squared test of independence, expected values, contributions to chi-squared, row and column marginal totals, some measures of association, correlation, prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the odds and the log odds ratio, and the kappa statistic (if the appropriate optional arguments are selected).

Notation

Let \(x_{ij} \) denote the observed cell frequency in the \(ij \) cell of the table and \(n \) denote the total count in the table. Let \(p_{ij} = p_i \cdot p_j \cdot \) denote the predicted cell probabilities under the null hypothesis of independence, where \(p_i \cdot \) and \(p_j \cdot \) are the row and column marginal relative frequencies. Next, compute the expected cell counts as \(e_{ij} = np_{ij} \).

Also required in the following are \(a_{uv} \) and \(b_{uv} \) for \(u, v = 1, \ldots, n \). Let \((r_u, c_s) \) denote the row and column response of observation \(s \). Then, \(a_{uv} = 1, 0, \) or \(-1\), depending on whether \(r_u < r_v, r_u = r_v, \) or \(r_u > r_v \), respectively. The \(b_{uv} \) are similarly defined in terms of the \(c_s \) variables.

Chi-squared Statistic

For each cell in the table, the contribution to \(\chi^2 \) is given as \((x_{ij} - e_{ij})^2 / e_{ij} \). The Pearson chi-squared statistic (denoted \(\chi^2 \)) is computed as the sum of the cell contributions to chi-squared. It has \((r - 1)(c - 1) \) degrees of freedom and tests the null hypothesis of independence, i.e., \(H_0: p_{ij} = p_i \cdot p_j \cdot \). The null hypothesis is rejected if the computed value of \(\chi^2 \) is too large.

The maximum likelihood equivalent of \(\chi^2 \), \(G^2 \) is computed as follows:

\[
G^2 = -2 \sum_{i,j} x_{ij} \ln \left(\frac{x_{ij}}{np_{ij}} \right)
\]

\(G^2 \) is asymptotically equivalent to \(\chi^2 \) and tests the same hypothesis with the same degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and Cramer’s V)

There are three measures related to chi-squared that do not depend on sample size:

\[
\phi = \sqrt{\frac{\chi^2}{n}}
\]

contingency coefficient, \(P = \sqrt{\frac{\chi^2}{n + \chi^2}} \)

\[
Cramer's V, V = \sqrt{\frac{\chi^2}{(n \min(r,c))}}
\]

Since these statistics do not depend on sample size and are large when the hypothesis of independence is rejected, they can be thought of as measures of association and can be compared across tables with different sized samples. While both \(P \) and \(V \) have a range between 0.0 and 1.0, the upper bound of \(P \) is actually somewhat less than 1.0 for any given table (see Kendall and Stuart 1979, p. 587). The significance of all three statistics is the same as that of the \(\chi^2 \) statistic, return value from the **getChiSquared** method.
The distribution of the χ^2 statistic in finite samples approximates a chi-squared distribution. To compute the exact mean and standard deviation of the χ^2 statistic, Haldane (1939) uses the multinomial distribution with fixed table marginals. The exact mean and standard deviation generally differ little from the mean and standard deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-values are reported. Estimates of the standard errors are computed in two ways. The first estimate, in Column 1 of the return matrix from the `getStatistics` method, is asymptotically valid for any value of the statistic. The second estimate, in Column 2 of the array, is only correct under the null hypothesis of no association. The z-scores in Column 3 of statistics are computed using this second estimate of the standard errors. The p-values in Column 4 are computed from this z-score. See Brown and Benedetti (1977) for a discussion and formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, ϕ, P, and V, do not require any ordering of the row and column categories. Class `ContingencyTable` also computes several measures of association for tables in which the rows and column categories correspond to ranked observations. Two of these tests, the product-moment correlation and the Spearman correlation, are correlation coefficients computed using assigned scores for the row and column categories. The cell indices are used for the product-moment correlation, while the average of the tied ranks of the row and column marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s τ_b, Stuart’s τ_c, and Somers’ D are measures of association that are computed like a correlation coefficient in the numerator. In all these measures, the numerator is computed as the “covariance” between the a_{uv} variables and b_{uv} variables defined above, i.e., as follows:

$$\sum_u \sum_v a_{uv}b_{uv}$$

Recall that a_{uv} and b_{uv} can take values -1, 0, or 1. Since the product $a_{uv}b_{uv} = 1$ only if a_{uv} and b_{uv} are both 1 or both -1, it is easy to show that this “covariance” is twice the total number of agreements minus the number of disagreements, where a disagreement occurs when $a_{uv}b_{uv} = -1$.

Kendall’s τ_b is computed as the correlation between the a_{uv} variables and the b_{uv} variables (see Kendall and Stuart 1979, p. 593). In a rectangular table ($r \neq c$), Kendall’s τ_b cannot be 1.0 (if all marginal totals are positive). For this reason, Stuart suggested a modification to the denominator of τ in which the denominator becomes the largest possible value of the “covariance.” This maximizing value is approximately $n^2m/(m-1)$, where $m = \min (r, c)$. Stuart’s τ_c uses this approximate value in its denominator. For large n, $\tau_c \approx m \tau_b/(m-1)$.

Gamma can be motivated in a slightly different manner. Because the “covariance” of the a_{uv} variables and the b_{uv} variables can be thought of as twice the number of agreements minus the disagreements, $2(A - D)$, where A is the number of agreements and D is the number of disagreements, Gamma is motivated as the probability of agreement minus the probability of disagreement, given that either agreement or disagreement occurred. This is shown as $\gamma = (A - D)/(A + D)$.

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’ D for rows can be thought of as the regression coefficient for predicting a_{uv} from b_{uv}. Moreover, Somer’s D for rows
is the probability of agreement minus the probability of disagreement, given that the column variable, \(b_{uv} \), is not 0. Somers' \(D \) for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require any ordering of the row or column variables. They are based entirely upon probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under the null hypothesis of independence, choose the column with the highest column marginal probability for all rows. In this case, the probability of misclassification for any row is 1 minus this marginal probability. If independence is not assumed within each row, choose the column with the highest row conditional probability. The probability of misclassification for the row becomes 1 minus this conditional probability.

Define the optimal prediction coefficient \(\lambda_{c|r} \) for predicting columns from rows as the proportion of the probability of misclassification that is eliminated because the random variables are not independent. It is estimated by

\[
\lambda_{c|r} = \frac{(1 - p_{*m}) - (1 - \sum_{i} p_{im})}{1 - p_{*m}}
\]

where \(m \) is the index of the maximum estimated probability in the row \((p_{im}) \) or row margin \((p_{*m}) \). A similar coefficient is defined for predicting the rows from the columns. The symmetric version of the optimal prediction \(\lambda \) is obtained by summing the numerators and denominators of \(\lambda_{r|c} \) and \(\lambda_{c|r} \) then dividing. Standard errors for these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients \(\lambda \) is that they vary with the marginal probabilities. One way to correct this is to use row conditional probabilities. The optimal prediction \(\lambda^* \) coefficients are defined as the corresponding \(\lambda \) coefficients in which first the row (or column) marginals are adjusted to the same number of observations. This yields

\[
\lambda^*_{c|r} = \frac{\sum_{i} \max_{j} p_{j|i} - \max_{j} (\sum_{i} p_{j|i})}{R - \max_{j} (\sum_{i} p_{j|i})}
\]

where \(i \) indexes the rows, \(j \) indexes the columns, and \(p_{j|i} \) is the (estimated) probability of column \(j \) given row \(i \).

\(\lambda^*_{r|c} \) is similarly defined.

Goodman and Kruskal \(\tau \): A second kind of prediction measure attempts to explain the proportion of the explained variation of the row (column) measure given the column (row) measure. Define the total variation in the rows as follows:
\[n/2 - (\sum_i x_{ii}^2) / (2n) \]

Note that this is \(I/(2n) \) times the sums of squares of the \(a_{uv} \) variables.

With this definition of variation, the Goodman and Kruskal \(\tau \) coefficient for rows is computed as the reduction of the total variation for rows accounted for by the columns, divided by the total variation for the rows. To compute the reduction in the total variation of the rows accounted for by the columns, note that the total variation for the rows within column \(j \) is defined as follows:

\[q_j = x_{\bullet j}/2 - (\sum_i x_{ij}^2) / (2x_{\bullet \bullet}) \]

The total variation for rows within columns is the sum of the \(q_j \) variables. Consistent with the usual methods in the analysis of variance, the reduction in the total variation is given as the difference between the total variation for rows and the total variation for rows within the columns.

Goodman and Kruskal’s \(\tau \) for columns is similarly defined. See Bishop et al. (1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the log-likelihood that is achieved by the most general model over the independence model, divided by the marginal log-likelihood for the rows. This is given by the following equation:

\[U_{r|c} = \frac{\sum_{i,j} x_{ij} \log \left(\frac{x_{i\bullet} x_{\bullet j}}{nx_{ij}} \right)}{\sum_i x_{i\bullet} \log \left(\frac{x_{i\bullet}}{n} \right)} \]

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty coefficient contains the same numerator as \(U_{r|c} \) and \(U_{c|r} \), but averages the denominators of these two statistics. Standard errors for \(U \) are given in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test that assumes the column variable is monotonically ordered. It tests the null hypothesis that no row populations are identical, using average ranks for the column variable. The Kruskal-Wallis statistic for columns is similarly defined. Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear trend in the row probabilities if it is assumed that the column variable is monotonically ordered. In this test, the probabilities for row 1 are predicted by the column index using weighted simple linear regression. This slope is given by

\[\hat{\beta} = \frac{\sum_j x_{\bullet j} \left(x_{1j}/x_{\bullet j} - x_{1\bullet}/n \right) (j - \bar{j})}{\sum_j x_{\bullet j} (j - \bar{j})^2} \]

where
\[\bar{j} = \frac{\sum_j x_{ij} j}{n} \]

is the average column index. An asymptotic test that the slope is 0 may then be obtained (in large
samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is computed. This test
assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the kappa statistic, the
rows and columns correspond to the responses of two judges. The judges agree along the diagonal and
disagree off the diagonal. Let

\[p_0 = \frac{\sum_i x_{ii}}{n} \]

denote the probability that the two judges agree, and let

\[p_c = \frac{\sum_i e_{ii}}{n} \]

denote the expected probability of agreement under the independence model. Kappa is then given by
\((p_0 - p_c)/(1 - p_c) \).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency table. In other words,
it is a test of the null hypothesis \(H_0 : \theta_{ij} = \theta_{ji} \). The multiple degrees-of-freedom version of the McNemar
test with \(r (r - 1)/2 \) degrees of freedom is computed as follows:

\[\sum_{i<j} \frac{(x_{ij} - x_{ji})^2}{x_{ij} + x_{ji}} \]

The single degree-of-freedom test assumes that the differences, \(x_{ij} - x_{ji} \), are all in one direction. The
single degree-of-freedom test will be more powerful than the multiple degrees-of-freedom test when this
is the case. The test statistic is given as follows:

\[\left(\sum_{i<j} (x_{ij} - x_{ji}) \right)^2 \frac{1}{\sum_{i<j} (x_{ij} + x_{ji})} \]

The exact probability can be computed by the binomial distribution.

Constructor

```java
public ContingencyTable(double[][] table)
```

810 • ContingencyTable

JMSL
Description
Constructs and performs a chi-squared analysis of a two-way contingency table.

Parameter
- **table**: A double matrix containing the observed counts in the contingency table.

Methods

getChiSquared

```java
public double getChiSquared()
```

Description
Returns the Pearson chi-squared test statistic.

Returns
A double scalar containing the Pearson chi-squared test statistic.

getContingencyCoef

```java
public double getContingencyCoef()
```

Description
Returns contingency coefficient.

Returns
A double scalar containing the contingency coefficient based on Pearson chi-squared statistic.

getContributions

```java
public double[][] getContributions()
```

Description
Returns the contributions to chi-squared for each cell in the table.

Returns
A double matrix of size (table.length+1) * (table[0].length+1) containing the contributions to chi-squared for each cell in the table. The last row and column contain the total contribution to chi-squared for that row or column.

getCramersV

```java
public double getCramersV()
```

Description
Returns Cramer’s V.
Returns a double scalar containing the Cramer’s V based on Pearson chi-squared statistic.

getDegreesOfFreedom

```java
public int getDegreesOfFreedom()
```

Description

Returns the degrees of freedom for the chi-squared tests associated with the table.

Returns

An int scalar containing the degrees of freedom for the chi-squared tests associated with the table.

getExactMean

```java
public double getExactMean()
```

Description

Returns exact mean.

Returns

A double scalar containing the exact mean based on Pearson’s chi-square statistic.

getExpectedValues

```java
public double[][] getExpectedValues()
```

Description

Returns the expected values of each cell in the table.

Returns

A double matrix of size (table.length+1) * (table[0].length+1) containing the expected values of each cell in the table, under the null hypothesis. The marginal totals are in the last row and column.

getGSquared

```java
public double getGSquared()
```

Description

Returns the likelihood ratio G^2 (chi-squared).
Returns
A double scalar containing the likelihood ratio G^2 (chi-squared).

getGSquaredP
`public double getGSquaredP()`

Description
Returns the probability of a larger G^2 (chi-squared).

Returns
A double scalar containing the probability of a larger G^2 (chi-squared).

getP
`public double getP()`

Description
Returns the Pearson chi-squared p-value for independence of rows and columns.

Returns
A double scalar containing the Pearson chi-squared p-value for independence of rows and columns.

getPhi
`public double getPhi()`

Description
Returns phi.

Returns
A double scalar containing the phi based on Pearson chi-squared statistic.

getStatistics
`public double[][] getStatistics()`

Description
Returns the statistics associated with this table.

Returns
A double matrix of size 23 * 5 containing statistics associated with this table. Each row corresponds to a statistic.
If a statistic cannot be computed, or if some value is not relevant for the computed statistic, the entry is NaN (Not a Number).

The columns are as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>estimated statistic</td>
</tr>
<tr>
<td>1</td>
<td>standard error for any parameter value</td>
</tr>
<tr>
<td>2</td>
<td>standard error under the null hypothesis</td>
</tr>
<tr>
<td>3</td>
<td>t value for testing the null hypothesis</td>
</tr>
<tr>
<td>4</td>
<td>p-value of the test in column 3</td>
</tr>
</tbody>
</table>

In the McNemar tests, column 0 contains the statistic, column 1 contains the chi-squared degrees of freedom, column 3 contains the exact p-value (1 degree of freedom only), and column 4 contains the chi-squared asymptotic p-value. The Kruskal-Wallis test is the same except no exact p-value is computed.

Example 1: Contingency Table

The following example is taken from Kendall and Stuart (1979) and involves the distance vision in the
right and left eyes.

```java
import com.imsl.stat.*;

public class ContingencyTableEx1 {
    public static void main(String args[]) {
        double[][] table = {
            {821, 112, 85, 35},
            {116, 494, 145, 27},
            {72, 151, 583, 87},
            {43, 34, 106, 331}
        };
        ContingencyTable ct = new ContingencyTable(table);
        System.out.println("P-value = " + ct.getP());
    }
}
```

Output

```
P-value = 0.0
```

Example 2: Contingency Table

The following example, which illustrates the use of Kappa and McNemar tests, uses the same distance vision data as in Example 1.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class ContingencyTableEx2 {
    public static void main(String args[]) {
        double[][] table = {
            {821.0, 112.0, 85.0, 35.0},
            {116.0, 494.0, 145.0, 27.0},
            {72.0, 151.0, 583.0, 87.0},
            {43.0, 34.0, 106.0, 331.0}
        };
        String[] rlabels = {
            "Spearman", "GK tau rows", "GK tau cols.", "U - sym.", 
            "U - rows", "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.", 
            "l-star-rows", "l-star-col.", "Lin. trend", "Kruskal row", 
            "Kruskal col.", "Kappa", "McNemar", "McNemar df=1"
        };
        ContingencyTable ct = new ContingencyTable(table);
        NumberFormat nf = NumberFormat.getInstance();
        nf.setMinimumFractionDigits(4);
        System.out.println("Pearson chi-squared statistic = "
```
System.out.println("p-value for Pearson chi-squared = "+nf.format(ct.getP()));
System.out.println("degrees of freedom = " + ct.getDegreesOfFreedom());
System.out.println("G-squared statistic = " +nf.format(ct.getGSquared()));
System.out.println("p-value for G-squared = " +nf.format(ct.getGSquaredP()));
System.out.println("degrees of freedom = " + ct.getDegreesOfFreedom());

nf.setMaximumFractionDigits(2);
nf.setMinimumFractionDigits(2);
PrintMatrix pm = new PrintMatrix("* * * Table Values * * *");
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(nf);
pm.print(pmf, table);

pm.setTitle("* * * Expected Values * * *");
pm.print(pmf, ct.getExpectedValues());

nf.setMinimumFractionDigits(4);
pmf.setNumberFormat(nf);
pm.setTitle("* * * Contributions to Chi-squared* * *");
pm.print(pmf, ct.getContributions());

nf.setMinimumFractionDigits(4);
System.out.println("* * * Chi-square Statistics * * *");
System.out.println("Exact mean = " + nf.format(ct.getExactMean()));
System.out.println("Exact standard deviation = " +nf.format(ct.getExactStdev()));
System.out.println("Phi = " + nf.format(ct.getPhi()));
System.out.println("P = " + nf.format(ct.getContingencyCoef()));
System.out.println("Cramer's V = " + nf.format(ct.getCramersV()));

System.out.println("stat. std. err. "
+ "std. err.(Ho) t-value(Ho) p-value");
double[][] stat = ct.getStatistics();
for (int i = 0; i < stat.length; i++) {
 StringBuffer sb = new StringBuffer(rlabels[i]);

 int len = sb.length();
 for (int j = 0; j < (13 - len); j++) {
 sb.append(' ');
 }
 sb.append(nf.format(stat[i][0]));

 len = sb.length();
 for (int j = 0; j < (24 - len); j++) {
 sb.append(' ');
 }
 sb.append(nf.format(stat[i][1]));

 len = sb.length();
 for (int j = 0; j < (36 - len); j++) {
 sb.append(' ');
 }
 System.out.println(sb.toString());
}
sb.append(nf.format(stat[i][2]));

len = sb.length();
for (int j = 0; j < (50 - len); j++) {
 sb.append(' ');
}

sb.append(nf.format(stat[i][3]));

len = sb.length();
for (int j = 0; j < (63 - len); j++) {
 sb.append(' ');
}

sb.append(nf.format(stat[i][4]));

System.out.println(sb.toString());
}
}

Output

Pearson chi-squared statistic = 3.304.3684
p-value for Pearson chi-squared = 0.0000
degrees of freedom = 9
G-squared statistic = 2.781.0190
p-value for G-squared = 0.0000
degrees of freedom = 9

* * * Table Values * * *

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>821.00</td>
<td>112.00</td>
<td>85.00</td>
<td>35.00</td>
<td>35.00</td>
</tr>
<tr>
<td>1</td>
<td>116.00</td>
<td>494.00</td>
<td>145.00</td>
<td>27.00</td>
<td>27.00</td>
</tr>
<tr>
<td>2</td>
<td>72.00</td>
<td>151.00</td>
<td>583.00</td>
<td>87.00</td>
<td>87.00</td>
</tr>
<tr>
<td>3</td>
<td>43.00</td>
<td>34.00</td>
<td>106.00</td>
<td>331.00</td>
<td>331.00</td>
</tr>
</tbody>
</table>

* * * Expected Values * * *

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>341.69</td>
<td>256.92</td>
<td>298.49</td>
<td>155.90</td>
<td>1,053.00</td>
</tr>
<tr>
<td>1</td>
<td>253.75</td>
<td>190.80</td>
<td>221.67</td>
<td>115.78</td>
<td>782.00</td>
</tr>
<tr>
<td>2</td>
<td>289.77</td>
<td>217.88</td>
<td>253.14</td>
<td>132.21</td>
<td>893.00</td>
</tr>
<tr>
<td>3</td>
<td>166.79</td>
<td>125.41</td>
<td>145.70</td>
<td>76.10</td>
<td>514.00</td>
</tr>
<tr>
<td>4</td>
<td>1,052.00</td>
<td>791.00</td>
<td>919.00</td>
<td>480.00</td>
<td>3,242.00</td>
</tr>
</tbody>
</table>

* * * Contributions to Chi-squared* * *

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>672.3626</td>
<td>81.7416</td>
<td>152.6959</td>
<td>93.7612</td>
<td>1,000.5613</td>
</tr>
<tr>
<td>1</td>
<td>74.7802</td>
<td>481.8351</td>
<td>26.5189</td>
<td>68.0768</td>
<td>651.2109</td>
</tr>
<tr>
<td>2</td>
<td>163.6605</td>
<td>20.5287</td>
<td>429.8489</td>
<td>15.4625</td>
<td>629.5006</td>
</tr>
<tr>
<td>3</td>
<td>91.8743</td>
<td>66.6263</td>
<td>10.8183</td>
<td>853.7768</td>
<td>1,023.0957</td>
</tr>
<tr>
<td>4</td>
<td>1,002.6776</td>
<td>650.7317</td>
<td>619.8819</td>
<td>1,031.0772</td>
<td>3,304.3684</td>
</tr>
</tbody>
</table>

* * * Chi-square Statistics * * *

Exact mean = 9.0028
Exact standard deviation = 4.2402
Phi = 1.0096
\[
P = 0.7105
\]
\[
\text{Cramer's } V = 0.5829
\]

<table>
<thead>
<tr>
<th>Statistic</th>
<th>stat.</th>
<th>std. err.</th>
<th>std. err.(Ho)</th>
<th>t-value(Ho)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>0.7757</td>
<td>0.0123</td>
<td>0.0149</td>
<td>52.1897</td>
<td>0.0000</td>
</tr>
<tr>
<td>Tau B</td>
<td>0.6429</td>
<td>0.0122</td>
<td>0.0123</td>
<td>52.1897</td>
<td>0.0000</td>
</tr>
<tr>
<td>Tau C</td>
<td>0.6293</td>
<td>0.0121</td>
<td>?</td>
<td>52.1897</td>
<td>0.0000</td>
</tr>
<tr>
<td>D-Raw</td>
<td>0.6418</td>
<td>0.0122</td>
<td>0.0123</td>
<td>52.1897</td>
<td>0.0000</td>
</tr>
<tr>
<td>D-Column</td>
<td>0.6439</td>
<td>0.0122</td>
<td>0.0123</td>
<td>52.1897</td>
<td>0.0000</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.6926</td>
<td>0.0128</td>
<td>0.0172</td>
<td>40.2669</td>
<td>0.0000</td>
</tr>
<tr>
<td>Spearman</td>
<td>0.6939</td>
<td>0.0127</td>
<td>0.0127</td>
<td>54.6614</td>
<td>0.0000</td>
</tr>
<tr>
<td>GK tau rows</td>
<td>0.3420</td>
<td>0.0123</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>GK tau cols.</td>
<td>0.3430</td>
<td>0.0122</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>U - sym.</td>
<td>0.3171</td>
<td>0.0110</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>U - rows</td>
<td>0.3178</td>
<td>0.0110</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>U - cols.</td>
<td>0.3164</td>
<td>0.0110</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Lambda-sym.</td>
<td>0.5373</td>
<td>0.0124</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Lambda-row</td>
<td>0.5374</td>
<td>0.0126</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Lambda-col.</td>
<td>0.5372</td>
<td>0.0126</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>l-star-rows</td>
<td>0.5506</td>
<td>0.0136</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>l-star-col.</td>
<td>0.5636</td>
<td>0.0127</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Kruskal row</td>
<td>1,561.4859</td>
<td>3.0000</td>
<td>?</td>
<td>?</td>
<td>0.0000</td>
</tr>
<tr>
<td>Kruskal col.</td>
<td>1,563.0303</td>
<td>3.0000</td>
<td>?</td>
<td>?</td>
<td>0.0000</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.5744</td>
<td>0.0111</td>
<td>0.0106</td>
<td>54.3583</td>
<td>0.0000</td>
</tr>
<tr>
<td>McNemar</td>
<td>4.7625</td>
<td>6.0000</td>
<td>?</td>
<td>?</td>
<td>0.5746</td>
</tr>
<tr>
<td>McNemar df=1</td>
<td>0.9487</td>
<td>1.0000</td>
<td>?</td>
<td>0.3459</td>
<td>0.3301</td>
</tr>
</tbody>
</table>

CategoricalGenLinModel class

```java
public class com.imsl.stat.CategoricalGenLinModel

Analyzes categorical data using logistic, probit, Poisson, and other linear models.

Reweighted least squares is used to compute (extended) maximum likelihood estimates in some generalized linear models involving categorized data. One of several models, including probit, logistic, Poisson, logarithmic, and negative binomial models, may be fit for input point or interval observations. (In the usual case, only point observations are observed.)

Let
\[
\gamma_i = w_i + x_i^T \beta = w_i + \eta_i
\]

be the linear response where \(x_i\) is a design column vector obtained from a row of \(x\), \(\beta\) is the column vector of coefficients to be estimated, and \(w_i\) is a fixed parameter that may be input in \(x\). When some of the \(\gamma_i\) are infinite at the supremum of the likelihood, then extended maximum likelihood estimates are computed. Extended maximum likelihood are computed as the finite (but nonunique) estimates \(\hat{\beta}\) that optimize the likelihood containing only the observations with finite \(\hat{\gamma}_i\). These estimates, when combined with the set of indices of the observations such that \(\hat{\gamma}_i\) is infinite at the supremum of the likelihood, are
```
called extended maximum estimates. When none of the optimal $\hat{\gamma}_i$ are infinite, extended maximum likelihood estimates are identical to maximum likelihood estimates. Extended maximum likelihood estimation is discussed in more detail by Clarkson and Jennrich (1991). In CategoricalGenLinModel, observations with potentially infinite $\hat{\eta}_i = x_i^T \hat{\beta}$ are detected and removed from the likelihood if $\text{infin} = 0$. See below.

The models available in CategoricalGenLinModel are:

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Parameterization</th>
<th>Response PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL0 (Poisson)</td>
<td>$\lambda = N \times e^{w+\eta}$</td>
<td>$f(y) = \lambda^y e^{-\lambda} / y!$</td>
</tr>
<tr>
<td>MODEL1 (Negative Binomial)</td>
<td>$\theta = e^{w+\eta} / (1 + e^{w+\eta})$</td>
<td>$f(y) = \left(\frac{S+y-1}{y-1} \right) \theta^y (1-\theta)^y$</td>
</tr>
<tr>
<td>MODEL2 (Logarithmic)</td>
<td>$\theta = e^{w+\eta} / (1 + e^{w+\eta})$</td>
<td>$f(y) = (1 - \theta)^y / (y \ln \theta)$</td>
</tr>
<tr>
<td>MODEL3 (Logistic)</td>
<td>$\theta = e^{w+\eta} / (1 + e^{w+\eta})$</td>
<td>$f(y) = \left(\frac{N}{y} \right) \theta^y (1-\theta)^{N-y}$</td>
</tr>
<tr>
<td>MODEL4 (Probit)</td>
<td>$\theta = \Phi(w + \eta)$</td>
<td>$f(y) = \left(\frac{N}{y} \right) \theta^y (1-\theta)^{N-y}$</td>
</tr>
<tr>
<td>MODEL5 (Log-log)</td>
<td>$\theta = 1 - e^{-e^{w+\eta}}$</td>
<td>$f(y) = \left(\frac{N}{y} \right) \theta^y (1-\theta)^{N-y}$</td>
</tr>
</tbody>
</table>

Here Φ denotes the cumulative normal distribution, N and S are known parameters specified for each observation via column ipar of x, and w is an optional fixed parameter specified for each observation via column ifix of x. (By default N is taken to be 1 for $\text{model} = 0, 3, 4$ and 5 and S is taken to be 1 for $\text{model} = 1$. By default w is taken to be 0.) Since the log-log model ($\text{model} = 5$) probabilities are not symmetric with respect to 0.5, quantitatively, as well as qualitatively, different models result when the definitions of “success” and “failure” are interchanged in this distribution. In this model and all other models involving θ, θ is taken to be the probability of a “success.”

Note that each row vector in the data matrix can represent a single observation; or, through the use of column ifrq of the matrix x, each vector can represent several observations.

Computational Details

For interval observations, the probability of the observation is computed by summing the probability distribution function over the range of values in the observation interval. For right-interval observations, $Pr(Y \geq y)$ is computed as a sum based upon the equality $Pr(Y \geq y) = 1 - Pr(Y < y)$. Derivatives are computed similarly. CategoricalGenLinModel allows three types of interval observations. In full interval observations, both the lower and the upper endpoints of the interval must be specified. For right-interval observations, only the lower endpoint need be given while for left-interval observations, only the upper endpoint is given.

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.
2. Estimates of the means of the “independent” or design variables are computed. The frequency of the observation in all but binomial distribution model is taken from column ifrq of the data.
matrix \(x \). In binomial distribution models, the frequency is taken as the product of \(n = x[i][ipar] \) and \(x[i][ifrq] \). In all cases these values default to 1. Means are computed as
\[
\bar{x} = \frac{\sum_i f_i x_i}{\sum_i f_i}
\]

3. If \(\text{init} = 0 \), initial estimates of the coefficients are obtained (based upon the observation intervals) as multiple regression estimates relating transformed observation probabilities to the observation design vector. For example, in the binomial distribution models, \(\theta \) for point observations may be estimated as
\[
\hat{\theta} = x[i][irt]/x[i][ipar]
\]
and, when \(\text{model} = 3 \), the linear relationship is given by
\[
(\ln(\hat{\theta}/(1 - \hat{\theta})) \approx x\beta)
\]
while if \(\text{model} = 4 \),
\[
(\Phi^{-1}(\hat{\theta}) = x\beta)
\]
For bounded interval observations, the midpoint of the interval is used for \(x[i][irt] \).
Right-interval observations are not used in obtaining initial estimates when the distribution has unbounded support (since the midpoint of the interval is not defined). When computing initial estimates, standard modifications are made to prevent illegal operations such as division by zero.
Regression estimates are obtained at this point, as well as later, by use of linear regression.

4. Newton-Raphson iteration for the maximum likelihood estimates is implemented via iteratively reweighted least squares. Let
\[
\Psi(x_i^T \beta)
\]
denote the log of the probability of the \(i \)-th observation for coefficients \(\beta \). In the least-squares model, the weight of the \(i \)-th observation is taken as the absolute value of the second derivative of
\[
\Psi(x_i^T \beta)
\]
with respect to
\[
\gamma = x_i^T \beta
\]
(times the frequency of the observation), and the dependent variable is taken as the first derivative \(\Psi \) with respect to \(\gamma \), divided by the square root of the weight times the frequency. The Newton step is given by
\[
\Delta \beta = \left(\sum_i |\Psi''(\gamma)| x_i^T \right)^{-1} \sum_i \Psi'(\gamma) x_i
\]
where all derivatives are evaluated at the current estimate of \(\gamma \), and \(\beta_{n+1} = \beta_n - \Delta \beta \). This step is computed as the estimated regression coefficients in the least-squares model. Step halving is used when necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient update from one iteration to the next is less than \(\text{eps} \) or when the relative change in the log-likelihood from one iteration to the next is less than \(\text{eps}/100 \). Convergence is also assumed after \(\text{maxIterations} \) or when step halving leads to a step size of less than .0001 with no increase in the log-likelihood.
6. For interval observations, the contribution to the log-likelihood is the log of the sum of the probabilities of each possible outcome in the interval. Because the distributions are discrete, the sum may involve many terms. The user should be aware that data with wide intervals can lead to expensive (in terms of computer time) computations.

7. If `setInfiniteEstimateMethod` set to 0, then the methods of Clarkson and Jennrich (1991) are used to check for the existence of infinite estimates in

\[\eta_i = x_i^T \hat{\beta} \]

As an example of a situation in which infinite estimates can occur, suppose that observation \(j \) is right censored with \(t_j > 15 \) in a logistic model. If design matrix \(x \) is such that \(x_{jm} = 1 \) and \(x_{im} = 0 \) for all \(i \neq j \), then the optimal estimate of \(\beta_m \) occurs at \(\hat{\beta}_m = \infty \) leading to an infinite estimate of both \(\beta_m \) and \(\eta_j \). In CategoricalGenLinModel, such estimates may be “computed.”

In all models fit by CategoricalGenLinModel, infinite estimates can only occur when the optimal estimated probability associated with the left- or right-censored observation is 1. If `setInfiniteEstimateMethod` set to 0, left- or right-censored observations that have estimated probability greater than 0.995 at some point during the iterations are excluded from the log-likelihood, and the iterations proceed with a log-likelihood based upon the remaining observations. This allows convergence of the algorithm when the maximum relative change in the estimated coefficients is small and also allows for the determination of observations with infinite \(\eta_i \). At convergence, linear programming is used to ensure that the eliminated observations have infinite \(\eta_i \). If some (or all) of the removed observations should not have been removed (because their estimated \(\eta_i \)'s must be finite), then the iterations are restarted with a log-likelihood based upon the finite \(\eta_i \) observations. See Clarkson and Jennrich (1991) for more details.

When `setInfiniteEstimateMethod` is set to 1, no observations are eliminated during the iterations. In this case, when infinite estimates occur, some (or all) of the coefficient estimates \(\hat{\beta} \) will become large, and it is likely that the Hessian will become (numerically) singular prior to convergence.

When infinite estimates for the \(\hat{\eta}_i \) are detected, linear regression (see Chapter 2, Regression;) is used at the convergence of the algorithm to obtain unique estimates \(\hat{\beta} \). This is accomplished by regressing the optimal \(\hat{\eta}_i \) or the observations with finite \(\eta \) against \(x \hat{\beta} \), yielding a unique \(\hat{\beta} \) (by setting coefficients \(\hat{\beta} \) that are linearly related to previous coefficients in the model to zero). All of the final statistics relating to \(\hat{\beta} \) are based upon these estimates.

8. Residuals are computed according to methods discussed by Pregibon (1981). Let \(\ell_i(\gamma) \) denote the log-likelihood of the \(i \)-th observation evaluated at \(\gamma \). Then, the standardized residual is computed as

\[r_i = \frac{\ell_i'(\hat{\gamma})}{\sqrt{\ell_i''(\hat{\gamma})}} \]
where \(\hat{\gamma}_i \) is the value of \(\gamma \) when evaluated at the optimal \(\hat{\beta} \) and the derivatives here (and only here) are with respect to \(\gamma \) rather than with respect to \(\beta \). The denominator of this expression is used as the “standard error of the residual” while the numerator is the “raw” residual.

Following Cook and Weisberg (1982), we take the influence of the \(i \)-th observation to be

\[
\ell' (\hat{\gamma}_i)^T \ell'' (\hat{\gamma}_i)^{-1} \ell (\hat{\gamma}_i)
\]

This quantity is a one-step approximation to the change in the estimates when the \(i \)-th observation is deleted. Here, the partial derivatives are with respect to \(\beta \).

Programming Notes

1. Classification variables are specified via `setClassificationVariableColumn`. Indicator or dummy variables are created for the classification variables.

2. To enhance precision “centering” of covariates is performed if `setModelIntercept` is set to 1 and (number of observations) - (number of rows in \(x \) missing one or more values) > 1. In doing so, the sample means of the design variables are subtracted from each observation prior to its inclusion in the model. On convergence the intercept, its variance and its covariance with the remaining estimates are transformed to the uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the first method, \(x[i][ifrq] \) contains the frequency of the observation while \(x[i][irt] \) is 0 or 1 depending upon whether the observation is a success or failure. In this case, \(N = x[i][ipar] \) is always 1. The model is treated as repeated Bernoulli trials, and interval observations are not possible.

A second method for specifying binomial models is to use \(x[i][irt] \) to represent the number of successes in the \(x[i][ipar] \) trials. In this case, \(x[i][ifrq] \) will usually be 1, but it may be greater than 1, in which case interval observations are possible.

Note that the `solve` method must be called prior to calling the “get” member functions, otherwise a `null` is returned.

Fields

- **MODEL0**

 `static final public int MODEL0`

 Indicates an exponential function is used to model the distribution parameter. The distribution of the response variable is Poisson. The lower bound of the response variable is 0.

- **MODEL1**

 `static final public int MODEL1`

 Indicates a logistic function is used to model the distribution parameter. The distribution of the response variable is negative Binomial. The lower bound of the response variable is 0.
MODEL 2
static final public int MODEL2

Indicates a logistic function is used to model the distribution parameter. The distribution of the response variable is Logarithmic. The lower bound of the response variable is 1.

MODEL 3
static final public int MODEL3

Indicates a logistic function is used to model the distribution parameter. The distribution of the response variable is Binomial. The lower bound of the response variable is 0.

MODEL 4
static final public int MODEL4

Indicates a probit function is used to model the distribution parameter. The distribution of the response variable is Binomial. The lower bound of the response variable is 0.

MODEL 5
static final public int MODEL5

Indicates a log-log function is used to model the distribution parameter. The distribution of the response variable is Binomial. The lower bound of the response variable is 0.

Constructor

CategoricalGenLinModel
public CategoricalGenLinModel(double[][] x, int model)

Description
Constructs a new CategoricalGenLinModel.

Parameters

x – A double input matrix containing the data where the number of rows in the matrix is equal to the number of observations.

model – An int scalar which specifies the distribution of the response variable and the function used to model the distribution parameter. Use one of the class members from the following table. The lower bound given in the table is the minimum possible value of the response variable:

<table>
<thead>
<tr>
<th>Model</th>
<th>Distribution</th>
<th>Function</th>
<th>Lower-bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Poisson</td>
<td>Exponential</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Negative Binomial</td>
<td>Logistic</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Logarithmic</td>
<td>Logistic</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Binomial</td>
<td>Logistic</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Binomial</td>
<td>Probit</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Binomial</td>
<td>Log-log</td>
<td>0</td>
</tr>
</tbody>
</table>
Let γ be the dot product of a row in the design matrix with the parameters (plus the fixed parameter, if used). Then, the functions used to model the distribution parameter are given by:

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>e^γ</td>
</tr>
<tr>
<td>Logistic</td>
<td>$e^\gamma / (1 + e^\gamma)$</td>
</tr>
<tr>
<td>Probit</td>
<td>$\Phi(\gamma)$ (where Φ is the normal cdf)</td>
</tr>
<tr>
<td>Log-log</td>
<td>$1 - e^{-\gamma}$</td>
</tr>
</tbody>
</table>

Methods

getCaseAnalysis

```java
public double[][] getCaseAnalysis()
```

Description

Returns the case analysis.

Returns

A `double` matrix containing the case analysis or `null` if `solve` has not been called. The matrix is `$nobs \times 5$` where `$nobs$` is the number of observations. The matrix contains:

<table>
<thead>
<tr>
<th>Column</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Prediction.</td>
</tr>
<tr>
<td>1</td>
<td>The residual.</td>
</tr>
<tr>
<td>2</td>
<td>The estimated standard error of the residual.</td>
</tr>
<tr>
<td>3</td>
<td>The estimated influence of the observation.</td>
</tr>
<tr>
<td>4</td>
<td>The standardized residual.</td>
</tr>
</tbody>
</table>

Case studies are computed for all observations except where missing values prevent their computation. The prediction in column 0 depends upon the model used as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The predicted mean for the observation.</td>
</tr>
<tr>
<td>1-4</td>
<td>The probability of a success on a single trial.</td>
</tr>
</tbody>
</table>

getClassificationVariableCounts

```java
public int[] getClassificationVariableCounts() throws CategoricalGenLinModel.ClassificationVariableException
```

Description

Returns the number of values taken by each classification variable.

Returns

An `int` array of length `$nclvar$` containing the number of values taken by each classification variable where `$nclvar$` is the number of classification variables or `null` if `solve` has not been called.
Exception

ClassificationVariableException is thrown when the number of values taken by each classification variable has been set by the user to be less than or equal to 1

getClassificationVariableValues

public double[] getClassificationVariableValues() throws CategoricalGenLinModel.ClassificationVariableException

Description

Returns the distinct values of the classification variables in ascending order.

Returns

A double array of length $\sum_{k=0}^{nclvar} nclval[k]$ containing the distinct values of the classification variables in ascending order where $nclvar$ is the number of classification variables and $nclval[i]$ is the number of values taken by the i-th classification variable. A null is returned if solve has not been called prior to calling this method.

Exception

ClassificationVariableException is thrown when the number of values taken by each classification variable has been set by the user to be less than or equal to 1

getCovarianceMatrix

public double[][] getCovarianceMatrix()

Description

Returns the estimated asymptotic covariance matrix of the coefficients.

Returns

A double matrix containing the estimated asymptotic covariance matrix of the coefficients or null if solve has not been called. The covariance matrix is $nCoef \times nCoef$ where $nCoef$ is the number of coefficients in the model.

getDesignVariableMeans

public double[] getDesignVariableMeans()

Description

Returns the means of the design variables.

Returns

A double array of length $nCoef$ containing the means of the design variables where $nCoef$ is the number of coefficients in the model or null if solve has not been called.

getExtendedLikelihoodObservations

public int[] getExtendedLikelihoodObservations()

Description

Returns a vector indicating which observations are included in the extended likelihood.
Returns
An int array of length nobs indicating which observations are included in the extended likelihood where nobs is the number of observations. The values within the array are interpreted as:

<table>
<thead>
<tr>
<th>Value</th>
<th>Status of observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Observation i is in the likelihood.</td>
</tr>
<tr>
<td>1</td>
<td>Observation i cannot be in the likelihood because it contains at least one missing value in x.</td>
</tr>
<tr>
<td>2</td>
<td>Observation i is not in the likelihood. Its estimated parameter is infinite.</td>
</tr>
</tbody>
</table>

A null is returned if solve has not been called prior to calling this method.

getHessian
def getHessian() throws CategoricalGenLinModel.ClassificationVariableException, CategoricalGenLinModel.ClassificationVariableLimitException, CategoricalGenLinModel.ClassificationVariableValueException, CategoricalGenLinModel.DeleteObservationsException, CategoricalGenLinModel.RankDeficientException, SVD.DidNotConvergeException

Description
Returns the Hessian computed at the initial parameter estimates.

Returns
A double matrix containing the Hessian computed at the input parameter estimates. The Hessian matrix is nCoef by nCoef where nCoef is the number of coefficients in the model. This member function will call solve to get the Hessian if the Hessian has not already been computed.

Exceptions
ClassificationVariableException is thrown when the number of values taken by each classification variable has been set by the user to be less than or equal to 1
ClassificationVariableLimitException is thrown when the sum of the number of distinct values taken on by each classification variable exceeds the maximum allowed, maxcl
DeleteObservationsException is thrown if the number of observations to be deleted has grown too large

getLastParameterUpdates
def getLastParameterUpdates()

Description
Returns the last parameter updates (excluding step halvings).

Returns
A double array of length nCoef containing the last parameter updates (excluding step halvings) or null if solve has not been called.

getNRowsMissing
def getNRowsMissing()
Description
Returns the number of rows of data in x that contain missing values in one or more specific columns of x.

Returns
An int scalar representing the number of rows of data in x that contain missing values in one or more specific columns of x or null if solve has not been called. The columns of x included in the count are the columns containing the upper or lower endpoints of full interval, left interval, or right interval observations. Also included are the columns containing the frequency responses, fixed parameters, optional distribution parameters, and interval type for each observation. Columns containing classification variables and columns associated with each effect in the model are also included.

getOptimizedCriterion
public double getOptimizedCriterion()

Description
Returns the optimized criterion.

Returns
A double scalar representing the optimized criterion or null if solve has not been called. The criterion to be maximized is a constant plus the log-likelihood.

getParameters
public double[][] getParameters()

Description
Returns the parameter estimates and associated statistics.

Returns
An nCoef row by 4 column double matrix containing the parameter estimates and associated statistics or null if solve has not been called. Here, nCoef is the number of coefficients in the model. The statistics returned are as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Coefficient estimate.</td>
</tr>
<tr>
<td>1</td>
<td>Estimated standard deviation of the estimated coefficient.</td>
</tr>
<tr>
<td>2</td>
<td>Asymptotic normal score for testing that the coefficient is zero.</td>
</tr>
<tr>
<td>3</td>
<td>ρ - value associated with the normal score in column 2.</td>
</tr>
</tbody>
</table>

getProduct
public double[] getProduct() throws CategoricalGenLinModel.ClassificationVariableException, CategoricalGenLinModel.ClassificationVariableLimitException, CategoricalGenLinModel.ClassificationVariableValueException, CategoricalGenLinModel.DeleteObservationsException, CategoricalGenLinModel.RankDeficientException, SVD.DidNotConvergeException
Description
Returns the inverse of the Hessian times the gradient vector computed at the input parameter estimates.

Returns
A double array of length \(nCoef \) containing the inverse of the Hessian times the gradient vector computed at the input parameter estimates. \(nCoef \) is the number of coefficients in the model. This member function will call solve to get the product if the product has not already been computed.

Exceptions
- ClassificationVariableException is thrown when the number of values taken by each classification variable has been set by the user to be less than or equal to 1
- ClassificationVariableLimitException is thrown when the sum of the number of distinct values taken on by each classification variable exceeds the maximum allowed, maxcl
- DeleteObservationsException is thrown if the number of observations to be deleted has grown too large

void setCensorColumn(int icen)

Description
Sets the column number in \(x \) which contains the interval type for each observation.

Parameter
- \(icen \) – An int scalar which indicates the column number \(x \) which contains the interval type code for each observation. The valid codes are interpreted as:

<table>
<thead>
<tr>
<th>(x[i][icen])</th>
<th>Censoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Point observation. The response is unique and is given by (x[i][irt]).</td>
</tr>
<tr>
<td>1</td>
<td>Right interval. The response is greater than or equal to (x[i][irt]) and less than or equal to the upper bound, if any, of the distribution.</td>
</tr>
<tr>
<td>2</td>
<td>Left interval. The response is less than or equal to (x[i][ilt]) and greater than or equal to the lower bound of the distribution.</td>
</tr>
<tr>
<td>3</td>
<td>Full interval. The response is greater than or equal to (x[i][irt]) but less than or equal to (x[i][ilt]).</td>
</tr>
</tbody>
</table>

If this member function is not called a censoring code of 0 is assumed.

Exception
- IllegalArgumentException is thrown when \(icen \) is less than 0 or greater than or equal to the number of columns of \(x \)

void setClassificationVariableColumn(int[] indcl)
Description

Initializes an index vector to contain the column numbers in \(x \) that are classification variables.

Parameter

- \(\text{indcl} \) – An int vector which contains the column numbers in \(x \) that are classification variables. By default this vector is not referenced.

Exception

IllegalArgumentException is thrown when an element of \(\text{indcl} \) is less than 0 or greater than or equal to the number of columns of \(x \).

setConvergenceTolerance

public void setConvergenceTolerance(double eps)

Description

Set the convergence criterion.

Parameter

- \(\text{eps} \) – A double scalar specifying the convergence criterion. Convergence is assumed when the maximum relative change in any coefficient estimate is less than \(\text{eps} \) from one iteration to the next or when the relative change in the log-likelihood, \(\text{getOptimizedCriterion} \), from one iteration to the next is less than \(\text{eps}/100 \). \(\text{eps} \) must be greater than 0. If this member function is not called, \(\text{eps} = .001 \) is assumed.

Exception

IllegalArgumentException is thrown if \(\text{eps} \) is or equal to 0.

setEffects

public void setEffects(int[] indef, int[] nvef)

Description

Initializes an index vector to contain the column numbers in \(x \) associated with each effect.

Parameters

- \(\text{indef} \) – An int vector of length \(\sum_{k=0}^{\text{nvef}[\text{nef}]-1} \text{nvef}[k] \) where \(\text{nef} \) is the number of effects in the model. \(\text{indef} \) contains the column numbers in \(x \) that are associated with each effect. Member function \(\text{setEffects(int [], int [] nvef)} \) sets the number of variables associated with each effect in the model. The first \(\text{nvef}[0] \) elements of \(\text{indef} \) give the column numbers of the variables in the first effect. The next \(\text{nvef}[0] \) elements give the column numbers of the variables in the second effect, etc. By default this vector is not referenced.

- \(\text{nvef} \) – An int vector of length \(\text{nef} \) where \(\text{nef} \) is the number of effects in the model. \(\text{nvef} \) contains the number of variables associated with each effect in the model. By default this vector is not referenced.
Exception

IllegalArgumentException is thrown when an element of indef is less than 0 or greater than or equal to the number of columns of x or if an element of nvef is less than or equal to 0

setExtendedLikelihoodObservations
public void setExtendedLikelihoodObservations(int[] iadds)

Description
Initializes a vector indicating which observations are to be included in the extended likelihood.

Parameter
iadds – An int array of length nobs indicating which observations are included in the extended likelihood where nobs is the number of observations. The values within the array are interpreted as:

<table>
<thead>
<tr>
<th>Value</th>
<th>Status of observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Observation i is in the likelihood.</td>
</tr>
<tr>
<td>1</td>
<td>Observation i cannot be in the likelihood because it contains at least one missing value in x.</td>
</tr>
<tr>
<td>2</td>
<td>Observation i is not in the likelihood. Its estimated parameter is infinite.</td>
</tr>
</tbody>
</table>

If this member function is not called, iadds is set to all zeroes.

Exception
IllegalArgumentException is thrown when an element of iadds is not in the range [0,2]

setFixedParameterColumn
public void setFixedParameterColumn(intifix)

Description
Sets the column number in x that contains a fixed parameter for each observation that is added to the linear response prior to computing the model parameter.

Parameter
ifix – An int scalar which indicates the column number in x that contains a fixed parameter for each observation that is added to the linear response prior to computing the model parameter. The “fixed” parameter allows one to test hypothesis about the parameters via the log-likelihoods. By default the fixed parameter is assumed to be zero.

Exception
IllegalArgumentException is thrown when ifix is less than 0 or greater than or equal to the number of columns of x

setFrequencyColumn
public void setFrequencyColumn(int ifrq)

Description
Sets the column number in x that contains the frequency of response for each observation.
Parameter

ifrq – An int scalar which indicates the column number in x that contains the frequency of response for each observation. By default a frequency of 1 for each observation is assumed.

Exception

IllegalArgumentException is thrown when ifrq is less than 0 or greater than or equal to the number of columns of x

setInfiniteEstimateMethod
public void setInfiniteEstimateMethod(int infin)

Description
Sets the method to be used for handling infinite estimates.

Parameter

infin – An int scalar which indicates the method to be used for handling infinite estimates. The method value is interpreted as follows:

<table>
<thead>
<tr>
<th>infin</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Remove a right or left-censored observation from the log-likelihood whenever the probability of the observation exceeds 0.995. At convergence, use linear programming to check that all removed observations actually have an estimated linear response that is infinite. Set iadds[i] for observation i to 2 if the linear response is infinite. If not all removed observations have infinite linear response, recompute the estimates based upon the observations with estimated linear response that is finite. This option is valid only for censoring codes 1 and 2.</td>
</tr>
<tr>
<td>1</td>
<td>Iterate without checking for infinite estimates.</td>
</tr>
</tbody>
</table>

By default infin = 1.

Exception

IllegalArgumentException is thrown when infin is less than 0 or greater than 1

setInitialEstimates
public void setInitialEstimates(int init, double[] estimates)

Description
Sets the initial parameter estimates option.

Parameters

init – An input int indicating the desired initialization method for the initial estimates of the parameters. If this method is not called, init is set to 0.
init [Action]

<table>
<thead>
<tr>
<th>init</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unweighted linear regression is used to obtain initial estimates.</td>
</tr>
<tr>
<td>1</td>
<td>The $n\text{Coef}$, number of coefficients, elements of estimates contain initial estimates of the parameters. Use of this option requires that the user know $n\text{Coef}$ beforehand.</td>
</tr>
</tbody>
</table>

estimates – An input double array of length $n\text{Coef}$ containing the initial estimates of the parameters where $n\text{Coef}$ is the number of estimated coefficients in the model. (Used if init = 1.) If this member function is not called, unweighted linear regression is used to obtain the initial estimates.

Exception

IllegalArgumentException is thrown when init is not in the range [0,1]

setLowerEndpointColumn

Description
Sets the column number in x that contains the lower endpoint of the observation interval for full interval and right interval observations.

Parameter

irt – An int scalar which indicates the column number in x that contains the lower endpoint of the observation interval for full interval and right interval observations. By default all observations are treated as “point” observations and $x[i][irt]$ contains the observation point. If this member function is not called, the last column of x is assumed to contain the “point” observations.

Exception

IllegalArgumentException is thrown when irt is less than 0 or greater than or equal to the number of columns of x

setMaxIterations

Description
Set the maximum number of iterations allowed.

Parameter

maxIterations – An int specifying the maximum number of iterations allowed. maxIterations must be greater than 0. If this member function is not called, the maximum number of iterations is set to 30.

Exception

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setModelIntercept

Description

CategoricalGenLinModel JMSL
Description
Sets the intercept option.

Parameter
intcep – An int scalar which indicates whether or not the model has an intercept. Input intcep is interpreted as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No intercept is in the model (unless otherwise provided for by the user).</td>
</tr>
<tr>
<td>1</td>
<td>Intercept is automatically included in the model.</td>
</tr>
</tbody>
</table>

By default intcep = 1.

Exception
IllegalArgumentException is thrown when intcep is less than 0 or greater than 1

setObservationMax
public void setObservationMax(int nmax)

Description
Sets the maximum number of observations that can be handled in the linear programming.

Parameter
nmax – An int scalar which sets the maximum number of observations that can be handled in the linear programming. An illegal argument exception is thrown if nmax is less than 0. If this member function is not called, nmax is set to the number of observations.

Exception
IllegalArgumentException is thrown when nmax is less than 0

setOptionalDistributionParameterColumn
public void setOptionalDistributionParameterColumn(int ipar)

Description
Sets the column number in x that contains an optional distribution parameter for each observation.

Parameter
ipar – An int scalar which indicates the column number in x that contains an optional distribution parameter for each observation. The distribution parameter values are interpreted as follows depending on the model chosen:

<table>
<thead>
<tr>
<th>Model</th>
<th>Meaning of x[i][ipar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The Poisson parameter is given by (x[i][ipar] \times e^\rho).</td>
</tr>
<tr>
<td>1</td>
<td>The number of successes required in the negative binomial is given by (x[i][ipar]).</td>
</tr>
<tr>
<td>2</td>
<td>(x[i][ipar]) is not used.</td>
</tr>
<tr>
<td>3-5</td>
<td>The number of trials in the binomial distribution is given by (x[i][ipar]).</td>
</tr>
</tbody>
</table>

By default the distribution parameter is assumed to be 1.
setTolerance
```java
public void setTolerance(double tol)
```

Description
Initializes the tolerance used in determining linear dependence.

Parameter
- `tol` – An `double` value used in determining linear dependence. When linear dependence is detected, a `RankDeficientException` is thrown and no results are computed. Computations for a rank deficient model can be forced to continue by specifying a negative tolerance. If `tol` is negative, the absolute value of `tol` will be used to determine linear dependence, but computations will proceed with warning `RankDeficientWarning`. In this case the results should be carefully inspected and used with caution. If this member function is not called, `tol` will be set to `.22204460492503130808e-14`.

setUpperBound
```java
public void setUpperBound(int maxcl)
```

Description
Sets the upper bound on the sum of the number of distinct values taken on by each classification variable.

Parameter
- `maxcl` – An `int` scalar specifying the upper bound on the sum of the number of distinct values taken on by each classification variable. If this member function is not called, an upper bound of 1 is used if method `setClassificationVariableColumn` has not been referenced. Otherwise, the default upper bound is set to `nobs * nclvar` where `nobs` is the number of observations and `nclvar` is the number of classification variables.

Exception
`IllegalArgumentException` is thrown when `maxcl` is less than 1 and the number of classification variables is greater than 0.

setUpperEndpointColumn
```java
public void setUpperEndpointColumn(int ilt)
```

Description
Sets the column number in `x` that contains the upper endpoint of the observation interval for full interval and left interval observations.

Parameter
- `ilt` – An `int` scalar which indicates the column number in `x` that contains the upper endpoint of the observation interval for full interval and left interval observations. By default all observations are treated as “point” observations.
Exception
IllegalArgumentException is thrown when ilt is less than 0 or greater than or equal to the number of columns of x

solve
public double[][] solve() throws
CategoricalGenLinModel.ClassificationVariableException,
CategoricalGenLinModel.ClassificationVariableLimitException,
CategoricalGenLinModel.ClassificationVariableValueException,
CategoricalGenLinModel.DeleteObservationsException,
CategoricalGenLinModel.RankDeficientException, SVD.DidNotConvergeException

Description
Returns the parameter estimates and associated statistics for a CategoricalGenLinModel object.

Returns
An nCoef row by 4 column double matrix containing the parameter estimates and associated statistics. Here, nCoef is the number of coefficients in the model. The statistics returned are as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Coefficient estimate.</td>
</tr>
<tr>
<td>1</td>
<td>Estimated standard deviation of the estimated coefficient.</td>
</tr>
<tr>
<td>2</td>
<td>Asymptotic normal score for testing that the coefficient is zero.</td>
</tr>
<tr>
<td>3</td>
<td>ρ - value associated with the normal score in column 2.</td>
</tr>
</tbody>
</table>

Exceptions
ClassificationVariableException is thrown when the number of values taken by each classification variable has been set by the user to be less than or equal to 1
ClassificationVariableLimitException is thrown when the sum of the number of distinct values taken on by each classification variable exceeds the maximum allowed, maxcl
DeleteObservationsException is thrown if the number of observations to be deleted has grown too large

Example: Mortality of beetles.
The first example is from Prentice (1976) and involves the mortality of beetles after exposure to various concentrations of carbon disulphide. Both a logit and a probit fit are produced for linear model $\mu + \beta x$. The data is given as
import com.imsl.stat.*;
import com.imsl.math.*;

public class CategoricalGenLinModelEx1 {

 public static void main(String argv[]) throws Exception {
 // Set up a PrintMatrix object for later use.
 PrintMatrixFormat mf;
 PrintMatrix p;
 p = new PrintMatrix();
 mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 double[][] x = {
 {1.690, 59.0, 6.0},
 {1.724, 60.0, 13.0},
 {1.755, 62.0, 18.0},
 {1.784, 56.0, 28.0},
 {1.811, 63.0, 52.0},
 {1.836, 59.0, 53.0},
 {1.861, 62.0, 61.0},
 {1.883, 60.0, 60.0}
 };
 CategoricalGenLinModel CATGLM3, CATGLM4;
 // MODEL3
 CATGLM3 = new CategoricalGenLinModel(x, CategoricalGenLinModel.MODEL3);
 CATGLM3.setLowerEndpointColumn(2);
 CATGLM3.setOptionalDistributionParameterColumn(1);
 CATGLM3.setInfiniteEstimateMethod(1);
 CATGLM3.setModelIntercept(1);
 int[] nvef = {1};
 int[] indef = {0};
 CATGLM3.setEffects(indef, nvef);
 CATGLM3.setUpperBound(1);
 System.out.println("MODEL3");
 p.setTitle("Coefficient Statistics");
 p.print(CATGLM3.solve());
 System.out.println("Log likelihood "+ CATGLM3.getOptimizedCriterion());
 p.setTitle("Asymptotic Coefficient Covariance");
 }
}

import com.imsl.stat.*;
import com.imsl.math.*;

public class CategoricalGenLinModel {

 public static void main(String argv[]) throws Exception {
 // Set up a PrintMatrix object for later use.
 PrintMatrixFormat mf;
 PrintMatrix p;
 p = new PrintMatrix();
 mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 double[][] x = {
 {1.690, 59.0, 6.0},
 {1.724, 60.0, 13.0},
 {1.755, 62.0, 18.0},
 {1.784, 56.0, 28.0},
 {1.811, 63.0, 52.0},
 {1.836, 59.0, 53.0},
 {1.861, 62.0, 61.0},
 {1.883, 60.0, 60.0}
 };
 CategoricalGenLinModel CATGLM3, CATGLM4;
 // MODEL3
 CATGLM3 = new CategoricalGenLinModel(x, CategoricalGenLinModel.MODEL3);
 CATGLM3.setLowerEndpointColumn(2);
 CATGLM3.setOptionalDistributionParameterColumn(1);
 CATGLM3.setInfiniteEstimateMethod(1);
 CATGLM3.setModelIntercept(1);
 int[] nvef = {1};
 int[] indef = {0};
 CATGLM3.setEffects(indef, nvef);
 CATGLM3.setUpperBound(1);
 System.out.println("MODEL3");
 p.setTitle("Coefficient Statistics");
 p.print(CATGLM3.solve());
 System.out.println("Log likelihood "+ CATGLM3.getOptimizedCriterion());
 p.setTitle("Asymptotic Coefficient Covariance");
 }
}
p.setMatrixType(1);
p.print(CATGLM3.getCovarianceMatrix());
p.setMatrixType(0);
p.setTitle("Case Analysis");
p.print(CATGLM3.getCaseAnalysis());
p.setTitle("Last Coefficient Update");
p.print(CATGLM3.getLastParameterUpdates());
p.setTitle("Covariate Means");
p.print(CATGLM3.getDesignVariableMeans());
p.setTitle("Observation Codes");
p.print(CATGLM3.getExtendedLikelihoodObservations());
System.out.println("Number of Missing Values "+ CATGLM3.getNRowsMissing());

// MODEL4
CATGLM4 = new CategoricalGenLinModel(x, CategoricalGenLinModel.MODEL4);
CATGLM4.setLowerEndpointColumn(2);
CATGLM4.setOptionalDistributionParameterColumn(1);
CATGLM4.setInfiniteEstimateMethod(1);
CATGLM4.setModelIntercept(1);
CATGLM4.setEffects(indef, nvef);
CATGLM4.setUpperBound(1);
CATGLM4.solve();
System.out.println("MODEL4");
System.out.println("Log likelihood " + CATGLM4.getOptimizedCriterion());
p.setTitle("Coefficient Statistics");
p.print(CATGLM4.getParameters());
}

Output

MODEL3

Coefficient Statistics

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-60.757</td>
<td>5.188</td>
<td>-11.712</td>
</tr>
<tr>
<td>1</td>
<td>34.299</td>
<td>2.916</td>
<td>11.761</td>
</tr>
</tbody>
</table>

Log likelihood -18.77817904233393

Asymptotic Coefficient Covariance

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.912</td>
</tr>
<tr>
<td>1</td>
<td>8.505</td>
</tr>
</tbody>
</table>

Case Analysis

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.058</td>
<td>2.593</td>
<td>1.792</td>
<td>0.267</td>
</tr>
<tr>
<td>1</td>
<td>0.164</td>
<td>3.139</td>
<td>2.871</td>
<td>0.347</td>
</tr>
<tr>
<td>2</td>
<td>0.363</td>
<td>-4.498</td>
<td>3.786</td>
<td>0.311</td>
</tr>
<tr>
<td>3</td>
<td>0.606</td>
<td>-5.952</td>
<td>3.656</td>
<td>0.232</td>
</tr>
<tr>
<td>4</td>
<td>0.795</td>
<td>1.89</td>
<td>3.202</td>
<td>0.269</td>
</tr>
<tr>
<td>5</td>
<td>0.902</td>
<td>-0.195</td>
<td>2.288</td>
<td>0.238</td>
</tr>
<tr>
<td>6</td>
<td>0.956</td>
<td>1.743</td>
<td>1.619</td>
<td>0.198</td>
</tr>
<tr>
<td>7</td>
<td>0.979</td>
<td>1.278</td>
<td>1.119</td>
<td>0.138</td>
</tr>
</tbody>
</table>

Categorical and Discrete Data Analysis
Example: Poisson Model.

In this example, the following data illustrate the Poisson model when all types of interval data are present. The example also illustrates the use of classification variables and the detection of potentially infinite estimates (which turn out here to be finite). These potential estimates lead to the two iteration summaries. The input data is

<table>
<thead>
<tr>
<th>it</th>
<th>rt</th>
<th>icen</th>
<th>Class 1</th>
<th>Class 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

A linear model $\mu + \beta_1 x_1 + \beta_2 x_2$ is fit where $x_1 = 1$ if the Class 1 variable is 0, $x_1 = 1$, otherwise, and the x_2 variable is similarly defined.
public class CategoricalGenLinModelEx2 {

 public static void main(String argv[]) throws Exception {
 // Set up a PrintMatrix object for later use.
 PrintMatrixFormat mf;
 PrintMatrix p;
 p = new PrintMatrix();
 mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();

 double[][] x = {
 {0.0, 5.0, 0.0, 1.0, 0.0},
 {9.0, 4.0, 3.0, 0.0, 0.0},
 {0.0, 4.0, 1.0, 0.0, 0.0},
 {9.0, 0.0, 2.0, 1.0, 1.0},
 {0.0, 1.0, 0.0, 0.0, 1.0}
 };

 CategoricalGenLinModel CATGLM;
 CATGLM = new CategoricalGenLinModel(x, CategoricalGenLinModel.MODEL0);
 CATGLM.setUpperEndpointColumn(0);
 CATGLM.setLowerEndpointColumn(1);
 CATGLM.setOptionalDistributionParameterColumn(1);
 CATGLM.setCensorColumn(2);
 CATGLM.setInfiniteEstimateMethod(0);
 CATGLM.setModelIntercept(1);
 int[] indcl = {3, 4};
 CATGLM.setClassificationVariableColumn(indcl);
 int[] nvef = {1, 1};
 int[] indef = {3, 4};
 CATGLM.setEffects(indef, nvef);
 CATGLM.setUpperBound(4);

 p.setTitle("Coefficient Statistics");
 p.print(CATGLM.solve());
 System.out.println("Log likelihood " + CATGLM.getOptimizedCriterion());
 p.setTitle("Asymptotic Coefficient Covariance");
 p.setMatrixType(1);
 p.print(CATGLM.getCovarianceMatrix());
 p.setMatrixType(0);
 p.setTitle("Case Analysis");
 p.print(CATGLM.getCaseAnalysis());
 p.setTitle("Last Coefficient Update");
 p.print(CATGLM.getLastParameterUpdates());
 p.setTitle("Covariate Means");
 p.print(CATGLM.getDesignVariableMeans());
 p.setTitle("Distinct Values For Each Class Variable");
 p.print(CATGLM.getClassificationVariableValues());
 System.out.println("Number of Missing Values " + CATGLM.getNRowsMissing());
 }
}

Output

Coefficient Statistics

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.549</td>
<td>1.171</td>
<td>-0.469</td>
<td>0.64</td>
</tr>
<tr>
<td>1</td>
<td>0.549</td>
<td>0.61</td>
<td>0.9</td>
<td>0.368</td>
</tr>
<tr>
<td>2</td>
<td>0.549</td>
<td>1.083</td>
<td>0.507</td>
<td>0.612</td>
</tr>
</tbody>
</table>

Log likelihood -3.1146384925784423

Asymptotic Coefficient Covariance

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.372</td>
<td>-0.372</td>
<td>-1.172</td>
</tr>
<tr>
<td>1</td>
<td>0.372</td>
<td>0.172</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.172</td>
<td></td>
</tr>
</tbody>
</table>

Case Analysis

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>-0</td>
<td>2.236</td>
<td>1</td>
<td>-0</td>
</tr>
<tr>
<td>1</td>
<td>6.925</td>
<td>-0.412</td>
<td>2.108</td>
<td>0.764</td>
<td>-0.196</td>
</tr>
<tr>
<td>2</td>
<td>6.925</td>
<td>0.412</td>
<td>1.173</td>
<td>0.236</td>
<td>0.351</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0</td>
<td>1</td>
<td>1</td>
<td>-0</td>
</tr>
</tbody>
</table>

Last Coefficient Update

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Covariate Means

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distinct Values For Each Class Variable

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Missing Values 0
CategoricalGenLinModel.ClassificationVariableException class

static public class
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException extends com.imsl.IMSLException

The ClassificationVariable vector has not been initialized.

Constructor

CategoricalGenLinModel.ClassificationVariableException

public CategoricalGenLinModel.ClassificationVariableException()

Description
Constructs a ClassificationVariableException.

CategoricalGenLinModel.ClassificationVariableLimitException class

static public class
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException extends com.imsl.IMSLException

The Classification Variable limit set by the user through setUpperBound has been exceeded.

Constructor

CategoricalGenLinModel.ClassificationVariableLimitException

public CategoricalGenLinModel.ClassificationVariableLimitException(int maxcl)

Description
Constructs a ClassificationVariableLimitException.
Parameter

maxcl – An int which specifies the upper bound.

CategoricalGenLinModel.ClassificationVariableValueException class

static public class
com.ims1.stat.CategoricalGenLinModel.ClassificationVariableValueException
extends com.ims1.IMSLException

The number of distinct values for each Classification Variable must be greater than 1.

Constructor

CategoricalGenLinModel.ClassificationVariableValueException
public CategoricalGenLinModel.ClassificationVariableValueException(int index, int value)

Description
Constructs a ClassificationVariableValueException.

Parameters

index – An int which specifies the index of a classification variable.
value – An int which specifies the number of distinct values that can be taken by this classification variable.

CategoricalGenLinModel.DeleteObservationsException class

static public class
com.ims1.stat.CategoricalGenLinModel.DeleteObservationsException extends com.ims1.IMSLException

The number of observations to be deleted (set by setObservationMax) has grown too large.
Constructor

CategoricalGenLinModel.DeleteObservationsException

public CategoricalGenLinModel.DeleteObservationsException(int nmax)

Description

Constructs a DeleteObservationsException.

Parameter

nmax – An int which specifies the maximum number of observations that can be handled in the linear programming as set by setObservationMax.

CategoricalGenLinModel.RankDeficientException

class

static public class com.imsl.stat.CategoricalGenLinModel.RankDeficientException
extends com.imsl.IMSLException

The model has been determined to be rank deficient.

Constructor

CategoricalGenLinModel.RankDeficientException

public CategoricalGenLinModel.RankDeficientException(int rank)

Description

Constructs a RankDeficientException.

Parameter

rank – An int which specifies the rank of the model.
Chapter 17: Nonparametric Statistics

Types

class SignTest ... 845
class WilcoxonRankSum .. 849

Usage Notes

Much of what is considered nonparametric statistics is included in other chapters. Topics of possible interest in other chapters are: nonparametric measures of location and scale (see “Basic Statistics”), nonparametric measures in a contingency table (see “Categorical and Discrete Data Analysis”) and tests of goodness of fit and randomness (see “Tests of Goodness of Fit and Randomness”).

Missing Values

Most classes described in this chapter automatically handle missing values (NaN, “Not a Number”; see Double.NaN).

Tied Observations

The WilcoxonRankSum class described in this chapter contains a set method, setFuzz. Observations that are within fuzz of each other in absolute value are said to be tied. If fuzz = 0.0, observations must be identically equal before they are considered to be tied. Other positive values of fuzz allow for numerical imprecision or roundoff error.

SignTest class

public class com.imsl.stat.SignTest implements Serializable, Cloneable

Performs a sign test.
Class SignTest tests hypotheses about the proportion \(p \) of a population that lies below a value \(q \), where \(p \) corresponds to percentage and \(q \) corresponds to percentile in the setPercentage and setPercentile methods, respectively. In continuous distributions, this can be a test that \(q \) is the 100 \(p \)-th percentile of the population from which \(x \) was obtained. To carry out testing, SignTest tallies the number of values above \(q \) in the number of positive differences \(x[j-1] - \) percentile for \(j = 1, 2, \ldots, x.length \). The binomial probability of the number of values above \(q \) in the number of positive differences \(x[j-1] - \) percentile for \(j = 1, 2, \ldots, x.length \) or more values above \(q \) is then computed using the proportion \(p \) and the sample size in \(x \) (adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative hypotheses:

- \(H_0 : Pr(x \leq q) \geq p \) (the \(p \)-th quantile is at least \(q \))
 - \(H_1 : Pr(x \leq q) < p \)
 - Reject \(H_0 \) if probability is less than or equal to the significance level

- \(H_0 : Pr(x \leq q) \leq p \) (the \(p \)-th quantile is at least \(q \))
 - \(H_1 : Pr(x \leq q) > p \)
 - Reject \(H_0 \) if probability is greater than or equal to 1 minus the significance level

- \(H_0 : Pr(x = q) = p \) (the \(p \)-th quantile is \(q \))
 - \(H_1 : Pr((x \leq q) < p) \) or \(Pr((x \leq q) > p) \)
 - Reject \(H_0 \) if probability is less than or equal to half the significance level or greater than or equal to 1 minus half the significance level

The assumptions are as follows:

1. They are independent and identically distributed.
2. Measurement scale is at least ordinal; i.e., an ordering less than, greater than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of \(p \) and \(q \). For example, to perform a matched sample test that the difference of the medians of \(y \) and \(z \) is 0.0, let \(p = 0.5 \), \(q = 0.0 \), and \(x_i = y_i - z_i \) in matched observations \(y \) and \(z \). To test that the median difference is \(c \), let \(q = c \).

Constructor

SignTest

public SignTest(double[] x)

Description

Constructor for SignTest.

Parameter

- \(x \) – A double array containing the data.
Methods

compute
```java
final public double compute()
```

Description
Performs a sign test.

Returns
A double scalar containing the Binomial probability of `getNumPositiveDev` or more positive differences in `x.length` - number of zero differences trials. Call this value probability. If using default values, the null hypothesis is that the median equals 0.0.

getNumPositiveDev
```java
public int getNumPositiveDev()
```

Description
Returns the number of positive differences. Note that the `compute` method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
An int scalar containing the number of positive differences `x[j-1]-percentile` for `j = 1, 2, ..., x.length`.

getNumZeroDev
```java
public int getNumZeroDev()
```

Description
Returns the number of zero differences. Note that the `compute` method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
An int scalar containing the number of zero differences (ties) `x[j-1]-percentile` for `j = 1, 2, ..., x.length`.

setPercentage
```java
public void setPercentage(double percentage)
```

Description
Sets the percentage percentile of the population.

Parameter
`percentage` – A double scalar containing the value in the range (0, 1). `percentile` is the 100 * percentage percentile of the population. Default: `percentage = 0.5`.

setPercentile
```java
public void setPercentile(double percentile)
```
Description
Sets the hypothesized percentile of the population.

Parameter
percentile – A double scalar containing the hypothesized percentile of the population from which \(x \) was drawn. Default: \(\text{percentile} = 0.0 \)

Example 1: Sign Test
This example tests the hypothesis that at least 50 percent of a population is negative. Because \(0.18 < 0.95 \), the null hypothesis at the 5-percent level of significance is not rejected.

```java
import java.text.*;
import com.imsl.stat.*;

public class SignTestEx1 {
    public static void main(String args[]) {
        double[] x = {
            92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0,
            22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0
        };
        SignTest st = new SignTest(x);
        NumberFormat nf = NumberFormat.getInstance();
        nf.setMaximumFractionDigits(6);
        System.out.println("Probability = " + nf.format(st.compute()));
    }
}
```

Output
Probability = 0.179642

Example 2: Sign Test
This example tests the null hypothesis that at least 75 percent of a population is negative. Because \(0.923 < 0.95 \), the null hypothesis at the 5-percent level of significance is rejected.

```java
import java.text.*;
import com.imsl.stat.*;

public class SignTestEx2 {
    public static void main(String args[]) {
        double[] x = {
            92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0,
            22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0
        };
        SignTest st = new SignTest(x);
    }
}
```
Output
Probability = 0.922543
Number of positive deviations = 12
Number of ties = 0
rejection region is the same for both hypotheses and is given in terms of Method 3 for handling ties. Another output statistic should be used, \(\text{stat}[0] \) or \(\text{stat}[3] \), where \(\text{stat} \) is the array containing the statistics returned from the \text{getStatistics} method, if another method for handling ties is desired.

<table>
<thead>
<tr>
<th>Test</th>
<th>Null Hypothesis</th>
<th>Alternative Hypothesis</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | \(H_0 : \Pr(x < y) = 0.5 \)
\(H_0 : E(x) = E(y) \) | \(H_1 : \Pr(x < y) \neq 0.5 \)
\(H_1 : E(x) \neq E(y) \) | Reject if \(\text{stat}[9] \) is less than the significance level of the test. Alternatively, reject the null hypothesis if \(\text{stat}[6] \) is too large or too small. |
| 2 | \(H_0 : \Pr(x < y) \leq 0.5 \)
\(H_0 : E(x) \geq E(y) \) | \(H_1 : \Pr(x < y) \neq 0.5 \)
\(H_1 : E(x) < E(y) \) | Reject if \(\text{stat}[6] \) is too small. |
| 3 | \(H_0 : \Pr(x < y) \geq 0.5 \)
\(H_0 : E(x) \leq E(y) \) | \(H_1 : \Pr(x < y) < 0.5 \)
\(H_1 : E(x) > E(y) \) | Reject if \(\text{stat}[6] \) is too large. |

Assumptions

1. \(x \) and \(y \) contain random samples from their respective populations.
2. All observations are mutually independent.
3. The measurement scale is at least ordinal (i.e., an ordering less than, greater than, or equal to exists among the observations).
4. If \(f(x) \) and \(g(y) \) are the distribution functions of \(x \) and \(y \), then \(g(y) = f(x + c) \) for some constant \(c \) (i.e., the distribution of \(y \) is, at worst, a translation of the distribution of \(x \)).

The p-values are calculated using either the large-sample normal approximation or the exact probability calculations. The approximate calculation returned by the \text{compute} method is usually considered adequate when the size of one or both samples is greater than 50. For smaller samples, the exact probability calculations returned by the \text{computeExactPValues} method are recommended.

Constructor

WilcoxonRankSum

```java
public WilcoxonRankSum(double[] x, double[] y)
```

Description

Constructor for \text{WilcoxonRankSum}.

Parameters

- \(x \) – A double array containing the first sample.
- \(y \) – A double array containing the second sample.
Methods

compute

```java
final public double compute()
```

Description

Performs a Wilcoxon rank sum test using an approximate p-value calculation.

Returns

A `double` scalar containing the two-sided p-value for the Wilcoxon rank sum statistic that is computed with average ranks used in the case of ties.

computeExactPValues

```java
final public double[] computeExactPValues()
```

Description

Performs a Wilcoxon rank sum test using exact p-value calculations.

Returns

A `double` array containing the the exact p-values according to the following table:

<table>
<thead>
<tr>
<th>Row</th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exact left-tailed p-value.</td>
</tr>
<tr>
<td>1</td>
<td>The exact right-tailed p-value.</td>
</tr>
<tr>
<td>2</td>
<td>The exact two-tailed p-value.</td>
</tr>
</tbody>
</table>

getMannWhitney

```java
public double getMannWhitney()
```

Description

Returns the Mann-Whitney test statistic.

Returns

A `double` scalar containing the Mann-Whitney test statistic equivalent to the `W` statistic with average ranks used in case of ties. Although the test statistics for the Mann-Whitney and Wilcoxon rank sum tests are computed differently, the p-values for these tests are equal since the Wilcoxon test statistic is a linear transformation of the Mann-Whitney test statistic.

getNumberMissingX

```java
public int getNumberMissingX()
```

Description

Returns the number of missing observations detected in `x`.
Returns
An int scalar containing the number of missing observations in x.

getNumberMissingY
public int getNumberMissingY()

Description
Returns the number of missing observations detected in y.

Returns
An int scalar containing the number of missing observations in y.

getStatistics
public double[] getStatistics()

Description
Returns the statistics. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
A double array of length 10 containing the following statistics:

<table>
<thead>
<tr>
<th>Row</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Wilcoxon W statistic (the sum of the ranks of the x observations) adjusted for ties in such a manner that W is as small as possible.</td>
</tr>
<tr>
<td>1</td>
<td>$2 x E(W) - W$, where $E(W)$ is the expected value of W.</td>
</tr>
<tr>
<td>2</td>
<td>Probability of obtaining a statistic less than or equal to $\min{W, 2 x E(W) - W}$.</td>
</tr>
<tr>
<td>3</td>
<td>W statistic adjusted for ties in such a manner that W is as large as possible.</td>
</tr>
<tr>
<td>4</td>
<td>$2 x E(W) - W$, where $E(W)$ is the expected value of W, adjusted for ties in such a manner that W is as large as possible.</td>
</tr>
<tr>
<td>5</td>
<td>Probability of obtaining a statistic less than or equal to $\min{W, 2 x E(W) - W}$, adjusted for ties in such a manner that W is as large as possible.</td>
</tr>
<tr>
<td>6</td>
<td>W statistic with average ranks used in case of ties.</td>
</tr>
<tr>
<td>7</td>
<td>Estimated standard error of Row 6 under the null hypothesis of no difference.</td>
</tr>
<tr>
<td>8</td>
<td>Standard normal score associated with Row 6.</td>
</tr>
<tr>
<td>9</td>
<td>Two-sided p-value associated with Row 6.</td>
</tr>
</tbody>
</table>

setFuzz
public void setFuzz(double fuzz)

Description
Sets the nonnegative constant used to determine ties in computing ranks in the combined samples.
Parameter

- **fuzz** – A double scalar containing the nonnegative constant used to determine ties in computing ranks in the combined samples. A tie is declared when two observations in the combined sample are within fuzz of each other. Default: fuzz = $100 \times 2.2024460492503131e - 16 \times \max(|x_{i1}|,|x_{j2}|)$

Example 1: Wilcoxon Rank Sum Test

The following example is taken from Conover (1980, p. 224). It involves the mixing time of two mixing machines using a total of 10 batches of a certain kind of batter, five batches for each machine. The null hypothesis is not rejected at the 5-percent level of significance.

```java
import java.text.*;
import com.imsl.*;
import com.imsl.stat.*;

public class WilcoxonRankSumEx1 {
    public static void main(String args[]) {
        double[] x = {7.3, 6.9, 7.2, 7.8, 7.2};
        double[] y = {7.4, 6.8, 6.9, 6.7, 7.1};
        WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
        NumberFormat nf = NumberFormat.getInstance();
        nf.setMaximumFractionDigits(4);
        // Turn off printing of warning messages.
        Warning.setOut(null);
        System.out.println("p-value = " + nf.format(wilcoxon.compute()));
    }
}
```

Output

p-value = 0.1412

Example 2: Wilcoxon Rank Sum Test

The following example uses the same data as in example 1. Here, all the statistics are displayed.

```java
import java.text.*;
import com.imsl.*;
import com.imsl.stat.*;

public class WilcoxonRankSumEx2 {
    public static void main(String args[]) {
        double[] x = {7.3, 6.9, 7.2, 7.8, 7.2};
        double[] y = {7.4, 6.8, 6.9, 6.7, 7.1};
        WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
        NumberFormat nf = NumberFormat.getInstance();
        nf.setMaximumFractionDigits(4);
        // Turn off printing of warning messages.
        Warning.setOut(null);
        System.out.println("p-value = " + nf.format(wilcoxon.compute()));
    }
}
```
String[] labels = {
 "Wilcoxon W statistic",
 "2*E(W) - W --------------------------------",
 "p-value",
 "Adjusted Wilcoxon statistic",
 "Adjusted 2*E(W) - W ------------------------",
 "Adjusted p-value",
 "W statistics for averaged ranks............",
 "Standard error of W (averaged ranks)",
 "Standard normal score of W (averaged ranks) .",
 "Approximate Two-sided p-value of W"
};

WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(3);

// Turn off printing of warning messages.
Warning.setOut(null);
double[] exact = wilcoxon.computeExactPValues();
double[] stat = wilcoxon.getStatistics();

for (int i = 0; i < 7; i++) {
 System.out.println(labels[i] + " " + nf.format(stat[i]));
}
System.out.println("Mann-Whitney statistic" +
 "............ " + nf.format(wilcoxon.getMannWhitney()));

for (int i = 7; i < 10; i++) {
 System.out.println(labels[i] + " " + nf.format(stat[i]));
}
System.out.println("Exact Left-Tailed p-value" +
 "............ " + nf.format(exact[0]));
System.out.println("Exact Right-Tailed p-value" +
 "............ " + nf.format(exact[1]));
System.out.println("Exact Two-sided p-value" +
 "............ " + nf.format(exact[2]));
}

Output

Wilcoxon W statistic 34.000
2*E(W) - W -------------------------------- 21.000
p-value 0.110
Adjusted Wilcoxon statistic 35.000
Adjusted 2*E(W) - W ------------------------ 20.000
Adjusted p-value 0.075
W statistics for averaged ranks............ 34.500
Mann-Whitney statistic 19.500
Standard error of W (averaged ranks) 4.758
Standard normal score of W (averaged ranks) . 1.471
Approximate Two-sided p-value of W 0.141
<table>
<thead>
<tr>
<th>Test Type</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact Left-Tailed p-value</td>
<td>0.937</td>
</tr>
<tr>
<td>Exact Right-Tailed p-value</td>
<td>0.079</td>
</tr>
<tr>
<td>Exact Two-sided p-value</td>
<td>0.159</td>
</tr>
</tbody>
</table>
Chapter 18: Tests of Goodness of Fit

Types

class ChiSquaredTest ... 857
class NormalityTest ... 864
class KolmogorovOneSample ... 869
class KolmogorovTwoSample ... 872

Usage Notes

The classes in this chapter are used to test for goodness of fit. The goodness-of-fit tests are described in Conover (1980). There is a goodness-of-fit test for general distributions and a chi-squared test. The user supplies the hypothesized cumulative distribution function for the test. There is a class that can be used to test specifically for the normal distribution.

The chi-squared goodness-of-fit test may be used with discrete as well as continuous distributions. The chi-squared goodness-of-fit test allows for missing values (NaN, not a number) in the input data.

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities in small to moderate sample sizes. The chi-squared goodness-of-fit test may be used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for missing values (NaN, not a number) in the input data. The routines that test for randomness do not allow for missing values.

ChiSquaredTest class

public class com.imsl.stat.ChiSquaredTest

Chi-squared goodness-of-fit test.
ChiSquaredTest performs a chi-squared goodness-of-fit test that a random sample of observations is distributed according to a specified theoretical cumulative distribution. The theoretical distribution, which may be continuous, discrete, or a mixture of discrete and continuous distributions, is specified via a user-defined function \(F \) where \(F \) implements CdfFunction. Because the user is allowed to specify a range for the observations in the setRange method, a test that is conditional upon the specified range is performed.

ChiSquaredTest can be constructed in two different ways. The intervals can be specified via the array cutpoints. Otherwise, the number of cutpoints can be given and equiprobable intervals computed by the constructor. The observations are divided into these intervals. Regardless of the method used to obtain them, the intervals are such that the lower endpoint is not included in the interval while the upper endpoint is always included. The user should determine the cutpoints when the cumulative distribution function has discrete elements since ChiSquaredTest cannot determine them in this case.

By default, the lower and upper endpoints of the first and last intervals are \(-\infty\) and \(+\infty\), respectively. The method setRange can be used to change the range.

A tally of counts is maintained for the observations in \(x \) as follows:

If the cutpoints are specified by the user, the tally is made in the interval to which \(x_i \) belongs, using the user-specified endpoints.

If the cutpoints are determined by the class then the cumulative probability at \(x_i \), \(F(x_i) \), is computed using cdf.

The tally for \(x_i \) is made in interval number \(\lfloor mF(x_i) + 1 \rfloor \), where \(m \) is the number of categories and \(\lfloor . \rfloor \) is the function that takes the greatest integer that is no larger than the argument of the function. If the cutpoints are specified by the user, the tally is made in the interval to which \(x_i \) belongs using the endpoints specified by the user. Thus, if the computer time required to calculate the cumulative distribution function is large, user-specified cutpoints may be preferred in order to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-squared approximation may be suspect. A warning message to this effect is issued in this case, as well as when an expected value is less than 5.

Constructors

ChiSquaredTest

```java
public ChiSquaredTest(CdfFunction cdf, double[] cutpoints, int nParameters)
throws ChiSquaredTest.NotCDFException
```

Description

Constructor for the Chi-squared goodness-of-fit test.

Parameters

- `cdf` – a CdfFunction object that implements the CdfFunction interface
- `cutpoints` – a double array containing the cutpoints
nParameters – an int which specifies the number of parameters estimated in computing the Cdf. For example, with a binomial distribution nParameters=1 if p is estimated from the data and nParameters=0 if p is given in advance. The degrees of freedom in χ^2 is:

$$df = n - p - 1$$

where n = number or non-empty cells and $p = nParameters$.

ChiSquaredTest

public ChiSquaredTest(CdfFunction cdf, int nCutpoints, int nParameters) throws ChiSquaredTest.NotCDFException, InverseCdf.DidNotConvergeException

Description

Constructor for the Chi-squared goodness-of-fit test

Parameters

cdf – a CdfFunction object that implements the CdfFunction interface

nCutpoints – an int, the number of cutpoints

nParameters – an int which specifies the number of parameters estimated in computing the Cdf. For example, with a binomial distribution nParameters=1 if p is estimated from the data and nParameters=0 if p is given in advance. The degrees of freedom in χ^2 is:

$$df = n - p - 1$$

where n = number or non-empty cells and $p = nParameters$.

Methods

getCellCounts

public double[] getCellCounts()

Description

Returns the cell counts.

Returns

a double array which contains the number of actual observations in each cell.

getChiSquared

public double getChiSquared() throws ChiSquaredTest.NotCDFException

Description

Returns the chi-squared statistic.

Returns

a double, the chi-squared statistic

getCutpoints

public double[] getCutpoints()
Description
Returns the cutpoints.

Returns
a double array which contains the cutpoints

getDegreesOfFreedom
public double getDegreesOfFreedom() throws ChiSquaredTest.NotCDFException

Description
Returns the degrees of freedom in chi-squared. The degrees of freedom (df) in chi-squared is

\[df = n - p - 1 \]

where \(n \) = number or non-empty cells and \(p \) = nParameters, the number of estimated parameters.

Returns
a double, the degrees of freedom in the chi-squared statistic

getExpectedCounts
public double[] getExpectedCounts()

Description
Returns the expected counts.

Returns
a double array which contains the number of expected observations in each cell.

getP
public double getP() throws ChiSquaredTest.NotCDFException

Description
Returns the \(p \)-value for the chi-squared statistic.

Returns
a double, the \(p \)-value for the chi-squared statistic

setCutpoints
public void setCutpoints(double[] cutpoints)

Description
Sets the cutpoints. The intervals defined by the cutpoints are such that the lower endpoint is not included while the upper endpoint is included in the interval.

Parameter
 cutpoints – a double array which contains the cutpoints

setRange
public void setRange(double lower, double upper) throws ChiSquaredTest.NotCDFException
Description
Sets endpoints of the range of the distribution. Points outside of the range are ignored so that distributions conditional on the range can be used. In this case, the point lower is excluded from the first interval, but the point upper is included in the last interval. By default, a range on the whole real line is used.

Parameters
- lower – a double, the lower range limit
- upper – a double, the upper range limit

update
public void update(double x) throws ChiSquaredTest.NotCDFException

Description
Adds a new observation to the test.

Parameter
- x – a double, the new observation to be added to the test. The frequency of this observation is assumed to be 1.0.

update
public void update(double[] x) throws ChiSquaredTest.NotCDFException

Description
Adds new observations to the test.

Parameter
- x – a double array which contains the new observations to be added to the test. The frequencies of these observations are assumed to be 1.0.

update
public void update(double x, double freq) throws ChiSquaredTest.NotCDFException

Description
Adds a new observation to the test.

Parameters
- x – a double, the new observation to be added to the test
- freq – a double, the frequency of the new observation, x

update
public void update(double[] x, double[] freq) throws ChiSquaredTest.NotCDFException

Description
Adds new observations to the test.
Parameters

- **x** – a double array which contains the new observations to be added to the test
- **freq** – a double array which contains the frequencies of the corresponding new observations in **x**

Example: The Chi-squared Goodness-of-fit Test

In this example, a discrete binomial random sample of size 1000 with binomial parameter \(p = 0.3 \) and binomial sample size 5 is generated via Random.nextBinomial. Random.setSeed is first used to set the seed. After the ChiSquaredTest constructor is called, the random observations are added to the test one at a time to simulate streaming data. The Chi-squared statistic, \(p \)-value, and Degrees of freedom are then computed and printed.

```java
import com.ims1.stat.*;

public class ChiSquaredTestEx1 {
    public static void main(String args[]) {
        // Seed the random number generator
        Random rn = new Random();
        rn.setSeed(123457);
        rn.setMultiplier(16807);

        // Construct a ChiSquaredTest object
        CdfFunction bindf = new CdfFunction() {
            public double cdf(double x) {
                return Cdf.binomial((int) x, 5, 0.3);
            }
        };
        double cutp[] = {0.5, 1.5, 2.5, 3.5, 4.5};
        int nParameters = 0;
        ChiSquaredTest cst = new ChiSquaredTest(bindf, cutp, nParameters);
        for (int i = 0; i < 1000; i++) {
            cst.update(rn.nextBinomial(5, 0.3), 1.0);
        }

        // Print goodness-of-fit test statistics
        System.out.println("The Chi-squared statistic is " + cst.getChiSquared());
        System.out.println("The P-value is " + cst.getP());
        System.out.println("The Degrees of freedom are " + cst.getDegreesOfFreedom());
    }
}
```

Output

The Chi-squared statistic is 4.79629666357389
The P-value is 0.44124295720552553
The Degrees of freedom are 5.0
ChiSquaredTest.NotCDFException class

static public class com.imsl.stat.ChiSquaredTest.NotCDFException extends com.imsl.IMSLRuntimeException
The function is not a Cumulative Distribution Function (CDF).

Constructor

ChiSquaredTest.NotCDFException
public ChiSquaredTest.NotCDFException(String key, Object[] arguments)

Description
Constructs a NotCDFException object.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

ChiSquaredTest.NoObservationsException class

static public class com.imsl.stat.ChiSquaredTest.NoObservationsException extends com.imsl.IMSLRuntimeException
There are no observations.

Constructor

ChiSquaredTest.NoObservationsException
public ChiSquaredTest.NoObservationsException(String key, Object[] arguments)

Description
Constructs a NoObservationsException object.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string
ChiSquaredTest.DidNotConvergeException class

static public class com.imsl.stat.ChiSquaredTest.DidNotConvergeException
extends com.imsl.IMSLException

The iteration did not converge

Constructors

ChiSquaredTest.DidNotConvergeException
public ChiSquaredTest.DidNotConvergeException(String message)

Description
Constructs a DidNotConvergeException object.
Parameter
message – a String containing the error message

ChiSquaredTest.DidNotConvergeException
public ChiSquaredTest.DidNotConvergeException(String key, Object[] arguments)

Description
Constructs a DidNotConvergeException object.
Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

NormalityTest class

public class com.imsl.stat.NormalityTest implements Serializable, Cloneable

Performs a test for normality.

Three methods are provided for testing normality: the Shapiro-Wilk W test, the Lilliefors test, and the chi-squared test.

Shapiro-Wilk W Test

The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to be one of the best omnibus tests of normality. The function is based on the approximations and code given by Royston
(1982a, b, c). It can be used in samples as large as 2,000 or as small as 3. In the Shapiro and Wilk test, \(W \) is given by

\[
W = \left(\sum a_i x_{(i)} \right)^2 / \left(\sum (x_i - \bar{x})^2 \right)
\]

where \(x_{(i)} \) is the \(i \)-th largest order statistic and \(x \) is the sample mean. Royston (1982) gives approximations and tabled values that can be used to compute the coefficients \(a_i, i = 1, \ldots, n \), and obtains the significance level of the \(W \) statistic.

Lilliefors Test

This function computes Lilliefors test and its \(p \)-values for a normal distribution in which both the mean and variance are estimated. The one-sample, two-sided Kolmogorov-Smirnov statistic \(D \) is first computed. The \(p \)-values are then computed using an analytic approximation given by Dallal and Wilkinson (1986). Because Dallal and Wilkinson give approximations in the range (0.01, 0.10) if the computed probability of a greater \(D \) is less than 0.01, the \(p \)-value is set to 0.50. Note that because parameters are estimated, \(p \)-values in Lilliefors test are not the same as in the Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational message is printed. A general reference for the Lilliefors test is Conover (1980). The original reference for the test for normality is Lilliefors (1967).

Chi-Squared Test

This function computes the chi-squared statistic, its \(p \)-value, and the degrees of freedom of the test. Argument \(n \) finds the number of intervals into which the observations are to be divided. The intervals are equiprobable except for the first and last interval, which are infinite in length.

If more flexibility is desired for the specification of intervals, the same test can be performed with class ChiSquaredTest.

Constructor

```java
class NormalityTest
{
    public NormalityTest(double[] x)

    Description
    Constructor for NormalityTest.

    Parameter
    x – A double array containing the observations. x.length must be in the range from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must be greater than 4 for the Lilliefors test.
}
```
Methods

ChiSquaredTest
final public double ChiSquaredTest(int n) throws
NormalityTest.NoVariationInputException, InverseCdf.DidNotConvergeException

Description
Performs the chi-squared goodness-of-fit test.

Parameter
n – An int scalar containing the number of cells into which the observations are to be tallied.

Returns
A double scalar containing the p-value for the chi-squared goodness-of-fit test.

Exceptions
NoVariationInputException is thrown if there is no variation in the input data.
DidNotConvergeException is thrown if the iteration did not converge.

LillieforsTest
final public double LillieforsTest() throws
NormalityTest.NoVariationInputException, InverseCdf.DidNotConvergeException

Description
Performs the Lilliefors test.

Returns
A double scalar containing the p-value for the Lilliefors test. Probabilities less than 0.01 are reported as 0.01, and probabilities greater than 0.10 for the normal distribution are reported as 0.5. Otherwise, an approximate probability is computed.

Exceptions
NoVariationInputException is thrown if there is no variation in the input data.
DidNotConvergeException is thrown if the iteration did not converge.

ShapiroWilkWTest
final public double ShapiroWilkWTest() throws
NormalityTest.NoVariationInputException, InverseCdf.DidNotConvergeException

Description
Performs the Shapiro-Wilk W test.

Returns
A double scalar containing the p-value for the Shapiro-Wilk W test.
Exceptions

 No Variation Input Exception is thrown if there is no variation in the input data.
 Did Not Converge Exception is thrown if the iteration did not converge.

getChiSquared
public double getChiSquared()

Description
Returns the chi-square statistic for the chi-squared goodness-of-fit test.

Returns
A double scalar containing the chi-square statistic. Returns Double.NaN for other tests.

getDegreesOfFreedom
public double getDegreesOfFreedom()

Description
Returns the degrees of freedom for the chi-squared goodness-of-fit test.

Returns
A double scalar containing the degrees of freedom. Returns Double.NaN for other tests.

getMaxDifference
public double getMaxDifference()

Description
Returns the maximum absolute difference between the empirical and the theoretical distributions for the
Lilliefors test.

Returns
A double scalar containing the maximum absolute difference between the empirical and the theoretical
distributions. Returns Double.NaN for other tests.

getShapiroWilkW
public double getShapiroWilkW()

Description
Returns the Shapiro-Wilk W statistic for the Shapiro-Wilk W test.

Returns
A double scalar containing the Shapiro-Wilk W statistic. Returns Double.NaN for other tests.

Example: Shapiro-Wilk W Test
The following example is taken from Conover (1980, pp. 195, 364). The data consists of 50 two-digit
numbers taken from a telephone book. The W test fails to reject the null hypothesis of normality at the
.05 level of significance.
import java.text.*;
import com.imsl.stat.*;

public class NormalityTestEx1 {

 public static void main(String args[]) throws Exception {
 double x[] = {
 23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 37.0, 54.0, 61.0, 73.0, 24.0,
 40.0, 56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 63.0, 75.0, 29.0, 43.0,
 57.0, 64.0, 77.0, 31.0, 43.0, 58.0, 65.0, 81.0, 32.0, 44.0, 58.0,
 66.0, 87.0, 33.0, 45.0, 58.0, 68.0, 89.0, 33.0, 48.0, 58.0, 68.0,
 93.0, 35.0, 48.0, 59.0, 70.0, 97.0
 };

 NormalityTest nt = new NormalityTest(x);
 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(4);

 System.out.println("p-value = " + nf.format(nt.ShapiroWilkWTest()));
 System.out.println("Shapiro Wilk W Statistic = "
 + nf.format(nt.getShapiroWilkW()));
 }
}

Output

p-value = 0.2309
Shapiro Wilk W Statistic = 0.9642

NormalityTest.NoVariationInputException class

static public class com.imsl.stat.NormalityTest.NoVariationInputException
extends com.imsl.IMSLException

There is no variation in the input data.

Constructors

NormalityTest.NoVariationInputException
public NormalityTest.NoVariationInputException(String message)

Description
Constructs a NoVariationInputException object.
Parameter

- `message` - a `String` containing the error message

`NormalityTest.NoVariationInputException`

```java
public NormalityTest.NoVariationInputException(String key, Object[] arguments)
```

Description

Constructs a `NoVariationInputException` object.

Parameters

- `key` - a `String` containing the error message
- `arguments` - an `Object` array containing arguments used within the error message string

KolmogorovOneSample class

```java
public class com.imsl.stat.KolmogorovOneSample implements Serializable
```

The class `KolmogorovOneSample` performs a Kolmogorov-Smirnov goodness-of-fit test in one sample.

The hypotheses tested follow:

\[
\begin{align*}
H_0: & \quad F(x) = F^*(x) \quad H_1: \quad F(x) \neq F^*(x) \\
H_0: & \quad F(x) \geq F^*(x) \quad H_1: \quad F(x) < F^*(x) \\
H_0: & \quad F(x) \leq F^*(x) \quad H_1: \quad F(x) > F^*(x)
\end{align*}
\]

where \(F \) is the cumulative distribution function (CDF) of the random variable, and the theoretical CDF, \(F^* \), is specified via the user-supplied function cdf. Let \(n \) be the number of observations minus the number of missing observations. The test statistics for both one-sided alternatives \(D_n^+ \) and \(D_n^- \) and the two-sided \(D_n \) alternative are computed as well as an asymptotic \(z \)-score and \(p \)-values associated with the one-sided and two-sided hypotheses. For \(n > 80 \), asymptotic \(p \)-values are used (see Gibbons 1971). For \(n \leq 80 \), exact one-sided \(p \)-values are computed according to a method given by Conover (1980, page 350). An approximate two-sided test \(p \)-value is obtained as twice the one-sided \(p \)-value. The approximation is very close for one-sided \(p \)-values less than 0.10 and becomes very bad as the one-sided \(p \)-values get larger.

The theoretical CDF is assumed to be continuous. If the CDF is not continuous, the statistics \(D_n^* \) will not be computed correctly.

Estimation of parameters in the theoretical CDF from the sample data will tend to make the \(p \)-values associated with the test statistics too liberal. The empirical CDF will tend to be closer to the theoretical CDF than it should be.

No attempt is made to check that all points in the sample are in the support of the theoretical CDF. If all sample points are not in the support of the CDF, the null hypothesis must be rejected.
Constructor

KolmogorovOneSample

```java
public KolmogorovOneSample(CdfFunction cdf, double[] x)
```

Description

Constructs a one sample Kolmogorov-Smirnov goodness-of-fit test.

Parameters

- `cdf` – is the cdf function, $F(x)$. It must be non-decreasing and its value must be in [0, 1].
- `x` – is a double array containing the observations.

Methods

getMaximumDifference

```java
public double getMaximumDifference()
```

Description

Returns D^+, the maximum difference between the theoretical and empirical CDF’s.

Returns

The value D^+.

getMinimumDifference

```java
public double getMinimumDifference()
```

Description

Returns D^-, the minimum difference between the theoretical and empirical CDF’s.

Returns

The value D^-.

getNumberMissing

```java
public int getNumberMissing()
```

Description

Returns the number of missing values in the data.

Returns

The number of missing values.

getNumberOfTies

```java
public int getNumberOfTies()
```

Description

Returns the number of ties in the data.
Returns
the number of ties in the data.

gOneSidedPValue
public double getOneSidedPValue()

Description
Probability of the statistic exceeding D under the null hypothesis of equality and against the one-sided alternative. An exact probability is computed if the number of observation is less than or equal to 80, otherwise an approximate probability is computed.

Returns
the one-sided probability.

gTestStatistic
public double getTestStatistic()

Description
Returns $D = \max(D^+, D^-)$.

Returns
The value D.

gTwoSidedPValue
public double getTwoSidedPValue()

Description
Probability of the statistic exceeding D under the null hypothesis of equality and against the two-sided alternative. This probability is twice the probability, p_1, reported by getOneSidedPValue, (or 1.0 if $p_1 \geq 1/2$). This approximation is nearly exact when $p_1 < 0.1$.

Returns
the two-sided probability.

gZ
public double getZ()

Description
Returns the normalized D statistic without the continuity correction applied.

Returns
the value Z

Example
In this example, a random sample of size 100 is generated using class Random for the uniform (0, 1) distribution. We want to test the null hypothesis that the cdf is the standard normal distribution with a mean of 0.5 and a variance equal to the uniform (0, 1) variance (1/12).
```java
import com.imsl.stat.*;

class KolmogorovOneSampleEx1 {
    static public void main(String arg[]) {
        CdfFunction cdf = new CdfFunction() {
            public double cdf(double x) {
                double mean = 0.5;
                double std = 0.2886751;
                double z = (x - mean) / std;
                return Cdf.normal(z);
            }
        };
        double x[] = new double[100];
        Random random = new Random(123457);
        random.setMultiplier(16807);
        for (int i = 0; i < x.length; i++) {
            x[i] = random.nextDouble();
        }
        KolmogorovOneSample kos = new KolmogorovOneSample(cdf, x);
        System.out.println("D = "+kos.getTestStatistic());
        System.out.println("D+ = "+kos.getMaximumDifference());
        System.out.println("D- = "+kos.getMinimumDifference());
        System.out.println("Z = "+kos.getZ());
        System.out.println("Prob greater D one sided = "
            +kos.getOneSidedPValue());
        System.out.println("Prob greater D two sided = "
            +kos.getTwoSidedPValue());
        System.out.println("N missing = "+kos.getNumberMissing());
    }
}

Output
D = 0.12191406736055721
D+ = 0.12191406736055721
D- = 0.08694298500243408
Z = 1.219140673605572
Prob greater D one sided = 0.05116968745900741
Prob greater D two sided = 0.10233937491801481
N missing = 0

KolmogorovTwoSample class

class com.imsl.stat.KolmogorovTwoSample implements Serializable
Performs a Kolmogorov-Smirnov two-sample test.
```
Class KolmogorovTwoSample computes Kolmogorov-Smirnov two-sample test statistics for testing that two continuous cumulative distribution functions (CDF's) are identical based upon two random samples. One- or two-sided alternatives are allowed. Exact \(p \)-values are computed for the two-sided test when \(nm \leq 104 \), where \(n \) is the number of non-missing \(X \) observations and \(m \) the number of non-missing \(Y \) observation.

Let \(F_n(x) \) denote the empirical CDF in the \(X \) sample, let \(G_m(y) \) denote the empirical CDF in the \(Y \) sample and let the corresponding population distribution functions be denoted by \(F(x) \) and \(G(y) \), respectively. Then, the hypotheses tested by KolmogorovTwoSample are as follows:

\[
\begin{align*}
H_0 &: F(x) = G(x) \quad H_1 : F(x) \neq G(x) \\
H_0 &: F(x) \geq G(x) \quad H_1 : F(x) < G(x) \\
H_0 &: F(x) \leq G(x) \quad H_1 : F(x) > G(x)
\end{align*}
\]

The test statistics are given as follows:

\[
\begin{align*}
D_{mn} &= \max(D_{mn}^+, D_{mn}^-) \\
D_{mn}^+ &= \max_x(F_n(x) - G_m(x)) \\
D_{mn}^- &= \max_x(G_m(x) - F_n(x))
\end{align*}
\]

Asymptotically, the distribution of the statistic

\[
Z = D_{mn} \sqrt{\frac{mn}{m+n}}
\]

converges to a distribution given by Smirnov (1939).

Exact probabilities for the two-sided test are computed when \(nm \leq 104 \), according to an algorithm given by Kim and Jennrich (1973). When \(nm > 104 \), the very good approximations given by Kim and Jennrich are used to obtain the two-sided \(p \)-values. The one-sided probability is taken as one half the two-sided probability. This is a very good approximation when the \(p \)-value is small (say, less than 0.10) and not very good for large \(p \)-values.

Constructor

KolmogorovTwoSample

```java
public KolmogorovTwoSample(double[] x, double[] y)
```

Description

Constructs a two sample Kolmogorov-Smirnov goodness-of-fit test.

Parameters

- \(x \) – is an array containing the observations from the first sample.
- \(y \) – is an array containing the observations from the second sample.
Methods

getMaximumDifference
public double getMaximumDifference()

Description
Returns D^+, the maximum difference between the theoretical and empirical CDF's.

Returns
The value D^+.

getMinimumDifference
public double getMinimumDifference()

Description
Returns D^-, the minimum difference between the theoretical and empirical CDF's.

Returns
The value D^-.

getNumberMissingX
public int getNumberMissingX()

Description
Returns the number of missing values in the x sample.

Returns
The number of missing values in x.

getNumberMissingY
public int getNumberMissingY()

Description
Returns the number of missing values in the y sample.

Returns
The number of missing values in y.

getOneSidedPValue
public double getOneSidedPValue()

Description
Probability of the statistic exceeding D under the null hypothesis of equality and against the one-sided alternative. An exact probability is computed if the number of observation is less than or equal to 80, otherwise an approximate probability is computed.
Returns
the one-sided probability.

getTestStatistic

```java
public double getTestStatistic()
```

Description

Returns $D = \max(D^+, D^-)$.

Returns

The value D.

getTwoSidedPValue

```java
public double getTwoSidedPValue()
```

Description

Probability of the statistic exceeding D under the null hypothesis of equality and against the two-sided alternative. This probability is twice the probability, p_1, reported by `getOneSidedPValue`, (or 1.0 if $p_1 \geq 1/2$. This approximation is nearly exact when $p_1 < 0.1$.

Returns

the two-sided probability.

getZ

```java
public double getZ()
```

Description

Returns the normalized D statistic without the continuity correction applied.

Returns

the value Z

Example

The following example illustrates the class `KolmogorovTwoSample` routine with two randomly generated samples from a uniform(0,1) distribution. Since the two theoretical distributions are identical, we would not expect to reject the null hypothesis.

```java
import com.imsl.stat.*;

public class KolmogorovTwoSampleEx1 {
    static public void main(String arg[]) {
        double x[] = new double[100];
        double y[] = new double[60];
        Random random = new Random(123457);
        random.setMultiplier(16807);
        for (int i = 0; i < x.length; i++) {
            x[i] = random.nextFloat();
        }
    }
}
```
for (int i = 0; i < y.length; i++) {
 y[i] = random.nextFloat();
}

KolmogorovTwoSample k2s = new KolmogorovTwoSample(x, y);
System.out.println("D = " + k2s.getTestStatistic());
System.out.println("D+ = " + k2s.getMaximumDifference());
System.out.println("D- = " + k2s.getMinimumDifference());
System.out.println("Z = " + k2s.getZ());
System.out.println("Prob greater D one sided = "
 + k2s.getOneSidedPValue());
System.out.println("Prob greater D two sided = "
 + k2s.getTwoSidedPValue());
System.out.println("Missing X = " + k2s.getNumberMissingX());
System.out.println("Missing Y = " + k2s.getNumberMissingY());
}

Output

D = 0.18
D+ = 0.18
D- = 0.01000000000000009
Z = 1.102703842524302
Prob greater D one sided = 0.07201060734868497
Prob greater D two sided = 0.14402121469736995
Missing X = 0
Missing Y = 0
Chapter 19: Time Series and Forecasting

Types

class AutoCorrelation ... 880
class ARAutoUnivariate .. 890
class ARSeasonalFit ... 915
class ARMA ... 928
class ARMAEstimateMissing .. 954
class ARMAMaxLikelihood .. 964
class ARMAOutlierIdentification .. 981
class AutoARIMA ... 1000
class CrossCorrelation .. 1024
class Difference ... 1035
class GARCH ... 1040
class KalmanFilter ... 1050
class MultiCrossCorrelation ... 1062
class LackOfFit ... 1076
class HoltWintersExponentialSmoothing 1079
class TimeSeries ... 1088
class TimeSeriesOperations .. 1096
class VectorAutoregression .. 1108

Usage Notes

The classes in this chapter allow users to filter and analyze time series data using autoregressive, ARIMA, GARCH and state-space models. Some are designed for automatic model selection, estimation and forecasting using algorithms based upon minimizing AIC (Akaike’s Information Criterion).

General Methodology

Model Identification and Data Filtering

All classes in this chapter for time series analysis assume the data are stationary and collected at equally
spaced times with no missing observations in the series. In order to prepare a series for analysis, any missing values must be replaced with estimates. The class ARMAEstimateMissing can be used to automatically estimate missing values using one of four, user-selected methods, provided the largest time gap with missing values has no more than 4 missing values.

In addition to estimating missing values, if a series is nonstationary or contains seasonal variation, its values should be filtered before fitting a model and preparing forecasts. Class ARSeasomalFit evaluates seasonal adjustments prior to modeling the series. Users specify a range of adjustments. ARSeasomalFit evaluates each adjustment to identify the one that minimizes the AIC. If a user already knows the series needs to be filtered using differences between consecutive values, the class Difference can be used to filter a series into an equivalent series of differences.

There are several classes available for transforming a time series into its autocorrelation matrix: AutoCorrelation, CrossCorrelation and MultiCrossCorrelation. Class AutoCorrelation computes the autocorrelation and partial autocorrelation matrices from a time series or its filtered values. Box and Jenkins (1976) describe how to identify the structure of an ARIMA model using the autocorrelation and partial autocorrelation matrices. Classes CrossCorrelation and MultiCrossCorrelation are used to calculate the cross-correlation matrix for two univariate or multivariate time series, respectively.

Model Estimation and Forecasting

There are several classes useful for modeling stationary, equally spaced time series - ARMA, ARMAMaxLikelihood, GARCH, and KalmanFilter. Class ARMA can be used to fit autoregressive, moving-average and ARIMA (autoregressive, integrated moving average) models. Rather than passing the original series to this class, users are required to construct this class using the autocorrelation matrix of the series. Class AutoCorrelation is useful for computing this matrix prior to constructing the ARMA class.

The other classes require users to construct the class using the original series or its filtered values. Class ARMAMaxLikelihood estimates the maximum likelihood estimates of the ARMA parameters and prepares forecasts from these values. Class ARAutoUnivariate selects the best autoregressive model for an equally spaced, stationary time series using AIC. Class GARCH estimates the parameters of a GARCH model and the KalmanFilter class estimates the parameters for a state-space model using Kalman filtering and calculates one-step ahead forecasts. Classes ARMA, ARMAMaxLikelihood and ARAutoUnivariate are the only classes with methods for obtaining forecasts from an ARIMA model. Class KalmanFilter can be used to obtain one-step ahead forecasts for a state-space model.

ARIMA Model (Autoregressive Integrated Moving Average)

A small, yet comprehensive, class of stationary time-series models consists of the nonseasonal ARMA processes defined by

\[\phi(B)(W_t - \mu) = \theta(B)A_t, \quad t \in Z \]

where \(Z = \ldots, -2, -1, 0, 1, 2, \ldots \) denotes the set of integers, \(B \) is the backward shift operator defined by \(B^k W_t = W_{t-k} \), \(\mu \) is the mean of \(W_t \), and the following equations are true:

\[\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p, \quad p \geq 0 \]
\[\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \cdots - \theta_q B^q, q \geq 0 \]

The model is of order \((p, q)\) and is referred to as an ARMA \((p, q)\) model.

An equivalent version of the ARMA \((p, q)\) model is given by
\[\phi(B)W_t = \theta_0 + \theta(B)A_i, \quad t \in \mathbb{Z} \]

where \(\theta_0\) is an overall constant defined by the following:
\[\theta_0 = \mu \left(1 - \sum_{i=1}^{p} \phi_i \right) \]

See Box and Jenkins (1976, pp. 92-93) for a discussion of the meaning and usefulness of the overall constant.

If the “raw” data, \(\{Z_t\}\), are homogeneous and nonstationary, then differencing using the Difference class induces stationarity, and the model is called ARIMA (AutoRegressive Integrated Moving Average).

Parameter estimation is performed on the stationary time series \(W_t = \Delta^d Z_t\), where \(\Delta^d = (1 - B)^d\) is the backward difference operator with period 1 and order \(d, d > 0\).

There are two classes for estimating the parameters in an ARMA model and preparing forecasts: ARMA and ARMAMaxLikelihood. Class ARMA estimates model parameters using either method of moments or least squares. The method of moments is selected by default or by setting property Method to METHOD_OF_MOMENTS. Other initial estimates provided by the user can be used. The least-squares procedure can be used to compute conditional or unconditional least-squares estimates of the parameters, depending on the choice of the backcasting length. The parameter estimates from either the method of moments or least-squares procedures can be used in the forecast method. The functions for preliminary parameter estimation, least-squares parameter estimation, and forecasting follow the approach of Box and Jenkins (1976, Programs 2-4, pp. 498-509).

Class ARMAMaxLikelihood estimates model parameters using maximum likelihood. Users can tailor the maximum likelihood algorithm by setting tolerances and providing initial estimates for the parameters. By default, ARMAMaxLikelihood uses method of moment estimates to initialize the parameters. However, this can be overridden with the setAR method in ARMAMaxLikelihood.

Exponential Smoothing Methods

Exponential smoothing approximates the value of a time series at time \(t\) with a weighted average of previous values, with weights defined in such a way that they decay exponentially over time. The weights can be determined by a smoothing parameter \(\alpha\) and the relation,
\[y_t = \alpha y_{t-1} + \hat{y}_t \]
\[\Rightarrow \]
\[y_t = \sum_{j=0}^{t-1} \alpha^{-j}(1 - \alpha)^j y_j = \sum_{j=0}^{t-1} w_j y_j \]

The parameter \(\alpha\) is on the interval \((0, 1)\) and controls the rate of decay. For values close to 1, the effect decays rapidly, whereas for values close to 0, the influence of a past value persists for some time.
Exponential smoothing as a forecasting procedure is widely used and largely effective for short term, mean level forecasting. With the addition of a term for linear trend and terms or factors for seasonal patterns, exponential smoothing is an intuitive procedure for many series that arise in business applications. Class HoltWintersExponentialSmoothing performs the Holt-Winters method, otherwise known as triple exponential smoothing, and allows for either an additive or a multiplicative seasonal effect.

AutoCorrelation class

```java
public class com.imsl.stat.AutoCorrelation implements Serializable, Cloneable

Computes the sample autocorrelation function of a stationary time series.

```AutoCorrelation``` estimates the autocorrelation function of a stationary time series given a sample of n observations \{X_t\} for t = 1, 2, ..., n.

Let

\[\hat{\mu} = x_{\text{mean}} \]

be the estimate of the mean \(\mu \) of the time series \{X_t\} where

\[\hat{\mu} = \begin{cases} p a \mu & \text{for } \mu \text{ known} \\ \frac{1}{n} \sum_{t=1}^{n} X_t & \text{for } \mu \text{ unknown} \end{cases} \]

The autocovariance function \(\sigma(k) \) is estimated by

\[\hat{\sigma}(k) = \frac{1}{n-k} \sum_{t=1}^{n-k} (X_t - \hat{\mu})(X_{t+k} - \hat{\mu}), \quad k=0,1,\ldots,K \]

where \(K = \text{maximum lag} \). Note that \(\hat{\sigma}(0) \) is an estimate of the sample variance. The autocorrelation function \(\rho(k) \) is estimated by

\[\hat{\rho}(k) = \frac{\hat{\sigma}(k)}{\hat{\sigma}(0)}, \quad k = 0,1,\ldots,K \]

Note that \(\hat{\rho}(0) \equiv 1 \) by definition.

The standard errors of sample autocorrelations may be optionally computed according to the `getStandardErrors` method argument `stderrMethod`. One method (Bartlett 1946) is based on a general asymptotic expression for the variance of the sample autocorrelation coefficient of a stationary time series with independent, identically distributed normal errors. The theoretical formula is

\[\text{var}(\hat{\rho}(k)) = \frac{1}{n} \sum_{i=-\infty}^{\infty} \left[\rho^2(i) + \rho(i-k)\rho(i+k) - 4\rho(i)\rho(k)\rho(i-k) + 2\rho^2(i)\rho^2(k) \right] \]
where $\hat{\rho}(k)$ assumes μ is unknown. For computational purposes, the autocorrelations $\rho(k)$ are replaced by their estimates $\hat{\rho}(k)$ for $|k| \leq K$, and the limits of summation are bounded because of the assumption that $\rho(k) = 0$ for all k such that $|k| > K$.

A second method (Moran 1947) utilizes an exact formula for the variance of the sample autocorrelation coefficient of a random process with independent, identically distributed normal errors. The theoretical formula is

$$\text{var}\{\hat{\rho}(k)\} = \frac{n-k}{n(n+2)}$$

where μ is assumed to be equal to zero. Note that this formula does not depend on the autocorrelation function.

The method `getPartialAutoCorrelations` estimates the partial autocorrelations of the stationary time series given $K = \text{maximum_lag}$ sample autocorrelations $\hat{\rho}(k)$ for $k=0,1,...,K$. Consider the AR(k) process defined by

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_k X_{t-k} + A_t$$

where ϕ_k denotes the k-th coefficient in the process. The set of estimates $\{\hat{\phi}_{kk}\}$ for $k = 1, ... , K$ is the sample partial autocorrelation function. The autoregressive parameters $\{\hat{\phi}_{kj}\}$ for $j = 1, ... , k$ are approximated by Yule-Walker estimates for successive AR(k) models where $k = 1, ... , K$. Based on the sample Yule-Walker equations

$$\hat{\rho}(j) = \hat{\phi}_{k1} \hat{\rho}(j-1) + \hat{\phi}_{k2} \hat{\rho}(j-2) + \cdots + \hat{\phi}_{kk} \hat{\rho}(j-k), \quad j = 1,2,\ldots,k$$

a recursive relationship for $k=1, ... , K$ was developed by Durbin (1960). The equations are given by

$$\hat{\phi}_{kk} = \begin{cases} \hat{\rho}(1) & \text{for } k = 1 \\ \rho(k) - \sum_{j=1}^{k-1} \hat{\phi}_{kj} \hat{\rho}(k-j) & \text{for } k = 2, \ldots, K \end{cases}$$

and

$$\hat{\phi}_{kj} = \begin{cases} \hat{\phi}_{k-1,j} - \hat{\phi}_{kk} \hat{\phi}_{k-1,k-j} & \text{for } j = 1,2,\ldots,k-1 \\ \hat{\phi}_{kk} & \text{for } j = k \end{cases}$$

This procedure is sensitive to rounding error and should not be used if the parameters are near the nonstationarity boundary. A possible alternative would be to estimate $\{\phi_{kk}\}$ for successive AR(k) models using least or maximum likelihood. Based on the hypothesis that the true process is AR(p), Box and Jenkins (1976, page 65) note

$$\text{var}\{\phi_{kk}\} \simeq \frac{1}{n} \quad k \geq p + 1$$

See Box and Jenkins (1976, pages 82-84) for more information concerning the partial autocorrelation function.
Fields

BARTLETTS_FORMULA
static final public int BARTLETTS_FORMULA

Indicates standard error computation using Bartlett’s formula.

MORANS_FORMULA
static final public int MORANS_FORMULA

Indicates standard error computation using Moran’s formula.

Constructor

AutoCorrelation
public AutoCorrelation(double[] x, int maximum_lag)

Description
Constructor to compute the sample autocorrelation function of a stationary time series.

Parameters
- x – a one-dimensional double array containing the stationary time series
- maximum_lag – an int containing the maximum lag of autocovariance, autocorrelations, and standard errors of autocorrelations to be computed. maximum_lag must be greater than or equal to 1 and less than the number of observations in x

Methods

getAutoCorrelations
public double[] getAutoCorrelations()

Description
Returns the autocorrelations of the time series x.

Returns
a double array of length maximum_lag +1 containing the autocorrelations of the time series x. The 0-th element of this array is 1. The k-th element of this array contains the autocorrelation of lag k where k = 1, ..., maximum_lag.

getAutoCovariances
public double[] getAutoCovariances() throws AutoCorrelation_NonPosVariancesException
Returns the variance and autocovariances of the time series x.

Returns
a double array of length $\text{maximum}_{\text{lag}} + 1$ containing the variances and autocovariances of the time series x. The 0-th element of the array contains the variance of the time series x. The k-th element contains the autocovariance of lag k where $k = 1, ..., \text{maximum}_{\text{lag}}$.

Exception
NonPosVariancesException is thrown if the problem is ill-conditioned.

getMean
public double getMean()

Description
Returns the mean of the time series x.

Returns
a double containing the mean

getNumberOfThreads
public int getNumberOfThreads()

Description
Returns the number of java.lang.Thread instances used for parallel processing.

Returns
an int containing the number of java.lang.Thread instances used for parallel processing.

getPartialAutoCorrelations
public double[] getPartialAutoCorrelations()

Description
Returns the sample partial autocorrelation function of the stationary time series x.

Returns
a double array of length $\text{maximum}_{\text{lag}}$ containing the partial autocorrelations of the time series x.

getStandardErrors
public double[] getStandardErrors(int stderrMethod)

Description
Returns the standard errors of the autocorrelations of the time series x. Method of computation for standard errors of the autocorrelation is chosen by the stderrMethod parameter. If stderrMethod is set to BARTLETTS_FORMULA, Bartlett’s formula is used to compute the standard errors of autocorrelations. If stderrMethod is set to MORANS_FORMULA, Moran’s formula is used to compute the standard errors of autocorrelations.
Parameter
stderrMethod – an int specifying the method to compute the standard errors of autocorrelations of the time series x

Returns
a double array of length maximum_lag containing the standard errors of the autocorrelations of the time series x

getVariance
public double getVariance()

Description
Returns the variance of the time series x.

Returns
a double containing the variance of the time series x

setMean
public void setMean(double mean)

Description
Estimate mean of the time series x.

Parameter
mean – a double containing the estimate mean of the time series x.

setNumberOfThreads
public void setNumberOfThreads(int numberOfThreads)

Description
Sets the number of java.lang.Thread instances to be used for parallel processing.

Parameter
numberOfThreads – an int specifying the number of java.lang.Thread instances to be used for parallel processing.
Default: numberOfThreads = 1.

Example 1: AutoCorrelation
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 1770 through 1869. This example computes the estimated autocovariances, estimated autocorrelations, and estimated standard errors of the autocorrelations using both Bartletts and Moran formulas.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
```
```java
public class AutoCorrelationEx1 {

    public static void main(String args[]) throws Exception {
        double[] x = {
            100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
            154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
            132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
            6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
            8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
            23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
            67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
            85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
            124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
            54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
            37.3, 73.9
        };

        AutoCorrelation ac = new AutoCorrelation(x, 20);

        new PrintMatrix("AutoCovariances are: ").print(
            ac.getAutoCovariances());
        System.out.println();
        new PrintMatrix("AutoCorrelations are: ").print(
            ac.getAutoCorrelations());
        System.out.println("Mean = "+ ac.getMean());
        System.out.println();
        new PrintMatrix("Standard Error using Bartlett are: ").print(
            ac.getStandardErrors(AutoCorrelation.BARTLETTS_FORMULA));
        System.out.println();
        new PrintMatrix("Standard Error using Moran are: ").print(
            ac.getStandardErrors(AutoCorrelation.MORANS_FORMULA));
        System.out.println();
        new PrintMatrix("Partial AutoCovariances: ").print(
            ac.getPartialAutoCorrelations());
        ac.setMean(50);
        new PrintMatrix("AutoCovariances are: ").print(
            ac.getAutoCovariances());
        System.out.println();
        new PrintMatrix("AutoCorrelations are: ").print(
            ac.getAutoCorrelations());
        System.out.println();
        new PrintMatrix("Standard Error using Bartlett are: ").print(
            ac.getStandardErrors(AutoCorrelation.BARTLETTS_FORMULA));
    }
}
```

Output

AutoCovariances are:

<table>
<thead>
<tr>
<th>lags</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1382.908</td>
</tr>
<tr>
<td>2</td>
<td>1115.029</td>
</tr>
<tr>
<td>3</td>
<td>592.004</td>
</tr>
<tr>
<td>4</td>
<td>95.297</td>
</tr>
<tr>
<td>5</td>
<td>-235.952</td>
</tr>
</tbody>
</table>

Chapter 19. Time Series and Forecasting
 AutoCorrelation • 885
5 -370.011
6 -294.255
7 -60.442
8 227.633
9 458.381
10 567.841
11 546.122
12 398.937
13 197.757
14 26.891
15 -77.281
16 -143.733
17 -202.048
18 -245.372
19 -230.816
20 -142.879

AutoCorrelations are:
 0
 1
 0.806
 0.428
 0.268
 0.213
 0.044
 0.165
 0.331
 0.411
 0.395
 0.288
 0.143
 0.019
 -0.056
 -0.104
 -0.146
 -0.177
 -0.167
 -0.103

Mean = 46.976000000000006

Standard Error using Bartlett are:
 0
 0.035
 0.096
 0.157
 0.206
 0.231
 0.229
 0.209
 0.178
 0.146
 0.134
Standard Error using Moran are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.099</td>
</tr>
<tr>
<td>1</td>
<td>0.098</td>
</tr>
<tr>
<td>2</td>
<td>0.098</td>
</tr>
<tr>
<td>3</td>
<td>0.097</td>
</tr>
<tr>
<td>4</td>
<td>0.097</td>
</tr>
<tr>
<td>5</td>
<td>0.096</td>
</tr>
<tr>
<td>6</td>
<td>0.095</td>
</tr>
<tr>
<td>7</td>
<td>0.095</td>
</tr>
<tr>
<td>8</td>
<td>0.094</td>
</tr>
<tr>
<td>9</td>
<td>0.094</td>
</tr>
<tr>
<td>10</td>
<td>0.093</td>
</tr>
<tr>
<td>11</td>
<td>0.093</td>
</tr>
<tr>
<td>12</td>
<td>0.092</td>
</tr>
<tr>
<td>13</td>
<td>0.092</td>
</tr>
<tr>
<td>14</td>
<td>0.091</td>
</tr>
<tr>
<td>15</td>
<td>0.091</td>
</tr>
<tr>
<td>16</td>
<td>0.09</td>
</tr>
<tr>
<td>17</td>
<td>0.09</td>
</tr>
<tr>
<td>18</td>
<td>0.089</td>
</tr>
<tr>
<td>19</td>
<td>0.089</td>
</tr>
</tbody>
</table>

Partial AutoCovariances:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.806</td>
</tr>
<tr>
<td>1</td>
<td>-0.635</td>
</tr>
<tr>
<td>2</td>
<td>0.078</td>
</tr>
<tr>
<td>3</td>
<td>-0.059</td>
</tr>
<tr>
<td>4</td>
<td>-0.001</td>
</tr>
<tr>
<td>5</td>
<td>0.172</td>
</tr>
<tr>
<td>6</td>
<td>0.109</td>
</tr>
<tr>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>8</td>
<td>0.079</td>
</tr>
<tr>
<td>9</td>
<td>0.079</td>
</tr>
<tr>
<td>10</td>
<td>0.069</td>
</tr>
<tr>
<td>11</td>
<td>-0.038</td>
</tr>
<tr>
<td>12</td>
<td>0.081</td>
</tr>
<tr>
<td>13</td>
<td>0.033</td>
</tr>
<tr>
<td>14</td>
<td>-0.035</td>
</tr>
<tr>
<td>15</td>
<td>-0.131</td>
</tr>
<tr>
<td>16</td>
<td>-0.155</td>
</tr>
<tr>
<td>17</td>
<td>-0.119</td>
</tr>
</tbody>
</table>
AutoCovariances are:

<table>
<thead>
<tr>
<th>lags</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1,392.053</td>
</tr>
<tr>
<td>2</td>
<td>1,126.524</td>
</tr>
<tr>
<td>3</td>
<td>604.162</td>
</tr>
<tr>
<td>4</td>
<td>106.754</td>
</tr>
<tr>
<td>5</td>
<td>-225.882</td>
</tr>
<tr>
<td>6</td>
<td>-361.026</td>
</tr>
<tr>
<td>7</td>
<td>-286.57</td>
</tr>
<tr>
<td>8</td>
<td>-53.76</td>
</tr>
<tr>
<td>9</td>
<td>235.966</td>
</tr>
<tr>
<td>10</td>
<td>470.786</td>
</tr>
<tr>
<td>11</td>
<td>584.014</td>
</tr>
<tr>
<td>12</td>
<td>564.764</td>
</tr>
<tr>
<td>13</td>
<td>418.363</td>
</tr>
<tr>
<td>14</td>
<td>216.104</td>
</tr>
<tr>
<td>15</td>
<td>43.125</td>
</tr>
<tr>
<td>16</td>
<td>-63.468</td>
</tr>
<tr>
<td>17</td>
<td>-131.501</td>
</tr>
<tr>
<td>18</td>
<td>-189.063</td>
</tr>
<tr>
<td>19</td>
<td>-229.689</td>
</tr>
<tr>
<td>20</td>
<td>-212.156</td>
</tr>
</tbody>
</table>

AutoCorrelations are:

<table>
<thead>
<tr>
<th>lags</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.809</td>
</tr>
<tr>
<td>2</td>
<td>0.434</td>
</tr>
<tr>
<td>3</td>
<td>0.077</td>
</tr>
<tr>
<td>4</td>
<td>-0.162</td>
</tr>
<tr>
<td>5</td>
<td>-0.259</td>
</tr>
<tr>
<td>6</td>
<td>-0.206</td>
</tr>
<tr>
<td>7</td>
<td>-0.039</td>
</tr>
<tr>
<td>8</td>
<td>0.17</td>
</tr>
<tr>
<td>9</td>
<td>0.338</td>
</tr>
<tr>
<td>10</td>
<td>0.42</td>
</tr>
<tr>
<td>11</td>
<td>0.406</td>
</tr>
<tr>
<td>12</td>
<td>0.301</td>
</tr>
<tr>
<td>13</td>
<td>0.155</td>
</tr>
<tr>
<td>14</td>
<td>0.031</td>
</tr>
<tr>
<td>15</td>
<td>-0.046</td>
</tr>
<tr>
<td>16</td>
<td>-0.094</td>
</tr>
<tr>
<td>17</td>
<td>-0.136</td>
</tr>
<tr>
<td>18</td>
<td>-0.165</td>
</tr>
<tr>
<td>19</td>
<td>-0.152</td>
</tr>
<tr>
<td>20</td>
<td>-0.087</td>
</tr>
</tbody>
</table>

Standard Error using Bartlett are:

<table>
<thead>
<tr>
<th>lags</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.034</td>
</tr>
</tbody>
</table>
AutoCorrelation.NonPosVariancesException class

static public class com.imsl.stat.AutoCorrelation.NonPosVariancesException
extends com.imsl.IMSLException

The problem is ill-conditioned.

Constructors

AutoCorrelation.NonPosVariancesException

public AutoCorrelation.NonPosVariancesException(String message)

Description

Constructs an NonPosVariancesException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter

message – the detail message

AutoCorrelation.NonPosVariancesException

public AutoCorrelation.NonPosVariancesException(String key, Object[] arguments)
Description

Constructs an NonPosVariancesException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

ARAutoUnivariate class

public class com.imsl.stat.ARAutoUnivariate implements Serializable

Automatically determines the best autoregressive time series model using Akaike’s Information Criterion.

ARAutoUnivariate automatically selects the order of the AR model that best fits the data and then computes the AR coefficients. The algorithm used in ARAutoUnivariate is derived from the work of Akaike, H., et. al (1979) and Kitagawa and Akaike (1978). This code was adapted from the UNIMAR procedure published as part of the TIMSAC-78 Library.

The best fit AR model is determined by successively fitting AR models with 0, 1, 2, ..., maxlag autoregressive coefficients. For each model, Akaike’s Information Criterion (AIC) is calculated based on the formula

\[AIC = -2 \ln(\text{likelihood}) + 2p \]

Class ARAutoUnivariate uses the approximation to this formula developed by Ozaki and Oda (1979),

\[AIC = (n - \text{maxlag}) \ln(\hat{\sigma}^2) + 2(p + 1) + (n - \text{maxlag})(\ln(2\pi) + 1) \]

where \(\hat{\sigma}^2 \) is an estimate of the residual variance of the series, commonly known in time series analysis as the innovation variance and \(n \) is the number of observations in the time series \(z \), \(n = z.length \). By dropping the constant

\[(n - \text{maxlag})(\ln(2\pi) + 1), \]

the calculation is simplified to

\[AIC = (n - \text{maxlag})\ln(\hat{\sigma}^2) + 2(p + 1), \]

The best fit model is the model with minimum AIC. If the number of parameters in this model selected by ARAutoUnivariate is equal to the highest order autoregressive model fitted, i.e., \(p = \text{maxlag} \), then a model with smaller AIC might exist for larger values of maxlag. In this case, increasing maxlag to explore AR models with additional autoregressive parameters might be warranted.

Method setEstimationMethod can be used to specify the method used to calculate the AR coefficients. If setEstimationMethod is set to METHOD_OF_MOMENTS, estimates of the autoregressive coefficients for the model with minimum AIC are calculated using method of moments as described in the ARMA
class. If \texttt{LEAST_SQUARES} is specified, the coefficients are determined by the method of least squares applied in the form described by Kitagawa and Akaike (1978). If \texttt{MAX_LIKELIHOOD} is specified, the coefficients are estimated using maximum likelihood as described in the \texttt{ARMA_Max_Likelihood} class.

The Java Logging API can be used to trace the execution of \texttt{ARAutoUnivariate}. The name of this logger is \texttt{com.imsl.stat.ARAutoUnivariate}. Accumulated levels of detail correspond to Java’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of information and FINEST yielding the most. The levels of output yield the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE</td>
<td>A message on entering and exiting method \texttt{compute}.</td>
</tr>
<tr>
<td>FINER</td>
<td>All of the messages in FINE, a message entering and exiting the \texttt{compute} method, plus the final computations.</td>
</tr>
<tr>
<td>FINEST</td>
<td>All of the messages in FINER, plus the intermediate computations.</td>
</tr>
</tbody>
</table>

Fields

\textbf{LEAST_SQUARES}

static final public int \texttt{LEAST_SQUARES}

Indicates that least-squares should be used for estimating the coefficients in the time series.

\textbf{MAX_LIKELIHOOD}

static final public int \texttt{MAX_LIKELIHOOD}

Indicates that maximum likelihood should be used for estimating the coefficients in the time series.

\textbf{METHOD_OF_MOMENTS}

static final public int \texttt{METHOD_OF_MOMENTS}

Indicates the method of moments should be used for estimating the coefficients in the time series.

Constructor

\textbf{ARAutoUnivariate}

public \texttt{ARAutoUnivariate(int maxlag, double[] z)}

\textbf{Description}

\texttt{ARAutoUnivariate} constructor.

\textbf{Parameters}

- \texttt{maxlag} – an int scalar specifying the maximum number of autoregressive lags to evaluate
- \texttt{z} – a double array containing the time series
Methods

compute
public void compute() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonStationaryException,
ARMAMaxLikelihood.NonInvertibleException

Description
Determines the autoregressive model with the minimum AIC by fitting autoregressive models from 0 to
maxlag lags using the method of moments or an estimation method specified by the user through
setEstimationMethod.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the
maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian
evaluations is exceeded.
TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood
estimates for the time series are nonstationary
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood
estimates for the time series are noninvertible.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the
moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood
terminates and does not compute the time series estimates.
forecast

count public double[][] forecast(int nForecast) throws ARMA.MatrixSingularException,
 ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
 ARMA.NewInitialGuessException, ARMA.IllConditionedException,
 ARMA.TooManyITNEexception, ARMA.TooManyFcnEvalException,
 ARMA.TooManyJacobianEvalException,
 ARAutoUnivariate.TriangularMatrixSingularException,
 ARMAMaxLikelihood.NonStationaryException,
 ARMAMaxLikelihood.NonInvertibleException

Description

Returns forecasts and associated confidence interval offsets.

Parameter

nForecast – an input int representing the number of requested forecasts

Returns

da double matrix of dimension nForecast by backwardOrigin + 1 containing the forecasts. The
forecasts are for lead times \(l = 1, 2, \ldots, nForecast \) at origins \(z.length - backwardOrigin - 1 + j \) where
\(j = 1, \ldots, backwardOrigin + 1 \).

Exceptions

 ARMA.MatrixSingularException is thrown if the input matrix is singular
 ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the
maximum number of iterations times the number of moving average (MA) parameters + 1
 ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small
 ARMA.NewInitialGuessException is thrown if the iteration has not made good progress
 ARMA.IllConditionedException is thrown if the problem is ill-conditioned
 ARMA.TooManyITNEexception is thrown if the maximum number of iterations is exceeded
 ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is
exceeded
 ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian
evaluations is exceeded
 TriangularMatrixSingularException is thrown if the input triangular matrix is singular
 ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood
estimates for the time series are nonstationary
 ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood
estimates for the time series are noninvertible
 ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the
moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood
terminates and does not compute the time series estimates.

Chapter 19. Time Series and Forecasting

ARAutoUnivariate • 893
getAIC

public double getAIC() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonStationaryException,
ARMAMaxLikelihood.NonInvertibleException

Description

Returns the final estimate for Akaike’s Information Criterion (AIC) at the optimum.

Returns

a double scalar value which is an approximation to \(\text{AIC} = -2 \ln(L) + 2p \), where \(L \) is the value of the maximum likelihood function evaluated at the parameter estimates. The approximation uses the calculation

\[
\text{AIC} \approx (n - \text{maxlag}) \ln(\hat{\sigma}^2) + 2(p + 1) + (n - \text{maxlag}) \ln(2\pi) + 1,
\]

where \(\hat{\sigma}^2 \) is an estimate of the residual variance of the series, commonly known in time series analysis as the innovation variance, and \(n \) is the number of observations in the time series (\(n = z.length \)).

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress
ARMA.IllConditionedException is thrown if the problem is ill-conditioned
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded
TriangularMatrixSingularException is thrown if the input triangular matrix is singular
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
getAR

public double[] getAR() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonStationaryException,
ARMAMaxLikelihood.NonInvertibleException

Description

Returns the final auto regressive parameter estimates at the optimum AIC using the estimation method
specified in setEstimationMethod.

Returns

a double array containing the estimates for the autoregressive parameters.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the
maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is
exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian
evaluations is exceeded.
TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood
estimates for the time series are nonstationary.
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood
estimates for the time series are noninvertible.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the
moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood
terminates and does not compute the time series estimates.

getBackwardOrigin

public int getBackwardOrigin()

Description

Returns the maximum backward origin.
Returns
an int scalar specifying the maximum backward origin.

getConfidence
public double getConfidence()

Description
Returns the confidence level for calculating confidence limit deviations returned from getDeviations.

Returns
a double scalar value representing the confidence level used in computing forecast confidence intervals.

getConstant
public double getConstant() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARMAAutoUnivariate.TriangularMatrixSingularException, ARMAMaxLikelihood.NonStationaryException, ARMAMaxLikelihood.NonInvertibleException

Description
Returns the estimate for the constant parameter in the ARMA series.

Returns
a double scalar equal to the estimate for the constant parameter in the ARMA series.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.

ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.

ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.

ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.

ARMA.IllConditionedException is thrown if the problem is ill-conditioned.

ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.

ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.

ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.

TriangularMatrixSingularException is thrown if the input triangular matrix is singular.

ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.

ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
ARMA\texttt{MaxLikelihood.InitialMAException} is thrown if the initial values provided for the moving average terms using \texttt{setMA} are noninvertible. In this case, ARMA\texttt{MaxLikelihood} terminates and does not compute the time series estimates.

\textbf{getConvergenceTolerance}

\texttt{public double getConvergenceTolerance()}

\textbf{Description}

Returns the tolerance level used to determine convergence of the nonlinear least-squares and maximum likelihood algorithms.

\textbf{Returns}

a double scalar containing the tolerance level used to determine convergence of the nonlinear least-squares algorithm. \texttt{convergenceTolerance} represents the minimum relative decrease in sum of squares between two iterations required to determine convergence.

\textbf{getDeviations}

\texttt{public double[] getDeviations()}

\textbf{Description}

Returns the deviations used for calculating the forecast confidence limits.

\textbf{Returns}

a double array of length \texttt{backwardOrigin+nForecast} containing the deviations for calculating forecast confidence intervals. The confidence level is specified in \texttt{confidence}. By default, \texttt{confidence} = 0.95.

\textbf{getEstimationMethod}

\texttt{public int getEstimationMethod()}

\textbf{Description}

Returns the estimation method used for estimating the autoregressive coefficients.

\textbf{Returns}

an int equal to 0, 1, or 2, representing the autoregressive coefficient estimation method, which implies \texttt{METHOD_OF_MOMENTS}, \texttt{LEAST_SQUARES}, or \texttt{MAX_LIKELIHOOD} respectively.

\textbf{getForecast}

\texttt{public double[] getForecast(int nForecast) throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARAutoUnivariate.TriangularMatrixSingularException, ARMA\texttt{MaxLikelihood.NonStationaryException}, ARMA\texttt{MaxLikelihood.NonInvertibleException}}

\textbf{Description}

Returns forecasts
Parameter
 nForecast – an input int representing the number of requested forecasts beyond the last value in the series.

Returns
 a double array containing the nForecast+backwardOrigin forecasts. The first backwardOrigin forecasts are one-step ahead forecasts for the last backwardOrigin values in the series. The next nForecast values in the returned series are forecasts for the next values beyond the series.

Exceptions
 NonStationary is thrown if the final maximum likelihood estimates for the time series are nonstationary.
 NonInvertible is thrown if the final maximum likelihood estimates for the time series are noninvertible.
 InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
 ARMA.MatrixSingularException is thrown if the input matrix is singular.
 ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
 ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
 ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
 ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
 ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
 ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
 ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
 TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
 ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
 ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
 ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
getInnovationVariance

public double getInnovationVariance() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARAutoUnivariate.TriangularMatrixSingularException, ARMAMaxLikelihood.NonStationaryException, ARMAMaxLikelihood.NonInvertibleException

Description

Returns the final estimate for the innovation variance.

Returns

a double scalar value equal to the estimate for the innovation variance.

Exceptions

- ARMA.MatrixSingularException is thrown if the input matrix is singular.
- ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
- ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
- ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
- ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
- ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
- ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
- ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
- TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
- ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
- ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
- ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.

getLikelihood

public double getLikelihood() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARAutoUnivariate.TriangularMatrixSingularException, ARMAMaxLikelihood.NonStationaryException, ARMAMaxLikelihood.NonInvertibleException
Description

Returns the final estimate for \(L = e^{-\frac{(AIC-2p)}{2}} \), where \(p \) is the AR order, AIC is Akaike’s Information Criterion, and \(L \) is the likelihood function evaluated for the optimum autoregressive model. If MAX_LIKELIHOOD is set in the setEstimationMethod, the exact likelihood evaluated for the optimum autoregressive model will be returned. Otherwise it is calculated using the approximation to the AIC.

Returns

a double scalar equal to the maximum of the likelihood function, \(L = e^{-\frac{(AIC-2p)}{2}} \).

Exceptions

- ARMA.MatrixSingularException is thrown if the input matrix is singular.
- ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
- ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
- ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
- ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
- ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
- ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
- ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
- TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
- ARMA.MaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
- ARMA.MaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
- ARMA.MaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMA.MaxLikelihood terminates and does not compute the time series estimates.

getLogger

def getLogger()

Description

Returns the logger object.

Returns

the logger object, if present, or null.

getMaxIterations

def getMaxIterations()

900 • ARAutoUnivariate JMSL
Description
Returns the value currently being used as the maximum number of iterations allowed in the nonlinear
equation solver used in both the method of moments and least-squares algorithms.

Returns
an int containing the maximum number of iterations allowed.

getMaxlag
public int getMaxlag()

Description
Returns the current value used to represent the maximum number of autoregressive lags to achieve the
minimum AIC.

Returns
an int containing the maximum number of autoregressive lags evaluated.

getMean
public double getMean() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonStationaryException,
ARMAMaxLikelihood.NonInvertibleException

Description
Returns the mean used to center the time series z.

Returns
a double containing the value used to center the series before searching for the optimum number of AR
lags. This is equal to the mean of the time series z unless the mean was set in the setMean method.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the
maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is
exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian
evaluations is exceeded.
TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.

getOrder

public int getOrder() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARMA.TriangularMatrixSingularException, ARMAMaxLikelihood.NonStationaryException, ARMAMaxLikelihood.NonInvertibleException

Description

Returns the order of the AR model selected with the minimum AIC.

Returns

an int containing the optimum AR order selected by ARAutoUnivariate's minimum AIC selection.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using `setMA` are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.

getResiduals

```java
public double[] getResiduals()
```

Description

Returns the current values of the vector of residuals.

Returns

A double array of length `backwardOrigin` containing the residuals for the last `backwardOrigin` values in the time series. This array will be null unless `compute` and either the `forecast` or `getForecast` methods are called previously.

getTimeSeries

```java
public double[] getTimeSeries()
```

Description

Returns the time series used for estimating the minimum AIC and the autoregressive coefficients.

Returns

A double array containing the time series values set in the constructor.

getTimsacAR

```java
public double[] getTimsacAR() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonStationaryException,
ARMAMaxLikelihood.NonInvertibleException
```

Description

Returns the final auto regressive parameter estimates at the optimum AIC estimated by the original TIMSAC routine (UNIMAR). These estimates vary depending upon the value of `maxlag` since its value changes the length of the series used to estimate these parameters. Use the `getAR` method to obtain the best estimates from the estimation method specified by `setEstimationMethod` calculated using the maximum number of available observations.

Returns

A double array of length `p` containing the estimates for the autoregressive parameters.

Exceptions

- `ARMA.MatrixSingularException` is thrown if the input matrix is singular.
- `ARMA.TooManyCallsException` is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.

TriangularMatrixSingularException is thrown if the input triangular matrix is singular.

ARMA.MaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.

ARMA.MaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.

ARMA.MaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMA.MaxLikelihood terminates and does not compute the time series estimates.

getTimsacConstant

public double getTimsacConstant() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAAutoUnivariate.TriangularMatrixSingularException,
ARMA.MaxLikelihood.NonStationaryException,
ARMA.MaxLikelihood.NonInvertibleException

Description

Returns the estimate for the constant parameter in the ARMA series.

Returns

a double scalar equal to the estimate for the constant parameter in the ARMA series.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.

ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.

ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.

ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.

ARMA.IllConditionedException is thrown if the problem is ill-conditioned.

ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.

ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.

getTimsacVariance
public double getTimsacVariance() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonStationaryException,
ARMAMaxLikelihood.NonInvertibleException

Description
Returns the final estimate for the innovation variance calculated by the TIMSAC automatic AR modeling routine (UNIMAR). This variance depends upon the value of maxlag since the series length in this computation depends on its value. Use getInnovationVariance to return the innovation variance calculated using the maximum series length.

Returns
a double scalar value equal to the estimate for the innovation variance.

Exceptions
ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
TriangularMatrixSingularException is thrown if the input triangular matrix is singular.
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.

ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.

ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.

setBackwardOrigin

public void setBackwardOrigin(int backwardOrigin)

Description

Sets the maximum backward origin used in calculating the forecasts.

Parameter

backwardOrigin – an int scalar specifying the maximum backward origin. backwardOrigin must be greater than or equal to 0 and less than or equal to z.length - p, where p is the optimum number of AR coefficients determined by ARAutoUnivariate. The forecasted values returned will be z.length - backwardOrigin through z.length. Default: backwardOrigin = 0.

setConfidence

public void setConfidence(double confidence)

Description

Sets the confidence level for calculating confidence limit deviations returned from getDeviations.

Parameter

confidence – a double scalar specifying the confidence level used in computing forecast confidence intervals. Typical choices for confidence are 0.90, 0.95, and 0.99. confidence must be greater than 0.0 and less than 1.0. Default: confidence = 0.95.

setConvergenceTolerance

public void setConvergenceTolerance(double convergenceTolerance)

Description

Sets the tolerance level used to determine convergence of the nonlinear least-squares and maximum likelihood algorithms.

Parameter

convergenceTolerance – a double scalar containing the tolerance level used to determine convergence of the nonlinear least-squares and maximum likelihood algorithms. convergenceTolerance represents the minimum relative decrease in sum of squares between two iterations required to determine convergence. Hence, convergenceTolerance must be greater than or equal to 0. By default, convergenceTolerance = 10^-10.

setEstimationMethod

public void setEstimationMethod(int method)
Description
Sets the estimation method used for estimating the final estimates for the autoregressive coefficients.

Parameter
method – an int scalar specifying the estimation method. Specify METHOD_OF_MOMENTS for the method of moments, LEAST_SQUARES for the least squares method, or MAX_LIKELIHOOD for the maximum likelihood estimates. Default: method = LEAST_SQUARES.

setMaxIterations
public void setMaxIterations(int iterations)

Description
Sets the maximum number of iterations used for estimating the autoregressive coefficients.

Parameter
iterations – an int scalar specifying the maximum number of iterations allowed in the nonlinear equation solver used in both the method of moments and least-squares algorithms. Default: iterations = 300.

Exception
IllegalArgumentException is thrown if iterations is less than or equal to 0.

setMean
public void setMean(double mean)

Description
Sets the estimate of the mean used for centering the time series z.

Parameter
mean – a double containing the estimate of the mean for the time series z. By default, the time series z is centered about its sample mean.

Example 1: ARAutoUnivariate
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 1770 through 1869. In this example, ARAutoUnivariate found the minimum AIC fit is an autoregressive model with 3 lags:

\[\tilde{W}_t = \phi_1 \tilde{W}_{t-1} + \phi_2 \tilde{W}_{t-2} + \phi_3 \tilde{W}_{t-3} + \alpha_t, \]

where

\[\tilde{W}_t := W_t - \mu \]

\(\mu \) is the sample mean of the time series \(\{W_t\} \). Defining the overall constant \(\theta_0 \) by \(\theta_0 := \mu(1 - \sum_{i=1}^{3} \phi_i) \), we obtain the following equivalent representation:

\[W_t = \theta_0 + \phi_1 W_{t-1} + \phi_2 W_{t-2} + \phi_3 W_{t-3} + \alpha_t. \]

The example computes estimates for \(\theta_0, \phi_1, \phi_2, \phi_3 \) for each of the three parameter estimation methods available.
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class ARAutoUnivariateEx1 {

 public static void main(String args[]) throws Exception {
 double[] z = {
 100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
 154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
 132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
 6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
 8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
 23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
 67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
 85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
 124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
 54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
 37.3, 73.9
 };

 ARAutoUnivariate autoAR = new ARAutoUnivariate(20, z);
 System.out.println("Method of Moments");
 autoAR.setEstimationMethod(ARAutoUnivariate.METHOD_OF_MOMENTS);
 autoAR.compute();

 System.out.println("Order Selected: " + autoAR.getOrder());
 System.out.println("AIC = " + autoAR.getAIC() + " Variance = "
 + autoAR.getInnovationVariance());
 System.out.println("Constant = " + autoAR.getConstant());
 System.out.println("AR estimates are: ").print(autoAR.getAR());

 /* try another method */
 System.out.println("Least Squares");
 autoAR.setEstimationMethod(ARAutoUnivariate.LEAST_SQUARES);
 autoAR.compute();

 System.out.println("Order Selected: " + autoAR.getOrder());
 System.out.println("AIC = " + autoAR.getAIC() + " Variance = "
 + autoAR.getInnovationVariance());
 System.out.println("Constant = " + autoAR.getConstant());
 System.out.println("AR estimates are: ").print(autoAR.getAR());

 System.out.println("Maximum Likelihood");
 autoAR.setEstimationMethod(ARAutoUnivariate.MAX_LIKELIHOOD);
 autoAR.compute();
 }
}
System.out.println("Order Selected: "+autoAR.getOrder());
System.out.println("AIC = " + autoAR.getAIC() + " Variance = " + autoAR.getInnovationVariance());
System.out.println("Constant = " + autoAR.getConstant());
new PrintMatrix("AR estimates are: ").print(autoAR.getAR());
}
}

Output

Method of Moments
Order Selected: 3
AIC = 405.9812419650225 Variance = 287.2699077443474
Constant = 13.70978940109534
AR estimates are:
0
0 1.368
1 -0.738
2 0.078

Least Squares
Order Selected: 3
AIC = 405.9812419650225 Variance = 221.99519660517407
Constant = 11.610494624981452
AR estimates are:
0
0 1.55
1 -1.004
2 0.205

Maximum Likelihood
Order Selected: 3
AIC = 405.9812419650225 Variance = 218.84837588472615
Constant = 11.417850982501161
AR estimates are:
0
0 1.551
1 -0.999
2 0.204
Example 2 (Logging and Forecasting): ARAutoUnivariate

Using the Canadian Lynx data included in TIMSAC-78, ARAutoUnivariate is used to find the minimum AIC autoregressive model using a maximum number of lags of maxlag=20.

This example compares the three different methods for estimating the autoregressive coefficients, and it illustrates the relationship between these estimates and those calculated within the TIMSAC UNIMAR code. As illustrated, the UNIMAR code estimates the coefficients and innovation variance using only the last N-maxlag values in the time series. The other estimation methods use all N-k values, where k is the number of lags with minimum AIC selected by ARAutoUnivariate.

This example also illustrates how to generate forecasts for the observed series values and beyond by setting the backward origin for the forecasts.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;
import java.util.logging.*;

public class ARAutoUnivariateEx2 {
    public static void main(String args[]) throws Exception {
        /* THE CANADIAN LYNX DATA AS USED IN TIMSAC 1821-1934 */
        double[] y = {
            0.24300e01, 0.25060e01, 0.27670e01, 0.29400e01,
            0.31690e01, 0.34500e01, 0.35940e01, 0.37740e01,
            0.36950e01, 0.34110e01, 0.27180e01, 0.19910e01,
            0.22650e01, 0.24460e01, 0.26120e01, 0.33590e01,
            0.34290e01, 0.35330e01, 0.32610e01, 0.26120e01,
            0.21790e01, 0.16530e01, 0.18320e01, 0.23280e01,
            0.27370e01, 0.30140e01, 0.33280e01, 0.34040e01,
            0.29810e01, 0.25570e01, 0.25760e01, 0.23520e01,
            0.25560e01, 0.28640e01, 0.32140e01, 0.34350e01,
            0.34580e01, 0.33260e01, 0.28350e01, 0.24760e01,
            0.23730e01, 0.23890e01, 0.27420e01, 0.32100e01,
            0.35200e01, 0.38280e01, 0.36280e01, 0.28370e01,
            0.24060e01, 0.26750e01, 0.25540e01, 0.28940e01,
            0.32020e01, 0.32240e01, 0.33520e01, 0.31540e01,
            0.28780e01, 0.24760e01, 0.23030e01, 0.23600e01,
            0.26710e01, 0.28670e01, 0.33100e01, 0.34490e01,
            0.36460e01, 0.34000e01, 0.25900e01, 0.18630e01,
            0.15810e01, 0.16900e01, 0.17710e01, 0.22740e01,
            0.25760e01, 0.31110e01, 0.36050e01, 0.35430e01,
            0.27690e01, 0.20210e01, 0.21850e01, 0.25880e01,
            0.28800e01, 0.31150e01, 0.35400e01, 0.38450e01,
            0.38000e01, 0.35790e01, 0.32640e01, 0.25380e01,
            0.25820e01, 0.29070e01, 0.31420e01, 0.34330e01,
            0.35800e01, 0.34900e01, 0.34750e01, 0.35790e01,
            0.28290e01, 0.19090e01, 0.19030e01, 0.20330e01,
            0.23600e01, 0.26010e01, 0.30540e01, 0.33860e01,
            0.35530e01, 0.34680e01, 0.31870e01, 0.27230e01,
            0.26860e01, 0.28210e01, 0.30000e01, 0.32010e01,
            0.34240e01, 0.35310e01
        };
    }

    double[][] printOutput;
}
```
double timsacAR[], mmAR[], mleAR[], lsAR[];
double forecasts[], residuals[];
double timsacConstant, mmConstant, mleConstant, lsConstant;
double timsacVar, timsacEquivalentVar, mmVar, mleVar, lsVar;
int maxlag = 20;
String[] colLabels = {"TIMSAC", "Method of Moments", "Least Squares", "Maximum Likelihood");
String[] colLabels2 = {"Observed", "Forecast", "Residual");
PrintMatrixFormat pmf = new PrintMatrixFormat();
PrintMatrix pm = new PrintMatrix();
NumberFormat nf = NumberFormat.getNumberInstance();
pm.setColumnSpacing(4);
nf.setMinimumFractionDigits(4);
pmf.setNumberFormat(nf);
pmf.setColumnLabels(colLabels);
System.out.println("Automatic Selection of Minimum AIC AR Model");
System.out.println("\n");

ARAutoUnivariate autoAR = new ARAutoUnivariate(maxlag, y);

// logging to console
Logger logger = autoAR.getLogger();
ConsoleHandler ch = new ConsoleHandler();
ch.setLevel(Level.ALL); // default ConsoleHandler Level is INFO
logger.setLevel(Level.FINE);
logger.addHandler(ch);
ch.setFormatter(new com.imsl.IMSLFormatter());
autoAR.compute();

int orderSelected = autoAR.getOrder();
System.out.println("Minimum AIC Selected= " + autoAR.getAIC() + " with an optimum lag of k= " + autoAR.getOrder());
System.out.println("\n");
timsacAR = autoAR.getTimsacAR();
timsacConstant = autoAR.getTimsacConstant();
timsacVar = autoAR.getTimsacVariance();
lsAR = autoAR.getAR();
lsConstant = autoAR.getConstant();
lsVar = autoAR.getInnovationVariance();

autoAR.setEstimationMethod(ARAutoUnivariate.METHOD_OF_MOMENTS);
autoAR.compute();
mmAR = autoAR.getAR();
mmConstant = autoAR.getConstant();
mmVar = autoAR.getInnovationVariance();

autoAR.setEstimationMethod(ARAutoUnivariate.MAX_LIKELIHOOD);
autoAR.compute();
mleAR = autoAR.getAR();
mleConstant = autoAR.getConstant();
mleVar = autoAR.getInnovationVariance();

printOutput = new double[orderSelected + 1][4];
printOutput[0][0] = timsacConstant;
for (int i = 0; i < orderSelected; i++) {
printOutput[i + 1][0] = timsacAR[i];
}
printOutput[0][1] = mmConstant;
for (int i = 0; i < orderSelected; i++) {
 printOutput[i + 1][1] = mmAR[i];
}
printOutput[0][2] = lsConstant;
for (int i = 0; i < orderSelected; i++) {
 printOutput[i + 1][2] = lsAR[i];
}
printOutput[0][3] = mleConstant;
for (int i = 0; i < orderSelected; i++) {
 printOutput[i + 1][3] = mleAR[i];
}
pm.setTitle("Comparison of AR Estimates");
pm.print(pmf, printOutput);
/* calculation of equivalent innovation variance using TIMSAC
coefficients. The Timsac innovation variance is calculated using
only N-maxlag observations in the series. The following code
calculates the innovation variance using N-k observations in the
series with the Timsac coefficient. This illustrates that the
least squares Timsac coefficients will not have the least value for
the sum of squared residuals, which is calculated using all N-k
observations. */
ARMA armaLS = new ARMA(orderSelected, 0, y);
armaLS.setArmaInfo(autoAR.getTimsacConstant(), autoAR.getTimsacAR(),
 new double[0], autoAR.getTimsacVariance());
armaLS.setBackwardOrigin(y.length - orderSelected);
forecasts = armaLS.getForecast(1);
double sumResiduals = 0.0;
for (int i = 0; i < y.length - orderSelected; i++) {
 sumResiduals += (y[i + orderSelected] - forecasts[i])
 * (y[i + orderSelected] - forecasts[i]);
}
timsacEquivalentVar = sumResiduals / (y.length - orderSelected - 1);
printOutput = new double[1][4];
printOutput[0][0] = timsacEquivalentVar;
/* the method of moments variance */
printOutput[0][1] = mmVar;
/* the least squares variance */
printOutput[0][2] = lsVar;
/* the maximum likelihood estimate of the variance */
printOutput[0][3] = mleVar;
f.setMinimumFractionDigits(5);
fm.setNumberFormat(f);
f.setTitle("Comparison of Equivalent Innovation Variances");
f.print(pmf, printOutput);
/* FORECASTING - An example of forecasting using the maximum
* likelihood estimates for the minimum AIC AR model. In this example,
* forecasts are returned for the last 10 values in the series followed
* by the forecasts for the next 5 values. */
autoAR.setBackwardOrigin(10);
forecasts = autoAR.getForecast(15);
residuals = autoAR.getResiduals();
printOutput = new double[15][3];
for (int i = 0; i < 10; i++) {
 printOutput[i][0] = y[y.length - 10 + i];
 printOutput[i][1] = forecasts[i];
 printOutput[i][2] = residuals[i];
}
for (int i = 10; i < 15; i++) {
 printOutput[i][0] = Double.NaN;
 printOutput[i][1] = forecasts[i];
 printOutput[i][2] = Double.NaN;
}
f.setMaximumFractionDigits(3);
pf.setFirstRowNumber(105);
pf.setNumberFormat(nf);
pf.setColumnLabels(colLabels2);
pt.setTitle("Maximum Likelihood Forecasts of Last 10 Observations & " + "the Next 5");
pt.print(pmf, printOutput);

Output
Automatic Selection of Minimum AIC AR Model
ORDER SELECTED = 11
AIC = -122.36968839314528

Minimum AIC Selected=-296.13013263562374 with an optimum lag of k= 11
ORDER SELECTED = 11
AIC = -122.36968839314528
ORDER SELECTED = 11
AIC = -122.36968839314528

<table>
<thead>
<tr>
<th></th>
<th>TIMSAC</th>
<th>Method of Moments</th>
<th>Least Squares</th>
<th>Maximum Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0427</td>
<td>1.1679</td>
<td>1.1144</td>
<td>1.1187</td>
</tr>
<tr>
<td>1</td>
<td>1.1813</td>
<td>1.1381</td>
<td>1.1481</td>
<td>1.1664</td>
</tr>
<tr>
<td>2</td>
<td>0.5516</td>
<td>0.5061</td>
<td>0.5331</td>
<td>0.5420</td>
</tr>
<tr>
<td>3</td>
<td>0.2314</td>
<td>0.2098</td>
<td>0.2757</td>
<td>0.2624</td>
</tr>
<tr>
<td>4</td>
<td>-0.1780</td>
<td>-0.2672</td>
<td>-0.3263</td>
<td>-0.3051</td>
</tr>
<tr>
<td>5</td>
<td>0.0199</td>
<td>0.1112</td>
<td>0.1685</td>
<td>0.1519</td>
</tr>
<tr>
<td>6</td>
<td>-0.0626</td>
<td>-0.1246</td>
<td>-0.1643</td>
<td>-0.1460</td>
</tr>
<tr>
<td>7</td>
<td>0.0286</td>
<td>0.0693</td>
<td>0.0728</td>
<td>0.0581</td>
</tr>
<tr>
<td>8</td>
<td>0.0507</td>
<td>-0.0419</td>
<td>-0.0305</td>
<td>-0.0309</td>
</tr>
<tr>
<td>9</td>
<td>0.1999</td>
<td>0.1366</td>
<td>0.1509</td>
<td>0.1379</td>
</tr>
<tr>
<td>10</td>
<td>0.1618</td>
<td>0.1828</td>
<td>0.1935</td>
<td>0.1994</td>
</tr>
<tr>
<td>11</td>
<td>0.3391</td>
<td>-0.3101</td>
<td>-0.3414</td>
<td>0.3375</td>
</tr>
</tbody>
</table>
Comparison of Equivalent Innovation Variances

<table>
<thead>
<tr>
<th></th>
<th>TIMSAC Method of Moments</th>
<th>Least Squares</th>
<th>Maximum Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.03769</td>
<td>0.04274</td>
<td>0.03687</td>
</tr>
</tbody>
</table>

Maximum Likelihood Forecasts of Last 10 Observations & the Next 5 Observations:

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Forecast</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>3.553</td>
<td>3.439</td>
<td>0.114</td>
</tr>
<tr>
<td>106</td>
<td>3.468</td>
<td>3.480</td>
<td>-0.012</td>
</tr>
<tr>
<td>107</td>
<td>3.187</td>
<td>2.924</td>
<td>0.263</td>
</tr>
<tr>
<td>108</td>
<td>2.723</td>
<td>2.703</td>
<td>0.020</td>
</tr>
<tr>
<td>109</td>
<td>2.686</td>
<td>2.556</td>
<td>0.130</td>
</tr>
<tr>
<td>110</td>
<td>2.821</td>
<td>2.785</td>
<td>0.036</td>
</tr>
<tr>
<td>111</td>
<td>3.000</td>
<td>2.949</td>
<td>0.051</td>
</tr>
<tr>
<td>112</td>
<td>3.201</td>
<td>3.186</td>
<td>0.015</td>
</tr>
<tr>
<td>113</td>
<td>3.424</td>
<td>3.385</td>
<td>0.039</td>
</tr>
<tr>
<td>114</td>
<td>3.531</td>
<td>3.527</td>
<td>0.004</td>
</tr>
<tr>
<td>115</td>
<td>?</td>
<td>3.446</td>
<td>?</td>
</tr>
<tr>
<td>116</td>
<td>?</td>
<td>3.195</td>
<td>?</td>
</tr>
<tr>
<td>117</td>
<td>?</td>
<td>2.829</td>
<td>?</td>
</tr>
<tr>
<td>118</td>
<td>?</td>
<td>2.492</td>
<td>?</td>
</tr>
<tr>
<td>119</td>
<td>?</td>
<td>2.414</td>
<td>?</td>
</tr>
</tbody>
</table>

ARAutoUnivariate.TriangularMatrixSingularException class

static public class
com.imsl.stat.ARAutoUnivariate.TriangularMatrixSingularException extends com.imsl.IMSLException

The input triangular matrix is singular.

Constructors

ARAutoUnivariate.TriangularMatrixSingularException

public ARAutoUnivariate.TriangularMatrixSingularException(String message)

Description

Constructs a TriangularMatrixSingularException object.

Parameter

message – a String containing the error message
ARAutoUnivariate.TriangularMatrixSingularException

`public ARAutoUnivariate.TriangularMatrixSingularException(String key, Object[] arguments)`

Description

Constructs a `TriangularMatrixSingularException` object.

Parameters

- `key` – a `String` containing the error message
- `arguments` – an `Object` array containing arguments used within the error message string

ARAutoUnivariate.Formatter class

`static public class com.imsl.stat.ARAutoUnivariate.Formatter extends java.util.logging.Formatter`

Simple formatter for ARAutoUnivariate logging.

Constructor

`ARAutoUnivariate.Formatter`

`public ARAutoUnivariate.Formatter()`

Method

`format`

`public String format(LogRecord record)`

ARSeasonalFit class

`public class com.imsl.stat.ARSeasonalFit implements Serializable`

Estimates the optimum seasonality parameters for a time series using an autoregressive model, AR(p), to represent the time series.

Chapter 19. Time Series and Forecasting
ARMA time series modeling assumes the time series is stationary. Seasonal trends and cycles violate this assumption, which can lead to inaccurate predictions. However, in many cases the nonstationary series can be transformed into a stationary series by first differencing the series. For example, if the correlation is strong from one period to the next, the series might be differenced by a lag of 1. Instead of fitting a model to the original series Z_t, the model is fitted to the transformed series:

$$W_t = Z_t - Z_{t-1}.$$

Higher order lags or differences are warranted if the series has cycles every 4 or 13 weeks. Class ARSeasonalFit is designed to help identify the optimum differencing for a series with seasonal trends or cycles.

ARSeasonalFit assumes the original series has no missing values, is equally spaced in time and is not centered before computing the optimum differencing. However, by default the transformed series is centered using the mean of that series. Users can change this default using the `setCenter` method. If `setCenter` is set to `NO_CENTER` the series is not centered, if set to `CENTER_MEAN` the series is centered using the mean of the series, and if set to `CENTER_MEDIAN`, the series is centered using the median of the series. If `setCenter` is set to `CENTER_MEAN` or `CENTER_MEDIAN` then the differenced series, W_t is centered before determination of minimum AIC and optimum lag.

For every combination of rows in `sInitial` and `dInitial`, the series Z_t is converted to the seasonally adjusted series using the following computation

$$W(s,d) = \Delta^d_1 \Delta^d_2 \cdots \Delta^d_m Z_t = \prod_{i=1}^{m} \left(\sum_{j=0}^{d_i} (-1)^j B^{j+s_i} Z_t \right)$$

where $s := (s_1, \ldots, s_m), d := (d_1, \ldots, d_m)$ represent specific rows of arrays `sInitial` and `dInitial` respectively, and m is the number of differences, or $m=\text{Initial}[0].\text{length}$. This transformation of the series Z_t to $W(s,d)$ is computed using the `Difference` class. After this transformation the transformed series

$$W(s,d)$$

is centered, unless `NO_CENTER` is specified, and the `ARAutoUnivariate` class is used to automatically determine the optimum lag for an AR(p) representation for $W(s,d)$.

This procedure is repeated for every possible combination of rows in `sInitial` and `dInitial`. The series with the minimum AIC is identified as the optimum representation and returned in the methods `getAROrder`, `getOptimumS`, `getOptimumD`, `getAIC`, and `getAR`. The transformed series with the minimum AIC can be retrieved from the `getTransformedTimeSeries` method.

Fields

CENTER_MEAN

static final public int CENTER_MEAN

Indicates the transformed series should be centered using the average of the differenced series.

CENTER_MEDIAN

static final public int CENTER_MEDIAN

Indicates the transformed series should be centered using the median of the differenced series.
static final public int NO_CENTER

Indicates the transformed series should not be centered.

Constructor

ARSeasonalFit

public ARSeasonalFit(int maxlag, int[][] sInitial, double[] z)

Description

Constructor for ARSeasonalFit.

Parameters

maxlag – an int scalar specifying the maximum lag allowed when fitting an AR(p) model.
sInitial – an int matrix where each row represents seasonal differences to evaluate. The number of columns in sInitial represent the number of differences to perform. All values of sInitial must be greater than zero.
z – an input double array containing the time series.

Methods

compute

public void compute() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARAutoUnivariate.TriangularMatrixSingularException, ARMAMaxLikelihood.NonInvertibleException, ARMAMaxLikelihood.NonStationaryException

Description

Computes the minimum AIC and optimum values for s and d based upon the candidates provided in sInitial and dInitial, and computes the values for the transformed series, \(W_t(s,d) \). Warnings are printed if a row in sInitial is skipped due to too many observations lost in the differenced series or if problems occurred computing the optimum AIC using the differenced series.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress
ARMA.IllConditionedException is thrown if the problem is ill-conditioned
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input triangular matrix is singular.

getAIC
public double getAIC()

Description
Returns the final estimate for Akaike’s Information Criterion (AIC) at the optimum.

Returns
a double equal to AIC = \(-2 \ln(L) + 2p\), where \(L\) is the value of the maximum likelihood function evaluated at the parameter estimates.

getAR
public double[] getAR() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonInvertibleException,
ARMAMaxLikelihood.NonStationaryException

Description
Returns the final autoregressive parameter estimates at the optimum in the transformed series \(W_t\).

Returns
a double array containing the estimates for the autoregressive parameters
Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
ARMAaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
ARMAaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
ARMAaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAaxLikelihood terminates and does not compute the time series estimates.
ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input triangular matrix is singular.

getAROrder
public int getAROrder()

Description
Returns optimum number of lags, \(p \), for the optimum autoregressive AR(\(p \)) model. This is the value of \(p \) for the transformed series, \(W_t \).

Returns
an int containing the optimum number of lags in the autoregressive model used to fit the transformed series \(W_t \).

getchCenter
public int getCenter()

Description
Returns the current setting for centering the input time series.

Returns
an int containing the setting for center equal to 0, 1, or 2, which implies NO_CENTER, CENTER_MEAN, CENTER_MEDIAN respectively.

getDInitial
public int[][] getDInitial()
Description
Returns the candidate values for \(d \) to evaluate.

Returns
an int matrix containing the candidate values for \(d \) to evaluate

\(\text{getExclude} \)

public boolean getExclude()

Description
Returns the current setting for excluding or replacing the initial values in the transformed series.

If \(\text{exclude} \) is true, then initial values in the transformed series that cannot be computed are set to missing, NaN. This ensures that the length of the transformed series \(W_t \) is equal to the length of the time series, \(z.length \). If \(\text{exclude} \) is set to false, then initial values in the transformed series \(W_t \) that cannot be computed are removed. This makes the length of the transformed series \(W_t \) equal to \(z.length - nLost \) where \(nLost \) is the number of lost values obtained from method \(\text{getNLost} \).

\(\text{getMaxlag} \)

public int getMaxlag()

Description
Returns the maximum lag used to fit the AR(\(p \)) model.

Returns
an int scalar containing the maximum lag allowed when fitting an AR(\(p \)) model

\(\text{getNLost} \)

public int getNLost() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARAutoUnivariate.TriangularMatrixSingularException, ARMA.MaxLikelihood.NonInvertibleException, ARMA.MaxLikelihood.NonStationaryException

Description
Returns the number of values in the initial part of the series lost to differencing.

Returns
an int containing the number of values in the initial part of the series lost to differencing. These lost values will be set to missing or dropped in the transformed series, depending upon the setting for \(\text{exclude} \).

Exceptions
ARMA.MatrixSingularException is thrown if the input matrix is singular
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress
ARMA.IllConditionedException is thrown if the problem is ill-conditioned
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input triangular matrix is singular.

getOptimumD

```java
generic int[] getOptimumD() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonInvertibleException,
ARMAMaxLikelihood.NonStationaryException
```

Description

Returns the optimum values for d selected among the candidates in dInitial.

Returns

an int array of length dInitial[0].length containing the optimum values for d selected among the candidates in dInitial

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress
ARMA.IllConditionedException is thrown if the problem is ill-conditioned
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input triangular matrix is singular.

getOptimumS

```java
public int[] getOptimumS() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException, ARAutoUnivariate.TriangularMatrixSingularException, ARMAMaxLikelihood.NonInvertibleException, ARMAMaxLikelihood.NonStationaryException
```

Description

Returns the optimum values for \(s \) selected among the candidates in \(s_{\text{Initial}} \).

Returns

an int array of length \(s_{\text{Initial}}[0].\text{length} \) containing the optimum values for \(s \) selected among the candidates in \(s_{\text{Initial}} \)

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress
ARMA.IllConditionedException is thrown if the problem is ill-conditioned
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.

ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.

ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.

ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input triangular matrix is singular.

getSInitial

```
public int[][] getSInitial()
```

Description

Returns the the candidate values for s to evaluate.

Returns

an int matrix containing the candidate values for s to evaluate

getTimeSeries

```
public double[] getTimeSeries()
```

Description

Returns the time series.

Returns

a double array containing the time series values

getTransformedTimeSeries

```
public double[] getTransformedTimeSeries() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonInvertibleException,
ARMAMaxLikelihood.NonStationaryException
```

Description

Returns the transformed series, \(W_t(s,d)\).

\(W_t(s,d)\) is an array of length z.length or z.length-nLost containing the optimum seasonally adjusted, autoregressive series, where nLost is the first lost observations in this series that are dropped due to differencing. If the missing values are not dropped the first nLost values of \(W_t\) will be set (Double.NaN). The getNLost method can be used to obtain nLost.

The seasonal adjustment is done by selecting optimum values for \(d_1, \ldots, d_m, s_1, \ldots, s_m\) (\(m\) is number of differences or sInitial[0].length) and \(p\) in the AR model:

\[
\phi_p(B)(\Delta^{d_1}_{s_1} \Delta^{d_2}_{s_2} \cdots \Delta^{d_m}_{s_m} Z_t - \mu) = a_t,
\]
where \(\{Z_t\} \) is the original time series, \(B \) is the backward shift operator defined by
\[
B^k Z_t = Z_{t-k}, \quad k \geq 0, \quad a_t \text{ is Gaussian white noise with } E[a_t] = 0 \text{ and } \text{Var}[a_t] = \sigma^2.
\]
\[
\phi_p(B) = 1 - \phi_1 B - \phi_2 B^2 - \ldots - \phi_p B^p, \quad 0 \leq p \leq \text{maxlag}, \quad \Delta_d^s = (1 - B)^d, \quad \text{with } s > 0, d \geq 0, \text{ and } \mu \text{ is a centering parameter for the differenced series.}
\]

Returns

a double array of length \(z.length \) or \(z.length-nLost \), depending upon the setting for \(\text{setExclude} \)

Exceptions

- `ARMA.MatrixSingularException` is thrown if the input matrix is singular
- `ARMA.TooManyCallsException` is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
- `ARMA.IncreaseErrRelException` is thrown if the bound for the relative error is too small
- `ARMA.NewInitialGuessException` is thrown if the iteration has not made good progress
- `ARMA.IllConditionedException` is thrown if the problem is ill-conditioned
- `ARMA.TooManyITNException` is thrown if the maximum number of iterations is exceeded
- `ARMA.TooManyFcnEvalException` is thrown if the maximum number of function evaluations is exceeded
- `ARMA.TooManyJacobianEvalException` is thrown if the maximum number of Jacobian evaluations is exceeded
- `ARMAMaxLikelihood.NonStationaryException` is thrown if the final maximum likelihood estimates for the time series are nonstationary
- `ARMAMaxLikelihood.NonInvertibleException` is thrown if the final maximum likelihood estimates for the time series are noninvertible
- `ARMAMaxLikelihood.InitialMAException` is thrown if the initial values provided for the moving average terms using `setMA` are noninvertible. In this case, `ARMAMaxLikelihood` terminates and does not compute the time series estimates.
- `ARAutoUnivariate.TriangularMatrixSingularException` is thrown if the input triangular matrix is singular.

setCenter

public void setCenter(int center)

Description

Controls centering of the differenced series.

Parameter

- `center` – an int scalar value equal NO_CENTER, CENTER_MEAN, or CENTER_MEDIAN. By default, center = CENTER_MEAN

setDInitial

public void setDInitial(int[][] dInitial)
Description
Sets the candidate values for selecting the optimum seasonal adjustment prior to calling the compute
method.

Parameter
- **dInitial** – an int array of candidate values for \(d \) to evaluate. All values must be non-negative.
- \(dInitial \) must have the same number of differences (columns) as \(sInitial \). By default,
- \(dInitial \) is initialized to all ones.

setExclude
```java
public void setExclude(boolean exclude)
```

Description
Controls whether to exclude or replace the initial values in the transformed series.

If exclude is true, then initial values in the transformed series that cannot be computed are set to
missing, NaN. This ensures that the length of the transformed series \(W_t \) is equal to the length of the time
series, \(z.length \). If exclude is set to false, then initial values in the transformed series \(W_t \) that cannot
be computed are removed. This makes the length of the transformed series \(W_t \) equal to \(z.length-nLost \)
where \(nLost \) is the number of lost values obtained from method getNLost.

Parameter
- **exclude** – a boolean value that controls whether values in \(W_t \) that cannot be calculated are
dropped or set to missing. Missing values are set to Double.NaN. By default, \(exclude = true \)

Example: ARSeasonalFit
Consider the Airline Data (Box, Jenkins and Reinsel 1994, p. 547) consisting of the monthly total
number of international airline passengers from January 1949 through December 1960. Class
ARSeasonalFit is used to compute the optimum seasonality representation of the adjusted series
\[
W_t(s, d) = \Delta_1^s \Delta_2^d Z_t = (1 - B^s)^d (1 - B^{12})^d Z_t,
\]
where
- \(s = (1, 1) \)

or
- \(s = (1, 12) \)

and
- \(d = (1, 1) \).

As differenced series with minimum AIC,
\[
W_t = \Delta_1^s \Delta_2^d Z_t = (Z_t - Z_{t-12}) - (Z_{t-1} - Z_{t-13}),
\]
is identified.
import com.imsl.stat.*;
import com.imsl.math.*;

public class ARSeasonalFitEx1 {

 public static void main(String args[]) throws Exception {
 double[] z = {
 112, 118, 132, 129, 135, 148, 148, 136, 119, 104, 118,
 115, 126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140,
 145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166,
 171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194,
 196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201,
 204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229,
 242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278,
 315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336,
 340, 318, 362, 348, 363, 435, 491, 508, 404, 359, 310, 337,
 360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405,
 417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432
 };

 int sInit[][] = {{1, 1}, {1, 12}};

 ARSeasonalFit seasFit = new ARSeasonalFit(10, sInit, z);
 seasFit.compute();
 System.out.println("NLost = " + seasFit.getNLost());
 System.out.println("aic = " + seasFit.getAIC());
 new PrintMatrix("Best Periods (Optimum S)").
 print(seasFit.getOptimumS());
 new PrintMatrix("Best Orders (Optimum D)").
 print(seasFit.getOptimumD());
 System.out.println("Best AR order selected = " + seasFit.getAROrder());
 new PrintMatrix("AR Coefficients").print(seasFit.getAR());

 System.out.println("\n");
 double w[] = seasFit.getTransformedTimeSeries();
 double pack[][] = new double[30][2];
 for (int i = 0; i < 30; i++) {
 pack[i][0] = z[i];
 pack[i][1] = w[i];
 }
 PrintMatrix pm = new PrintMatrix();
 String str = "First 30 elements of the original time series "+ "and differenced series";
 pm.setTitle(str);
 PrintMatrixFormat fmt = new PrintMatrixFormat();
 fmt.setColumnLabels(new String[]{"Original", "Differenced"});
 pm.print(fmt, pack);
 }
}

Output
NLost = 13
aic = 606.3972456534914
Best Periods (Optimum S)
0
0 1
1 12

Best Orders (Optimum D)
0
0 1
1 1

Best AR order selected = 1
AR Coefficients
0
0 -0.31

First 30 elements of the original time series and differenced series
<table>
<thead>
<tr>
<th>Original</th>
<th>Differenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 112</td>
<td>?</td>
</tr>
<tr>
<td>1 118</td>
<td>?</td>
</tr>
<tr>
<td>2 132</td>
<td>?</td>
</tr>
<tr>
<td>3 129</td>
<td>?</td>
</tr>
<tr>
<td>4 121</td>
<td>?</td>
</tr>
<tr>
<td>5 135</td>
<td>?</td>
</tr>
<tr>
<td>6 148</td>
<td>?</td>
</tr>
<tr>
<td>7 148</td>
<td>?</td>
</tr>
<tr>
<td>8 136</td>
<td>?</td>
</tr>
<tr>
<td>9 119</td>
<td>?</td>
</tr>
<tr>
<td>10 104</td>
<td>?</td>
</tr>
<tr>
<td>11 118</td>
<td>?</td>
</tr>
<tr>
<td>12 115</td>
<td>?</td>
</tr>
<tr>
<td>13 126</td>
<td>5</td>
</tr>
<tr>
<td>14 141</td>
<td>1</td>
</tr>
<tr>
<td>15 135</td>
<td>-3</td>
</tr>
<tr>
<td>16 125</td>
<td>-2</td>
</tr>
<tr>
<td>17 149</td>
<td>10</td>
</tr>
<tr>
<td>18 170</td>
<td>8</td>
</tr>
<tr>
<td>19 170</td>
<td>0</td>
</tr>
<tr>
<td>20 158</td>
<td>0</td>
</tr>
<tr>
<td>21 133</td>
<td>-8</td>
</tr>
<tr>
<td>22 114</td>
<td>-4</td>
</tr>
<tr>
<td>23 140</td>
<td>12</td>
</tr>
<tr>
<td>24 145</td>
<td>8</td>
</tr>
<tr>
<td>25 150</td>
<td>-6</td>
</tr>
<tr>
<td>26 178</td>
<td>13</td>
</tr>
<tr>
<td>27 163</td>
<td>-9</td>
</tr>
<tr>
<td>28 172</td>
<td>19</td>
</tr>
<tr>
<td>29 178</td>
<td>-18</td>
</tr>
</tbody>
</table>
ARMA class

public class com.imsl.stat.ARMA implements Serializable, Cloneable

Computes least-square estimates of parameters for an ARMA model.

Class ARMA computes estimates of parameters for a nonseasonal ARMA model given a sample of observations, \(\{W_t\} \), for \(t = 1, 2, \ldots, n \), where \(n = z.length \).

Two methods of parameter estimation, method of moments and least squares, are provided. The user can choose a method using the setMethod method. If the user wishes to use the least-squares algorithm, the preliminary estimates are the method of moments estimates by default. Otherwise, the user can input initial estimates by using the setInitialEstimates method. The following table lists the appropriate methods for both the method of moments and least-squares algorithm:

<table>
<thead>
<tr>
<th>Least Squares</th>
<th>Both Method of Moment and Least Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>setCenter</td>
<td>setCenter</td>
</tr>
<tr>
<td>setARLags</td>
<td>setMethod</td>
</tr>
<tr>
<td>setMALags</td>
<td>setRelativeError</td>
</tr>
<tr>
<td>setBackcasting</td>
<td>setMaxIterations</td>
</tr>
<tr>
<td>setConvergenceTolerance</td>
<td>setMean</td>
</tr>
<tr>
<td>setInitialEstimates</td>
<td>getMean</td>
</tr>
<tr>
<td>getResidual</td>
<td>getAutocovariance</td>
</tr>
<tr>
<td>getSSResidual</td>
<td>getVariance</td>
</tr>
<tr>
<td>getParamEstimatesCovariance</td>
<td>getConstant</td>
</tr>
<tr>
<td></td>
<td>getAR</td>
</tr>
<tr>
<td></td>
<td>getMA</td>
</tr>
</tbody>
</table>

Method of Moments Estimation

Suppose the time series \(\{Z_t\} \) is generated by an ARMA \((p, q)\) model of the form

\[
\phi(B)Z_t = \theta_0 + \theta(B)A_t
\]

for \(t \in \{0, \pm 1, \pm 2, \ldots\} \)

Let \(\hat{\mu} = zMean \) be the estimate of the mean \(\mu \) of the time series \(\{Z_t\} \), where \(\hat{\mu} \) equals the following:

\[
\hat{\mu} = \begin{cases}
\mu & \text{for } \mu \text{ known} \\
\frac{1}{n} \sum_{t=1}^{n} Z_t & \text{for } \mu \text{ unknown}
\end{cases}
\]

The autocovariance function is estimated by
\[\hat{\sigma}(k) = \frac{1}{n} \sum_{t=1}^{n-k} (Z_t - \hat{\mu}) (Z_{t+k} - \hat{\mu}) \]

for \(k = 0, 1, \ldots, K \), where \(K = p + q \). Note that \(\hat{\sigma}(0) \) is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method of moments estimates of the autoregressive parameters using the extended Yule-Walker equations as follows:

\[\hat{\Sigma} \hat{\phi} = \hat{\sigma} \]

where

\[\hat{\phi} = (\hat{\phi}_1, \ldots, \hat{\phi}_p)^T \]

\[\Sigma_{ij} = \hat{\sigma}(|q+i-j|), \quad i, j = 1, \ldots, p \]

\[\hat{\sigma}_i = \hat{\sigma}(q+i), \quad i = 1, \ldots, p \]

The overall constant \(\theta_0 \) is estimated by the following:

\[\hat{\theta}_0 = \begin{cases} \hat{\mu} & \text{for } p = 0 \\ \hat{\mu} \left(1 - \sum_{i=1}^{p} \hat{\phi}_i\right) & \text{for } p > 0 \end{cases} \]

The moving average parameters are estimated based on a system of nonlinear equations given \(K = p + q + 1 \) autocovariances, \(\sigma(k) \) for \(k = 1, \ldots, K \), and \(p \) autoregressive parameters \(\phi_i \) for \(i = 1, \ldots, p \).

Let \(Z'_t = \phi(B)Z_t \). The autocovariances of the derived moving average process \(Z'_t = \theta(B)A_t \) are estimated by the following relation:

\[\hat{\sigma}'(k) = \begin{cases} \hat{\sigma}(k) & \text{for } p = 0 \\ \sum_{i=0}^{p} \sum_{j=0}^{p} \hat{\phi}_i \hat{\phi}_j (\hat{\sigma}(|k+i-j|)) & \text{for } p \geq 1, \hat{\phi}_0 = -1 \end{cases} \]

The iterative procedure for determining the moving average parameters is based on the relation

\[\sigma(k) = \begin{cases} (1 + \theta_1^2 + \ldots + \theta_q^2) \sigma_A^2 & \text{for } k = 0 \\ (-\theta_k + \theta_1 \theta_{k+1} + \ldots + \theta_{q-k} \theta_q) \sigma_A^2 & \text{for } k \geq 1 \end{cases} \]

where \(\sigma(k) \) denotes the autocovariance function of the original \(Z_t \) process.

Let \(\tau = (\tau_0, \tau_1, \ldots, \tau_q)^T \) and \(f = (f_0, f_1, \ldots, f_q)^T \), where

Chapter 19. Time Series and Forecasting
\[\tau_j = \begin{cases}
\sigma_A & \text{for } j = 0 \\
-\theta_j/\tau_0 & \text{for } j = 1, \ldots, q
\end{cases} \]

and

\[f_j = \sum_{i=0}^{q-j} \tau_j \tau_{i+j} - \hat{\sigma'}(j) \text{ for } j = 0, 1, \ldots, q \]

Then, the value of \(\tau \) at the \((i + 1)\)-th iteration is determined by the following:

\[\tau^{i+1} = \tau^i - (T^i)^{-1} f^i \]

The estimation procedure begins with the initial value

\[\tau^0 = (\sqrt{\hat{\sigma}'(0)}, 0, \ldots, 0)^T \]

and terminates at iteration \(i \) when either \(\| f^i \| \) is less than \(\text{relativeError} \) or \(i \) equals \(\text{iterations} \). The moving average parameter estimates are obtained from the final estimate of \(\tau \) by setting

\[\hat{\theta}_j = -\tau_j/\tau_0 \text{ for } j = 1, \ldots, q \]

The random shock variance is estimated by the following:

\[\hat{\sigma}_A^2 = \begin{cases}
\hat{\sigma}(0) - \sum_{i=1}^{p} \hat{\phi}_i \hat{\sigma}(i) & \text{for } q = 0 \\
\tau_0^2 & \text{for } q \geq 0
\end{cases} \]

See Box and Jenkins (1976, pp. 498-500) for a description of a function that performs similar computations.

Least-squares Estimation

Suppose the time series \(\{Z_t\} \) is generated by a nonseasonal ARMA model of the form,

\[\phi(B)(Z_t - \mu) = \theta(B)A_t \text{ for } t \in \{0, \pm 1, \pm 2, \ldots\} \]

where \(B \) is the backward shift operator, \(\mu \) is the mean of \(Z_t \), and

\[\phi(B) = 1 - \phi_1 B^{(1)} - \phi_2 B^{(2)} - \ldots - \phi_p B^{(p)} \text{ for } p \geq 0 \]

\[\theta(B) = 1 - \theta_1 B^{(1)} - \theta_2 B^{(2)} - \ldots - \theta_q B^{(q)} \text{ for } q \geq 0 \]
with p autoregressive and q moving average parameters. Without loss of generality, the following is assumed:

$$1 \leq l_{\phi}(1) \leq l_{\phi}(2) \leq \ldots \leq l_{\phi}(p)$$

$$1 \leq l_{\theta}(1) \leq l_{\theta}(2) \leq \ldots \leq l_{\theta}(q)$$

so that the nonseasonal ARMA model is of order (p', q'), where $p' = l_{\theta}(p)$ and $q' = l_{\theta}(q)$. Note that the usual hierarchical model assumes the following:

$$l_{\phi}(i) = i, 1 \leq i \leq p$$

$$l_{\theta}(j) = j, 1 \leq j \leq q$$

Consider the sum-of-squares function

$$S_T(\mu, \phi, \theta) = \sum_{t=T+1}^{n} [A_t]^2$$

where

$$[A_t] = E[A_t | (\mu, \phi, \theta, Z)]$$

and T is the backward origin. The random shocks $\{A_t\}$ are assumed to be independent and identically distributed

$$N(0, \sigma_A^2)$$

random variables. Hence, the log-likelihood function is given by

$$l(\mu, \phi, \theta, \sigma_A) = f(\mu, \phi, \theta) - n \ln(\sigma_A) - \frac{S_T(\mu, \phi, \theta)}{2\sigma_A^2}$$

where $f(\mu, \phi, \theta)$ is a function of $\mu, \phi,$ and θ.

For $T = 0$, the log-likelihood function is conditional on the past values of both Z_t and A_t required to initialize the model. The method of selecting these initial values usually introduces transient bias into the model (Box and Jenkins 1976, pp. 210-211). For $T = \infty$, this dependency vanishes, and estimation problem concerns maximization of the unconditional log-likelihood function. Box and Jenkins (1976, p. 213) argue that

$$S_\infty(\mu, \phi, \theta) / (2\sigma_A^2)$$
dominates

\[l (\mu, \phi, \theta, \sigma^2) \]

The parameter estimates that minimize the sum-of-squares function are called least-squares estimates. For large \(n \), the unconditional least-squares estimates are approximately equal to the maximum likelihood-estimates.

In practice, a finite value of \(T \) will enable sufficient approximation of the unconditional sum-of-squares function. The values of \([A_T]\) needed to compute the unconditional sum of squares are computed iteratively with initial values of \(Z_t \) obtained by back forecasting. The residuals (including backcasts), estimate of random shock variance, and covariance matrix of the final parameter estimates also are computed. ARIMA parameters can be computed by using difference with ARMA.

Forecasting

The Box-Jenkins forecasts and their associated probability limits for a nonseasonal ARMA model are computed given a sample of \(n = \text{length} \{Z_t\} \) for \(t = 1, 2, \ldots, n \).

Suppose the time series \(Z_t \) is generated by a nonseasonal ARMA model of the form

\[
\phi(B)Z_t = \theta_0 + \theta(B)A_t,
\]

for \(t \in \{0, \pm 1, \pm 2, \ldots \} \), where \(B \) is the backward shift operator, \(\theta_0 \) is the constant, and

\[
\phi(B) = 1 - \phi_1 B^{l \phi(1)} - \phi_2 B^{l \phi(2)} - \ldots - \phi_p B^{l \phi(p)}
\]

\[
\theta(B) = 1 - \theta_1 B^{l \theta(1)} - \theta_2 B^{l \theta(2)} - \ldots - \theta_q B^{l \theta(q)}
\]

with \(p \) autoregressive and \(q \) moving average parameters. Without loss of generality, the following is assumed:

\[
1 \leq l \phi(1) \leq l \phi(2) \leq \ldots \leq l \phi(p)
\]

\[
1 \leq l \theta(1) \leq l \theta(2) \leq \ldots \leq l \theta(q)
\]

so that the nonseasonal ARMA model is of order \((p', q')\), where \(p' = l \phi(p) \) and \(q' = l \theta(q) \). Note that the usual hierarchical model assumes the following:

\[
l \phi(i) = i, 1 \leq i \leq p
\]

\[
l \theta(j) = j, 1 \leq j \leq q
\]

The Box-Jenkins forecast at origin \(t \) for lead time \(l \) of \(Z_t+1 \) is defined in terms of the difference equation
\[
Z_t(l) = \theta_0 + \phi_1 \left(Z_{t+l-\ell_0(1)} \right) + \ldots + \phi_p \left(Z_{t+l-\ell_p(p)} \right) \\
+ [A_{t+l}] - \theta_1 \left[A_{t+l-\ell_1(1)} \right] - \ldots - \theta_q \left[A_{t+l-\ell_q(q)} \right]
\]

where the following is true:

\[
[Z_{t+k}] = \begin{cases}
Z_{t+k} & \text{for } k = 0, -1, -2, \ldots \\
\hat{Z}_t(k) & \text{for } k = 1, 2, \ldots
\end{cases}
\]

\[
[A_{t+k}] = \begin{cases}
Z_{t+k} - \hat{Z}_{t+k-1} (1) & \text{for } k = 0, -1, -2, \ldots \\
0 & \text{for } k = 1, 2, \ldots
\end{cases}
\]

The 100(1 - \alpha) percent probability limits for \(Z_{t+l}\) are given by

\[
\hat{Z}_t(l) \pm z_{\alpha/2} \left\{ 1 + \sum_{j=1}^{l-1} \psi_j^2 \right\}^{1/2} \sigma_A
\]

where \(z_{\alpha/2}\) is the 100(1 - \alpha/2) percentile of the standard normal distribution \(\sigma_A^2\)

and

\[\{ \psi_j^2 \}\]

are the parameters of the random shock form of the difference equation. Note that the forecasts are computed for lead times \(l = 1, 2, \ldots, L\) at origins \(t = (n - b), (n - b + 1), \ldots, n\), where \(L = \text{nForecast}\) and \(b = \text{backwardOrigin}\).

The Box-Jenkins forecasts minimize the mean-square error

\[
E \left[Z_{t+l} - \hat{Z}_t(l) \right]^2
\]

Also, the forecasts can be easily updated according to the following equation:

\[
\hat{Z}_{t+1}(l) = \hat{Z}_t(l+1) + \psi_l A_{t+1}
\]

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).
Fields

LEAST_SQUARES
static final public int LEAST_SQUARES

Indicates autoregressive and moving average parameters are estimated by a least-squares procedure.

METHOD_OF_MOMENTS
static final public int METHOD_OF_MOMENTS

Indicates autoregressive and moving average parameters are estimated by a method of moments procedure.

Constructor

ARMA
public ARMA(int p, int q, double[] z)

Description
Constructor for ARMA.

Parameters
- p – an int scalar containing the number of autoregressive (AR) parameters
- q – an int scalar containing the number of moving average (MA) parameters
- z – a double array containing the observations

Exception
IllegalArgumentException is thrown if p, q, and z.length are not consistent.

Methods

compute
final public void compute() throws ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException

Description
Computes least-square estimates of parameters for an ARMA model.
Exceptions

MatrixSingularException is thrown if the input matrix is singular.
TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
IncreaseErrRelException is thrown if the bound for the relative error is too small.
NewInitialGuessException is thrown if the iteration has not made good progress.
IllConditionedException is thrown if the problem is ill-conditioned.
TooManyITNException is thrown if the maximum number of iterations is exceeded.
TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.

forecast
final public double[][] forecast(int nForecast)

Description
Computes forecasts and their associated probability limits for an ARMA model.

Parameter
nForecast – an int scalar containing the maximum lead time for forecasts. nForecast must be greater than 0.

Returns
a double matrix of dimensions of nForecast by backwardOrigin + 1 containing the forecasts. The forecasts are for lead times \(l = 1, 2, \ldots, n\text{Forecast} \) at origins \(z.length - backwardOrigin - 1 + j \) where \(j = 1, \ldots, backwardOrigin + 1 \). Returns NULL if the least-square estimates of parameters is not computed.

getAR
public double[] getAR()

Description
Returns the final autoregressive parameter estimates. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
a double array of length \(p \) containing the final autoregressive parameter estimates.

getAutoCovariance
public double[] getAutoCovariance()

Description
Returns the autocovariances of the time series \(z \). Note that the compute method must be invoked before this method. Otherwise, the method throws a NullPointerException exception.
Returns a double array containing the autocovariances of lag k, where \(k = 1, \ldots, p + q + 1 \)

getBackwardOrigin
public int getBackwardOrigin()

Description
Returns the user-specified backward origin

Returns
an int scalar containing the user-specified backward origin

getConstant
public double getConstant()

Description
Returns the constant parameter estimate. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is NaN.

Returns
a double scalar containing the constant parameter estimate

getDeviations
public double[] getDeviations()

Description
Returns the deviations used for calculating the forecast confidence limits.

Returns
A double array of length nForecast containing the deviations for calculating forecast confidence intervals. The confidence level is specified in confidence. By default, confidence = 0.95.

getForecast
public double[] getForecast(int nForecast)

Description
Returns forecasts

Parameter
nForecast – An input int representing the number of requested forecasts beyond the last value in the series.

Returns
A double array containing the nForecast+backwardOrigin forecasts. The first backwardOrigin forecasts are one-step ahead forecasts for the last backwardOrigin values in the series. The next nForecast values in the returned series are forecasts for the next values beyond the series.

getInnovationVariance
public double getInnovationVariance()
Description
Returns the variance of the random shock.

Returns
a double scalar equal to the variance of the random shock.

getMA
public double[] getMA()

Description
Returns the final moving average parameter estimates. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
a double array of length q containing the final moving average parameter estimates

getMaxFunctionEvaluations
public int getMaxFunctionEvaluations()

Description
Returns the maximum number of function evaluations.

Returns
an int, the maximum number of function evaluations allowed in the nonlinear equation solver

getMaxIterations
public int getMaxIterations()

Description
Returns the maximum number of iterations.

Returns
an int, the maximum number of iterations allowed in the nonlinear equation solver

getMean
public double getMean()

Description
Returns an update of the mean of the time series z. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
a double scalar containing an update of the mean of the time series z. If the time series is not centered about its mean, and least-squares algorithm is used, zMean is not used in parameter estimation.

getNumberOfBackcasts
public int getNumberOfBackcasts()
Description

Returns the number of backcasts used to calculate the AR coefficients for the time series z. Note that the `compute` method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns

An int scalar containing the number of backcasts calculated, this value will be less than or equal to the maximum number of backcasts set in the `setBackcasting` method.

getParamEstimatesCovariance

```java
public double[][] getParamEstimatesCovariance()
```

Description

Returns the covariances of parameter estimates. Note that the `compute` method must be invoked first before invoking this method. Otherwise, the method throws a `NullPointerException` exception.

Returns

A double matrix of dimensions of np by np, where np = p + q + 1 if z is centered about zMean, and np = p + q if z is not centered, containing the covariances of parameter estimates. The ordering of variables is zMean, ar, and ma.

getPsiWeights

```java
public double[] getPsiWeights()
```

Description

Returns the psi weights of the infinite order moving average form of the model. Note that the `forecast` method must be invoked first before invoking this method. Otherwise, the method throws a `NullPointerException` exception.

Returns

A double array of length nForecast containing the psi weights of the infinite order moving average form of the model.

getResidual

```java
public double[] getResidual()
```

Description

Returns the residuals. Note that the `compute` method must be invoked first before invoking this method. Otherwise, the method throws a `NullPointerException` exception.

Returns

A double array of length z.length - Math.max(arLags[i]) + length containing the residuals (including backcasts) at the final parameter estimate point in the first z.length - Math.max(arLags[i]) + nb, where nb is the number of values backcast, nb=ARMA.getNumberofBackcasts(). This method is only applicable using least-squares algorithm.

getSSResidual

```java
public double getSSResidual()
```

938 • ARMA

JMSL
Description
Returns the sum of squares of the random shock. Note that the `compute` method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
a double scalar containing the sum of squares of the random shock, \(\text{residual}[0]^2 + \ldots + \text{residual}[\text{na} - 1]^2 \), where `residual` is the array return from the `getResidual` method and `na = residual.length`. This method is only applicable using least-squares algorithm.

getVariance
```java
public double getVariance()
```

Description
Returns the variance of the time series \(z \). Note that the `compute` method must be invoked first before invoking this method. Otherwise, the return value is `NaN`.

Returns
a double scalar containing the variance of the time series \(z \)

setARLags
```java
public void setARLags(int[] arLags)
```

Description
Sets the order of the autoregressive parameters.

Parameter
- `arLags` – an int array of length \(p \) containing the order of the autoregressive parameters. The elements of `arLags` must be greater than or equal to 1. Default: `arLags = [1, 2, \ldots, p]`

setArmaInfo
```java
public void setArmaInfo(double constant, double[] ar, double[] ma, double var)
```

Description
Sets the `ARMA_Info` object to previously determined values.

Parameters
- `constant` – a double scalar equal to the constant term in the ARMA model.
- `ar` – a double array of length \(p \) containing estimates of the autoregressive parameters.
- `ma` – a double array of length \(q \) containing estimates of the moving average parameters.
- `var` – a double scalar equal to the innovation variance

setBackcasting
```java
public void setBackcasting(int maxBackcast, double tolerance)
```

Description
Sets backcasting option.
Parameters

maxBackcast – an int scalar containing the maximum length of backcasting and must be greater than or equal to 0. Default: maxBackcast = 10.

tolerance – a double scalar containing the tolerance level used to determine convergence of the backcast algorithm. Typically, tolerance is set to a fraction of an estimate of the standard deviation of the time series. Default: tolerance = 0.01 * standard deviation of z.

setBackwardOrigin
public void setBackwardOrigin(int backwardOrigin)

Description
Sets the maximum backward origin.

Parameter
backwardOrigin – an int scalar specifying the maximum backward origin. backwardOrigin must be greater than or equal to 0 and less than or equal to z.length - Math.max(maxar, maxma), where maxar = Math.max(arLags[i]), maxma = Math.max(maLags[j]), and forecasts at origins z.length - backwardOrigin through z.length are generated. Default: backwardOrigin = 0.

setCenter
public void setCenter(boolean center)

Description
Sets center option.

Parameter
center – a boolean scalar. If false is specified, the time series is not centered about its mean, zMean. If true is specified, the time series is centered about its mean. Default: center = true.

setConfidence
public void setConfidence(double confidence)

Description
Sets the confidence level for calculating confidence limit deviations returned from getDeviations.

Parameter
confidence – a double scalar specifying the confidence level used in computing forecast confidence intervals. Typical choices for confidence are 0.90, 0.95, and 0.99. confidence must be greater than 0.0 and less than 1.0. Default: confidence = 0.95.

setConvergenceTolerance
public void setConvergenceTolerance(double convergenceTolerance)

Description
Sets the tolerance level used to determine convergence of the nonlinear least-squares algorithm.
Parameter

`convergenceTolerance` – a `double` scalar containing the tolerance level used to determine convergence of the nonlinear least-squares algorithm. `convergenceTolerance` represents the minimum relative decrease in sum of squares between two iterations required to determine convergence. Hence, `convergenceTolerance` must be greater than or equal to 0. The default value is \(\max(10^{-10}, \epsilon^{2/3}) \), where \(\epsilon = 2.2204460492503131 \times 10^{-16} \).

`setInitialEstimates`

`public void setInitialEstimates(double[] ar, double[] ma)`

Description

Sets preliminary estimates for the LEAST_SQUARES estimation method. The values of the autoregressive and moving average parameters submitted are used as initial values for least squares estimation. Otherwise they are initialized to values computed using the method of moments. When the estimation method is set to METHOD_OF_MOMENTS these initial values are not used.

Parameters

- `ar` – a `double` array of length `p` containing preliminary estimates of the autoregressive parameters. `ar` is computed internally if this method is not used. This method is only applicable using least-squares algorithm.
- `ma` – a `double` array of length `q` containing preliminary estimates of the moving average parameters. `ma` is computed internally if this method is not used. This method is only applicable using least-squares algorithm.

`setMALags`

`public void setMALags(int[] maLags)`

Description

Sets the order of the moving average parameters.

Parameter

- `maLags` – an `int` array of length `q` containing the order of the moving average parameters. The elements of `maLags` must be greater than or equal to 1. Default: `maLags = [1, 2, ..., q]`

`setMaxFunctionEvaluations`

`public void setMaxFunctionEvaluations(int evaluations)`

Description

Sets the maximum number of function evaluations.

Parameter

- `evaluations` – an `int` scalar specifying the maximum number of function evaluations allowed in the nonlinear equation solver used in both the method of moments and least-squares algorithms. Default: `evaluations = 400`.

`setMaxIterations`

`public void setMaxIterations(int iterations)`

Chapter 19. Time Series and Forecasting
Description
Sets the maximum number of iterations.

Parameter
iterations – an int scalar specifying the maximum number of iterations allowed in the nonlinear equation solver used in both the method of moments and least-squares algorithms. Default: iterations = 200.

setMean
public void setMean(double zMean)

Description
Sets an initial estimate of the mean of the time series z.

Parameter
zMean – a double scalar containing an initial estimate of the mean of the time series z. If the time series is not centered about its mean, and least-squares algorithm is used, zMean is not used in parameter estimation.

setMethod
public void setMethod(int method)

Description
Sets the estimation method used for estimating the ARMA parameters.

Parameter
method – an int scalar specifying the method to be use. If ARMA.METHOD_OF_MOMENTS is specified, the autoregressive and moving average parameters are estimated by a method of moments procedure. If ARMA.LEAST_SQUARES is specified, the autoregressive and moving average parameters are estimated by a least-squares procedure. Default method = ARMA.METHOD_OF_MOMENTS.

setRelativeError
public void setRelativeError(double relativeError)

Description
Sets the stopping criterion for use in the nonlinear equation solver.

Parameter
relativeError – a double scalar containing the stopping criterion for use in the nonlinear equation solver used in both the method of moments and least-squares algorithms. Default: relativeError = 2.2204460492503131e-14.

Example 1: ARMA
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 1770 through 1869. The method of moments estimates
\(\hat{\theta}_0, \hat{\phi}_1, \hat{\phi}_2, \) and \(\hat{\theta}_1 \)

for the ARMA(2, 1) model

\[
\begin{align*}
z_t &= \theta_0 + \phi_1 z_{t-1} + \phi_2 z_{t-2} - \theta_1 A_{t-1} + A_t
\end{align*}
\]

where the errors \(A_t \) are independently normally distributed with mean zero and variance \(\sigma_A^2 \)

```java
class ARMAEx1 {
    public static void main(String args[]) throws Exception {
        double[] z = {
            100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
            154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
            132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
            6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
            8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
            23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
            67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
            85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
            124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
            54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
            37.3, 73.9
        };

        ARMA arma = new ARMA(2, 1, z);
        arma.compute();

        new PrintMatrix("AR estimates are: ").print(arma.getAR());
        System.out.println();
        new PrintMatrix("MA estimate is: ").print(arma.getMA());
    }
}
```

Output

AR estimates are:

\[
\begin{align*}
0 & \quad 1.244 \\
1 & \quad -0.575
\end{align*}
\]

MA estimate is:

\[
\begin{align*}
0 & \quad -0.124
\end{align*}
\]
Example 2: ARMA

The data for this example are the same as that for Example 1. Preliminary method of moments estimates are computed by default, and the method of least squares is used to find the final estimates. Note that at the end of the output, a warning message appears. In most cases, this warning message can be ignored. There are three general reasons this warning can occur:

1. Convergence is declared using the criterion based on tolerance, but the gradient of the residual sum-of-squares function is nonzero. This occurs in this example. Either the message can be ignored or tolerance can be reduced to allow more iterations and a slightly more accurate solution.

2. Convergence is declared based on the fact that a very small step was taken, but the gradient of the residual sum-of-squares function was nonzero. This message can usually be ignored. Sometimes, however, the algorithm is making very slow progress and is not near a minimum.

3. Convergence is not declared after 100 iterations.

Trying a smaller value for tolerance can help determine what caused the error message.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class ARMAEx2 {

    public static void main(String args[]) throws Exception {
        double[] arInit = {1.24426e0, -5.75149e-1};
        double[] maInit = {-1.24094e-1};
        double[] z = {
            100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
            154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
            132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
            6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
            8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
            23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
            67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
            85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
            124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
            54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
            37.3, 73.9
        };

        ARMA arma = new ARMA(2, 1, z);
        arma.setMethod(ARMA.LEAST_SQUARES);
        arma.setInitialEstimates(arInit, maInit);
        arma.setConvergenceTolerance(0.125);
        arma.setMean(46.976);
        arma.compute();
    }
}
```
new PrintMatrix("AR estimates are: ").print(arma.getAR());
System.out.println();
new PrintMatrix("MA estimate is: ").print(arma.getMA());
}
}

Output

AR estimates are:
 0
 0 1.393
 1 -0.734

MA estimate is:
 0
 0 -0.137

Example 3: Forecasting

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 1770 through 1869. An ARMA(2,1) model is fitted to these data using the Method of Moments. With backward_origin = 3, the forecast method is used to obtain forecasts starting from 1866, 1867, 1868, and 1869, respectively. Note that the values in the first row of the matrix returned by this method are the one-step ahead forecasts for 1867, 1868, ..., 1870. The values in the second row are the two-step ahead forecasts for 1868, 1869, ..., 1871, etc.

Method getForecast is used to compute the one-step ahead forecasts setting backward_origin = 10. This obtains the one-step ahead forecasts for the last 10 observations in the series, i.e. years 1860-1869, plus the next 5 years. The upper 90% confidence limits are computed for these forecasts using the getDeviations method.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class ARMAEx3 {

 public static void main(String args[]) throws Exception {
/* sunspots from 1770 to 1869 */
 double[] z = {
 100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
 154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
 132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
 6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
 8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
 23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5, 67,
 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
 85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5, 124.3,

Chapter 19. Time Series and Forecasting
int backwardOrigin = 3;
double[][] printTable = new double[15][4];
double[][] printEstimates = new double[1][4];
double[] forecasts, deviations;
PrintMatrixFormat pmf = new PrintMatrixFormat();
PrintMatrix pm = new PrintMatrix();
NumberFormat nf = NumberFormat.getNumberInstance();

ARMA arma = new ARMA(2, 1, z);
arma.compute();

System.out.println("ARMA ESTIMATES");
double[] ar = arma.getAR();
double[] ma = arma.getMA();
printEstimates[0][0] = arma.getConstant();
printEstimates[0][1] = ar[0];
printEstimates[0][2] = ar[1];
printEstimates[0][3] = ma[0];
String[] estimateLabels = {"Constant", "AR(1)", "AR(2)", "MA(1)"};

arma.setBackwardOrigin(backwardOrigin);
String[] labels = {"From 1866", "From 1867", "From 1868", "From 1869"};

String[] forecastLabels = {
 "Observed", "Forecast", "Residual", "UCL(90%)"
};

/* FORECASTING - An example of forecasting using the ARMA estimates
 * In this case, forecasts are returned for the last 10 values in the
 * series followed by the forecasts for the next 5 values. */
String[] forecastLabels = {
 "Observed", "Forecast", "Residual", "UCL(90%)"
};

arma.setBackwardOrigin(backwardOrigin);
int n_forecast = 5;
arma.setConfidence(0.9);
deviations = arma.getDeviations();
for (int i = 0; i < backwardOrigin; i++) {
 printTable[i][0] = z[z.length - backwardOrigin + i];
 printTable[i][1] = forecasts[i];
 printTable[i][2] = z[z.length - backwardOrigin + i] - forecasts[i];
 printTable[i][3] = forecasts[i] + deviations[0];
}
for (int i = backwardOrigin; i < n_forecast + backwardOrigin; i++) {
 printTable[i][0] = Double.NaN;
 printTable[i][1] = forecasts[i];
 printTable[i][2] = Double.NaN;
 printTable[i][3] = forecasts[i] + deviations[i - backwardOrigin];
}

pmf.setFirstRowNumber(1869 - backwardOrigin + 1);
pm.setTitle("ARMA ONE-STEP AHEAD FORECASTS");
pm.print(pmf, printTable);

Output

<table>
<thead>
<tr>
<th>Constant</th>
<th>AR(1)</th>
<th>AR(2)</th>
<th>MA(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.54398</td>
<td>1.24426</td>
<td>-0.57515</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORECASTS</th>
<th>From 1866</th>
<th>From 1867</th>
<th>From 1868</th>
<th>From 1869</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.3</td>
<td>14.0</td>
<td>60.6</td>
<td>87.7</td>
</tr>
<tr>
<td>2</td>
<td>27.7</td>
<td>28.8</td>
<td>69.6</td>
<td>82.1</td>
</tr>
<tr>
<td>3</td>
<td>40.1</td>
<td>43.3</td>
<td>67.2</td>
<td>67.3</td>
</tr>
<tr>
<td>4</td>
<td>49.5</td>
<td>52.9</td>
<td>59.2</td>
<td>52.1</td>
</tr>
<tr>
<td>5</td>
<td>54.0</td>
<td>56.4</td>
<td>50.5</td>
<td>41.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARMA ONE-STEP AHEAD FORECASTS</th>
<th>Observed</th>
<th>Forecast</th>
<th>Residual</th>
<th>UCL(90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1860</td>
<td>95.7</td>
<td>103.4</td>
<td>-7.7</td>
<td>131.3</td>
</tr>
<tr>
<td>1861</td>
<td>77.2</td>
<td>79.7</td>
<td>-2.5</td>
<td>107.6</td>
</tr>
<tr>
<td>1862</td>
<td>59.1</td>
<td>56.2</td>
<td>2.9</td>
<td>84.1</td>
</tr>
<tr>
<td>1863</td>
<td>44.0</td>
<td>45.0</td>
<td>-1.0</td>
<td>72.9</td>
</tr>
<tr>
<td>1864</td>
<td>47.0</td>
<td>36.2</td>
<td>10.8</td>
<td>64.0</td>
</tr>
<tr>
<td>1865</td>
<td>30.5</td>
<td>50.1</td>
<td>-19.6</td>
<td>77.9</td>
</tr>
<tr>
<td>1866</td>
<td>16.3</td>
<td>24.0</td>
<td>-7.7</td>
<td>51.9</td>
</tr>
<tr>
<td>1867</td>
<td>7.3</td>
<td>17.3</td>
<td>-10.0</td>
<td>45.2</td>
</tr>
<tr>
<td>1868</td>
<td>37.3</td>
<td>14.0</td>
<td>23.3</td>
<td>41.9</td>
</tr>
<tr>
<td>1869</td>
<td>73.9</td>
<td>60.6</td>
<td>13.3</td>
<td>88.5</td>
</tr>
<tr>
<td>1870</td>
<td>?</td>
<td>87.7</td>
<td>?</td>
<td>115.6</td>
</tr>
<tr>
<td>1871</td>
<td>?</td>
<td>82.1</td>
<td>?</td>
<td>129.4</td>
</tr>
<tr>
<td>1872</td>
<td>?</td>
<td>67.3</td>
<td>?</td>
<td>124.1</td>
</tr>
<tr>
<td>1873</td>
<td>?</td>
<td>52.1</td>
<td>?</td>
<td>111.3</td>
</tr>
<tr>
<td>1874</td>
<td>?</td>
<td>41.6</td>
<td>?</td>
<td>101.0</td>
</tr>
</tbody>
</table>

Chapter 19. Time Series and Forecasting
ARMA.TooManyCallsException class

static public class com.imsl.stat.ARMA.TooManyCallsException extends com.imsl.IMSLException

The number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.

Constructors

ARMA.TooManyCallsException
public ARMA.TooManyCallsException(String message)

Description
Constructs an TooManyCallsException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter
message – the detail message

ARMA.TooManyCallsException
public ARMA.TooManyCallsException(String key, Object[] arguments)

Description
Constructs an TooManyCallsException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters
key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

ARMA.IncreaseErrRelException class

static public class com.imsl.stat.ARMA.IncreaseErrRelException extends com.imsl.IMSLException

The bound for the relative error is too small.
Constructors

ARMA.IncreaseErrRelException

public ARMA.IncreaseErrRelException(String message)

Description
Constructs an IncreaseErrRelException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter
- message – the detail message

ARMA.IncreaseErrRelException

public ARMA.IncreaseErrRelException(String key, Object[] arguments)

Description
Constructs an IncreaseErrRelException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters
- key – the key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string

ARMA.NewInitialGuessException class

static public class com.ims1.stat.ARMA.NewInitialGuessException extends com.ims1.IMSLException

The iteration has not made good progress.

Constructors

ARMA.NewInitialGuessException

public ARMA.NewInitialGuessException(String message)

Description
Constructs an NewInitialGuessException with the specified detail message. A detail message is a String that describes this particular exception.
Parameter

message – the detail message

ARMA.NewInitialGuessException

public ARMA.NewInitialGuessException(String key, Object[] arguments)

Description

Constructs an NewInitialGuessException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

 key – the key of the error message in the resource bundle
 arguments – an array containing arguments used within the error message string

ARMA.MatrixSingularException class

static public class com.imsl.stat.ARMA.MatrixSingularException extends javax.com.imsl.IMSLException

The input matrix is singular.

Constructors

ARMA.MatrixSingularException

public ARMA.MatrixSingularException(String message)

Description

Constructs an MatrixSingularException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.MatrixSingularException

public ARMA.MatrixSingularException(String key, Object[] arguments)

Description

Constructs an MatrixSingularException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.
Parameters
key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

ARMA.TooManyITNException class

static public class com.imsl.stat.ARMA.TooManyITNException extends com.imsl.IMSLException

Maximum number of iterations exceeded.

Constructors

ARMA.TooManyITNException
public ARMA.TooManyITNException(String message)

Description
Constructs an TooManyITNException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter
message – the detail message

ARMA.TooManyITNException
public ARMA.TooManyITNException(String key, Object[] arguments)

Description
Constructs an TooManyITNException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters
key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

ARMA.TooManyFcnEvalException class

static public class com.imsl.stat.ARMA.TooManyFcnEvalException extends com.imsl.IMSLException
Maximum number of function evaluations exceeded.

Constructors

ARMA.TooManyFcnEvalException
public ARMA.TooManyFcnEvalException(String message)

Description
Constructs an TooManyFcnEvalException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.TooManyFcnEvalException
public ARMA.TooManyFcnEvalException(String key, Object[] arguments)

Description
Constructs an TooManyFcnEvalException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

ARMA.TooManyJacobianEvalException class

static public class com.imsl.stat.ARMA.TooManyJacobianEvalException extends com.imsl.IMSLException

Maximum number of Jacobian evaluations exceeded.

Constructors

ARMA.TooManyJacobianEvalException
public ARMA.TooManyJacobianEvalException(String message)

Description
Constructs an TooManyJacobianEvalException with the specified detail message. A detail message is a String that describes this particular exception.
Parameter
 message – the detail message

ARMA.TooManyJacobianEvalException

public ARMA.TooManyJacobianEvalException(String key, Object[] arguments)

Description

Constructs an TooManyJacobianEvalException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

 key – the key of the error message in the resource bundle
 arguments – an array containing arguments used within the error message string

ARMA.IllConditionedException class

static public class com.imsl.stat.ARMA.IllConditionedException extends com.imsl.IMSLException

The problem is ill-conditioned.

Constructors

ARMA.IllConditionedException

public ARMA.IllConditionedException(String message)

Description

Constructs an IllConditionedException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter

 message – the detail message

ARMA.IllConditionedException

public ARMA.IllConditionedException(String key, Object[] arguments)

Description

Constructs an IllConditionedException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.
Parameters

key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

ARMAEstimateMissing class

public class com.imsl.stat.ARMAEstimateMissing implements Serializable

Estimates missing values in a time series collected with equal spacing. Missing values can be replaced by these estimates prior to fitting a time series using the ARMA class.

Traditional time series analysis as described by Box, Jenkins and Reinsel (1994) requires the observations be made at equidistant time points \(t_0, t_1, \ldots, t_n \) where \(t_i = t_0 + i \). When observations are missing, ARMA requires that they be replaced with suitable estimates. Class ARMAEstimateMissing offers 4 methods for estimating missing values: MEDIAN, CUBIC SPLINE, AR_1, and AR_P.

Method MEDIAN estimates the missing observations in a gap by the median of the last four time series values before and the first four values after the gap. If not enough values are available before or after the gap then the number is reduced accordingly. This method is very fast and simple, but its use is limited to stationary ergodic series without outliers and level shifts.

Method CUBIC SPLINE uses a cubic spline interpolation method to estimate missing values. Here the interpolation is again done over the last four time series values before and the first four values after the gap. The missing values are estimated by the resulting interpolant. This method gives smooth transitions across missing values.

Method AR_1 assumes that the time series before the gap can be approximated using an AR(1) process. If the last observation prior to the gap is made at time point \(t_m \), then this method uses values at \(t_0, t_1, \ldots, t_m \) to compute the one-step-ahead forecast at origin \(t_m \). This value is used to estimate the missing value at time point \(t_m + 1 \). If the value at \(t_m + 2 \) is also missing then the values at time points \(t_0, t_1, \ldots, t_m + 1 \) are used to recompute the AR(1) model, and then estimate the value at \(t_m + 2 \) and so on. The coefficient \(\phi_1 \) in the AR(1) model is computed internally by the method of least squares from class ARMA.

Finally, method AR_P uses an AR(p) model to estimate missing values using a one-step-ahead forecast similar to method AR_1. First, class ARAutoUnivariate, is applied to the time series values just prior to the missing values to determine the optimum \(p \) from the set \(\{0, 1, \ldots, \text{maxlag}\} \) of possible values and to compute the parameters \(\phi_1, \ldots, \phi_p \) of the resulting AR(p) model. The parameters are estimated by the least squares method based on Householder transformations as described in Kitagawa and Akaike (1978). Denoting the mean of the series \(y_0, y_1, \ldots, y_m \) by \(\mu \) the one-step-ahead forecast at origin \(t_m \), \(\hat{y}_m(1) \), can be computed by the formula:

\[
\hat{y}_m(1) = \mu (1 - \sum_{j=1}^{p} \phi_j) + \sum_{j=1}^{p} \phi_j y_{m+1-j}.
\]

This value is used as an estimate for the missing value at \(t_{m+1} \). The procedure starting with ARAutoUnivariate is then repeated for every further missing value in the gap. All four estimation methods treat gaps of missing values in increasing time order.
Fields

AR.1
static final public int AR.1

Indicates that missing values should be estimated using an autoregressive time series with 1 lag.

AR_P
static final public int AR_P

Indicates that missing values should be estimated using an autoregressive time series with a maximum lag of maxLag. By default maxLag=10, but this can be changed using the setMaxLag method.

CUBIC_SPLINE
static final public int CUBIC_SPLINE

Indicates that missing values should be estimated using cubic spline interpolation.

LEAST_SQUARES
static final public int LEAST_SQUARES

Estimate autoregressive coefficients using least squares.

MAX_LIKELIHOOD
static final public int MAX_LIKELIHOOD

Estimate autoregressive coefficients using maximum likelihood.

MEDIAN
static final public int MEDIAN

Indicates that missing values should be estimated using the median of the values just before and after the missing value gap.

METHOD_OF_MOMENTS
static final public int METHOD_OF_MOMENTS

Estimate autoregressive coefficients using method of moments.

Constructor

ARMAEstimateMissing
public ARMAEstimateMissing(int[] tpoints, double[] z)

Description
Constructor for ARMAEstimateMissing.
Parameters

tpoints – an int array containing the times at which the series values were observed. The values
must be strictly increasing. Times for missing values are identified as non-incremental gaps in this
series. A gap of missing values in z is assumed when the difference between two consecutive
values is greater than 1, i.e. $t_{i+1} - t_i > 1$. The difference is the number of missing values in the gap.
The series can have multiple gaps with missing values, but any one gap can have no more than 3
missing values.

z – a double array containing the values for the time series observed at the times given in the
vector $tpoints$.

Methods

getc ompleteTimeSeries

public double[] getCompleteTimeSeries() throws ARMA.MatrixSingularException,
ARAMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARAMA.NewInitialGuessException, ARMA.IllConditionedException,
ARAMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARAMA.Too Many JacobianEvalException,
ARAMAutoUnivariate.TriangularMatrixSingularException,
ARMAxLikelihood.NonStationaryException,
ARMAxLikelihood.NonInvertibleException

Description

Returns a double precision vector of length $tpoints[tpoints.length-1]-tpoints[0]+1$
containing the observed values in the time series z plus estimates for missing values in gaps identified in
tpoints.

Returns

A double array of length $tpoints[tpoints.length-1]-tpoints[0]+1$ containing the observed
values in the time series z plus estimates for missing values in gaps identified in $tpoints$.

Exceptions

ARAMAutoUnivariate.TriangularMatrixSingularException is thrown if the input matrix to
ARAMAutoUnivariate is singular. This can only occur with estimation method AR_P.
ARAMA.MatrixSingularException is thrown if the input matrix is singular.
ARAMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the
maximum number of iterations times the number of moving average (MA) parameters + 1.
ARAMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARAMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARAMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARAMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARAMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is
exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
ARMA.MaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
ARMA.MaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
ARMA.MaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertable. In this case, ARMA.MaxLikelihood terminates and does not compute the time series estimates.

getCompleteTimes
public int[] getCompleteTimes()

Description
Returns an int array of all time points, including values for times with missing values in z.

Returns
An int array of all times from tpoints[0]=1 to tpoints.length+nMissing. Where nMissing is the number of values removed from the original time series, nMissing = getNumberMissing().

getConvergenceTolerance
public double getConvergenceTolerance()

Description
Returns the current value of convergence tolerance used by the AR_1 and AR_P estimation methods.

Returns
a double scalar value equal to the convergence tolerance. By default the convergence tolerance is 1.0e-09.

gEstimationMethod
public int getEstimationMethod()

Description
Returns the method used for estimating the final autoregressive coefficients for missing value estimation methods AR_1 and AR_P.

Returns
an int representing the estimation method used for estimating the autoregressive coefficients. 0 implies METHOD_OF_MOMENTS, 1 implies LEAST_SQUARES, 2 implies MAX_LIKELIHOOD.

getMaxIterations
public int getMaxIterations()

Description
Returns the maximum number of estimation iterations used by missing value estimation methods AR_1 and AR_P.
Returns
An int scalar equal to the maximum number of iterations for the maximum likelihood missing value estimation method. If this limit is exceeded during the compute method, ARMAEstimateMissing stops execution and issues an ARMAMaxLikelihood.IterationLimitExceededException.

getMaxlag
public int getMaxlag()

Description
Returns the current value of autoregressive lags used in the AR_P estimation method.

Returns
An int scalar value equal to the maximum number of autoregressive lags used with the AR_P missing value estimation method.

getMean
public double getMean()

Description
Returns the mean value used to center the series.

Returns
A double scalar used to center the series.

getMissingTimes
public int[] getMissingTimes()

Description
Returns an int array of the times with missing values.

Returns
An int array containing the times at which missing values were estimated. If there are no missing values a null array is returned.

getMissingValueMethod
public int getMissingValueMethod()

Description
Returns the current missing value estimation method.

Returns
An int representing the estimation method used for estimating the missing values in the time series. 0 implies MEDIAN, 1 implies CUBIC_SPLINE, 2 implies AR_1 and 3 implies AR_P.

getNumberMissing
public int getNumberMissing()

Description
Returns the number of missing values in the original series.
Returns
An int scalar value containing the number of missing values in the time series.

getRelativeError
public double getRelativeError()

Description
Returns the relative error used for the METHOD_OF_MOMENTS and LEAST_SQUARES estimation methods.

Returns
da double scalar containing the stopping criterion for use in the nonlinear equation solver used in both the method of moments and least-squares algorithm.

setConvergenceTolerance
public void setConvergenceTolerance(double convergenceTolerance)

Description
Sets the convergence tolerance used by the AR_1 and AR_P missing value estimation methods.

Parameter
cconvergenceTolerance – A double scalar value. Default: convergenceTolerance = 1.0e-09

setEstimationMethod
public void setEstimationMethod(int arEstimationMethod)

Description
Sets the method used for estimating the autoregressive coefficients for missing value estimation methods AR_1 and AR_P.

Parameter
arEstimationMethod – An int scalar specifying the method used to estimate the autoregressive coefficients. Valid methods are METHOD_OF_MOMENTS, LEAST_SQUARES, and MAX_LIKELIHOOD. By default, arEstimationMethod=LEAST_SQUARES.

setMaxIterations
public void setMaxIterations(int maxIterations)

Description
Sets the maximum number of estimation iterations for missing value estimation methods AR_1 and AR_P. If this limit is exceeded ARMAEstimateMissing stops execution during the compute method and issues an IterationLimitExceeded Exception.

Parameter
maxIterations – An int specifying the maximum number of iterations for the maximum likelihood estimation. By default, maxIterations=200.

setMaxlag
public void setMaxlag(int maxlag)
Description
Sets the maximum number of autoregressive lags when method AR_P is selected as the missing value estimation method.

Parameter
maxlag – An int scalar value equal to the maximum number of autoregressive lags. maxlag must be greater than z.length-5. By default maxlag=10.

setMean
public void setMean(double mean)

Description
Sets the mean value used to center the series.

Parameter
mean – a double scalar used to center the series. By default the median of the series is used for centering.

setMissingValueMethod
public void setMissingValueMethod(int method)

Description
Sets the current missing value estimation method to MEDIAN, CUBIC_SPLINE, AR_1, or AR_P.

Parameter
method – An int scalar. By default method=AR_1.

setRelativeError
public void setRelativeError(double relativeError)

Description
Sets the relative error used for the METHOD_OF_MOMENTS and LEAST_SQUARES estimation methods.

Parameter
relativeError – a double scalar containing the stopping criterion for use in the nonlinear equation solver used in both the method of moments and least-squares algorithm. Default: relativeError = 2.22045e-14

Example: ARMAEstimateMissing
The data in this example was artificially generated using an autoregressive time series with a lag of 1, i.e., AR(1). The constant term in the model was set to zero and -0.7 was used for the autoregressive coefficient. The data were generated from a random gaussian distribution with a mean of zero and an innovation variance of 0.51. This series is stationary with Var(Y) = 1.0.

Two hundred values were generated. For this example, six values at times t=130, t=140, t=141, t=160, t=175, and t=176 are removed and designated as missing. ARMAEstimateMissing is used to estimate these missing values using each of its estimation methods. The missing value estimates are compared to the actual values generated in the full series.
As expected, the AR(1) method produced the best missing value estimates in this example, closely followed by the AR(p) method.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;
import com.imsl.*;

public class ARMAEstimateMissingEx1 {

    public static void main(String args[]) throws Exception {
        int i, j, k;
        int maxlag = 20, n_obs = 194, n_miss = 6;
        int[] missing_index, tpointsMiss, tpointsComplete;
        double missVar = 0;
        double sum = 0;
        double variance = 0;
        double[] y, yMiss;
        double[] yComplete = {
            1.30540, -1.37166, 1.47905, -0.91059, 1.36191, -2.16966, 3.11254,
            -1.99536, 2.29740, -1.45768, 1.36115, -0.65973, 1.13332, -0.86285,
            1.23848, -0.57301, 0.20195, 0.06981, 0.28454, 0.19745,
            -0.16490, -1.05019, 0.78652, -0.40447, 0.71514, -0.90003, 1.83604,
            -2.51205, 1.00526, -1.01683, 1.70691, -1.86564, 1.84912, -1.33120,
            2.35105, -0.45579, -0.57773, -0.55226, 0.88371, 0.23138, 0.59984,
            0.31971, 0.59849, 0.41873, -0.46955, 0.53003, -1.17203, 1.52937,
            -0.48017, -0.93830, 1.00651, -1.41493, -0.42188, -0.67010, 0.58079,
            -0.96193, 0.22763, -0.92214, 1.35697, -1.47008, 2.47841, -1.50522,
            0.41650, -0.21669, -0.90297, 0.00274, -1.04863, 0.66192, -0.39143,
            0.40779, -0.68174, -0.47000, -0.84469, 0.30735, -0.68412, 0.25888,
            -1.08642, 0.52928, 0.72168, -0.18199, -0.09499, 0.67610, 0.14636,
            0.46846, -0.13989, 0.50856, -0.22268, 0.92756, 0.73069, 0.78998,
            -1.01650, 1.25637, -2.36179, 1.99616, -1.54326, 1.38220, 0.19674,
            -0.85241, 0.40463, 0.39523, -0.60721, 0.25041, -1.24967, 0.26727,
            1.40042, -0.66963, 1.26049, -0.92074, 0.05909, -0.61926, 1.41550,
            0.25537, -0.13240, -0.07543, 0.10413, 1.42445, -1.37379, 0.44382,
            -1.57210, 2.04702, -2.22450, 1.27698, 0.01073, -0.88459, 0.88194,
            -0.25019, 0.70225, -0.41855, 0.93850, 0.36007, -0.46043, 0.18645,
            0.06337, 0.29414, -0.20054, 0.83078, -1.62530, 2.64925, -1.25355,
            1.59094, -1.00684, 1.03196, -1.58045, 2.04295, -2.38264, 1.65095,
            -0.33273, -1.29092, 0.14020, -0.11434, 0.04392, 0.05293, -0.42277,
            0.59143, -0.03347, -0.58457, 0.87030, 0.19985, -0.73500, 0.73640,
            0.29531, 0.22325, -0.60035, 1.42253, -1.11278, 1.30468, -0.41923,
            -0.38019, 0.50937, 0.23051, 0.46496, 0.02459, -0.68478, 0.25821,
            1.17655, -2.26629, 1.41173, -0.68331
        };
        ARMAEstimateMissing estMiss;
        ARAutoUnivariate arAuto;
        String title = " ";
        String[] colLabels = {"TIME", "ACTUAL", "PREDICTED", "DIFFERENCE"};
        PrintMatrixFormat pmf = new PrintMatrixFormat();
        PrintMatrix pm = new PrintMatrix();
```
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMinimumFractionDigits(3);
nf.setMaximumFractionDigits(3);

pmf.setNumberFormat(nf);

pmf.setColumnLabels(colLabels);

pmf.setFirstRowNumber(1);

pm.setColumnSpacing(3);

/* setup missing data arrays */
tpointsComplete = new int[200];
tpointsMiss = new int[194];
yMiss = new double[194];

for (i = 1; i <= 200; i++) {

tpointsComplete[i - 1] = i;
}

tpointsMiss[0] = tpointsComplete[0];
yMiss[0] = yComplete[0];
k = 0;

for (i = 1; i < 200; i++) {

/* Generate series with missing values */
 if (i != 129 && i != 139 && i != 140 && i != 159 &&
 i != 174 && i != 175) {
 k += 1;
 tpointsMiss[k] = tpointsComplete[i];
 yMiss[k] = yComplete[i];
 }
}

n_obs = k + 1;

for (j = 0; j <= 3; j++) {
 estMiss = new ARMAEstimateMissing(tpointsMiss, yMiss);
 switch (j) {
 case ARMAEstimateMissing.MEDIAN:
 estMiss.setMissingValueMethod(ARMAEstimateMissing.MEDIAN);
 title = "MEDIAN ESTIMATES";
 break;
 case ARMAEstimateMissing.CUBIC_SPLINE:
 estMiss.setMissingValueMethod(ARMAEstimateMissing.CUBIC_SPLINE);
 title = "CUBIC SPLINE ESTIMATES";
 break;
 case ARMAEstimateMissing.AR_1:
 estMiss.setMissingValueMethod(ARMAEstimateMissing.AR_1);
 title = "AR(1) ESTIMATES";
 break;
 case ARMAEstimateMissing.AR_P:
 estMiss.setMaxlag(maxlag);
 estMiss.setMissingValueMethod(ARMAEstimateMissing.AR_P);
 estMiss.setEstimationMethod(ARMAEstimateMissing.METHOD_OF_MOMENTS);
 title = "AR(P) ESTIMATES";
 break;
 }
}

WarningObject currentWarningLevel = Warning.getWarning();

/* For some data it is useful to turn off warnings produced by
the ARMA estimation process. This is only necessary for

/* the AR_1 and AR_P estimation methods */
Warning.setWarning(null); // turn off warnings
y = estMiss.getActiveTimeSeries(); // turn on warnings
missing_index = estMiss.getActiveMissingTimes();
n_miss = y.length - yMiss.length;
double[][] printOutput = new double[n_miss][4];
sum = 0;
for (i = 0; i < n_miss; i++) {
 k = missing_index[i];
 printOutput[i][0] = tpointsComplete[k];
 printOutput[i][1] = yComplete[k];
 printOutput[i][2] = y[k];
 printOutput[i][3] = Math.abs(yComplete[k] - y[k]);
 sum += Math.pow(printOutput[i][3], 2);
}
arAuto = new ARAutoUnivariate(maxlag, y);
arAuto.compute();
variance = arAuto.getInnovationVariance();
pm.setTitle(title);
pm.print(pmf, printOutput);
missVar = sum / n_miss;
System.out.println("Innovation Variance Analysis - Estimate (percent of actual)\n" + Math.round(100.0 * missVar / 0.51) + ";
Entire Series: " + variance + Math.round(100.0 * variance / 0.51) + ");
System.out.println("***");
System.out.println("\n");
}
}

Output

<table>
<thead>
<tr>
<th>TIME</th>
<th>ACTUAL</th>
<th>PREDICTED</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 130.000</td>
<td>-0.921</td>
<td>0.261</td>
<td>1.182</td>
</tr>
<tr>
<td>2 140.000</td>
<td>0.444</td>
<td>0.057</td>
<td>0.386</td>
</tr>
<tr>
<td>3 141.000</td>
<td>-1.572</td>
<td>0.057</td>
<td>1.630</td>
</tr>
<tr>
<td>4 160.000</td>
<td>2.649</td>
<td>0.047</td>
<td>2.602</td>
</tr>
<tr>
<td>5 175.000</td>
<td>-0.423</td>
<td>0.048</td>
<td>0.471</td>
</tr>
<tr>
<td>6 176.000</td>
<td>0.591</td>
<td>0.048</td>
<td>0.543</td>
</tr>
</tbody>
</table>

Innovation Variance Analysis - Estimate (percent of actual)
Missing Values(only): 1.9152593761916663 (376%)
Entire Series: 0.5350398415037567 (105%)

CUBIC SPLINE ESTIMATES

<table>
<thead>
<tr>
<th>TIME</th>
<th>ACTUAL</th>
<th>PREDICTED</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 130.000</td>
<td>-0.921</td>
<td>1.541</td>
<td>2.462</td>
</tr>
</tbody>
</table>
Innovation Variance Analysis - Estimate (percent of actual)
Missing Values(only): 9.193464593399945 (1803%)
Entire Series: 0.7591379904132599 (149%)

<table>
<thead>
<tr>
<th>TIME</th>
<th>ACTUAL</th>
<th>PREDICTED</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.921</td>
<td>-0.930</td>
<td>0.009</td>
</tr>
<tr>
<td>2</td>
<td>0.444</td>
<td>1.028</td>
<td>0.584</td>
</tr>
<tr>
<td>3</td>
<td>-1.572</td>
<td>-0.745</td>
<td>0.827</td>
</tr>
<tr>
<td>4</td>
<td>2.649</td>
<td>1.229</td>
<td>1.420</td>
</tr>
<tr>
<td>5</td>
<td>-0.423</td>
<td>0.010</td>
<td>0.433</td>
</tr>
<tr>
<td>6</td>
<td>0.591</td>
<td>0.037</td>
<td>0.555</td>
</tr>
</tbody>
</table>

Innovation Variance Analysis - Estimate (percent of actual)
Missing Values(only): 0.6091513658345841 (119%)
Entire Series: 0.501310670652865 (98%)

ARMAMaxLikelihood class

public class com.imsl.stat.ARMAMaxLikelihood implements Serializable

Computes maximum likelihood estimates of parameters for an ARMA model with \(p \) and \(q \) autoregressive and moving average terms respectively.

ARMA\(\text{MaxLikelihood} \) computes estimates of parameters for a nonseasonal ARMA model given a sample of observations, \(W_t \), for \(t = 1, 2, \ldots, n \), where \(n = z.length \). The class is derived from the
maximum likelihood estimation algorithm described by Akaike, Kitagawa, Arahata and Tada (1979), and the XSARMA routine published in the TIMSAC-78 Library.

The stationary time series W_t with mean μ can be represented by the nonseasonal autoregressive moving average (ARMA) model by the following relationship:

$$\phi(B)(W_t - \mu) = \theta(B)a_t$$

where

$$t \in \mathbb{Z}, \quad \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\},$$

B is the backward shift operator defined by $B^k W_t = W_{t-k}$,

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \ldots - \phi_p B^p, \quad p \geq 0.$$

and

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \ldots - \theta_q B^q, \quad q \geq 0.$$

The ARMAMaxLikelihood class estimates the AR coefficients $\phi_1, \phi_2, \ldots, \phi_p$ and the MA coefficients $\theta_1, \theta_2, \ldots, \theta_q$ using maximum likelihood estimation.

ARMAMaxLikelihood checks the initial estimates for both the autoregressive and moving average coefficients to ensure that they represent a stationary and invertible series respectively.

If $\phi_1, \phi_2, \ldots, \phi_p$ are the initial estimates for a stationary series then all (complex) roots of the following polynomial will fall outside the unit circle:

$$1 - \phi_1 z - \phi_2 z^2 - \ldots - \phi_p z^p.$$

If $\theta_1, \theta_2, \ldots, \theta_q$ are initial estimates for an invertible series then all (complex) roots of the polynomial

$$1 - \theta_1 z - \theta_2 z^2 - \ldots - \theta_q z^q$$

will fall outside the unit circle.

By default, the order of the lags for the autoregressive terms is 1, 2, ..., p and 1, 2, ..., q for the moving average terms. However, this cannot be overridden.

Initial values for the AR and MA coefficients can be supplied via the setAR and setMA methods. Otherwise, initial estimates are computed internally by the method of moments. The class computes the roots of the associated polynomials. If the AR estimates represent a nonstationary series, ARMAMaxLikelihood issues a warning message and replaces the initial AR estimates with initial values that are stationary. If the MA estimates represent a noninvertible series, a terminal error is issued and new initial values must be sought.

ARMAMaxLikelihood also validates the final estimates of the AR coefficients to ensure that they too represent a stationary series. This is done to guard against the possibility that the internal log-likelihood
optimizer converged to a nonstationary solution. If nonstationary estimates are encountered, a fatal error message is issued.

For model selection, the ARMA model with the minimum value for AIC might be preferred, \(\text{AIC} = -2\ln(L) + 2(p + q) \), where \(L \) is the value of the maximum likelihood function evaluated at the parameter estimates.

ARMAMaxLikelihood can also handle white noise processes, i.e. \(\text{ARMA}(0,0) \) processes.

Constructor

ARMAMaxLikelihood

```java
public ARMAMaxLikelihood(int p, int q, double[] z) throws
    ARMA.MatrixSingularException, ARMA.TooManyCallsException,
    ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException,
    ARMA.IllConditionedException, ARMA.TooManyITNException,
    ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException
```

Description

Constructor for ARMAMaxLikelihood.

Parameters

- `p` – An int scalar equal to the number of autoregressive (AR) parameters.
- `q` – An int scalar equal to the number of moving average (MA) parameters.
- `z` – A double array containing the time series.

Exceptions

- `ARMA.MatrixSingularException` is thrown if the input matrix is singular.
- `ARMA.TooManyCallsException` is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
- `ARMA.IncreaseErrRelException` is thrown if the bound for the relative error is too small.
- `ARMA.NewInitialGuessException` is thrown if the iteration has not made good progress.
- `ARMA.IllConditionedException` is thrown if the problem is ill-conditioned.
- `ARMA.TooManyITNException` is thrown if the maximum number of iterations is exceeded.
- `ARMA.TooManyFcnEvalException` is thrown if the maximum number of function evaluations exceeded.
- `ARMA.TooManyJacobianEvalException` is thrown if the maximum number of Jacobian evaluations is exceeded.
Methods

compute

public void compute() throws ARMAMaxLikelihood.NonStationaryException, ARMAMaxLikelihood.NonInvertibleException

Description
Computes the exact maximum likelihood estimates for the autoregressive and moving average parameters of an ARMA time series

Exceptions
- ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
- ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.

forecast

public double[][] forecast(int nForecast) throws ARMAMaxLikelihood.NonStationaryException, ARMAMaxLikelihood.NonInvertibleException, ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException

Description
Returns forecasts for lead times \(l = 1, 2, \ldots, nForecast \) at origins \(z.length - \text{backwardOrigin} - 1 + j \) where \(j = 1, \ldots, \text{backwardOrigin} + 1 \).

Parameter
- nForecast – An int scalar equal to the number of requested forecasts

Returns
a double matrix of dimensions of nForecast by backwardOrigin + 1 containing the forecasts. The forecasts are for lead times \(l = 1, 2, \ldots, nForecast \) at origins \(z.length - \text{backwardOrigin} - 1 + j \) where \(j = 1, \ldots, \text{backwardOrigin} + 1 \).

Exceptions
- ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
- ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
- ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
- ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.

getAR

```java
public double[] getAR()
```

Description

Returns the final autoregressive parameter estimates.

Returns

A double array of length p containing the final autoregressive parameter estimates.

getBackwardOrigin

```java
public int getBackwardOrigin()
```

Description

Returns the current value for forecasting backward origin.

Returns

A double scalar value representing the current value of backwardOrigin.

getConfidence

```java
public double getConfidence()
```

Description

Returns the confidence level used for calculating deviations in getDeviations.

Returns

A double scalar value of confidence used for computing the (1-confidence)*100% forecast confidence interval.

getConstant

```java
public double getConstant()
```

Description

Returns the estimate for the constant parameter in the ARMA series.
Returns
A double scalar equal to the estimate for the constant parameter in the ARMA series.

getDeviations
definition
getDeviations()

Description
Returns the deviations from each forecast used for calculating the forecast confidence limits.

Returns
A double array of length backwardOrigin+nForecast containing the deviations for calculating forecast confidence intervals. The confidence level is specified in confidence. By default, confidence= 0.95.

getForecast
getForecast(int nForecast) throws ARMAMaxLikelihood.NonStationaryException, ARMAMaxLikelihood.NonInvertibleException, ARMA.MatrixSingularException, ARMA.TooManyCallsException, ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException, ARMA.IllConditionedException, ARMA.TooManyITNException, ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException

Description
Returns forecasts

Parameter
nForecast – An input int representing the number of requested forecasts beyond the last value in the series.

Returns
A double array containing the nForecast+backwardOrigin forecasts. The first backwardOrigin forecasts are one-step ahead forecasts for the last backwardOrigin values in the series. The next nForecast values in the returned series are forecasts for the next values beyond the series.

Exceptions
ARMAMaxLikelihood.NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
ARMAMaxLikelihood.NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARM.A.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.

Chapter 19. Time Series and Forecasting
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.

getGradientTolerance
public double getGradientTolerance()

Description
Returns the gradient tolerance for the convergence algorithm.
Returns
A double scalar specifying the value used for the gradient tolerance.

getGradients
public double[] getGradients()

Description
Returns the gradients for the final parameter estimates.
Returns
A double array of length p+q containing the gradients of the final parameter estimates.

getInnovationVariance
public double getInnovationVariance()

Description
Returns the estimated innovation variance of this series.
Returns
A double scalar equal to the estimated innovation variance for the time series.

g LIelihood
public double getLikelihood() throws ARMA.MaxLikelihood.NonStationaryException,
ARMA.MaxLikelihood.NonInvertibleException

Description
Returns the final estimate for \(-2 \ln(L)\), where \(L\) is equal to the likelihood function evaluated using the final parameter estimates.

Returns
A double scalar equal to the log likelihood function, \(-2 \ln(L)\).
Exceptions
NonStationaryException is thrown if the final maximum likelihood estimates for the time series are nonstationary.
NonInvertibleException is thrown if the final maximum likelihood estimates for the time series are noninvertible.
InitialMAException is thrown if the initial values provided for the moving average terms using setMA are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.

getMA
public double[] getMA()

Description
Returns the final moving average parameter estimates.

Returns
A double array of length q containing the final moving average parameter estimates.

getMaxIterations
public int getMaxIterations()

Description
Returns the maximum number of iterations.

Returns
An int scalar containing the maximum number of iterations allowed in the nonlinear equation solver used in both the method of moments and least-squares algorithms. Default: maxIterations = 300.

getMean
public double getMean()

Description
Returns the mean used to center the time series.

Returns
A double scalar specifying the value to used for centering the time series.

getP
public int getP()

Description
Returns the number of autoregressive terms in the ARMA model

Returns
An int scalar value of p, the number of autoregressive terms in the ARMA model.

getPsiWeights
public double[] getPsiWeights()
Description
Returns the psi weights used for calculating forecasts from the infinite order moving average form of the ARMA model.

Returns
A double array of length nForecast containing the psi weights of the infinite order moving average form of the model.

getQ
public int getQ()

Description
Returns the number of moving average terms in the ARMA model

Returns
An int scalar value of q, the number of moving average terms in the ARMA model.

getResiduals
public double[] getResiduals()

Description
Returns the current values of the vector of residuals.

Returns
A double array of length backwardOrigin containing the residuals for the last backwardOrigin values in the time series. The compute and either the forecast or getForecast methods must be called before calling this method.

g getTimeSeries
public double[] getTimeSeries()

Description
Returns the time series used to construct ARMAmaxLikelihood.

Returns
A double containing the values of the time series passed to the class constructor.

g getTolerance
public double getTolerance()

Description
Returns the tolerance for the convergence algorithm.

Returns
A double scalar containing the value of the tolerance used during maximum likelihood estimation.

isInvertible
public boolean isInvertible(double[] ma)
Description
Tests whether the coefficients in `ma` are invertible

Parameter

`ma` – A double array containing the coefficients for the moving average terms in an ARMA model.

Returns

A boolean scalar equal to true if the coefficients in `ma` are invertible and false otherwise.

isStationary

`public boolean isStationary(double[] ar)`

Description

Tests whether the coefficients in `ar` are stationary.

Parameter

`ar` – A double array containing the coefficients for the autoregressive terms in an ARMA model

Returns

A boolean scalar equal to true if the coefficients in `ar` are stationary and false otherwise.

setAR

`public void setAR(double[] ar)`

Description

Sets the initial values for the autoregressive terms to the `p` values in `ar`.

Parameter

`ar` – An input double array of length `p` containing the initial values for the autoregressive terms. If this method is not called, initial values are computed by method of moments in the ARMA class.

setBackwardOrigin

`public void setBackwardOrigin(int backwardOrigin)`

Description

Sets the maximum backward origin.

Parameter

`backwardOrigin` – An int scalar specifying the maximum backward origin used in forecasting. `backwardOrigin` must be greater than or equal to 0 and less than or equal to `z.length - Math.max(p, q)`. Default: `backwardOrigin = 0`.

setConfidence

`public void setConfidence(double confidence)`

Description

Sets the confidence level for calculating confidence limit deviations returned from `getDeviations()`.
Parameter
confidence – a double scalar specifying the confidence level used in computing forecast confidence intervals. Typical choices for confidence are 0.90, 0.95, and 0.99. confidence must be greater than 0.0 and less than 1.0. Default: confidence = 0.95.

setConstant
public void setConstant(double constant)

Description
Sets the initial value for the constant term in the ARMA model.

Parameter
constant – A double scalar specifying the initial value for the constant term in the ARMA model. By default, the constant term is initially estimated using ARMA method of moments estimation.

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Description
Sets the tolerance for the convergence algorithm.

Parameter
gradientTolerance – A double scalar specifying the the tolerance used for numerically estimating the gradient by differences. Default: gradientTolerance = 1e-04.

setMA
public void setMA(double[] ma)

Description
Sets the initial values for the moving average terms to the q values in ma.

Parameter
ma – A double array of length q containing the initial values for the moving average terms. If this method is not called, initial values are computed by method of moments in the ARMA class.

setMaxIterations
public void setMaxIterations(int maxIterations) throws IllegalArgumentException

Description
Sets the maximum number of iterations.

Parameter
maxIterations – An int scalar specifying the maximum number of iterations allowed in the nonlinear equation solver used in both the method of moments and least-squares algorithms. Default: maxIterations = 300.

setMean
public void setMean(double wMean)
Description
Sets the mean used for centering the series.

Parameter
- \(w_{\text{Mean}} \) – A double scalar specifying the value to use for centering the time series. By default the series is centered using the mean of the series.

setTolerance
public void setTolerance(double tolerance)

Description
Sets the tolerance for the convergence algorithm.

Parameter
- \(\text{tolerance} \) – A double scalar specifying the value to use for the convergence tolerance. Default: \(\text{tolerance} = 2.220446049e-016 \).

Example: ARMAMaxLikelihood
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 1770 through 1869. The maximum likelihood estimates \(\hat{\theta}_0, \hat{\phi}_1, \hat{\phi}_2, \) and \(\hat{\theta}_1 \) for the ARMA(2, 1) model

\[
z_t = \theta_0 + \phi_1 z_{t-1} + \phi_2 z_{t-2} - \theta_1 A_{t-1} + A_t
\]

where the errors \(A_t \) are independently normally distributed with mean zero and variance \(\sigma^2_A \).

The maximum likelihood estimates from ARMAMaxLikelihood are compared to the same estimates using the method of moments and least squares from the ARMA class. For each method, the coefficients and forecasts for the last ten years, 1860-1869, are compared. The method of moments and maximum likelihood estimates produced similar results, but the least squares estimates were very different from the other two.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class ARMAMaxLikelihoodEx1 {
    public static void main(String args[]) throws Exception {
        int backwardOrigin = 0, n_forecast = 10, n_series = 100;
```
double[] sunspots = {
 100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
 154.4, 125.9, 84.8, 68.1, 60, 46.9, 41, 21.3, 16,
 6.4, 41, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
 8.1, 2.5, 0, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
 23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
 67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
 85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
 124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
 54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
 37.3, 73.9
};

doouble[] z;
double arMM[], maMM[], constantMM;
double arLS[], maLS[], constantLS;
double ar[], ma[], constant;
double forecastMM[], forecastLS[], forecast[];
double deviations[];
double likelihood, var, varMM, varLS;
double[] avgDev = {0.0, 0.0, 0.0};
ARM armaMM, armaLS;
ARMAMaxLikelihood maxArma;
dooble[][] printOutput, printOutput2;
String[] colLabels = {
 "Method of Moments", "Least Squares", "Maximum Likelihood"
};
String[] colLabels1 = {"Least Squares", "Maximum Likelihood"};
String[] colLabels2 = {
 "Observed Sunspots", "Method of Moments",
 "Least Squares", "Maximum Likelihood"
};
String[] colLabels3 = {
 "Lower Confidence Limit", "Forecast", "Upper Confidence Limit"
};
PrintMatrixFormat pmf = new PrintMatrixFormat();
PrintMatrix pm = new PrintMatrix();
NumberFormat nf = NumberFormat.getInstance();
pm.setColumnSpacing(3);
nf.setMinimumFractionDigits(3);
setRowLabels();
setNumberFormat(nf);
setColumnLabels(colLabels);
printOutput = new double[] {3};
printOutput2 = new double[] {4};
z = new double[] {n_series};
for (int i = 0; i < n_series; i++) {
 z[i] = sunspots[i];
}

/* Method of Moments ARMA(2,1) Estimation */
armaMM = new ARMA(2, 1, z);
armaMM.setMethod(ARMAMethod.METHOD_OF_MOMENTS);
armaMM.compute();
armaMM.setBackwardOrigin(backwardOrigin);
arMM = armaMM.getAR();
maMM = armaMM.getMA();
constantMM = armaMM.getConstant();
forecastMM = armaMM.forecast(n_forecast);
varMM = armaMM.getInnovationVariance();

/* Least Squares ARMA(2,1) Estimation */
armaLS = new ARMA(2, 1, z);
armaLS.setMethod(ARMA.LEAST_SQUARES);
armaLS.compute();
arLS = armaLS.getAR();
maLS = armaLS.getMA();
constantLS = armaLS.getConstant();
varLS = armaLS.getInnovationVariance();
forecastLS = armaLS.forecast(n_forecast);

/* Maximum Likelihood ARMA(2,1) Estimation */
maxArma = new ARMAMaxLikelihood(2, 1, z);
maxArma.compute();
ar = maxArma.getAR();
ma = maxArma.getMA();
constant = maxArma.getConstant();
likelihood = maxArma.getLikelihood();
var = maxArma.getInnovationVariance();
maxArma.setConfidence(0.9);
forecast = maxArma.forecast(n_forecast);
deviations = maxArma.getDeviations();

printOutput[0][0] = constantMM;
printOutput[0][1] = constantLS;
printOutput[0][2] = constant;
pm.setTitle("ARMA(2,1) - Constant Term");
pm.print(pmf, printOutput);
printOutput[0][0] = arMM[0];
printOutput[0][1] = arLS[0];
printOutput[0][2] = ar[0];
printOut;
printOutput[0][0] = arMM[1];
printOutput[0][1] = arLS[1];
printOutput[0][2] = ar[1];

for (int i = 0; i < n_forecast; i++) {
 printOutput2[i][0] = sunspots[90 + i];
}
printOutput2[i][1] = forecastMM[i][backwardOrigin];
printOutput2[i][2] = forecastLS[i][backwardOrigin];
printOutput2[i][3] = forecast[i][backwardOrigin];
}

pm.setTitle("SUNSPOT FORECASTS FOR 1860-1869");
nf.setMaximumFractionDigits(0);

pmf.setNumberFormat(nf);

pmf.setColumnLabels(colLabels2);

pmf.setFirstRowNumber(1860);

pm.print(pmf, printOutput2);

/* Get Confidence Interval Deviations */
printOutput2 = new double[n_forecast][3];
for (int i = 0; i < n_forecast; i++) {
 printOutput2[i][0] = Math.max(0, forecast[i][backwardOrigin] - deviations[i + backwardOrigin]);
 printOutput2[i][1] = forecast[i][backwardOrigin];
 printOutput2[i][2] = forecast[i][backwardOrigin] + deviations[i];
}

nf.setMaximumFractionDigits(0);

pmf.setNumberFormat(nf);

pmf.setColumnLabels(colLabels3);

pmf.setFirstRowNumber(1860);

pm.setTitle("SUNSPOT MAX. LIKELIHOOD 90% CONFIDENCE INTERVALS");

pm.print(pmf, printOutput2);

}

SUNSPOT MAX. LIKELIHOOD 90% CONFIDENCE INTERVALS

<table>
<thead>
<tr>
<th>Year</th>
<th>Lower Confidence Limit</th>
<th>Forecast</th>
<th>Upper Confidence Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1860</td>
<td>36</td>
<td>82</td>
<td>128</td>
</tr>
<tr>
<td>1861</td>
<td>10</td>
<td>67</td>
<td>124</td>
</tr>
<tr>
<td>1862</td>
<td>0</td>
<td>52</td>
<td>112</td>
</tr>
<tr>
<td>1863</td>
<td>0</td>
<td>42</td>
<td>102</td>
</tr>
<tr>
<td>1864</td>
<td>0</td>
<td>38</td>
<td>98</td>
</tr>
<tr>
<td>1865</td>
<td>0</td>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>1866</td>
<td>0</td>
<td>42</td>
<td>104</td>
</tr>
<tr>
<td>1867</td>
<td>0</td>
<td>45</td>
<td>107</td>
</tr>
<tr>
<td>1868</td>
<td>0</td>
<td>48</td>
<td>110</td>
</tr>
<tr>
<td>1869</td>
<td>0</td>
<td>48</td>
<td>110</td>
</tr>
</tbody>
</table>

ARMAMaxLikelihood.NonInvertibleException class

```java
static public class com.ims1.stat.ARMAMaxLikelihood.NonInvertibleException
extends com.ims1.IMSLException
```

The solution is noninvertible.

Constructors

ARMAMaxLikelihood.NonInvertibleException

```java
public ARMAMaxLikelihood.NonInvertibleException(String message)
```

Description

Constructs a NonInvertible exception with the specified detail message. A detail message is a String exception that describes this particular exception.

Parameter

- `message` – An input string containing the detail message.

ARMAMaxLikelihood.NonInvertibleException

```java
public ARMAMaxLikelihood.NonInvertibleException(String key, Object[] arguments)
```
Description
Constructs a NonInvertibleException exception with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters
- key – the key of the error message in the resource bundle.
- arguments – an array containing arguments used within the error message string.

ARMAMaxLikelihood.NonStationaryException class

static public class com.imsl.stat.ARMAMaxLikelihood.NonStationaryException
extends com.imsl.IMSLException

The solution is nonstationary.

Constructors

ARMAMaxLikelihood.NonStationaryException
public ARMAMaxLikelihood.NonStationaryException(String message)

Description
Constructs a NonStationary exception with the specified detail message. A detail message is a String exception that describes this particular exception.

Parameter
- message – An input string containing the detail message.

ARMAMaxLikelihood.NonStationaryException
public ARMAMaxLikelihood.NonStationaryException(String key, Object[] arguments)

Description
Constructs a NonStationary exception with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters
- key – the key of the error message in the resource bundle.
- arguments – an array containing arguments used within the error message string.
ARMAOutlierIdentification class

public class com.imsl.stat.ARMAOutlierIdentification implements Serializable, Cloneable

Detects and determines outliers and simultaneously estimates the model parameters in a time series whose underlying outlier free series follows a general seasonal or nonseasonal ARMA model. This class also allows computation of forecasts.

Consider a univariate time series \(\{Y_t\} \) that can be described by the following multiplicative seasonal ARIMA model of order \((p, 0, q) \times (0, d, 0)_s\):

\[
Y_t - \mu = \frac{\theta(B) }{\Delta^d \phi(B)} \alpha_t, \quad t = 1, \ldots, n
\]

Here, \(\Delta^d = (1 - B)^d \), \(\theta(B) = 1 - \theta_1 B - \ldots - \theta_p B^p \), \(\phi(B) = 1 - \phi_1 B - \ldots - \phi_p B^p \). \(B \) is the lag operator, \(B^k Y_t = Y_{t-k} \), \(\{\alpha_t\} \) is a white noise process, and \(\mu \) denotes the mean of the series \(\{Y_t\} \).

Outlier detection and parameter estimation

In general, \(\{Y_t\} \) is not directly observable due to the influence of outliers. Chen and Liu (1993) distinguish between four types of outliers: innovational outliers (IO), additive outliers (AO), temporary changes (TC) and level shifts (LS). If an outlier occurs as the last observation of the series, then Chen and Liu’s algorithm is unable to determine the outlier’s classification. In class ARMAOutlierIdentification, such an outlier is called a UI (unable to identify) and is treated as an innovational outlier.

In order to take the effects of multiple outliers occurring at time points \(t_1, \ldots, t_m \) into account, Chen and Liu consider the following model:

\[
Y_t^* - \mu = \sum_{j=1}^{m} \omega_j L_j(B) I_t(t_j) + \frac{\theta(B)}{\Delta^d \phi(B)} \alpha_t
\]

Here, \(\{Y_t^*\} \) is the observed outlier contaminated series, and \(\omega_j \) and \(L_j(B) \) denote the magnitude and dynamic pattern of outlier \(j \), respectively. \(I_t(t_j) \) is an indicator function that determines the temporal course of the outlier effect, \(I_t(t_j) = 1, I_t(t_j) = 0 \) otherwise. Note that \(L_j(B) \) operates on \(I_t \) via \(B^k I_t = I_{t-k}, k = 0, 1, \ldots \).

The last formula shows that the outlier free series \(\{Y_t\} \) can be obtained from the original series \(\{Y_t^*\} \) by removing all occurring outlier effects:

\[
Y_t = Y_t^* - \sum_{j=1}^{m} \omega_j L_j(B) I_t(t_j)
\]

The different types of outliers are characterized by different values for \(L_j(B) \):

1. \(L_j(B) = \frac{\theta(B)}{\Delta^d \phi(B)} \) for an innovational outlier,
2. \(L_j(B) = 1 \) for an additive outlier,
3. \(L_j(B) = (1 - B)^{-1} \) for a level shift outlier and
4. \(L_j(B) = (1 - \delta B)^{-1}, 0 < \delta < 1, \) for a temporary change outlier.

Class `ARMAOutlierIdentification` is an implementation of Chen and Liu’s algorithm. It determines the coefficients in \(\phi(B) \) and \(\theta(B) \) and the outlier effects in the model for the observed series jointly in three stages. The magnitude of the outlier effects is determined by least squares estimates. Outlier detection itself is realized by examination of the maximum value of the standardized statistics of the outlier effects. For a detailed description, see Chen and Liu’s original paper (1993).

Intermediate and final estimates for the coefficients in \(\phi(B) \) and \(\theta(B) \) are computed by the `compute` methods from JMSL classes `ARMA` and `ARMAMaxLikelihood`. If the roots of \(\phi(B) \) or \(\theta(B) \) lie on or within the unit circle, then the algorithm stops with an appropriate exception. In this case, different values for \(p \) and \(q \) should be tried.

Forecasting

From the relation between original and outlier free series,

\[
Y^*_t = Y_t + \sum_{j=1}^{m} \omega_j L_j(B) I_t(t_j) \]

it follows that the Box-Jenkins forecast at origin \(t \) for lead time \(l \), \(\hat{Y}^*_t(l) \), can be computed as

\[
\hat{Y}^*_t(l) = \hat{Y}^*_t(l) + \sum_{j=1}^{m} \omega_j L_j(B) I_{t+l}(t_j), \ l = 1, \ldots, n_{\text{Forecast}}
\]

Therefore, computation of the forecasts for \(\{Y^*_t\} \) is done in two steps:

1. Computation of the forecasts for the outlier free series \(\{Y_t\} \).
2. Computation of the forecasts for the original series \(\{Y^*_t\} \) by adding the multiple outlier effects to the forecasts for \(\{Y_t\} \).

Step 1: Computation of the forecasts for the outlier free series \(\{Y_t\} \)

Since

\[
\phi(B)(Y_t - \mu) = \theta(B)a_t
\]

where

\[
\phi(B) := \Delta^d \phi(B) = 1 - \phi_1 B - \cdots - \phi_{p+sd} B^{p+sd}
\]

the Box-Jenkins forecast at origin \(t \) for lead time \(l \), \(\hat{Y}_t(l) \), can be computed recursively as

\[
\hat{Y}_t(l) = (1 - \sum_{j=1}^{p+sd} \varphi_j) \mu + \sum_{j=1}^{p+sd} \varphi_j \hat{Y}_t(l-j) - \sum_{j=1}^{q} \theta_j a_{t+l-j}
\]

Here,

\[
\hat{Y}_t(l-j) = \begin{cases}
Y_{t+l-j} & \text{for } l-j \leq 0 \\
\hat{Y}_t(l-j) & \text{for } l-j > 0
\end{cases}
\]
and
\[
a_k = \begin{cases}
0 & \text{for } k \leq \max\{1, p + sd\} \\
Y_k - \hat{Y}_{k-1}(1) & \text{for } k = \max\{1, p + sd\} + 1, \ldots, n
\end{cases}
\]

Step 2: Computation of the forecasts for the original series \(\{Y_t^*\} \) by adding the multiple outlier effects to the forecasts for \(\{Y_t\} \)

The formulas for \(L_j(B) \) for the different types of outliers are as follows:

Innovational outlier (IO)
\[
L_j(B) = \frac{\theta(B)}{\Delta^d \phi(B)} := \psi(B) = \sum_{k=0}^{\infty} \psi_k B^k, \psi_0 = 1
\]

Additive outliers (AO)
\[
L_j(B) = 1
\]

Level shifts (LS)
\[
L_j(B) = \frac{1}{1 - B} = \sum_{k=0}^{\infty} B^k
\]

Temporary changes (TC)
\[
L_j(B) = \frac{1}{1 - \delta B} = \sum_{k=0}^{\infty} \delta^k B^k
\]

Assuming the outlier occurs at time point \(t_j \), the outlier impact is therefore:

Innovational outliers (IO)
\[
\omega_j L_j(B) I(t_j) = \begin{cases}
0 & \text{for } t < t_j \\
\omega_j \psi_k & \text{for } t = t_j + k, k \geq 0
\end{cases}
\]

Additive outliers (AO)
\[
\omega_j L_j(B) I(t_j) = \begin{cases}
0 & \text{for } t \neq t_j \\
\omega_j & \text{for } t = t_j
\end{cases}
\]

Level shifts (LS)
\[
\omega_j L_j(B) I(t_j) = \begin{cases}
0 & \text{for } t < t_j \\
\omega_j & \text{for } t = t_j + k, k \geq 0
\end{cases}
\]

Temporary changes (TC)
\[
\omega_j L_j(B) I(t_j) = \begin{cases}
0 & \text{for } t < t_j \\
\omega_j \delta^k & \text{for } t = t_j + k, k \geq 0
\end{cases}
\]

From these formulas, the forecasts \(\hat{Y}^*_t(l) \) can be computed easily. The 100(1 − α) percent probability limits for \(Y_{t+j}^* \) and \(Y_{t+l} \) are given by
\[
\hat{Y}^*_t(l) \text{ (or } \hat{Y}_t(l), \text{ resp.)} \pm u_{\alpha/2} \left(1 + \sum_{j=1}^{l-1} \psi_j^2 \right)^{1/2} s_a
\]
where \(u_{\alpha/2} \) is the 100(1 − \(\alpha/2 \)) percentile of the standard normal distribution, \(s_a^2 \) is an estimate of the variance \(\sigma_a^2 \) of the random shocks, and the \(\psi \) weights \(\{ \psi_j \} \) are the coefficients in

\[
\psi(B) := \sum_{k=0}^{\infty} \psi_k B^k := \frac{\theta(B)}{\Delta \phi(B)}, \quad \psi_0 = 1.
\]

For a detailed explanation of these concepts, see chapter 5: “Forecasting” in Box, Jenkins and Reinsel (1994).

Fields

ADDITIVE
static final public int ADDITIVE

Indicates detection of an additive outlier.

INNOVATIONAL
static final public int INNOVATIONAL

Indicates detection of an innovational outlier.

LEVEL_SHIFT
static final public int LEVEL_SHIFT

Indicates detection of a level shift outlier.

TEMPORARY_CHANGE
static final public int TEMPORARY_CHANGE

Indicates detection of a temporary change outlier.

UNABLE_TO_IDENTIFY
static final public int UNABLE_TO_IDENTIFY

Indicates detection of an outlier that cannot be categorized.

Constructor

ARMAOutlierIdentification

public ARMAOutlierIdentification(double[] z)

Description

Constructor for ARMAOutlierIdentification.

Parameter

\(z \) – a double array containing the observations.
Methods

compute

```java
final public void compute(int[] model) throws
ARMAMaxLikelihood.NonInvertibleException,
ARMAMaxLikelihood.NonStationaryException,
ZeroPolynomial.DidNotConvergeException, ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException, SingularMatrixException,
Cholesky.NotSPDException
```

Description

 Detects and determines outliers and simultaneously estimates the model parameters for the given time series.

Parameter

- `model` – an int array of length 4 containing the numbers p, q, s, d of the ARIMA(p, 0, q) × (0, d, 0), model the outlier free series is following. It is required that p, q and d are non-negative and s is positive and consistent with z.length.

Exceptions

- `ARMAMaxLikelihood.NonStationaryException` is thrown if the intermediate or final maximum likelihood estimates for the time series are nonstationary.
- `ARMAMaxLikelihood.NonInvertibleException` is thrown if the intermediate or final maximum likelihood estimates for the time series are noninvertible.
- `ARMAMaxLikelihood.InitialMAException` is thrown if the initial values provided for the moving average terms are noninvertible. In this case, `ARMAMaxLikelihood` terminates and does not compute the time series estimates.
- `ZeroPolynomial.DidNotConvergeException` is thrown if the algorithm computing the roots of the AR- or MA- polynomial does not converge.
- `ARMA.MatrixSingularException` is thrown if the input matrix is singular.
- `ARMA.TooManyCallsException` is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
- `ARMA.IncreaseErrRelException` is thrown if the bound for the relative error is too small.
- `ARMA.NewInitialGuessException` is thrown if the iteration has not made good progress.
- `ARMA.IllConditionedException` is thrown if the problem is ill-conditioned.
- `ARMA.TooManyITNException` is thrown if the maximum number of iterations is exceeded.
- `ARMA.TooManyFcnEvalException` is thrown if the maximum number of function evaluations is exceeded.
- `ARMA.TooManyJacobianEvalException` is thrown if the maximum number of Jacobian evaluations is exceeded.
SingularMatrixException is thrown if during the computation of a small perturbation of the matrix product $A^T A$, it is found that A, the matrix used in the determination of the ω weights, is singular.

Cholesky.NotSPDException is thrown if during the computation of a small perturbation of the matrix product $A^T A$, it is found that A, the matrix used in the determination of the ω weights, is not positive definite.

computeForecasts

final public void computeForecasts(int nForecast)

Description

Computes forecasts, associated probability limits and ψ weights for an outlier contaminated time series whose underlying outlier free series obeys a general seasonal or non-seasonal ARMA model.

Parameter

nForecast – an int scalar containing the maximum lead time for forecasts. nForecast must be greater than 0. Forecast origin is the time point of the last observed value in the time series, n. Forecasts are computed for lead times 1, 2, ..., nForecast, i.e. time points $n + 1, n + 2, \ldots, n + nForecast$. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.

getAIC

public double getAIC()

Description

Returns Akaike's information criterion (AIC).

Returns

a double scalar containing Akaike’s information criterion (AIC) for the outlier free series. The compute method must be called before invoking this method. Otherwise, an IllegalStateException exception is thrown.

getAICC

public double getAICC()

Description

Returns Akaike’s Corrected Information Criterion (AICC).

Returns

a double scalar containing Akaike’s Corrected Information Criterion (AICC) for the outlier free series. The compute method must be called before invoking this method. Otherwise, an IllegalStateException exception is thrown.

getAR

public double[] getAR()

Description

Returns the final autoregressive parameter estimates.
Returns
a double array of length \(p = \text{model[0]} \) containing the final autoregressive parameter estimates. Note that the \text{compute} method must be invoked first before invoking this method. Otherwise, the method throws an \text{IllegalStateException} exception.

\textbf{getBIC}
\begin{verbatim}
public double getBIC()
\end{verbatim}

Description
Returns the Bayesian Information Criterion (BIC).

Returns
a double scalar containing the Bayesian Information Criterion (BIC) for the outlier free series. The \text{compute} method must be called before invoking this method. Otherwise, an \text{IllegalStateException} exception is thrown.

\textbf{getConstant}
\begin{verbatim}
public double getConstant()
\end{verbatim}

Description
Returns the constant parameter estimate.

Returns
a double scalar containing the constant parameter estimate. The \text{compute} method must be invoked first before invoking this method. Otherwise, the method throws an \text{IllegalStateException} exception.

\textbf{getDeviations}
\begin{verbatim}
public double[] getDeviations()
\end{verbatim}

Description
Returns the deviations used for calculating the forecast confidence limits.

Returns
a double array of length \(n\text{Forecast} \) containing the deviations from each forecast for calculating forecast confidence intervals. The confidence level is specified in \text{setConfidence}. Method \text{computeForecasts} has to be invoked before this method is called. Otherwise, an \text{IllegalStateException} exception is thrown.

\textbf{getForecast}
\begin{verbatim}
public double[] getForecast()
\end{verbatim}

Description
Returns forecasts for the original outlier contaminated series.

Returns
a double array of length \(n\text{Forecast} \) containing the forecasts for the original series. Method \text{computeForecasts} has to be invoked before this method is called. Otherwise, an \text{IllegalStateException} exception is thrown.
public double[] getMA()

Description
Returns the final moving average parameter estimates.

Returns
a double array of length $q = \text{model}[1]$ containing the final moving average parameter estimates. Note that the \text{compute} method must be invoked first before invoking this method. Otherwise, the method throws an \text{IllegalStateException} exception.

public int getNumberOfOutliers()

Description
Returns the number of outliers detected.

Returns
an int scalar containing the number of outliers detected. The \text{compute} method must be invoked first before invoking this method. Otherwise, an \text{IllegalStateException} exception is thrown.

public double[] getOmegaWeights()

Description
Returns the ω weights for the detected outliers.

Returns
a double array containing the computed ω weights for the detected outliers. If the number of detected outliers equals zero, then an array of length zero is returned. The \text{compute} method must be invoked before using this method. Otherwise, an \text{IllegalStateException} exception is thrown.

public double[] getOutlierFreeForecast()

Description
Returns forecasts for the outlier free series.

Returns
a double array of length $n\text{Forecast}$ containing the forecasts for the outlier free series. Method \text{computeForecasts} has to be invoked before this method is called. Otherwise, an \text{IllegalStateException} exception is thrown.

public double[] getOutlierFreeSeries()

Description
Returns the outlier free series.
Returns

a double array containing the outlier free series. The compute method must be called before invoking this method. Otherwise, an IllegalStateException exception is thrown.

getOutlierStatistics

```java
public int[][] getOutlierStatistics()
```

Description

Returns the outlier statistics.

Returns

an int matrix of length nOutliers by 2, where nOutliers is the number of detected outliers, containing the outlier statistics. The first column contains the time at which the outlier was observed (time ranging from 1 to z.length, the number of observations in the time series) and the second column contains an identifier indicating the type of outlier observed. Outlier types fall into one of five categories:

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Outlier type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNOVATIONAL</td>
<td>Innovational Outliers (IO)</td>
</tr>
<tr>
<td>ADDITIVE</td>
<td>Additive Outliers (AO)</td>
</tr>
<tr>
<td>LEVEL_SHIFT</td>
<td>Level Shift Outliers (LS)</td>
</tr>
<tr>
<td>TEMPORARY_CHANGE</td>
<td>Temporary Change Outliers (TC)</td>
</tr>
<tr>
<td>UNABLE_TO_IDENTIFY</td>
<td>Unable to Identify (UI)</td>
</tr>
</tbody>
</table>

If the number of detected outliers equals zero, then an int array of size 0 is returned. The compute method must be invoked first before invoking this method. Otherwise, an IllegalStateException exception is thrown.

getPsiWeights

```java
public double[] getPsiWeights()
```

Description

Returns the ψ weights of the infinite order moving average form of the model.

Returns

a double array of length nForecast containing the ψ weights of the infinite order moving average form of the model for the outlier free series. Method computeForecasts must be invoked before this method is called. Otherwise, an IllegalStateException exception is thrown.

getResidual

```java
public double[] getResidual()
```

Description

Returns the residuals.
Returns a double array containing the residuals for the outlier free series at the final parameter estimation point. The compute method must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.

getResidualStandardError
public double getResidualStandardError()

Description
Returns the residual standard error of the outlier free series.

Returns
a double scalar containing the standard error of the outlier free series. Note that the compute method must be invoked first before invoking this method. Otherwise, an IllegalStateException exception is thrown.

getauStatistics
public double[] getTauStatistics()

Description
Returns the t value for each detected outlier.

Returns
a double array containing the t statistics for each detected outlier. If the number of detected outliers equals zero, then a vector of length 0 is returned. The compute method must be invoked before using this method. Otherwise, an IllegalStateException exception is thrown.

setAccuracyTolerance
public void setAccuracyTolerance(double epsilon)

Description
Sets the tolerance value controlling the accuracy of the parameter estimates.

Parameter
epsilon – a double scalar, a positive tolerance value controlling the accuracy of parameter estimates during outlier detection. Default: epsilon = 0.001.

setConfidence
public void setConfidence(double confidence)

Description
Sets the confidence level for calculating confidence limit deviations returned from getDeviations.

Parameter
confidence – a double scalar specifying the confidence level used in computing forecast confidence intervals. Typical choices for confidence are 0.90, 0.95, and 0.99. confidence must be greater than 0.0 and less than 1.0. Default: confidence = 0.95.

setCriticalValue
public void setCriticalValue(double critical)
Description
Sets the critical value used as a threshold during outlier detection.

Parameter
- critical – a double scalar, the critical value used as a threshold for the statistics used in the outlier detection. critical must be greater than zero. Default: critical = 3.0.

setDelta
public void setDelta(double delta)

Description
Sets the dampening effect parameter.

Parameter
- delta – a double scalar, the dampening effect parameter used in the detection of a Temporary Change Outlier (TC). delta must be greater than 0 and less than 1. Default: delta = 0.7.

setRelativeError
public void setRelativeError(double relativeError)

Description
Sets the stopping criterion for use in the nonlinear equation solver.

Parameter
- relativeError – a double positive scalar containing the stopping criterion for use in the nonlinear equation solver used in the least-squares algorithm. Default: relativeError= 1.0e-10.

Example 1: Parameter estimation and outlier detection for a time series from biology
This example is based on estimates of the Canadian lynx population. Class ARMAOutlierIdentification is used to fit an ARIMA(2,2,0) model of the form
\[(1 - B)(1 - \phi_1 B - \phi_2 B^2)Y_t = a_t, t = 1,2,\ldots,144, \{a_t\}\] Gaussian White noise, to the given series.
Method compute determines parameters \(\phi_1 = 0.10682\) and \(\phi_2 = -0.19666\) and identifies a LS outlier at time point \(t = 16\).

```java
import com.imsl.stat.*;
import java.util.*;

public class ARMAOutlierIdentificationEx1 {

    public static void main(String args[]) throws Exception {
        double[] series = {
            0.24300E01, 0.25060E01, 0.27670E01, 0.29400E01, 0.31690E01,
            0.34500E01, 0.35940E01, 0.37740E01, 0.36950E01, 0.34110E01,
            0.27180E01, 0.19910E01, 0.22650E01, 0.24460E01, 0.33590E01,
            0.34290E01, 0.35330E01, 0.32610E01, 0.26120E01, 0.21790E01,
            0.16530E01, 0.18320E01, 0.23280E01, 0.27370E01,
        }
```
int[] model = new int[4];
double[] outlierFreeSeries;
double resStdErr, aic, constant;
double[] ar;
int[][] outlierStatistics;
int numOutliers;

model[0] = 2;
model[1] = 0;
model[2] = 1;
model[3] = 2;

ARMAOutlierIdentification armaOutlier = new ARMAOutlierIdentification(series);
armaOutlier.setCriticalValue(3.5);
armaOutlier.compute(model);

outlierFreeSeries = armaOutlier.getOutlierFreeSeries();
numOutliers = armaOutlier.getNumberOfOutliers();
outlierStatistics = armaOutlier.getOutlierStatistics();
constant = armaOutlier.getConstant();
ar = armaOutlier.getAR();
resStdErr = armaOutlier.getResidualStandardError();
aic = armaOutlier.getAIC();

System.out.printf("%n%n ARMA parameters:%n");
System.out.printf(Locale.ENGLISH, "constant:%9.6f%n", constant);
System.out.printf(Locale.ENGLISH, "ar[0]:%12.6f%n", ar[0]);
System.out.printf(Locale.ENGLISH, "ar[1]:%12.6f%n", ar[1]);
System.out.printf("Number of outliers:%d%n", numOutliers);
System.out.printf("%n Outlier statistics:%n");
System.out.printf("Time point%6sOutlier type%n", " ");
for (int i = 0; i < numOutliers; i++) {
 System.out.printf("%10d%18d%n", outlierStatistics[i][0], outlierStatistics[i][1]);
Output

ARMA parameters:
- constant: 0.000000
- ar[0]: 0.106532
- ar[1]: -0.195856

Number of outliers: 1

Outlier statistics:
- Time point: 16
- Outlier type: 2

RSE: 0.319542
AIC: 282.918191

Extract from the series:
<table>
<thead>
<tr>
<th>Time</th>
<th>Original</th>
<th>Outlier free</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4300</td>
<td>2.4300</td>
</tr>
<tr>
<td>2</td>
<td>2.5060</td>
<td>2.5060</td>
</tr>
<tr>
<td>3</td>
<td>2.7670</td>
<td>2.7670</td>
</tr>
<tr>
<td>4</td>
<td>2.9400</td>
<td>2.9400</td>
</tr>
<tr>
<td>5</td>
<td>3.1690</td>
<td>3.1690</td>
</tr>
<tr>
<td>6</td>
<td>3.4500</td>
<td>3.4500</td>
</tr>
<tr>
<td>7</td>
<td>3.5940</td>
<td>3.5940</td>
</tr>
<tr>
<td>8</td>
<td>3.7740</td>
<td>3.7740</td>
</tr>
<tr>
<td>9</td>
<td>3.6950</td>
<td>3.6950</td>
</tr>
<tr>
<td>10</td>
<td>3.4110</td>
<td>3.4110</td>
</tr>
<tr>
<td>11</td>
<td>2.7180</td>
<td>2.7180</td>
</tr>
<tr>
<td>12</td>
<td>1.9910</td>
<td>1.9910</td>
</tr>
<tr>
<td>13</td>
<td>2.2650</td>
<td>2.2650</td>
</tr>
<tr>
<td>14</td>
<td>2.4460</td>
<td>2.4460</td>
</tr>
<tr>
<td>15</td>
<td>2.6120</td>
<td>2.6120</td>
</tr>
<tr>
<td>16</td>
<td>3.3590</td>
<td>2.6997</td>
</tr>
<tr>
<td>17</td>
<td>3.4290</td>
<td>2.7697</td>
</tr>
<tr>
<td>18</td>
<td>3.5330</td>
<td>2.8737</td>
</tr>
<tr>
<td>19</td>
<td>3.2610</td>
<td>2.6017</td>
</tr>
<tr>
<td>20</td>
<td>2.6120</td>
<td>1.9527</td>
</tr>
<tr>
<td>21</td>
<td>2.1790</td>
<td>1.5197</td>
</tr>
<tr>
<td>22</td>
<td>1.6530</td>
<td>0.9937</td>
</tr>
<tr>
<td>23</td>
<td>1.8320</td>
<td>1.1727</td>
</tr>
</tbody>
</table>
Example 2: Parameter estimation and outlier detection for an artificial time series

This example is an artificial realization of an ARMA(1,1) process via formula
\[Y_t - 0.8Y_{t-1} = 10.0 + \omega_t + 0.5\omega_{t-1}, \quad t = 1, \ldots, 300, \quad \{\omega_t\} \text{ Gaussian white noise, } \mathbb{E}[Y_t] = 50.0. \]
An additive outlier with \(\omega_1 = 4.5 \) was added at time point \(t = 150 \), a temporary change outlier with \(\omega_2 = 3.0 \) was added at time point \(t = 200 \).

```java
import com.imsl.stat.*;
import java.util.*;

public class ARMAOutlierIdentificationEx2 {
    public static void main(String args[]) throws Exception {
        double resStdErr, aic, constant;
        int[][] outlierStatistics;
        int numOutliers;
        double[] omegaWeights, ar, ma;
        int[] model = new int[4];

        double[] series = {
            50.0000000, 50.2728081, 50.6242599, 51.0373917, 51.9317627,
            50.349759, 51.6597252, 52.7004929, 53.5499802, 53.1673279,
            50.2373505, 49.3373871, 49.5515472, 48.6692696, 47.6606636,
            46.8774185, 45.7315445, 45.6467927, 45.9882355, 45.5216560,
            46.0479660, 46.1958656, 48.6387749, 49.9055367, 49.8077278,
            47.7858467, 47.9386749, 49.7691956, 48.5425873, 49.1239853,
            49.8518791, 50.3320694, 50.9146347, 51.8772049, 51.8745689,
            52.3394470, 52.7273712, 51.4310036, 50.6727448, 50.8370399,
            51.2843437, 51.8163918, 51.6935670, 49.703231, 49.0189247,
            49.455703, 50.2718010, 49.9605980, 51.3775749, 50.2285385,
            48.2692299, 47.6495590, 49.2938499, 49.1928458, 49.6449242,
            50.0446815, 51.9972496, 54.2576981, 52.9385434, 50.4193535,
            50.3617897, 51.8276901, 53.1239929, 54.0682144, 54.9238319,
            55.6877632, 54.8896332, 54.0701065, 52.2754097, 52.2522354,
            53.1248703, 51.1287193, 50.5003815, 49.6504173, 47.243079,
            45.455626, 45.8449707, 45.9765129, 45.7682228, 45.2343674,
            46.6498611, 47.0894432, 49.3368340, 50.8058052, 49.9132500,
            49.5893288, 48.2470627, 46.9779968, 45.6760864, 45.7070389
        };
```
46.6158409, 47.5303612, 47.5630417, 47.0389214, 46.0352287, 45.8161545, 45.7974396, 52.5001537, 45.3796463, 45.3461685, 47.644016, 49.3227446, 49.3810692, 50.2027817, 51.4567032, 52.3982697, 51.905337, 51.2242050, 50.5033989, 51.5150337, 51.2974396, 51.3320541, 52.3918304, 51.0845947, 50.6893463, 52.8001442, 51.1980476, 50.0712801, 52.0545082, 50.8742943, 51.905337, 51.2242050, 48.7760124, 47.4179192, 49.7319527, 49.730227, 49.198024, 49.5799340, 51.196213, 51.6094099, 52.4564743, 51.6439301, 52.4086568, 52.643364, 52.6257210, 51.1604691, 51.9309731, 51.4132723, 50.3815842, 50.8357392, 51.4136009, 52.8357217, 52.234840, 51.139257, 48.5245132, 46.8700218, 46.1607285, 45.2324257, 47.415789, 48.998909, 49.6230736, 51.1652985, 50.2588654, 50.7820129, 51.0448799, 51.2800516, 49.689804, 49.0282200, 49.9338837, 48.2214432, 46.2103348, 46.9550171, 47.559894, 47.7176018, 48.4502945, 49.9816895, 50.695073, 50.693495, 50.1941261, 50.8988075, 52.5617599, 52.0218391, 50.5236053, 47.9684906, 48.2445183, 48.8275146, 47.716971, 51.5649338, 52.5627213, 50.182419, 50.9688358, 51.5846901, 50.9486771, 48.8658387, 48.5606024, 48.4760094, 48.5348396, 50.4187813, 51.2542381, 50.1872884, 50.4407892, 50.6222687, 50.4972000, 51.0036087, 51.3367500, 51.7368202, 53.0463791, 53.6261253, 52.0072683, 48.9740753, 54.3280830, 49.273917, 49.8519020, 50.8562126, 49.5594254, 49.6109200, 48.3785629, 48.0026474, 49.4874268, 50.1596375, 51.805940, 52.0288620, 51.3221075, 49.3114815, 48.7999306, 47.7201881, 46.3433914, 46.5303612, 47.6294632, 48.6012459, 48.8567657, 48.060405, 47.1352806, 49.5724792, 50.5666483, 49.4182968, 50.557079, 50.683736, 50.6333389, 51.9766159, 51.0595245, 49.3751640, 46.9667702, 47.1658173, 47.4411278, 47.5360374, 48.9914742, 50.4747620, 50.2728043, 51.9117165, 53.7627792

model[0] = 1;
model[1] = 1;
model[2] = 1;
model[3] = 0;
ARMAOutlierIdentification armaOutlier = new ARMAOutlierIdentification(series);
armaOutlier.setRelativeError(1.0e-5);
armaOutlier.compute(model);
double[] outlierFreeSeries = armaOutlier.getOutlierFreeSeries();
ARMA parameters:
constant: 10.834213
ar[0]: 0.785117
ma[0]: -0.496502

Number of outliers: 2

Outlier statistics:
Time point Outlier type
150 1
200 3

Omega statistics:
Time point Omega
150 4.477876
200 3.381473

RSE: 1.007223
AIC: 1417.044613
Example 3: Forecasting an outlier contaminated time series

This example is a realization of an ARMA(2, 1) process described by the model

\(Y_t - Y_{t-1} + 0.24Y_{t-2} = 10 + \alpha_t + 0.5\alpha_{t-1}, \{\alpha_t\} \) a Gaussian White noise process. An additive outlier with \(\omega_1 = 4.5 \) was added at time point \(t = 150 \), a temporary change outlier with \(\omega_2 = 3.0 \) was added at time point \(t = 200 \).

Outliers were artificially added to the outlier free series \(\{Y_t\}_{t=1, \ldots, 280} \) at time points \(t = 150 \) (level shift with \(\omega_1 = +2.5 \)) and \(t = 200 \) (additive outlier with \(\omega_2 = +3.2 \)), resulting in the outlier contaminated series \(\{Z_t\}_{t=1, \ldots, 280} \). For both series, forecasts were determined for time points \(t = 281, \ldots, 290 \) and compared with the actual values of the series.

```java
import com.imsl.stat.*;
import java.util.*;

public class ARMAOutlierIdentificationEx3 {

    public static void main(String args[]) throws Exception {
        double resStdErr, aic, constant;
        int[][] outlierStatistics;
        int numOutliers, nForecast = 10;
        int[] model = new int[4];
        double[] ar, ma;
        double[] outlierContaminatedForecast, outlierFreeForecast,
                probabilityLimits, psiWeights;
        double[] outlierContaminatedSeries = {
            41.6699982, 41.6699982, 42.0752144, 42.6123962, 43.6161919,
            42.1932831, 43.1055450, 43.1055450, 43.1055450, 43.1055450,
            41.8874397, 40.2159805, 40.2159805, 40.2159805, 40.2159805,
            37.9272423, 36.8718872, 36.8718872, 36.8718872, 36.8718872,
            37.9861374, 40.3810501, 40.3810501, 40.3810501, 40.3810501,
            40.3134537, 39.7971268, 39.7971268, 39.7971268, 39.7971268,
            41.8171883, 42.4190292, 42.4190292, 42.4190292, 42.4190292,
            44.325212, 44.6082611, 44.325212, 44.325212, 44.325212,
            42.992264, 43.2091255, 42.992264, 42.992264, 42.992264,
            40.451574, 40.5329170, 40.5329170, 40.5329170, 40.5329170,
            39.9234505, 38.8394127, 39.9234505, 39.9234505, 39.9234505,
            41.9763137, 43.9878922, 43.9878922, 43.9878922, 43.9878922,
            42.5325934, 42.8830910, 42.5325934, 42.5325934, 42.5325934,
            47.5683785, 46.6700745, 47.5683785, 47.5683785, 47.5683785,
            43.7129232, 42.0768661, 43.7129232, 43.7129232, 43.7129232,
            35.9500566, 36.3212609, 36.3212609, 36.3212609, 36.3212609,
            38.523244, 39.4197977, 38.523244, 38.523244, 38.523244,
            42.106678, 40.3772148, 42.106678, 42.106678, 42.106678,
            38.1016685, 39.4727097, 38.1016685, 38.1016685, 38.1016685,
            37.7543488, 37.7265244, 37.7543488, 37.7543488, 37.7543488,
            39.8233147, 42.0480766, 39.8233147, 39.8233147, 39.8233147,
            40.539829, 45.114540, 40.539829, 40.539829, 40.539829,
            46.7830849, 48.7649765, 46.7830849, 46.7830849, 46.7830849,
            41.642022, 41.2694939, 41.642022, 41.642022, 41.642022,
            42.1471291, 42.5552788, 42.1471291, 42.1471291, 42.1471291,
            38.3210710, 40.5318718, 38.3210710, 38.3210710, 38.3210710,
            43.1670265, 41.2226143, 43.1670265, 43.1670265, 43.1670265,
            44.4174194, 43.5068550, 44.4174194, 43.5068550, 44.4174194,
            43.8394127, 44.6560631, 43.8394127, 43.8394127, 43.8394127,
            44.6560631, 43.8394127, 43.8394127, 43.8394127, 43.8394127,
            44.6560631, 43.8394127, 43.8394127, 43.8394127, 43.8394127
        };
    }
```
// Actual values of the outlier contaminated series for
// t = 181,...,190
double[] exactForecastOutlierContaminatedSeries = {
 42.6384087, 41.7088661, 43.9399033, 45.4284401, 44.4558411, 45.1761856, 45.3489113, 45.1892662, 46.3754730, 45.6082802
};

// Actual values of the outlier free series for
// t = 181,...,190. This are the values of the outlier contaminated
// series - 2.5
double[] exactForecastOutlierFreeSeries = {
 40.1384087, 39.2088661, 41.4399033, 42.9284401, 41.9558411, 42.6761856, 43.489113, 43.6892662, 43.8754730, 43.1082802
};

model[0] = 2;
model[1] = 1;
model[2] = 1;
model[3] = 0;

ARMAOutlierIdentification armaOutlier = new ARMAOutlierIdentification(outlierContaminatedSeries);
armaOutlier.setRelativeError(1.0e-5);
armaOutlier.compute(model);
armaOutlier.computeForecasts(nForecast);
numOutliers = armaOutlier.getNumberOfOutliers();
outlierStatistics = armaOutlier.getOutlierStatistics();
constant = armaOutlier.getConstant();
ar = armaOutlier.getAR();
ma = armaOutlier.getMA();
resStdErr = armaOutlier.getResidualStandardError();
aic = armaOutlier.getAIC();

outlierContaminatedForecast = armaOutlier.getForecast();
outlierFreeForecast = armaOutlier.getOutlierFreeForecast();
probabilityLimits = armaOutlier.getDeviations();
psiWeights = armaOutlier.getPsiWeights();

System.out.printf("%nARMA parameters:%n%ncurrent: %9.6f%n", constant);
System.out.printf("ar[0]: %12.6f%n", ar[0]);
System.out.printf("ar[1]: %12.6f%n", ar[1]);
System.out.printf("ma[0]: %12.6f%n", ma[0]);
System.out.printf("%nNumber of outliers: %d%n%n", numOutliers);

System.out.printf("Outlier statistics:%n%Time point%8sOutlier type%n%", " ");
for (int i = 0; i < numOutliers; i++) {
 System.out.printf("%10d%20d%n", outlierStatistics[i][0],
 outlierStatistics[i][1]);
}
System.out.printf("%nRSE:%9.6f%n", resStdErr);
System.out.printf("AIC:%12.6f%n%n", aic);

System.out.printf("%s% *Forecasts Table for outlier "/
 + "contaminated series * * %n", " ");
System.out.printf("%s%Exact%5sforsent%6slimits%9s%psi%n",
 " ", " ", " ", " ");
for (int i = 0; i < nForecast; i++) {
 System.out.printf(Locale.ENGLISH, "%7s%8.4f%13.4f%12.4f%12.4f%n",
 exactForecastOutlierContaminatedSeries[i],
 outlierContaminatedForecast[i],
 probabilityLimits[i],
 psiWeights[i]);
}
System.out.printf("%n%Forecasts Table for outlier "/
 + "free series * * %n", " ");
System.out.printf("%s%Exact%5sforsent%6slimits%9s%psi%n",
 " ", " ", " ", " ");
for (int i = 0; i < nForecast; i++) {
 System.out.printf(Locale.ENGLISH, "%7s%8.4f%13.4f%12.4f%12.4f%n",
 " ", exactForecastOutlierFreeSeries[i],
 outlierFreeForecast[i],
 probabilityLimits[i],
 psiWeights[i]);
}
}
ARMA parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>8.891421</td>
</tr>
<tr>
<td>ar[0]</td>
<td>0.944052</td>
</tr>
<tr>
<td>ar[1]</td>
<td>-0.150404</td>
</tr>
<tr>
<td>ma[0]</td>
<td>-0.558928</td>
</tr>
</tbody>
</table>

Number of outliers: 2

Outlier statistics:

<table>
<thead>
<tr>
<th>Time point</th>
<th>Outlier type</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
</tr>
</tbody>
</table>

RSE: 1.004306
AIC: 1323.617443

* * * Forecast Table for outlier contaminated series * * *

<table>
<thead>
<tr>
<th>Exact</th>
<th>forecast</th>
<th>limits</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.6384</td>
<td>42.3158</td>
<td>1.9684</td>
<td>1.5030</td>
</tr>
<tr>
<td>41.7089</td>
<td>42.7933</td>
<td>3.5535</td>
<td>1.2685</td>
</tr>
<tr>
<td>43.9399</td>
<td>43.2822</td>
<td>4.3430</td>
<td>0.9715</td>
</tr>
<tr>
<td>45.4284</td>
<td>43.6718</td>
<td>4.7453</td>
<td>0.7263</td>
</tr>
<tr>
<td>44.4558</td>
<td>43.9662</td>
<td>4.9560</td>
<td>0.5396</td>
</tr>
<tr>
<td>45.1762</td>
<td>44.1854</td>
<td>5.0686</td>
<td>0.4002</td>
</tr>
<tr>
<td>45.3489</td>
<td>44.3482</td>
<td>5.1294</td>
<td>0.2966</td>
</tr>
<tr>
<td>45.1893</td>
<td>44.4688</td>
<td>5.1625</td>
<td>0.2198</td>
</tr>
<tr>
<td>46.3755</td>
<td>44.5582</td>
<td>5.1806</td>
<td>0.1629</td>
</tr>
<tr>
<td>45.6083</td>
<td>44.6245</td>
<td>5.1906</td>
<td>0.1207</td>
</tr>
</tbody>
</table>

* * * Forecast Table for outlier free series * * *

<table>
<thead>
<tr>
<th>Exact</th>
<th>forecast</th>
<th>limits</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.1384</td>
<td>40.5904</td>
<td>1.9684</td>
<td>1.5030</td>
</tr>
<tr>
<td>39.2089</td>
<td>41.0679</td>
<td>3.5535</td>
<td>1.2685</td>
</tr>
<tr>
<td>41.4399</td>
<td>41.5567</td>
<td>4.3430</td>
<td>0.9715</td>
</tr>
<tr>
<td>42.9284</td>
<td>41.9464</td>
<td>4.7453</td>
<td>0.7263</td>
</tr>
<tr>
<td>41.9558</td>
<td>42.2407</td>
<td>4.9560</td>
<td>0.5396</td>
</tr>
<tr>
<td>42.6762</td>
<td>42.4600</td>
<td>5.0686</td>
<td>0.4002</td>
</tr>
<tr>
<td>42.8489</td>
<td>42.6227</td>
<td>5.1294</td>
<td>0.2966</td>
</tr>
<tr>
<td>42.6893</td>
<td>42.7434</td>
<td>5.1625</td>
<td>0.2198</td>
</tr>
<tr>
<td>43.8755</td>
<td>42.8328</td>
<td>5.1806</td>
<td>0.1629</td>
</tr>
<tr>
<td>43.1083</td>
<td>42.8991</td>
<td>5.1906</td>
<td>0.1207</td>
</tr>
</tbody>
</table>

AutoARIMA class

```java
public class com.imsl.stat.AutoARIMA implements Serializable, Cloneable
```

1000 • AutoARIMA
JMSL
Automatically identifies time series outliers, determines parameters of a multiplicative seasonal ARIMA \((p, 0, q) \times (0, d, 0)_s\) model and produces forecasts that incorporate the effects of outliers whose effects persist beyond the end of the series.

Class \texttt{AutoARIMA} determines the parameters of a multiplicative seasonal ARIMA \((p, 0, q) \times (0, d, 0)_s\) model, and then uses the fitted model to identify outliers and prepare forecasts. The order of this model can be specified or automatically determined through use of an overloaded \texttt{compute} method. Potential missing values in the time series are estimated prior to the parameter and outlier computations.

The ARIMA \((p, 0, q) \times (0, d, 0)_s\) model handled by class \texttt{AutoARIMA} has the following form:

\[
\phi(B)\Delta^d_s(Y_t - \mu) = \theta(B)a_t, \quad t = 1, 2, \ldots, n,
\]

where

\[
\phi(B) = 1 - \phi_1B - \phi_2B^2 - \ldots - \phi_pB^p, \quad \theta(B) = 1 - \theta_1B - \theta_2B^2 - \ldots - \theta_qB^q, \quad \Delta^d_s = (1 - B_s)^d
\]

and

\[
B^kY_t = Y_{t-k}
\]

It is assumed that all roots of \(\phi(B)\) and \(\theta(B)\) lie outside the unit circle. Clearly, if \(s = 1\) the model reduces to the traditional ARIMA \((p, d, q)\) model.

\(Y_t\) is the unobserved, outlier-free time series with mean \(\mu\), and white noise \(a_t\). This model is referred to as the underlying, outlier-free model. Class \texttt{AutoARIMA} does not assume that this series is observable. It assumes that the observed values might be contaminated by one or more outliers, whose effects are added to the underlying outlier-free series:

\[
Y_t^* = Y_t + \text{outlierEffect}_t
\]

Outlier identification uses the algorithm developed by Chen and Liu (1993). Outliers are classified into 1 of 5 types:

1. innovational
2. additive
3. level shift
4. temporary change and
5. unable to identify

Once the model parameters are estimated and the outliers are identified, class \texttt{AutoARIMA} estimates \(Y_t\), the outlier-free series representation of the data, by removing the estimated outlier effects. Parameter estimation and outlier detection are based on methods from class \texttt{ARMAOutlierIdentification}.

Using the information about the adjusted ARIMA \((p, 0, q) \times (0, d, 0)_s\) model and the removed outliers, forecasts are then prepared for the outlier-free series. Outlier effects are added to these forecasts to produce a forecast for the observed series, \(Y_t^*\). If there are no outliers, then the forecasts for the outlier-free series and the observed series will be identical.
Model selection techniques

Users have an option of either specifying specific values for p, q, s, d or have class AutoARIMA automatically select best fit values. Model selection can be conducted in one of three ways listed below depending upon which compute method of class AutoARIMA is invoked.

Technique 1: Automatic ARIMA($p,0,0) \times (0,d,0)$, Selection

This technique, chosen by use of method compute(int maxlag), tries to fit a model of the form

$$\phi(B)\Delta^d_s(Y_t - \mu) = a_t$$

to the outlier free series Y_t.

It initially searches for the AR(p) representation with minimum value of the chosen information criterion (AIC, AICC or BIC) for the noisy data, where $p = 0, \ldots, \text{maxlag}$.

If the user calls methods setPeriods and setDifferenceOrders prior to invoking the compute method, then the values in arrays periods and orders are included in the search to find an optimum ARIMA($p,0,0) \times (0,d,0)$, representation of the series. Here, every possible combination of values for s, d in periods and orders, respectively, are examined. The best found model order is then used as input for the parameter and outlier detection routine.

The optimum values for p, q, s and d are returned through method getOptimumModelOrder.

Technique 2: Grid Search

This technique, chosen by means of method compute(int[] arOrders, int[] maOrders), conducts a grid search for p and q using all possible combinations of candidate values in arOrders and maOrders.

If methods setPeriods and setDifferenceOrders are called prior to invoking the compute method, then the grid search is extended to include the candidate values for s and d given in arrays periods and orders, respectively.

If method setDifferenceOrders is not called prior to compute, then $d = 0$ by default, and therefore no seasonal adjustment is attempted. The grid search is then restricted to searching for optimum values of p and q only.

The optimum values for p, q, s and d are contained in the array returned by method getOptimumModelOrder.

Technique 3: Specified ARIMA($p,0,q) \times (0,d,0)$, Model

In the third technique, selectable by means of method compute(int p, int q, int s, int d), specific values for p, q, s and d are given. This technique has essentially the same functionality as class ARMAOutlierIdentification but with the additional option of missing value estimation.

Outliers

The algorithm of Chen and Liu (1993) is used to identify outliers. The number of outliers identified is returned via method getNumberOfOutliers. Both the time and classification for these outliers are contained in the matrix returned by method getOutlierStatistics. Outliers are classified into one of five categories based upon the standardized statistic for each outlier type. The time at which the outlier occurred is given in the first column of the returned matrix. The outlier identifier returned in the second
column is according to the descriptions in the following table:

<table>
<thead>
<tr>
<th>Outlier Identifier</th>
<th>Name</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNOVATIONAL</td>
<td>Innovational Outlier (IO)</td>
<td>Innovational outliers persist. That is, there is an initial impact at the time the outlier occurs. This effect continues in a lagged fashion with all future observations. The lag coefficients are determined by the coefficients of the underlying ARIMA($p, 0, q$) × ($0, d, 0$) model.</td>
</tr>
<tr>
<td>ADDITIVE</td>
<td>Additive Outlier (AO)</td>
<td>Additive outliers do not persist. As the name implies, an additive outlier affects only the observation at the time the outlier occurs. Hence additive outliers have no effect on future forecasts.</td>
</tr>
<tr>
<td>LEVEL_SHIFT</td>
<td>Level Shift (LS)</td>
<td>Level shift outliers persist. They have the effect of either raising or lowering the mean of the series starting at the time the outlier occurs. This shift in the mean is abrupt and permanent.</td>
</tr>
<tr>
<td>TEMPORARY_CHANGE</td>
<td>Temporary Change (TC)</td>
<td>Temporary change outliers persist and are similar to level shift outliers with one major exception. Like level shift outliers, there is an abrupt change in the mean of the series at the time this outlier occurs. However, unlike level shift outliers, this shift is not permanent. The TC outlier gradually decays, eventually bringing the mean of the series back to its original value. The rate of this decay is modeled using method setDelta. The default of delta = 0.7 is the value recommended for general use by Chen and Liu (1993).</td>
</tr>
<tr>
<td>UNABLE_TO_IDENTIFY</td>
<td>Unable to Identify (UI)</td>
<td>If an outlier is identified as the last observation, then the algorithm is unable to determine the outlier’s classification. For forecasting, a UI outlier is treated as an IO outlier. That is, its effect is lagged into the forecasts.</td>
</tr>
</tbody>
</table>

Except for additive outliers (AO), the effect of an outlier persists to observations following that outlier. Forecasts produced by methods of class AutoARIMA take this into account.

For more information on forecasting an outlier contaminated series, see the description of class ARMAOutlierIdentification.
Fields

ADDITIVE
static final public int ADDITIVE

Indicates detection of an additive outlier.

AIC
static final public int AIC

Indicates that Akaike’s information criterion (AIC) is used in the optimum model determination.

AICC
static final public int AICC

Indicates that Akaike’s corrected information criterion (AICC) is used in the optimum model determination.

BIC
static final public int BIC

Indicates that the Bayesian information criterion (BIC) is used in the optimum model determination.

INNOVATIONAL
static final public int INNOVATIONAL

Indicates detection of an innovational outlier.

LEVEL_SHIFT
static final public int LEVEL_SHIFT

Indicates detection of a level shift outlier.

TEMPORARY_CHANGE
static final public int TEMPORARY_CHANGE

Indicates detection of a temporary change outlier.

UNABLE_TO_IDENTIFY
static final public int UNABLE_TO_IDENTIFY

Indicates detection of an outlier that can not be categorized.

Constructor

AutoARIMA
public AutoARIMA(int[] times, double[] x)
Description
Constructor for AutoARIMA.

Parameters
- `times` – an int array of length nObs, where nObs is the number of observed time series values, containing the time points \(t_1, \ldots, t_{nObs}\) at which the time series was observed. It is required that \(t_1, \ldots, t_{nObs}\) are in strictly increasing order. Times for missing values are identified as non-incremental gaps in this series. A gap of missing values in \(x\) is assumed if the difference between two consecutive values is greater than 1, i.e. \(t_{i+1} - t_i > 1\). The difference is the number of missing values in the gap.
- `x` – a double array containing the observations \(Y_1^*, Y_2^*, \ldots, Y_{nObs}^*\) at the times given in array `times`. This series can contain outliers and missing observations.

Methods

compute
```java
final public void compute(int maxlag) throws ARMA.MatrixSingularException,
    ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
    ARMA.NewInitialGuessException, ARMA.IllConditionedException,
    ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
    ARMA.TooManyJacobianEvalException,
    ARAutoUnivariate.TriangularMatrixSingularException,
    ARMAMaxLikelihood.NonInvertibleException,
    ARMAMaxLikelihood.NonStationaryException,
    ZeroPolynomial.DidNotConvergeException, SingularMatrixException,
    Cholesky.NotSPDException, AutoARIMA.NoAcceptableModelFoundException
```

Description
Estimates potential missing values, detects and determines outliers and simultaneously fits an optimum model from a set of different ARIMA\((p, 0, 0) \times (0, d, 0)\) models to the outlier free time series.

Parameter
- `maxlag` – the maximum value for \(p\) allowed when fitting ARIMA\((p, 0, 0) \times (0, d, 0)\) models to the given series, \(0 \leq p \leq \text{maxlag}\). It is required that \(1 \leq \text{maxlag} \leq x.length\). The optimum ARIMA\((p, 0, 0) \times (0, d, 0)\) model is determined according to the model selection criterion chosen by the user, see method `setModelSelectionCriterion`.

Exceptions
- `ARMA.MatrixSingularException` is thrown if the input matrix is singular.
- `ARMA.TooManyCallsException` is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
- `ARMA.IncreaseErrRelException` is thrown if the bound for the relative error is too small.
- `ARMA.NewInitialGuessException` is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input matrix to ARAutoUnivariate is singular.
ARMAMaxLikelihood.NonInvertibleException is thrown if the intermediate or final maximum likelihood estimates for the time series are noninvertible.
ARMAMaxLikelihood.NonStationaryException is thrown if the intermediate or final maximum likelihood estimates for the time series are nonstationary.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms are noninvertible. In this case, ARMAMaxLikelihood terminates and does not compute the time series estimates.
ZeroPolynomial.DidNotConvergeException is thrown if the algorithm computing the roots of the AR- or MA- polynomial does not converge.
SingularMatrixException is thrown if during the computation of a small perturbation of the matrix product $A^T A$, it is found that A, the matrix used in the determination of the ω weights, is singular.
Cholesky.NotSPDException is thrown if during the computation of a small perturbation of the matrix product $A^T A$, it is found that A, the matrix used in the determination of the ω weights, is not positive definite.
NoAcceptableModelFoundException is thrown if no appropriate ARIMA model for the given time series could be found.

Description
Estimates potential missing values, detects and determines outliers and simultaneously fits an optimum model from a set of different ARIMA($p,0,q$) × (0,d,0) models to the outlier free time series.
Parameters

arOrders – an int array containing all possible AR orders to consider in the optimum model search. It is required that all values in arOrders are greater than or equal to zero.

maOrders – an int array containing all possible MA orders to consider in the optimum model search. It is required that all values in maOrders are greater than or equal to zero.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian evaluations is exceeded.
ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input matrix to ARAutoUnivariate is singular.
ARMAxLikelihood.NonInvertibleException is thrown if the intermediate or final maximum likelihood estimates for the time series are noninvertible.
ARMAxLikelihood.NonStationaryException is thrown if the intermediate or final maximum likelihood estimates for the time series are nonstationary.
ARMAxLikelihood.InitialMAException is thrown if the initial values provided for the moving average terms are noninvertible. In this case, ARMAxLikelihood terminates and does not compute the time series estimates.
ZeroPolynomial.DidNotConvergeException is thrown if the algorithm computing the roots of the AR- or MA-polynomial does not converge.
SingularMatrixException is thrown if during the computation of a small perturbation of the matrix product $A^T A$, it is found that A, the matrix used in the determination of the ω weights, is singular.
Cholesky.NotSPDException is thrown if during the computation of a small perturbation of the matrix product $A^T A$, it is found that A, the matrix used in the determination of the ω weights, is not positive definite.
NoAcceptableModelFoundException is thrown if no appropriate ARIMA model for the given time series could be found.
compute
final public void compute(int p, int q, int s, int d) throws
ARMA.MatrixSingularException, ARMA.TooManyCallsException,
ARMA.IncreaseErrRelException, ARMA.NewInitialGuessException,
ARMA.IllConditionedException, ARMA.TooManyITNException,
ARMA.TooManyFcnEvalException, ARMA.TooManyJacobianEvalException,
ARAutoUnivariate.TriangularMatrixSingularException,
ARMAMaxLikelihood.NonInvertibleException,
ARMAMaxLikelihood.NonStationaryException,
ZeroPolynomial.DidNotConvergeException, SingularMatrixException,
Cholesky.NotSPDException, AutoARIMA.NoAcceptableModelFoundException

Description
Estimates potential missing values, detects and determines outliers and simultaneously fits an
ARIMA(p, 0, q) × (0, d, 0), model to the outlier free time series.

Parameters

p – a non-negative scalar int, the order of the AR part of the model.
q – a non-negative scalar int, the order of the MA part of the model.
s – a positive scalar int, the period of the difference used in the model.
d – a non-negative scalar int, the order of the difference used in the model.

Exceptions

ARMA.MatrixSingularException is thrown if the input matrix is singular.
ARMA.TooManyCallsException is thrown if the number of calls to the function has exceeded the
maximum number of iterations times the number of moving average (MA) parameters + 1.
ARMA.IncreaseErrRelException is thrown if the bound for the relative error is too small.
ARMA.NewInitialGuessException is thrown if the iteration has not made good progress.
ARMA.IllConditionedException is thrown if the problem is ill-conditioned.
ARMA.TooManyITNException is thrown if the maximum number of iterations is exceeded.
ARMA.TooManyFcnEvalException is thrown if the maximum number of function evaluations is
exceeded.
ARMA.TooManyJacobianEvalException is thrown if the maximum number of Jacobian
evaluations is exceeded.
ARAutoUnivariate.TriangularMatrixSingularException is thrown if the input matrix to
ARAutoUnivariate is singular.
ARMAMaxLikelihood.NonInvertibleException is thrown if the intermediate or final
maximum likelihood estimates for the time series are noninvertible.
ARMAMaxLikelihood.NonStationaryException is thrown if the intermediate or final
maximum likelihood estimates for the time series are nonstationary.
ARMAMaxLikelihood.InitialMAException is thrown if the initial values provided for the
moving average terms are noninvertible. In this case, ARMAMaxLikelihood terminates and does
not compute the time series estimates.
ZeroPolynomial.DidNotConvergeException is thrown if the algorithm computing the roots of the AR- or MA- polynomial does not converge.

SingularMatrixException is thrown if during the computation of a small perturbation of the matrix product A^TA, it is found that A, the matrix used in the determination of the ω weights, is singular.

Cholesky.NotSPDException is thrown if during the computation of a small perturbation of the matrix product A^TA, it is found that A, the matrix used in the determination of the ω weights, is not positive definite.

NoAcceptableModelFoundException is thrown if no appropriate ARIMA model for the given time series could be found.

forecast

```java
final public void forecast(int nForecast)
```

Description
Computes forecasts, associated probability limits and ψ weights for the given outlier contaminated time series. Note that one of the `compute` methods must be invoked first before invoking this method. Otherwise, the method throws an `IllegalStateException` exception.

Parameter
- `nForecast` – an int scalar representing the number of forecasts that will be computed. `nForecast` must be greater than 0. Forecast origin is the time point of the last observed value in the time series, $t_{n_{Obs}}$. Forecasts are computed for lead times 1, 2, ..., nForecast, i.e. time points $t_{n_{Obs}} + 1, t_{n_{Obs}} + 2, ..., t_{n_{Obs}} + n_{Forecast}$.

getAIC

```java
public double getAIC()
```

Description
Returns Akaike’s information criterion (AIC) for the optimum model.

Returns
a double scalar containing Akaike’s information criterion (AIC) for the optimum outlier free series. One of the `compute` methods must be called before invoking this method. Otherwise, an `IllegalStateException` exception is thrown.

getAICC

```java
public double getAICC()
```

Description
Returns Akaike’s Corrected Information Criterion (AICC) for the optimum model.

Returns
a double scalar containing Akaike’s Corrected Information Criterion (AICC) for the optimum outlier free series. One of the `compute` methods must be called before invoking this method. Otherwise, an `IllegalStateException` exception is thrown.
getAR

public double[] getAR()

Description

Returns the final autoregressive parameter estimates of the optimum model. Note that one of the compute methods must be invoked first before invoking this method. Otherwise, the method throws an `IllegalStateException` exception.

Returns

a `double` array containing the final autoregressive parameter estimates. If the optimum model has no AR component then a zero-length array is returned.

getBIC

public double getBIC()

Description

Returns the Bayesian Information Criterion (BIC) for the optimum model.

Returns

a `double` scalar containing the Bayesian Information Criterion (BIC) for the optimum outlier free series. One of the compute methods must be called before invoking this method. Otherwise, an `IllegalStateException` exception is thrown.

getCompleteTimeSeries

public double[] getCompleteTimeSeries()

Description

Returns the original series with potentially missing values replaced by estimates.

Returns

a `double` array containing the original time series with missing values replaced by estimates. One of the compute methods must be called before invoking this method. Otherwise, an `IllegalStateException` exception is thrown.

getCompleteTimes

public int[] getCompleteTimes()

Description

Returns all time points at which the original series was observed, including values for times with missing values in x.

Returns

an `int` array of length `times.length-1-times[0]+1` containing the times at which the time series (including missing values) was observed. One of the compute methods must be called before invoking this method. Otherwise, an `IllegalStateException` exception is thrown.

getConstant

public double getConstant()
Description
Returns the constant parameter estimate for the optimum model. Note that one of the compute methods must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.

Returns
a double scalar containing the constant parameter estimate for the optimum model.

getDeviations
public double[] getDeviations()

Description
Returns the deviations used for calculating the forecast confidence limits.

Returns
a double array of length nForecast containing the deviations from each forecast for calculating forecast confidence intervals. The confidence level is specified in confidence. Method forecast must be invoked before this method is called. Otherwise, an IllegalStateException exception is thrown. By default, confidence = 0.95.

getForecast
public double[] getForecast()

Description
Returns forecasts for the original outlier contaminated series.

Returns
a double array of length nForecast containing the forecasts for the original series. Forecast origin is the time point of the last observed value in the time series, \(t_{n\text{Obs}} \). Forecasts are returned for lead times 1, 2, \ldots, nForecast, i.e. time points \(t_{n\text{Obs}} + 1, t_{n\text{Obs}} + 2, \ldots, t_{n\text{Obs}} + n\text{Forecast} \). Method forecast must be invoked before this method is called. Otherwise, an IllegalStateException exception is thrown.

getMA
public double[] getMA()

Description
Returns the final moving average parameter estimates of the optimum model. Note that one of the compute methods must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.

Returns
a double array containing the final moving average parameter estimates. If the optimum model has no MA component then a zero-length array is returned.

getNumberOfOutliers
public int getNumberOfOutliers()

Description
Returns the number of outliers detected.
Returns an int scalar containing the number of outliers detected. The compute method must be invoked first before invoking this method. Otherwise, the method throws an IllegalStateException exception.

getOptimumModelOrder

```java
public int[] getOptimumModelOrder()
```

Description

Returns the order \((p, 0, q) \times (0, d, 0)\) of the optimum model. Note that one of the compute methods must be invoked first before calling this method. Otherwise, an IllegalStateException exception is thrown.

Returns

an int array of length 4 containing the values \(p, q, s\) and \(d\) for the optimum model.

getOutlierFreeForecast

```java
public double[] getOutlierFreeForecast()
```

Description

Returns forecasts for the outlier free series.

Returns

da double array of length \(n_{\text{Forecast}}\) containing the forecasts for the outlier free series. Forecast origin is the time point of the last observed value in the time series, \(t_{\text{Obs}}\). Forecasts are returned for lead times \(1, 2, \ldots, n_{\text{Forecast}}\), i.e. time points \(t_{\text{Obs}} + 1, t_{\text{Obs}} + 2, \ldots, t_{\text{Obs}} + n_{\text{Forecast}}\). Method forecast must be invoked before this method is called. Otherwise, an IllegalStateException exception is thrown.

getOutlierFreeSeries

```java
public double[] getOutlierFreeSeries()
```

Description

Returns the outlier free series.

Returns

da double array containing the original time series with estimated missing values after removal of any outlier effects. One of the compute methods must be called before invoking this method. Otherwise, an IllegalStateException exception is thrown.

getOutlierStatistics

```java
public int[][] getOutlierStatistics()
```

Description

Returns the outlier statistics.

Returns

da double array of length \(n_{\text{Outliers}}\) by 2, where \(n_{\text{Outliers}}\) is the number of detected outliers, containing the outlier statistics. The first column contains the time at which the outlier was observed (time ranging from \(\text{times}[0]\) to \(\text{times}[\text{times.length} - 1]\)) and the second column contains an identifier indicating the type of outlier observed. Outlier types fall into one of five categories:
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Outlier type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNOVATIONAL</td>
<td>Innovational Outliers (IO)</td>
</tr>
<tr>
<td>ADDITIVE</td>
<td>Additive Outliers (AO)</td>
</tr>
<tr>
<td>LEVEL_SHIFT</td>
<td>Level Shift Outliers (LS)</td>
</tr>
<tr>
<td>TEMPORARY_CHANGE</td>
<td>Temporary Change Outliers (TC)</td>
</tr>
<tr>
<td>UNABLE_TO_IDENTIFY</td>
<td>Unable to Identify (UI)</td>
</tr>
</tbody>
</table>

If the number of detected outliers equals zero, then an array of length zero is returned.

__getPsiWeights__

```java
public double[] getPsiWeights()
```

Description

Returns the ψ weights of the infinite order moving average form of the model.

Returns

a double array of length `nForecast` containing the ψ weights of the infinite order moving average form of the optimum model for the outlier free series. Method `forecast` must be invoked before this method is called. Otherwise, an `IllegalStateException` exception is thrown.

__getResidualStandardError__

```java
public double getResidualStandardError()
```

Description

Returns the residual standard error of the outlier free series. Note that one of the `compute` methods must be invoked first before calling this method. Otherwise, an `IllegalStateException` exception is thrown.

Returns

a double scalar containing the standard error of the outlier free series.

__getResiduals__

```java
public double[] getResiduals()
```

Description

Returns the residuals. Note that one of the `compute` methods must be invoked first before invoking this method. Otherwise, `getResiduals` throws an `IllegalStateException` exception.

Returns

a double array containing the residuals for the outlier and gap free series at the final parameter estimation point.

__setAccuracyTolerance__

```java
public void setAccuracyTolerance(double epsilon)
```

Description

Sets the tolerance value controlling the accuracy of the parameter estimates.
Parameter

epsilon – a double scalar, a positive tolerance value controlling the accuracy of parameter estimates during outlier detection. Default: \(\epsilon = 0.001 \).

setConfidence
public void setConfidence(double confidence)

Description
Sets the confidence level for calculating confidence limit deviations returned by getDeviations.

Parameter

certainty – a double scalar specifying the confidence level used in computing forecast confidence intervals. Typical choices for \(\text{confidence} \) are 0.90, 0.95, and 0.99. \(\text{confidence} \) must be greater than 0.0 and less than 1.0. Default: \(\text{confidence} = 0.95 \).

setCriticalValue
public void setCriticalValue(double critical)

Description
Sets the critical value used as a threshold during outlier detection.

Parameter

critical – a double scalar, the critical value used as a threshold for the statistics used in the outlier detection. \(\text{critical} \) must be greater than zero. Default: \(\text{critical} = 3.0 \).

setDelta
public void setDelta(double delta)

Description
Sets the dampening effect parameter.

Parameter

delta – a double scalar, the dampening effect parameter used in the detection of a Temporary Change Outlier (TC). \(\text{delta} \) must be greater than 0 and less than 1. Default: \(\text{delta} = 0.7 \).

setDifferenceOrders
public void setDifferenceOrders(int[] orders)

Description
Defines the orders of the periodic differences used in the determination of the optimum model.

Parameter

orders – an int array containing all possible orders for each difference given in periods. All elements in orders must be non-negative. By default, orders is a one-element array with \(\text{orders}[0] = 0 \).

setMaximumARLag
public void setMaximumARLag(int maxARLag)
Description

Defines the maximum AR lag used in the determination of the optimum (s,d) combination of method `compute(int[] arOrders, int[] maOrders)`.

Parameter

`maxARLag` – a scalar `int`, the maximum AR lag used in the computation of the optimum (s,d) combination for method `compute(int[] arOrders, int[] maOrders)`. It is required that `maxARLag` is greater than zero and smaller than the original series after replacement of potential missing values. By default, `maxARLag = 10`.

setModelSelectionCriterion

`public void setModelSelectionCriterion(int infoCriterion)`

Description

Sets the model selection criterion.

Parameter

`infoCriterion` – an `int` scalar indicating the model selection criterion used in the search for the optimum model.

<table>
<thead>
<tr>
<th>infoCriterion</th>
<th>Model selection criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Akaike’s information criterion (AIC)</td>
</tr>
<tr>
<td>AICC</td>
<td>Akaike’s corrected information criterion (AICC)</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian information criterion (BIC)</td>
</tr>
</tbody>
</table>

By default, AIC is chosen.

setPeriods

`public void setPeriods(int[] periods)`

Description

Defines the periods used in the determination of the optimum model.

Parameter

`periods` – an `int` array containing all possible periods that can be applied to the original series after insertion of missing values. All elements of `periods` must be positive. By default, `periods` is a one-element array with `periods[0] = 1`;

setRelativeError

`public void setRelativeError(double relativeError)`

Description

Sets the stopping criterion for use in the nonlinear equation solver.

Parameter

`relativeError` – a `double` positive scalar containing the stopping criterion for use in the nonlinear equation solver used in the least-squares algorithm. Default: `relativeError = 2.2204460492503131e-012`.
Example 1: Determination of an optimum AR(p) model

This example uses time series LNU03327709 from the US Department of Labor, Bureau of Labor Statistics. It contains the unadjusted special unemployment rate, taken monthly from January 1994 through September 2005. The values 01/2004 - 03/2005 are used by class autoARIMA for outlier detection and parameter estimation. In this example, method 1, without seasonal adjustment, is chosen to find an appropriate AR(p) model. A forecast is done for the following six months and compared with the actual values 04/2005 - 09/2005.

```java
import java.util.*;
import com.imsl.stat.*;

public class AutoARIMAEx1 {
    public static void main(String args[]) throws Exception {
        int nOutliers;
        double aic, RSE, constant;
        int[] optimumModel;
        int[][] outlierStatistics;
        double[] outlierForecast, ar, ma;
        double[] psiWeights, probabilityLimits;
        double[] x = {
            12.8, 12.2, 11.9, 10.9, 10.6, 11.3, 11.1, 10.4, 10.0, 9.7, 9.7, 9.7,
            11.1, 10.5, 10.3, 9.8, 9.8, 10.4, 10.4, 10.0, 9.7, 9.3, 9.6, 9.7,
            10.8, 10.7, 10.3, 9.7, 9.5, 10.0, 10.0, 9.3, 9.0, 8.8, 8.9, 9.2,
            10.4, 10.0, 9.6, 9.0, 8.5, 9.2, 9.0, 8.6, 8.3, 7.9, 8.0, 8.2,
            9.3, 8.9, 8.9, 7.7, 7.6, 8.4, 8.5, 7.8, 7.6, 7.3, 7.2, 7.3,
            8.5, 8.2, 7.9, 7.4, 7.1, 7.9, 7.7, 7.2, 7.0, 6.7, 6.8, 6.9,
            7.8, 7.6, 7.4, 6.6, 6.8, 7.2, 7.2, 7.0, 6.6, 6.3, 6.8, 6.7,
            8.1, 7.9, 7.6, 7.1, 7.2, 8.2, 8.1, 8.1, 8.2, 8.7, 9.0, 9.3,
            10.5, 10.1, 9.9, 9.4, 9.2, 9.8, 9.9, 9.5, 9.0, 9.0, 9.4, 9.6,
            11.0, 10.8, 10.4, 9.8, 9.7, 10.6, 10.5, 10.0, 9.8, 9.5, 9.7, 9.6,
            10.9, 10.3, 10.4, 9.3, 9.3, 9.8, 9.8, 9.3, 8.9, 9.1, 9.1, 9.1,
            10.2, 9.9, 9.4
        };
        double[] exactForecast = {8.7, 8.6, 9.3, 9.1, 8.8, 8.5};
        int[] times = {
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
            13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
            25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
            37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
            49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
            61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
            73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
            85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
            97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
            109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
            121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
            133, 134, 135
        };
        AutoARIMA autoArima = new AutoARIMA(times, x);
        autoArima.setCriticalValue(3.8);
        autoArima.compute(5);
        autoArima.forecast(6);
    }
}
```
nOutliers = autoArima.getNumberOfOutliers();
aic = autoArima.getAIC();
optimumModel = autoArima.getOptimumModelOrder();
outlierStatistics = autoArima.getOutlierStatistics();
RSE = autoArima.getResidualStandardError();
outlierForecast = autoArima.getForecast();
psiWeights = autoArima.getPsiWeights();
probabilityLimits = autoArima.getDeviations();
constant = autoArima.getConstant();
ar = autoArima.getAR();
ma = autoArima.getMA();
System.out.printf("%nMethod 1: Automatic AR model selection" + ", no differencing%n");
System.out.printf("%nOptimum Model: p=%d, q=%d, s=%d, d=%d%n",
opimumModel[0], optimumModel[1],
opimumModel[2], optimumModel[3]);
System.out.print("%nNumber of outliers:%3d%n%n", nOutliers);
System.out.print("%nOutlier statistics:%n");
System.out.printf(" Time%4sType%n", " ");
for (int i = 0; i < nOutliers; i++)
 System.out.printf("%5d%8d%n", outlierStatistics[i][0],
 outlierStatistics[i][1]);
System.out.printf("%nAIC:%12.6f%n", aic);
System.out.printf("RSE:%12.6f%n%n", RSE);
System.out.print("%n6sParameters%n", " ");
for (int i = 0; i < ar.length; i++)
 System.out.printf(" constant:%12.6f%n", constant);
for (int i = 0; i < ma.length; i++)
 System.out.printf(" constant:%15.6f%n", ar[i], ma[i]);
System.out.printf("%n%6s* * * Forecast Table * * *%n", " ");
System.out.printf("%n2sExact%3sforecast%5slimits%8sspsi%n",
 exactForecast.length, outlierForecast.length,
 probabilityLimits.length, psiWeights.length);
for (int i = 0; i < outlierForecast.length; i++)
 System.out.printf("%7.4f%11.4f%11.4f%11.4f%n",
 exactForecast[i], outlierForecast[i],
 probabilityLimits[i], psiWeights[i]);

Output

Method 1: Automatic AR model selection, no differencing

Optimum Model: p=5, q=0, s=1, d=0

Number of outliers: 7

Chapter 19. Time Series and Forecasting AutoARIMA ● 1017
Outlier statistics:

<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>0</td>
</tr>
<tr>
<td>121</td>
<td>0</td>
</tr>
</tbody>
</table>

AIC: 371.104676
RSE: 0.359632

Parameters
- constant: 0.097541
- ar[0]: 0.891872
- ar[1]: -0.123830
- ar[2]: -0.138262
- ar[3]: 0.135621
- ar[4]: 0.224112

* * * Forecast Table * * *

<table>
<thead>
<tr>
<th>Exact</th>
<th>forecast</th>
<th>limits</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7000</td>
<td>9.1076</td>
<td>0.7049</td>
<td>0.8919</td>
</tr>
<tr>
<td>8.6000</td>
<td>9.0993</td>
<td>0.9445</td>
<td>0.6716</td>
</tr>
<tr>
<td>9.3000</td>
<td>9.4032</td>
<td>1.0565</td>
<td>0.3503</td>
</tr>
<tr>
<td>9.1000</td>
<td>9.5806</td>
<td>1.0849</td>
<td>0.2416</td>
</tr>
<tr>
<td>8.8000</td>
<td>9.5506</td>
<td>1.0982</td>
<td>0.4243</td>
</tr>
<tr>
<td>8.5000</td>
<td>9.3932</td>
<td>1.1382</td>
<td>0.5910</td>
</tr>
</tbody>
</table>

Example 2: Determination of an optimum ARIMA model via Grid search

This is the same as Example 1, except now class autoARIMA uses Method 2 with a possible seasonal adjustment. As a result, the unadjusted model with p = 3, q = 2, s = 1, d = 0 is chosen as optimum.

```java
import java.util.*;
import com.imsl.stat.*;

public class AutoARIMAEx2 {
    public static void main(String args[]) throws Exception {
        int nOutliers;
        double aic, RSE, constant;
        int[] optimumModel;
        int[][] outlierStatistics;
        double[] outlierForecast, ar, ma;
        double[] psiWeights, probabilityLimits;
        int[] arOrders = {0, 1, 2, 3};
        int[] maOrders = {0, 1, 2, 3};
```
```java
int[] periods = {1, 2};
int[] orders = {0, 1, 2};
double[] x = {
    12.8, 12.2, 11.9, 10.9, 10.6, 11.3, 11.1, 10.4, 10.0, 9.7, 9.7, 9.7,
    11.1, 10.5, 10.3, 9.8, 9.8, 10.4, 10.4, 10.0, 9.7, 9.3, 9.6, 9.7,
    10.8, 10.7, 10.3, 9.7, 9.5, 10.0, 10.0, 9.3, 9.0, 8.8, 8.9, 9.2,
    10.4, 10.0, 9.6, 9.0, 8.5, 9.2, 9.0, 8.6, 8.3, 7.9, 8.0, 8.2,
    9.3, 8.9, 8.9, 7.7, 7.6, 8.4, 8.5, 7.8, 7.6, 7.3, 7.2, 7.3,
    8.5, 8.2, 7.9, 7.4, 7.1, 7.9, 7.7, 7.2, 7.0, 6.7, 6.8, 6.9,
    7.8, 7.6, 7.4, 6.6, 6.8, 7.2, 7.2, 7.0, 6.6, 6.3, 6.8, 6.7,
    8.1, 7.9, 7.6, 7.1, 7.2, 8.2, 8.1, 8.1, 8.2, 8.7, 9.0, 9.3,
    10.5, 10.1, 9.9, 9.4, 9.2, 9.8, 9.9, 9.5, 9.0, 9.0, 9.4, 9.6,
    11.0, 10.8, 10.4, 9.8, 9.7, 10.6, 10.5, 10.0, 9.8, 9.5, 9.7, 9.6,
    10.9, 10.3, 10.4, 9.3, 9.3, 9.8, 9.8, 9.3, 8.9, 9.1, 9.1, 9.1,
    10.2, 9.9, 9.4
};
double[] exactForecast = {8.7, 8.6, 9.3, 9.1, 8.8, 8.5};
int[] times = {
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
    13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
    37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
    49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
    61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
    73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
    85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
    97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
    109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
    121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
    133, 134, 135
};
AutoARIMA autoArima = new AutoARIMA(times, x);
autoArima.setCriticalValue(3.8);
autoArima.setMaximumARLag(5);
autoArima.setPeriods(periods);
autoArima.setDifferenceOrders(orders);
autoArima.compute(arOrders, maOrders);
autoArima.forecast(6);

nOutliers = autoArima.getNumberOfOutliers();
aic = autoArima.getAIC();
optimumModel = autoArima.getOptimumModelOrder();
outlierStatistics = autoArima.getOutlierStatistics();
RSE = autoArima.getResidualStandardError();
outlierForecast = autoArima.getForecast();
psiWeights = autoArima.getPsiStandardError();
probabilityLimits = autoArima.getDeviations();
constant = autoArima.getConstant();
ar = autoArima.getAR();
ma = autoArima.getMA();
```

System.out.printf("\nMethod 2: Grid search with " + \"differencing\n"); System.out.printf("\nOptimum Model: p=%d, q=%d, s=%d, d=%d\n", optimumModel[0], optimumModel[1],
```
Output

Method 2: Grid search with differencing

Optimum Model: p=3, q=2, s=1, d=0

Number of outliers: 1

Outlier statistics:

<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>0</td>
</tr>
</tbody>
</table>

AIC: 408.108176
RSE: 0.412456

Parameters
constant: 0.554459
ar[0]: 1.940615
ar[1]: -1.898025
ar[2]: 0.897791
ma[0]: 1.115803
ma[1]: -0.919192

* * * Forecast Table * * *

1020 • AutoARIMA JMSL
Example 3: Specified ARIMA model

This example is the same as example 2 but now method 3 with the optimum model parameters \( p = 3, q = 2, s = 1, d = 0 \) from Example 2 is chosen for outlier detection and forecasting.

```java
import java.util.*;
import com.imsl.stat.*;

public class AutoARIMAEx3 {
 public static void main(String args[]) throws Exception {
 int nOutliers;
 double aic, RSE, constant;
 int[] optimumModel;
 int[][] outlierStatistics;
 double[] outlierForecast, ar, ma;
 double[] psiWeights, probabilityLimits;
 double[] x = {
 12.8, 12.2, 11.9, 10.9, 10.6, 11.3, 11.1, 10.4, 10.0, 9.7, 9.7, 9.7, 10.7, 10.7, 10.3, 9.8, 9.8, 10.4, 10.0, 9.7, 9.3, 9.6, 9.7, 10.8, 10.7, 10.3, 9.7, 9.5, 10.0, 10.0, 9.3, 9.0, 8.8, 8.9, 9.2, 10.4, 10.0, 9.6, 9.0, 8.5, 9.2, 9.0, 8.6, 8.3, 7.9, 8.0, 8.2, 9.3, 8.9, 8.9, 7.7, 7.6, 8.4, 8.5, 7.8, 7.6, 7.3, 7.2, 7.3, 8.5, 8.2, 7.9, 7.4, 7.1, 7.9, 7.7, 7.2, 7.0, 6.7, 6.8, 6.9, 7.8, 7.6, 7.4, 6.6, 6.8, 7.2, 7.2, 7.0, 6.6, 6.3, 6.8, 6.7, 8.1, 7.9, 7.6, 7.1, 7.2, 8.2, 8.1, 8.1, 8.2, 8.7, 9.0, 9.3, 10.5, 10.1, 9.9, 9.4, 9.2, 9.8, 9.9, 9.5, 9.0, 9.0, 9.4, 9.6, 11.0, 10.8, 10.4, 9.8, 9.7, 10.6, 10.5, 10.0, 9.8, 9.5, 9.7, 9.6, 10.9, 10.3, 10.4, 9.3, 9.3, 9.8, 9.8, 9.3, 8.9, 9.1, 9.1, 9.1, 10.2, 9.9, 9.4
 };
 double[] exactForecast = {8.7, 8.6, 9.3, 9.1, 8.8, 8.5};
 int[] times = {
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135
 };
 }
}
```
AutoARIMA autoArima = new AutoARIMA(times, x);
autoArima.setCriticalValue(3.8);
autoArima.compute(3, 2, 1, 0);
autoArima.forecast(6);

nOutliers = autoArima.getNumberOfOutliers();
aic = autoArima.getAIC();
optimumModel = autoArima.getOptimumModelOrder();
outlierStatistics = autoArima.getOutlierStatistics();
RSE = autoArima.getResidualStandardError();
outlierForecast = autoArima.getForecast();
psiWeights = autoArima.getPsiWeights();
probabilityLimits = autoArima.getDeviations();
constant = autoArima.getConstant();
ar = autoArima.getAR();
ma = autoArima.getMA();

System.out.printf("%nMethod 3: Specified ARIMA model%n");
System.out.printf("%nOptimum Model: p=%d, q=%d, s=%d, d=%d%n",
    optimumModel[0], optimumModel[1],
    optimumModel[2], optimumModel[3]);
System.out.printf("%nNumber of outliers:%3d%n%n", nOutliers);
System.out.printf("Outlier statistics:%n");
for (int i = 0; i < nOutliers; i++) {
    System.out.printf("%5d%8d%n", outlierStatistics[i][0],
        outlierStatistics[i][1]);
}
System.out.printf(Locale.ENGLISH, "%nAIC:%12.6f%n", aic);
System.out.printf(Locale.ENGLISH, "RSE%13.6f%n%n", RSE);
for (int i = 0; i < ar.length; i++) {
    System.out.printf(Locale.ENGLISH, " ar[%d]:%13.6f%n", i, ar[i]);
}
for (int i = 0; i < ma.length; i++) {
    System.out.printf(Locale.ENGLISH, " ma[%d]:%13.6f%n", i, ma[i]);
}
System.out.printf("%n%6s* * * Forecast Table * * *%n", " ");
for (int i = 0; i < outlierForecast.length; i++) {
    System.out.printf(Locale.ENGLISH, "%7.4f%11.4f%11.4f%11.4f%n",
        exactForecast[i], outlierForecast[i], probabilityLimits[i], psiWeights[i]);
}

Output

Method 3: Specified ARIMA model
Optimum Model: p=3, q=2, s=1, d=0

Number of outliers: 1

Outlier statistics:
<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>0</td>
</tr>
</tbody>
</table>

AIC: 408.108176
RSE 0.412456

Parameters
constant: 0.554459
ar[0]: 1.940615
ar[1]: -1.898025
ar[2]: 0.897791
ma[0]: 1.115803
ma[1]: -0.911902

* * * Forecast Table * * *

<table>
<thead>
<tr>
<th>Exact</th>
<th>forecast</th>
<th>limits</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7000</td>
<td>9.1085</td>
<td>0.8084</td>
<td>0.8248</td>
</tr>
<tr>
<td>8.6000</td>
<td>9.1715</td>
<td>1.0479</td>
<td>0.6145</td>
</tr>
<tr>
<td>9.3000</td>
<td>9.5039</td>
<td>1.1597</td>
<td>0.5248</td>
</tr>
<tr>
<td>9.1000</td>
<td>9.7677</td>
<td>1.2349</td>
<td>0.5926</td>
</tr>
<tr>
<td>8.8000</td>
<td>9.7051</td>
<td>1.3245</td>
<td>0.7066</td>
</tr>
<tr>
<td>8.5000</td>
<td>9.3817</td>
<td>1.4421</td>
<td>0.7157</td>
</tr>
</tbody>
</table>

AutoARIMA.NoAcceptableModelFoundException
class

static public class com.imsl.stat.AutoARIMA.NoAcceptableModelFoundException extends com.imsl.IMSLException

No appropriate ARIMA model could be found.

Constructors

AutoARIMA.NoAcceptableModelFoundException
public AutoARIMA.NoAcceptableModelFoundException(String message)

Description
Constructs a NoAcceptableModelFoundException exception with the specified detail message. A
detail message is a String that describes this particular exception.

Parameter

message – the detail message.

**AutoARIMA.NoAcceptableModelFoundException**

```java
public AutoARIMA.NoAcceptableModelFoundException(String key, Object[] arguments)
```

Description

Constructs a NoAcceptableModelFoundException exception with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

- key – the key of the error message in the resource bundle.
- arguments – an array containing arguments used within the error message string.

---

**CrossCorrelation class**

```java
public class com.imsl.stat.CrossCorrelation implements Serializable, Cloneable
```

Computes the sample cross-correlation function of two stationary time series.

CrossCorrelation estimates the cross-correlation function of two jointly stationary time series given a sample of \( n = x.length \) observations \( \{X_t\} \) and \( \{Y_t\} \) for \( t = 1, 2, \ldots, n \).

Let

\[
\hat{\mu}_x = \text{mean}
\]

be the estimate of the mean \( \mu_X \) of the time series \( \{X_t\} \) where

\[
\hat{\mu}_X = \begin{cases} 
\mu_X & \text{for } \mu_X \text{ known} \\
\frac{1}{n} \sum_{t=1}^{n} X_t & \text{for } \mu_X \text{ unknown}
\end{cases}
\]

The autocovariance function of \( \{X_t\} \), \( \sigma_X(k) \), is estimated by

\[
\hat{\sigma}_X(k) = \frac{1}{n} \sum_{t=1}^{n} (X_t - \hat{\mu}_X) (X_{t+k} - \hat{\mu}_X), \quad k=0,1,\ldots,K
\]

where \( K = \text{maximum}_\text{lag} \). Note that \( \hat{\sigma}_X(0) \) is equivalent to the sample variance of \( x \) returned by method `getVarianceX`. The autocorrelation function \( \rho_X(k) \) is estimated by

\[
\hat{\rho}_X(k) = \frac{\hat{\sigma}_X(k)}{\hat{\sigma}_X(0)}, \quad k = 0,1,\ldots,K
\]
Note that $\hat{\rho}_X(0) \equiv 1$ by definition. Let
\[ \hat{\mu}_Y = y\text{mean}, \hat{\sigma}_Y(k), \text{and} \hat{\rho}_Y(k) \]
be similarly defined.

The cross-covariance function $\sigma_{XY}(k)$ is estimated by
\[
\hat{\sigma}_{XY}(k) = \begin{cases} 
\frac{1}{n} \sum_{t=1}^{n-k} (X_t - \hat{\mu}_X)(Y_{t+k} - \hat{\mu}_Y) & k = 0, 1, \ldots, K \\
\frac{1}{n} \sum_{t=1-k}^{n} (X_t - \hat{\mu}_X)(Y_{t+k} - \hat{\mu}_Y) & k = -1, -2, \ldots, -K
\end{cases}
\]

The cross-correlation function $\rho_{XY}(k)$ is estimated by
\[
\hat{\rho}_{XY}(k) = \frac{\hat{\sigma}_{XY}(k)}{[\hat{\sigma}_X(0)\hat{\sigma}_Y(0)]^{1/2}} \quad k = 0, \pm 1, \ldots, \pm K
\]

The standard errors of the sample cross-correlations may be optionally computed according to the `getStandardErrors` method argument `stderrMethod`. One method is based on a general asymptotic expression for the variance of the sample cross-correlation coefficient of two jointly stationary time series with independent, identically distributed normal errors given by Bartlet (1978, page 352). The theoretical formula is
\[
\text{var}\{\hat{\rho}_{XY}(k)\} = \frac{1}{n-k} \sum_{i=-\infty}^{\infty} \left[ \rho_X(i) + \rho_{XY}(i-k)\rho_{XY}(i+k) - 2\rho_{XY}(k)\rho_X(i)\rho_{XY}(i+k) + \rho_{XY}^2(k)\rho_X(i) + \frac{1}{2}\rho_Y^2(i) \right]
\]

For computational purposes, the autocorrelations $\rho_X(k)$ and $\rho_Y(k)$ and the cross-correlations $\rho_{XY}(k)$ are replaced by their corresponding estimates for $|k| \leq K$, and the limits of summation are equal to zero for all $k$ such that $|k| > K$.

A second method evaluates Bartlett’s formula under the additional assumption that the two series have no cross-correlation. The theoretical formula is
\[
\text{var}\{\hat{\rho}_{XY}(k)\} = \frac{1}{n-k} \sum_{i=-\infty}^{\infty} \rho_X(i)\rho_Y(i) \quad k \geq 0
\]

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 377).

An important property of the cross-covariance coefficient is $\sigma_{XY}(k) = \sigma_{YX}(-k)$ for $k \geq 0$. This result is used in the computation of the standard error of the sample cross-correlation for lag $k < 0$. In general, the cross-covariance function is not symmetric about zero so both positive and negative lags are of interest.

**Fields**

**BARTLETTS_FORMULA**

`static final public int BARTLETTS_FORMULA`

Indicates standard error computation using Bartlett’s formula.
BARTLETTS_FORMULA_NOCC

static final public int BARTLETTS_FORMULA_NOCC

Indicates standard error computation using Bartlett’s formula with the assumption of no cross-correlation.

Constructor

CrossCorrelation

public CrossCorrelation(double[] x, double[] y, int maximum_lag)

Description

Constructor to compute the sample cross-correlation function of two stationary time series.

Parameters

- x – A one-dimensional double array containing the first stationary time series.
- y – A one-dimensional double array containing the second stationary time series.
- maximum_lag – An int containing the maximum lag of the cross-covariance and cross-correlations to be computed. maximum_lag must be greater than or equal to 1 and less than the minimum of the number of observations of x and y.

Methods

getAutoCorrelationX

public double[] getAutoCorrelationX() throws CrossCorrelation.NonPosVariancesException

Description

Returns the autocorrelations of the time series x.

Returns

A double array of length maximum_lag +1 containing the autocorrelations of the time series x. The 0-th element of this array is 1. The k-th element of this array contains the autocorrelation of lag k where k = 1, ..., maximum_lag.

getAutoCorrelationY

public double[] getAutoCorrelationY() throws CrossCorrelation.NonPosVariancesException

Description

Returns the autocorrelations of the time series y.
Returns
A double array of length maximum_lag + 1 containing the autocorrelations of the time series y. The 0-th element of this array is 1. The k-th element of this array contains the autocorrelation of lag k where k = 1, ..., maximum_lag.

getAutoCovarianceX
public double[] getAutoCovarianceX() throws CrossCorrelation.NonPosVariancesException

Description
Returns the autocovariances of the time series x.

Returns
A double array of length maximum_lag + 1 containing the variances and autocovariances of the time series x. The 0-th element of the array contains the variance of the time series x. The k-th element contains the autocovariance of lag k where k = 1, ..., maximum_lag.

getAutoCovarianceY
public double[] getAutoCovarianceY() throws CrossCorrelation.NonPosVariancesException

Description
Returns the autocovariances of the time series y.

Returns
A double array of length maximum_lag + 1 containing the variances and autocovariances of the time series y. The 0-th element of the array contains the variance of the time series x. The k-th element contains the autocovariance of lag k where k = 1, ..., maximum_lag.

getCrossCorrelation
public double[] getCrossCorrelation() throws CrossCorrelation.NonPosVariancesException

Description
Returns the cross-correlations between the time series x and y.

Returns
A double array of length 2 * maximum_lag + 1 containing the cross-correlations between the time series x and y. The cross-correlation between x and y at lag k, where k = -maximum_lag, ..., 0, 1, ..., maximum_lag, corresponds to output array indices 0, 1, ..., (2*maximum_lag).

getCrossCovariance
public double[] getCrossCovariance()

Description
Returns the cross-covariances between the time series x and y.
Returns
A double array of length $2 \times \text{maximum}_\text{lag} + 1$ containing the cross-covariances between the time series $x$ and $y$. The cross-covariance between $x$ and $y$ at lag $k$, where $k = -\text{maximum}_\text{lag}, ..., 0, 1,..., \text{maximum}_\text{lag}$, corresponds to output array indices $0, 1,..., (2\times\text{maximum}_\text{lag})$.

$getMeanX$
public double getMeanX()

Description
Returns the mean of the time series $x$.

Returns
A double containing the mean of the time series $x$.

$getMeanY$
public double getMeanY()

Description
Returns the mean of the time series $y$.

Returns
A double containing the mean of the time series $y$.

$getStandardErrors$
public double[] getStandardErrors(int stderrMethod) throws CrossCorrelation.NonPosVariancesException

Description
Returns the standard errors of the cross-correlations between the time series $x$ and $y$. Method of computation for standard errors of the cross-correlation is determined by the $stderrMethod$ parameter. If $stderrMethod$ is set to BARTLETTSC_FORMULA, Bartlett’s formula is used to compute the standard errors of cross-correlations. If $stderrMethod$ is set to BARTLETTSC_FORMULA_NOCC, Bartlett’s formula is used to compute the standard errors of cross-correlations, with the assumption of no cross-correlation.

Parameter
stderrMethod – An int specifying the method to compute the standard errors of cross-correlations between the time series $x$ and $y$.

Returns
A double array of length $2 \times \text{maximum}_\text{lag} + 1$ containing the standard errors of the cross-correlations between the time series $x$ and $y$. The standard error of cross-correlations between $x$ and $y$ at lag $k$, where $k = -\text{maximum}_\text{lag}, ..., 0, 1,..., \text{maximum}_\text{lag}$, corresponds to output array indices $0, 1,..., (2\times\text{maximum}_\text{lag})$.

$getVarianceX$
public double getVarianceX() throws CrossCorrelation.NonPosVariancesException

1028 • CrossCorrelation JMSL
Description
Returns the variance of time series $x$.

Returns
A double containing the variance of the time series $x$.

getVarianceY
public double getVarianceY() throws CrossCorrelation.NonPosVariancesException

Description
Returns the variance of time series $y$.

Returns
A double containing the variance of the time series $y$.

setMeanX
public void setMeanX(double mean)

Description
Estimate of the mean of time series $x$.

Parameter
mean – A double containing the estimate mean of the time series $x$.

setMeanY
public void setMeanY(double mean)

Description
Estimate of the mean of time series $y$.

Parameter
mean – A double containing the estimate mean of the time series $y$.

Example 1: CrossCorrelation
Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533) where $X$ is the input gas rate in cubic feet/minute and $Y$ is the percent $CO_2$ in the outlet gas. The CrossCorrelation methods getCrossCovariance and getCrossCorrelation are used to compute the cross-covariances and cross-correlations between time series $X$ and $Y$ with lags from $-\text{maximum}\_\text{lag} = -10$ through lag $\text{maximum}\_\text{lag} = 10$. In addition, the estimated standard errors of the estimated cross-correlations are computed. In the first invocation of method getStandardErrors stderrMethod = BARTLETTS\_FORMULA, the standard errors are based on the assumption that autocorrelations and cross-correlations for lags greater than $\text{maximum}\_\text{lag}$ or less than $-\text{maximum}\_\text{lag}$ are zero. In the second invocation of method getStandardErrors with stderrMethod = BARTLETTS\_FORMULA\_NOCC, the standard errors are based on the additional assumption that all cross-correlations for $X$ and $Y$ are zero.

import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
public class CrossCorrelationEx1 {

    public static void main(String args[]) throws Exception {
        double[] x2 = {
            100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
            154.4, 125.9, 84.8, 68.1, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
            23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
            67, 71, 47.8, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
            85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
            124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
            54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
            37.3, 73.9
        };

        double[] x = {
            -0.109, 0.0, 0.178, 0.339, 0.373, 0.441, 0.461,
            0.348, 0.127, -0.18, -0.588, -1.055, -1.421, -1.52, -1.302,
            -0.814, -0.475, -0.193, 0.088, 0.435, 0.771, 0.866, 0.875,
            0.891, 0.987, 1.263, 1.775, 1.976, 1.934, 1.866, 1.832,
            1.767, 1.608, 1.265, 0.79, 0.36, 0.115, 0.088, 0.331,
            0.645, 0.96, 1.409, 2.67, 2.834, 2.812, 2.483, 1.929,
            1.485, 1.214, 1.239, 1.608, 1.905, 2.023, 1.815, 0.535,
            0.122, 0.009, 0.164, 0.671, 1.019, 1.146, 1.155,
            1.112, 1.121, 1.223, 1.257, 1.157, 0.913, 0.62, 0.255,
            -0.28, -1.08, -1.551, -1.799, -1.825, -1.456, -0.944,
            -0.57, -0.431, -0.577, -0.96, -1.616, -1.875, -1.891,
            -1.746, -1.474, -1.201, -0.927, -0.524, 0.04, 0.788, 0.943,
            0.93, 1.006, 1.137, 1.198, 1.054, 0.595, -0.08, -0.314,
            -0.288, -0.153, -0.109, -0.187, -0.255, -0.229, -0.007,
            0.254, 0.33, 0.102, -0.423,
            -1.139, -2.275, -2.594, -2.716, -2.51, -1.79, -1.346,
            -1.081, -0.91, -0.876, -0.885, -0.8, -0.544, -0.416,
            -0.271, 0.0, 0.403, 0.841, 1.285, 1.607, 1.746, 1.683,
            1.485, 0.993, 0.648, 0.577, 0.577, 0.632, 0.747, 0.9,
            0.993, 0.968, 0.79, 0.399, -0.161, -0.553, -0.603, -0.424,
            -0.194, -0.049, 0.06, 0.161, 0.301, 0.517, 0.566, 0.56,
            0.573, 0.592, 0.671, 0.933, 1.337, 1.46, 1.353, 0.772,
            0.218, -0.237, -0.714, -1.099, -1.269, -1.175, -0.676,
            0.033, 0.556, 0.643, 0.484, 0.109, -0.31, -0.697, -1.047,
            -1.218, -1.183, -0.873, -0.336, 0.063, 0.084, 0.0, 0.001,
            0.209, 0.556, 0.782, 0.858, 0.918, 0.862, 0.416, -0.336,
            -0.959, -1.813, -2.378, -2.499, -2.475, -2.33, -2.053,
            -1.739, -1.261, -0.569, -0.137, -0.024, -0.05, -0.135,
            -0.276, -0.534, -0.871, -1.243, -1.439, -1.422, -1.175,
            -0.813, -0.634, -0.582, -0.625, -0.713,
            -0.848, -1.039, -1.346, -1.628, -1.619, -1.149,
            -0.488, -0.16, -0.007, -0.092, -0.62, -1.086, -1.525,
            -1.858, -2.029, -2.024, -1.961, -1.952, -1.794, -1.302,
            -1.03, -0.918, -0.798, -0.867, -1.047, -1.123, -0.876,
            -0.395, 0.185, 0.662, 0.709, 0.605, 0.501, 0.603, 0.943,
            1.223, 1.249, 0.824, 0.102, 0.025, 0.382,
            0.922, 1.032, 0.866, 0.527, 0.093, -0.458, -0.748,
        };
    }
}
\begin{verbatim}
-0.947, -1.029, -0.928, -0.645, -0.424, -0.276, -0.158,
-0.033, 0.102, 0.251, 0.28, 0.0, -0.493, -0.759, -0.824,
-0.74, -0.528, -0.204, 0.094, 0.204, 0.253, 0.195, 0.131,
0.017, -0.182, -0.262
};
double[] y = {
53.8, 53.6, 53.5, 53.4, 53.3, 52.7, 52.4, 52.2,
52.0, 52.0, 52.4, 53.0, 54.0, 54.9, 56.0, 56.8, 56.8, 56.4,
55.7, 55.0, 54.3, 53.2, 52.3, 51.6, 51.2, 50.8, 50.5, 50.0,
49.2, 48.4, 47.9, 47.6, 47.5, 47.5, 47.6, 48.1, 49.0, 50.0,
51.1, 51.8, 51.9, 51.7, 51.2, 50.0, 48.3, 47.0, 45.8, 45.6,
46.0, 46.9, 47.8, 48.2, 48.3, 47.9, 47.2, 47.2,
48.1, 49.4, 50.6, 51.5, 51.6, 51.2, 50.5, 50.1, 49.8, 49.6,
49.4, 49.3, 49.2, 49.3, 49.7, 50.3, 51.3, 52.8, 54.4, 56.0,
56.9, 57.5, 57.3, 56.6, 56.0, 55.4, 55.4, 56.4, 57.2, 58.0,
58.4, 58.4, 58.1, 57.7, 57.0, 56.0, 54.7, 53.2, 52.1, 51.6,
51.0, 50.5, 50.4, 51.0, 51.8, 52.4, 53.0, 53.4, 53.6, 53.7,
53.8, 53.8, 53.8, 53.3, 53.0, 52.9, 53.4, 54.6, 56.4, 58.0,
59.4, 60.2, 60.0, 59.4, 58.4, 57.6, 56.9, 56.4, 56.0, 55.7,
55.3, 55.0, 54.4, 53.7, 52.8, 51.6, 50.6, 49.4, 48.8, 48.5,
48.7, 49.2, 49.8, 50.4, 50.7, 50.9, 50.7, 50.5, 50.4, 50.2,
50.4, 51.2, 52.3, 53.2, 53.9, 54.1, 54.0, 53.6, 53.2, 53.0,
52.8, 52.3, 51.9, 51.6, 51.6, 51.4, 51.2, 50.7, 50.0, 49.4, 49.3,
49.7, 50.6, 51.8, 53.0, 54.0, 55.3, 55.9, 55.9, 54.6, 53.5,
52.4, 52.1, 52.3, 53.0, 53.8, 54.6, 55.4, 55.9, 55.9, 55.2,
54.4, 53.7, 53.6, 53.6, 53.2, 52.5, 52.0, 51.4, 51.0, 50.9,
52.4, 53.5, 55.6, 58.0, 59.5, 60.0, 60.4, 60.5, 60.2, 59.7,
59.0, 57.6, 56.4, 55.2, 54.5, 54.1, 54.1, 54.4,
55.5, 56.2, 57.0, 57.3, 57.4, 57.0, 56.4, 55.9, 55.5, 55.3,
55.2, 55.4, 56.0, 56.5, 57.1, 57.3, 56.8, 55.6, 55.0, 54.1,
54.3, 55.3, 56.4, 57.2, 57.8, 58.3, 58.6, 58.8, 58.8, 58.6,
58.0, 57.4, 57.0, 56.4, 56.3, 56.4, 56.4, 56.0, 55.2, 54.0,
53.0, 52.0, 51.6, 51.6, 51.1, 50.4, 50.0, 50.0, 52.0, 54.0,
55.1, 54.5, 52.8, 51.4, 50.8, 51.2, 52.0, 52.8, 53.8, 54.5,
54.9, 54.9, 54.8, 54.4, 53.7, 53.3, 52.8, 52.6, 52.6, 53.0,
54.3, 56.0, 57.0, 58.0, 58.6, 58.5, 58.3, 57.8, 57.3, 57.0
};
CrossCorrelation cc;
System.out.println("*****************************");
cc = new CrossCorrelation(x, y, 10);
System.out.println("Mean = " + cc.getMeanX());
System.out.println("Mean = " + cc.getMeanY());
System.out.println("Xvariance = " + cc.getVarianceX());
System.out.println("Yvariance = " + cc.getVarianceY());
new PrintMatrix("CrossCovariances are: ").
    print(cc.getCrossCovariance());
new PrintMatrix("CrossCorrelations are: ").
    print(cc.getCrossCorrelation());
new PrintMatrix("Standard Errors using Bartlett are: ").
    print(cc.getStandardErrors(CrossCorrelation.BARTLETTS_FORMULA));
new PrintMatrix("Standard Errors using Bartlett #2 are: ").
    print(cc.getStandardErrors(CrossCorrelation.BARTLETTS_FORMULA_NOCC));
new PrintMatrix("AutoCovariances of X are: ").
    print(cc.getAutoCovarianceX());
\end{verbatim}

Chapter 19. Time Series and Forecasting

CrossCorrelation • 1031
new PrintMatrix("AutoCovariances of Y are: ").
   print(cc.getAutoCovarianceY());
new PrintMatrix("AutoCorrelations of X are: ").
   print(cc.getAutoCorrelationX());
new PrintMatrix("AutoCorrelations of Y are: ").
   print(cc.getAutoCorrelationY());

Output
***************************
Mean = -0.05683445945945951
Mean = 53.50912162162156
Xvariance = 1.1469379016503833
Yvariance = 10.218937066289259
CrossCovariances are:
0
1 -0.405
2 -0.614
3 -0.705
4 -0.776
5 -0.831
6 -0.891
7 -0.981
8 -1.125
9 -1.347
10 -1.659
11 -2.049
12 -2.482
13 -2.885
14 -3.165
15 -3.253
16 -3.131
17 -2.839
18 -2.453
19 -2.053
20 -1.695

CrossCorrelations are:
0
1 -0.118
2 -0.149
3 -0.179
4 -0.206
5 -0.227
6 -0.243
7 -0.26
8 -0.286
9 -0.329
10 -0.393
11 -0.484
12 -0.598
13 -0.725
14 -0.79
Standard Errors using Bartlett are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.158</td>
</tr>
<tr>
<td>1</td>
<td>0.156</td>
</tr>
<tr>
<td>2</td>
<td>0.153</td>
</tr>
<tr>
<td>3</td>
<td>0.149</td>
</tr>
<tr>
<td>4</td>
<td>0.145</td>
</tr>
<tr>
<td>5</td>
<td>0.141</td>
</tr>
<tr>
<td>6</td>
<td>0.138</td>
</tr>
<tr>
<td>7</td>
<td>0.136</td>
</tr>
<tr>
<td>8</td>
<td>0.132</td>
</tr>
<tr>
<td>9</td>
<td>0.124</td>
</tr>
<tr>
<td>10</td>
<td>0.108</td>
</tr>
<tr>
<td>11</td>
<td>0.087</td>
</tr>
<tr>
<td>12</td>
<td>0.064</td>
</tr>
<tr>
<td>13</td>
<td>0.047</td>
</tr>
<tr>
<td>14</td>
<td>0.044</td>
</tr>
<tr>
<td>15</td>
<td>0.048</td>
</tr>
<tr>
<td>16</td>
<td>0.049</td>
</tr>
<tr>
<td>17</td>
<td>0.048</td>
</tr>
<tr>
<td>18</td>
<td>0.053</td>
</tr>
<tr>
<td>19</td>
<td>0.072</td>
</tr>
<tr>
<td>20</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Standard Errors using Bartlett #2 are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.163</td>
</tr>
<tr>
<td>1</td>
<td>0.162</td>
</tr>
<tr>
<td>2</td>
<td>0.162</td>
</tr>
<tr>
<td>3</td>
<td>0.162</td>
</tr>
<tr>
<td>4</td>
<td>0.162</td>
</tr>
<tr>
<td>5</td>
<td>0.161</td>
</tr>
<tr>
<td>6</td>
<td>0.161</td>
</tr>
<tr>
<td>7</td>
<td>0.161</td>
</tr>
<tr>
<td>8</td>
<td>0.161</td>
</tr>
<tr>
<td>9</td>
<td>0.16</td>
</tr>
<tr>
<td>10</td>
<td>0.16</td>
</tr>
<tr>
<td>11</td>
<td>0.16</td>
</tr>
<tr>
<td>12</td>
<td>0.161</td>
</tr>
<tr>
<td>13</td>
<td>0.161</td>
</tr>
<tr>
<td>14</td>
<td>0.161</td>
</tr>
<tr>
<td>15</td>
<td>0.161</td>
</tr>
<tr>
<td>16</td>
<td>0.162</td>
</tr>
<tr>
<td>17</td>
<td>0.162</td>
</tr>
<tr>
<td>18</td>
<td>0.162</td>
</tr>
<tr>
<td>19</td>
<td>0.162</td>
</tr>
<tr>
<td>20</td>
<td>0.163</td>
</tr>
</tbody>
</table>
AutoCovariances of X are:
0 1.147
1 1.092
2 0.957
3 0.782
4 0.609
5 0.467
6 0.365
7 0.298
8 0.261
9 0.244
10 0.239

AutoCovariances of Y are:
0 10.219
1 9.92
2 9.157
3 8.099
4 6.949
5 5.871
6 4.961
7 4.252
8 3.736
9 3.376
10 3.132

AutoCorrelations of X are:
0 1
1 0.952
2 0.834
3 0.682
4 0.531
5 0.408
6 0.318
7 0.26
8 0.228
9 0.213
10 0.208

AutoCorrelations of Y are:
0 1
1 0.971
2 0.896
3 0.793
4 0.68
5 0.574
6 0.485
7 0.416
8 0.366
9 0.33
10 0.307
CrossCorrelation.NonPosVariancesException class

static public class com.imsl.stat.CrossCorrelation.NonPosVariancesException
extends com.imsl.IMSLException

The problem is ill-conditioned.

Constructors

CrossCorrelation.NonPosVariancesException
public CrossCorrelation.NonPosVariancesException(String message)

Description
Constructs a NonPosVariancesException object.

Parameter
message – a String containing the error message

CrossCorrelation.NonPosVariancesException
public CrossCorrelation.NonPosVariancesException(String key, Object[] arguments)

Description
Constructs a NonPosVariancesException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

Difference class

public class com.imsl.stat.Difference implements Serializable, Cloneable

Chapter 19. Time Series and Forecasting
Differences a seasonal or nonseasonal time series.

Class `Difference` performs \( m = \text{periods.length} \) successive backward differences of period \( s_i = \text{periods}[i-1] \) and order \( d_i = \text{orders}[i-1] \) for \( i = 1, \ldots, m \) on the \( n = \text{z.length} \) observations \( \{Z_t\} \) for \( t = 1, 2, \ldots, n \).

Consider the backward shift operator \( B \) given by

\[
B^k Z_t = Z_{t-k}
\]

for all \( k \). Then, the backward difference operator with period \( s \) is defined by the following:

\[
\Delta s Z_t = (1 - B^s) Z_t = Z_t - Z_{t-s} \quad \text{for} \ s \geq 0
\]

Note that \( B_s Z_t \) and \( \Delta_s Z_t \) are defined only for \( t = (s+1), \ldots, n \). Repeated differencing with period \( s \) is simply

\[
\Delta^d_s Z_t = (1 - B^s)^d Z_t = \sum_{j=0}^{d} \frac{d!}{j!(d-j)!} (-1)^j B^{sj} Z_t
\]

where \( d \geq 0 \) is the order of differencing. Note that

\[
\Delta^d_s Z_t
\]

is defined only for \( t = (sd+1), \ldots, n \).

The general difference formula used in the class `Difference` is given by

\[
W_T = \begin{cases} 
\text{NaN} & \text{for} \ t = 1, \ldots, n_L \\
\Delta^{d_1}_1 \Delta^{d_2}_2 \ldots \Delta^{d_m}_m Z_t & \text{for} \ t = n_L + 1, \ldots, n 
\end{cases}
\]

where \( n_L \) represents the number of observations “lost” because of differencing and NaN represents the missing value code. Note that

\[
n_L = \sum_j s_j d_j
\]

A homogeneous, stationary time series can be arrived at by appropriately differencing a homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary application of an appropriate transformation followed by differencing of a series can enable model identification and parameter estimation in the class of homogeneous stationary autoregressive moving average models.
Constructor

### Difference
public Difference()

**Description**
Constructor for Difference.

Methods

### compute
final public double[] compute(double[] z, int[] periods) throws IllegalArgumentException

**Description**
Computes a Difference series.

**Parameters**
- z – a double array containing the time series.
- periods – an int array containing the periods at which z is to be differenced.

**Returns**
a double array containing the differenced series.

### excludeFirst
public void excludeFirst(boolean exclude)

**Description**
If set to true, the observations lost due to differencing will be excluded. The differenced series will be the length of the number of observations minus the number of observations lost. If set to false, the observations lost due to differencing will be set to NaN (Not a number) and included in the differenced series. The default is to set the lost observations to NaN.

**Parameter**
- exclude – a boolean specifying whether or not to exclude lost observations due to differencing.

### getObservationsLost
public int getObservationsLost()

**Description**
Returns the number of observations lost because of differencing the time series. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is 0.
Returns

an int containing the number of observations lost because of differencing the time series z.

setOrders

public void setOrders(int[] orders)

Description

Sets the orders for the Difference object

Parameter

orders – an int array of length equal to length of periods, containing the order of each difference given in periods. The elements of orders must be greater than or equal to 0.

Example 1: Difference

This example uses the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly total number of international airline passengers from January 1949 through December 1960. Difference is used to compute ...

\[ W_t = \Delta_1 \Delta_{12} Z_t = (Z_t - Z_{t-12}) - (Z_{t-1} - Z_{t-13}) \]

for t= 14, 15, ..., 24.

import com.imsl.stat.*;

public class DifferenceEx1 {

    public static void main(String args[]) {
        int periods[] = {1, 12};
        double[] z = {
            112.0, 118.0, 132.0, 129.0, 121.0, 135.0,
            148.0, 148.0, 136.0, 119.0, 104.0, 118.0,
            115.0, 126.0, 141.0, 135.0, 125.0, 149.0,
            170.0, 170.0, 158.00, 133.0, 114.0, 140.0
        };

        Difference diff = new Difference();
        double[] out = diff.compute(z, periods);
        int nLost = diff.getObservationsLost();

        System.out.println("Observations Lost = " + nLost);

        for (int i = 0; i < out.length; i++) {
            System.out.println(out[i]);
        }
    }
}

1038 • Difference
Example 2: Difference

This example uses the same data as Example 1. The first number of lost observations are excluded from W due to differencing, and the number of lost observations is also output.

```java
import com.imsl.stat.*;

public class DifferenceEx2 {

 public static void main(String args[]) {
 int periods[] = {1, 12};
 int nLost;
 double[] z = {
 112.0, 118.0, 132.0, 129.0, 121.0, 135.0,
 148.0, 148.0, 136.0, 119.0, 104.0, 118.0,
 115.0, 126.0, 141.0, 135.0, 125.0, 149.0,
 170.0, 170.0, 158.00, 133.0, 114.0, 140.0
 };

 Difference diff = new Difference();
 diff.excludeFirst(true);
 double[] out = diff.compute(z, periods);
 nLost = diff.getObservationsLost();

 System.out.println("The number of observation lost = " + nLost);
 for (int i = 0; i < out.length; i++) {
 ...
 }
 }
}
```
Output

The number of observation lost = 13
5.0
1.0
-3.0
-2.0
10.0
8.0
0.0
0.0
-8.0
-4.0
12.0

GARCH class

public class com.imsl.stat.GARCH implements Serializable, Cloneable

Computes estimates of the parameters of a GARCH(p,q) model.

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model is defined as

\[
y_t = z_t \alpha_t
\]

\[
\sigma^2_t = \sigma^2 + \sum_{i=1}^{p} \beta_i \sigma^2_{t-i} + \sum_{i=1}^{q} \alpha_i y^2_{t-i}
\]

where \( z_t \)'s are independent and identically distributed standard normal random variables,

\[
\sigma > 0, \beta_i \geq 0, \alpha_i \geq 0
\]

and

\[
\sum_{i=1}^{p} \beta_i + \sum_{i=1}^{q} \alpha_i < 1
\]
The above model is denoted as GARCH(p, q). The $\alpha_i, i = 1, \ldots, q > and \beta_j, j = 1, \ldots, p >$
parameters will be called ARCH and GARCH coefficients, respectively. When $\beta_i = 0, i = 1, 2, \ldots, p$, the
above model reduces to ARCH(q) which was proposed by Engle (1982). That is, a GARCH(0,q) is
equivalent to the ARCH(q) model. The non-negativity conditions on the parameters imply a nonnegative
variance and the condition on the sum of the $\beta_i$'s and $\alpha_i$'s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have often found to
appropriately account for conditional heteroskedasticity (Palm 1996). This finding is similar to linear
time series analysis based on ARMA models.

It is important to notice that for the above models positive and negative past values have a symmetric
impact on the conditional variance. In practice, many series may have strong asymmetric influence on
the conditional variance. To take into account this phenomena, Nelson (1991) put forward Exponential
GARCH (EGARCH). Lai (1998) proposed and studied some properties of a general class of models that
extended linear relationship of the conditional variance in ARCH and GARCH into nonlinear fashion.

The maximal likelihood method is used in estimating the parameters in GARCH(p,q). The
log-likelihood of the model for the observed series $\{Y_t\}$ with length $m$ is

$$
\log(L) = \frac{m}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{m} \frac{y_t^2}{\sigma_t^2} - \frac{1}{2} \sum_{i=1}^{p+q} \log \sigma_t^2,
$$

where $\sigma_t^2 = \sigma^2 + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^2 + \sum_{i=1}^{q} \alpha_i y_{t-i}^2$.

In the model, if $q = 0$, the model GARCH is singular such that the estimated Hessian matrix $H$ is
singular.

The initial values of the parameter array $x[\ ]$ entered in array $xguess[ \ ]$ must satisfy certain constraints.
The first element of $xguess$ refers to sigma and must be greater than zero and less than $maxSigma$. The
remaining $p+q$ initial values must each be greater than or equal to zero but less than one.

To guarantee stationarity in model fitting,

$$
\sum_{i=1}^{p+q} x(i) < 1,
$$

is checked internally. The initial values should be selected from the values between zero and one. The
value of Akaike Information Criterion is computed by

$$
2 \times \log(L) + 2 \times (p + q + 1),
$$

where $\log(L)$ is the value of the log-likelihood function at the estimated parameters.

In fitting the optimal model, the class com.imsl.math.MinConGenLin (p. 429), is modified to find the
maximal likelihood estimates of the parameters in the model. Statistical inferences can be performed
outside of the class GARCH based on the output of the log-likelihood function (getlogLikelihood)

---

Chapter 19. Time Series and Forecasting
method), the Akaike Information Criterion (getAkaike method), and the variance-covariance matrix (getVarCovarMatrix method).

### Constructor

**GARCH**

```java
public GARCH(int p, int q, double[] y, double[] xguess)
```

**Description**

Constructor for GARCH.

**Parameters**

- `p` – An int scalar containing the number of GARCH parameters.
- `q` – An int scalar containing the number of ARCH parameters.
- `y` – A double array containing the observed time series data.
- `xguess` – A double array of length `p + q + 1` containing the initial values for the parameter array.

**Exception**

IllegalArgumentException is thrown if the dimensions of `y`, and `xguess` are not consistent.

### Methods

**compute**

```java
final public void compute() throws GARCH.ConstrInconsistentException,
GARCH.EqConstrInconsistentException, GARCH.NoVectorXException,
GARCH.TooManyIterationsException, GARCH.VarsDeterminedException
```

**Description**

Computes estimates of the parameters of a GARCH(p,q) model.

**Exceptions**

- ConstrInconsistentException is thrown if the equality constraints are inconsistent.
- EqConstrInconsistentException is thrown if the equality constraints and the bounds on the variables are found to be inconsistent.
- NoVectorXException is thrown if no vector X satisfies all of the constraints.
- TooManyIterationsException is thrown if the number of function evaluations exceeded 1000.
- VarsDeterminedException is thrown if the variables are determined by the equality constraints.

**getARCH**

```java
public double[] getARCH()
```
Description
Returns the estimated values of the ARCH coefficients. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
a double array of size q containing the estimated values of the moving average (ARCH) coefficients.

getAkaike
public double getAkaike()

Description
Returns the value of Akaike Information Criterion evaluated at the estimated parameter array. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
a double scalar containing the value of Akaike Information Criterion evaluated at the estimated parameter array.

getGARCH
public double[] getGARCH()

Description
Returns the estimated values of the GARCH coefficients. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns
a double array of size p containing the estimated values of autoregressive (GARCH) parameters.

getLogLikelihood
public double getLogLikelihood()

Description
Returns the value of Log-likelihood function evaluated at the estimated parameter array. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is 0.

Returns
a double scalar containing the value of Log-likelihood function evaluated at the estimated parameter array.

getSigma
public double getSigma()

Description
Returns the estimated value of sigma squared. Note that the compute method must be invoked first before invoking this method. Otherwise, the return value is NaN.
Returns a double scalar containing the estimated value of sigma squared.

declare VarCovarMatrix
public double[][] getVarCovarMatrix()

Description
Returns the variance-covariance matrix. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns an array of size p + q + 1 by p + q + 1 containing the variance-covariance matrix.

declare X
public double[] getX()

Description
Returns the estimated parameter array, x. Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns a double array of size 1 + q + p containing the estimated values of sigma squared, the ARCH parameters, and the GARCH parameters.

setMaxSigma
public void setMaxSigma(double maxSigma)

Description
Sets the value of the upperbound on the first element (sigma) of the array of returned estimated coefficients.

Parameter
maxSigma – A double scalar containing the value of the upperbound on the first element (sigma) of the array of returned estimated coefficients. Default = 10.

Example: GARCH

The data for this example are generated to follow a GARCH(p,q) process by using a random number generation function sgarch. The data set is analyzed and estimates of sigma, the AR parameters, and the MA parameters are returned. The values of the Log-likelihood function and the Akaike Information Criterion are returned.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class GARCHEx1 {
 static private void sgarch(int p, int q, int m, double[] x, double[] y,
```
```java
double[] z, double[] y0, double[] sigma) {
 int i, j, l;
 double s1, s2, s3;
 Random rand = new Random(182198625L);
 rand.setMultiplier(16807);
 for (i = 0; i < m + 1000; i++) {
 z[i] = rand.nextNormal();
 }
 l = Math.max(p, q);
 l = Math.max(l, 1);
 for (i = 0; i < l; i++) {
 y0[i] = z[i] * x[0];
 }
 /* COMPUTE THE INITIAL VALUE OF SIGMA */
 s3 = 0.0;
 if (Math.max(p, q) >= 1) {
 for (i = 1; i < (p + q + 1); i++) {
 s3 += x[i];
 }
 }
 for (i = 0; i < l; i++) {
 sigma[i] = x[0] / (1.0 - s3);
 }
 for (i = l; i < (m + 1000); i++) {
 s1 = 0.0;
 s2 = 0.0;
 if (q >= 1) {
 for (j = 0; j < q; j++) {
 s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];
 }
 }
 if (p >= 1) {
 for (j = 0; j < p; j++) {
 s2 += x[q + 1 + j] * sigma[i - j - 1];
 }
 }
 sigma[i] = x[0] + s1 + s2;
 y0[i] = z[i] * Math.sqrt(sigma[i]);
 }
 /*
 * DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
 */
 for (i = 0; i < m; i++) {
 y[i] = y0[1000 + i];
 }
 return;
}
public static void main(String args[]) throws Exception {
 int p, q, m;
 double[] x = {1.3, 0.2, 0.3, 0.4};
 double[] xguess = {1.0, 0.1, 0.2, 0.3};
 double[] y = new double[1000];
}
```

Chapter 19. Time Series and Forecasting

• GARCH • 1045
double[] wk1 = new double[2000];
double[] wk2 = new double[2000];
double[] wk3 = new double[2000];
NumberFormat nf = NumberFormat.getInstance();
f.setMaximumFractionDigits(3);

m = 1000;
p = 2;
q = 1;
sgarch(p, q, m, x, y, wk1, wk2, wk3);

GARCH garch = new GARCH(p, q, y, xguess);
garch.compute();

System.out.println("Sigma estimate is " + nf.format(garch.getSigma()));
System.out.println();
new PrintMatrix("ARCH estimate is ").print(garch.getARCH());
new PrintMatrix("GARCH estimate is ").print(garch.getGARCH());
System.out.println("Log-likelihood function value is "
 + nf.format(garch.getLogLikelihood()));
System.out.println("Akaike Information Criterion value is "
 + nf.format(garch.getAkaike()));
}
}

Output

Sigma estimate is 1.692
ARCH estimate is
  0
  0 0.245
GARCH estimate is
  0
  0 0.337
  1 0.31
Log-likelihood function value is -2,707.072
Akaike Information Criterion value is 5,422.144

GARCH.VarsDeterminedException class

static public class com.imsl.stat.GARCH.VarsDeterminedException extends com.imsl.IMSLException

The variables are determined by the equality constraints.
Constructors

**GARCH.VarsDeterminedException**

```java
public GARCH.VarsDeterminedException(String message)
```

**Description**

Constructs a VarsDeterminedException object.

**Parameter**

- `message` - a String containing the error message

```java
public GARCH.VarsDeterminedException(String key, Object[] arguments)
```

**Description**

Constructs a VarsDeterminedException object.

**Parameters**

- `key` - a String containing the error message
- `arguments` - an Object array containing arguments used within the error message string

---

**GARCH.TooManyIterationsException class**

```java
static public class com.imsl.stat.GARCH.TooManyIterationsException extends com.imsl.IMSLException
```

Number of function evaluations exceeded 1000.

**Constructors**

```java
public GARCH.TooManyIterationsException(String message)
```

**Description**

Constructs a TooManyIterationsException object.

**Parameter**

- `message` - a String containing the error message

```java
public GARCH.TooManyIterationsException(String key, Object[] arguments)
```

---

Chapter 19. Time Series and Forecasting  GARCH • 1047
Description
Constructs a `TooManyIterationsException` object.

Parameters
- `key` – a `String` containing the error message
- `arguments` – an `Object` array containing arguments used within the error message string

**GARCH.NoVectorXException class**

```java
class GARCH.NoVectorXException extends com.imsl.IMSLException
```

No vector X satisfies all of the constraints.

**Constructors**

**GARCH.NoVectorXException**

```java
public GARCH.NoVectorXException(String message)
```

Description
Constructs a `NoVectorXException` object.

Parameter
- `message` – a `String` containing the error message

**GARCH.NoVectorXException**

```java
public GARCH.NoVectorXException(String key, Object[] arguments)
```

Description
Constructs a `NoVectorXException` object.

Parameters
- `key` – a `String` containing the error message
- `arguments` – an `Object` array containing arguments used within the error message string
GARCH.EqConstrInconsistentException class

static public class com.imsl.stat.GARCH.EqConstrInconsistentException extends com.imsl.IMSLException

The equality constraints and the bounds on the variables are found to be inconsistent.

Constructors

GARCH.EqConstrInconsistentException

public GARCH.EqConstrInconsistentException(String message)

Description
Constructs a EqConstrInconsistentException object.

Parameter
message – a String containing the error message

GARCH.EqConstrInconsistentException

public GARCH.EqConstrInconsistentException(String key, Object[] arguments)

Description
Constructs a EqConstrInconsistentException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

GARCH.ConstrInconsistentException class

static public class com.imsl.stat.GARCH.ConstrInconsistentException extends com.imsl.IMSLException

The equality constraints are inconsistent.
Constructors

GARCH.ConstrInconsistentException
public GARCH.ConstrInconsistentException(String message)

Description
Constructs a ConstrInconsistentException object.

Parameter
message – a String containing the error message

GARCH.ConstrInconsistentException
public GARCH.ConstrInconsistentException(String key, Object[] arguments)

Description
Constructs a ConstrInconsistentException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

KalmanFilter class

public class com.imsl.stat.KalmanFilter implements Serializable, Cloneable
Performs Kalman filtering and evaluates the likelihood function for the state-space model.

Class KalmanFilter is based on a recursive algorithm given by Kalman (1960), which has come to be known as the Kalman filter. The underlying model is known as the state-space model. The model is specified stage by stage where the stages generally correspond to time points at which the observations become available. KalmanFilter avoids many of the computations and storage requirements that would be necessary if one were to process all the data at the end of each stage in order to estimate the state vector. This is accomplished by using previous computations and retaining in storage only those items essential for processing of future observations.

The notation used here follows that of Sallas and Harville (1981). Let $y_k$ (input in $y$ using method update) be the $n_k \times 1$ vector of observations that become available at time $k$. The subscript $k$ is used here rather than $t$, which is more customary in time series, to emphasize that the model is expressed in stages $k = 1, 2, \ldots$ and that these stages need not correspond to equally spaced time points. In fact, they need not correspond to time points of any kind. The observation equation for the state-space model is

$$y_k = Z_k b_k + e_k \quad k = 1, 2, \ldots$$
Here, $Z_k$ (input in $z$ using method update) is an $n_k \times q$ known matrix and $b_k$ is the $q \times 1$ state vector. The state vector $b_k$ is allowed to change with time in accordance with the state equation

$$b_{k+1} = T_{k+1}b_k + w_{k+1} \quad k = 1, 2, \ldots$$

starting with $b_1 = \mu_1 + w_1$.

The change in the state vector from time $k$ to $k + 1$ is explained in part by the transition matrix $T_{k+1}$ (the identity matrix by default, or optionally using method setTransitionMatrix), which is assumed known. It is assumed that the $q$-dimensional $w_k$s($k = 1, 2, \ldots$) are independently distributed multivariate normal with mean vector 0 and variance-covariance matrix $\sigma^2 Q_k$, that the $n_k$-dimensional $e_k$s($k = 1, 2, \ldots$) are independently distributed multivariate normal with mean vector 0 and variance-covariance matrix $\sigma^2 R_k$, and that the $w_k$s and $e_k$s are independent of each other. Here, $\mu_1$ is the mean of $b_1$ and is assumed known, $\sigma^2$ is an unknown positive scalar. $Q_{k+1}$ (input in Q) and $R_k$ (input in R) are assumed known.

Denote the estimator of the realization of the state vector $b_k$ given the observations $y_1, y_2, \ldots, y_j$ by

$$\hat{b}_{k|j}$$

By definition, the mean squared error matrix for

$$\hat{b}_{k|j}$$

is

$$\sigma^2 C_{k|j} = E(\hat{b}_{k|j} - b_k)(\hat{b}_{k|j} - b_k)^T$$

At the time of the $k$-th invocation, we have

$$\hat{b}_{k|k-1}$$

and

$C_{k|k-1}$, which were computed from the $k$-1-st invocation, input in b and covb, respectively. During the $k$-th invocation, KalmanFilter computes the filtered estimate

$$\hat{b}_{k|k}$$

along with $C_{k|k}$. These quantities are given by the update equations:

$$\hat{b}_{k|k} = \hat{b}_{k|k-1} + C_{k|k-1}Z_k^TH_k^{-1}v_k$$

$$C_{k|k} = C_{k|k-1} - C_{k|k-1}Z_k^TH_k^{-1}Z_kC_{k|k-1}$$
where

\[ v_k = y_k - Z_k \hat{\beta}_{k|k-1} \]

and where

\[ H_k = R_k + Z_k C_{k|k-1} Z_k^T \]

Here, \( v_k \) (stored in getPredictionError) is the one-step-ahead prediction error, and \( \sigma^2 H_k \) is the variance-covariance matrix for \( v_k \). \( H_k \) is obtained from method getCovV. The “start-up values” needed on the first invocation of KalmanFilter are

\[ \hat{\beta}_{1|0} = \mu_1 \]

and \( C_{1|0} = Q_1 \) input via b and covb, respectively. Computations for the \( k \)-th invocation are completed by KalmanFilter computing the one-step-ahead estimate

\[ \hat{\beta}_{k+1|k} \]

along with \( C_{k+1|k} \) given by the prediction equations:

\[ \hat{\beta}_{k+1|k} = T_{k+1} \hat{\beta}_{k|k} \]

\[ C_{k+1|k} = T_{k+1} C_{k|k} T_{k+1}^T + Q_{k+1} \]

If both the filtered estimates and one-step-ahead estimates are needed by the user at each time point, KalmanFilter can be used twice for each time point-first without methods SetTransitionMatrix and setQ to produce

\[ \hat{\beta}_{k|k} \]

and \( C_{k|k} \), and second without method update to produce

\[ \hat{\beta}_{k+1|k} \]

and \( C_{k+1|k} \) (Without methods SetTransitionMatrix and setQ, the prediction equations are skipped. Without method update, the update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an estimate of

\[ \hat{\beta}_{k|j} \]
is needed where \( k > j + 1 \). At time \( j \), \texttt{KalmanFilter} is invoked with method \texttt{update} to compute

\[
\hat{\beta}_{j+1|j}
\]

Subsequent invocations of \texttt{KalmanFilter} without method \texttt{update} can compute

\[
\hat{\beta}_{j+2|j}, \hat{\beta}_{j+3|j}, \ldots, \hat{\beta}_{k|j}
\]

Computations for \( \hat{\beta}_{k|j} \) and \( C_{ki} \) assume the variance-covariance matrices of the errors in the observation equation and state equation are known up to an unknown positive scalar multiplier, \( \sigma^2 \). The maximum likelihood estimate of \( \sigma^2 \) based on the observations \( y_1, y_2, \ldots, y_m \), is given by

\[
\hat{\sigma}^2 = SS/N
\]

where

\[
N = \sum_{k=1}^{m} n_k \quad \text{and} \quad SS = \sum_{k=1}^{m} v_k^T H_k^{-1} v_k
\]

\( N \) and \( SS \) are input arguments \texttt{rank} and \texttt{SumofSquares}. Updated values are obtained from methods \texttt{getRank} and \texttt{getSumofSquares}. If \( \sigma^2 \) is known, the \( R_k \)'s and \( Q_k \)'s can be input as the variance-covariance matrices exactly. The earlier discussion is then simplified by letting \( \sigma^2 = 1 \).

In practice, the matrices \( T_k \), \( Q_k \), and \( R_k \) are generally not completely known. They may be known functions of an unknown parameter vector \( \theta \). In this case, \texttt{KalmanFilter} can be used in conjunction with an optimization class (see \texttt{MinUnconMultiVar}, JMSL Math package), to obtain a maximum likelihood estimate of \( \theta \). The natural logarithm of the likelihood function for \( y_1, y_2, \ldots, y_m \) differs by no more than an additive constant from

\[
L(\theta, \sigma^2; y_1, y_2, \ldots, y_m) = -\frac{1}{2} \sum_{k=1}^{m} \text{ln} \det(H_k) - \frac{1}{2} \sigma^{-2} \sum_{k=1}^{m} v_k^T H_k^{-1} v_k
\]

(Harvey 1981, page 14, equation 2.21).

Here,

\[
\sum_{k=1}^{m} \text{ln} \det(H_k)
\]

(input in \texttt{logDeterminant}, updated by \texttt{getLogDeterminant}) is the natural logarithm of the determinant of \( V \) where \( \sigma^2 V \) is the variance-covariance matrix of the observations.
Minimization of $-2L(\theta, \sigma^2; y_1, y_2, \ldots, y_m)$ over all $\theta$ and $\sigma^2$ produces maximum likelihood estimates. Equivalently, minimization of $-2L_c(\theta; y_1, y_2, \ldots, y_m)$ where

$$L_c(\theta; y_1, y_2, \ldots, y_m) = -\frac{1}{2} N \ln \left( \frac{SS}{N} \right) - \frac{1}{2} \sum_{k=1}^{m} \ln |\text{det}(H_k)|$$

produces maximum likelihood estimates

$$\hat{\theta} \text{ and } \hat{\sigma}^2 = SS/N$$

Minimization of $-2L_c(\theta; y_1, y_2, \ldots, y_m)$ instead of $-2L(\theta, \sigma^2; y_1, y_2, \ldots, y_m)$, reduces the dimension of the minimization problem by one. The two optimization problems are equivalent since

$$\hat{\sigma}^2(\theta) = SS(\theta)/N$$

minimizes $-2L(\theta, \sigma^2; y_1, y_2, \ldots, y_m)$ for all $\theta$, consequently,

$$\hat{\sigma}^2(\theta)$$

can be substituted for $\sigma^2$ in $L(\theta, \sigma^2; y_1, y_2, \ldots, y_m)$ to give a function that differs by no more than an additive constant from $L_c(\theta; y_1, y_2, \ldots, y_m)$.

The earlier discussion assumed $H_k$ to be nonsingular. If $H_k$ is singular, a modification for singular distributions described by Rao (1973, pages 527-528) is used. The necessary changes in the preceding discussion are as follows:

1. Replace $H_k^{-1}$ by a generalized inverse.
2. Replace $\text{det}(H_k)$ by the product of the nonzero eigenvalues of $H_k$.
3. Replace $N$ by $\sum_{k=1}^{m} \text{rank}(H_k)$


**Constructors**

**KalmanFilter**

```java
public KalmanFilter(double[] b, double[][] covb, int rank, double sumOfSquares, double logDeterminant)
```

**Description**

Constructor for KalmanFilter.
Parameters

b – A double array containing the estimated state vector. b is the estimated state vector at time k given the observations through time k-1.

covb – A double matrix of size b.length by b.length such that covb * σ^2 is the mean squared error matrix for b.

rank – An int scalar containing the rank of the variance-covariance matrix for all the observations.

sumOfSquares – A double scalar containing the generalized sum of squares.

logDeterminant – A double scalar containing the natural log of the product of the nonzero eigenvalues of P where P * σ^2 is the variance-covariance matrix of the observations.

Exception

IllegalArgumentException is thrown if the dimensions of b, and covb are not consistent.

Methods

filter
final public void filter()

Description
Performs Kalman filtering and evaluates the likelihood function for the state-space model.

getCovB
public double[][] getCovB()

Description
Returns the mean squared error matrix for b divided by sigma squared.

Returns
a double matrix of size b.length by b.length such that covb * σ^2 is the mean squared error matrix for b.

getCovV
public double[][] getCovV()

Description
Returns the variance-covariance matrix of v divided by sigma squared.

Returns
a double matrix containing a y.length by y.length matrix such that covv * σ^2 is the variance-covariance matrix of the one-step-ahead prediction error, getPredictionError.

getLogDeterminant
public double getLogDeterminant()
Description

Returns the natural log of the product of the nonzero eigenvalues of $P$ where $P \cdot \sigma^2$ is the variance-covariance matrix of the observations.

Returns

a double scalar containing the natural log of the product of the nonzero eigenvalues of $P$ where $P \cdot \sigma^2$ is the variance-covariance matrix of the observations. In the usual case when $P$ is nonsingular, logDeterminant is the natural log of the determinant of $P$. getPredictionError

public double[] getPredictionError()

Description

Returns the one-step-ahead prediction error.

Returns

a double array of size $y.length$ containing the one-step-ahead prediction error.

getRank

public int getRank()

Description

Returns the rank of the variance-covariance matrix for all the observations.

Returns

An int scalar containing the rank of the variance-covariance matrix for all the observations.

getStateVector

public double[] getStateVector()

Description

Returns the estimated state vector at time $k + 1$ given the observations through time $k$.

Returns

a double array containing the estimated state vector at time $k + 1$ given the observations through time $k$.

getSumOfSquares

public double getSumOfSquares()

Description

Returns the generalized sum of squares.

Returns

a double scalar containing the generalized sum of squares. The estimate of $\sigma^2$ is given by $\text{sumOfSquares} / \text{rank}$.

resetQ

public void resetQ()
Description
Removes the Q matrix.

resetTransitionMatrix
public void resetTransitionMatrix()

Description
Removes the transition matrix.

resetUpdate
public void resetUpdate()

Description
Do not perform computation of the update equations.

setQ
public void setQ(double[][] q)

Description
Sets the Q matrix.

Parameter
q – A double matrix containing the b.length by b.length matrix such that q * σ² is the variance-covariance matrix of the error vector in the state equation. Default: There is no error term in the state equation.

setTolerance
public void setTolerance(double tolerance)

Description
Sets the tolerance used in determining linear dependence.

Parameter
tolerance – A double scalar containing the tolerance used in determining linear dependence.
Default: tolerance = 100.0*2.2204460492503131e-16.

setTransitionMatrix
public void setTransitionMatrix(double[][] t)

Description
Sets the transition matrix.

Parameter
t – A double matrix containing the b.length by b.length transition matrix in the state equation. Default: t = identity matrix

update
public void update(double[] y, double[][] z, double[][] r)
**Description**

Performs computation of the update equations.

**Parameters**

- $y$ – A double array containing the observations.
- $z$ – A double matrix containing the $y$.length by $b$.length matrix relating the observations to the state vector in the observation equation.
- $r$ – A double matrix containing the $y$.length by $y$.length matrix such that $r \times \sigma^2$ is the variance-covariance matrix of errors in the observation equation. $\sigma^2$ is a positive unknown scalar. Only elements in the upper triangle of $r$ are referenced.

**Example 1: Kalman Filter**

KalmanFilter is used to compute the filtered estimates and one-step-ahead estimates for a scalar problem discussed by Harvey (1981, pages 116-117). The observation equation and state equation are given by

$$y_k = b_k + e_k$$

$$b_{k+1} = b_k + w_{k+1}$$

$k = 1, 2, 3, 4$

where the $e_k$s are identically and independently distributed normal with mean 0 and variance $\sigma^2$, the $w_k$s are identically and independently distributed normal with mean 0 and variance $4\sigma^2$, and $b_1$ is distributed normal with mean 4 and variance $16\sigma^2$. Two KalmanFilter objects are needed for each time point in order to compute the filtered estimate and the one-step-ahead estimate. The first object does not use the methods SetTransitionMatrix and setQ so that the prediction equations are skipped in the computations. The update equations are skipped in the computations in the second object.

This example also computes the one-step-ahead prediction errors. Harvey (1981, page 117) contains a misprint for the value $v_4$ that he gives as 1.197. The correct value of $v_4 = 1.003$ is computed by KalmanFilter.

```java
import com.imsl.stat.*;
import java.text.MessageFormat;

public class KalmanFilterEx1 {
 static private final MessageFormat mf = new MessageFormat("{0}/{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\t{8}"");

 public static void main(String args[]) {
 int nobs = 4;
 int rank = 0;
 double logDeterminant = 0.0;
 double ss = 0.0;
 double b[] = {4};
 double[] covb = {16};
 }
}
double[][] q = {{4}};
double[][] r = {{1}};
double[][] t = {{1}};
double[][] z = {{1}};
double[] ydata = {4.4, 4.0, 3.5, 4.6};

Object argFormat[] = {
 "k", "j", "b", "cov(b)", "rank", "ss", "ln(det)", "v", "cov(v)"
};
System.out.println(mf.format(argFormat));

KalmanFilter kalman
 = new KalmanFilter(b, covb, rank, ss, logDeterminant);

for (int i = 0; i < nobs; i++) {
 double y[] = {ydata[i]};
 kalman.update(y, z, r);
 kalman.filter();
 double v[] = kalman.getPredictionError();
 double covv[][] = kalman.getCovV();
 argFormat[0] = new Integer(i);
 argFormat[1] = new Integer(i);
 argFormat[2] = new Double(kalman.getStateVector()[0]);
 argFormat[3] = new Double(kalman.getCovB()[0][0]);
 argFormat[4] = new Integer(kalman.getRank());
 argFormat[5] = new Double(kalman.getSumOfSquares());
 argFormat[6] = new Double(kalman.getLogDeterminant());
 argFormat[7] = new Double(v[0]);
 argFormat[8] = new Double(covv[0][0]);
 System.out.println(mf.format(argFormat));
 kalman.resetUpdate();
 kalman.setTransitionMatrix(t);
 kalman.setQ(q);
 kalman.filter();
 argFormat[0] = new Integer(i + 1);
 argFormat[1] = new Integer(i);
 argFormat[2] = new Double(kalman.getStateVector()[0]);
 argFormat[3] = new Double(kalman.getCovB()[0][0]);
 argFormat[4] = new Integer(kalman.getRank());
 argFormat[5] = new Double(kalman.getSumOfSquares());
 argFormat[6] = new Double(kalman.getLogDeterminant());
 argFormat[7] = new Double(v[0]);
 argFormat[8] = new Double(covv[0][0]);
 System.out.println(mf.format(argFormat));
 kalman.resetTransitionMatrix();
 kalman.resetQ();
}

Output
k/j b cov(b) rank ss ln(det) v cov(v)
0/0 4.376 0.941 1 0.009 2.833 0.4 17
Example 2: Kalman Filter Maximum Likelihood Estimate

KalmanFilter is used with the MinUnconMultivar class to find a maximum likelihood estimate of the parameter θ in an MA(1) time series represented by $y_k = \varepsilon_k - \theta \varepsilon_{k-1}$. The input is 200 observations from an MA(1) time series with $\theta = 0.5$ and $\sigma^2 = 1$. The MA(1) time series is cast as a state-space model of the following form (see Harvey 1981, pages 103-104, 112):

$$y_k = (1 \ 0) b_k$$

$$b_k = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} b_{k-1} + w_k$$

where the two-dimensional w_k are independently distributed bivariate normal with mean 0 and variance $\sigma^2 Q_k$ and

$$Q_1 = \begin{pmatrix} 1 + \theta^2 & -\theta \\ -\theta & \theta^2 \end{pmatrix}$$

$$Q_k = \begin{pmatrix} 1 & -\theta \\ -\theta & \theta^2 \end{pmatrix} \quad k = 2, 3, \ldots, 200$$

import com.imsl.stat.*;
import com.imsl.math.**;

public class KalmanFilterEx2 implements MinUnconMultiVar.Function {

 public double f(double[] theta) {
 int nobs = 200, rank = 0;
 double ss = 0.0;
 double logDeterminant = 0.0;
 double res;
 double[][] covb = new double[2][2];
 double[][] q = new double[2][2];
 double[][] r = {{0.0}};
 double[] b = {0.0, 0.0};
 double[] z = {{1.0, 0.0}};
 double[] t = {{0.0, 1.0},
 {0.0, 0.0}};
 double[] y = new double[1];
 double[] ydata = {

1/0 4.376 4.941 1 0.009 2.833 0.4 17
1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941
2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3/3 4.428 0.828 4 0.26 8.141 1.003 5.829
4/3 4.428 4.828 4 0.26 8.141 1.003 5.829
```java
if (Math.abs(theta[0]) > 1.0) {
    res = 1.0e10;
} else {
    q[0][0] = 1.0;
    q[0][1] = -theta[0];
    q[1][0] = -theta[0];
    q[1][1] = theta[0] * theta[0];
    covb[0][0] = 1.0 + theta[0] * theta[0];
    covb[0][1] = -theta[0];
    covb[1][0] = -theta[0];
    covb[1][1] = theta[0] * theta[0];

    KalmanFilter kalman = new KalmanFilter(b, covb, rank, ss, logDeterminant);
```
for (int i = 0; i < nobs; i++) {
 y[0] = ydata[i];
 kalman.update(y, z, r);
 kalman.setTransitionMatrix(t);
 kalman.setQ(q);
 kalman.filter();
 ss = kalman.getSumOfSquares();
 logDeterminant = kalman.getLogDeterminant();
 rank = kalman.getRank();
 res = rank * Math.log(ss / rank) + logDeterminant;
}
return (res);

public static void main(String args[]) throws com.imsl.IMSLException {
 MinUnconMultiVar solver = new MinUnconMultiVar(1);
 double[] x = solver.computeMin(new KalmanFilterEx2());
 System.out.println("Maximum likelihood estimate, THETA = " + x[0]);
}

Output
Maximum likelihood estimate, THETA = 0.4529402135287534

MultiCrossCorrelation class

public class com.imsl.stat.MultiCrossCorrelation implements Serializable, Cloneable

Computes the multichannel cross-correlation function of two mutually stationary multichannel time series.

MultiCrossCorrelation estimates the multichannel cross-correlation function of two mutually stationary multichannel time series. Define the multichannel time series \(X \) by

\[
X = (X_1, X_2, \ldots, X_p)
\]

where

\[
X_j = (X_{1j}, X_{2j}, \ldots, X_{nj})^T, \quad j = 1, 2, \ldots, p
\]

with \(n = x.length \) and \(p = x[0].length \). Similarly, define the multichannel time series \(Y \) by

\[
Y = (Y_1, Y_2, \ldots, Y_q)
\]

where

\[
Y_j = (Y_{1j}, Y_{2j}, \ldots, Y_{mj})^T, \quad j = 1, 2, \ldots, q
\]
with \(m = y . \text{length} \) and \(q = y[0]. \text{length} \). The columns of \(X \) and \(Y \) correspond to individual channels of multichannel time series and may be examined from a univariate perspective. The rows of \(X \) and \(Y \) correspond to observations of \(p \)-variate and \(q \)-variate time series, respectively, and may be examined from a multivariate perspective. Note that an alternative characterization of a multivariate time series \(X \) considers the columns to be observations of the multivariate time series while the rows contain univariate time series. For example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let \(\hat{\mu}_X = x\text{mean} \) be the row vector containing the means of the channels of \(X \). In particular,

\[
\hat{\mu}_X = (\hat{\mu}_{X_1}, \hat{\mu}_{X_2}, \ldots, \hat{\mu}_{X_p})
\]

where for \(j = 1, 2, \ldots, p \)

\[
\hat{\mu}_{X_j} = \begin{cases}
\mu_{X_j} & \text{for } \mu_{X_j} \text{ known} \\
\frac{1}{n} \sum_{i=1}^{n} X_{ij} & \text{for } \mu_{X_j} \text{ unknown}
\end{cases}
\]

Let \(\hat{\mu}_Y = y\text{mean} \) be similarly defined. The cross-covariance of lag \(k \) between channel \(i \) of \(X \) and channel \(j \) of \(Y \) is estimated by

\[
\hat{\sigma}_{X_iY_j}(k) = \begin{cases}
\frac{1}{n} \sum (X_{ii} - \hat{\mu}_{X_i})(Y_{i+k,j} - \hat{\mu}_{Y_j}) & k = 0, 1, \ldots, K \\
\frac{1}{n} \sum (X_{ii} - \hat{\mu}_{X_i})(Y_{i-k,j} - \hat{\mu}_{Y_j}) & k = -1, -2, \ldots, -K
\end{cases}
\]

where \(i = 1, \ldots, p \), \(j = 1, \ldots, q \), and \(K = \text{maximum}_\text{lag} \). The summation on \(t \) extends over all possible cross-products with \(N \) equal to the number of cross-products in the sum.

Let \(\hat{\sigma}_X(0) = x\text{var} \), where \(x\text{var} \) is the variance of \(X \), be the row vector consisting of estimated variances of the channels of \(X \). In particular,

\[
\hat{\sigma}_X(0) = (\hat{\sigma}_{X_1}(0), \hat{\sigma}_{X_2}(0), \ldots, \hat{\sigma}_{X_p}(0))
\]

where

\[
\hat{\sigma}_{X_j}(0) = \frac{1}{n} \sum_{j=1}^{n} (X_{ij} - \hat{\mu}_{X_j})^2, \quad j=0,1,\ldots,p
\]

Let \(\hat{\sigma}_Y(0) = y\text{var} \), where \(y\text{var} \) is the variance of \(Y \), be similarly defined. The cross-correlation of lag \(k \) between channel \(i \) of \(X \) and channel \(j \) of \(Y \) is estimated by

\[
\hat{\rho}_{X_iY_j}(k) = \frac{\hat{\sigma}_{X_iY_j}(k)}{[\hat{\sigma}_X(0)\hat{\sigma}_Y(0)]^{1/2}} \quad k = 0, \pm 1, \ldots, \pm K
\]

Constructor

MultiCrossCorrelation

public MultiCrossCorrelation(double[][] x, double[][] y, int maximum_lag)
Description
Constructor to compute the multichannel cross-correlation function of two mutually stationary multichannel time series.

Parameters
- x – A two-dimensional double array containing the first multichannel stationary time series. Each row of x corresponds to an observation of a multivariate time series and each column of x corresponds to a univariate time series.
- y – A two-dimensional double array containing the second multichannel stationary time series. Each row of y corresponds to an observation of a multivariate time series and each column of y corresponds to a univariate time series.
- maximum_lag – An int containing the maximum lag of the cross-covariance and cross-correlations to be computed. maximum_lag must be greater than or equal to 1 and less than the minimum number of observations of x and y.

Methods

getCrossCorrelation
public double[][][] getCrossCorrelation() throws MultiCrossCorrelation.NonPosVariancesException

Description
Returns the cross-correlations between the channels of x and y.

Returns
A double array of size 2 * maximum_lag +1 by x[0].length by y[0].length containing the cross-correlations between the time series x and y. The cross-correlation between channel i of the x series and channel j of the y series at lag k, where k = -maximum_lag, ..., 0, 1, ..., maximum_lag, corresponds to output array element with index [k][i][j] where k = 0,1,...,(2*maximum_lag), i = 1, ..., x[0].length, and j = 1, ..., y[0].length.

getCrossCovariance
public double[][][] getCrossCovariance() throws MultiCrossCorrelation.NonPosVariancesException

Description
Returns the cross-covariances between the channels of x and y.

Returns
A double array of size 2 * maximum_lag +1 by x[0].length by y[0].length containing the cross-covariances between the time series x and y. The cross-covariances between channel i of the x series and channel j of the y series at lag k, where k = -maximum_lag, ..., 0, 1, ..., maximum_lag, corresponds to output array element with index [k][i][j] where k = 0,1,...,(2*maximum_lag), i = 1, ..., x[0].length, and j = 1, ..., y[0].length.
getMeanX
def public double[] getMeanX()

Description
Returns the mean of each channel of \(x \).

Returns
A one-dimensional double containing the mean of each channel in the time series \(x \).

gMeanY
def public double[] getMeanY()

Description
Returns the mean of each channel of \(y \).

Returns
A one-dimensional double containing the estimate mean of each channel in the time series \(y \).

gVarianceX
public double[] getVarianceX() throws MultiCrossCorrelation.NonPosVariancesException

Description
Returns the variances of the channels of \(x \).

Returns
A one-dimensional double containing the variances of each channel in the time series \(x \).

gVarianceY
public double[] getVarianceY() throws MultiCrossCorrelation.NonPosVariancesException

Description
Returns the variances of the channels of \(y \).

Returns
A one-dimensional double containing the variances of each channel in the time series \(y \).

setMeanX
public void setMeanX(double[] mean)

Description
Estimate of the mean of each channel of \(x \).

Parameter
- \(mean \) – A one-dimensional double containing the estimate of the mean of each channel in time series \(x \).

setMeanY
public void setMeanY(double[] mean)
Description

Estimate of the mean of each channel of y.

Parameter

`mean` – A one-dimensional `double` containing the estimate of the mean of each channel in the time series y.

Example 1: MultiCrossCorrelation

Consider the Wolfer Sunspot Data (Y) (Box and Jenkins 1976, page 530) along with data on northern light activity (X1) and earthquake activity (X2) (Robinson 1967, page 204) to be a three-channel time series. Methods `getCrossCovariance` and `getCrossCorrelation` are used to compute the cross-covariances and cross-correlations between X1 and Y and between X2 and Y with lags from `-maximum_lag = -10` through lag `maximum_lag = 10`.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class MultiCrossCorrelationEx1 {
    public static void main(String args[]) throws Exception {
        int i;
        double x[][] = {
            {155.0, 66.0},
            {113.0, 62.0},
            {3.0, 66.0},
            {10.0, 197.0},
            {0.0, 63.0},
            {0.0, 0.0},
            {12.0, 121.0},
            {86.0, 0.0},
            {102.0, 113.0},
            {20.0, 27.0},
            {98.0, 107.0},
            {116.0, 50.0},
            {87.0, 122.0},
            {131.0, 127.0},
            {168.0, 152.0},
            {173.0, 216.0},
            {238.0, 171.0},
            {146.0, 70.0},
            {0.0, 141.0},
            {0.0, 69.0},
            {0.0, 160.0},
            {0.0, 92.0},
            {12.0, 70.0},
            {0.0, 46.0},
            {37.0, 96.0},
            {14.0, 78.0},
            {11.0, 110.0},
            {28.0, 79.0},
            {19.0, 85.0},
            {30.0, 113.0},
        }
    }
```
Chapter 19. Time Series and Forecasting

MultiCrossCorrelation • 1067
\[
\begin{align*}
\{47.0, 97.0\}, \\
\{35.0, 82.0\}, \\
\{74.0, 90.0\}, \\
\{104.0, 122.0\}, \\
\{97.0, 70.0\}, \\
\{106.0, 96.0\}, \\
\{113.0, 111.0\}, \\
\{103.0, 42.0\}, \\
\{68.0, 97.0\}, \\
\{67.0, 91.0\}, \\
\{82.0, 64.0\}, \\
\{89.0, 81.0\}, \\
\{102.0, 162.0\}, \\
\{110.0, 137.0\}
\end{align*}
\]

\[
double y[][] = \{
\begin{align*}
\{101.0\}, \\
\{82.0\}, \\
\{66.0\}, \\
\{35.0\}, \\
\{31.0\}, \\
\{7.0\}, \\
\{20.0\}, \\
\{92.0\}, \\
\{154.0\}, \\
\{126.0\}, \\
\{85.0\}, \\
\{68.0\}, \\
\{38.0\}, \\
\{23.0\}, \\
\{10.0\}, \\
\{24.0\}, \\
\{83.0\}, \\
\{132.0\}, \\
\{131.0\}, \\
\{118.0\}, \\
\{90.0\}, \\
\{67.0\}, \\
\{60.0\}, \\
\{47.0\}, \\
\{41.0\}, \\
\{21.0\}, \\
\{16.0\}, \\
\{6.0\}, \\
\{4.0\}, \\
\{7.0\}, \\
\{14.0\}, \\
\{34.0\}, \\
\{45.0\}, \\
\{43.0\}, \\
\{48.0\}, \\
\{42.0\}, \\
\{28.0\}, \\
\{10.0\}, \\
\{8.0\},
\end{align*}
\]
Chapter 19. Time Series and Forecasting

MultiCrossCorrelation • 1069
```java
MultiCrossCorrelation mcc = new MultiCrossCorrelation(x, y, 10);
new PrintMatrix("Mean of X : ").print(mcc.getMeanX());
new PrintMatrix("Variance of X : ").print(mcc.getVarianceX());
new PrintMatrix("Mean of Y : ").print(mcc.getMeanY());
new PrintMatrix("Variance of Y : ").print(mcc.getVarianceY());

double[][][] ccv = mcc.getCrossCovariance();
System.out.println("Multichannel cross-covariance between X and Y");
for (i = 0; i < 21; i++) {
    System.out.println("Lag K = " + (i - 10));
    new PrintMatrix("CrossCovariances : ").print(ccv[i]);
}
double[][][] cc = mcc.getCrossCorrelation();
System.out.println("Multichannel cross-correlation between X and Y");
for (i = 0; i < 21; i++) {
    System.out.println("Lag K = " + (i - 10));
    new PrintMatrix("CrossCorrelations : ").print(cc[i]);
}
```

Output

Mean of X:
- 0: 0
- 1: 97.97

Variance of X:
- 0: 2,643.685
- 1: 1,978.429

Mean of Y:
- 0: 46.94

Variance of Y:
- 0: 1,383.756

Multichannel cross-covariance between X and Y
Lag K = -10
CrossCovariances:
- 0: -20.512
- 1: 70.713

1070 • MultiCrossCorrelation
Lag K = -9
CrossCovariances :
 0
 1 38.136

Lag K = -8
CrossCovariances :
 0
 1 135.578

Lag K = -7
CrossCovariances :
 0
 1 100.362

Lag K = -6
CrossCovariances :
 0
 1 44.968

Lag K = -5
CrossCovariances :
 0
 1 -11.809

Lag K = -4
CrossCovariances :
 0
 1 32.693

Lag K = -3
CrossCovariances :
 0
 1 -40.119

Lag K = -2
CrossCovariances :
 0
 1 -152.649

Lag K = -1
CrossCovariances :
 0
 1 -212.95

Lag K = 0
CrossCovariances:
0
1 -104.752

Lag K = 1
CrossCovariances:
0
1 55.16

Lag K = 2
CrossCovariances:
0
1 84.775

Lag K = 3
CrossCovariances:
0
1 75.963

Lag K = 4
CrossCovariances:
0
1 200.383

Lag K = 5
CrossCovariances:
0
1 282.986

Lag K = 6
CrossCovariances:
0
1 234.393

Lag K = 7
CrossCovariances:
0
1 223.034

Lag K = 8
CrossCovariances:
0
1 124.457

Lag K = 9
CrossCovariances:
0
Lag $K = 10$
CrossCovariances :
0
1 -279.286

Multichannel cross-correlation between X and Y
Lag $K = -10$
CrossCorrelations :
0
1 0.043

Lag $K = -9$
CrossCorrelations :
0
1 0.023

Lag $K = -8$
CrossCorrelations :
0
1 0.082

Lag $K = -7$
CrossCorrelations :
0
1 0.061

Lag $K = -6$
CrossCorrelations :
0
1 0.027

Lag $K = -5$
CrossCorrelations :
0
1 -0.007

Lag $K = -4$
CrossCorrelations :
0
1 0.02

Lag $K = -3$
CrossCorrelations :
0
1 0.114
Lag K = -2
CrossCorrelations :
0
0 0.186
1 -0.092

Lag K = -1
CrossCorrelations :
0
0 0.303
1 -0.129

Lag K = 0
CrossCorrelations :
0
0 0.43
1 -0.063

Lag K = 1
CrossCorrelations :
0
0 0.424
1 0.033

Lag K = 2
CrossCorrelations :
0
0 0.329
1 0.051

Lag K = 3
CrossCorrelations :
0
0 0.229
1 0.046

Lag K = 4
CrossCorrelations :
0
0 0.125
1 0.121

Lag K = 5
CrossCorrelations :
0
0 0.075
1 0.171

Lag K = 6
CrossCorrelations :
0
0 0.132
1 0.142
Lag K = 7
CrossCorrelations :
 0
 0 0.251
 1 0.135

Lag K = 8
CrossCorrelations :
 0
 0 0.379
 1 0.075

Lag K = 9
CrossCorrelations :
 0
 0 0.484
 1 -0.048

Lag K = 10
CrossCorrelations :
 0
 0 0.482
 1 -0.169

MultiCrossCorrelation.NonPosVariancesException
class

static public class
com.ims1.stat.MultiCrossCorrelation.NonPosVariancesException extends
com.ims1.IMSLException

The problem is ill-conditioned.

Constructors

MultiCrossCorrelation.NonPosVariancesException
public MultiCrossCorrelation.NonPosVariancesException(String message)

Description
Constructs a NonPosVariancesException object.

Parameter
message – a String containing the error message
MultiCrossCorrelation.NonPosVariancesException

public MultiCrossCorrelation.NonPosVariancesException(String key, Object[] arguments)

Description
Constructs a NonPosVariancesException object.

Parameters
- key – a String containing the error message
- arguments – an Object array containing arguments used within the error message string

LackOfFit class

public class com.imsl.stat.LackOfFit

Performs lack-of-fit test for a univariate time series or transfer function given the appropriate correlation function.

LackOfFit may be used to diagnose lack of fit in both ARMA and transfer function models. Typical arguments for these situations are:

<table>
<thead>
<tr>
<th>Model</th>
<th>lagMin</th>
<th>lagMax</th>
<th>npFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMA ((p,q))</td>
<td>1</td>
<td>(\sqrt{n})</td>
<td>(p+q)</td>
</tr>
<tr>
<td>Transfer function</td>
<td>0</td>
<td>(\sqrt{n})</td>
<td>(r+s)</td>
</tr>
</tbody>
</table>

LackOfFit performs a portmanteau lack of fit test for a time series or transfer function containing \(n\) observations given the appropriate sample correlation function \(\hat{\rho}(k)\) for \(k = L, L+1, \ldots, K\) where \(L = \text{lagMin}\) and \(K = \text{lagMax}\).

The basic form of the test statistic \(Q\) is

\[
Q = n(n+2) \sum_{k=L}^{K} (n-k)^{-1} \hat{\rho}(k)
\]

with \(L = 1\) if \(\hat{\rho}(k)\) is an autocorrelation function. Given that the model is adequate, \(Q\) has a chi-squared distribution with \(K-L+1-m\) degrees of freedom where \(m = \text{npFree}\) is the number of parameters estimated in the model. If the mean of the time series is estimated, Woodfield (1990) recommends not including this in the count of the parameters estimated in the model. Thus, for an ARMA\((p,q)\) model set \(\text{npFree} = p + q\) regardless of whether the mean is estimated or not. The original derivation for time series models is due to Box and Pierce (1970) with the above modified version discussed by Ljung and Box (1978). The extension of the test to transfer function models is discussed by Box and Jenkins (1976, pages 394-395).
Methods

compute
static public double[] compute(int nObservations, double[] correlations, int npFree, int lagMax)

Description
Performs lack-of-fit test for a univariate time series or transfer function given the appropriate correlation function using a minimum lag of 1.

Parameters
- nObservations – an int containing the number of observations of the stationary time series.
- correlations – a double array of length lagMax+1 containing the correlation function.
- npFree – an int scalar specifying the number of free parameters in the formulation of the time series model. npFree must be greater than or equal to zero and less than lagMax. Woodfield (1990) recommends npFree = p + q.
- lagMax – an int scalar specifying the maximum lag of the correlation function.

Returns
a double array of length 2 with the test statistic, Q, and its p-value, p. Under the null hypothesis, Q has an approximate chi-squared distribution with lagMax-lagMin+1-npFree degrees of freedom.

Chapter 19. Time Series and Forecasting
LackOfFit • 1077
Example: Lack Of Fit

Consider the Wölfte Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 1770 through 1869. An ARMA(2,1) with nonzero mean is fitted using the `ARMA` class. The autocorrelations of the residuals are estimated using the `AutoCorrelation` class. Class `LackOfFit` is used to compute a portmanteau lack of fit test using 10 lags. The warning message from `ARMA` in the output can be ignored. (See Example 2 in ARMA for a full explanation of the warning message.)

```java
import com.imsl.stat.*;

public class LackOfFitEx1 {
    public static void main(String args[]) throws Exception {
        int p = 2, q = 1, lagmax = 10, npfree = 4;
        double tolerance = 0.125;

        // sunspot data for 1770 through 1869
        double[] x = {
            100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
            154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
            132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
            6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
            8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
            23.9, 15.7, 6.6, 4.1, 8.5, 16.6, 36.3, 49.7, 62.5,
            67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
            85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
            124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
            54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
            37.3, 73.9
        };

        // Get residuals from ARMA(2,1) for autocorrelation/lack of fit
        ARMA arma = new ARMA(p, q, x);
        arma.setMethod(ARMA.LEAST_SQUARES);
        arma.setConvergenceTolerance(tolerance);
        arma.compute();
        double[] residuals = arma.getResidual();

        // Get autocorrelations from residuals for lack of fit test
        AutoCorrelation ac = new AutoCorrelation(residuals, lagmax);
        double[] correlations = ac.getAutoCorrelations();

        // Get lack of fit test statistic and p-value
        double[] result = LackOfFit.compute(x.length, correlations, npfree, lagmax);

        // Print parameter estimates, test statistic, and p-value
        System.out.println("Lack of Fit Statistic, Q = " + result[0]);
        System.out.println("P-value of Q = " + result[1]);
    }
}
```
Output
Lack of Fit Statistic, \(Q = 14.60601806330646 \)
P-value of \(Q = 0.0235525998617882 \)

HoltWintersExponentialSmoothing class

```java
public class com.imsl.stat.HoltWintersExponentialSmoothing implements Serializable, Cloneable

Calculates parameters and forecasts using the Holt-Winters Multiplicative or Additive forecasting method for seasonal data.

HoltWintersExponentialSmoothing performs the Holt-Winters forecasting method to an equally spaced time series, \( \{y_t\} \) where \( N = \text{nobs} \) and \( t = 1, \ldots, N \) (or \( t = 0, 1 \cdot \text{incy}, 2 \cdot \text{incy}, \ldots, K \cdot \text{incy} \) where \( K \cdot \text{incy} \leq N \) and \( \text{incy} \geq 1 \)). The Holt-Winters procedure fits three component sequences known as the level, the trend, and the seasonal sequence. There are two formulations, depending on whether the seasonal component of the time series is thought to be additive or multiplicative. The seasonal component depends on the length of the season, \( \text{nseason} = s \), where \( s = 2, \ldots, N \).

### Holt-Winters Additive Model

- Level sequence:
  \[
  L_t = \alpha (y_t - S_{t-s}) + (1 - \alpha)(L_{t-1} + b_{t-1})
  \]
- Trend sequence:
  \[
  b_t = \beta (L_t - L_{t-1}) + (1 - \beta)b_{t-1}
  \]
- Seasonal sequence:
  \[
  S_t = \gamma (y_t/L_t) + (1 - \gamma)S_{t-s}
  \]
- Forecast sequence:
  \[
  F_{t+k} = L_t + kb_t + S_{t+k-s}
  \]

### Holt-Winters Multiplicative Model

- Level sequence:
  \[
  L_t = \alpha (y_t/S_{t-s}) + (1 - \alpha)(L_{t-1} + b_{t-1})
  \]
- Trend sequence:
  \[
  b_t = \beta (L_t - L_{t-1}) + (1 - \beta)b_{t-1}
  \]
- Seasonal sequence:
  \[
  S_t = \gamma (y_t/L_t) + (1 - \gamma)S_{t-s}
  \]
- Forecast sequence:
  \[
  F_{t+k} = L_t + kb_t + S_{t+k-s}
  \]

Note that without a seasonal component, both the additive and multiplicative formulations reduce to the same methods. (The seasonal sequence is set to 1 for the multiplicative model, and identically 0 for the additive model.)

### Default Starting Values

Initial values are required for these sequences. The software allows the user code to define these initial values (see `setInitialValues` method). If they are not provided, then the first two seasons of data are
used:

\[ L_s = \frac{1}{s} \sum_{i=1}^{s} y_i, \quad s > 1 \]
\[ b_s = \frac{1}{s} \sum_{i=1}^{s} \left( \frac{y_{i+s} - y_i}{s} \right), \quad s > 1 \]
\[ S_i = \frac{y_i}{L_s} \text{ or } y_i - L_s, \quad i = 1, \ldots, s \] (Multiplicative or Additive)

The smoothing parameters \((\alpha, \beta, \gamma)\) are each in the interval \([0,1]\) and can be specified by the user (see setParameters method), or automatically set by minimizing the within sample one-step ahead mean squared forecast error. Note that this objective function is not necessarily convex and solutions will depend on starting values. See Chatfield and Yar(1988) for further discussion. Starting values for \((\alpha, \beta, \gamma)\) are obtained by minimizing the mean squared error over \(nsamples\) bootstrap samples of the time series. Experiments suggest that this approach helps prevent poor starting values. Note, that solutions may vary for different settings of the number of random samples, \(nsamples\).

The return value of the compute method is an \((N + 1)\) by 3 = \((nobs + 1)\) by 3 matrix containing the smoothing parameter values on the first row, followed by the calculated level, trend, and seasonal sequences. When \(N = nobs\) and \(s = nseason\), the format of the return value is as follows:

<table>
<thead>
<tr>
<th>Series Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>(s)</td>
</tr>
<tr>
<td>(s+1)</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>(N)</td>
</tr>
</tbody>
</table>

If one of the nonseasonal options is specified, the return value will be \((nobs + 1)\) by 2 or \((nobs + 1)\) by 1 accordingly.

The variance-covariance matrix for the parameters \((\alpha, \beta, \gamma)\) is

\[
\text{cov} = \frac{\sum e_i^2}{N - 2s - 3} (J^TJ)^{-1}
\]

where \(e_i\) is the one-step-ahead forecast error, and \(J\) is the Jacobian matrix of the series using the forecast model and calculating forecasts one step ahead of each datum. Prediction intervals are calculated following Chatfield and Yar (1991).

**Constructor**

**HoltWintersExponentialSmoothing**

public HoltWintersExponentialSmoothing(int nseason, double[] y)
Description
Constructor for HoltWintersExponentialSmoothing.

Parameters
nseason – an int scalar containing the number of time points in a season, or the length of the
season. The class requires that 2 ≤ nseason ≤ nobs unless one of the non-seasonal methods is used,
in which case nseason is ignored. See the setNonseasonalTrend and
setNonseasonalConstant methods for details.
y – a double array containing the values of the time series.

Methods

compute
final public double[][] compute()

Description
Computes the values of the smoothing parameters.

Returns
an (nobs + 1) by 3 double matrix containing the values of the smoothing parameters followed by the
level, trend, and seasonal component sequences. Note that if the setNonseasonalTrend method is
used, the matrix is of dimension (nobs + 1) by 2 and if the setNonseasonalConstant method is used,
it is (nobs + 1) by 1.

getForecasts
public double[][] getForecasts()

Description
Returns the forecasts past the series data.

Returns
an nforecasts by 1 double matrix containing the forecasts past the series data. The value of the i-th
row is the forecast (i + 1) steps past the series data. If setConfidence is used, the matrix will be of
dimension nforecasts by 3 and the value of the i-th row is the forecast (i+1) steps ahead followed by
the prediction interval lower and upper bounds.

getSmoothedSeries
public double[] getSmoothedSeries()

Description
Returns the fitted series values.
Returns a double array containing the fitted series values.

getSumOfSquares
public double getSumOfSquares()

Description
Returns the sum of squares of the one step ahead forecast errors.

Returns a double scalar containing the sum of squares of the one step ahead forecast errors.

getVarCovarMatrix
public double[][] getVarCovarMatrix()

Description
Returns the variance-covariance matrix of the smoothing parameters estimated by minimizing the mean squared forecast error. The matrix is 3 by 3 unless the setNonseasonalTrend method is used, in which case it is 2 by 2, or unless the setNonseasonalConstant method is used, in which case it is 1 by 1. This method cannot be used together with the setParameters method. Note that the compute method must be invoked before invoking this method. Otherwise, the method throws a NullPointerException exception.

Returns a double matrix containing the variance-covariance matrix of the smoothing parameters estimated by minimizing the mean squared forecast error.

setAdditive
public void setAdditive()

Description
Specifies the use of the Additive time series model. The Multiplicative model is the default.

setConfidence
public void setConfidence(double confid)

Description
Sets the confidence level to use in the calculation of the prediction intervals.

Parameter
confid – a double scalar containing the confidence level to use in the calculation of the prediction intervals. If 0.0 < confid < 100.0, prediction intervals are provided for each forecast. Default: Prediction intervals are not provided.

setInitialValues
public void setInitialValues(double[][] sequences)
Description
Sets the initial values for the *level*, *trend*, and *seasonal* component sequences.

Parameter
sequences – an *(nobs + 1) by 3* double matrix containing the initial values for the *level*, *trend*, and *seasonal* component sequences. The values must be stored in rows 1, 2, ..., nseason. Rows 0 and nseason + 1 to nobs are ignored on input. sequences[0].length should be equal to 3 unless the setNonseasonalTrend method is used, in which case it is 2 containing initial values for level (α) and the trend (β). Likewise, if the setNonseasonalConstant method is used, sequences[0].length is 1 and contains the initial values for the level parameter (α) only.

Default: Initial values are computed by the function.

**setLowerBounds**

```java
public void setLowerBounds(double[] xlb)
```

Description
Sets the lower bounds for each of the smoothing parameters, (α, β, γ).

Parameter
xlb – a double array containing the lower bounds for each of the smoothing parameters, (α, β, γ). Note that the lower bounds must be in the interval [0,1], inclusive. The array is ignored if the setParameters method is used. The array should be length 3 unless the setNonseasonalTrend method is used, in which case it is of length 2 containing lower bounds for level (α) and the trend (β) components. Likewise, if the setNonseasonalConstant method is used, xlb is of length 1 and contains the lower bound for the level parameter (α) component only.

Default: Lower bounds are all 0.

**setNonseasonalConstant**

```java
public void setNonseasonalConstant()
```

Description
Remove the trend and the seasonal components and fit only the level component. If used, the models involve only the level (α) parameter. The method is simple exponential smoothing.

Default: The method includes all three components.

**setNonseasonalTrend**

```java
public void setNonseasonalTrend()
```

Description
Remove the seasonal component and fit only the level and trend components. If used, the models involve only the level (α) and trend (β) parameters. The method is equivalent to double exponential smoothing.

Default: The method includes all three components.

**setNumberEval**

```java
public void setNumberEval(int nsamples)
```

Chapter 19. **Time Series and Forecasting** HoltWintersExponentialSmoothing • 1083
Description
Sets the number of evaluations of the residual norm that are sampled to obtain starting values for the smoothing parameters, $\alpha, \beta, \gamma$.

Parameter

\texttt{nsamples} – an int scalar containing the number of evaluations.

Default: $\texttt{nsamples} = \texttt{nobs}$.

\textbf{setNumberForecasts}
\begin{verbatim}
public void setNumberForecasts(int nforecasts)
\end{verbatim}

Description
Sets the number of forecasts desired past the series data.

Parameter

\texttt{nforecasts} – an int scalar containing the number of forecasts desired past the series data.

Default: No forecasts are computed past the series data.

\textbf{setNumberOfObservations}
\begin{verbatim}
public void setNumberOfObservations(int nobs)
\end{verbatim}

Description
Sets the number of equally spaced series values.

Parameter

\texttt{nobs} – an int scalar containing the number of equally spaced series values.

Default: $\texttt{nobs} = \texttt{y.length}$.

\textbf{setParameters}
\begin{verbatim}
public void setParameters(double[] params)
\end{verbatim}

Description
Sets the values of the smoothing parameters for the level $\alpha$, the trend $\beta$, and the seasonal $\gamma$ component sequences.

Parameter

\texttt{params} – a double array containing the values of the smoothing parameters for the level $\alpha$, the trend $\beta$, and the seasonal $\gamma$ component sequences. The array should be length 3 unless the \texttt{setNonseasonalTrend} method is used, in which case it is of length 2 containing values for level $\alpha$ and the trend $\beta$ components. Likewise, if the \texttt{setNonseasonalConstant} method is used, \texttt{params} is of length 1 and contains the value for the level parameter $\alpha$ component only.

Default: Parameter values are selected by minimizing the mean squared one step ahead forecast error.

\textbf{setSeriesIncrement}
\begin{verbatim}
public void setSeriesIncrement(int incy)
\end{verbatim}
Description
Sets the constant stride through the series data y.

Parameter
incy – an int scalar containing the constant stride through the series data y. y.length must be at least (nobs − 1) × |incy| + 1. When incy < 0, the series is incremented in reverse order beginning at index nobs (−incy) − 1.
Default: incy = 1.

setUpperBounds
public void setUpperBounds(double[] xub)

Description
Sets the upper bounds for each of the smoothing parameters, (α, β, γ).

Parameter
xub – a double array containing the upper bounds for each of the smoothing parameters, (α, β, γ). Note that the upper bounds must be in the interval [0,1], inclusive. The array is ignored if the setParameters method is used. The array should be length 3 unless the setNonseasonalTrend method is used, in which case it is of length 2 containing upper bounds for level (α) and the trend (β) components. Likewise, if the setNonseasonalConstant method is used, xub is of length 1 and contains the upper bound for the level parameter (α) component only.
Default: Upper bounds are all 1.

Example: HoltWintersExponentialSmoothing
A series of 12 seasonal data values are analysed using the Multiplicative and the Additive Holt-Winters method. The season size is nseason = 4. The objective is to predict one season ahead, nforecasts = 4 using each method. The forecasts and prediction interval lower and upper bounds are returned. The mean sum of squares of the one-step ahead forecast errors is shown to be smallest using the Multiplicative model.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
public class HoltWintersExponentialSmoothingEx1 {
 public static void main(String args[]) {
 double[] y = {23, 25, 36, 31, 26, 28, 48, 36, 31, 42, 53, 43};
 double confidence = 95.0;
 int nobs = y.length, nseason = 4, nforecasts = nseason;

 // Compute the time series and forecasts
 // using the Multiplicative model.
 HoltWintersExponentialSmoothing hw
 = new HoltWintersExponentialSmoothing(nseason, y);
 hw.setConfidence(confidence);
 hw.setNumberForecasts(nforecasts);
 double[][] ser = hw.compute();
 double[] ysm = hw.getSmoothedSeries();
 }
}
```
double[][] forecasts = hw.getForecasts();

new PrintMatrix("Input time series").print(y);
new PrintMatrix("Smoothed Multiplicative series").print(ysm);
new PrintMatrix("Parameters and internal sequence").print(ser);
new PrintMatrix(" Multiplicative forecasts
with " + confidence + "% prediction interval").print(forecasts);
System.out.println("MSS - Multiplicative " + (hw.getSumOfSquares() / (double) (nobs - nseason)));

// Compute the time series and forecasts
// using the Additive model.
hw = new HoltWintersExponentialSmoothing(nseason, y);
hw.setConfidence(confidence);
hw.setNumberForecasts(nforecasts);
hw.setAdditive();
ser = hw.compute();
ysm = hw.getSmoothedSeries();
forecasts = hw.getForecasts();

new PrintMatrix("\n\nSmoothed Additive series").print(ysm);
new PrintMatrix("Parameters and internal sequence").print(ser);
new PrintMatrix(" Additive forecasts
with " + confidence + "% prediction interval").print(forecasts);
System.out.println("MSS - Additive " + (hw.getSumOfSquares() / (double) (nobs - nseason)));
}
}

Output

Input time series
0
 0 23
 1 25
 2 36
 3 31
 4 26
 5 28
 6 48
 7 36
 8 31
 9 42
10 53
11 43

Smoothed Multiplicative series
0
 0 23
 1 25
 2 36
 3 31
 4 24.15
 5 27.652
 6 41.767
Parameters and internal sequence

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.038</td>
<td>1</td>
<td>0.437</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.87</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1.252</td>
</tr>
<tr>
<td>4</td>
<td>28.75</td>
<td>1.438</td>
<td>1.078</td>
</tr>
<tr>
<td>5</td>
<td>30.275</td>
<td>1.525</td>
<td>0.826</td>
</tr>
<tr>
<td>6</td>
<td>31.815</td>
<td>1.54</td>
<td>0.874</td>
</tr>
<tr>
<td>7</td>
<td>33.544</td>
<td>1.729</td>
<td>1.33</td>
</tr>
<tr>
<td>8</td>
<td>35.202</td>
<td>1.657</td>
<td>1.054</td>
</tr>
<tr>
<td>9</td>
<td>36.885</td>
<td>1.683</td>
<td>0.832</td>
</tr>
<tr>
<td>10</td>
<td>38.928</td>
<td>2.043</td>
<td>0.964</td>
</tr>
<tr>
<td>11</td>
<td>40.927</td>
<td>2</td>
<td>1.315</td>
</tr>
<tr>
<td>12</td>
<td>42.846</td>
<td>1.919</td>
<td>1.032</td>
</tr>
</tbody>
</table>

Multiplicative forecasts with 95.0% prediction interval

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37.252</td>
<td>27.539</td>
<td>46.964</td>
</tr>
<tr>
<td>1</td>
<td>44.99</td>
<td>35.24</td>
<td>54.739</td>
</tr>
<tr>
<td>2</td>
<td>63.908</td>
<td>53.989</td>
<td>73.826</td>
</tr>
<tr>
<td>3</td>
<td>52.136</td>
<td>42.166</td>
<td>62.105</td>
</tr>
</tbody>
</table>

MSS - Multiplicative 15.347754266704447

Smoothed Additive series

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>38.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38.542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>34.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>35.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>56.627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>43.827</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters and internal sequence

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.268</td>
<td>0.643</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-5.75</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-3.75</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>7.25</td>
</tr>
<tr>
<td>4</td>
<td>28.75</td>
<td>0</td>
<td>2.25</td>
</tr>
<tr>
<td>5</td>
<td>29.555</td>
<td>0.518</td>
<td>-3.555</td>
</tr>
</tbody>
</table>
Additive forecasts with 95.0% prediction interval

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39.211</td>
<td>27.801</td>
<td>50.621</td>
</tr>
<tr>
<td>1</td>
<td>48.841</td>
<td>36.371</td>
<td>61.311</td>
</tr>
<tr>
<td>2</td>
<td>60.046</td>
<td>45.745</td>
<td>74.347</td>
</tr>
<tr>
<td>3</td>
<td>50.125</td>
<td>33.244</td>
<td>67.007</td>
</tr>
</tbody>
</table>

MSS - Additive 21.181134361693125

**TimeSeries class**

public class com.imsl.stat.TimeSeries implements Serializable, Cloneable

A specialized class for time series data and analysis.

**Constructor**

**TimeSeries**

public TimeSeries()

**Description**

Constructor for TimeSeries.

**Methods**

**getDateIncrement**

public long getDateIncrement()

**Description**

Returns the date increment for this TimeSeries object.
Returns a long, the date increment

getDates
public Date[] getDates()

Description
Returns the date array associated with the time series.
See Java documentation on the Date class.

Returns
a Date array containing the dates of the series

getLength
public int getLength()

Description
Returns the length of the time series.

Returns
an int, the length of the time series

getMissingIndicator
public int[][] getMissingIndicator()

Description
Returns an array of missing value indicators.
A missing value is represented in the series by a Double.NaN.

Returns
an int matrix having the same dimension as the time series where getMissingIndicator()[i][j]=1 if y[i*numSeries+j] or y[i][j] is a missing value, otherwise getMissingIndicator()[i][j]=0.

getNumMissing
public int getNumMissing()

Description
Returns the number of missing values.
A missing value is represented in the series by a Double.NaN

Returns
an int representing the number of missing values detected in the time series.

getNumberOfSeries
public int getNumberOfSeries()

Description
Returns the number of series stored in this TimeSeries object.
Returns an int, the number of different series

getSeriesValues
public double[][] getSeriesValues()

Description
Returns the values associated with the time series.

Returns
a double matrix containing the values of the series

getSeriesValues
public double[] getSeriesValues(int k)

getStartDate
public Date getStartDate()

Description
Returns the starting date of the time series.

Returns
a Date containing the first date of the series

getTimeZone
public TimeZone getTimeZone()

Description
Returns the time zone of the time series.
See Java documentation for the TimeZone class.

Returns
a TimeZone object

getTimeZoneOffset
public long getTimeZoneOffset()

Description
Returns the number of hours (+ or -) from GMT of the time zone associated with the time series. The
time zone is the same as the local time zone unless it is changed by the user.
To convert to milliseconds, multiply by 60*60*1000. Note that the displayed time zone will be the name
of the local time zone, despite what is set for the TimeSeries object. For further information, see the
Examples provided and Java documentation on Date and Calendar classes.

Returns
a long value, the number of hours

isDateIncrementInMillis
public boolean isDateIncrementInMillis()
Description
Returns a boolean indicating whether or not the TimeSeries object has a date increment expressed in milliseconds. If true the date increment is considered to be expressed in milliseconds; otherwise, it is assumed to be in the number of days.

Returns
a boolean

isHasDates
public boolean isHasDates()

Description
Returns a boolean indicating whether or not the TimeSeries has a non-null dates attribute.

Returns
a boolean. When true, the dates attribute is not null.

setDateIncrement
public void setDateIncrement(int increment)

Description
Sets the date increment in number of days.

Parameter
increment – an int value representing the number of days between observations. By using increments, the time series is presumed to be evenly spaced.

setDateIncrementInMillis
public void setDateIncrementInMillis(long incrementInMillis)

Description
Sets the date increment in milliseconds.

Parameter
incrementInMillis – a long value representing the number of milliseconds between series values. By using increments, the time series is presumed to be evenly spaced.

setDates
public void setDates()

Description
Sets the date array using the start date and date increment.

setDates
public void setDates(Date[] dateArray)

Description
Sets the date array equal to user supplied dates.
Parameter
dateArray – a Date array containing the dates associated with each value of the time series

setSeriesValues
public void setSeriesValues(double[] y)

Description
Sets the values of a univariate time series and initializes the time index. If the start date is set by the user, the date array starts at the starting date and increments by 1 day up to the series length. The start date can be set using setStartDate and the increment in days can be set using setDateIncrement or in milliseconds using setDateIncrementInMillis.

Parameter
y – a double array containing the numeric values of the series. Missing values must be provided as NaN’s.

setSeriesValues
public void setSeriesValues(double[][] y)

Description
Sets the values of the TimeSeries.

Parameter
y – a double matrix containing the values of the time series. The number of series is set to the number of columns of y. Missing values must be provided as Double.NaN.

setSeriesValues
public void setSeriesValues(double[] y, int numSeries)

Description
Sets the values of a multivariate time series and initializes the time index array.

Parameters
y – a double array containing the numeric values of the series. It is assumed that the values are row-oriented, meaning that the series index varies the fastest. Missing values must be provided as Double.NaN.
numSeries – an int, the number of different series.

setStartDate
public void setStartDate(Date startDate)

Description
Sets the start date of the series.
Parameter
startDate – a Date value, the date associated with the first observation. The default start date is set to null.

**setTimeZone**

public void setTimeZone(int offset)

Description
Sets the time zone for the time series to the time zone associated with the given offset from GMT.

**Parameter**
offset – an int representing the number of hours (+ or -) difference from GMT.

**setTimeZone**

public void setTimeZone(TimeZone tz)

Description
Sets the time zone for the time series to the given TimeZone.

**Parameter**

tz – a java.util.TimeZone object.

**setTimeZone**

public void setTimeZone(int offset, String id)

Description
Sets the time zone for the time series using the offset and String id.

**Parameters**

offset – an int representing the number of hours (+ or -) difference from GMT.

id – a String representing the desired name of the time zone. The provided id must be among the available ids, or else the first element of TimeZone.getAvailableIDS(offset*60*60*1000) will be used.

**Example: TimeSeries**

This example illustrates setting up a TimeSeries class for a segment of S&P 500 returns during a period in the late 80’s.

```java
import com.imsl.stat.*;
import java.util.Date;
import java.text.*;

public class TimeSeriesEx1 {

 public static void main(String args[]) throws ParseException {
 double data1[] = {
 0.940543272, 2.664279727, 0.252045652, 1.221098464, 0.270575973,
 0.446882726, 0.073672969, -4.450030305, 0.007699415, -0.215808015,
 };
```

Chapter 19. Time Series and Forecasting TimeSeries • 1093
import com.imsl.stat.TimeSeries;

String datestrings1[] = {
};

SimpleDateFormat dateFormat = new SimpleDateFormat("M/d/y");

TimeSeries ts = new TimeSeries();
ts.setSeriesValues(data1);

System.out.println("The number of observations = " + ts.getLength());
System.out.println("The number of missing observations = " + ts.getNumMissing());

Date dates1[] = new Date[ts.getLength()];
for (int i = 0; i < ts.getLength(); i++) {
    dates1[i] = dateFormat.parse(datestrings1[i]);
}
ts.setDates(dates1);
System.out.println("The starting date is = " + ts.getStartDate());

Output
The number of observations = 39
The number of missing observations = 0
The starting date is = Tue Apr 05 00:00:00 CDT 1988

Example: TimeSeries
This example illustrates setting up a different time zone.

import com.imsl.stat.TimeSeries;
import java.text.*;
import java.util.*;

public class TimeSeriesEx2 {

    public static void main(String args[]) throws ParseException {
        String dateStrings[] = {
            "8/7/2012 00:00:16", "6/3/2011 1:21:03", "9/14/2011 17:18:22"
        };
        double data[] = {-1.0, 2.5, 6.773, -8.92, 4.117, 16.27};
        Date dates[] = new Date[data.length];
        SimpleDateFormat dateFormat = new SimpleDateFormat("M/d/y H:mm:ss");
        SimpleDateFormat printDateFormat
            = new SimpleDateFormat("M/d/y H:mm:ss, a");
        for (int i = 0; i < data.length; i++) {
            dates[i] = dateFormat.parse(dateStrings[i]);
        }

        TimeSeries ts;
        ts = new TimeSeries();
        ts.setSeriesValues(data);
        ts.setDates(dates);

        System.out.println("Local Timezone offset in hours is "
            + ts.getTimeZoneOffset());
        System.out.println("Local Timezone name is " + ts.getTimeZone().getID());

        /* Note: changing the time zone does not change the time values that
           were set in setValues(). Subtract the offset in order to adjust the
           times, if necessary. */
        ts.setTimeZone(-8, "PST");
        TimeZone tz = ts.getTimeZone();
        System.out.println("New offset is " + ts.getTimeZoneOffset());
        System.out.println("New name is " + tz.getID());

        /* Default printing will use the local time zone. Here is the manual
        way to print the time zone that was set. */
        System.out.println(printDateFormat.format(ts.getDates()[4]) + "
            + tz.getDisplayName());

        /* Use the offset to display the equivalent GMT time */
        Date gmtTime = new Date(ts.getDates()[4].getTime()
            - ts.getTimeZoneOffset() * 60 * 60 * 1000);
        System.out.println(printDateFormat.format(gmtTime) + " GMT ");
    }
}

Output
Local Timezone offset in hours is -6
TimeSeriesOperations class

public class com.imsl.stat.TimeSeriesOperations implements Serializable, Cloneable

A class of operations and methods for objects of class TimeSeries.

Constructor

TimeSeriesOperations
public TimeSeriesOperations()

Description
Constructor for TimeSeriesOperations.

Methods

backshift
public TimeSeries backshift(TimeSeries ts, int lag)

Description
Returns the backshifted version of the time series. For a given lag $l \geq 0$ the backshift operation is defined as:

$$B^l y_t = y_{t-l}$$

Parameters
- ts – a TimeSeries object.
- lag – an int specifying the lag.
Returns
TimeSeries with values at index \( i \) the same as the original series values at position \( i - \text{lag} \):

merge
public TimeSeries merge(TimeSeries ts1, TimeSeries ts2)

Description
Merges two time series objects.
Parameters
ts1 – a TimeSeries object.
ts2 – a TimeSeries object.

Returns
a TimeSeries object resulting from merging ts1 and ts2.

setCombineFunction
public void setCombineFunction(TimeSeriesOperations.Function function)

Description
Sets the combine function to a user supplied function. Must be defined when combineMethod = 
CombineMethod.CUSTOM.
Parameter
function – a Function that defines how two values should be combined.

setCombineMethod
public void setCombineMethod(TimeSeriesOperations.CombineMethod combineMethod)

Description
Sets the method for combining synchronous time series values.
Parameter
combineMethod – a CombineMethod value.

setMergeRule
public void setMergeRule(TimeSeriesOperations.MergeRule mergeRule)

Description
Sets the rule that defines how two time series are merged.
Parameter
mergeRule – a MergeRule value.

stack
public double[] stack(TimeSeries ts)
Description
Stacks or vectorizes the values of a multivariate TimeSeries.

Parameter
- ts – TimeSeries

Returns
A double[] array of length T*numberOfSeries with the index 1,...,numberOfSeries varying fastest.

Example 1: TimeSeriesOperations
This example illustrates the action of the Merge function under different settings of the Merge rule.

```java
import com.imsl.stat.*;
import java.text.*;

public class TimeSeriesOperationsEx1 {

 public static void main(String args[]) throws ParseException {
 SimpleDateFormat dateFormat = new SimpleDateFormat("M/d/y");
 TimeSeries ts1 = new TimeSeries();
 TimeSeries ts2 = new TimeSeries();

 /* Create dates in different increments */
 ts1.setStartDate(dateFormat.parse("12/12/2010"));
 ts1.setDateIncrement(3);
 ts2.setStartDate(dateFormat.parse("12/12/2010"));
 ts2.setDateIncrement(5);

 int n = 10;
 double y1[] = new double[n];
 double y2[] = new double[n];

 /* Create series values */
 for (int i = 0; i < n; i++) {
 y1[i] = (i + 1.0);
 y2[i] = -(i + 1.0);
 }
 ts1.setSeriesValues(y1);
 ts2.setSeriesValues(y2);

 double[][] values1 = ts1.getSeriesValues();
 double[][] values2 = ts2.getSeriesValues();

 System.out.println("Time series 1 \t \tTime series 2");
 for (int i = 0; i < n; i++) {
 System.out.println(dateFormat.format(ts1.getDates()[i]) + "\t" + values1[i][0] + "\t" + dateFormat.format(ts2.getDates()[i]) + "\t" + values2[i][0]);
 }
 }
}
```
```java
TimeSeriesOperations tsOps = new TimeSeriesOperations();
TimeSeries ts3 = tsOps.merge(ts1, ts2);
double[][] values3 = ts3.getSeriesValues();
System.out.println("Merge result using the union (default) merge rule: ");
System.out.println("Series length: "+ts3.getLength());
for (int i = 0; i < ts3.getLength(); i++) {
 System.out.println(dateFormat.format(ts3.getDates()[i]) + "\t" + values3[i][0]);
}

// Set the merge rule to INTERSECTION
tsOps.setMergeRule(TimeSeriesOperations.MergeRule.INTERSECTION);
ts3 = tsOps.merge(ts1, ts2);
values3 = ts3.getSeriesValues();
System.out.println("Merge results using the intersection merge rule: ");
System.out.println("Series length: "+ts3.getLength());
for (int i = 0; i < ts3.getLength(); i++) {
 System.out.println(dateFormat.format(ts3.getDates()[i]) + "\t" + values3[i][0]);
}

// Set the merge rule to UNION_MISSING
tsOps.setMergeRule(TimeSeriesOperations.MergeRule.UNION_MISSING);
ts3 = tsOps.merge(ts1, ts2);
values3 = ts3.getSeriesValues();
System.out.println("Merge results using the union with missing rule: ");
System.out.println("Series length: "+ts3.getLength());
System.out.println("Number of missing values: " + ts3.getNumMissing());
for (int i = 0; i < ts3.getLength(); i++) {
 System.out.println(dateFormat.format(ts3.getDates()[i]) + "\t" + values3[i][0]);
}
```

**Output**

```
Time series 1 Time series 2
12/12/2010 1.0 12/12/2010 -1.0
12/15/2010 2.0 12/17/2010 -2.0
12/18/2010 3.0 12/22/2010 -3.0
12/21/2010 4.0 12/27/2010 -4.0
12/24/2010 5.0 1/1/2011 -5.0
12/30/2010 7.0 1/11/2011 -7.0
1/2/2011 8.0 1/16/2011 -8.0
1/8/2011 10.0 1/26/2011 -10.0
```

Merge result using the union (default) merge rule:
Series length: 18
```
12/12/2010 0.0
12/15/2010 2.0
12/17/2010 -2.0
12/18/2010 3.0
12/21/2010 4.0
12/22/2010 -3.0
12/24/2010 5.0
12/27/2010 1.0
12/30/2010 7.0
1/2/2011 8.0
1/5/2011 9.0
1/8/2011 10.0
```
Example 2: TimeSeriesOperations

This example illustrates merging two time series using different combine methods.

```java
import com.imsl.stat.*;
import java.util.Date;
import java.text.*;

public class TimeSeriesOperationsEx2 {
 public static void main(String args[]) throws ParseException {
 double data1[] = {
 0.940543272, 2.664279727, 0.252045652, 1.221098464, 0.270575973,
 0.446882726, 0.073672969, -4.450030305, 0.007699415, -0.215808015
 };

 double data2[] = {
 0.42010331, -1.687159586, 0.212950629, 1.147614577, 0.748805609
 };
```
String datestrings1[] = {
};

String datestrings2[] = {
};

SimpleDateFormat dateFormat = new SimpleDateFormat("M/d/y");

TimeSeries ts1 = new TimeSeries();
    ts1.setSeriesValues(data1);
Date dates1[] = new Date[ts1.getLength()];
    for (int i = 0; i < ts1.getLength(); i++) {
        dates1[i] = dateFormat.parse(datestrings1[i]);
    }
    ts1.setDates(dates1);

TimeSeries ts2 = new TimeSeries();
    ts2.setSeriesValues(data2);
Date dates2[] = new Date[ts2.getLength()];
    for (int i = 0; i < ts2.getLength(); i++) {
        dates2[i] = dateFormat.parse(datestrings2[i]);
    }
    ts2.setDates(dates2);

TimeSeriesOperations tsOps = new TimeSeriesOperations();
    TimeSeries ts3 = tsOps.merge(ts1, ts2);
    double[][] values3 = ts3.getSeriesValues();

System.out.println("Result using MergeRule.UNION and "
    + "CombineFunction.AVERAGE (defaults):\n";
    for (int i = 0; i < ts3.getLength(); i++) {
        System.out.println(dateFormat.format(ts3.getDates()[i])
            + "|" + values3[i][0]);
    }

    tsOps.setMergeRule(TimeSeriesOperations.MergeRule.INTERSECTION);
    tsOps.setCombineMethod(TimeSeriesOperations.CombineMethod.ABS_DIFF);
    ts3 = tsOps.merge(ts1, ts2);
    values3 = ts3.getSeriesValues();

System.out.println("Result using MergeRule.INTERSECTION and "
    + "CombineFunction.ABS_DIFF:");
    for (int i = 0; i < ts3.getLength(); i++) {
        System.out.println(dateFormat.format(ts3.getDates()[i])
            + "|" + values3[i][0]);
    }
Example 3: TimeSeriesOperations

This example illustrates the backshift operation.

```java
import com.imsl.stat.*;
import java.text.*;
public class TimeSeriesOperationsEx3 {
 public static void main(String[] args) throws ParseException {
 SimpleDateFormat dateFormat = new SimpleDateFormat("M/d/y");
 TimeSeries tsl = new TimeSeries();
 /* Construct the time series*/
 tsl.setStartDateTime(dateFormat.parse("12/12/2010");
 tsl.setDateIncrement(3);

 int n = 10;
 double y1[] = new double[n];
 /* Create series values */
```
for (int i = 0; i < n; i++) {
    y1[i] = (i + 1.0);
}

for (int i = 0; i < n; i++) {
    ts1.setSeriesValues(y1);
    TimeSeriesOperations tsOps = new TimeSeriesOperations();
    TimeSeries ts2 = tsOps.backshift(ts1, 2);
    double[][] values1 = ts1.getSeriesValues();
    double[][] values2 = ts2.getSeriesValues();

    System.out.println("Time series 1 	 Time series 2");
    for (int i = 0; i < n; i++) {
        System.out.println(dateFormat.format(ts1.getDates()[i]) + "\t"
            + values1[i][0] + "\t"
            + dateFormat.format(ts2.getDates()[i]) + "\t"
            + values2[i][0]);
    }
}

Output

Time series 1     Time series 2
12/12/2010 1.0    12/6/2010 NaN
12/15/2010 2.0    12/9/2010 NaN
12/18/2010 3.0    12/12/2010 1.0
12/21/2010 4.0    12/15/2010 2.0
12/24/2010 5.0    12/18/2010 3.0
12/27/2010 6.0    12/21/2010 4.0
12/30/2010 7.0    12/24/2010 5.0
1/2/2011 8.0      12/27/2010 6.0
1/5/2011 9.0      12/30/2010 7.0
1/8/2011 10.0     1/2/2011 8.0

Example 4: TimeSeriesOperations

This example illustrates the stacking or vectorizing operation.

import com.imsl.stat.*;
import java.text.*;

public class TimeSeriesOperationsEx4 {

    public static void main(String args[]) throws ParseException {
        SimpleDateFormat dateFormat = new SimpleDateFormat("M/d/y");
        TimeSeries ts1 = new TimeSeries();
        /* Construct the time series*/
        ts1.setStartDate(dateFormat.parse("12/12/2010"));
        ts1.setDateIncrement(3);

        int n = 10;
        int nSeries = 3;
        double y1[] = new double[nSeries * n];
/* Create series values */
for (int i = 0; i < n; i++) {
    y1[(3 * i)] = (i + 1.0);
    y1[(3 * i + 1)] = 2 * (i + 1.0);
    y1[(3 * i + 2)] = 3 * (i + 1.0);
}
t1.setSeriesValues(y1, nSeries);
TimeSeriesOperations tsOps = new TimeSeriesOperations();
double[][] values1 = t1.getSeriesValues();
double[] vecy = tsOps.stack(ts1);

System.out.println("Date\tSeries 1\tSeries 2\tSeries 3");
for (int i = 0; i < n; i++) {
    System.out.println(dateFormat.format(t1.getDates()[i])
                        + "\t" + values1[i][0]
                        + "\t" + values1[i][1]
                        + "\t" + values1[i][2]);
}

System.out.println("Stacked (or vectorized) Series");
for (int j = 0; j < nSeries; j++) {
    for (int i = 0; i < n; i++) {
        System.out.println(dateFormat.format(t1.getDates()[i])
                            + "\t" + vecy[j * n + i]);
    }
}

Output

<table>
<thead>
<tr>
<th>Date</th>
<th>Series 1</th>
<th>Series 2</th>
<th>Series 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/12/2010</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>12/15/2010</td>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>12/18/2010</td>
<td>3.0</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td>12/21/2010</td>
<td>4.0</td>
<td>8.0</td>
<td>12.0</td>
</tr>
<tr>
<td>12/24/2010</td>
<td>5.0</td>
<td>10.0</td>
<td>15.0</td>
</tr>
<tr>
<td>12/27/2010</td>
<td>6.0</td>
<td>12.0</td>
<td>18.0</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>7.0</td>
<td>14.0</td>
<td>21.0</td>
</tr>
<tr>
<td>1/2/2011</td>
<td>8.0</td>
<td>16.0</td>
<td>24.0</td>
</tr>
<tr>
<td>1/5/2011</td>
<td>9.0</td>
<td>18.0</td>
<td>27.0</td>
</tr>
<tr>
<td>1/8/2011</td>
<td>10.0</td>
<td>20.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Date Stacked (or vectorized) Series

<table>
<thead>
<tr>
<th>Date</th>
<th>Series 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/12/2010</td>
<td>1.0</td>
</tr>
<tr>
<td>12/15/2010</td>
<td>2.0</td>
</tr>
<tr>
<td>12/18/2010</td>
<td>3.0</td>
</tr>
<tr>
<td>12/21/2010</td>
<td>4.0</td>
</tr>
<tr>
<td>12/24/2010</td>
<td>5.0</td>
</tr>
<tr>
<td>12/27/2010</td>
<td>6.0</td>
</tr>
<tr>
<td>12/30/2010</td>
<td>7.0</td>
</tr>
<tr>
<td>1/2/2011</td>
<td>8.0</td>
</tr>
<tr>
<td>1/5/2011</td>
<td>9.0</td>
</tr>
<tr>
<td>1/8/2011</td>
<td>10.0</td>
</tr>
</tbody>
</table>
TimeSeriesOperations.Function interface


Public interface for the user-supplied function that defines how to combine two synchronous time series values.

Method

compute
public double compute(double x, double y)

Description
Public interface for the user-supplied function to combine two time series values that occur at the same date and time.

Parameters

- x – a double representing the value of the first time series.
- y – a double representing the value of the second time series.

Returns

a double representing the combination of the two inputs.
TimeSeriesOperations.MergeRule class


Public enum of merge rules that defines how two time series should be merged.

Fields

INTERSECTION
static final public TimeSeriesOperations.MergeRule INTERSECTION

The merge operation includes time points and values only at the matching time points and applies the CombineMethod to the values at the matching time points.

UNION
static final public TimeSeriesOperations.MergeRule UNION

The merge operation includes all time points and values from each time series and applies the CombineMethod to the values at the matching time points.

UNION_MISSING
static final public TimeSeriesOperations.MergeRule UNION_MISSING

The merge operation includes all time points but applies the CombineMethod only to values at matching time points, indicating a missing value Double.NaN for time points that are not in the intersection.

Methods

valueOf
static public TimeSeriesOperations.MergeRule valueOf(String name)

values
static public TimeSeriesOperations.MergeRule[] values()
TimeSeriesOperations.CombineMethod class

static public final class com.imsl.stat.TimeSeriesOperations.CombineMethod
extends java.lang.Enum

Public enum of methods for combining synchronous time series values.

Fields

ABS_DIFF
static final public TimeSeriesOperations.CombineMethod ABS_DIFF

Takes the absolute difference |ts1-ts2| between the two values.

AVERAGE
static final public TimeSeriesOperations.CombineMethod AVERAGE

Takes the average of the two values.

CUSTOM
static final public TimeSeriesOperations.CombineMethod CUSTOM

Uses a custom combine function that is provided by the user.

DIFF
static final public TimeSeriesOperations.CombineMethod DIFF

Takes the difference (ts1-ts2) of the two values.

FIRST
static final public TimeSeriesOperations.CombineMethod FIRST

Uses the value from ts1, the first series in the call.

MAX
static final public TimeSeriesOperations.CombineMethod MAX

Uses the maximum of the two values.

MIN
static final public TimeSeriesOperations.CombineMethod MIN

Uses the minimum of the two values.
SUM
static final public TimeSeriesOperations.CombineMethod SUM
Takes the sum of the two values.

Methods

valueOf
static public TimeSeriesOperations.CombineMethod valueOf(String name)
values
static public TimeSeriesOperations.CombineMethod[] values()

VectorAutoregression class

public class com.imsl.stat.VectorAutoregression implements Serializable, Cloneable
Performs vector autoregression for a multivariate time series.
This class contains methods for modeling multivariate time series of the form
\[ Y_t = (y_{1t}, y_{2t}, \ldots, y_{Kt})^T \]
where each
\[ y_{it}, i = 1, \ldots, K, t = \ldots, -2, -1, 0, 1, 2, \ldots \]
is a real-valued time series indexed by \( t \). Define the \( K \) dimensional mean process
\[ \mu_t = E[Y_t] = (E[y_{1t}], \ldots, E[y_{Kt}])^T \]
and the cross-covariance matrix
\[ \Sigma_{t,h} = \text{Cov}(Y_t, Y_{t+h}) \]
where for each \((t,h)\), \( \Sigma_{t,h} \) is a \( K \times K \) real-valued matrix whose \((i,j)^{th}\) element is the covariance between \( y_{it}, y_{jt(t+h)} \):
\[ \text{Cov}(y_{it}, y_{jt(t+h)}) = E[(y_{it} - \mu_t)(y_{jt(t+h)} - \mu_{j(t+h)})]. \]
The vector autoregressive model, or VAR, has a number of equivalent forms. A general form is
\[ A(L)(Y_t - \mu_t) = u_t + DX_t \]
where
\[ A(L) = A_0 + A_1L + A_2L^2 + \ldots + A_pL^p \]
is a $p$-th degree matrix polynomial in the lag or backshift operator, $L$. Note that $p$ is the specified autoregressive lag and $u_t$ is the error process. The error process is assumed to be a $K$ dimensional white noise series, with $E[u_t] = 0$ and nonsingular covariance matrix, $\Sigma_u$, which is constant over time. The coefficient matrices $A_j, j = 0, \ldots, p$ are $K \times K$ matrices containing the coefficients of the model. The matrix $X_t$ represents a matrix of deterministic terms such as trend or seasonal variables, and $D$ represents the associated coefficient matrix of $X_t$.

**Constructor**

*VectorAutoregression*

```java
public VectorAutoregression(TimeSeries ts)
```

**Description**

Constructor for the class.

**Parameter**


**Methods**

*getARConstants*

```java
public double[] getARConstants()
```

**Description**

Returns the current settings of the constants used in the autoregression model.

**Returns**

A double array containing the constants used in the autoregression model. If the value is null, the default values are active.

*getARModel*

```java
public int[] getARModel()
```

**Description**

Returns the autoregressive model configuration.

**Returns**

An int array specifying the autoregressive configuration. If null, then all parameters are active in the current model.

*getEstimates*

```java
public double[][] getEstimates()
```
Description
Returns the parameter estimates (coefficients) of the vector autoregression model.

Returns
a double array containing the estimated parameters (coefficients).

getForecasts
public double[][] getForecasts()

Description
Returns the \( h \)-step ahead forecast at times \( t=nT, nT+1, ..., T \), where \( h=1,2, ..., \maxStepsAhead \).

The \( h \)-step ahead forecast
\[
\hat{Y}_{t+h} = E[Y_{t+h}|Y_s, 0 \leq s \leq t]
\]
uses the conditional expectation of \( Y_{t+h} \) given the historical information known at time \( t \). The estimated VAR model approximates the conditional expectation and the forecasts are generated from the estimated VAR model via the following recursion:
\[
\hat{Y}_{t+h} = \sum_{j=1}^{p} \hat{A}_j \hat{Y}_{t+j-h} + \hat{\delta}
\]
where \( Y = (Y_1, ..., Y_K)^T \) is the vector time series and \( \hat{\delta} = (I - \hat{A}_1 - \hat{A}_2 - \cdots - \hat{A}_p)\mu \).

Returns
a double matrix \( T-nT \) by \( \maxStepsAhead \* K \) containing the forecasts.

Note that the forecast \( \hat{Y}_{t+h} \) is stored in location \([t-nT][(h-1)*K + k]\) of the returned forecast matrix.

isA0Flag
public boolean isA0Flag()

Description
Returns the state of \( A0Flag \).

Returns
a boolean which specifies whether or not the leading coefficient matrix is nontrivial.

setA0Flag
public void setA0Flag(boolean A0Flag)

Description
Sets the flag to include the leading autoregressive coefficient matrix in the model.

When true, a nontrivial, lower-triangular leading autoregressive coefficient matrix, \( A_0 \), will be estimated in the model. When false, \( A_0 \) is the constant identity matrix, which is also the default case.

Parameter
\( A0Flag \) – boolean indicating whether to fit the leading coefficient matrix.
Default: \( A0Flag=false \).

setARConstants
public void setARConstants(double[] arConstants)
Description
Sets the constants for the autoregressive model. See discussion in
com.imsl.stat.VectorAutoregression.setARModel (p. 1111) for details.

Parameter
arConstants – a double array specifying the autoregressive model constants.
The input array arConstants must be of length (A0Flag+arLag)*K*K, such that for indices
1=0,...,(A0Flag + arLag), i=0,...,K-1, and j=0,...,K-1, arConstants[l*K*K +i*K + j] specifies a
constant value for parameter $a_{ij}$. Default: arConstants[i]=0.

setARLag
public void setARLag(int arLag)

Description
Sets the autoregressive lag parameter. It must be nonnegative and less than maxLag.

Parameter
arLag – an int specifying the desired lag for the autoregressive terms. Default: arLag=1.

setARModel
public void setARModel(int[] arModel)

Description
Sets the form of the autoregressive terms of the model.
Without loss of generality, assume that the series mean is 0 and that there are no deterministic terms.
Then we can write the vector autoregression model of lag p as
$$A_0 Y_t + A_1 Y_{t-1} + \cdots + A_p Y_{t-p} = u_t.$$  
Each of the matrices $A_j$ represents $K \times K$ unknown coefficients. In practice, many of the $(p+1) \times K \times K$
coefficients are restricted to be 0 or otherwise constant. The leading coefficient matrix $A_0$ must be
lower-triangular and is very often equal to the identity matrix (this is the default behavior). Fully
expanded the model looks like $K$ equations in $(p+1)$ unknowns.
$$Y_{t,k} = \sum_{j=1}^{K} a_{kj,0} Y_{t,j} + \sum_{l=1}^{p} \sum_{j=1}^{K} a_{kj,l} Y_{t-l,k}$$
Consider each coefficient matrix as the vector
$$\text{vec}(A_l) = (a_{11,l}, a_{21,l}, \ldots, a_{K1,l}, a_{12,l}, a_{22,l}, \ldots, a_{K2,l}, \ldots, a_{1K,l}, a_{2K,l}, \ldots, a_{KK,l})^T$$
for $l = 0, \ldots, p$.
$$\text{vec}(A_l)$$
is just the columns of
$$A_l$$
appended to each other. To specify a configuration different from the default, append the vectorized coefficient matrices as
\[ \text{vec}(A_1, A_2, \ldots, A_p) \]
or
\[ \text{vec}(A_0, A_1, \ldots, A_p) \]
when including a nontrivial leading coefficient matrix. Set the value at index \( l*K*K + j*K + i \) to 1 or -1 to fit \( a_{ij,l} \) or \( -a_{ij,l} \) in the model. Set the value to 0 to exclude \( a_{ij,l} \) as a parameter. Note that for the leading coefficient matrix, \( l=0 \), the value at \( j*K + i \) is ignored unless \( i \) is at least \( j \), i.e., only the lower triangle of \( A_0 \) can be nontrivial.

**Parameter**

- \text{arModel} – an int array specifying the autoregressive model parameters.
- For indices \( l=0,\ldots,(A0Flag+arLag), i=0,\ldots,K-1, \) and \( j=0,\ldots,K-1, \) \( \text{arModel}[l*K*K + i*K + j] = \{-1,1\} \) indicates that the coefficient \( \pm a_{ij,l} \) is a parameter (to be estimated) in the model.
- Default: \( A_0 \) is the identity matrix and \( \text{arModel}[i] = 1 \) for all \( i \).

**setCenter**

```java
public void setCenter(boolean center)
```

**Description**

Sets the flag to center the data. If \( center=true \), column means are subtracted from the data.

**Parameter**

- \text{center} – a boolean indicating whether or not column means should be subtracted from the data.
- Default: \( center=false \).

**setMaxLag**

```java
public void setMaxLag(int maxLag)
```

**Description**

Sets the maximum lag.

**Parameter**

- \text{maxLag} – an int specifying the maximum lag to consider in the first (pure VAR) stage regression.

**setScale**

```java
public void setScale(boolean scale)
```

**Description**

Sets the flag to scale the data.

If \( scale=true \), the data values are mean-centered and then divided by the standard deviation.

**Parameter**

- \text{scale} – a boolean
- Default: \( scale=false \).

**setTrend**

```java
public void setTrend(boolean trend)
```

---

1112 • VectorAutoregression JMSL
Description
Sets the flag to fit a trend parameter in the model. Set to true to include a deterministic trend in the model.

Parameter
- trend – a boolean specifying whether or not to include a deterministic trend.
  Default: trend=false.

Example 1: Vector Autoregression
This example fits a VAR(1) to a 2-dimensional vector time series. Then, forecasts for up to 4 steps ahead are requested, illustrating the default forecasting behavior.

```
import com.imsl.math.*;
import com.imsl.stat.*;

public class VectorAutoregressionEx1 {
 public static void main(String args[]) {
 double data1[] = {
 0, 0,
 -0.148105526820657, 0.0507420782620461,
 -1.13674727366735, 0.862892721126079,
 1.54366183541037, -1.13804802266371,
 -0.0923211737957721, 1.6564905536038,
 0.521764564224907, -2.11208211206815,
 0.84368397690515, 2.56656798707681,
 -2.70330819114831, -2.83452914666041,
 4.9368704766295, 3.95965377457266,
 -4.78314880243807, -2.2313673998374,
 6.24911547448071, 0.40543061970714,
 -6.7682567372196, 0.816881897274206,
 6.21142944093012, -4.247694573354,
 -5.29817270483491, 5.0824614505046,
 4.19557583927549, -5.35697380907112,
 -3.21572894971078, 7.89726072829777,
 0.48571553966479, -8.2593665413043,
 2.69490292018773, 10.9017252520684,
 -5.4100413363388, -10.40477539227,
 8.2942332739419, 9.10321370415527
 };

 TimeSeries ts = new TimeSeries();
 // Set the data for the two-dimensional time series
 ts.setSeriesValues(data1, 2);

 // Set up the vector autoregression model. Use default AR lag = 1.
 VectorAutoregression VAR1 = new VectorAutoregression(ts);

 // Get estimates of coefficient matrix A1
 double[][] coefs = VAR1.getEstimates();

 // Print estimates
 }
}
```
Output

Estimated Coefficient Matrix A1

0 1
0 -1.017 -0.296
1 0.273 -1.053

VAR Forecasts

<table>
<thead>
<tr>
<th>(h=1,k=1)</th>
<th>(h=1,k=2)</th>
<th>(2,1)</th>
<th>(2,2)</th>
<th>(3,1)</th>
<th>(3,2)</th>
<th>(4,1)</th>
<th>(4,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.094</td>
<td>2.366</td>
<td>-0.795</td>
<td>-2.466</td>
<td>1.538</td>
<td>2.381</td>
<td>-2.269</td>
<td>-2.088</td>
</tr>
<tr>
<td>-3.589</td>
<td>2.377</td>
<td>2.163</td>
<td>-3.058</td>
<td>-1.63</td>
<td>3.593</td>
<td>0.883</td>
<td></td>
</tr>
<tr>
<td>-6.194</td>
<td>-2.824</td>
<td>7.137</td>
<td>1.286</td>
<td>-7.642</td>
<td>0.592</td>
<td>7.6</td>
<td>-2.706</td>
</tr>
<tr>
<td>2.526</td>
<td>1.046</td>
<td>-5.932</td>
<td>0.405</td>
<td>5.916</td>
<td>-2.043</td>
<td>-5.415</td>
<td>3.764</td>
</tr>
<tr>
<td>-3.475</td>
<td>1.276</td>
<td>6.204</td>
<td>-3.11</td>
<td>-5.403</td>
<td>4.969</td>
<td>4.028</td>
<td>-6.705</td>
</tr>
<tr>
<td>-2.685</td>
<td>6.785</td>
<td>0.726</td>
<td>-7.877</td>
<td>1.591</td>
<td>8.492</td>
<td>-4.129</td>
<td>-8.509</td>
</tr>
</tbody>
</table>
Chapter 20: Multivariate Analysis

Types

class ClusterKMeans .......................................................... 1117
class ClusterKNN .............................................................. 1134
class Dissimilarities ......................................................... 1139
class ClusterHierarchical .................................................. 1146
class FactorAnalysis ......................................................... 1155
class DiscriminantAnalysis .............................................. 1174

Usage Notes

Cluster Analysis

Clustering deals with the problem of segmenting or organizing a set of individual objects into groups or “clusters” of similar objects, so that objects within a cluster are more similar to each other than they are to objects in other clusters. In practice, objects are virtually anything for which attributes or features can be measured and quantified into a data matrix X. Typically a set of clusters is constructed from a training data set. Then the clusters are used to predict the class label for a new object.

The library includes three classes that perform clustering and classification: ClusterKMeans, ClusterKNN, and ClusterHierarchical. ClusterKMeans performs a K-means cluster analysis. The K-means method attempts to find a clustering that minimizes the within-cluster sums-of-squares. In this method of clustering the data, matrix X is grouped so that each observation (row in X) is assigned to one of a fixed number, K, of clusters. The sum of the squared difference of each observation about its assigned cluster’s mean is used as the criterion for assignment. In the basic algorithm, observations are transferred from one cluster to another when doing so decreases the within-cluster sums-of-squares differences. When no transfer occurs in a pass through the entire data set, the algorithm stops. The clustering can be evaluated by functions described in “Basic Statistics,” and/or other chapters in this manual. Often, K-means clustering with more than one value of K is performed, and the value of K that best fits the data is used.

ClusterKNN performs k-Nearest Neighbor, or KNN, cluster analysis. For a new object, KNN finds a cluster consisting of the object’s K closest neighbors, where “closest” is in the sense of a specified distance metric, such as the L2 norm or the L1 norm. The new object then receives the class label that the majority of the objects in its neighborhood have (majority vote). The algorithm works with a training
set. For each observation in the data \( X \) (representing a new object), the distance to each object in a training set is calculated. The distances are sorted, and the smallest \( K \) distances are noted. The objects with the \( K \)-smallest distances form the cluster. Note that unlike K-Means, KNN does not provide a clustering of the data set. In a sense KNN forms clusters “on the fly” for the purpose of classification.

ClusterHierarchical performs a variant of hierarchical cluster analysis. ClusterHierarchical implements a bottom-up, or agglomerative approach. Starting with every individual object in a data set as a cluster, the two clusters (objects) that are closest in the sense of some distance metric are then combined into a new cluster. With the new set of \( n - 1 \) clusters, the process is repeated, so that at the \( h \)-th stage, there are \( n - h \) clusters. The clustering continues until there is only one cluster. Each level represents a different clustering of the data that can be evaluated using fit statistics and other metrics.

Principal Components

The idea in principal components is to find a small number of linear combinations of the original variables that maximize the variance accounted for in the original data. This amounts to an eigensystem analysis of the covariance (or correlation) matrix. In addition to the eigensystem analysis, when the principal component model is used, FactorAnalysis computes standard errors for the eigenvalues. Correlations of the original variables with the principal component scores also are computed.

Factor Analysis

Factor analysis and principal component analysis, while quite different in assumptions, often serve the same ends. Unlike principal components in which linear combinations yielding the highest possible variances are obtained, factor analysis generally obtains linear combinations of the observed variables according to a model relating the observed variable to hypothesized underlying factors, plus a random error term called the unique error or uniqueness. In factor analysis, the unique errors associated with each variable are usually assumed to be independent of the factors. Additionally, in the common factor model, the unique errors are assumed to be mutually independent. The factor analysis model is expressed in the following equation:

\[
x - \mu = \Lambda f + e
\]

where \( x \) is the \( p \) vector of observed values, \( \mu \) is the \( p \) vector of variable means, \( \Lambda \) is the \( p \times k \) matrix of factor loadings, \( f \) is the \( k \) vector of hypothesized underlying random factors, \( e \) is the \( p \) vector of hypothesized unique random errors, \( p \) is the number of variables in the observed variables, and \( k \) is the number of factors.

Because much of the computation in factor analysis was originally done by hand or was expensive on early computers, quick (but dirty) algorithms that made the calculations possible were developed. One result is the many factor extraction methods available today. Generally speaking, in the exploratory or model building phase of a factor analysis, a method of factor extraction that is not computationally intensive (such as principal components, principal factor, or image analysis) is used. If desired, a computationally intensive method is then used to obtain the final factors.

Discriminant Analysis

The class DiscriminantAnalysis allows linear or quadratic discrimination and the use of either reclassification, split sample, or the leaving-out-one methods in order to evaluate the rule. Moreover, DiscriminantAnalysis can be executed in an online mode, that is, one or more observations can be added to the rule during each invocation of DiscriminantAnalysis.
The mean vectors for each group of observations and an estimate of the common covariance matrix for all groups are input to DiscriminantAnalysis. These estimates can be computed via routine DiscriminantAnalysis. Output from DiscriminantAnalysis are linear combinations of the observations which, at most, separate the groups. These linear combinations may subsequently be used for discriminating between the groups. Their use in graphically displaying differences between the groups is possibly more important, however.

ClusterKMeans class

public class com.imsl.stat.ClusterKMeans implements Serializable, Cloneable

Perform a K-means (centroid) cluster analysis.

ClusterKMeans is an implementation of Algorithm AS 136 by Hartigan and Wong (1979). It computes K-means (centroid) Euclidean metric clusters for an input matrix starting with initial estimates of the K cluster means. It allows for missing values (coded as NaN, not a number) and for weights and frequencies.

Let $p$ denote the number of variables to be used in computing the Euclidean distance between observations. The idea in K-means cluster analysis is to find a clustering (or grouping) of the observations so as to minimize the total within-cluster sums of squares. In this case, the total sums of squares within each cluster is computed as the sum of the centered sum of squares over all nonmissing values of each variable. That is,

$$
\phi = \sum_{i=1}^{K} \sum_{j=1}^{p} \sum_{m=1}^{n_i} f_{\nu_{im}} w_{\nu_{im}} \delta_{\nu_{im},j} (x_{\nu_{im},j} - \bar{x}_{ij})^2
$$

where $\nu_{im}$ denotes the row index of the $m$-th observation in the $i$-th cluster in the matrix $X$; $n_i$ is the number of rows of $X$ assigned to group $i$; $f$ denotes the frequency of the observation; $w$ denotes its weight; $d$ is zero if the $j$-th variable on observation $\nu_{im}$ is missing, otherwise $\delta$ is one; and $\bar{x}_{ij}$ is the average of the nonmissing observations for variable $j$ in group $i$. This method sequentially processes each observation and reassigns it to another cluster if doing so results in a decrease in the total within-cluster sums of squares. See Hartigan and Wong (1979) or Hartigan (1975) for details.

An algorithm for choosing efficient initial seeds was proposed by Arthur and Vassilvitskii (2007), and is known as K-means++. This algorithm has advantages over choosing arbitrary or random initial seeds from the population of observations. Access the implementation of this algorithm in this class using the constructor with the signature ClusterKMeans(double[][] , int) or by calling the setClusterCenters(Random) method.
Constructors

`ClusterKMeans`  
```java
public ClusterKMeans(double[][] x, double[][] cs)
```

**Description**  
Constructor for `ClusterKMeans`.

**Parameters**  
- `x` – a `double` matrix containing the observations to be clustered  
- `cs` – a `double` matrix containing the cluster seeds, i.e. estimates for the cluster centers

`ClusterKMeans`  
```java
public ClusterKMeans(double[][] x, int k)
```

**Description**  
Constructor for `ClusterKMeans` using the K-means++ algorithm to select the initial seeds.

**Parameters**  
- `x` – a `double` matrix containing the observations to be clustered  
- `k` – an `int` indicating the number of clusters

`ClusterKMeans`  
```java
public ClusterKMeans(double[][] x, int k, Random r)
```

**Description**  
Constructor for `ClusterKMeans` using the K-means++ algorithm to set the initial seeds.

**Parameters**  
- `x` – a `double` matrix containing the observations to be clustered  
- `k` – an `int` indicating the number of clusters  
- `r` – a `Random` object, the random number generator to be used in the KMeans++ algorithm  
  Note that `r` can be initialized with a seed for repeatable results.

Methods

`compute`  
```java
final public double[][] compute() throws ClusterKMeans.NoConvergenceException, ClusterKMeans.ClusterNoPointsException
```

**Description**  
Computes the cluster means.
Returns a double matrix containing computed result

Exceptions
- NonnegativeFreqException is thrown if a frequency is negative
- NonnegativeWeightException is thrown if a weight is negative
- NoConvergenceException is thrown if convergence did not occur within the maximum number of iterations
- ClusterNoPointsException is thrown if the cluster centers yield a cluster with no points

getClusterCounts
public int[] getClusterCounts()

Description
Returns the number of observations in each cluster.
Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a IllegalStateException exception.

Returns
an int array containing the number of observations in each cluster

getClusterMembership
public int[] getClusterMembership()

Description
Returns the cluster membership for each observation.
Note that the compute() method must be invoked first before invoking this method. Otherwise, the method throws a IllegalStateException exception.

Returns
an int array containing the cluster membership for each observation
Cluster membership 1 indicates the observation belongs to cluster 1, cluster membership 2 indicates the observation belongs to cluster 2, etc.

getClusterSSQ
public double[] getClusterSSQ()

Description
Returns the within sum of squares for each cluster.
Note that the compute method must be invoked first before invoking this method. Otherwise, the method throws a IllegalStateException exception.

Returns
a double array containing the within sum of squares for each cluster

getInitialCenters
public double[][] getInitialCenters()
**Description**
Returns the initial cluster centers.
The cluster centers are those set by the K-Means++ center selection algorithm or those supplied to the constructor.

**Returns**
a double matrix containing the cluster centers

**setFrequencies**
public void setFrequencies(double[] frequencies)

**Description**
Sets the frequency for each observation.

**Parameter**
- frequencies – a double array of size x.length containing the frequency for each observation
  Default: frequencies[] = 1

**setMaxIterations**
public void setMaxIterations(int iterations)

**Description**
Sets the maximum number of iterations.

**Parameter**
- iterations – an int scalar specifying the maximum number of iterations
  Default: iterations = 30

**setWeights**
public void setWeights(double[] weights)

**Description**
Sets the weight for each observation.

**Parameter**
- weights – a double array of size x.length containing the weight for each observation
  Default: weights[] = 1

**Example 1: K-means Cluster Analysis**
This example performs K-means cluster analysis on Fisher’s iris data. The initial cluster seed for each iris type is an observation known to be in the iris type.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class ClusterKMeansEx1 {
```

1120 • ClusterKMeans  JMSL
```java
public static void main(String argv[]) throws Exception {
 double[][] x = {
 {5.100, 3.500, 1.400, 0.200},
 {4.900, 3.000, 1.400, 0.200},
 {4.700, 3.200, 1.300, 0.200},
 {4.600, 3.100, 1.500, 0.200},
 {5.000, 3.600, 1.400, 0.200},
 {5.400, 3.900, 1.700, 0.400},
 {4.600, 3.400, 1.400, 0.300},
 {5.000, 3.400, 1.500, 0.200},
 {4.400, 2.900, 1.400, 0.200},
 {4.900, 3.100, 1.500, 0.100},
 {5.400, 3.700, 1.500, 0.200},
 {4.800, 3.400, 1.600, 0.200},
 {4.800, 3.000, 1.400, 0.100},
 {4.300, 3.000, 1.100, 0.100},
 {5.800, 4.000, 1.200, 0.200},
 {5.700, 4.400, 1.500, 0.400},
 {5.400, 3.900, 1.300, 0.400},
 {5.100, 3.500, 1.400, 0.300},
 {5.700, 3.800, 1.700, 0.300},
 {5.100, 3.800, 1.500, 0.300},
 {5.400, 3.400, 1.700, 0.200},
 {5.100, 3.700, 1.500, 0.400},
 {4.600, 3.600, 1.000, 0.200},
 {5.100, 3.300, 1.700, 0.500},
 {4.800, 3.400, 1.900, 0.200},
 {5.000, 3.000, 1.600, 0.200},
 {5.000, 3.400, 1.600, 0.400},
 {5.200, 3.500, 1.500, 0.200},
 {5.200, 3.400, 1.400, 0.200},
 {4.700, 3.200, 1.600, 0.200},
 {4.800, 3.100, 1.600, 0.200},
 {5.400, 3.400, 1.500, 0.400},
 {5.200, 4.100, 1.500, 0.100},
 {5.500, 4.200, 1.400, 0.200},
 {4.900, 3.100, 1.500, 0.200},
 {5.000, 3.200, 1.200, 0.200},
 {5.500, 3.500, 1.300, 0.200},
 {4.900, 3.600, 1.400, 0.100},
 {4.400, 3.000, 1.300, 0.200},
 {5.100, 3.400, 1.500, 0.200},
 {5.000, 3.500, 1.300, 0.300},
 {4.500, 2.300, 1.300, 0.300},
 {4.400, 3.200, 1.300, 0.200},
 {5.000, 3.500, 1.600, 0.600},
 {5.100, 3.800, 1.900, 0.400},
 {4.800, 3.000, 1.400, 0.300},
 {5.100, 3.800, 1.600, 0.200},
 {4.600, 3.200, 1.400, 0.200},
 {5.300, 3.700, 1.500, 0.200},
 {5.000, 3.300, 1.400, 0.200},
 {7.000, 3.200, 4.700, 1.400},
 {6.400, 3.200, 4.500, 1.500},
 {6.900, 3.100, 4.900, 1.500},
 }
```
```
\{5.500, 2.300, 4.000, 1.300\},
\{6.500, 2.800, 4.600, 1.500\},
\{5.700, 2.800, 4.500, 1.300\},
\{6.300, 3.300, 4.700, 1.600\},
\{4.900, 2.400, 3.300, 1.000\},
\{6.600, 2.900, 4.600, 1.300\},
\{5.200, 2.700, 3.900, 1.400\},
\{5.000, 2.000, 3.500, 1.000\},
\{5.900, 3.000, 4.200, 1.500\},
\{6.000, 2.200, 4.000, 1.000\},
\{6.100, 2.900, 4.700, 1.400\},
\{5.600, 2.900, 3.600, 1.300\},
\{6.700, 3.100, 4.400, 1.400\},
\{5.600, 3.000, 4.500, 1.500\},
\{5.800, 2.700, 4.100, 1.000\},
\{6.200, 2.200, 4.500, 1.500\},
\{5.600, 2.500, 3.900, 1.100\},
\{5.900, 3.200, 4.800, 1.800\},
\{6.100, 2.800, 4.000, 1.300\},
\{6.300, 2.500, 4.900, 1.500\},
\{6.100, 2.800, 4.700, 1.200\},
\{6.400, 2.900, 4.300, 1.300\},
\{6.600, 3.000, 4.400, 1.400\},
\{6.800, 2.800, 4.800, 1.400\},
\{6.700, 3.000, 5.000, 1.700\},
\{6.600, 2.900, 4.500, 1.500\},
\{5.700, 2.600, 3.500, 1.000\},
\{5.500, 2.400, 3.800, 1.100\},
\{5.500, 2.400, 3.700, 1.000\},
\{5.800, 2.700, 3.900, 1.200\},
\{6.000, 2.700, 5.100, 1.600\},
\{5.400, 3.000, 4.500, 1.500\},
\{6.000, 3.400, 4.500, 1.600\},
\{6.700, 3.100, 4.700, 1.500\},
\{6.300, 2.300, 4.400, 1.300\},
\{5.600, 3.000, 4.100, 1.300\},
\{5.500, 2.500, 4.000, 1.300\},
\{5.500, 2.600, 4.400, 1.200\},
\{6.100, 3.000, 4.600, 1.400\},
\{5.800, 2.600, 4.000, 1.200\},
\{5.000, 2.300, 3.300, 1.000\},
\{5.600, 2.700, 4.200, 1.300\},
\{5.700, 3.000, 4.200, 1.200\},
\{5.700, 2.900, 4.200, 1.300\},
\{6.200, 2.900, 4.300, 1.300\},
\{5.100, 2.500, 3.000, 1.100\},
\{5.700, 2.800, 4.100, 1.300\},
\{6.300, 3.300, 6.000, 2.500\},
\{5.800, 2.700, 5.100, 1.900\},
\{7.100, 3.000, 5.900, 2.100\},
\{6.300, 2.900, 5.600, 1.800\},
\{6.500, 3.000, 5.800, 2.200\},
\{7.600, 3.000, 6.600, 2.100\},
\{4.900, 2.500, 4.500, 1.700\},
\{7.300, 2.900, 6.300, 1.800\},
\{6.700, 2.500, 5.800, 1.800\},
Multivariate Analysis

ClusterKMeans kmean = new ClusterKMeans(x, cs);

double[][] cm = kmean.compute();
double[] wss = kmean.getClusterSSQ();
int[] ic = kmean.getClusterMembership();
int[] nc = kmean.getClusterCounts();
PrintMatrix pm = new PrintMatrix("Cluster Means");

PrintMatrixFormat pmf = new PrintMatrixFormat();
NumberFormat nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(4);
 pmf.setNumberFormat(nf);
 pm.print(pmf, cm);

new PrintMatrix("Cluster Membership").print(ic);
new PrintMatrix("Sum of Squares").print(wss);
new PrintMatrix("Number of observations").print(nc);

Output

<table>
<thead>
<tr>
<th>Cluster Means</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>5.0060</td>
<td>3.4280</td>
<td>1.4620</td>
</tr>
<tr>
<td>1</td>
<td>5.9016</td>
<td>2.7484</td>
<td>4.3935</td>
</tr>
<tr>
<td>2</td>
<td>6.8500</td>
<td>3.0737</td>
<td>5.7421</td>
</tr>
</tbody>
</table>

Cluster Membership

0
0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
Example 2: K-means Cluster Analysis with K-means++ Seeds

This example performs K-means cluster analysis on Fisher’s iris data. The initial cluster seeds are generated using the K-means++ algorithm.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class ClusterKMeansEx2 {
    public static void main(String argv[]) throws Exception {
        double[][] x = {
            {5.100, 3.500, 1.400, 0.200},
            {4.900, 3.000, 1.400, 0.200},
            {4.700, 3.200, 1.300, 0.200},
            {4.600, 3.100, 1.500, 0.200},
            {5.000, 3.600, 1.400, 0.200},
            {5.400, 3.900, 1.700, 0.400},
            {4.600, 3.400, 1.400, 0.300},
            {5.000, 3.400, 1.500, 0.200},
            {4.400, 2.900, 1.400, 0.200},
            {4.900, 3.100, 1.500, 0.100},
            {5.400, 3.700, 1.500, 0.200},
            {4.800, 3.400, 1.600, 0.200},
            {4.800, 3.000, 1.400, 0.100},
            {4.300, 3.000, 1.100, 0.100},
            {5.800, 4.000, 1.200, 0.200},
            {5.700, 4.400, 1.500, 0.400},
            {5.400, 3.900, 1.300, 0.400},
            {5.100, 3.500, 1.400, 0.300},
            {5.700, 3.800, 1.700, 0.300},
            {5.100, 3.800, 1.500, 0.300},
```
\{5.400, 3.400, 1.700, 0.200\},
\{5.100, 3.700, 1.500, 0.400\},
\{4.600, 3.600, 1.000, 0.200\},
\{5.100, 3.300, 1.700, 0.500\},
\{4.800, 3.400, 1.900, 0.200\},
\{5.000, 3.000, 1.600, 0.200\},
\{5.000, 3.400, 1.600, 0.400\},
\{5.200, 3.500, 1.500, 0.200\},
\{5.200, 3.400, 1.400, 0.200\},
\{4.700, 3.200, 1.600, 0.200\},
\{4.800, 3.100, 1.600, 0.200\},
\{5.400, 3.400, 1.500, 0.400\},
\{5.200, 4.100, 1.500, 0.100\},
\{5.500, 4.200, 1.400, 0.200\},
\{4.900, 3.100, 1.500, 0.200\},
\{5.000, 3.200, 1.200, 0.200\},
\{5.600, 3.500, 1.300, 0.200\},
\{4.900, 3.600, 1.400, 0.100\},
\{4.400, 3.000, 1.300, 0.200\},
\{5.100, 3.400, 1.500, 0.200\},
\{5.000, 3.500, 1.300, 0.300\},
\{4.500, 2.300, 1.300, 0.300\},
\{4.400, 3.200, 1.300, 0.200\},
\{5.000, 3.500, 1.600, 0.600\},
\{5.100, 3.800, 1.900, 0.400\},
\{4.800, 3.000, 1.400, 0.300\},
\{5.100, 3.800, 1.600, 0.200\},
\{4.600, 3.200, 1.400, 0.200\},
\{5.300, 3.700, 1.500, 0.200\},
\{5.000, 3.300, 1.400, 0.200\},
\{7.000, 3.200, 4.700, 1.400\},
\{6.400, 3.200, 4.500, 1.500\},
\{6.900, 3.100, 4.900, 1.500\},
\{5.500, 2.300, 4.000, 1.300\},
\{6.500, 2.800, 4.600, 1.500\},
\{5.700, 2.800, 4.500, 1.300\},
\{6.300, 3.300, 4.700, 1.600\},
\{4.900, 2.400, 3.300, 1.000\},
\{6.600, 2.900, 4.600, 1.300\},
\{5.200, 2.700, 3.900, 1.400\},
\{5.000, 2.000, 3.500, 1.000\},
\{5.900, 3.000, 4.200, 1.500\},
\{6.000, 2.200, 4.000, 1.000\},
\{6.100, 2.900, 4.700, 1.400\},
\{5.600, 2.900, 3.600, 1.300\},
\{6.700, 3.100, 4.400, 1.400\},
\{5.600, 3.000, 4.500, 1.500\},
\{5.800, 2.700, 4.100, 1.000\},
\{6.200, 2.200, 4.500, 1.500\},
\{5.600, 2.500, 3.900, 1.100\},
\{5.900, 3.200, 4.800, 1.800\},
\{6.100, 2.800, 4.000, 1.300\},
\{6.300, 2.500, 4.900, 1.500\},
\{6.100, 2.800, 4.700, 1.200\},
\{6.400, 2.900, 4.300, 1.300\},
\{6.600, 3.000, 4.400, 1.400\},
\{6.800, 2.800, 4.800, 1.400\},
\{6.700, 3.000, 5.000, 1.700\},
\{6.000, 2.900, 4.500, 1.500\},
\{5.700, 2.600, 3.500, 1.000\},
\{5.500, 2.400, 3.800, 1.100\},
\{5.500, 2.400, 3.700, 1.000\},
\{5.800, 2.700, 3.900, 1.200\},
\{6.000, 2.700, 5.100, 1.600\},
\{5.400, 3.000, 4.500, 1.500\},
\{6.000, 3.400, 4.500, 1.600\},
\{6.700, 3.100, 4.700, 1.500\},
\{6.300, 2.300, 4.400, 1.300\},
\{5.600, 3.000, 4.100, 1.300\},
\{5.500, 2.500, 4.000, 1.300\},
\{5.500, 2.600, 4.400, 1.200\},
\{6.100, 3.000, 4.600, 1.400\},
\{5.800, 2.600, 4.000, 1.200\},
\{5.000, 2.300, 3.300, 1.000\},
\{5.600, 2.700, 4.200, 1.300\},
\{5.700, 3.000, 4.200, 1.200\},
\{5.700, 2.900, 4.200, 1.300\},
\{6.200, 2.900, 4.300, 1.300\},
\{5.100, 2.500, 3.000, 1.100\},
\{5.700, 2.800, 4.100, 1.300\},
\{6.300, 3.300, 6.000, 2.500\},
\{5.800, 2.700, 5.100, 1.900\},
\{7.100, 3.000, 5.900, 2.100\},
\{6.300, 2.900, 5.600, 1.800\},
\{6.500, 3.000, 5.800, 2.200\},
\{7.600, 3.000, 6.600, 2.100\},
\{4.900, 2.500, 4.500, 1.700\},
\{7.300, 2.900, 6.300, 1.800\},
\{6.700, 2.500, 5.800, 1.800\},
\{7.200, 3.600, 6.100, 2.500\},
\{6.500, 3.200, 5.100, 2.000\},
\{6.400, 2.700, 5.300, 1.900\},
\{6.800, 3.000, 5.500, 2.100\},
\{5.700, 2.500, 5.000, 2.000\},
\{5.800, 2.800, 5.100, 2.400\},
\{6.400, 3.200, 5.300, 2.300\},
\{6.500, 3.000, 5.500, 1.800\},
\{7.700, 3.800, 6.700, 2.200\},
\{7.700, 2.600, 6.900, 2.300\},
\{6.000, 2.200, 5.000, 1.500\},
\{6.900, 3.200, 5.700, 2.300\},
\{5.600, 2.800, 4.900, 2.000\},
\{7.700, 2.800, 6.700, 2.000\},
\{6.300, 2.700, 4.900, 1.800\},
\{6.700, 3.300, 5.700, 2.100\},
\{7.200, 3.200, 6.000, 1.800\},
\{6.200, 2.800, 4.800, 1.800\},
\{6.100, 3.000, 4.900, 1.800\},
\{6.400, 2.800, 5.600, 2.100\},
\{7.200, 3.000, 5.800, 1.600\},
\{7.400, 2.800, 6.100, 1.900\},
\{7.900, 3.800, 6.400, 2.000\},
Random r = new Random(123457L);
r.setMultiplier(16807);
ClusterKMeans kmean = new ClusterKMeans(x, 3, r);

double[][] cm = kmean.compute();
double[][] cc = kmean.getInitialCenters();
double[] wss = kmean.getClusterSSQ();
int[] ic = kmean.getClusterMembership();
int[] nc = kmean.getClusterCounts();

PrintMatrix pm = new PrintMatrix("Cluster Means");

PrintMatrixFormat pmf = new PrintMatrixFormat();
NumberFormat nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(4);

pmf.setNumberFormat(nf);

pm.print(pmf, cm);

new PrintMatrix("Cluster Centers from K-means++").print(cc);
new PrintMatrix("Sum of Squares").print(wss);
new PrintMatrix("Number of observations").print(nc);

Output

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.8500</td>
<td>3.0737</td>
<td>5.7421</td>
<td>2.0711</td>
</tr>
<tr>
<td>1</td>
<td>5.0060</td>
<td>3.4280</td>
<td>1.4620</td>
<td>0.2460</td>
</tr>
<tr>
<td>2</td>
<td>5.9016</td>
<td>2.7484</td>
<td>4.3935</td>
<td>1.4339</td>
</tr>
</tbody>
</table>

Cluster Centers from K-means++

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>2.5</td>
</tr>
</tbody>
</table>
1 5.7 4.4 1.5 0.4
2 5.8 2.8 5.1 2.4

Sum of Squares
0
0 23.879
1 15.151
2 39.821

Number of observations
0
0 38
1 50
2 62

ClusterKMeans.NoConvergenceException class

static public class com.imsl.stat.ClusterKMeans.NoConvergenceException extends com.imsl.IMSLException

Convergence did not occur within the maximum number of iterations.

Constructors

ClusterKMeans.NoConvergenceException
public ClusterKMeans.NoConvergenceException(String message)

Description
Constructs a NoConvergenceException object.

Parameter
message – a String containing the error message

ClusterKMeans.NoConvergenceException
public ClusterKMeans.NoConvergenceException(String key, Object[] arguments)

Description
Constructs a NoConvergenceException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
ClusterKMeans.ClusterNoPointsException class

There is a cluster with no points

Constructors

ClusterKMeans.ClusterNoPointsException

public ClusterKMeans.ClusterNoPointsException(String message)

Description
Constrcuts a ClusterNoPointsException object.

Parameter
message – a String containing the error message

ClusterKMeans.ClusterNoPointsException

public ClusterKMeans.ClusterNoPointsException(String key, Object[] arguments)

Description
Constructs a ClusterNoPointsException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

ClusterKMeans.NonnegativeFreqException class

static public class com.imsl.stat.ClusterKMeans.NonnegativeFreqException extends com.imsl.IMSLException

Frequencies must be nonnegative.
Constructors

ClusterKMeans.NonnegativeFreqException
public ClusterKMeans.NonnegativeFreqException(String message)

Description
Constructs a NonnegativeFreqException object.

Parameter
message – a String containing the error message

ClusterKMeans.NonnegativeFreqException
public ClusterKMeans.NonnegativeFreqException(String key, Object[] arguments)

Description
Constructs a NonnegativeFreqException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

ClusterKMeans.NonnegativeWeightException class

static public class com.imsl.stat.ClusterKMeans.NonnegativeWeightException
extends com.imsl.IMSLException

Weights must be nonnegative.

Constructors

ClusterKMeans.NonnegativeWeightException
public ClusterKMeans.NonnegativeWeightException(String message)

Description
Constructs a NonnegativeWeightException object.
Parameter

message – a String containing the error message

ClusterKMeans.NonnegativeWeightException

public ClusterKMeans.NonnegativeWeightException(String key, Object[] arguments)

Description

Constructs a NonnegativeWeightException object.

Parameters

key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

ClusterKNN class

public class com.imsl.stat.ClusterKNN implements Serializable, Cloneable

Perform a k-Nearest Neighbor classification.

ClusterKNN implements an algorithm to classify objects based on a training set. Among the simpler algorithms for classification, classifying a new object is essentially a majority vote of its closest \(k \) neighbors. \(k \) must be a positive integer and is typically small and odd. The method is straightforward in that the distance from the new point to every point in the training set is computed and sorted. The \(k \) closest points are examined and the new object is assigned to the class that is most common in that set. For the case \(k = 1 \) the object is assigned to the class of its nearest neighbor.

The default distance method is the Euclidean distance, but other options are available by using the setDistanceMethod method. The supported methods are:

<table>
<thead>
<tr>
<th>method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2_NORM</td>
<td>The Euclidean distance method, (L_2) norm, defined as the sum of the squares of the difference of each coordinate. (Default)</td>
</tr>
<tr>
<td>L1_NORM</td>
<td>The rectilinear norm or city block method, (L_1) norm, defined as the sum of the absolute values of the difference of each coordinate. This is most useful for integer input data.</td>
</tr>
<tr>
<td>INFINITY_NORM</td>
<td>The Chebyshev distance method, (L_{\infty}) norm, defined as the maximum of the absolute values of the difference of each coordinate.</td>
</tr>
</tbody>
</table>

For cases where the data are poorly scaled, it may be necessary to normalize the input data first. For example, if in a 2D space the X values range from 0 to 1 and the Y values, from 0 to 1000, the distance calculations will be dominated by the Y coordinate unless they are normalized.
Fields

INFINITY_NORM
static final public int INFINITY_NORM

Indicates the distance is computed using the L_{∞} norm method. This is also known as the maximum difference or Chebyshev distance.

L1_NORM
static final public int L1_NORM

Indicates the distance is computed using the L_1 norm method. Also known as rectilinear distance or city block distance, it is most useful for integer input data.

L2_NORM
static final public int L2_NORM

Indicates the distance is computed using the L_2 norm, or Euclidean distance measurement.

Constructor

ClusterKNN
public ClusterKNN(double[][] x, int[] c)

Description
Constructor for ClusterKNN.

Parameters
x – A double matrix containing the known $x.length$ observations of $x[0].length$ variables.
c – An int array containing the categories for the $x.length$ observations. All integer values are valid.

Methods

classify
public int classify(double[] value, int k)

Description
Classify an observation using k nearest neighbors.

Parameters
value – A double array of $x[0].length$ variables containing the observations to classify.
k – An int containing the number of nearest neighbors to use. An odd value is recommended.
Returns
An int containing the cluster to which the observation belongs.

classify
public int[] classify(double[][] value, int k)

Description
Classify a set of observations using k nearest neighbors.

Parameters
value – A double matrix of value.length observations and x[0].length variables to classify.
k – An int containing the number of nearest neighbors to use. An odd value is recommended.

Returns
An int array containing the cluster to which each of the observations belong.

setDistanceMethod
public void setDistanceMethod(int method)

Description
Sets the distance calculation method to be used.

Parameter
method – An int identifying the distance calculation method to be used. By default, method = L2_NORM.

<table>
<thead>
<tr>
<th>method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2_NORM</td>
<td>[d(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}]</td>
</tr>
<tr>
<td>L1_NORM</td>
<td>[d(p, q) = \sum_{i=1}^{n}</td>
</tr>
<tr>
<td>INFINITY_NORM</td>
<td>[d(p, q) = \max_i(</td>
</tr>
</tbody>
</table>

Example: K-Nearest Neighbor Analysis
This example performs K-Nearest Neighbor analysis on Fisher’s iris data. Three observations are withheld from the full data set and then classified by the iris type.

```java
import com.imsl.stat.*;

public class ClusterKNNEx1 {

    public static void main(String argv[]) {
        double[][] x = {
            {5.100, 3.500, 1.400, 0.200}, {4.900, 3.000, 1.400, 0.200},
            {4.700, 3.200, 1.300, 0.200}, {4.600, 3.100, 1.500, 0.200},
            {5.000, 3.600, 1.400, 0.200}, {5.400, 3.900, 1.700, 0.400},
            {4.600, 3.400, 1.400, 0.300}, {5.000, 3.400, 1.500, 0.200},
            {4.400, 2.900, 1.400, 0.200}, {4.900, 3.100, 1.500, 0.100},
            {5.400, 3.700, 1.500, 0.200}, {4.800, 3.400, 1.600, 0.200},
            {4.800, 3.000, 1.400, 0.100}, {4.300, 3.000, 1.100, 0.100},
        };
    }
}
```
Multivariate Analysis

ClusterKNN • 1137

{(5.800, 4.000, 1.200, 0.200), (5.700, 4.400, 1.500, 0.400),
// removed data. added to argument values for method classify
// { 5.400, 3.900, 1.300, 0.400},
(5.100, 3.500, 1.400, 0.300), (5.700, 3.800, 1.700, 0.300),
(5.400, 3.800, 1.500, 0.300), (5.400, 3.400, 1.700, 0.200),
(5.100, 3.700, 1.500, 0.400), (5.600, 3.600, 1.000, 0.200),
(5.100, 3.300, 1.700, 0.500), (4.800, 3.400, 1.900, 0.200),
(5.000, 3.000, 1.600, 0.200), (5.000, 3.400, 1.600, 0.400),
(5.200, 3.500, 1.500, 0.200), (5.200, 3.400, 1.500, 0.200),
(4.700, 3.200, 1.600, 0.200), (4.800, 3.100, 1.600, 0.200),
(5.400, 3.400, 1.500, 0.400), (5.200, 4.100, 1.500, 0.100),
(5.500, 4.200, 1.400, 0.200), (4.900, 3.100, 1.500, 0.200),
(5.000, 3.200, 1.200, 0.200), (5.500, 3.500, 1.300, 0.200),
(4.900, 3.600, 1.400, 0.200), (4.400, 3.000, 1.300, 0.500),
(5.100, 3.400, 1.500, 0.200), (5.000, 3.500, 1.300, 0.300),
(4.500, 2.300, 1.300, 0.300), (4.400, 3.200, 1.300, 0.200),
(5.000, 3.300, 1.400, 0.200), (7.000, 3.200, 4.700, 1.400),
(6.400, 3.200, 4.500, 1.500), (6.900, 3.100, 4.900, 1.500),
(5.500, 2.300, 4.000, 1.300), (6.500, 2.800, 4.600, 1.500),
(5.700, 2.800, 4.500, 1.300), (6.300, 3.300, 4.700, 1.600),
(4.900, 2.400, 3.300, 1.000), (6.600, 2.900, 4.600, 1.300),
(5.200, 2.700, 3.900, 1.400), (5.000, 2.000, 3.500, 1.000),
(5.900, 3.000, 4.200, 1.500), (6.000, 2.200, 4.000, 1.000),
(6.100, 2.900, 4.700, 1.400), (5.600, 2.900, 3.600, 1.300),
(6.700, 3.100, 4.400, 1.400), (5.600, 3.000, 4.500, 1.500),
(5.800, 2.700, 4.100, 1.000), (6.200, 2.200, 4.500, 1.500),
(5.600, 2.500, 3.900, 1.100), (5.900, 3.200, 4.800, 1.800),
(6.100, 2.800, 4.000, 1.300), (6.300, 2.500, 4.900, 1.500),
(6.100, 2.800, 4.700, 1.200), (6.400, 2.900, 4.300, 1.300),
(6.600, 3.000, 4.400, 1.400), (6.800, 2.800, 4.800, 1.400),
(6.700, 3.000, 5.000, 1.700), (6.000, 2.900, 4.500, 1.500),
// removed data. added to argument values for method classify
// { 5.700, 2.600, 3.500, 1.000},
(5.500, 2.400, 3.800, 1.100), (5.500, 2.400, 3.700, 1.000),
(5.800, 2.700, 3.900, 1.200), (6.000, 2.700, 5.100, 1.600),
(5.400, 3.000, 4.500, 1.500), (6.000, 3.400, 4.500, 1.600),
(6.700, 3.100, 4.700, 1.500), (6.300, 2.300, 4.400, 1.300),
(5.600, 3.000, 4.100, 1.300), (5.500, 2.500, 4.000, 1.300),
(5.500, 2.600, 4.000, 1.200), (6.100, 3.000, 4.600, 1.400),
(5.800, 2.600, 4.000, 1.200), (5.000, 2.300, 3.300, 1.000),
(5.600, 2.700, 4.200, 1.300), (5.700, 3.000, 4.200, 1.200),
(5.700, 2.900, 4.200, 1.300), (6.200, 2.900, 4.300, 1.300),
(5.100, 2.500, 3.000, 1.100), (5.700, 2.800, 4.100, 1.300),
(6.300, 3.300, 6.000, 2.500), (5.800, 2.700, 5.100, 1.900),
(7.100, 3.000, 5.900, 2.100), (6.300, 2.900, 5.600, 1.800),
(6.500, 3.000, 5.800, 2.200), (7.600, 3.000, 6.600, 2.100),
(4.900, 2.500, 4.500, 1.700), (7.300, 2.900, 6.300, 1.800),
(6.700, 2.500, 5.800, 1.800), (7.200, 3.600, 6.100, 2.500),
(6.500, 3.200, 5.100, 2.000), (6.400, 2.700, 5.300, 1.900),
(6.800, 3.000, 5.500, 2.100), (5.700, 2.500, 5.000, 2.000),
(5.800, 2.800, 5.100, 2.400), (6.400, 3.200, 5.300, 2.300),
(6.500, 3.000, 5.500, 1.800), (7.700, 3.800, 6.700, 2.200),
(7.700, 2.600, 6.900, 2.300), (6.000, 2.200, 5.000, 1.500),
ClusterKNN k = new ClusterKNN(x, y);

// the removed observations
double[][] values = {
 {5.400, 3.900, 1.300, 0.400},
 {5.700, 2.600, 3.500, 1.000},
 {6.800, 3.200, 5.900, 2.300}
};
int[] classes = k.classify(values, 5);
for (int i = 0; i < classes.length; i++) {
 System.out.println("Observation #" + (i + 1) + " is iris type " + classes[i]);
}

Output

Observation #1 is iris type 1
Observation #2 is iris type 2
Observation #3 is iris type 3
Dissimilarities class

```java
public class com.imsl.stat.Dissimilarities implements Serializable, Cloneable

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.

Class Dissimilarities computes an upper triangular matrix (excluding the diagonal) of dissimilarities (or similarities) between the columns (or rows) of a matrix. Nine different distance measures can be computed. For the first three measures, three different scaling options can be employed. The distance matrix computed is generally used as input to clustering or multidimensional scaling functions.

The following discussion assumes that the distance measure is being computed between the columns of the matrix. If distances between the rows of the matrix are desired, use `row = true` in the `setRow` method.

The distance method and scaling option used by Dissimilarities can be set via methods `setDistanceMethod` and `setScalingOption`, respectively. For distance methods `L2_NORM`, `L1_NORM`, or `INFINITY_NORM`, each row of `x` is first scaled according to the value specified by the `setScalingOption` method. The scaling parameters are obtained from the values in the row scaled as either the standard deviation of the row or the row range; the standard deviation is computed from the unbiased estimate of the variance. If no scaling is performed, the parameters in the following discussion are all 1.0 (see `setScalingOption`). Once the scaling value (if any) has been computed, the distance between column `i` and column `j` is computed via the difference vector `z_k = (x_k - y_k) / s_k`, `i = 1, ..., ndstm`, where `x_k` denotes the `k`-th element in the `i`-th column, `y_k` denotes the corresponding element in the `j`-th column, and `ndstm` is the number of rows if differencing columns and the number of columns if differencing rows. For given `z_k`, the distance methods that allow scaling are defined as:

<table>
<thead>
<tr>
<th>distanceMethod</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2_NORM</td>
<td>Euclidean distance (L_2 norm)</td>
</tr>
<tr>
<td>L1_NORM</td>
<td>Sum of the absolute differences (L_1 norm)</td>
</tr>
<tr>
<td>INFINITY_NORM</td>
<td>Maximum difference (L_∞ norm)</td>
</tr>
</tbody>
</table>

The following distance measures do not allow for scaling.

<table>
<thead>
<tr>
<th>distanceMethod</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAHALANOBIS</td>
<td>Mahalanobis distance</td>
</tr>
<tr>
<td>ABS_COSINE</td>
<td>Absolute value of the cosine of the angle between the vectors</td>
</tr>
<tr>
<td>ANGLE_IN_RADIANS</td>
<td>Angle in radians (0, π) between the lines through the origin defined by the vectors</td>
</tr>
<tr>
<td>CORRELATION_COEFFICIENT</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>ABS_CORRELATION_COEFFICIENT</td>
<td>Absolute value of the correlation coefficient</td>
</tr>
<tr>
<td>EXACT_MATCHES</td>
<td>Number of exact matches, where <code>x_i = y_i</code>.</td>
</tr>
</tbody>
</table>

For the Mahalanobis distance, any variable used in computing the distance measure that is (numerically)...
linearly dependent upon the previous variables in the indexArray vector from the setIndex method is omitted from the distance measure.

**Fields**

**ABS_CORRELATION_COEFFICIENT**  
static final public int ABS_CORRELATION_COEFFICIENT  
Indicates the absolute value of the correlation coefficient distance method.

**ABS_COSINE**  
static final public int ABS_COSINE  
Indicates the absolute value of the cosine of the angle between the vectors distance method.

**ANGLE_IN_RADIANS**  
static final public int ANGLE_IN_RADIANS  
Indicates the angle in radians \((0, \pi)\) between the lines through the origin defined by the vectors distance method.

**CORRELATION_COEFFICIENT**  
static final public int CORRELATION_COEFFICIENT  
Indicates the correlation coefficient distance method.

**EXACT_MATCHES**  
static final public int EXACT_MATCHES  
Indicates the number of exact matches distance method.

**INFINITY_NORM**  
static final public int INFINITY_NORM  
Indicates the maximum difference \((L_\infty\) norm) distance method.

**L1_NORM**  
static final public int L1_NORM  
Indicates the sum of the absolute differences \((L_1\) norm) distance method.

**L2_NORM**  
static final public int L2_NORM  
Indicates the Euclidean distance method \((L_2\) norm).

**MAHALANOBIS**  
static final public int MAHALANOBIS  
Indicates the Mahalanobis distance method.
### NO_SCALING

`static final public int NO_SCALING`

Indicates no scaling.

### RANGE

`static final public int RANGE`

Indicates scaling by the range.

### STD_DEV

`static final public int STD_DEV`

Indicates scaling by the standard deviation.

## Constructors

**Dissimilarities**

`public Dissimilarities(double[][] x)`

**Description**

Constructor for Dissimilarities.

**Parameter**

`x` – A double matrix containing the data input matrix.

## Methods

**compute**

`public void compute() throws Dissimilarities.ScaleFactorZeroException, Dissimilarities.ZeroNormException, Dissimilarities.NoPositiveVarianceException`

**Description**

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.

**Exceptions**

- `ScaleFactorZeroException` is thrown when computations cannot continue because a scale factor is zero
- `NoPositiveVarianceException` is thrown when no variable has positive variance
- `ZeroNormException` is thrown when the Euclidean norm of a column is equal to zero

**getDistanceMatrix**

`final public double[][] getDistanceMatrix()`
**Description**

Returns the distance matrix.

**Returns**

A double matrix containing the distance matrix.

---

**getDistanceMethod**

public int getDistanceMethod()

**Description**

Returns the method used in computing the dissimilarities or similarities.

---

**getIndex**

public int[] getIndex()

**Description**

Returns the indices of the rows (columns) used in computing the distance measure.

---

**getRow**

public boolean getRow()

**Description**

Returns a boolean indicating whether distances are computed between rows or columns of x.

---

**getScalingOption**

public int getScalingOption()

**Description**

Returns the scaling option.

---

**setDistanceMethod**

public void setDistanceMethod(int distanceMethod)

**Description**

Sets the method to be used in computing the dissimilarities or similarities.

**Parameter**

distanceMethod – An int identifying the method to be used in computing the dissimilarities or similarities. Acceptable values of distanceMethod are:
<table>
<thead>
<tr>
<th>distanceMethod</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2_NORM</td>
<td>Euclidean distance ($L_2$ norm)</td>
</tr>
<tr>
<td>L1_NORM</td>
<td>Sum of the absolute differences ($L_1$ norm)</td>
</tr>
<tr>
<td>INFINITY_NORM</td>
<td>Maximum difference ($L_{\infty}$ norm)</td>
</tr>
<tr>
<td>MAHALANOBIS</td>
<td>Mahalanobis distance</td>
</tr>
<tr>
<td>ABS_COSINE</td>
<td>Absolute value of the cosine of the angle between the vectors</td>
</tr>
<tr>
<td>ANGLE_IN_RADIANS</td>
<td>Angle in radians (0, $\pi$) between the lines through the origin defined by the vectors</td>
</tr>
<tr>
<td>CORRELATION_COEFFICIENT</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>ABS_CORRELATION_COEFFICIENT</td>
<td>Absolute value of the correlation coefficient</td>
</tr>
<tr>
<td>EXACT_MATCHES</td>
<td>Number of exact matches, where $x_i = y_i$.</td>
</tr>
</tbody>
</table>

See class description for more details. By default, distanceMethod = L2_NORM.

**setIndex**

```java
public void setIndex(int[] indexArray)
```

**Description**

Sets the indices of the rows (columns).

**Parameter**

indexArray – An int array containing the indices of the columns (rows if row = false) to be used in computing the distance measure. By default, if row = true, indexArray = 0, 1, ..., x[0].length-1. If row = false, indexArray = 0, 1, ..., x.length-1, see setRow.

**setRow**

```java
public void setRow(boolean row)
```

**Description**

Identifies whether distances are computed between rows or columns of x.

**Parameter**

row – A boolean identifying whether distances are computed between rows or columns of x. If row = true, distances are computed between the rows of x. Otherwise, distances between the columns of x are computed. By default, row = true.

**setScalingOption**

```java
public void setScalingOption(int distanceScale)
```

**Description**

Sets the scaling option used if the L2_NORM, L1_NORM, or INFINITY_NORM distance methods are specified. See setDistanceMethod.

**Parameter**

distanceScale – An int containing the scaling option. By default, distanceScale = NO_SCALING.
<table>
<thead>
<tr>
<th>distanceScale</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO_SCALING</td>
<td>No scaling is performed.</td>
</tr>
</tbody>
</table>
| STD_DEV      | If setRow(false), scale each column by the standard deviation of the column.  
|              | If setRow(true), scale each row by the standard deviation of the row. |
| RANGE        | If setRow(false), scale each column by the range of the column.  
|              | If setRow(true), scale each row by the range of the row. |

Example: Dissimilarities

The following example illustrates the use of Dissimilarities for computing the Euclidean distance between the rows of a matrix:

import com.imsl.stat.*;
import com.imsl.math.*;

class DissimilaritiesEx1 {
    public static void main(String argv[]) throws Exception {
        double[][] x = {
            {1., 1.},
            {1., 0.},
            {1., -1.},
            {1., 2.}
        };

        Dissimilarities dist = new Dissimilarities(x);
        dist.compute();
        double[][] distanceMatrix = dist.getDistanceMatrix();

        new PrintMatrix().print(distanceMatrix);
    }
}

Output

0 1 2 3
0 0 1 2 1
1 0 0 1 2
2 0 0 0 3
3 0 0 0 0
Dissimilarities.ScaleFactorZeroException class

static public class com.imsl.stat.Dissimilarities.ScaleFactorZeroException
extends com.imsl.IMSLException
The computations cannot continue because a scale factor is zero.

Constructor

Dissimilarities.ScaleFactorZeroException
public Dissimilarities.ScaleFactorZeroException(int index)

Description
Constructs a ScaleFactorZeroException.

Parameter
index – An int which specifies the index of the scale factor array at which scale factor is zero.

Dissimilarities.ZeroNormException class

static public class com.imsl.stat.Dissimilarities.ZeroNormException extends
com.imsl.IMSLException
The computations cannot continue because the Euclidean norm of the column is equal to zero.

Constructor

Dissimilarities.ZeroNormException
public Dissimilarities.ZeroNormException(int index)

Description
Constructs a ZeroNormException.

Parameter
index – An int which specifies the column index for which the norm has been found to be zero.
Dissimilarities.NoPositiveVarianceException class

```java
static public class com.imsl.stat.Dissimilarities.NoPositiveVarianceException
extends com.imsl.IMSLException

No variable has positive variance. The Mahalanobis distances cannot be computed.
```

Constructor

```java
Dissimilarities.NoPositiveVarianceException
public Dissimilarities.NoPositiveVarianceException()

Description
Constructs a NoPositiveVarianceException.
```

ClusterHierarchical class

```java
public class com.imsl.stat.ClusterHierarchical implements Serializable,
Cloneable

Performs a hierarchical cluster analysis from a distance matrix.

Class ClusterHierarchical conducts a hierarchical cluster analysis based upon a distance matrix, or,
by appropriate use of the transformation specified in the method setTransformType, based upon a
similarity matrix. Only the upper triangular part of the input matrix is used.

Hierarchical clustering in ClusterHierarchical proceeds as follows:

Initially, each data point is considered to be a cluster, numbered 1 to n, where n is the number of rows in
the input matrix, dist.

1. If the input matrix contains similarities, the matrix is transformed to a distance matrix using the
transform type specified by the method setTransformType. Set \(k = 1 \).

2. A search is made of the distance matrix to find the two closest clusters. These clusters are merged
to form a new cluster, numbered \(n + k \). The cluster numbers of the two clusters joined at this stage
are saved as Right Sons and Left Sons, and the distance measure between the two clusters is stored
as Cluster Level.

3. Based upon the method of clustering, updating of the distance measure in the row and column of
dist corresponding to the new cluster is performed.
4. Set $k = k + 1$. If k is less than n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two clusters have been joined. The argument `method` in `setMethod` specifies how the distance of the cluster just merged with each of the remaining clusters will be updated. Class `ClusterHierarchical` allows five methods for computing the distances. To understand these measures, suppose in the following discussion that clusters A and B have just been joined to form cluster Z, and interest is in computing the distance of Z with another cluster called C.

![Diagram showing the relationship between clusters A, B, Z, and C with a distance measure dist]

Multivariate Analysis
ClusterHierarchical • 1147
Table: Description of Linkage Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINKAGE_SINGLE</td>
<td>Single linkage (minimum distance). The distance from Z to C is the minimum of the distances (A to C, B to C).</td>
</tr>
<tr>
<td>LINKAGE_COMPLETE</td>
<td>Complete linkage (maximum distance). The distance from Z to C is the maximum of the distances (A to C, B to C).</td>
</tr>
<tr>
<td>LINKAGE_AVG_WITHIN_CLUSTERS</td>
<td>Average-distance-within-clusters method. The distance from Z to C is the average distance of all objects that would be within the cluster formed by merging clusters Z and C. This average may be computed according to formulas given by Anderberg (1973, page 139).</td>
</tr>
<tr>
<td>LINKAGE_AVG_BETWEEN_CLUSTERS</td>
<td>Average-distance-between-clusters method. The distance from Z to C is the average distance of objects within cluster Z to objects within cluster C. This average may be computed according to methods given by Anderberg (1973, page 140).</td>
</tr>
<tr>
<td>LINKAGEWARDS</td>
<td>Ward’s method: Clusters are formed so as to minimize the increase in the within-cluster sums of squares. The distance between two clusters is the increase in these sums of squares if the two clusters were merged. A method for computing this distance from a squared Euclidean distance matrix is given by Anderberg (1973, pages 142-145).</td>
</tr>
</tbody>
</table>

In general, single linkage will yield long thin clusters while complete linkage will yield clusters that are more spherical. Average linkage and Ward’s linkage tend to yield clusters that are similar to those obtained with complete linkage.

Class `ClusterHierarchical` produces a unique representation of the binary cluster tree via the following three conventions; the fact that the tree is unique should aid in interpreting the clusters. First, when two clusters are joined and each cluster contains two or more data points, the cluster that was initially formed with the smallest level becomes the left son. Second, when a cluster containing more than one data point is joined with a cluster containing a single data point, the cluster with the single data point becomes the right son. Finally, when two clusters containing only one object are joined, the cluster with the smallest cluster number becomes the right son.

Comments

1. The clusters corresponding to the original data points are numbered from 1 to n, where n is the number of rows in `dist`. The $n - 1$ clusters formed by merging clusters are numbered $n + 1$ to $n + (n - 1)$.
2. Raw correlations, if used as similarities, should be made positive and transformed to a distance measure. One such transformation can be performed by setting transform = RECIPROCAL_ABS, in the setTransformType method.

3. The user may cluster either variables or observations with ClusterHierarchical since a dissimilarity matrix, not the original data, is used. Class com.imsl.stat.Dissimilarities (p. 1139) may be used to compute the matrix dist for either the variables or observations.

Fields

LINKAGE_AVG_BETWEEN_CLUSTERS
static final public int LINKAGE_AVG_BETWEEN_CLUSTERS

Indicates the average distance between (average distance between objects in the two clusters) method.

LINKAGE_AVG_WITHIN_CLUSTERS
static final public int LINKAGE_AVG_WITHIN_CLUSTERS

Indicates the average distance within (average distance between objects within the merged cluster) method.

LINKAGE_COMPLETE
static final public int LINKAGE_COMPLETE

Indicates the complete linkage (maximum distance) method.

LINKAGE_SINGLE
static final public int LINKAGE_SINGLE

Indicates the single linkage (minimum distance) method.

LINKAGE_WARDS
static final public int LINKAGE_WARDS

Indicates the Ward’s method.

MULTIPLICATION
static final public int MULTIPLICATION

Indicates transformation by multiplication by -1.0.

NONE
static final public int NONE

Indicates no transformation.

RECIPROCAL_ABS
static final public int RECIPROCAL_ABS

Indicates transformation by taking the reciprocal of the absolute value.
Constructors

ClusterHierarchical

```java
public ClusterHierarchical(double[][] dist)
```

Description

Constructor for ClusterHierarchical.

Parameter

- `dist` – A double symmetric matrix containing the distance (or similarity) matrix. Only the upper triangular part is used.

Methods

compute

```java
public void compute()
```

Description

Performs a hierarchical cluster analysis.

getClusterLeftSons

```java
final public int[] getClusterLeftSons()
```

Description

Returns the left sons of each merged cluster.

Returns

An int array containing the left sons of each merged cluster.

getClusterLevel

```java
final public double[] getClusterLevel()
```

Description

Returns the level at which the clusters are joined.

Returns

A double array containing the level at which the clusters are joined. Element `[k-1]` contains the distance (or similarity) level at which cluster `n + k` was formed.

getClusterMembership

```java
final public int[] getClusterMembership(int nClusters)
```

Description

Returns the cluster membership of each observation.
Parameter

parameter – An int which specifies the desired number of clusters.

Returns

An int array containing the cluster membership of each observation.

getClusterRightSons

final public int[] getClusterRightSons()

Description

Returns the right sons of each merged cluster.

Returns

An int array containing the right sons of each merged cluster.

getMethod

public int getMethod()

Description

Returns the clustering method used.

getObsPerCluster

final public int[] getObsPerCluster(int nClusters)

Description

Returns the number of observations in each cluster.

Parameter

nClusters – An int which specifies the desired number of clusters.

Returns

An int array containing the number of observations in each cluster.

getTransformType

public int getTransformType()

Description

Returns the type of transformation.

setMethod

public void setMethod(int method)

Description

Sets the clustering method to be used.
Parameter

method – An int identifying the clustering method to be used. By default, method = LINKAGE_SINGLE.

<table>
<thead>
<tr>
<th>method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINKAGE_SINGLE</td>
<td>Single linkage (minimum distance).</td>
</tr>
<tr>
<td>LINKAGE_COMPLETE</td>
<td>Complete linkage (maximum distance).</td>
</tr>
<tr>
<td>LINKAGE_Avg_Within_Clusters</td>
<td>Average distance within (average distance between objects within the merged cluster).</td>
</tr>
<tr>
<td>LINKAGE_Avg_Between_Clusters</td>
<td>Average distance between (average distance between objects in the two clusters).</td>
</tr>
<tr>
<td>LINKAGE_WARDS</td>
<td>Ward’s method (minimize the within-cluster sums of squares). For Ward’s method, the elements of dist are assumed to be Euclidean distances.</td>
</tr>
</tbody>
</table>

setTransformType

`public void setTransformType(int transform)`

Description

Sets the type of transformation.

Parameter

transform – An int identifying the type of transformation applied to the measures in dist. By default, transform = NONE.

<table>
<thead>
<tr>
<th>transform</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>No transformation is required. The elements of dist are distances.</td>
</tr>
<tr>
<td>MULTIPLICATION</td>
<td>Convert similarities to distances by multiplication by -1.0.</td>
</tr>
<tr>
<td>RECIPROCAL_ABS</td>
<td>Convert similarities (usually correlations) to distances by taking the reciprocal of the absolute value.</td>
</tr>
</tbody>
</table>

Example 1: ClusterHierarchical

This example illustrates a typical usage of ClusterHierarchical. The Fisher iris data is clustered. First the distance between irises is computed using the class `Dissimilarities`. The resulting distance matrix is then clustered using `ClusterHierarchical`, and cluster memberships for 5 clusters are computed.

```java
import com.imsl.stat.*;

public class ClusterHierarchicalEx1 {
    public static void main(String argv[]) throws Exception {
        double[][] irisData = {
            {5.1, 3.5, 1.4, .2}, {4.9, 3.0, 1.4, .2},
            {4.7, 3.2, 1.3, .2}, {4.6, 3.1, 1.5, .2},
        }
```
<table>
<thead>
<tr>
<th>Numbers</th>
<th>Multivariate Analysis Cluster Hierarchical</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0, 3.6, 1.4, .2</td>
<td>5.4, 3.9, 1.7, .4</td>
</tr>
<tr>
<td>4.6, 3.4, 1.4, .3</td>
<td>5.0, 3.4, 1.5, .2</td>
</tr>
<tr>
<td>4.4, 2.9, 1.4, .2</td>
<td>4.9, 3.1, 1.5, .1</td>
</tr>
<tr>
<td>5.4, 3.7, 1.5, .2</td>
<td>4.8, 3.4, 1.6, .2</td>
</tr>
<tr>
<td>4.8, 3.0, 1.4, .1</td>
<td>4.3, 3.0, 1.1, .1</td>
</tr>
<tr>
<td>5.8, 4.0, 1.2, .2</td>
<td>5.7, 4.4, 1.5, .4</td>
</tr>
<tr>
<td>5.4, 3.9, 1.3, .4</td>
<td>5.1, 3.5, 1.4, .3</td>
</tr>
<tr>
<td>5.7, 3.8, 1.7, .3</td>
<td>5.1, 3.8, 1.5, .3</td>
</tr>
<tr>
<td>5.4, 3.4, 1.7, .2</td>
<td>5.1, 3.7, 1.5, .4</td>
</tr>
<tr>
<td>4.6, 3.6, 1.0, .2</td>
<td>5.1, 3.3, 1.7, .5</td>
</tr>
<tr>
<td>4.8, 3.4, 1.9, .2</td>
<td>5.0, 3.0, 1.6, .2</td>
</tr>
<tr>
<td>5.0, 3.4, 1.6, .4</td>
<td>5.2, 3.5, 1.5, .2</td>
</tr>
<tr>
<td>5.2, 3.4, 1.4, .2</td>
<td>4.7, 3.2, 1.6, .2</td>
</tr>
<tr>
<td>4.8, 3.1, 1.6, .2</td>
<td>5.4, 3.4, 1.5, .4</td>
</tr>
<tr>
<td>5.2, 4.1, 1.5, .1</td>
<td>5.5, 4.2, 1.4, .2</td>
</tr>
<tr>
<td>4.9, 3.1, 1.5, .2</td>
<td>5.0, 3.2, 1.2, .2</td>
</tr>
<tr>
<td>5.5, 3.5, 1.3, .2</td>
<td>4.9, 3.6, 1.4, .1</td>
</tr>
<tr>
<td>4.4, 5.0, 1.3, .2</td>
<td>5.1, 3.4, 1.5, .2</td>
</tr>
<tr>
<td>5.0, 3.5, 1.3, .3</td>
<td>4.5, 2.3, 1.3, .3</td>
</tr>
<tr>
<td>4.4, 3.2, 1.3, .2</td>
<td>5.0, 3.5, 1.6, .6</td>
</tr>
<tr>
<td>5.1, 3.8, 1.9, .4</td>
<td>4.8, 3.0, 1.4, .3</td>
</tr>
<tr>
<td>5.1, 3.8, 1.6, .2</td>
<td>4.6, 3.2, 1.4, .2</td>
</tr>
<tr>
<td>5.3, 3.7, 1.5, .2</td>
<td>5.0, 3.3, 1.4, .2</td>
</tr>
<tr>
<td>7.0, 3.2, 4.7, 1.4</td>
<td>6.4, 3.2, 4.5, 1.5</td>
</tr>
<tr>
<td>6.9, 3.1, 4.9, 1.5</td>
<td>5.5, 2.3, 4.0, 1.3</td>
</tr>
<tr>
<td>6.5, 2.8, 4.6, 1.5</td>
<td>5.7, 2.8, 4.5, 1.3</td>
</tr>
<tr>
<td>6.3, 3.3, 4.7, 1.6</td>
<td>4.9, 2.4, 3.3, 1.0</td>
</tr>
<tr>
<td>6.6, 2.9, 4.6, 1.3</td>
<td>5.2, 2.7, 3.9, 1.4</td>
</tr>
<tr>
<td>5.0, 2.0, 3.5, 1.0</td>
<td>5.9, 3.0, 4.2, 1.5</td>
</tr>
<tr>
<td>6.0, 2.2, 4.0, 1.0</td>
<td>6.1, 2.9, 4.7, 1.4</td>
</tr>
<tr>
<td>5.6, 2.9, 3.6, 1.3</td>
<td>6.7, 3.1, 4.4, 1.4</td>
</tr>
<tr>
<td>5.6, 3.0, 4.5, 1.5</td>
<td>5.8, 2.7, 4.1, 1.0</td>
</tr>
<tr>
<td>6.2, 2.2, 4.5, 1.5</td>
<td>5.6, 2.5, 3.9, 1.1</td>
</tr>
<tr>
<td>5.9, 3.2, 4.8, 1.8</td>
<td>6.1, 2.8, 4.0, 1.3</td>
</tr>
<tr>
<td>6.3, 2.5, 4.9, 1.5</td>
<td>6.1, 2.8, 4.7, 1.2</td>
</tr>
<tr>
<td>6.4, 2.9, 4.3, 1.3</td>
<td>6.6, 3.0, 4.4, 1.4</td>
</tr>
<tr>
<td>6.8, 2.8, 4.8, 1.4</td>
<td>6.7, 3.0, 5.0, 1.7</td>
</tr>
<tr>
<td>6.0, 2.9, 4.5, 1.5</td>
<td>5.7, 2.6, 3.5, 1.0</td>
</tr>
<tr>
<td>5.5, 2.4, 3.8, 1.1</td>
<td>5.5, 2.4, 3.7, 1.0</td>
</tr>
<tr>
<td>5.8, 2.7, 3.9, 1.2</td>
<td>6.0, 2.7, 5.1, 1.6</td>
</tr>
<tr>
<td>5.4, 3.0, 4.5, 1.5</td>
<td>6.0, 3.4, 4.5, 1.6</td>
</tr>
<tr>
<td>6.7, 3.1, 4.7, 1.5</td>
<td>6.3, 2.3, 4.4, 1.3</td>
</tr>
<tr>
<td>5.6, 3.0, 4.1, 1.3</td>
<td>5.5, 2.5, 4.0, 1.3</td>
</tr>
<tr>
<td>5.5, 2.6, 4.4, 1.2</td>
<td>6.1, 3.0, 4.6, 1.4</td>
</tr>
<tr>
<td>5.8, 2.6, 4.0, 1.2</td>
<td>5.0, 2.3, 3.3, 1.0</td>
</tr>
<tr>
<td>5.6, 2.7, 4.2, 1.3</td>
<td>5.7, 3.0, 4.2, 1.2</td>
</tr>
<tr>
<td>5.7, 2.9, 4.2, 1.3</td>
<td>6.2, 2.9, 4.3, 1.3</td>
</tr>
<tr>
<td>5.1, 2.5, 3.0, 1.1</td>
<td>5.7, 2.8, 4.1, 1.3</td>
</tr>
<tr>
<td>6.3, 3.3, 6.0, 2.5</td>
<td>5.8, 2.7, 5.1, 1.9</td>
</tr>
<tr>
<td>7.1, 3.0, 5.9, 2.1</td>
<td>6.3, 2.9, 5.6, 1.8</td>
</tr>
<tr>
<td>6.5, 3.0, 5.8, 2.2</td>
<td>7.6, 3.0, 6.6, 2.1</td>
</tr>
<tr>
<td>4.9, 2.5, 4.5, 1.7</td>
<td>7.3, 2.9, 6.3, 1.8</td>
</tr>
<tr>
<td>6.7, 2.5, 5.8, 1.8</td>
<td>7.2, 3.6, 6.1, 2.5</td>
</tr>
<tr>
<td>6.5, 3.2, 5.1, 2.0</td>
<td>6.4, 2.7, 5.3, 1.9</td>
</tr>
<tr>
<td>6.8, 3.0, 5.5, 2.1</td>
<td>5.7, 2.5, 5.0, 2.0</td>
</tr>
<tr>
<td>5.8, 2.8, 5.1, 2.4</td>
<td>6.4, 3.2, 5.3, 2.3</td>
</tr>
</tbody>
</table>
Dissimilarities dist = new Dissimilarities(irisData);
dist.setScaleOption(Dissimilarities.STD_DEV);
dist.compute();

ClusterHierarchical clink = new ClusterHierarchical(dist.getDistanceMatrix());
clink.setMethod(ClusterHierarchical.LINKAGE_AVG_WITHIN_CLUSTERS);
clink.compute();

int nClusters = 5;
int[] iclus = clink.getClusterMembership(nClusters);
int[] nclus = clink.getObsPerCluster(nClusters);
System.out.println("Cluster Membership");
for (int i = 0; i < 15; i++) {
 for (int j = 0; j < 10; j++) {
 System.out.print(iclus[i * 10 + j] + " ");
 }
 System.out.println();
}

System.out.println("Observations Per Cluster");
for (int i = 0; i < nClusters; i++) {
 System.out.print(nclus[i] + " ");
}
System.out.println();

Output
Cluster Membership
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
FactorAnalysis class

```java
public class com.imsl.stat.FactorAnalysis implements Serializable, Cloneable

Performs Principal Component Analysis or Factor Analysis on a covariance or correlation matrix.

Class FactorAnalysis computes principal components or initial factor loading estimates for a variance-covariance or correlation matrix using exploratory factor analysis models.

Models available are the principal component model for factor analysis and the common factor model with additions to the common factor model in alpha factor analysis and image analysis. Methods of estimation include principal components, principal factor, image analysis, unweighted least squares, generalized least squares, and maximum likelihood.

For the principal component model there are methods to compute the characteristic roots, characteristic vectors, standard errors for the characteristic roots, and the correlations of the principal component scores with the original variables. Principal components obtained from correlation matrices are the same as principal components obtained from standardized (to unit variance) variables.

The principal component scores are the elements of the vector \( y = \Gamma^T x \) where \( \Gamma \) is the matrix whose columns are the characteristic vectors (eigenvectors) of the sample covariance (or correlation) matrix and \( x \) is the vector of observed (or standardized) random variables. The variances of the principal component scores are the characteristic roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girshick (1939) and are given more recently by Kendall, Stuart, and Ord (1983, page 331). These variances are computed either for variance-covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized) variables are the same as the unrotated factor loadings obtained for the principal components model for factor analysis when a correlation matrix is input.

In the factor analysis model used for factor extraction, the basic model is given as \( \Sigma = LA^T + \Psi \) where \( \Sigma \) is the \( p \times p \) population covariance matrix. \( A \) is the \( p \times k \) matrix of factor loadings relating the factors to
```
the observed variables \(x \), and \(\Psi \) is the \(p \times p \) matrix of covariances of the unique errors \(e \). Here, \(p \) represents the number of variables and \(k \) is the number of factors. The relationship between the factors, the unique errors, and the observed variables is given as \(x = \Lambda f + e \) where, in addition, it is assumed that the expected values of \(e, f, \) and \(x \) are zero. (The sample means can be subtracted from \(x \) if the expected value of \(x \) is not zero.) It is also assumed that each factor has unit variance, the factors are independent of each other, and that the factors and the unique errors are mutually independent. In the common factor model, the elements of the vector of unique errors \(e \) are also assumed to be independent of one another so that the matrix \(\Psi \) is diagonal. This is not the case in the principal component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is optimized and the amount of computer effort required to obtain estimates. Generally speaking, the least-squares and maximum likelihood methods, which use iterative algorithms, require the most computer time with the principal factor, principal component, and the image methods requiring much less time since the algorithms in these methods are not iterative. The algorithm in alpha factor analysis is also iterative, but the estimates in this method generally require somewhat less computer effort than the least-squares and maximum likelihood estimates. In all algorithms one eigensystem analysis is required on each iteration.

Fields

ALPHA_FACTOR_ANALYSIS

static final public int ALPHA_FACTOR_ANALYSIS

Indicates alpha factor analysis.

CORRELATION_MATRIX

static final public int CORRELATION_MATRIX

Indicates correlation matrix.

GENERALIZED_LEAST_SQUARES

static final public int GENERALIZED_LEAST_SQUARES

Indicates generalized least squares method.

IMAGE_FACTOR_ANALYSIS

static final public int IMAGE_FACTOR_ANALYSIS

Indicates image factor analysis.

MAXIMUM_LIKELIHOOD

static final public int MAXIMUM_LIKELIHOOD

Indicates maximum likelihood method.

PRINCIPAL_COMPONENT_MODEL

static final public int PRINCIPAL_COMPONENT_MODEL

Indicates principal component model.
PRINCIPAL_FACTOR_MODEL
static final public int PRINCIPAL_FACTOR_MODEL

Indicates principal factor model.

UNWEIGHTED_LEAST_SQUARES
static final public int UNWEIGHTED_LEAST_SQUARES

Indicates unweighted least squares method.

VARIANCE_COVARIANCE_MATRIX
static final public int VARIANCE_COVARIANCE_MATRIX

Indicates variance-covariance matrix.

Constructor

FactorAnalysis
public FactorAnalysis(double[][] cov, int matrixType, int nf)

Description
Constructor for FactorAnalysis.

Parameters

cov – A double matrix containing the covariance or correlation matrix.

matrixType – An int scalar indicating the type of matrix that is input. Uses class member
VARIANCE_COVARIANCE_MATRIX, CORRELATION_MATRIX for matrixType.

nf – An int scalar indicating the number of factors in the model. If nf is not known in advance,
several different values of nf should be used, and the most reasonable value kept in the final
solution. Since, in practice, the non-iterative methods often lead to solutions which differ little
from the iterative methods, it is usually suggested that a non-iterative method be used in the initial
stages of the factor analysis, and that the iterative methods be used once issues such as the number
of factors have been resolved.

Exception

IllegalArgumentException is thrown if x.length, and x[0].length are equal to 0.
Methods

getCorrelations

```java
public double[][] getCorrelations() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException
```

Description

Returns the correlations of the principal components.

Returns

An `double` matrix containing the correlations of the principal components with the observed/standardized variables. If a covariance matrix is input to the constructor, then the correlations are with the observed variables. Otherwise, the correlations are with the standardized (to a variance of 1.0) variables. Only valid for the principal components model.

getFactorLoadings

```java
public double[][] getFactorLoadings() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException
```

Description

Returns the unrotated factor loadings.

Returns

A `double` matrix containing the unrotated factor loadings.

getParameterUpdates

```java
public double[] getParameterUpdates() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException
```

Description

Returns the parameter updates.

Returns

A `double` array containing the parameter updates when convergence was reached (or the iterations terminated). The parameter updates are only meaningful for the common factor model. The parameter updates are set to 0.0 for the principal component model.
getPercents
public double[] getPercents() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description
Returns the cumulative percent of the total variance explained by each principal component. Valid for
the principal component model.

Returns
An double array containing the total variance explained by each principal component.

getStandardErrors
public double[] getStandardErrors() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description
Returns the estimated asymptotic standard errors of the eigenvalues.

Returns
An double array containing the estimated asymptotic standard errors of the eigenvalues.

getStatistics
public double[] getStatistics() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description
Returns statistics.

Returns
A double array (Stat) containing output statistics. Stat is not defined and is set to NaN when the method
used to obtain the estimates, is the principal component method, principal factor method, image factor
analysis method, or alpha analysis method.
<table>
<thead>
<tr>
<th>i</th>
<th>Stat[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Value of the function minimum.</td>
</tr>
<tr>
<td>1</td>
<td>Tucker reliability coefficient.</td>
</tr>
<tr>
<td>2</td>
<td>Chi-squared test statistic for testing that the number of factors in the model are adequate for the data.</td>
</tr>
<tr>
<td>3</td>
<td>Degrees of freedom in chi-squared. This is computed as $((nvar - nf)^2 - nvar - nf)/2$ where nvar is the number of variables and nf is the number of factors in the model.</td>
</tr>
<tr>
<td>4</td>
<td>Probability of a greater chi-squared statistic.</td>
</tr>
<tr>
<td>5</td>
<td>Number of iterations.</td>
</tr>
</tbody>
</table>

getValues

```java
public double[] getValues() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException
```

Description

Returns the eigenvalues.

Returns

A double array containing the eigenvalues of the matrix from which the factors were extracted ordered from largest to smallest. If Alpha Factor analysis is used, then the first nf positions of the array contain the Alpha coefficients. Here, nf is the number of factors in the model. If the algorithm fails to converge for a particular eigenvalue, that eigenvalue is set to NaN. Note that the eigenvalues are usually not the eigenvalues of the input matrix cov. They are the eigenvalues of the input matrix cov when the principal component method is used.

getVariances

```java
public double[] getVariances() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException
```

Description

Gets the unique variances.

Returns

A double array of length nvar containing the unique variances, where nvar is the number of variables.
getVectors

public double[][] getVectors() throws FactorAnalysis.RankException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns the eigenvectors.

Returns

A double matrix containing the eigenvectors of the matrix from which the factors were extracted. The
j-th column of the eigenvector matrix corresponds to the j-th eigenvalue. The eigenvectors are
normalized to each have Euclidean length equal to one. Also, the sign of each vector is set so that the
largest component in magnitude (the first of the largest if there are ties) is made positive. Note that the
eigenvectors are usually not the eigenvectors of the input matrix cov. They are the eigenvectors of the
input matrix cov when the principal component method is used.

setConvergenceCriterion1

public void setConvergenceCriterion1(double eps)

Description

Sets the convergence criterion used to terminate the iterations.

Parameter

eps – A double used to terminate the iterations. For the least squares and and maximum
likelihood methods convergence is assumed when the relative change in the criterion is less than
eps. For alpha factor analysis, convergence is assumed when the maximum change (relative to the
variance) of a uniqueness is less than eps. eps is not referenced for the other estimation methods.
If this member function is not called, eps is set to 0.0001.

setConvergenceCriterion2

public void setConvergenceCriterion2(double epse)

Description

Sets the convergence criterion used to switch to exact second derivatives.

Parameter

epse – A double used to switch to exact second derivatives. When the largest relative change in
the unique standard deviation vector is less than epse exact second derivative vectors are used. If
this member function is not called, epse is set to 0.1. Not referenced for principal component,
principal factor, image factor, or alpha factor methods.

setDegreesOfFreedom

public void setDegreesOfFreedom(int ndf)
Description
Sets the number of degrees of freedom.

Parameter
ndf – An int value specifying the number of degrees of freedom in the input matrix. If this
member function is not called 100 degrees of freedom are assumed.

setFactorLoadingEstimationMethod
public void setFactorLoadingEstimationMethod(int methodType)

Description
Sets the factor loading estimation method.

Parameter
methodType – An int scalar indicating the method to be applied for obtaining the factor loadings.
Use class member PRINCIPAL_COMPONENT_MODEL, PRINCIPAL_FACTOR_MODEL,
UNWEIGHTED_LEAST_SQUARES, GENERALIZED_LEAST_SQUARES, MAXIMUM_LIKELIHOOD,
IMAGE_FACTOR_ANALYSIS, or ALPHA_FACTOR_ANALYSIS for methodType. If this member
function is not called, the PRINCIPAL_COMPONENT_MODEL is used.

For the principal component and principal factor methods, the factor loading estimates are
computed as
\[\hat{\Gamma} \hat{\Lambda}^{-1/2} \]
where \(\Gamma \) and the diagonal matrix \(\Lambda \) are the eigenvalues and eigenvectors of a matrix. In the
principal component model, the eigensystem analysis is performed on the sample covariance
(correlation) matrix \(S \) while in the principal factor model the matrix \((S - \Psi) \) is used. If the unique
error variances \(\Psi \) are not known in the principal factor model, then they are estimated. This is
achieved by calling the member function setVarianceEstimationMethod and setting init to 0.
If the principal component model is used, the error variances are set to 0.0 automatically.
The basic idea in the principal component method is to find factors that maximize the variance in
the original data that is explained by the factors. Because this method allows the unique errors to
be correlated, some factor analysts insist that the principal component method is not a factor
analytic method. Usually however, the estimates obtained via the principal component model and
other models in factor analysis will be quite similar.

It should be noted that both the principal component and the principal factor methods give different
results when the correlation matrix is used in place of the covariance matrix. Indeed, any rescaling
of the sample covariance matrix can lead to different estimates with either of these methods. A
further difficulty with the principal factor method is the problem of estimating the unique error
variances. Theoretically, these must be known in advance and passed in through member function
setVariances. In practice, the estimates of these parameters produced by calling the member
function setVarianceEstimationMethod and setting init to 0 are often used. In either case,
the resulting adjusted covariance (correlation) matrix
\[(S - \Psi) \]
may not yield the \(nf \) positive eigenvalues required for \(nf \) factors to be obtained. If this occurs, the
user must either lower the number of factors to be estimated or give new unique error variance
values.
For the least-squares and maximum likelihood methods an iterative algorithm is used to obtain the estimates (see Joreskog 1977). As with the principal factor model, the user may either input the initial unique error variances or allow the algorithm to compute initial estimates. Unlike the principal factor method, the code then optimizes the criterion function with respect to both Ψ and Γ. (In the principal factor method, Ψ is assumed to be known. Given Ψ, estimates for Λ may be obtained.)

The major differences between the estimation methods described in this member function are in the criterion function that is optimized. Let S denote the sample covariance (correlation) matrix, and let Σ denote the covariance matrix that is to be estimated by the factor model. In the unweighted least-squares method, also called the iterated principal factor method or the minres method (see Harman 1976, page 177), the function minimized is the sum of the squared differences between S and Σ. This is written as $\Phi_{ul} = trace((S - \Sigma)^2)$.

Generalized least-squares and maximum likelihood estimates are asymptotically equivalent methods. Maximum likelihood estimates maximize the (normal theory) likelihood

$$\Phi_{ml} = \text{trace}(\Sigma^{-1}S - \log(|\Sigma^{-1}S|)),$$

while generalized least squares optimizes the function

$$\Phi_{gs} = \text{trace}(\Sigma S^{-1}I)^2.$$

In all three methods, a two-stage optimization procedure is used. This proceeds by first solving the likelihood equations for Λ in terms of Ψ and substituting the solution into the likelihood. This gives a criterion $\Phi(\Psi, \Lambda(\Psi))$, which is optimized with respect to Ψ. In the second stage, the estimates $\hat{\Lambda}$ are obtained from the estimates for Ψ.

The generalized least-squares and the maximum likelihood methods allow for the computation of a statistic for testing that nf common factors are adequate to fit the model. This is a chi-squared test that all remaining parameters associated with additional factors are zero. If the probability of a larger chi-squared is small (see `stat[4]` under `getStatistics`) so that the null hypothesis is rejected, then additional factors are needed (although these factors may not be of any practical importance). Failure to reject does not legitimize the model. The statistic `stat[2]` is a likelihood ratio statistic in maximum likelihood estimates. As such, it asymptotically follows a chi-squared distribution with degrees of freedom given in `stat[3]`.

The Tucker and Lewis (1973) reliability coefficient, ρ, is returned in `stat[1]` when the maximum likelihood or generalized least-squares methods are used. This coefficient is an estimate of the ratio of explained to the total variation in the data. It is computed as follows:

$$\rho = \frac{mM_o - mM_k}{mM_o - 1},$$

$$m = d - \frac{2p + 5}{6} - \frac{2k}{6},$$

$$M_o = \frac{-\ln(|S|)}{p(p - 1)/2},$$

$$M_k = \frac{\Phi}{((p - k)^2 - p - k)/2},$$

where $|S|$ is the determinant of cov, p is the number of variables, k is the number of factors, Φ is the optimized criterion, and d is the number of degrees of freedom.
The term “image analysis” is used here to denote the noniterative image method of Kaiser (1963). It is not the image factor analysis discussed by Harman (1976, page 226). The image method (as well as the alpha factor analysis method) begins with the notion that only a finite number from an infinite number of possible variables have been measured. The image factor pattern is calculated under the assumption that the ratio of the number of factors to the number of observed variables is near zero so that a very good estimate for the unique error variances (for standardized variables) is given as one minus the squared multiple correlation of the variable under consideration with all variables in the covariance matrix.

First, the matrix $D^2 = (\text{diag}(S^{-1}))^{-1}$ is computed where the operator “diag” results in a matrix consisting of the diagonal elements of its argument, and S is the sample covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors Γ of the matrix $D^{-1}SD^{-1}$ are computed. Finally, the unrotated image factor pattern matrix is computed as $A = D\Gamma[(\Lambda - I)^2\Lambda^{-1}]^{1/2}$.

The alpha factor analysis method of Kaiser and Caffrey (1965) finds factor-loading estimates to maximize the correlation between the factors and the complete universe of variables of interest. The basic idea in this method is as follows: only a finite number of variables out of a much larger set of possible variables is observed. The population factors are linearly related to this larger set while the observed factors are linearly related to the observed variables. Let f denote the factors obtainable from a finite set of observed random variables, and let ξ denote the factors obtainable from the universe of observable variables. Then, the alpha method attempts to find factor-loading estimates so as to maximize the correlation between f and ξ. In order to obtain these estimates, the iterative algorithm of Kaiser and Caffrey (1965) is used.

setMaxIterations

public void setMaxIterations(int maxit)

Description

Sets the maximum number of iterations in the iterative procedure.

Parameter

`maxit` – An `int` used as the maximum number of iterations allowed during the iterative portion of the algorithm. If this member function is not called, `maxit` is set to 60. Not referenced for factor loading methods principal component, principal factor, or image factor methods.

setMaxStep

public void setMaxStep(int maxstp)

Description

Sets the maximum number of step halvings allowed during an iteration.

Parameter

`maxstp` – An `int` used as the maximum number of step halvings allowed during an iteration. If this member function is not called, `maxstp` is set to 8. Not referenced for principal component, principal factor, image factor, or alpha factor methods.

setVarianceEstimationMethod

public void setVarianceEstimationMethod(int init)
Description
Sets the variance estimation method.

Parameter

init – An int used to designate the method to be applied for obtaining the initial estimates of the unique variances. If this member function is not called, init is set to 1.

<table>
<thead>
<tr>
<th>init</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Initial estimates are taken as the constant 1-nf/(2*nvar) divided by the diagonal elements of the inverse of input matrix cov, where nvar is the number of variables.</td>
</tr>
<tr>
<td>1</td>
<td>Initial estimates are input by the user in vector uniq (setVariances).</td>
</tr>
</tbody>
</table>

Note that when the factor loading estimation method is PRINCIPAL_COMPONENT_MODEL, the initial estimates in uniq are reset to 0.0.

setVariances
public void setVariances(double[] uniq)

Description
Sets the variances.

Parameter

uniq – A double array of length nvar containing the unique variances, where nvar is the number of variables. If this member function is not called, the elements of uniq are set to 0.0. If the iterative methods fail for the unique variances used, new initial estimates should be tried. These may be obtained by use of another factoring method (use the final estimates from the new method as initial estimates in the old method). Another alternative is to call member function setVarianceEstimationMethod and set the input argument to 0. This will cause the initial unique variances to be estimated by the code.

Example: Principal Components
This example illustrates the use of the FactorAnalysis class for a nine-variable matrix. The PRINCIPAL_COMPONENT_MODEL is selected and the input matrix type selected is a CORRELATION_MATRIX.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class FactorAnalysisEx1 {

    public static void main(String args[]) throws Exception {
        double[][] corr = {
            {1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639},
            {0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645},
            {0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504},
            {0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505},
            {0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505},
        }
```
FactorAnalysis pc = new FactorAnalysis(corr,
FactorAnalysis.CORRELATION_MATRIX, 9);
pc.setFactorLoadingEstimationMethod(
FactorAnalysis.PRINCIPAL_COMPONENT_MODEL);
pc.setDegreesOfFreedom(100);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
PrintMatrixFormat pmf = new PrintMatrixFormat();
new PrintMatrix("Eigenvalues").print(pmf, pc.getValues());
new PrintMatrix("Percents").print(pmf, pc.getPercents());
new PrintMatrix("Standard Errors").print(pmf, pc.getStandardErrors());
new PrintMatrix("Eigenvectors").print(pmf, pc.getVectors());
new PrintMatrix("Unrotated Factor Loadings").print(pmf,
 pc.getUnrotatedFactorLoadings());

Output

Eigenvalues
 0 4.6769
 1 1.2640
 2 0.8444
 3 0.5550
 4 0.4471
 5 0.4291
 6 0.3102
 7 0.2770
 8 0.1962

Percents
 0 0.5197
 1 0.6601
 2 0.7539
 3 0.8156
 4 0.8583
 5 0.9130
 6 0.9474
 7 0.9782
 8 1.0000

Standard Errors
 0 0.6498
 1 0.1771
 2 0.0986
Example: Factor Analysis

This example illustrates the use of the FactorAnalysis class. The following data were originally analyzed by Emmett(1949). There are 211 observations on 9 variables. Following Lawley and Maxwell (1971), three factors will be obtained by the method of maximum likelihood.

```java
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class FactorAnalysisEx2 {

    public static void main(String args[]) throws Exception {
        double[][] cov = {
            {1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639},
            {0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645},
            {0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504},
            {0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505},
            {0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409},
            {0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472},
            {0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68},
            {0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47},
            {0.346, 0.426, -0.2354, 0.1386, -0.3317, -0.1088, 0.7974, 0.1735, -0.1240, -0.0488},
            {0.3526, -0.1108, -0.2795, -0.2161, 0.7664, -0.2002, 0.1386, -0.3032, -0.0079, 0.7295, 0.0075, 0.0046},
            {0.3664, 0.4031, 0.0406, 0.1196, 0.0017, 0.1152, -0.4022, -0.1178, 0.7060},
            {0.3144, 0.5022, -0.0733, -0.0207, -0.2804, -0.1796, 0.7295, 0.0075, 0.0046},
            {0.3455, 0.4553, 0.1825, 0.1114, 0.1202, 0.0696, -0.3742, 0.0925, -0.6780},
            {0.3487, -0.2714, -0.0725, -0.3545, -0.5242, -0.4355, -0.2854, -0.3408, -0.1089},
            {0.2407, -0.3159, 0.7383, 0.4329, 0.0861, -0.1969, 0.1862, -0.1623, 0.0505},
            {0.3847, -0.2533, -0.0078, -0.1468, 0.0459, -0.1498, -0.0251, 0.8521, 0.1225}
        };
    }
}
```
FactorAnalysis fl = new FactorAnalysis(cov,
FactorAnalysis.VARIANCE_COVARIANCE_MATRIX, 3);
fl.setConvergenceCriterion1(.000001);
fl.setConvergenceCriterion2(.01);
fl.setFactorLoadingEstimationMethod(FactorAnalysis.MAXIMUM_LIKELIHOOD);
fl.setVarianceEstimationMethod(0);
fl.setMaxStep(10);
fl.setDegreesOfFreedom(210);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
PrintMatrixFormat pmf = new PrintMatrixFormat();
new PrintMatrix("Unique Error Variances").print(pmf, fl.getVariances());
new PrintMatrix("Unrotated Factor Loadings").print(pmf,
fl.getFactorLoadings());
new PrintMatrix("Eigenvalues").print(pmf, fl.getValues());
new PrintMatrix("Statistics").print(pmf, fl.getStatistics());

Output

Unique Error Variances
 0
 1 0.4505
 2 0.4271
 3 0.6166
 4 0.2123
 5 0.3805
 6 0.1769
 7 0.3995
 8 0.4615
 9 0.2309

Unrotated Factor Loadings
 0 1 2
 0 0.6642 -0.3209 0.0735
 1 0.6888 -0.2471 -0.1933
 2 0.4926 -0.3022 -0.2224
 3 0.8372 0.2924 -0.0354
 4 0.3148 -0.1528
 5 0.8187 0.3767 0.1045
 6 0.6615 -0.3960 -0.0777
 7 0.4579 -0.2965 0.4913
 8 0.7657 -0.4274 -0.0117

Eigenvalues
 0
 1 0.0626
 2 0.2295
 3 0.5413
 4 0.8650

FactorAnalysis.RankException class

static public class com.imsl.stat.FactorAnalysis.RankException extends com.imsl.IMSLException

Rank of covariance matrix error.

Constructors

FactorAnalysis.RankException
public FactorAnalysis.RankException(String message)

Description
Constructs a RankException object.

Parameter
message – a String containing the error message

FactorAnalysis.RankException
public FactorAnalysis.RankException(String key, Object[] arguments)

Description
Constructs a RankException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
FactorAnalysis.NotPositiveSemiDefiniteException class

```java

Covariance matrix not positive semi-definite.
```

Constructors

```java
public FactorAnalysis.NotPositiveSemiDefiniteException(String message)

Description
Constructs a NotPositiveSemiDefiniteException object.

Parameter
message – a String containing the error message
```

```java
public FactorAnalysis.NotPositiveSemiDefiniteException(String key, Object[] arguments)

Description
Constructs a NotPositiveSemiDefiniteException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
```

FactorAnalysis.NotSemiDefiniteException class

```java
class static public class com.imsl.stat.FactorAnalysis.NotSemiDefiniteException extends com.imsl.IMSLException

Hessian matrix not semi-definite.
```
Constructors

FactorAnalysis.NotSemiDefiniteException

public FactorAnalysis.NotSemiDefiniteException(String message)

Description

Constructs a NotSemiDefiniteException object.

Parameter

message – a String containing the error message

FactorAnalysis.NotSemiDefiniteException

public FactorAnalysis.NotSemiDefiniteException(String key, Object[] arguments)

Description

Constructs a NotSemiDefiniteException object.

Parameters

key – a String containing the error message

arguments – an Object array containing arguments used within the error message string

FactorAnalysis.SingularException class

static public class com.imsl.stat.FactorAnalysis.SingularException extends com.imsl.IMSLException

Covariance matrix singular error.

Constructors

FactorAnalysis.SingularException

public FactorAnalysis.SingularException(String message)

Description

Constructs a SingularException object.

Parameter

message – a String containing the error message

FactorAnalysis.SingularException

public FactorAnalysis.SingularException(String key, Object[] arguments)
Description
Constructs a SingularityException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

FactorAnalysis.BadVarianceException class

static public class com.imsl.stat.FactorAnalysis.BadVarianceException extends com.imsl.IMSLException
Bad variance error.

Constructors

FactorAnalysis.BadVarianceException
public FactorAnalysis.BadVarianceException(String message)

Description
Constructs a BadVarianceException object.

Parameter
message – a String containing the error message

FactorAnalysis.BadVarianceException
public FactorAnalysis.BadVarianceException(String key, Object[] arguments)

Description
Constructs a BadVarianceException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
FactorAnalysis.EigenvalueException class

static public class com.imsl.stat.FactorAnalysis.EigenvalueException extends com.imsl.IMSLException

Eigenvalue error.

Constructors

FactorAnalysis.EigenvalueException
public FactorAnalysis.EigenvalueException(String message)

Description
Constructs a EigenvalueException object.

Parameter
message – a String containing the error message

FactorAnalysis.EigenvalueException
public FactorAnalysis.EigenvalueException(String key, Object[] arguments)

Description
Constructs a EigenvalueException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

FactorAnalysis.NonPositiveEigenvalueException class

extends com.imsl.IMSLException

Non positive eigenvalue error.
Constructors

FactorAnalysis.NonPositiveEigenvalueException
public FactorAnalysis.NonPositiveEigenvalueException(String message)

Description
Constructs a NonPositiveEigenvalueException object.

Parameter
message – a String containing the error message

FactorAnalysis.NonPositiveEigenvalueException
public FactorAnalysis.NonPositiveEigenvalueException(String key, Object[] arguments)

Description
Constructs a NonPositiveEigenvalueException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

DiscriminantAnalysis class

public class com.imsl.stat.DiscriminantAnalysis

Performs a linear or a quadratic discriminant function analysis among several known groups.

DiscriminantAnalysis allows linear or a quadratic discrimination and the use of either reclassification, split sample, or the leaving-out-one methods in order to evaluate the rule. One or more observations can be added to the rule during each invocation of the update method.

DiscriminantAnalysis results in the measure of distance between the groups, (see getMahalanobis method), a table summarizing the classification results, (see getClassTable), a matrix containing the posterior probabilities of group membership for each classified observation, (see getProbability), the within-sample means, (see getMeans) and covariance matrices computed from their LU factorizations, (see getCovariance). The linear discriminant function coefficients are also computed, (see getCoefficients method).

All observations can be input during one call to the update method; this has the advantage of simplicity. Alternatively, one or more rows of observations can be input during separate calls to update. This does not require all observations be memory resident, a significant advantage with large data sets. Note, however, to classify the same data set requires a second pass of the data to the classify method. During the first pass to the update method the discriminant functions are computed while in the second
pass to the classify method the observations are classified. When known groups are available the method getClassTable is useful in comparing how well the algorithm classifies. Multiple calls to the classify method are also allowed. The class table, getClassTable, is an accumulation of all observations classified. The class membership and probabilities, returned in getClassMembership and getProbabilities, will contain the membership for each observation from the most recent invocation of the classify method.

Pooled only and pooled with group covariance computation cannot be mixed. By default, both pooled and group covariance matrices will be computed. An IllegalStateException will be thrown if an attempt is made to change the covariance computation after the first call to the update method. See the setCovarianceComputation method for more details on specifying the covariance computation.

The within-group means are updated for all valid observations in x. Observations with invalid group numbers are ignored, as are observations with missing values (Double.NaN). The LU factorization of the covariance matrices are updated by adding (or deleting) observations via Givens rotations. See the downdate method to delete observations.

During the algorithm’s training process, or each invocation of the update method, each observation in x is added to the means and the factorizations of the covariance matrices. Statistics of interest are computed: the linear discriminant functions, the prior probabilities, the log of the determinant of each of the covariance matrices, and a test statistic for testing that all of the within-group covariance matrices are equal. The matrix of Mahalanobis distances, which consists of the distances between the groups, is computed via the pooled covariance matrix when linear discrimination is specified. The row covariance matrix is used when the discrimination is quadratic. Covariance matrices are defined as follows. Let \(N_i \) denote the sum of the frequencies of the observations in group \(i \), and let \(M_i \) denote the number of observations in group \(i \). Then, if \(S_i \) denotes the within-group \(i \) covariance matrix,

\[
S_i = \frac{1}{N_i - 1} \sum_{j=1}^{M_i} w_j f_j (x_j - \bar{x})(x_j - \bar{x})^T
\]

where \(w_j \) is the weight of the \(j \)-th observation in group \(i \), \(f_j \) is its frequency, \(x_j \) is the \(j \)-th observation column vector (in group \(i \)), and \(\bar{x} \) denotes the mean vector of the observations in group \(i \). The mean vectors are computed as

\[
\bar{x} = \frac{1}{W_i} \sum_{j=1}^{M_i} w_j f_j x_j
\]

where

\[
W_i = \sum_{j=1}^{M_i} w_j f_j
\]

Given the means and the covariance matrices, the linear discriminant function for group \(i \) is computed as:

\[
z_i = \ln(p_i) - 0.5x^T S_p^{-1} x + x^T S_p^{-1} \bar{x}_i
\]

where \(\ln(p_i) \) is the natural log of the prior probability for the \(i \)-th group, \(x \) is the observation to be classified, and \(S_p \) denotes the pooled covariance matrix.

Let \(S \) denote either the pooled covariance matrix or one of the within-group covariance matrices \(S_i \). (\(S \) will be the pooled covariance matrix in linear discrimination, and \(S_i \) otherwise.) The Mahalanobis
distance between group i and group j is computed as:

$$D_{ij}^2 = (\bar{x}_i - \bar{x}_j)^T S^{-1}(\bar{x}_i - \bar{x}_j)$$

Finally, the asymptotic chi-squared test for the equality of covariance matrices is computed as follows (Morrison 1976, page 252):

$$\gamma = C^{-1} \sum_{i=1}^{k} n_i \{ln(|S_p|) - ln(|S_i|)\}$$

where n_i is the number of degrees of freedom in the i-th sample covariance matrix, k is the number of groups, and

$$C^{-1} = \frac{1 - 2p^2 + 3p - 1}{6(p+1)(k-1)} \left(\sum_{i=1}^{k} \frac{1}{n_i} - \frac{1}{\sum_j n_j} \right)$$

where p is the number of variables.

The estimated posterior probability of each observation x belonging to group i is computed using the prior probabilities and the sample mean vectors and estimated covariance matrices under a multivariate normal assumption. Under quadratic discrimination, the within-group covariance matrices are used to compute the estimated posterior probabilities. The estimated posterior probability of an observation x belonging to group i is

$$\hat{q}_i(x) = \frac{e^{-\frac{1}{2}D_{ij}^2(x)}}{\sum_{j=1}^{k} e^{-\frac{1}{2}D_{ij}^2(x)}}$$

where

$$D_{ij}^2(x) = \begin{cases} (x - \bar{x}_i)^T S_i^{-1}(x - \bar{x}_i) + ln |S_i| - 2ln(n_i) & \text{Linear or Quadratic, pooled, group} \\ (x - \bar{x}_i)^T S_p^{-1}(x - \bar{x_i}) - 2ln(n_i) & \text{Linear, Pooled} \end{cases}$$

For the leaving-out-one method of classification, the sample mean vector and sample covariance matrices in the formula for $D_{ij}^2(x)$ are adjusted so as to remove the observation x from their computation. For linear discrimination, the linear discriminant function coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observation in x is classified into a group; the result is tabulated in the matrix returned by getClassTable and saved in the vector returned by getClassMembership. If a group variable is provided and the group number is out of range, the classification table is not altered at this stage. If the reclassification method is specified, then all observations with no missing values are classified. When the leaving-out-one method is used, observations with invalid group numbers, weights, frequencies or classification variables are not classified. Regardless of the frequency, a 1 is added (or subtracted) from the classification table for each row of x that is classified and contains a valid group number. When the leaving-out-one method is used, adjustment is made to the posterior probabilities to remove the effect of the observation in the classification rule. In this adjustment, each observation is presumed to have a weight of w_j and a frequency of 1.0. See Lachenbruch (1975, page 36) for the required adjustment.
Fields

LEAVE_OUT_ONE
static final public int LEAVE_OUT_ONE

Indicates leave-out-one classification method.

LINEAR
static final public int LINEAR

Indicates a linear discrimination method.

POOLED
static final public int POOLED

Indicates pooled covariances computation.

POOLED_GROUP
static final public int POOLED_GROUP

Indicates pooled, group covariances computation.

PRIOR_EQUAL
static final public int PRIOR_EQUAL

Indicates prior equal probabilities.

PRIOR_PROPORTIONAL
static final public int PRIOR_PROPORTIONAL

Indicates prior proportional probabilities.

QUADRATIC
static final public int QUADRATIC

Indicates a quadratic discrimination method.

RECLASSIFICATION
static final public int RECLASSIFICATION

Indicates reclassification classification method.

Constructor

DiscriminantAnalysis
public DiscriminantAnalysis(int nVariables, int nGroups)

Multivariate Analysis DiscriminantAnalysis • 1177
Description
Constructs a DiscriminantAnalysis.

Parameters

- nVariables – an int representing the number of variables to be used in the discrimination
- nGroups – an int representing the number of groups in the data

Methods

classify
public void classify(double[][] x) throws DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description
Classify a set of observations using the linear or quadratic discriminant functions generated during the training process.

Parameter

- x – a double matrix containing the observations with at least nVariables columns. The first nVariables columns correspond to the variables. Reclassification does not require group numbers be present. Any additional columns will be ignored.

Exceptions

- IllegalStateException is thrown if the leave-out-one classification method is chosen.
- SumOfWeightsNegException is thrown when the sum of the weights have become negative.
- EmptyGroupException is thrown when there are no observations in a group.
- CovarianceSingularException is thrown when the variance-covariance matrix is singular.

classify
public void classify(double[][] x, int[] varIndex) throws DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description
Classify a set of observations using the linear or quadratic discriminant functions generated during the training process.
Parameters

x – a double matrix containing the observations with at least nVariables columns. The columns indicated in varIndex correspond to the variables. Reclassification does not require group numbers be present. Additional columns will be ignored.

varIndex – an int array containing the column indices in x that correspond to the variables to be used in the analysis

Exceptions

IllegalStateException is thrown if the leave-out-one classification method is chosen.

SumOfWeightsNegException is thrown when the sum of the weights have become negative.

EmptyGroupException is thrown when there are no observations in a group.

CovarianceSingularException is thrown when the variance-covariance matrix is singular.

classify

public void classify(double[][] x, int[] frequencies, double[] weights) throws DiscriminantAnalysis.SumOfWeightsNegException,
 DiscriminantAnalysis.EmptyGroupException,
 DiscriminantAnalysis.CovarianceSingularException

Description

Classify a set of observations and associated frequencies and weights using the linear or quadratic discriminant functions generated during the training process.

Parameters

x – a double matrix containing the observations with at least nVariables columns. The first nVariables columns correspond to the variables. Reclassification does not require group numbers be present. Any additional columns will be ignored.

frequencies – an int array containing the associated frequencies for each observation

weights – a double array containing the associated weights for each observation

Exceptions

IllegalStateException is thrown if the leave-out-one classification method is chosen

SumOfWeightsNegException is thrown when the sum of the weights have become negative

EmptyGroupException is thrown when there are no observations in a group

CovarianceSingularException is thrown when the variance-covariance matrix is singular

classify

public void classify(double[][] x, int[] group, int[] varIndex) throws DiscriminantAnalysis.SumOfWeightsNegException,
 DiscriminantAnalysis.EmptyGroupException,
 DiscriminantAnalysis.CovarianceSingularException

Multivariate Analysis DiscriminantAnalysis • 1179
Description
Classify a set of observations and compare against known groups using the linear or quadratic discriminant functions generated during the training process.

Parameters
- \(x \) – a double matrix containing the observations with at least \(nVariables \) columns. The columns indicated in \(\text{varIndex} \) correspond to the variables. Any additional columns will be ignored.
- \(\text{group} \) – an int array containing the group numbers. The groups must be numbered 1, 2, ..., \(nGroups \) for each observation.
- \(\text{varIndex} \) – an int array containing the column indices in \(x \) that correspond to the variables to be used in the analysis

Exceptions
- \(\text{SumOfWeightsNegException} \) is thrown when the sum of the weights have become negative
- \(\text{EmptyGroupException} \) is thrown when there are no observations in a group
- \(\text{CovarianceSingularException} \) is thrown when the variance-covariance matrix is singular

classify
public void classify(double[][] \(x \), int[] \(\text{varIndex} \), int[] \(\text{frequencies} \), double[] \(\text{weights} \)) throws DiscriminantAnalysis.SumOfWeightsNegException, DiscriminantAnalysis.EmptyGroupException, DiscriminantAnalysis.CovarianceSingularException

Description
Classify a set of observations and associated frequencies and weights using the linear or quadratic discriminant functions generated during the training process.

Parameters
- \(x \) – a double matrix containing the observations with at least \(nVariables \) columns. The columns indicated in \(\text{varIndex} \) correspond to the variables. Reclassification does not require group numbers be present. Additional columns in \(x \) will be ignored.
- \(\text{varIndex} \) – an int array containing the column indices in \(x \) that correspond to the variables to be used in the analysis
- \(\text{frequencies} \) – an int array containing the associated frequencies for each observation
- \(\text{weights} \) – a double array containing the associated weights for each observation

Exceptions
- \(\text{IllegalStateException} \) is thrown if the leave-out-one classification method is chosen
- \(\text{SumOfWeightsNegException} \) is thrown when the sum of the weights have become negative
- \(\text{EmptyGroupException} \) is thrown when there are no observations in a group
- \(\text{CovarianceSingularException} \) is thrown when the variance-covariance matrix is singular
classify
public void classify(double[][] x, int[] group, int[] varIndex, int[] frequencies, double[] weights) throws
DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description
Classifier a set of observations, associated frequencies and weights, and compare against known groups using the linear or quadratic discriminant functions generated during the training process.

Parameters
x – a double matrix containing the observations with at least nVariables columns. The columns indicated in varIndex correspond to the variables. Additional columns are ignored.
group – an int array containing the group numbers. The groups must be numbered 1,2, ..., nGroups for each observation.
varIndex – an int array containing the column indices in x that correspond to the variables to be used in the analysis.
frequencies – an int array containing the associated frequencies for each observation.
weights – a double array containing the associated weights for each observation.

Exception
SumOfWeightsNegException is thrown when the sum of the weights have become negative.

downdate
public void downdate(double[][] x, int[] group) throws
DiscriminantAnalysis.SumOfWeightsNegException

Description
Removes a set of observations from the discriminant functions.

Parameters
x – a double matrix containing the observations to be removed, with at least nVariables columns. The first nVariables columns correspond to the variables. Any additional columns will be ignored.
group – an int array containing the group numbers. The groups must be numbered 1,2, ..., nGroups for each observation.

Exception
SumOfWeightsNegException is thrown when the sum of the weights have become negative.

downdate
public void downdate(double[][] x, int[] group, int[] varIndex) throws
DiscriminantAnalysis.SumOfWeightsNegException
Description
Removes a set of observations from the discriminant functions.

Parameters
- **x** – a double matrix containing the observations to be removed, with at least nVariables columns. The columns indicated in varIndex correspond to the variables.
- **group** – an int array containing the group numbers. The groups must be numbered 1, 2, ..., nGroups for each observation.
- **varIndex** – an int array containing the column indices in x that correspond to the variables to be used in the analysis

Exception
- **SumOfWeightsNegException** is thrown when the sum of the weights have become negative.

downdate
public void downdate(double[][] x, int[] group, int[] frequencies, double[] weights) throws DiscriminantAnalysis.SumOfWeightsNegException

Description
Removes a set of observations and associated frequencies and weights from the discriminant functions.

Parameters
- **x** – a double matrix containing the observations to be removed, with at least nVariables columns. The columns indicated in varIndex correspond to the variables.
- **group** – an int array containing the group numbers. The groups must be numbered 1, 2, ..., nGroups for each observation.
- **frequencies** – an int array containing the associated frequencies for each observation
- **weights** – a double array containing the associated weights for each observation

Exception
- **SumOfWeightsNegException** is thrown when the sum of the weights have become negative.

downdate
public void downdate(double[][] x, int[] group, int[] varIndex, int[] frequencies, double[] weights) throws DiscriminantAnalysis.SumOfWeightsNegException

Description
Removes a set of observations and associated frequencies and weights from the discriminant functions.

Parameters
- **x** – a double matrix containing the observations to be removed, with at least nVariables columns. The columns indicated in varIndex correspond to the variables.
- **group** – an int array containing the group numbers. The groups must be numbered 1, 2, ..., nGroups for each observation.
varIndex – an int array containing the column indices in x that correspond to the variables to be used in the analysis

frequencies – an int array containing the associated frequencies for each observation

weights – a double array containing the associated weights for each observation

Exception

SumOfWeightsNegException is thrown when the sum of the weights have become negative.

getClassMembership

public int[] getClassMembership()

Description

Returns the group number to which the observation was classified.

Returns

an int array containing the group to which the observation was classified. If an observation has an invalid group number, frequency, or weight when the leaving-out-one method has been specified, then the observation is not classified and the corresponding elements of the array are set to zero. Note this will return the classmembership of the last set of observations classified.

Exception

IllegalStateException is thrown if no data has been classified.

getClassTable

public double[][] getClassTable()

Description

Returns the classification table.

Returns

an nGroups by nGroups double matrix containing the classification table. The accumulation of each observation that is classified and has a group number equal to 1, 2, ..., nGroups is entered into the table. If a known group is provided, the rows of the table correspond to the known group membership. The columns refer to the group to which the observation was classified. If a known group is not provided, the table will only contain the accumulated classified groups in the column corresponding to the group to which the observation was classified.

Exception

IllegalStateException is thrown if no data has been classified.

getCoefficients

public double[][] getCoefficients() throws DiscriminantAnalysis.EmptyGroupException, DiscriminantAnalysis.CovarianceSingularException

Description

Returns the linear discriminant function coefficients.
Returns an \(n \text{Groups} \times \text{nVariables} \) double matrix containing the linear discriminant function coefficients. The first column of the matrix contains the constant term, and the remaining columns contain the variable coefficients. The \(i \)-th row of the returned matrix corresponds to group \(i \). The coefficients are always computed as linear discriminant function coefficients even when quadratic discrimination is specified.

Exceptions

EmptyGroupException is thrown when there are no observations in a group.
CovarianceSingularException is thrown when the variance-covariance matrix is singular.

getCovariance

public double[][][] getCovariance() throws DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Returns the array of covariances.

Returns

a \(g \) by \(\text{nVariables} \) by \(\text{nVariables} \) double array containing the covariances. Where, \(g = \text{nGroups} + 1 \) if pooled, group covariance computation is specified or \(g = 1 \) if pooled covariance computation is specified. When pooled only covariance matrices are computed, the within-group covariance matrices are not computed. The pooled covariance matrix is always computed and is returned as the \(g \)-th covariance matrix.

If this method is invoked before classification, the unscaled covariance matrix will be returned.

Exceptions

EmptyGroupException is thrown when there are no observations in a group.
CovarianceSingularException is thrown when the variance-covariance matrix is singular.

getGroupCounts

public int[] getGroupCounts()

Description

Returns the group counts.

Returns

an int array of length \(\text{nGroups} \) containing the number of observations in each group. If an update has not preceeded the invocation of this method, an array of all zeros will be returned.

getMahalanobis

public double[][] getMahalanobis() throws DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Returns the Mahalanobis distances between the group means.
Returns

an nGroups by nGroups double matrix containing the Mahalanobis distances between the group means. For linear discrimination, the Mahalanobis distance

\[D_{ij}^2(x) \]

between group means \(i \) and \(j \) is computed using the within covariance matrix for group \(i \) in place of the pooled covariance matrix.

Exceptions

EmptyGroupException is thrown when there are no observations in a group.
CovarianceSingularException is thrown when the variance-covariance matrix is singular.

getMeans

public double[][] getMeans() throws DiscriminantAnalysis.EmptyGroupException, DiscriminantAnalysis.CovarianceSingularException

Description

Returns the variable means.

Returns

an nGroups by nVariables double matrix containing the variable means. The \(i \)-th row contains the variable means for group \(i \).

If this method is invoked before classification, the unscaled means will be returned.

Exceptions

EmptyGroupException is thrown when there are no observations in a group.
CovarianceSingularException is thrown when the variance-covariance matrix is singular.

getNumberOfRowsMissing

public int getNumberOfRowsMissing()

Description

Returns the number of rows of data encountered containing missing values (Double.NaN).

Returns

an int representing the number of rows of data encountered containing missing values (Double.NaN) for the classification, group, weight, and/or frequency variables. If a row of data contains a missing value (Double.NaN) for any of these variables, that row is excluded from the computations.

getPrior

public double[] getPrior()

Description

Returns the prior probabilities.
Returns
a double array of length nGroups containing the prior probabilities for each group.

getProbability

```java
public double[][] getProbability()
```

Description
Returns the posterior probabilities for each observation.

Returns
an x.length by nGroups double matrix containing the posterior probabilities for each observation. Note this will return the probabilities of the last set of observations classified.

Exception
`IllegalStateException` is thrown if no data has been classified.

getStatistics

```java
public double[] getStatistics() throws
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException
```

Description
Returns statistics.

Returns
a double array containing output statistics.

<table>
<thead>
<tr>
<th>index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sum of the degrees of freedom for the within-covariance matrices.</td>
</tr>
<tr>
<td>1</td>
<td>Chi-squared statistic.</td>
</tr>
<tr>
<td>2</td>
<td>The degrees of freedom in the chi-squared statistic.</td>
</tr>
<tr>
<td>3</td>
<td>Probability of a greater chi-squared, respectively, of a test of the homogeneity of the within-covariance matrices. (Not computed when the pooled only covariance matrix is computed).</td>
</tr>
<tr>
<td>4 thru (4+nGroups)</td>
<td>Log of the determinant of each group’s covariance matrix (not computed when the pooled only covariance matrix is computed) and of the pooled covariance matrix.</td>
</tr>
<tr>
<td>Last (nGroups + 1)elements</td>
<td>Sum of the weights within each group.</td>
</tr>
<tr>
<td>Last element</td>
<td>Sum of the weights in all groups.</td>
</tr>
</tbody>
</table>

Exceptions
`EmptyGroupException` is thrown when there are no observations in a group.
`CovarianceSingularException` is thrown when the variance-covariance matrix is singular.
setClassificationMethod
public void setClassificationMethod(int method)

Description
Specifies the classification method to be either reclassification or leave-out-one.

Parameter
- method – an int indicating the method of classification. Use class member RECLASSIFICATION or LEAVE_OUT_ONE. By default, the RECLASSIFICATION method is used.

setCovarianceComputation
public void setCovarianceComputation(int type)

Description
Specifies the covariance matrix computation to be either pooled or pooled, group.

Parameter
- type – an int scalar indicating the type of covariance matrices to be computed. Use class member POOLED or POOLED_GROUP. By default, POOLED_GROUP is used.

setDiscriminationMethod
public void setDiscriminationMethod(int method)

Description
Specifies the discrimination method used to be either linear or quadratic discrimination.

Parameter
- method – an int scalar indicating the method of discrimination. Use class member LINEAR or QUADRATIC. By default, the LINEAR method is used.

setPrior
public void setPrior(double[] prior)

Description
Specifies user supplied prior probabilities.

Parameter
- prior – a double vector of length nGroups containing the prior probabilities for each group. The elements of prior should sum to 1.0. If the values of prior are less than 1.0e-20, they will be converted to the Math.log(1.0e-20). By default, the prior probabilities are calculated to be equal, see setPrior(int).

setPrior
public void setPrior(int prior)

Description
Specifies the prior probabilities to be calculated as either equal or proportional priors.
Parameter

prior – an int specifying how to calculate prior probabilities as either equal or proportional prior probabilities. Use class member PRIOR_EQUAL to set equal prior probabilities, calculated as 1.0/nGroups. Use class member PRIOR_PROPORTIONAL to calculate the priors to be proportional to the sample size in each group. The sum of all prior probabilities is equal to 1.0. If the values calculated for the priors are less than 1.0e-20, they will be converted to the Math.log(1.0e-20). Prior probabilities are used in calculating statistics, coefficients, Mahalanobis, and classification probabilities. By default, PRIOR_EQUAL is used.

update

public void update(double[][] x, int[] group) throws DiscriminantAnalysis.SumOfWeightsNegException

Description

Trains a set of observations and associated frequencies and weights by performing a linear or quadratic discriminant function analysis among several known groups.

Parameters

x – a double matrix containing the observations with at least nVariables columns. The first nVariables correspond to the variables. Any additional columns will be ignored.

group – an int array containing the group numbers. The groups must be numbered 1,2,..., nGroups for each observation.

Exception

SumOfWeightsNegException is thrown when the sum of the weights have become negative.

update

public void update(double[][] x, int[] group, int[] varIndex) throws DiscriminantAnalysis.SumOfWeightsNegException

Description

Trains a set of observations and associated frequencies and weights by performing a linear or quadratic discriminant function analysis among several known groups.

Parameters

x – a double matrix containing the observations with at least nVariables columns. The columns indicated in varIndex correspond to the variables. Any additional columns will be ignored.

group – an int array containing the group numbers. The groups must be numbered 1,2,..., nGroups for each observation.

varIndex – an int array containing the column indices in x that correspond to the variables to be used in the analysis.

Exception

SumOfWeightsNegException is thrown when the sum of the weights have become negative.
public void update(double[][] x, int[] group, int[] frequencies, double[] weights) throws DiscriminantAnalysis.SumOfWeightsNegException

Description
Trains a set of observations and associated frequencies and weights by performing a linear or quadratic discriminant function analysis among several known groups.

Parameters
- `x` – a double matrix containing the observations with at least `nVariables` columns. The first `nVariables` correspond to the variables. Any additional columns will be ignored.
- `group` – an int array containing the group numbers. The groups must be numbered 1, 2, ..., `nGroups` for each observation.
- `frequencies` – an int array containing the associated frequencies for each observation.
- `weights` – a double array containing the associated weights for each observation.

Exception
- `SumOfWeightsNegException` is thrown when the sum of the weights have become negative.

public void update(double[][] x, int[] group, int[] varIndex, int[] frequencies, double[] weights) throws DiscriminantAnalysis.SumOfWeightsNegException

Description
Trains a set of observations and associated frequencies and weights by performing a linear or quadratic discriminant function analysis among several known groups.

Parameters
- `x` – a double matrix containing the observations with at least `nVariables` columns. The columns indicated in `varIndex` correspond to the variables.
- `group` – an int array containing the group numbers. The groups must be numbered 1, 2, ..., `nGroups` for each observation.
- `varIndex` – an int array containing the column indices in `x` that correspond to the variables to be used in the analysis.
- `frequencies` – an int array containing the associated frequencies for each observation.
- `weights` – a double array containing the associated weights for each observation.

Exception
- `SumOfWeightsNegException` is thrown when the sum of the weights have become negative.
Example: Discriminant Analysis

This example uses linear discrimination with equal prior probabilities on Fisher’s (1936) iris data. This example illustrates the use of the DiscriminantAnalysis class.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class DiscriminantAnalysisEx1 {

    public static void main(String args[]) throws Exception {
        double[][] xorig = {
            {1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
            {1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
            {1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
            {1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
            {1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
            {1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
            {1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
            {1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
            {1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
            {1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
            {1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
            {1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
            {1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
            {1.0, 5.0, 3.4, 1.6, .4}, {1.0, 5.2, 3.5, 1.5, .2},
            {1.0, 5.2, 3.4, 1.4, .2}, {1.0, 4.7, 3.2, 1.6, .2},
            {1.0, 4.8, 3.1, 1.6, .2}, {1.0, 5.4, 3.4, 1.5, .4},
            {1.0, 5.2, 4.1, 1.5, .1}, {1.0, 5.5, 4.2, 1.4, .2},
            {1.0, 4.9, 3.1, 1.5, .2}, {1.0, 5.0, 3.2, 1.2, .2},
            {1.0, 5.5, 3.5, 1.3, .2}, {1.0, 4.9, 3.6, 1.4, .1},
            {1.0, 4.4, 3.0, 1.3, .2}, {1.0, 5.1, 3.4, 1.5, .2},
            {1.0, 5.0, 3.5, 1.3, .3}, {1.0, 4.5, 2.3, 1.3, .3},
            {1.0, 4.4, 3.2, 1.3, .2}, {1.0, 5.0, 3.5, 1.6, .6},
            {1.0, 5.1, 3.8, 1.9, .4}, {1.0, 4.8, 3.0, 1.4, .3},
            {1.0, 5.1, 3.8, 1.6, .2}, {1.0, 4.6, 3.2, 1.4, .2},
            {1.0, 5.3, 3.7, 1.5, .2}, {1.0, 5.0, 3.3, 1.4, .2},
            {2.0, 7.0, 3.2, 4.7, 1.4}, {2.0, 6.4, 3.2, 4.5, 1.5},
            {2.0, 6.9, 3.1, 4.9, 1.5}, {2.0, 5.5, 2.3, 4.0, 1.3},
            {2.0, 6.5, 2.8, 4.6, 1.5}, {2.0, 5.7, 2.8, 4.5, 1.3},
            {2.0, 6.3, 3.3, 4.7, 1.6}, {2.0, 4.9, 2.4, 3.3, 1.0},
            {2.0, 6.6, 2.9, 4.6, 1.3}, {2.0, 5.2, 2.7, 3.9, 1.4},
            {2.0, 5.0, 2.0, 3.5, 1.0}, {2.0, 5.9, 3.0, 4.2, 1.5},
            {2.0, 6.0, 2.2, 4.0, 1.0}, {2.0, 6.1, 2.9, 4.7, 1.4},
            {2.0, 5.6, 2.9, 3.6, 1.3}, {2.0, 6.7, 3.1, 4.4, 1.4},
            {2.0, 5.6, 3.0, 4.5, 1.5}, {2.0, 5.8, 2.7, 4.1, 1.0},
            {2.0, 6.2, 2.2, 4.5, 1.5}, {2.0, 5.6, 2.5, 3.9, 1.1},
            {2.0, 5.9, 3.2, 4.8, 1.8}, {2.0, 6.1, 2.8, 4.0, 1.3},
            {2.0, 6.3, 2.5, 4.9, 1.5}, {2.0, 6.1, 2.8, 4.7, 1.2},
            {2.0, 6.4, 2.9, 4.3, 1.3}, {2.0, 6.6, 3.0, 4.4, 1.4},
            {2.0, 6.8, 2.8, 4.8, 1.4}, {2.0, 6.7, 3.0, 5.0, 1.7},
            {2.0, 6.0, 2.9, 4.5, 1.5}, {2.0, 5.7, 2.6, 3.5, 1.0},
            {2.0, 5.5, 2.4, 3.8, 1.1}, {2.0, 5.5, 2.4, 3.7, 1.0},
            {2.0, 5.8, 2.7, 3.9, 1.2}, {2.0, 6.0, 2.7, 5.1, 1.6},
            {2.0, 5.4, 3.0, 4.5, 1.5}, {2.0, 6.0, 3.4, 4.5, 1.6},
        }
    }
}
```

1190 • DiscriminantAnalysis JMSL
int[] group = new int[xorig.length];
int[] varIndex = {1, 2, 3, 4};

for (int i = 0; i < xorig.length; i++) {
 group[i] = (int) xorig[i][0];
}
int nvar = xorig[0].length - 1;

DiscriminantAnalysis da = new DiscriminantAnalysis(nvar, 3);
da.setCovarianceComputation(DiscriminantAnalysis.POOLED);
da.setClassificationMethod(DiscriminantAnalysis.RECLASSIFICATION);
da.update(xorig, group, varIndex);
da.classify(xorig, group, varIndex);
int[] cm = da.getClassMembership();
int[] cMem = new int[1][cm.length];
for (int i = 0; i < cm.length; i++) {
 cMem[0][i] = cm[i];
}
new PrintMatrix("ClassMembership").setPageWidth(50).print(cMem);
new PrintMatrix("ClassTable: ").print(da.getClassTable());
double cov[][][] = da.getCovariance();
for (int i = 0; i < cov.length; i++) {
 new PrintMatrix("Covariance Matrix " + i + " : ").print(cov[i]);
}
new PrintMatrix("Prior : ").print(da.getPrior());
PrintMatrixFormat pmf = new PrintMatrixFormat();
 pmf.setNumberFormat(new java.text.DecimalFormat("0.00");
new PrintMatrix("PROB: ").print(pmf, da.getProbability());
new PrintMatrix("MAHALANOBIS: ").print(da.getMahalanobis());
System.out.println("nrmiss = " + da.getNumberOfRowsMissing());
}
}

Output

<table>
<thead>
<tr>
<th>Xmean:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0 5.006 3.428 1.462 0.246</td>
</tr>
<tr>
<td>1 5.936 2.77 4.26 1.326</td>
</tr>
<tr>
<td>2 6.588 2.974 5.552 2.026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coef:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0 -86.308 23.544 23.588 -16.431 -17.398</td>
</tr>
<tr>
<td>1 -72.853 15.698 7.073 5.211 6.434</td>
</tr>
<tr>
<td>2 -104.368 12.446 3.685 12.767 21.079</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counts:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0 50</td>
</tr>
<tr>
<td>1 50</td>
</tr>
<tr>
<td>2 50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stats:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0 147</td>
</tr>
<tr>
<td>1 ?</td>
</tr>
<tr>
<td>2 ?</td>
</tr>
<tr>
<td>3 ?</td>
</tr>
<tr>
<td>4 ?</td>
</tr>
<tr>
<td>5 ?</td>
</tr>
<tr>
<td>6 ?</td>
</tr>
<tr>
<td>7 -9.959</td>
</tr>
<tr>
<td>8 50</td>
</tr>
<tr>
<td>9 50</td>
</tr>
<tr>
<td>10 50</td>
</tr>
<tr>
<td>11 150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ClassMembership</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>15 16 17 18 19 20 21 22 23 24 25 26 27 28 29</td>
</tr>
</tbody>
</table>
Multivariate Analysis

Discriminant Analysis • 1193
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>19</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>22</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>23</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>24</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>26</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>27</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>28</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>31</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>33</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>34</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>35</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>36</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>37</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>38</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>39</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>41</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>42</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>43</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>44</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>45</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>46</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>47</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>48</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>49</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>50</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>51</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>52</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>53</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>54</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>55</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>56</td>
<td>0.00</td>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>57</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>58</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>59</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>60</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>61</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>62</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>63</td>
<td>0.00</td>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>64</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1194 • DiscriminantAnalysis JMSL
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>92</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>93</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>94</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>95</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>96</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>97</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>98</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>99</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>101</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>102</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>103</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>104</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>105</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>106</td>
<td>0.00</td>
<td>0.05</td>
<td>0.95</td>
</tr>
<tr>
<td>107</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>108</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>109</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>110</td>
<td>0.00</td>
<td>0.01</td>
<td>0.99</td>
</tr>
<tr>
<td>111</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>112</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>113</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>114</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>115</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>116</td>
<td>0.00</td>
<td>0.01</td>
<td>0.99</td>
</tr>
<tr>
<td>117</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>118</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>119</td>
<td>0.00</td>
<td>0.22</td>
<td>0.78</td>
</tr>
<tr>
<td>120</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Multivariate Analysis

DiscriminantAnalysis • 1195
MAHALANOBIS:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>89.864</td>
<td>0</td>
<td>179.385</td>
</tr>
<tr>
<td>1</td>
<td>89.864</td>
<td>0</td>
<td>17.201</td>
</tr>
<tr>
<td>2</td>
<td>179.385</td>
<td>17.201</td>
<td>0</td>
</tr>
</tbody>
</table>

nrmiss = 0

DiscriminantAnalysis.SumOfWeightsNegException
class

static public class com.ims1.stat.DiscriminantAnalysis.SumOfWeightsNegException
extends com.ims1.IMSLException

The sum of the weights have become negative.
Constructors

DiscriminantAnalysis.SumOfWeightsNegException

public DiscriminantAnalysis.SumOfWeightsNegException(String message)

Description
The sum of the weights have become negative.

Parameter
- message – a String containing the error message

DiscriminantAnalysis.SumOfWeightsNegException

public DiscriminantAnalysis.SumOfWeightsNegException(String key, Object[] arguments)

Description
The sum of the weights have become negative.

Parameters
- key – a String containing the exception message
- arguments – an array containing arguments used within the error message string

DiscriminantAnalysis.EmptyGroupException class

static public class com.ims1.stat.DiscriminantAnalysis.EmptyGroupException
extends com.ims1.IMSLException

There are no observations in a group. Cannot compute statistics.

Constructors

DiscriminantAnalysis.EmptyGroupException

public DiscriminantAnalysis.EmptyGroupException(String message)

Description
There are no observations in a group. Cannot compute statistics.

Parameter
- message – a String containing the exception message

DiscriminantAnalysis.EmptyGroupException

public DiscriminantAnalysis.EmptyGroupException(String key, Object[] arguments)
Description
There are no observations in a group. Cannot compute statistics.

Parameters
- key – a String containing the key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string

DiscriminantAnalysis.CovarianceSingularException class

static public class com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException extends com.imsl.IMSLEXception
The variance-covariance matrix is singular.

Constructors

DiscriminantAnalysis.CovarianceSingularException
public DiscriminantAnalysis.CovarianceSingularException(String message)
Description
The variance-covariance matrix is singular.
Parameter
- message – a String containing the exception message

DiscriminantAnalysis.CovarianceSingularException
public DiscriminantAnalysis.CovarianceSingularException(String key, Object[] arguments)
Description
The variance-covariance matrix is singular.
Parameters
- key – a String containing the key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string
Chapter 21: Survival and Reliability Analysis

Types

- `class KaplanMeierECDF` ...
- `class KaplanMeierEstimates` ...
- `class ProportionalHazards` ...
- `class LifeTables` ...

Usage Notes

Survival Analysis

The functions described in this chapter have primary application in the areas of reliability and life testing, but they may find application in any situation in which analysis of binomial events over time is of interest. Kalbfleisch and Prentice (1980), Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and Chiang (1968) and Tanner and Wong (1984) are references for discussing the models and methods described in this chapter. Function KaplanMeierEstimates produces Kaplan-Meier (product-limit) estimates of the survival distribution in a single population. Function ProportionalHazards computes the parameter estimates in a proportional hazards model. Function SurvivalGLM fits any of several generalized linear models for survival data, and SurvivalEstimates computes estimates of survival probabilities based upon the same models. Function LifeTables computes and (optionally) prints an actuarial table based either upon a cohort followed over time or a cross-section of a population.

KaplanMeierECDF class

```java
public class com.imsl.stat.KaplanMeierECDF implements Serializable, Cloneable
```

Computes the Kaplan-Meier reliability function estimates or the CDF based on failure data that may be...
multi-censored.

The Kaplan-Meier (K-M) Product Limit procedure provides simple estimates of the reliability function or the CDF based on failure data that may be multi-censored. No underlying probability model is assumed; K-M estimation is an empirical (non-parametric) procedure. Exact times of failure are required.

Consider a situation in which we are reliability testing \(n \) (non-repairable) units taken randomly from a population. We are investigating the population to determine if its failure rate is acceptable. In the typical test scenario, we have a fixed time \(T \) to run the units to see if they survive or fail. The data obtained are called Censored Type I data.

During the \(T \) hours of test we observe \(r \) failures (where \(r \) can be any number from 0 to \(n \)). The failure times are \(t_1, t_2, \ldots, t_r \), and there are \((n-r) \) units that survived the entire \(T \)-hour test without failing. Note that \(T \) is fixed in advance, and \(r \) is an output of the testing, since we don’t know how many failures will occur until the test is run. Note that we assume the exact times of failure are recorded when they occur.

This type of data is also called “right censored” data since the times of failure to the right (i.e., larger than \(T \)) are missing. The steps for calculating K-M estimates are the following:

1. Order the actual failure times from \(t_1 \) through \(t_r \), where there are \(r \) failures
2. Corresponding to each \(t_i \), associate the number \(n_i \) with \(n_i = \text{the number of operating units just before the } i\text{th failure occurred at time } t_i \)
3. First estimate the survival \(R(t_1) = (n_1 - 1)/n_1 \)
4. Estimate each ensuing survival \(R(t_i) = R(t_{i-1})(n_i - 1)/n_1, i > 1 \)
5. Estimate the CDF \(F(t_i) = 1 - R(t_i), i = 1, 2, \ldots \)

Note that non-failed units taken off testing (i.e., right-censored) only count up to the last actual failure time before they were removed. They are included in the \(n_i \) counts up to and including that failure time, but not after.

Constructor

KaplanMeierECDF

```java
public KaplanMeierECDF(double[] t)
```

Description

Constructor for KaplanMeierECDF.

Parameter

- \(t \) – a double array containing the failure times.
Methods

evaluateCDF
public double[] evaluateCDF()

Description
Computes the empirical CDF and returns the CDF values up to, but not including the time values returned by getTimes.

Returns
a double array of CDF values.

getNumberOfPoints
public int getNumberOfPoints()

Description
Retrieves the number of points in the empirical CDF

Returns
an int containing the number of points in the empirical CDF.

Exception
IllegalStateException is thrown if the CDF has not been evaluated.

getTimes
public double[] getTimes()

Description
Retrieves the time values where the step function CDF jumps to a greater value. This array has right-censored values of t removed.

Returns
a double array of time values.

Exception
IllegalStateException is thrown if the CDF has not been evaluated.

setCensor
public void setCensor(int[] censor)

Description
Set flags to note right-censoring

Parameter
censor – an int array of 0 or 1 flags to note right-censoring. Values of 0 = continue to use datum and 1 = remove datum. If this method is not called, no data is right-censored.

setFrequency
public void setFrequency(int[] freq)
Description
Sets the frequency for each entry in t

Parameter
- `freq` – a double array containing the repeat count for each entry in t.

Example: Kaplan Meier Empirical CDF

This example illustrates the K-M procedure. Assume 20 units are on life test and 6 failures occur at the following times: 10, 32, 56, 98, 122, and 181 hours. There were 4 working units removed from the test for other experiments at the following times: 50, 100, 125, and 150 hours. The remaining 10 working units were removed from the test at 200 hours. The K-M estimates for this life test are:

R(10) = 19/20
R(32) = 19/20 x 18/19
R(56) = 19/20 x 18/19 x 16/17
R(98) = 19/20 x 18/19 x 16/17 x 15/16
R(122) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14
R(181) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14 x 10/11

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class KaplanMeierECDFEx1 {
    public static void main(String args[]) {
        double y[] = {10.0, 32.0, 56.0, 98.0, 122.0, 181.0, 50.0, 100.0, 125.0, 150.0, 200.0};
        int freq[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 10};
        int censor[] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1};

        KaplanMeierECDF km = new KaplanMeierECDF(y);
        km.setFrequency(freq);
        km.setCensor(censor);
        double[] fx = km.evaluateCDF();

        int ntimes = km.getNumberOfPoints();
        System.out.println("Number of points = "+ntimes);

        double[] x = km.getTimes();
        PrintMatrix p = new PrintMatrix("CDF = 1 - survival of life test subjects");
        p.print(fx);
        p.setTitle("Times of change in CDF");
        p.print(x);
    }
}
```
Output
Number of points = 6
CDF = 1 - survival of life test subjects

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.153</td>
</tr>
<tr>
<td>3</td>
<td>0.206</td>
</tr>
<tr>
<td>4</td>
<td>0.263</td>
</tr>
<tr>
<td>5</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Times of change in CDF

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>122</td>
</tr>
<tr>
<td>5</td>
<td>181</td>
</tr>
</tbody>
</table>

KaplanMeierEstimates class

```java
public class com.imsl.stat.KaplanMeierEstimates implements Serializable, Cloneable

Computes Kaplan-Meier (or product-limit) estimates of survival probabilities for a sample of failure times that possibly contain right censoring.

Class KaplanMeierEstimates computes Kaplan-Meier (or product-limit) estimates of survival probabilities for a sample of failure times that can be right censored or exact times. A survival probability \( S(t) \) is defined as \( 1 - F(t) \), where \( F(t) \) is the cumulative distribution function of the failure times \( t \). Greenwood's estimate of the standard errors of the survival probability estimates are also computed. (See Kalbfleisch and Prentice, 1980, pages 13 and 14.)

Let \((t_i, \delta_i)\), for \( i = 1, \ldots, n \) denote the failure censoring times and the censoring codes for the \( n \) observations in a single sample. Here, \( t_i = x_i - l_{responseIndex} \) is a failure time if \( \delta_i \) is 0, where \( \delta_i = x_i - l_{censorIndex} \). Also, \( t_i \) is a right censoring time if \( \delta_i \) is 1. Rows in \( x \) containing values other than 0 or 1 for \( \delta \) are ignored. Let the number of observations in the sample that have not failed by time \( s(i) \) be denoted by \( n(i) \), where \( s(i) \) is an ordered (from smallest to largest) listing of the distinct failure times (censoring times are omitted). Then the Kaplan-Meier estimate of the survival probabilities is a step function, which in the interval from \( s(i) \) to \( s(i+1) \) (including the lower endpoint) is given by

\[
\hat{S}(t) = \prod_{j=1}^{i} \left( \frac{n(j) - d(j)}{n(j)} \right)
\]
where \( d(j) \) denotes the number of failures occurring at time \( s(j) \), and \( n(j) \) is the number of observations that have not failed prior to \( s(j) \).

Note that one row of \( x \) may correspond to more than one failed (or censored) observation when the frequency option is in effect (see \texttt{setFrequencyColumn}). The Kaplan-Meier estimate of the survival probability prior to time \( s(1) \) is 1.0, while the Kaplan-Meier estimate of the survival probability after the last failure time is not defined.

Greenwood’s estimate of the variance of \( \hat{S}(t) \) in the interval from \( s(i) \) to \( s(i+1) \) is given as

\[
est.var(\hat{S}(t)) = \hat{S}^2(t) \sum_{j=1}^{i} \frac{d(j)}{n(j)(n(j) - d(j))}\]

\texttt{KaplanMeierEstimates} computes the single sample estimates of the survival probabilities for all samples of data included in \( x \) during a single call. This is accomplished through the stratum column of \( x \), which if present, must contain a distinct code for each sample of observations (see \texttt{setStratumColumn}). If a stratum column is not specified, there is no grouping, and all observations are assumed to come from the same sample.

When failures and right-censored observations are tied and the data are to be sorted by \texttt{KaplanMeierEstimates (setSorted(true) is not used)}, \texttt{KaplanMeierEstimates} assumes that the time of censoring for the tied-censored observations is immediately after the tied failure (within the same sample). When \texttt{setSorted(true)} is used, the data are assumed to be sorted from smallest to largest according to the response time column of \( x \) within each stratum (see \texttt{setResponseColumn}). Furthermore, a small increment of time is assumed (theoretically) to elapse between the failed and censored observations that are tied (in the same sample). Thus, when \texttt{setSorted(true)} is used, the user must sort all of the data in \( x \) from smallest to largest according to the response time column (and the stratum column, if set). By appropriate sorting of the observations, the user can handle censored and failed observations that are tied in any manner desired.

**Constructor**

\texttt{KaplanMeierEstimates}

\begin{verbatim}
public KaplanMeierEstimates(double[][] x)

Description

Constructor for \texttt{KaplanMeierEstimates}.

Parameter

\( x \) – a \texttt{double} matrix containing the data, including optional data. By default it is assumed the response times are in column 0.
\end{verbatim}
**Methods**

**getCensorColumn**

public int getCensorColumn()

**Description**

Returns the column index of \( x \) containing the optional censoring code for each observation.

**Returns**

an int specifying the column index of \( x \) containing the optional censoring code for each observation.

**getFrequencyColumn**

public int getFrequencyColumn()

**Description**

Returns the column index of \( x \) containing the frequency of response for each observation.

**Returns**

an int specifying the column index of \( x \) containing the frequency of response for each observation.

**getGroupTotal**

public int getGroupTotal(double groupValue)

**Description**

Returns the total number in the group for the specified group value.

**Parameter**

\( \text{groupValue} \) – a double specifying the group value.

**Returns**

an int representing the total number in the group which has value \( \text{groupValue} \).

**getLogLikelihood**

public double getLogLikelihood(double groupValue)

**Description**

Returns the Kaplan-Meier log-likelihood of the group with the specified group value. The Kaplan-Meier log-likelihood is computed as:

\[
\ell = \sum_{j} d_{(j)} \ln d_{(j)} + (n_{(j)} - d_{(j)}) \ln (n_{(j)} - d_{(j)}) - n_{(j)} \ln n_{(j)}
\]

where the sum is with respect to the distinct failure times \( s_{(j)} \).

**Parameter**

\( \text{groupValue} \) – a double specifying the group value.
Returns a double representing the Kaplan-Meier log-likelihood of the group which has value groupValue.

**getNumberAtRisk**

```java
public int[] getNumberAtRisk()
```

**Description**

Returns the number of individuals at risk at each failure point.

**Returns**

an int array containing the number of individuals at risk at each failure point.

**getNumberOfFailures**

```java
public int[] getNumberOfFailures()
```

**Description**

Returns the number of failures which occurred at each failure point.

**Returns**

an int array containing the number of failures which occurred at each failure point.

**getNumberOfRowsMissing**

```java
public int getNumberOfRowsMissing()
```

**Description**

Returns the number of rows of data in x that contain missing values in one or more specific columns of x.

**Returns**

an int scalar representing the number of rows of data in x that contain missing values in one or more specific columns of x.

**getResponseColumn**

```java
public int getResponseColumn()
```

**Description**

Returns the column index of x containing the response time for each observation.

**Returns**

an int specifying the column index of x containing the response time for each observation.

**getStandardErrors**

```java
public double[] getStandardErrors()
```

**Description**

Returns Greenwood’s estimated standard errors.
Returns a double array containing Greenwood’s estimate of the standard errors for the survival probabilities.

**getStratumColumn**

```java
public int getStratumColumn()
```

**Description**

Returns the column index of \(x\) containing the stratum number for each observation.

**Returns**

an int specifying the column index of \(x\) containing the stratum number for each observation.

**getSurvivalProbabilities**

```java
public double[] getSurvivalProbabilities()
```

**Description**

Returns the estimated survival probabilities.

**Returns**

a double array containing the estimated survival probabilities.

**getTotalNumberOfFailures**

```java
public int getTotalNumberOfFailures(double groupValue)
```

**Description**

Returns the total number failing in the group for the specified group value.

**Parameter**

- `groupValue` – a double specifying the group value.

**Returns**

an int representing the total number failing in the group which has value `groupValue`.

**setCensorColumn**

```java
public void setCensorColumn(int censorIndex)
```

**Description**

Sets the column index of \(x\) containing the optional censoring code for each observation.

**Parameter**

- `censorIndex` – an int specifying the column index of \(x\) containing the optional censoring code for each observation. If \(x[i][censorIndex]\) equals 0, the failure time \(x[i][\text{responseIndex}]\) is treated as an exact time of failure. Otherwise, it is treated as right-censored time. Default: It is assumed that there is no censor code column in \(x\). All observations are assumed to be exact failure times.

**setFrequencyColumn**

```java
public void setFrequencyColumn(int frequencyIndex)
```

**Survival and Reliability Analysis**

[KaplanMeierEstimates • 1207]
Description
Sets the column index of \( x \) containing the frequency of response for each observation.

Parameter

\texttt{frequencyIndex} – an int specifying the column index of \( x \) containing the frequency of response for each observation. Default: It is assumed that there is no frequency response column recorded in \( x \). Each observation in the data array is assumed to be for a single failure.

\texttt{setResponseColumn}

\texttt{public void setResponseColumn(int responseIndex)}

Description
Sets the column index of \( x \) containing the response time for each observation.

Parameter

\texttt{responseIndex} – an int specifying the column index of \( x \) containing the response time for each observation. The interpretation of these times as either right-censored or exact failure times depends on the setting of the censor codes in the censor code column. See method \texttt{setCensorColumn}. Default: \texttt{responseIndex = 0}.

\texttt{setSorted}

\texttt{public void setSorted(boolean isSorted)}

Description
Sets the boolean to indicate that the column of response times in \( x \) are already sorted.

Parameter

\texttt{isSorted} – a boolean indicating whether or not column \texttt{responseIndex} of \( x \) is already sorted. \texttt{isSorted} equal to \texttt{true} indicates that column \texttt{responseIndex} of \( x \) is already sorted. Otherwise, a detached sort is performed prior to analysis. If sorting is performed, all censored individuals are assumed to follow tied failures. Default: It is assumed that column \texttt{responseIndex} of \( x \) is not sorted, so a detached sort is performed.

\texttt{setStratumColumn}

\texttt{public void setStratumColumn(int stratumIndex)}

Description
Sets the column index of \( x \) containing the stratum number for each observation.

Parameter

\texttt{stratumIndex} – an int specifying the column index of \( x \) containing the stratum number for each observation. Column \texttt{stratumIndex} of \( x \) contains a unique value for each stratum in the data. Kaplan-Meier estimates are computed within each stratum. Default: It is assumed that there is no stratum number column recorded \( x \). The data is assumed to come from one stratum.
Example : KaplanMeierEstimates

The following example is taken from Kalbfleisch and Prentice (1980, page 1). The first column in \( x \) contains the death/censoring times for rats suffering from vaginal cancer. The second column contains information as to which of two forms of treatment were provided, while the third column contains the censoring code. Finally, the fourth column contains the frequency of each observation. The product-limit estimates of the survival probabilities are computed for both groups along with their standard error estimates. Tables containing these values along with other statistics are printed.

```java
import java.text.*;
import com.imsl.stat.*;

public class KaplanMeierEstimatesEx1 {
 public static void main(String args[]) {
 double[][] x = {
 {143, 5, 0, 1}, {164, 5, 0, 1}, {188, 5, 0, 2}, {190, 5, 0, 1},
 {192, 5, 0, 1}, {206, 5, 0, 1}, {209, 5, 0, 1}, {213, 5, 0, 1},
 {216, 5, 0, 1}, {220, 5, 0, 1}, {227, 5, 0, 1}, {230, 5, 0, 1},
 {234, 5, 0, 1}, {246, 5, 0, 1}, {265, 5, 0, 1}, {304, 5, 0, 1},
 {216, 5, 1, 1}, {244, 5, 1, 1}, {142, 7, 0, 1}, {156, 7, 0, 1},
 {163, 7, 0, 1}, {198, 7, 0, 1}, {205, 7, 0, 1}, {232, 7, 0, 2},
 {233, 7, 0, 4}, {239, 7, 0, 1}, {240, 7, 0, 1}, {261, 7, 0, 1},
 {280, 7, 0, 2}, {296, 7, 0, 2}, {323, 7, 0, 1}, {204, 7, 1, 1},
 {344, 7, 1, 1}
 };
 int nobs = x.length, censorIndex = 2, frequencyIndex = 3;
 int stratumIndex = 1, responseIndex = 0;
 int i, groupValue;

 // Get Kaplan-Meir Estimates
 KaplanMeierEstimates km = new KaplanMeierEstimates(x);
 km.setCensorColumn(censorIndex);
 km.setFrequencyColumn(frequencyIndex);
 km.setStratumColumn(stratumIndex);
 int[] atRisk = km.getNumberAtRisk();
 int[] nFailing = km.getNumberOfFailures();
 double[] prob = km.getSurvivalProbabilities();
 double[] se = km.getStandardErrors();

 // Print Results
 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(4);
 nf.setMinimumFractionDigits(4);
 i = 0;
 while (i < nobs) {
 groupValue = (int) x[i][stratumIndex];
 System.out.println("Kaplan-Meier Survival Probabilities");
 System.out.println("For Group Value = " + groupValue);
 System.out.println("Number Number"
 + "Survival Estimated");
 System.out.println("at risk Failing Time"
 + "Probability Std. Error");
 while (i < nobs && ((int) x[i][stratumIndex] == groupValue)) {
```
if ((int) x[i][censorIndex] != 1) {
    System.out.println(" " + atRisk[i] + " " + nFailing[i] + " " + ((int) x[i][responseIndex]) + " " + nf.format(prob[i]) + " " + nf.format(se[i]));
} i++;
}
System.out.println("\nTotal number in group = " + km.getGroupTotal(groupValue));
System.out.println("Total number failing = " + km.getTotalNumberOfFailures(groupValue));
System.out.println("Product Limit likelihood = " + nf.format(km.getLogLikelihood(groupValue)));
}
System.out.println("\nThe number of rows of x with missing values is " + km.getNumberOfRowsMissing());
}

Output

Kaplan-Meier Survival Probabilities
For Group Value = 5

<table>
<thead>
<tr>
<th>Number at risk</th>
<th>Number Failing</th>
<th>Time</th>
<th>Survival Probability</th>
<th>Estimated Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1</td>
<td>143</td>
<td>0.9474</td>
<td>0.0512</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>164</td>
<td>0.8947</td>
<td>0.0704</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>188</td>
<td>0.7895</td>
<td>0.0935</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>190</td>
<td>0.7368</td>
<td>0.1010</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>192</td>
<td>0.6842</td>
<td>0.1066</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>206</td>
<td>0.6316</td>
<td>0.1107</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>209</td>
<td>0.5789</td>
<td>0.1133</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>213</td>
<td>0.5263</td>
<td>0.1145</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>216</td>
<td>0.4737</td>
<td>0.1145</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>220</td>
<td>0.4145</td>
<td>0.1145</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>227</td>
<td>0.3553</td>
<td>0.1124</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>230</td>
<td>0.2961</td>
<td>0.1082</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>234</td>
<td>0.2368</td>
<td>0.1015</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>246</td>
<td>0.1579</td>
<td>0.0934</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>265</td>
<td>0.0789</td>
<td>0.0728</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>304</td>
<td>0.0000</td>
<td>?</td>
</tr>
</tbody>
</table>

Total number in group = 19
Total number failing = 17
Product Limit likelihood = -49.1692

Kaplan-Meier Survival Probabilities
For Group Value = 7

<table>
<thead>
<tr>
<th>Number at risk</th>
<th>Number Failing</th>
<th>Time</th>
<th>Survival Probability</th>
<th>Estimated Std. Error</th>
</tr>
</thead>
</table>

1210 • KaplanMeierEstimates

JMSL
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>142</td>
<td>0.9524</td>
<td>0.0465</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>156</td>
<td>0.9048</td>
<td>0.0641</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>163</td>
<td>0.8571</td>
<td>0.0764</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>198</td>
<td>0.8096</td>
<td>0.0867</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>205</td>
<td>0.7589</td>
<td>0.0941</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>232</td>
<td>0.6577</td>
<td>0.1053</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>233</td>
<td>0.4564</td>
<td>0.1114</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>239</td>
<td>0.4048</td>
<td>0.1099</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>240</td>
<td>0.3542</td>
<td>0.1072</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>261</td>
<td>0.3036</td>
<td>0.1031</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>280</td>
<td>0.2024</td>
<td>0.0902</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>296</td>
<td>0.1012</td>
<td>0.0678</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>323</td>
<td>0.0506</td>
<td>0.0493</td>
</tr>
</tbody>
</table>

Total number in group = 21
Total number failing = 19
Product Limit likelihood = -50.4277
The number of rows of x with missing values is 0

**ProportionalHazards class**

```java
public class com.imsl.stat.ProportionalHazards implements Serializable, Cloneable
```

Analyzes survival and reliability data using Cox's proportional hazards model.

Class ProportionalHazards computes parameter estimates and other statistics in Proportional Hazards Generalized Linear Models. These models were first proposed by Cox (1972). Two methods for handling ties are allowed. Time-dependent covariates are not allowed. The user is referred to Cox and Oakes (1984), Kalbfleisch and Prentice (1980), Elandt-Johnson and Johnson (1980), Lee (1980), or Lawless (1982), among other texts, for a thorough discussion of the Cox proportional hazards model.

Let \( \lambda(t, z_i) \) represent the hazard rate at time \( t \) for observation number \( i \) with covariables contained as elements of row vector \( z_i \). The basic assumption in the proportional hazards model (the proportionality assumption) is that the hazard rate can be written as a product of a time varying function \( \lambda_0(t) \), which depends only on time, and a function \( f(z_i) \), which depends only on the covariable values. The function \( f(z_i) \) used in ProportionalHazards is given as \( f(z_i) = \exp(w_i + \beta z_i) \) where \( w_i \) is a fixed constant assigned to the observation, and \( b \) is a vector of coefficients to be estimated. With this function one obtains a hazard rate \( \lambda(t, z_i) = \lambda_0(t)\exp(w_i + \beta z_i) \). The form of \( \lambda_0(t) \) is not important in proportional hazards models.

The constants \( w_i \) may be known theoretically. For example, the hazard rate may be proportional to a known length or area, and the \( w_i \) can then be determined from this known length or area. Alternatively, the \( w_i \) may be used to fix a subset of the coefficients \( \beta \) (say, \( \beta_1 \)) at specified values. When \( w_i \) is used in this way, constants \( w_i = \beta_1 z_{1i} \) are used, while the remaining coefficients in \( \beta \) are free to vary in the optimization algorithm. Constants are defined as 0.0 by default. If user-specified constants are desired,
use the `setConstantColumn` method to specify which column contains the constant.  

With this definition of $\lambda(t, z_i)$, the usual partial (or marginal, see Kalbfleisch and Prentice (1980)) likelihood becomes

$$L = \prod_{i=1}^{n_d} \frac{\exp(w_i + \beta z_{i})}{\sum_{j \in R(t_i)} \exp(w_j + \beta z_j)}$$

where $R(t_i)$ denotes the set of indices of observations that have not yet failed at time $t_i$ (the risk set), $t_i$ denotes the time of failure for the $i$-th observation, $n_d$ is the total number of observations that fail. Right-censored observations (i.e., observations that are known to have survived to time $t_i$, but for which no time of failure is known) are incorporated into the likelihood through the risk set $R(t_i)$. Such observations never appear in the numerator of the likelihood. When `setTieOptions` is set to `BRESLOWS APPROXIMATE` (the default), all observations that are censored at time $t_i$ are not included in $R(t_i)$, while all observations that fail at time $t_i$ are included in $R(t_i)$.

If it can be assumed that the dependence of the hazard rate upon the covariate values remains the same from stratum to stratum, while the time-dependent term, $\lambda_0(t)$, may be different in different strata, then `ProportionalHazards` allows the incorporation of strata into the likelihood as follows. Let $k$ index the $m$ strata (set with `setStratumColumn`). Then, the likelihood is given by

$$L_S = \prod_{k=1}^{m} \left[ \prod_{i=1}^{n_k} \frac{\exp(w_{ki} + \beta z_{ki})}{\sum_{j \in R(t_{ki})} \exp(w_{kj} + \beta z_{kj})} \right]$$

In `ProportionalHazards`, the log of the likelihood is maximized with respect to the coefficients $\beta$. A quasi-Newton algorithm approximating the Hessian via the matrix of sums of squares and cross products of the first partial derivatives is used in the initial iterations. When the change in the log-likelihood from one iteration to the next is less than 100 times the convergence tolerance, Newton-Raphson iteration is used. If, during any iteration, the initial step does not lead to an increase in the log-likelihood, then step halving is employed to find a step that will increase the log-likelihood.

Once the maximum likelihood estimates have been computed, the algorithm computes estimates of a probability associated with each failure. Within stratum $k$, an estimate of the probability that the $i$-th observation fails at time $t_i$ given the risk set $R(t_{ki})$ is given by

$$p_{ki} = \frac{\exp(w_{ki} + \beta z_{ki})}{\sum_{j \in R(t_{ki})} \exp(w_{kj} + \beta z_{kj})}$$

A diagnostic “influence” or “leverage” statistic is computed for each noncensored observation as:

$$l_{ki} = -g'_{ki} H^{-1} g_{ki}$$

where $H$ is the matrix of second partial derivatives of the log-likelihood, and

$$g_{ki}$$

is computed as:

---

1212 • ProportionalHazards JMSL
Influence statistics are not computed for censored observations.

A “residual” is computed for each of the input observations according to methods given in Cox and Oakes (1984, page 108). Residuals are computed as

\[ r_{ki} = \exp(w_{ki} + \hat{\beta}z_{ki}) \frac{d_{kj}}{\sum_{l \in R(t_{kj})} \exp(w_{kl} + \hat{\beta}z_{kl})} \]

where \( d_{kj} \) is the number of tied failures in group \( k \) at time \( t_{kj} \). Assuming that the proportional hazards assumption holds, the residuals should approximate a random sample (with censoring) from the unit exponential distribution. By subtracting the expected values, centered residuals can be obtained. (The \( j \)-th expected order statistic from the unit exponential with censoring is given as

\[ e_j = \sum_{l \leq j} \frac{1}{h - l + 1} \]

where \( h \) is the sample size, and censored observations are not included in the summation.)

An estimate of the cumulative baseline hazard within group \( k \) is given as

\[ \hat{H}_k(t) = \sum_{u_j \leq t} \frac{d_{kj}}{\sum_{l \in R(u_j)} \exp(w_{kl} + \hat{\beta}z_{kl})} \]

The observation proportionality constant is computed as

\[ \exp(w_{ki} + \hat{\beta}z_{ki}) \]

Note that the user can use the JDK JAVA Logging API to generate intermediate output for the solver.

Accumulated levels of detail correspond to JAVA’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of information and FINEST yielding the most. The levels of output yield the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE</td>
<td>Logging is enabled, but observational statistics are not printed.</td>
</tr>
<tr>
<td>FINER</td>
<td>All output statistics are printed.</td>
</tr>
<tr>
<td>FINEST</td>
<td>Tracks progress through internal methods.</td>
</tr>
</tbody>
</table>
Fields

**BRESLOWS_APPROXIMATE**
```
static final public int BRESLOWS_APPROXIMATE
```
Breslows approximate method of handling ties. See setTiesOption.

**SORTED_AS_PER_OBSERVATIONS**
```
static final public int SORTED_AS_PER_OBSERVATIONS
```
Failures are assumed to occur in the same order as the observations input in \( x \). The observations in \( x \) must be sorted from largest to smallest failure time within each stratum, and grouped by stratum. All observations are treated as if their failure/censoring times were distinct when computing the log-likelihood. See setTiesOption.

Constructor

**ProportionalHazards**
```
public ProportionalHazards(double[][] x, int[] nVarEffects, int[] indEffects)
```

Description
Constructor for ProportionalHazards.

Parameters
- \( x \) – a double matrix containing the data, including optional data.
- \( nVarEffects \) – an int array containing the number of variables associated with each effect in the model.
- \( indEffects \) – an int array containing the column numbers of \( x \) associated with each effect. The first \( nVarEffects[0] \) elements of \( indEffects \) contain the column numbers of \( x \) for the variables in the first effect. The next \( nVarEffects[1] \) elements of \( indEffects \) contain the column numbers of \( x \) for the variables in the second effect, etc.

Methods

**getCaseStatistics**
```
public double[][] getCaseStatistics() throws
ProportionalHazards.ClassificationVariableLimitException
```

Description
Returns the case statistics for each observation.
There is one row for each observation, and the columns of the returned matrix contain the following:
<table>
<thead>
<tr>
<th>Column</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Estimated survival probability at the observation time.</td>
</tr>
<tr>
<td>1</td>
<td>Estimated observation influence or leverage.</td>
</tr>
<tr>
<td>2</td>
<td>A residual estimate.</td>
</tr>
<tr>
<td>3</td>
<td>Estimated cumulative baseline hazard rate.</td>
</tr>
<tr>
<td>4</td>
<td>Observation proportionality constant.</td>
</tr>
</tbody>
</table>

Returns

a double matrix containing the case statistics.

Exception

ClassificationVariableLimitException is thrown if the classification variable limit set by the user through setUpperBound has been exceeded.

getCensorColumn

public int getCensorColumn()

Description

Returns the column index of x containing the optional censoring code for each observation.

Returns

an int specifying the column index of x containing the optional censoring code for each observation.

getClassValueCounts

public int[] getClassValueCounts() throws ProportionalHazards.ClassificationVariableLimitException

Description

Returns the number of values taken by each classification variable. The i-th element of the returned array is the number of distinct values taken by the i-th classification variable.

Returns

an int array containing the number of values taken by each classification variable.

Exception

ClassificationVariableLimitException is thrown if the classification variable limit set by the user through setUpperBound has been exceeded.

getClassValues

public double[] getClassValues() throws ProportionalHazards.ClassificationVariableLimitException

Description

Returns the class values taken by each classification variable. For description purposes, let nclval = getClassValueCounts(). Then the first nclval[0] elements contain the values for the first classification variable, the next nclval[1] elements contain the values for the second classification variable, etc.
Returns
a double array containing the values taken by each classification variable.

Exception
ClassificationVariableLimitException is thrown if the classification variable limit set by
the user through setUpperBound has been exceeded.

getConstantColumn
public int getConstantColumn()

Description
Returns the column index of \( x \) containing the constant to be added to the linear response.

Returns
an int specifying the column index of \( x \) containing the constant to be added to the linear response.

getConvergenceTol
public double getConvergenceTol()

Description
Returns the convergence tolerance used.

Returns
a double specifying the convergence tolerance used.

getFrequencyColumn
public int getFrequencyColumn()

Description
Returns the column index of \( x \) containing the frequency of response for each observation.

Returns
an int specifying the column index of \( x \) containing the frequency of response for each observation.

getGradient
public double[] getGradient() throws
ProportionalHazards.ClassificationVariableLimitException

Description
Returns the inverse of the Hessian times the gradient vector, computed at the initial estimates.

Note that the setHessianOption method must be invoked with wantHessian set to true and the
setInitialEstimates method must be invoked prior to invoking this method. Otherwise, the method
throws an IllegalStateException exception.

Returns
a double array containing the inverse of the Hessian times the gradient vector, computed at the initial estimates.
**getHessian**

`public double[][] getHessian() throws ProportionalHazards.ClassificationVariableLimitException`

**Description**

Returns the inverse of the Hessian of the negative of the log-likelihood, computed at the initial estimates.

Note that the `setHessianOption` method must be invoked with `wantHessian` set to `true` and the `setInitialEstimates` method must be invoked prior to invoking this method. Otherwise, the method throws an `IllegalStateException` exception.

**Returns**

A double matrix containing the inverse of the Hessian of the negative of the log-likelihood, computed at the initial estimates.

**Exception**

`ClassificationVariableLimitException` is thrown if the classification variable limit set by the user through `setUpperBound` has been exceeded.

**getHessianOption**

`public boolean getHessianOption()`

**Description**

Returns the boolean used to indicate whether or not to compute the Hessian and gradient at the initial estimates.

**Returns**

A boolean specifying whether or not the Hessian and gradient are to be computed at the initial estimates. A return value equal to `true` indicates that the Hessian and gradient are to be computed.

**getInitialEstimates**

`public double[] getInitialEstimates() throws ProportionalHazards.ClassificationVariableLimitException`

**Description**

Gets the initial parameter estimates.

**Returns**

A double array containing the initial parameter estimates.

**Exception**

`ClassificationVariableLimitException` is thrown if the classification variable limit set by the user through `setUpperBound` has been exceeded.
**getLastUpdates**

```java
public double[] getLastUpdates() throws ProportionalHazards.ClassificationVariableLimitException
```

**Description**

Gets the last parameter updates.

**Returns**

A `double` array containing the last parameter updates (excluding step halvings).

**Exception**

`ClassificationVariableLimitException` is thrown if the classification variable limit set by the user through `setUpperBound` has been exceeded.

**getLogger**

```java
public Logger getLogger()
```

**Description**

Returns the logger object and enables logging.

**Returns**

A `java.util.logging.Logger` object, if present, or `null`.

**getMaxClass**

```java
public int getMaxClass()
```

**Description**

Returns the upper bound used on the sum of the number of distinct values found among the classification variables in `x`.

**Returns**

An `int` representing the upper bound used on the sum of the number of distinct values found among the classification variables in `x`.

**getMaxIterations**

```java
public int getMaxIterations()
```

**Description**

Return the maximum number of iterations allowed.

**Returns**

An `int` specifying the maximum number of iterations allowed.

**getMaximumLikelihood**

```java
public double getMaximumLikelihood() throws ProportionalHazards.ClassificationVariableLimitException
```
Description
Returns the maximized log-likelihood.
The log-likelihood is fully described in the ProportionalHazards class description.

Returns
a double representing the maximized log-likelihood

Exception
ClassificationVariableLimitException is thrown if the classification variable limit set by
the user through setUpperBound has been exceeded.

getMeans
public double[] getMeans() throws
ProportionalHazards.ClassificationVariableLimitException

Description
Returns the means of the design variables.

Returns
a double array containing the means of the design variables.

Exception
ClassificationVariableLimitException is thrown if the classification variable limit set by
the user through setUpperBound has been exceeded.

getNumberOfCoefficients
public int getNumberOfCoefficients() throws
ProportionalHazards.ClassificationVariableLimitException

Description
Returns the number of estimated coefficients in the model.

Returns
an int scalar representing the number of estimated coefficients in the model.

Exception
ClassificationVariableLimitException is thrown if the classification variable limit set by
the user through setUpperBound has been exceeded.

getNumberRowsMissing
public int getNumberRowsMissing() throws
ProportionalHazards.ClassificationVariableLimitException

Description
Returns the number of rows of data in x that contain missing values in one or more specific columns of x.
Returns
an int scalar representing the number of rows of data in x that contain missing values in one or more specific columns of x.

Exception
ClassificationVariableLimitException is thrown if the classification variable limit set by the user through setUpperBound has been exceeded.

getParameterStatistics
public double[][] getParameterStatistics() throws ProportionalHazards.ClassificationVariableLimitException

Description
Returns the parameter estimates and associated statistics.
There is one row for each coefficient, and the columns of the returned matrix contain the following:

<table>
<thead>
<tr>
<th>Column</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The coefficient estimate, $\hat{\beta}$</td>
</tr>
<tr>
<td>1</td>
<td>Estimated standard deviation of the estimated coefficient</td>
</tr>
<tr>
<td>2</td>
<td>Asymptotic normal score for testing that the coefficient is zero against the two-sided alternative</td>
</tr>
<tr>
<td>3</td>
<td>$p$-value associated with the normal score in column 2</td>
</tr>
</tbody>
</table>

Returns
a double matrix containing the parameter estimates and associated statistics.

Exception
ClassificationVariableLimitException is thrown if the classification variable limit set by the user through setUpperBound has been exceeded.

getResponseColumn
public int getResponseColumn()

Description
Returns the column index of x containing the response time for each observation.

Returns
an int specifying the column index of x containing the response time for each observation.

getStratumColumn
public int getStratumColumn()

Description
Returns the column index of x containing the stratum number for each observation.
Returns
an int specifying the column index of \( x \) containing the stratum number for each observation.

**getStratumNumbers**

```java
public int[] getStratumNumbers() throws ProportionalHazards.ClassificationVariableLimitException
```

**Description**
Returns the stratum number used for each observation. If \( \text{stratumRatio} \) is not -1.0, additional “strata” (other than those specified by column \( \text{groupIndex} \) of \( x \) set via the \( \text{setStratumColumn} \) method) may be generated. The array also contains a record of the generated strata. See the \text{ProportionalHazards} class description for more detail.

**Returns**
an int array containing the stratum number used for each observation.

**Exception**

\text{ClassificationVariableLimitException} is thrown if the classification variable limit set by the user through \( \text{setUpperBound} \) has been exceeded.

**getStratumRatio**

```java
public double getStratumRatio()
```

**Description**
Returns the ratio at which a stratum is split into two strata.

**Returns**
a double specifying the ratio at which a stratum is split into two strata.

**getTiesOption**

```java
public int getTiesOption()
```

**Description**
Returns the method used for handling ties.

**Returns**
an int specifying the method to be used in handling ties as indicated by the value in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRESLOWS_APPROXIMATE</td>
<td>Breslow’s approximate method. This is the default.</td>
</tr>
<tr>
<td>SORTED_AS_PER_OBSERVATIONS</td>
<td>Failures are assumed to occur in the same order as the observations input in ( x ). The observations in ( x ) must be sorted from largest to smallest failure time within each stratum, and grouped by stratum. All observations are treated as if their failure/censoring times were distinct when computing the log-likelihood.</td>
</tr>
</tbody>
</table>

Survival and Reliability Analysis  ProportionalHazards • 1221
**getVarianceCovarianceMatrix**

```java
public double[][] getVarianceCovarianceMatrix() throws ProportionalHazards.ClassificationVariableLimitException
```

**Description**

Returns the estimated asymptotic variance-covariance matrix of the parameters.

**Returns**

A `double` matrix containing the estimated asymptotic variance-covariance matrix of the parameters.

**Exception**

`ClassificationVariableLimitException` is thrown if the classification variable limit set by the user through `setUpperBound` has been exceeded.

---

**setCensorColumn**

```java
public void setCensorColumn(int censorIndex)
```

**Description**

Sets the column index of `x` containing the optional censoring code for each observation.

If `x[i][censorIndex]` equals 0, the failure time `x[i][responseIndex]` is treated as an exact time of failure. Otherwise, it is treated as right-censored time. By default, it is assumed that there is no censor code column in `x` and all observations are assumed to be exact failure times.

**Parameter**

- `censorIndex` – an `int` specifying the column index of `x` containing the optional censoring code for each observation.

---

**setClassVarColumns**

```java
public void setClassVarColumns(int[] classVarIndices)
```

**Description**

Sets the column indices of `x` that are the classification variables.

**Parameter**

- `classVarIndices` – an `int` array containing the column numbers of `x` that are the classification variables. By default it is assumed there are no classification variables.

---

**setConstantColumn**

```java
public void setConstantColumn(int fixedIndex)
```

**Description**

Sets the column index of `x` containing the constant `w_i` to be added to the linear response.

The linear response is taken to be `w_i + z_i \hat{\beta}` where `w_i` is the observation constant, `z_i` is the observation design row vector, and \( \hat{\beta} \) is the vector of estimated parameters. The “fixed” constant allows one to test hypotheses about parameters via the log-likelihoods. If this method is not called, it is assumed that `w_i = 0` for all observations.
Parameter
  fixedIndex – an int specifying the column index of x containing the constant to be added to the linear response.

setConvergenceTol
public void setConvergenceTol(double convergenceTol)

Description
Set the convergence tolerance.
Convergence is assumed when the relative change in the maximum likelihood from one iteration to the next is less than convergenceTol. If convergenceTol is zero, convergenceTol = 0.0001 is assumed. The default value is 0.0001.

Parameter
  convergenceTol – a double specifying the convergence tolerance.

setFrequencyColumn
public void setFrequencyColumn(int frequencyIndex)

Description
Sets the column index of x containing the frequency of response for each observation.
By default it is assumed that there is no frequency response column recorded in x. Each observation in the data array is assumed to be for a single failure; that is, the frequency of response for each observation is 1.

Parameter
  frequencyIndex – an int specifying the column index of x containing the frequency of response for each observation.

setHessianOption
public void setHessianOption(boolean wantHessian)

Description
Set the option to have the Hessian and gradient be computed at the initial estimates.

Parameter
  wantHessian – a boolean specifying whether or not the Hessian and gradient are to be computed at the initial estimates. If this option is set to true the user must set the initial estimates via the setInitialEstimates method. By default the Hessian and gradient are not computed at the initial estimates.

setInitialEstimates
public void setInitialEstimates(double[] initialCoeff)

Description
Sets the initial parameter estimates.
Care should be taken to ensure that the supplied estimates for the model coefficients $\beta$ correspond to the generated covariate vector $z_ki$. 
Parameter

    initialCoef – a double array containing the initial parameter estimates. By default the initial parameter estimates are all 0.0.

setMaxClass
public void setMaxClass(int maxClass)

Description
Sets an upper bound on the sum of the number of distinct values found among the classification variables in x.

For example, if the model consisted of two class variables, one with the values \( \{1, 2, 3, 4\} \) and a second with the values \( \{0, 1\} \), then the total number of different classification values is \( 4 + 2 = 6 \), and \( \text{maxClass} \geq 6 \). The default value is the number of observations in x.

Parameter

    maxClass – an int representing an upper bound on the sum of the number of distinct values found among the classification variables in x.

setMaxIterations
public void setMaxIterations(int maxIterations)

Description
Set the maximum number of iterations allowed.

Parameter

    maxIterations – an int specifying the maximum number of iterations allowed. The default value is 30.

setResponseColumn
public void setResponseColumn(int responseIndex)

Description
Sets the column index of x containing the response variable.

For point observations, \( x[i][\text{responseIndex}] \) contains the time of the \( i \)-th event. For right-censored observations, \( x[i][\text{responseIndex}] \) contains the right-censoring time. Note that because ProportionalHazards only uses the order of the events, negative “times” are allowed. By default \( \text{responseIndex} = 0 \).

Parameter

    responseIndex – an int specifying the column index of x containing the response variable.

setStratumColumn
public void setStratumColumn(int stratumIndex)
Description

Sets the column index of \( x \) containing the stratification variable.

Column \texttt{stratumIndex} of \( x \) contains a unique value for each stratum in the data. The risk set for an observation is determined by its stratum. By default it is assumed that all observations are from one stratum.

Parameter

\texttt{stratumIndex} – an \texttt{int} specifying the column index of \( x \) containing the stratification variable.

\textbf{setStratumRatio}

\begin{verbatim}
public void setStratumRatio(double stratumRatio)
\end{verbatim}

Description

Set the ratio at which a stratum is split into two strata.

Let

\[ r_k = \exp(z_k \hat{\beta} + w_k) \]

be the observation proportionality constant, where \( z_k \) is the design row vector for the \( k \)-th observation and \( w_k \) is the optional fixed parameter specified by \texttt{x[fixedIndex]}. Let \( r_{\text{min}} \) be the minimum value \( r_k \) in a stratum, where, for failed observations, the minimum is over all times less than or equal to the time of occurrence of the \( k \)-th observation. Let \( r_{\text{max}} \) be the maximum value of \( r_k \) for the remaining observations in the group. Then, if \( r_{\text{min}} > \text{stratumRatio} \times r_{\text{max}} \), the observations in the group are divided into two groups at \( k \). The default value of \texttt{stratumRatio} = 1000 is usually good.

Set \texttt{stratumRatio} to any negative value if no division into strata is to be made.

Parameter

\texttt{stratumRatio} – a \texttt{double} specifying the ratio at which a stratum is split into two strata.

\textbf{setTiesOption}

\begin{verbatim}
public void setTiesOption(int iTie)
\end{verbatim}

Description

Sets the method for handling ties.

Parameter

\texttt{iTie} – an \texttt{int} specifying the method to be used in handling ties. It can be either \texttt{BRESLOWS_APPROXIMATE} or \texttt{SORTED_AS_PER_OBSERVATIONS}.

<table>
<thead>
<tr>
<th>iTie</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{BRESLOWS_APPROXIMATE}</td>
<td>Breslow’s approximate method. This is the default.</td>
</tr>
<tr>
<td>\texttt{SORTED_AS_PER_OBSERVATIONS}</td>
<td>Failures are assumed to occur in the same order as the observations input in ( x ). The observations in ( x ) must be sorted from largest to smallest failure time within each stratum, and grouped by stratum. All observations are treated as if their failure/censoring times were distinct when computing the log-likelihood.</td>
</tr>
</tbody>
</table>
By default, iTie is BRESLOWS_APPROXIMATE.

**Example: ProportionalHazards**

The following example is taken from Lawless (1982, page 287) and involves the survival of lung cancer patients based upon their initial tumor types and treatment type. In the example, the likelihood is maximized with no strata present in the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The model is given as:

\[ \ln(\lambda) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \alpha_i + \gamma_j \]

where \( \alpha_i \) and \( \gamma_j \) correspond to dummy variables generated from classification variables in columns 5 and 6 of \( x \). Respectively, \( x_1 \) corresponds to column index 2, \( x_2 \) corresponds to column index 3, and \( x_3 \) corresponds to column index 4 of \( x \). Column 0 of \( x \) contains the response and column 1 of \( x \) contains the censoring code. Logging is used to print output statistics.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import java.util.logging.*;

public class ProportionalHazardsEx1 {
 public static void main(String args[]) throws Exception {
 double[][] x = {
 {411, 0, 7, 64, 5, 1, 0},
 {426, 0, 7, 63, 9, 1, 0},
 {118, 0, 7, 65, 11, 1, 0},
 {92, 0, 4, 69, 10, 1, 0},
 {8, 0, 4, 63, 58, 1, 0},
 {25, 1, 7, 48, 9, 1, 0},
 {11, 0, 7, 48, 11, 1, 0},
 {54, 0, 8, 63, 4, 2, 0},
 {153, 0, 6, 63, 14, 2, 0},
 {16, 0, 3, 53, 4, 2, 0},
 {56, 0, 8, 43, 12, 2, 0},
 {21, 0, 4, 55, 2, 2, 0},
 {287, 0, 6, 66, 25, 2, 0},
 {10, 0, 4, 67, 23, 2, 0},
 {8, 0, 2, 61, 19, 3, 0},
 {12, 0, 5, 63, 4, 3, 0},
 {177, 0, 5, 66, 16, 4, 0},
 {12, 0, 4, 68, 12, 4, 0},
 {200, 0, 8, 41, 12, 4, 0},
 {250, 0, 7, 53, 8, 4, 0},
 {100, 0, 6, 37, 13, 4, 0},
 {999, 0, 9, 54, 12, 1, 1},
 {231, 1, 5, 52, 8, 1, 1},
 {991, 0, 7, 50, 7, 1, 1},
 {1, 0, 2, 65, 21, 1, 1},
 {201, 0, 8, 52, 28, 1, 1},
 {44, 0, 6, 70, 13, 1, 1},
 {15, 0, 5, 40, 13, 1, 1},
 };
```
ProportionalHazards ph = new ProportionalHazards(x, nvef, indef);
ph.setMaxClass(maxcl);
ph.setCensorColumn(icen);
ph.setClassVarColumns(indcl);
ph.setStratumRatio(ratio);

// Level.FINER prints most output statistics
Logger logger = ph.getLogger();
ConsoleHandler ch = new ConsoleHandler();

// Set ConsoleHandler Level to ALL
ch.setLevel(Level.ALL);
logger.setLevel(Level.FINER);
logger.addHandler(ch);
ch.setFormatter(new com.imsl.IMSLFormatter());

double coef[][] = ph.getParameterStatistics();
new PrintMatrix("\nFinal Coefficient Matrix").print(coef);
} }

Output

Initial Estimates

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Iteration</th>
<th>Step</th>
<th>Maximum scaled Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>coef. update</td>
<td>likelihood</td>
<td></td>
</tr>
</tbody>
</table>
Coefﬁcient Statistics

<table>
<thead>
<tr>
<th>Coefﬁcient</th>
<th>Std. error</th>
<th>Asymptotic z-stat</th>
<th>Asymptotic p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.5846</td>
<td>0.1368</td>
<td>-4.2721</td>
</tr>
<tr>
<td>1</td>
<td>-0.0131</td>
<td>0.0206</td>
<td>-0.6342</td>
</tr>
<tr>
<td>2</td>
<td>0.0008</td>
<td>0.0118</td>
<td>0.0645</td>
</tr>
<tr>
<td>3</td>
<td>-0.0367</td>
<td>0.0484</td>
<td>-0.7572</td>
</tr>
<tr>
<td>4</td>
<td>-0.0077</td>
<td>0.0568</td>
<td>-0.0152</td>
</tr>
<tr>
<td>5</td>
<td>1.1129</td>
<td>0.6331</td>
<td>1.758</td>
</tr>
<tr>
<td>6</td>
<td>0.3797</td>
<td>0.4058</td>
<td>0.9367</td>
</tr>
</tbody>
</table>

Asymptotic Coefﬁcient Covariance

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0187</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0057</td>
<td>0.0097</td>
<td>0.0043</td>
<td>0.0021</td>
</tr>
<tr>
<td>1</td>
<td>0.004</td>
<td>-0</td>
<td>-0.0017</td>
<td>-0.0008</td>
<td>-0.0031</td>
<td>-0.0029</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0001</td>
<td>0.0008</td>
<td>0.0018</td>
<td>0.0006</td>
<td>0.0017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.235</td>
<td>0.098</td>
<td>0.1184</td>
<td>0.0373</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2568</td>
<td>0.1253</td>
<td>-0.0194</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.4008</td>
<td>0.0629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Case Analysis

Survival Prob.	Inﬂuence Residual Cumulative hazard Prop. constant				
0	0.0022	0.0414	2.0531	6.1032	0.3364
1	0.2988	0.1088	0.7609	1.2078	0.6134
2	0.3424	0.1184	0.3576	1.0719	0.3336
3	0.4336	0.1554	1.5272	0.8357	1.8274
4	0.9555	0.5567	0.0933	0.0455	2.0499
5	0.7365	?	0.1272	0.3058	0.4158
6	0.9204	0.3729	0.0346	0.083	0.4164
7	0.5876	0.2637	0.1446	0.5317	0.2719
8	0.2577	0.1173	1.1961	1.3561	0.882
9	0.8457	0.1486	0.9656	0.1676	5.7608
10	0.5481	0.3133	0.2135	0.6012	0.3551
11	0.7365	0.2108	0.9551	0.3058	3.1232
12	0.0293	0.0602	3.018	3.5289	0.8552
13	0.9382	0.0935	0.173	0.0638	2.7135
14	0.9555	0.1595	1.3142	0.0455	28.8855
15	0.8854	0.2322	0.5864	0.1217	4.8164
16	0.1814	0.0918	2.6217	1.707	1.5358
17	0.8854	0.1869	0.3258	0.1217	2.6765
18	0.1414	0.2303	0.7187	1.9565	0.3673
19	0.0522	0.0943	1.6591	2.9529	0.5618
20	0.3899	0.2212	1.1745	0.9419	1.2469
21	0	0	1.7281	21.1049	0.0819
22	0.0806	?	2.1865	2.5177	0.8684
23	0.0001	0.0049	2.4603	8.8921	0.2767
24	0.9892	0.3072	0.0462	0.0108	4.2758

Log-Likelihood = -87.888
25  0.1074  0.1724  0.3406  2.2311  0.1527
26  0.664   0.2513  0.1573  0.4095  0.3841
27  0.8655  0.2215  0.1472  0.1444  1.0196
28  0.3899  ?      0.4533  0.9419  0.4812
29  0.9781  0.2495  0.0561  0.0222  2.531
30  0.769   0.2556  1.0257  0.2627  3.9045
31  0.6291  0.3509  1.7991  0.4635  3.8817
32  0.8233  0.2598  1.0635  0.1944  5.4705
33  0.4739  0.26   1.6474  0.7468  2.2058
34  0.5104  0.3191  0.3886  0.6725  0.5779
35  0.2173  0.183   0.485   1.5267  0.3177
36  0.7979  0.2642  1.0764  0.2258  4.7675
37  0.7    0.16    0.2598  0.3567  0.7282
38  0.0094  0.2267  0.8668  4.6642  0.1858
39  0.0806  0.2045  0.8122  2.5177  0.3226

Last Coefficient Update
0  -5.835E-8
1   1.401E-9
2  -8.597E-9
3  -2.822E-7
4  -4.566E-8
5   1.256E-7
6   1.058E-8

Covariate Means
0   5.65
1  56.575
2  15.65
3   0.35
4  0.275
5   0.125
6   0.525

Distinct Values For Each Class Variable
Variable 0: 1 2 3 4
Variable 1: 0 1

Stratum Numbers For Each Observation
0  1
1  1
2  1
3  1
4  1
5  1
6  1
7  1
8  1
9  1
10 1
11 1

Survival and Reliability Analysis

Proportional Hazards • 1229
Number of Missing Values = 0

Final Coefficient Matrix

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & -0.585 & 0.137 & -4.272 & 0 \\
1 & -0.013 & 0.021 & -0.634 & 0.526 \\
2 & 0.001 & 0.012 & 0.064 & 0.949 \\
3 & -0.367 & 0.485 & -0.757 & 0.449 \\
4 & -0.008 & 0.507 & -0.015 & 0.988 \\
5 & 1.113 & 0.633 & 1.758 & 0.079 \\
6 & 0.38 & 0.406 & 0.936 & 0.349 \\
\end{array}
\]

ProportionalHazards.ClassificationVariableLimitException class

static public class
com.imsl.stat.ProportionalHazards.ClassificationVariableLimitException extends
com.imsl.IMSLException

The Classification Variable limit set by the user through `setUpperBound` has been exceeded.

Constructors

ProportionalHazards.ClassificationVariableLimitException

```java
public ProportionalHazards.ClassificationVariableLimitException(String message)
```

Description

Constructs a `ClassificationVariableLimitException`.

Parameter

message – a String containing the error message

ProportionalHazards.ClassificationVariableLimitException

```java
public ProportionalHazards.ClassificationVariableLimitException(String key, Object[] arguments)
```

Description

The Classification Variable limit set by the user through `setUpperBound` has been exceeded.

Parameters

- key – the String key of the error message in the resource bundle
- arguments – an array containing arguments used within the error message string

LifeTables class

```java
public class com.imsl.stat.LifeTables implements Serializable, Cloneable
```

Computes population (current) or cohort life tables based upon the observed population sizes at the middle (for population table) or the beginning (for cohort table) of some user specified age intervals. The number of deaths in each of these intervals must also be observed.

The probability of dying prior to the middle of the interval, given that death occurs somewhere in the interval, may also be specified. Often, however, this probability is taken to be 0.5. For a discussion of the probability models underlying the life table here, see the references.

Let $t_i$, for $i = 0, 1, ..., n$, denote the time grid defining the $n$ age intervals, and note that the length of the age intervals may vary. Following Gross and Clark (1975, page 24), let $d_i$ denote the number of individuals dying in age interval $i$, where age interval $i$ ends at time $t_i$. For population table, the death rate at the middle of the interval is given by $r_i = d_i/(M_i h_i)$, where $M_i$ is the number of individuals alive at the middle of the interval, and $h_i = t_i - t_{i-1}, t_0 = 0$. The number of individuals alive at the beginning
of the interval may be estimated by
\[ P_i = M_i + (1 - a_i)d_i \]
where \( a_i \) is the probability that an individual dying in the interval dies prior to the interval midpoint. For cohort table, \( P_i \) is input directly while the death rate in the interval, \( r_i \), is not needed.

The probability that an individual dies during the age interval from \( t_{i-1} \) to \( t_i \) is given by \( q_i = d_i/P_i \). It is assumed that all individuals alive at the beginning of the last interval die during the last interval. Thus, \( q_n = 1.0 \). The asymptotic variance of \( q_i \) can be estimated by
\[ \sigma_i^2 = q_i(1 - q_i)/P_i \]

For a population table, the number of individuals alive in the middle of the time interval (input in \( n\text{Cohort}[i] \)) must be adjusted to correspond to the number of deaths observed in the interval. The algorithm assumes that the number of deaths observed in interval \( h_i \) occur over a time period equal to \( h_i \).

If \( d_i \) is measured over a period \( u_i \), where \( u_i \neq d_i \), then \( n\text{Cohort}[i] \) must be adjusted to correspond to \( d_i \) by multiplication by \( u_i/h_i \), i.e., the value \( M_i \) input as \( n\text{Cohort}[i] \) is computed as
\[ M_i' = M_i u_i/h_i \]

Let \( S_i \) denote the number of survivors at time \( t_i \) from a hypothetical (for population table) or observed (for cohort table) population. Then, \( S_0 = \text{initialPopulation} \) for population table, and \( S_0 = n\text{Cohort}[0] \) for cohort table, and \( S_i \) is given by \( S_i = S_{i-1} - \delta_{i-1} \) where \( \delta_i = S_i q_i \) is the number of individuals who die in the \( i \) th interval. The proportion of survivors in the interval is given by \( V_i = S_i/S_0 \) while the asymptotic variance of \( V_i \) can be estimated as follows:
\[ \text{var}(V_i) = V_i^2 \sum_{j=1}^{i-1} \frac{\sigma_j^2}{(1 - q_j)^2} \]

The expected lifetime at the beginning of the interval is calculated as the total lifetime remaining for all survivors alive at the beginning of the interval divided by the number of survivors at the beginning of the interval. If \( e_i \) denotes this average expected lifetime, then the variance of \( e_i \) can be estimated as (see Chiang 1968)
\[ \text{var}(e_i) = \sum_{j=i}^{n-1} \frac{P_j^2 \sigma_j^2 [e_{j+1} + h_{j+1}(1 - a_j)]^2}{P_j^2} \]

where \( \text{var}(e_n) = 0.0 \).

Finally, the total number of time units lived by all survivors in the time interval can be estimated as:
\[ U_i = h_i |S_i - \delta_i(1 - a_i)| \]

**Constructor**

**LifeTables**

```java
public LifeTables(int[] nCohort, double[] age, double[] a)
```

1232 • LifeTables
Description
Constructs a new LifeTables instance. The number of classes, nClasses is equal to the length of the input array nCohort.

Parameters
nCohort – an int array of length nClasses containing the cohort sizes during each interval. If the Population Table option is used, then nCohort[i] contains the size of the population at the midpoint of interval i. Otherwise, nCohort[i] contains the size of the cohort at the beginning of interval i. When requesting a population table, the population sizes in nCohort may need to be adjusted to correspond to the number of deaths in nDeaths. See the class description section for more information.
age – a double array of length nClasses + 1 containing the lowest age in each age interval, and in age[nClasses], the endpoint of the last age interval. Negative age[0] indicates that the age intervals are all of length |age[0]| and that the initial age interval is from 0.0 to |age[0]|. In this case, all other elements of age need not be specified. age[nClasses] need not be specified when getting a cohort table.
a – a double array of length nClasses containing the fraction of those dying within each interval who die before the interval midpoint. A common choice for all a[i] is 0.5. This choice may also be specified by setting a[0] to any negative value. In this case, the remaining values of a need not be specified.

Methods

getLifeTable
public double[][] getLifeTable()

Description
Compute a cohort table.

Returns
a double matrix of dimensions nClasses by 12 containing the population table. Entries in the i'th row are for the age interval defined by age[i]. Column definitions are described in the following table.
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Lowest age in the age interval.</td>
</tr>
<tr>
<td>1</td>
<td>Fraction of those dying within the interval who die before the interval midpoint.</td>
</tr>
<tr>
<td>2</td>
<td>Number surviving to the beginning of the interval.</td>
</tr>
<tr>
<td>3</td>
<td>Number of deaths in the interval.</td>
</tr>
<tr>
<td>4</td>
<td>Death rate in the interval. For cohort table, this column is set to NaN (not a number).</td>
</tr>
<tr>
<td>5</td>
<td>Proportion dying in the interval.</td>
</tr>
<tr>
<td>6</td>
<td>Standard error of the proportion dying in the interval.</td>
</tr>
<tr>
<td>7</td>
<td>Proportion of survivors at the beginning of the interval.</td>
</tr>
<tr>
<td>8</td>
<td>Standard error of the proportion of survivors at the beginning of the interval.</td>
</tr>
<tr>
<td>9</td>
<td>Expected lifetime at the beginning of the interval.</td>
</tr>
<tr>
<td>10</td>
<td>Standard error of the expected life at the beginning of the interval.</td>
</tr>
<tr>
<td>11</td>
<td>Total number of time units lived by all of the population in the interval.</td>
</tr>
</tbody>
</table>

**getPopulationTable**

```java
public double[][] getPopulationTable(int[] nDeaths)
```

**Description**

Compute a population table.

**Parameter**

- `nDeaths` – an `int` array of `nClasses` containing the number of deaths in each age interval.

**Returns**

A double matrix of dimensions `nClasses` by 12 containing the population table. Entries in the `i`th row are for the age interval defined by `age[i]`. Column definitions are the same as in `getLifeTable`.

**setPopulationSize**

```java
public void setPopulationSize(int initialPopulation)
```

**Description**

Sets the population size at the beginning of the first age interval in requesting a population table. A default value of 10,000 is used to allow easy entry of `nCohorts` and `nDeaths` when numbers are available as percentages.

**Parameter**

- `initialPopulation` – an int scalar specifying the initial population. Default: `initialPopulation = 10000`.

**Example: Life Tables**

This example is taken from Chiang (1968). The cohort life table has thirteen equally spaced intervals, so `age[0]` is set to -5.0. Similarly, the probabilities of death prior to the middle of the interval are all taken to be 0.5, so `a[0]` is set to -1.0.
import com.imsl.stat.*;
import com.imsl.math.*;

public class LifeTablesEx1 {

    public static void main(String args[]) {
        int[] nCohort = {
            270, 268, 264, 261, 254, 251,
            248, 232, 166, 130, 76, 34, 13
        };
        double[] age = new double[nCohort.length + 1];
        double[] a = new double[nCohort.length];

        age[0] = -5.0;
        a[0] = -1.0;

        LifeTables lt = new LifeTables(nCohort, age, a);
        double[][] table = lt.getLifeTable();

        PrintMatrixFormat pmf = new PrintMatrixFormat();
        String[] cols = {
            "Age", "PDHALF", "Alive", "Deaths", "Death Rate",
            "P(D)", "Std(P(D))", "P(S)", "Std(P(S))", "Lifetime",
            "Std(Life)", "Time Units"
        };
        pmf.setColumnLabels(cols);
        pmf.setNumberFormat(new java.text.DecimalFormat("0.0####"));
        PrintMatrix pm = new PrintMatrix("Life Table");
        pm.setPageWidth(40);
        pm.print(pmf, table);
    }
}

Output

<table>
<thead>
<tr>
<th>Life Table</th>
<th>Age</th>
<th>PDHALF</th>
<th>Alive</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>270.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0.5</td>
<td>268.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>10.0</td>
<td>0.5</td>
<td>264.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>15.0</td>
<td>0.5</td>
<td>261.0</td>
<td>7.0</td>
</tr>
<tr>
<td>4</td>
<td>20.0</td>
<td>0.5</td>
<td>254.0</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>25.0</td>
<td>0.5</td>
<td>251.0</td>
<td>3.0</td>
</tr>
<tr>
<td>6</td>
<td>30.0</td>
<td>0.5</td>
<td>248.0</td>
<td>16.0</td>
</tr>
<tr>
<td>7</td>
<td>35.0</td>
<td>0.5</td>
<td>232.0</td>
<td>66.0</td>
</tr>
<tr>
<td>8</td>
<td>40.0</td>
<td>0.5</td>
<td>166.0</td>
<td>36.0</td>
</tr>
<tr>
<td>9</td>
<td>45.0</td>
<td>0.5</td>
<td>130.0</td>
<td>54.0</td>
</tr>
<tr>
<td>10</td>
<td>50.0</td>
<td>0.5</td>
<td>76.0</td>
<td>42.0</td>
</tr>
<tr>
<td>11</td>
<td>55.0</td>
<td>0.5</td>
<td>34.0</td>
<td>21.0</td>
</tr>
<tr>
<td>12</td>
<td>60.0</td>
<td>0.5</td>
<td>13.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Death Rate</th>
<th>P(D)</th>
<th>Std(P(D))</th>
<th>P(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00741</td>
<td>0.00522</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.01493</td>
<td>0.00741</td>
<td>0.99259</td>
</tr>
<tr>
<td>2</td>
<td>0.01136</td>
<td>0.00652</td>
<td>0.97778</td>
</tr>
</tbody>
</table>

Survival and Reliability Analysis
<table>
<thead>
<tr>
<th>Std(P(S))</th>
<th>Lifetime</th>
<th>Std(Life)</th>
<th>Time Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>43.18519</td>
<td>1345.0</td>
</tr>
<tr>
<td>1</td>
<td>0.00522</td>
<td>38.48881</td>
<td>1330.0</td>
</tr>
<tr>
<td>2</td>
<td>0.00897</td>
<td>34.03409</td>
<td>1312.5</td>
</tr>
<tr>
<td>3</td>
<td>0.01092</td>
<td>29.39655</td>
<td>1287.5</td>
</tr>
<tr>
<td>4</td>
<td>0.01437</td>
<td>25.1378</td>
<td>1247.5</td>
</tr>
<tr>
<td>5</td>
<td>0.01557</td>
<td>20.40837</td>
<td>1200.0</td>
</tr>
<tr>
<td>6</td>
<td>0.01665</td>
<td>15.625</td>
<td>995.0</td>
</tr>
<tr>
<td>7</td>
<td>0.02116</td>
<td>11.53017</td>
<td>740.0</td>
</tr>
<tr>
<td>8</td>
<td>0.02962</td>
<td>10.12048</td>
<td>515.0</td>
</tr>
<tr>
<td>9</td>
<td>0.03041</td>
<td>7.23077</td>
<td>275.0</td>
</tr>
<tr>
<td>10</td>
<td>0.02737</td>
<td>5.59211</td>
<td>117.5</td>
</tr>
<tr>
<td>11</td>
<td>0.02019</td>
<td>4.41176</td>
<td>32.5</td>
</tr>
<tr>
<td>12</td>
<td>0.01303</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 22: Probability Distribution Functions and Inverses

Types

class Cdf .......................................................... 1239
class Pdf .......................................................... 1280
class InvCdf .......................................................... 1296
interface CdfFunction ........................................... 1307
class InverseCdf .................................................. 1308
interface Distribution .......................................... 1311
interface ProbabilityDistribution ............................ 1311
class NormalDistribution ........................................ 1313
class GammaDistribution ....................................... 1315
class LogNormalDistribution ................................. 1317
class PoissonDistribution ....................................... 1319

Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the methods/classes described in this chapter are written for standard forms of statistical distributions. Hence, the number of parameters for any given distribution may be fewer than the number often associated with the distribution. Also, the methods relating to the normal distribution, Cdf.normal and Cdf.inverseNormal, are for a normal distribution with mean equal to zero and variance equal to one. For other means and variances, it is very easy for the user to standardize the variables by subtracting the mean and dividing by the square root of the variance.
The distribution function for the (real, single-valued) random variable $X$ is the function $F$ defined for all real $x$ by

$$F(x) = \text{Prob}(X \leq x)$$

where $\text{Prob}(\cdot)$ denotes the probability of an event. The distribution function is often called the cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than the left endpoint and 1 for values greater than the right endpoint. The methods in the Cdf classes described in this chapter return the correct values for the distribution functions when values outside of the range of the random variable are input, but warning error conditions are set in these cases.

**Discrete Random Variables**

For discrete distributions, the function giving the probability that the random variable takes on specific values is called the probability function, defined by

$$p(x) = \text{Prob}(X = x)$$

The CDF for a discrete random variable is

$$F(x) = \sum_{A} p(k)$$

where $A$ is set such that $k \leq x$. Since the distribution function is a step function, its inverse does not exist uniquely.

**Continuous Distributions**

For continuous distributions, a probability function, as defined above, would not be useful because the probability of any given point is 0. For such distributions, the useful analog is the probability density function (PDF). The integral of the PDF is the probability over the interval, if the continuous random variable $X$ has PDF $f$, then

$$\text{Prob}(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx$$

The relationship between the CDF and the PDF is

$$F(x) = \int_{-\infty}^{x} f(t) \, dt$$

For (absolutely) continuous distributions, the value of $F(x)$ uniquely determines $x$ within the support of the distribution. The “inverse” methods in the Cdf class compute the inverses of the distribution functions, that is, given $F(x)$, they compute, $x$. The inverses are defined only over the open interval $(0,1)$.
Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to an inverse function, it is often impossible to achieve good accuracy because of the nature of the representation of numeric values. In this case, it may be better to work with the complementary distribution function (one minus the distribution function). If the distribution is symmetric about some point (as the normal distribution, for example) or is reflective about some point (as the beta distribution, for example), the complementary distribution function has a simple relationship with the distribution function. For example, to evaluate the standard normal distribution at 4.0, using the normal method in the Cdf class directly, the result to six places is 0.999968. Only two of those digits are really useful, however. A more useful result may be 1.000000 minus this value, which can be obtained to six places as 3.16712e-05 by evaluating normal at -4.0. For the normal distribution, the two values are related by \( \Phi(x) = 1 - \Phi(-x) \), where \( \Phi(\cdot) \) is the normal distribution function. Another example is the beta distribution with parameters 2 and 10. This distribution is skewed to the right, so evaluating beta at 0.7, 0.999953 is obtained. A more precise result is obtained by evaluating beta with parameters 10 and 2 at 0.3. This yields 4.72392e-5.

Many of the algorithms used by the classes in this chapter are discussed by Abramowitz and Stegun (1964). The algorithms make use of various expansions and recursive relationships and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments. However, if the input to one of the distribution functions in this chapter is outside the range of the random variable, an error is issued.

Cdf class

```
public final class com.imsl.stat.Cdf

Cumulative probability distribution functions.
```

Methods

```
F
static public double F(double x, double dfn, double dfd)
```

Description

Evaluates the \( F \) cumulative probability distribution function.

\( F \) evaluates the distribution function of a Snedecor’s \( F \) random variable with \( dfn \) numerator degrees of freedom and \( dfd \) denominator degrees of freedom. The function is evaluated by making a transformation to a beta random variable and then using the function beta. If \( X \) is an \( F \) variate with \( v_1 \) and \( v_2 \) degrees of freedom and \( Y = v_1X/(v_2 + v_1X) \), then \( Y \) is a beta variate with parameters \( p = v_1/2 \) and \( q = v_2/2 \). \( F \) also uses a relationship between \( F \) random variables that can be expressed as follows:
\[ F(X, dfn, dfd) = F(1/X, dfd, dfn) \]

For greater right tail accuracy, see `com.imsl.stat.Cdf.complementaryF` (p. 1252).

**Parameters**

- \( x \) – a double, the argument at which the function is to be evaluated.
dfn – a double, the numerator degrees of freedom. It must be positive.

dfd – a double, the denominator degrees of freedom. It must be positive.

**Returns**

a double, the probability that an F random variable takes on a value less than or equal to x.

---

**Pareto**

static public double Pareto(double x, double xm, double k)

**Description**

Evaluates the Pareto cumulative probability distribution function. Method Pareto evaluates the distribution function, \( F \), of a Pareto random variable with scale parameter \( x_m \) and shape parameter \( k \). It is given by

\[
F(x, x_m, k) = 1 - \left( \frac{x_m}{x} \right)^k
\]

where \( x_m > 0 \) and \( k > 0 \). The function is only defined for \( x \geq x_m \).

**Parameters**

- \( x \) – a double scalar value representing the argument at which the function is to be evaluated.
- \( x_m \) – a double scalar value representing the scale parameter, \( x_m \).
- \( k \) – a double scalar value representing the shape parameter, \( k \).

**Returns**

a double scalar value representing the probability that a Pareto random variable takes a value less than or equal to \( x \).

---

**Rayleigh**

static public double Rayleigh(double x, double alpha)

**Description**

Evaluates the Rayleigh cumulative probability distribution function. Method Rayleigh is a special case of Weibull distribution function where the shape parameter gamma is 2.0; that is,

\[
F(x) = 1 - e^{-\frac{x^2}{2\alpha^2}}
\]

where alpha is the scale parameter.

---

*Probability Distribution Functions and Inverses*
Parameters

- $x$ – a double scalar value representing the argument at which the function is to be evaluated. It must be non-negative.
- $\alpha$ – a double scalar value representing the scale parameter.

Returns

A double scalar value representing the probability that a Rayleigh random variable takes a value less
than or equal to $x$.

**Weibull**

static public double Weibull(double $x$, double $\gamma$, double $\alpha$)

**Description**

Evaluates the Weibull cumulative probability distribution function.

Method `Weibull` evaluates the distribution function given by

$$F(x, \gamma, \alpha) = 1 - e^{-(x/\alpha)^\gamma}$$

**Parameters**

- $x$ – a double scalar value representing the argument at which the function is to be evaluated. It must be non-negative.
- $\gamma$ – a double scalar value representing the shape parameter, $\gamma$.
- $\alpha$ – a double scalar value representing the scale parameter, $\alpha$.

**Returns**

A double scalar value representing the probability that a Weibull random variable takes a value less than or equal to $x$.

**beta**

static public double beta(double $x$, double $p$, double $q$)

**Description**

Evaluates the beta cumulative probability distribution function.

Method `beta` evaluates the distribution function of a beta random variable with parameters $p$ and $q$. This function is sometimes called the *incomplete beta ratio* and, with $p = p$ and $q = q$, is denoted by $I_x(p, q)$. It is given by

$$I_x(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p + q)} \int_0^x t^{p-1} (1-t)^{q-1} dt$$

where $\Gamma(\cdot)$ is the gamma function. The value of the distribution function $I_x(p, q)$ is the probability that the random variable takes a value less than or equal to $x$.

The integral in the expression above is called the *incomplete beta function* and is denoted by $\beta_x(p, q)$. The constant in the expression is the reciprocal of the *beta function* (the incomplete beta function evaluated at $x=1$) and is denoted by $\beta_1(p, q)$.

`beta` uses the method of Bosten and Battiste (1974).
Beta Distribution Function

Parameters

- $x$ – a double, the argument at which the function is to be evaluated.
- $p$ – a double, the first beta distribution parameter.
- $q$ – a double, the second beta distribution parameter.
Returns
a double, the probability that a beta random variable takes on a value less than or equal to x.

betaMean
static public double betaMean(double pin, double qin)

Description
Evaluates the mean of the beta cumulative probability distribution function

Parameters
  pin – a double, the first beta distribution parameter.
  qin – a double, the second beta distribution parameter.

Returns
a double, the mean of the beta distribution function.

betaVariance
static public double betaVariance(double pin, double qin)

Description
Evaluates the variance of the beta cumulative probability distribution function

Parameters
  pin – a double, the first beta distribution parameter.
  qin – a double, the second beta distribution parameter.

Returns
a double, the variance of the beta distribution function.

binomial
static public double binomial(int k, int n, double pin)

Description
Evaluates the binomial cumulative probability distribution function.

Method binomial evaluates the distribution function of a binomial random variable with parameters n and p with \( p = pin \). It does this by summing probabilities of the random variable taking on the specific values in its range. These probabilities are computed by the recursive relationship

\[
Pr(X = j) = \frac{(n+1-j)p}{j(1-p)} Pr(X = j-1)
\]

To avoid the possibility of underflow, the probabilities are computed forward from 0, if \( k \) is not greater than \( n \) times \( p \), and are computed backward from \( n \), otherwise. The smallest positive machine number, \( \varepsilon \), is used as the starting value for summing the probabilities, which are rescaled by \( (1-p)^j \varepsilon \) if forward computation is performed and by \( p^n \varepsilon \) if backward computation is done. For the special case of \( p = 0 \), binomial is set to 1; and for the case \( p = 1 \), binomial is set to 1 if \( k = n \) and to 0 otherwise.
Parameters

- **k** – the int argument for which the binomial distribution function is to be evaluated.
- **n** – the int number of Bernoulli trials.
- **pin** – a double scalar value representing the probability of success on each independent trial.

Returns

A double scalar value representing the probability that a binomial random variable takes a value less than or equal to k. This value is the probability that k or fewer successes occur in n independent Bernoulli trials, each of which has a pin probability of success.

### bivariateNormal

```java
static public double bivariateNormal(double x, double y, double rho)
```

Description

Evaluates the bivariate normal cumulative probability distribution function. Let \((X,Y)\) be a bivariate normal variable with mean \((0,0)\) and variance-covariance matrix

\[
\begin{bmatrix}
1 & \rho \\
\rho & 1
\end{bmatrix}
\]

This method computes the probability that \(X \leq x\) and \(Y \leq y\).
Parameters

$x$ – is the $x$-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

$y$ – is the $y$-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

$\rho$ – is the correlation coefficient.
Returns
the probability that a bivariate normal random variable \((X, Y)\) with correlation \(\rho\) satisfies \(X \leq x\) and \(Y \leq y\).

\(\chi\)
static public double \(\chi\)(double \(\text{chsq}\), double \(\text{df}\))

Description
Evaluates the chi-squared cumulative distribution function.

Method \(\chi\) evaluates the cumulative distribution function (CDF) \(F\), of a chi-squared random variable with \(\text{df}\) degrees of freedom, that is, with \(x = \text{chsq}\) and \(\nu = \text{df}\),

\[
F(x, \nu) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} \int_{0}^{x} e^{-t/2}t^{\nu/2-1}dt
\]

where \(\Gamma(\cdot)\) is the gamma function. The value \(p = F(x, \nu)\) is the probability that the random variable takes a value less than or equal to \(x\).

For \(\nu > 343\), \(\chi\) uses the Wilson-Hilferty approximation (Abramowitz and Stegun [A&S] 1964, equation 26.4.17) for \(p\) in terms of the normal CDF, which is evaluated using method \text{normal}.

For \(\nu \leq 343\), \(\chi\) uses series expansions to evaluate \(p\): for \(x < \nu\), \(\chi\) calculates \(p\) using A&S equation 6.5.29, and for \(x \geq \nu\), \(\chi\) calculates \(p\) using the continued fraction (CF) expansion of the incomplete gamma function given in A&S equation 6.5.31 and implemented using Lentz's algorithm (Lentz, W.J., 1976, Applied Optics, vol. 15, pp. 668-671) as modified by Thompson & Barnett (Thompson, I.J., and Barnett, A.R., 1986, Journal of Computational Physics, vol. 64, pp. 490-509).

For greater right tail accuracy, see \text{com.imsl.stat.Cdf.complementaryChi} (p. 1250).

1248 • Cdf  JMSL
Chi-Squared Distribution Function

Parameters

chsq – a double scalar value representing the argument at which the function is to be evaluated.
df – a double scalar value representing the number of degrees of freedom. df must be positive.

Returns

a double scalar value representing the probability that a chi-squared random variable takes a value less than or equal to chsq.
chiMean
static public double chiMean(double df)

Description
Evaluates the mean of the chi-squared cumulative probability distribution function

Parameter
df – a double scalar value representing the number of degrees of freedom. This must be at least 0.5.

Returns
a double, the mean of the chi-squared distribution function.

chiVariance
static public double chiVariance(double df)

Description
Evaluates the variance of the chi-squared cumulative probability distribution function

Parameter
df – a double scalar value representing the number of degrees of freedom. This must be at least 0.5.

Returns
a double, the variance of the chi-squared distribution function.

complementaryChi
static public double complementaryChi(double chsq, double df)

Description
Calculates the complement of the chi-squared cumulative distribution function.

Method complementaryChi evaluates the cumulative distribution function, \( 1 - F \), of a chi-squared random variable with \( df \) degrees of freedom, that is, with \( x = \text{chsq} \) and \( \nu = \text{df} \),

\[
p = F(x, \nu) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^x e^{-t/2} t^{\nu/2 - 1} dt
\]

where \( \Gamma(\cdot) \) is the gamma function. The value of the complementaryChi distribution function at the point \( x \), \( 1 - p \), is the probability that the random variable takes a value greater than \( x \).

For \( \nu > 343 \), complementaryChi uses the Wilson-Hilferty approximation (Abramowitz and Stegun [A&S] 1964, equation 26.4.17) for \( p \) in terms of the normal CDF, which is evaluated using method normal.

For \( \nu \leq 343 \), complementaryChi uses series expansions to evaluate \( p \): for \( x < \nu \), complementaryChi calculates \( p \) using A&S series 6.5.29, and for \( x \geq \nu \), complementaryChi calculates \( p \) using the continued fraction expansion of the incomplete gamma function given in A&S equation 6.5.31 and implemented using Lentz’s algorithm (Lentz, W.J., 1976, Applied Optics, vol. 15,
complementaryChi provides greater right tail accuracy for the Chi-squared distribution than does 1 - chi.

![Complementary Chi-Squared Distribution Function Graph](image-url)
Parameters

chsq – a double scalar value at which the function is to be evaluated.

df – a double scalar value representing the number of degrees of freedom. df must be positive.

Returns

a double scalar value representing the probability that a chi-squared random variable takes a value
greater than chsq.

complementaryF

static public double complementaryF(double x, double dfn, double dfd)

Description

Calculates the complement of the F distribution function.

complementaryF evaluates one minus the distribution function of a Snedecor’s F random variable with
dfn numerator degrees of freedom and dfd denominator degrees of freedom. The function is evaluated
by making a transformation to a beta random variable and then using the function beta. If X is an F
variate with $v_1$ and $v_2$ degrees of freedom and $Y = \frac{v_1 X}{v_2 + v_1 X}$, then $Y$ is a beta variate with
parameters $p = \frac{v_1}{2}$ and $q = \frac{v_2}{2}$. complementaryF also uses a relationship between F random
variables that can be expressed as follows:

$$F(X, dfn, dfd) = F(1/X, dfd, dfn)$$

This function provides higher right tail accuracy for the F distribution.
Parameters

- **x** – a double, the argument at which \( Pr(x > F) \) is to be evaluated.
- **dfn** – a double, the numerator degrees of freedom. It must be positive.
Returns
a double, the probability that an F random variable takes on a value greater than x.

complementaryF2
static public double complementaryF2(double x, double dfn, doubledfd)

complementaryNoncentralF
static public double complementaryNoncentralF(double f, double df1, double df2,
double lambda)

Description
Calculates the complement of the noncentral F cumulative distribution function.
The complementary noncentral F distribution is a generalization of the complementary F distribution. If X is a noncentral chi-square random variable with noncentrality parameter \( \lambda \) and \( \nu_1 \) degrees of freedom, and Y is a chi-square random variable with \( \nu_2 \) degrees of freedom which is statistically independent of X, then

\[
F = \frac{X/\nu_1}{Y/\nu_2}
\]

is a noncentral F-distributed random variable whose CDF is given by:

\[
F(f, \nu_1, \nu_2, \lambda) = \sum_{j=0}^{\infty} c_j
\]

where:

\[
c_j = \omega_j I_x\left(\frac{\nu_1}{2} + j, \frac{\nu_2}{2}\right)
\]

\[
\omega_j = e^{-\lambda/2} \frac{(\lambda/2)^j}{j!} = \frac{\lambda}{2^j} \omega_{j-1}
\]

\[
I_x(a, b) = \frac{\beta_x(a, b)}{\beta(a, b)}
\]

\[
\beta_x(a, b) = \int_0^x t^{a-1}(1-t)^{b-1} dt = x^a \sum_{j=0}^{\infty} \frac{\Gamma(j+1-b)}{(a+j) \Gamma(1-b) \Gamma(j+1)} x^j
\]

\[
\beta(a, b) = \beta_1(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
\]

\[
I_x(a+1, b) = I_x(a, b) - T_x(a, b)
\]

\[
T_x(a, b) = \frac{\Gamma(a+b)}{(a+1) \Gamma(b)} x^a (1-x)^b = T_x(a-1, b) \frac{a-1+b}{a} x
\]

\[
x = \frac{\nu_1 f}{\nu_2 + \nu_1 f}
\]
and $\Gamma(\cdot)$ is the gamma function, $\nu_1 = df_1$, $\nu_2 = df_2$, $\lambda = \text{lambda}$, and $f = f$. The above series expansion for the noncentral F was taken from Butler and Paolella (1999) (see ), with the correction for the recursion relation given below:

$$I_x(a+1, b) = I_x(a, b) - T_x(a, b)$$

extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and Bhattacharjee (1973). The series approximation of the complementary (cmp) noncentral F CDF, denoted by $F(.),$ is obtainable by using the following identities:

$$\sum_{j=0}^{\infty} \omega_j = 1$$

$$I_{1-x}(b, a) = 1 - I_x(a, b)$$

$$I_{1-x}(b, a+1) = 1 - I_x(a+1, b) = 1 - I_x(a, b) + T_x(a, b)$$

Thus:

$$F(f, \nu_1, \nu_2, \lambda) = 1 - \sum_{j=0}^{\infty} c_j = \sum_{j=0}^{\infty} \omega_j [1 - I_x(\frac{\nu_1}{2} + j, \frac{\nu_2}{2})]$$

$$= \sum_{j=0}^{\infty} \omega_j I_{1-x}(\frac{\nu_2}{2}, \frac{\nu_1}{2} + j)$$

We can use the above expansion of $F(f, \nu_1, \nu_2, \lambda)$ and the identities:

$$I_{1-x}(b, a+1) = I_{1-x}(b, a) + T_x(a, b)$$

$$T_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a+1) \Gamma(b)} x^a (1-x)^b = T_x(a-1, b) \frac{a-1+b}{a}$$

to recursively calculate $F(f, \nu_1, \nu_2, \lambda)$.

With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.

**Parameters**

- $f$ – a double value representing the argument at which the function is to be evaluated. $f$ must be nonnegative.
- $df_1$ – a double value representing the number of numerator degrees of freedom. $df_1$ must be positive.
- $df_2$ – a double value representing the number of denominator degrees of freedom. $df_2$ must be positive.
- $\text{lambda}$ – a double value representing the noncentrality parameter. $\text{lambda}$ must be nonnegative.

**Returns**

A double scalar value representing the probability that a noncentral F random variable takes a value greater than $f$.

### complementaryStudentsT

```java
static public double complementaryStudentsT(double t, double df)
```

**Probability Distribution Functions and Inverses**

CDF • 1255
Description

Calculates the complement of the Student’s $t$ distribution.

Method `complementaryStudentsT` evaluates one minus the distribution function of a Student’s $t$ random variable with df degrees of freedom. If the square of $t$ is greater than or equal to df, the relationship of a $t$ to an $f$ random variable (and subsequently, to a beta random variable) is exploited, and routine `beta` is used. Otherwise, the method described by Hill (1970) is used. If df is not an integer, if df is greater than 19, or if df is greater than 200, a Cornish-Fisher expansion is used to evaluate the distribution function. If df is less than 20 and $|t|$ is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a series given by Hill (1970) that converges well for large values of $t$ is used. This function provides higher right tail accuracy for the Student’s $t$ distribution.
Parameters

- $t$ – a double scalar value for which $Pr(x > t)$ is to be evaluated
- $df$ – a double scalar value representing the number of degrees of freedom. This must be at least 2.
one.

**Returns**
a double scalar value representing the probability that a Student’s \( t \) random variable takes a value greater than \( t \).

**discreteUniform**
static public double discreteUniform(int \( x \), int \( n \))

**Description**
Evaluates the discrete uniform cumulative probability distribution function.

**Parameters**
- \( x \) – an int scalar value representing the argument at which the function is to be evaluated. \( x \) should be a value between the lower limit 0 and upper limit \( n \)
- \( n \) – an int scalar value representing the upper limit of the discrete uniform distribution.

**Returns**
a double scalar value representing the probability that a discrete uniform random variable takes a value less than or equal to \( x \).

**exponential**
static public double exponential(double \( x \), double \( scale \))

**Description**
Evaluates the exponential cumulative probability distribution function.

Method **exponential** is a special case of the gamma distribution function, which evaluates the distribution function, \( F \), with scale parameter \( b \) and shape parameter \( a \), used in the gamma distribution function equal to 1.0. That is,

\[
F(x) = \frac{1}{\Gamma(a)} \int_0^x e^{-t/b} dt
\]

where \( \Gamma(\cdot) \) is the gamma function. (The gamma function is the integral from 0 to \( \infty \) of the same integrand as above). The value of the distribution function at the point \( x \) is the probability that the random variable takes a value less than or equal to \( x \).

If \( x \) is less than or equal to 1.0, gamma uses a series expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz and Stegun, 1964.)
Parameters

- $x$ – a double scalar value representing the argument at which the function is to be evaluated.
- $scale$ – a double scalar value representing the scale parameter, $b$.

Returns

A double scalar value representing the probability that an exponential random variable takes on a value less than or equal to $x$. 

---

**Probability Distribution Functions and Inverses**
extremeValue
static public double extremeValue(double x, double mu, double beta)

Description
Evaluates the extreme value cumulative probability distribution function.

Method extremeValue, also known as the Gumbel minimum distribution, evaluates the extreme value
distribution function, \( F \), of a uniform random variable with location parameter \( \mu \) and shape parameter \( \beta \); that is,

\[
F(x) = \int_0^x 1 - e^{-\frac{x-\mu}{\beta}} \, dt
\]

The case where \( \mu = 0 \) and \( \beta = 1 \) is called the standard Gumbel distribution.

Random numbers are generated by evaluating uniform variates \( u_i \), equating the continuous distribution
function, and then solving for \( x_i \) by first computing

\[
\frac{x_i - \mu}{\beta} = \log(-\log(1 - u_i)).
\]
Parameters

- $x$ – a double scalar value representing the argument at which the function is to be evaluated.
- $\mu$ – a double scalar value representing the location parameter, $\mu$.
- $\beta$ – a double scalar value representing the scale parameter, $\beta$
Returns
a double scalar value representing the probability that an extreme value random variable takes on a value less than or equal to x.

gamma
static public double gamma(double x, double a)

Description
Evaluates the gamma cumulative probability distribution function.

Method gamma evaluates the distribution function, $F$, of a gamma random variable with shape parameter $a$; that is,

$$F(x) = \frac{1}{\Gamma(a)} \int_0^x e^{-t} t^{a-1} dt$$

where $\Gamma(\cdot)$ is the gamma function. (The gamma function is the integral from 0 to $\infty$ of the same integrand as above). The value of the distribution function at the point $x$ is the probability that the random variable takes a value less than or equal to $x$.

The gamma distribution is often defined as a two-parameter distribution with a scale parameter $b$ (which must be positive), or even as a three-parameter distribution in which the third parameter $c$ is a location parameter. In the most general case, the probability density function over $(c, \infty)$ is

$$f(t) = \frac{1}{b^a \Gamma(a)} e^{-(t-c)/b} (x-c)^{a-1}$$

If $T$ is such a random variable with parameters $a$, $b$, and $c$, the probability that $T \leq t_0$ can be obtained from gamma by setting $X = (t_0 - c)/b$.

If $X$ is less than $a$ or if $X$ is less than or equal to 1.0, gamma uses a series expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz and Stegun, 1964.)
**Parameters**

- $x$ – a double scalar value representing the argument at which the function is to be evaluated.
- $\alpha$ – a double scalar value representing the shape parameter. This must be positive.

**Returns**

A double scalar value representing the probability that a gamma random variable takes on a value less than or equal to $x$. 

---

**Gamma Distribution Function**

<table>
<thead>
<tr>
<th>$\alpha$</th>
<th>0.5</th>
<th>1.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(x, \alpha)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Probability Distribution Functions and Inverses  
Cdf • 1263
geometric
static public double geometric(int x, double pin)

Description
Evaluates the discrete geometric cumulative probability distribution function.

Parameters
x – an int scalar value representing the argument at which the function is to be evaluated
pin – an double scalar value representing the probability parameter for each independent trial (the
probability of success for each independent trial).

Returns
a double scalar value representing the probability that a geometric random variable takes a value less
than or equal to x. The return value is the probability that up to x trials would be observed before
observing a success.

hypergeometric
static public double hypergeometric(int k, int sampleSize, int defectivesInLot, int lotSize)

Description
Evaluates the hypergeometric cumulative probability distribution function.

Method hypergeometric evaluates the distribution function of a hypergeometric random variable with
parameters n, l, and m. The hypergeometric random variable X can be thought of as the number of items
of a given type in a random sample of size n that is drawn without replacement from a population of size
l containing m items of this type. The probability function is

\[ \Pr(X = j) = \binom{m}{j} \binom{l-m}{n-j} \binom{n}{i} \quad \text{for } j = i, i+1, i+2, \ldots, \min(n,m) \]

where \( i = \max(0, n - l + m) \).

If k is greater than or equal to i and less than or equal to \( \min(n,m) \), hypergeometric sums the terms in
this expression for j going from i up to k. Otherwise, hypergeometric returns 0 or 1, as appropriate.
So, as to avoid rounding in the accumulation, hypergeometric performs the summation differently
depending on whether or not \( k \) is greater than the mode of the distribution, which is the greatest integer
less than or equal to \( (m+1)(n+1)/(l+2) \).

Parameters
k – an int, the argument at which the function is to be evaluated.
sampleSize – an int, the sample size, n.
defectivesInLot – an int, the number of defectives in the lot, m.
lotSize – an int, the lot size, l.
**Returns**
a double, the probability that a hypergeometric random variable takes a value less than or equal to k.

**logNormal**
static public double logNormal(double x, double mu, double sigma)

**Description**
Evaluates the standard lognormal cumulative probability distribution function.

\[ F(x) = \frac{1}{x \sigma \sqrt{2\pi}} \int_0^\infty \frac{1}{t} e^{-\frac{\ln(t) - \mu}{2\sigma^2}} dt \]
Parameters

- \( x \) – a `double` scalar value representing the argument at which the function is to be evaluated.
- \( \mu \) – a `double` scalar value representing the location parameter.
- \( \sigma \) – a `double` scalar value representing the shape parameter. \( \sigma \) must be a positive.
Returns
a double scalar value representing the probability that a standard lognormal random variable takes a
value less than or equal to \( x \).

**logistic**
static public double logistic(double \( x \), double \( \mu \), double \( s \))

**Description**
Evaluates the logistic cumulative probability distribution function.

Method logistic evaluates the distribution function, \( F \), of a logistic random variable with location
parameter \( \mu \) and scale parameter \( s \). It is given by

\[
F(x, \mu, s) = \frac{1}{1 + e^{-(x-\mu)/s}}
\]

where \( s > 0 \).

**Parameters**
- \( x \) – a double scalar value representing the argument at which the function is to be evaluated.
- \( \mu \) – a double scalar value representing the location parameter, \( \mu \).
- \( s \) – a double scalar value representing the scale parameter.

**Returns**
a double scalar value representing the probability that a logistic random variable takes a value less than
or equal to \( x \).

**noncentralBeta**
static public double noncentralBeta(double \( x \), double \( \text{shape1} \), double \( \text{shape2} \),
double \( \text{lambda} \))

**Description**
Evaluates the noncentral beta cumulative distribution function (CDF).

The noncentral beta distribution is a generalization of the beta distribution. If \( Z \) is a noncentral
chi-square random variable with noncentrality parameter \( \lambda \) and \( 2\alpha_1 \) degrees of freedom, and \( Y \) is a
chi-square random variable with \( 2\alpha_2 \) degrees of freedom which is statistically independent of \( Z \), then

\[
X = \frac{Z}{Z + Y} = \frac{\alpha_1 F}{\alpha_1 F + \alpha_2}
\]

is a noncentral beta-distributed random variable and

\[
F = \frac{\alpha_2 Z}{\alpha_1 Y} = \frac{\alpha_2 X}{\alpha_1 (1 - X)}
\]

is a noncentral \( F \)-distributed random variable. The CDF for noncentral beta variable \( X \) can thus be
simply defined in terms of the noncentral \( F \) CDF:

---

*Probability Distribution Functions and Inverses*  
Cdf • 1267
\[
CDF_{nc\beta}(x, \alpha_1, \alpha_2, \lambda) = CDF_{ncF}(f, 2\alpha_1, 2\alpha_2, \lambda)
\]
where \(CDF_{nc\beta}(x, \alpha_1, \alpha_2, \lambda)\) is the noncentral beta CDF with \(x = x, \alpha_1 = \text{shape1}, \alpha_2 = \text{shape2},\) and noncentrality parameter \(\lambda = \text{lambda};\) \(CDF_{ncF}(f, 2\alpha_1, 2\alpha_2, \lambda)\) is the noncentral F CDF with argument \(f,\) numerator and denominator degrees of freedom \(2\alpha_1\) and \(2\alpha_2\) respectively, and noncentrality parameter \(\lambda;\) and:

\[
f = \frac{\alpha_2 x}{\alpha_1 (1 - x)}; \quad x = \frac{\alpha_1 f}{\alpha_1 f + \alpha_2}
\]

(See documentation for class Cdf method noncentralF for a discussion of how the noncentral F CDF is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

**Parameters**
- \(x\) – a double scalar value representing the argument at which the function is to be evaluated. \(x\) must be nonnegative and less than or equal to 1.
- \(\text{shape1}\) – a double scalar value representing the first shape parameter. \(\text{shape1}\) must be positive.
- \(\text{shape2}\) – a double scalar value representing the second shape parameter. \(\text{shape2}\) must be positive.
- \(\text{lambda}\) – a double scalar value representing the noncentrality parameter. \(\text{lambda}\) must be nonnegative.

**Returns**
a double scalar value representing the probability that a noncentral beta random variable takes a value less than or equal to \(x\).

**noncentralF**

static public double noncentralF(double f, double df1, double df2, double lambda)

**Description**
Evaluates the noncentral F cumulative distribution function.

The noncentral F distribution is a generalization of the F distribution. If \(X\) is a noncentral chi-square random variable with noncentrality parameter \(\lambda\) and \(v_1\) degrees of freedom, and \(Y\) is a chi-square random variable with \(v_2\) degrees of freedom which is statistically independent of \(X,\) then

\[
F = \frac{(X / v_1)}{(Y / v_2)}
\]
is a noncentral F-distributed random variable whose \(CDF\) is given by:

\[
CDF(f, v_1, v_2, \lambda) = \sum_{j=0}^{\infty} c_j
\]
where:
\[
   c_j = \omega_j I_x(\frac{\nu_1}{2} + j, \frac{\nu_2}{2})
\]
\[
   \omega_j = e^{-\lambda/2} \frac{(\lambda/2)^j}{j!} = \frac{\lambda}{2j} \omega_{j-1}
\]
\[
   I_x(a, b) = \frac{\beta_x(a, b)}{\beta(a, b)}
\]
\[
   \beta_x(a, b) = \int_0^x t^{a-1}(1-t)^{b-1} dt = x^a \sum_{j=0}^{\infty} \frac{\Gamma(j+1-b)}{(a+j) \Gamma(1-b) j!} x^j
\]
\[
   \beta(a, b) = \beta_1(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
\]
\[
   I_x(a+1, b) = I_x(a, b) - T_x(a, b)
\]
\[
   T_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a+1) \Gamma(b)} x^a (1-x)^b = T_x(a-1, b) \frac{a-1+b}{a} x
\]
\[
   x = \frac{\nu_1 f}{\nu_2 + \nu_1 f}
\]

and \(\Gamma(\cdot)\) is the gamma function, \(\nu_1 = df1, \nu_2 = df2, \lambda = \lambda \text{m}bda, \) and \(f = f\).

With a noncentrality parameter of zero, the noncentral \(F\) distribution is the same as the \(F\) distribution.

**Parameters**

- \(f\) – a double value representing the argument at which the function is to be evaluated. \(f\) must be nonnegative.
- \(df1\) – a double value representing the number of numerator degrees of freedom. \(df1\) must be positive.
- \(df2\) – a double value representing the number of denominator degrees of freedom. \(df2\) must be positive.
- \(\lambda \text{m}bda\) – a double value representing the noncentrality parameter. \(\lambda \text{m}bda\) must be nonnegative.

**Returns**

a double scalar value representing the probability that a noncentral \(F\) random variable takes a value less than or equal to \(f\).

**noncentralchi**

static public double noncentralchi(double chsq, double df, double alam)
Description

Evaluates the noncentral chi-squared cumulative probability distribution function.

Method noncentralchi evaluates the distribution function, $F$, of a noncentral chi-squared random variable with $df$ degrees of freedom and noncentrality parameter $alam$, that is, with $\nu = df$, $\lambda = alam$, and $\chi = \text{chsq}$.

$$F(x) = \sum_{i=0}^{\infty} \frac{e^{-\lambda/2} \left(\frac{\lambda}{2}\right)^i}{i!} \int_{0}^{x} t^{(\nu+2i)/2-1} e^{-t/2} \frac{1}{2^{(\nu+2i)/2} \Gamma \left(\frac{\nu+2i}{2}\right)} \, dt$$

where $\Gamma(\cdot)$ is the gamma function. This is a series of central chi-squared distribution functions with Poisson weights. The value of the distribution function at the point $x$ is the probability that the random variable takes a value less than or equal to $x$.

The noncentral chi-squared random variable can be defined by the distribution function above, or alternatively and equivalently, as the sum of squares of independent normal random variables. If the $Y_i$ have independent normal distributions with means $\mu_i$ and variances equal to one and

$$X = \sum_{i=1}^{n} Y_i^2$$

then $X$ has a noncentral chi-squared distribution with $n$ degrees of freedom and noncentrality parameter equal to

$$\sum_{i=1}^{n} \mu_i^2$$

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the chi-squared distribution.

noncentralchi determines the point at which the Poisson weight is greatest, and then sums forward and backward from that point, terminating when the additional terms are sufficiently small or when a maximum of 1000 terms have been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-squared distribution functions.
Parameters

\( \text{chsq} \) – a double scalar value representing the argument at which the function is to be evaluated.
\( \text{df} \) – a double scalar value representing the number of degrees of freedom. \( \text{df} \) must be positive.
\( \text{alam} \) – a double scalar value representing the noncentrality parameter. This must be nonnegative, and \( \text{alam} + \text{df} \) must be less than or equal to 200,000.
Returns

a double scalar value representing the probability that a chi-squared random variable takes a value less than or equal to \( chsq \).

**noncentralstudentsT**

static public double noncentralstudentsT(double t, int idf, double delta)

**Description**

Evaluates the noncentral Student’s t cumulative probability distribution function.

Method `noncentralstudentsT` evaluates the distribution function \( F \) of a noncentral \( t \) random variable with \( idf \) degrees of freedom and noncentrality parameter \( delta \); that is, with \( \nu = idf \), \( \delta = delta \), and \( t_0 = t \),

\[
F(t_0) = \int_{-\infty}^{t_0} \frac{\nu^{\nu/2}e^{-\delta^2/2}}{\sqrt{\pi} \Gamma(\nu/2)} \frac{1}{(\nu+x^2)^{(\nu+1)/2}} \sum_{i=0}^{\infty} \Gamma((\nu+i+1)/2) \left( \frac{\delta^i}{i!} \right) \left( \frac{2x^2}{\nu+x^2} \right)^{i/2} dx
\]

where \( \Gamma(\cdot) \) is the gamma function. The value of the distribution function at the point \( t_0 \) is the probability that the random variable takes a value less than or equal to \( t_0 \).

The noncentral \( t \) random variable can be defined by the distribution function above, or alternatively and equivalently, as the ratio of a normal random variable and an independent chi-squared random variable.

If \( w \) has a normal distribution with mean \( \delta \) and variance equal to one, \( u \) has an independent chi-squared distribution with \( \nu \) degrees of freedom, and

\[
x = \frac{w}{\sqrt{u/\nu}}
\]

then \( x \) has a noncentral \( t \) distribution with \( \nu \) degrees of freedom and noncentrality parameter \( \delta \).

The distribution function of the noncentral \( t \) can also be expressed as a double integral involving a normal density function (see, for example, Owen 1962, page 108). The method `noncentralstudentsT` uses the method of Owen (1962, 1965), which uses repeated integration by parts on that alternate expression for the distribution function.

1272 • Cdf  JMSL
Parameters
- \( t \) – a double scalar value representing the argument at which the function is to be evaluated.
- \( \text{idf} \) – an int scalar value representing the number of degrees of freedom. This must be positive.
- \( \delta \) – a double scalar value representing the noncentrality parameter.

Returns
a double scalar value representing the probability that a noncentral Student’s \( t \) random variable takes a
value less than or equal to \( t \).

\textbf{normal}

\texttt{static public double normal(double x)}

**Description**

Evaluates the normal (Gaussian) cumulative probability distribution function. Method \texttt{normal} evaluates the distribution function, \( \Phi \), of a standard normal (Gaussian) random variable, that is,

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt
\]

The value of the distribution function at the point \( x \) is the probability that the random variable takes a value less than or equal to \( x \).

The standard normal distribution (for which \texttt{normal} is the distribution function) has mean of 0 and variance of 1. The probability that a normal random variable with mean \( \mu \) and variance \( \sigma^2 \) is less than \( y \) is given by \texttt{normal} evaluated at \( (y - \mu) / \sigma \).

\( \Phi(x) \) is evaluated by use of the complementary error function, erfc. The relationship is:

\[
\Phi(x) = \text{erfc}\left(-x/\sqrt{2.0}\right)/2
\]
Parameter

\( x \) – a double scalar value representing the argument at which the function is to be evaluated.

Returns

A double scalar value representing the probability that a normal variable takes a value less than or equal to \( x \).
poisson
static public double poisson(int k, double theta)

Description
Evaluates the Poisson cumulative probability distribution function.
poisson evaluates the distribution function of a Poisson random variable with parameter theta. theta, which is the mean of the Poisson random variable, must be positive. The probability function (with \( \theta = \text{theta} \)) is

\[
f(x) = e^{-\theta} \frac{\theta^x}{x!} \text{ for } x = 0, 1, 2, \ldots
\]

The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed. poisson uses the recursive relationship

\[
f(x+1) = f(x) \left( \frac{\theta}{x+1} \right), \text{ for } x = 0, 1, 2, \ldots k - 1
\]

with \( f(0) = e^{-\theta} \).

Parameters
- \( k \) – the int argument for which the Poisson distribution function is to be evaluated.
- \( \text{theta} \) – a double scalar value representing the mean of the Poisson distribution.

Returns
a double scalar value representing the probability that a Poisson random variable takes a value less than or equal to \( k \).

studentsT
static public double studentsT(double t, double df)

Description
Evaluates the Student’s t cumulative probability distribution function.
Method studentsT evaluates the distribution function of a Student’s t random variable with \( df \) degrees of freedom. If the square of \( t \) is greater than or equal to \( df \), the relationship of a t to an f random variable (and subsequently, to a beta random variable) is exploited, and routine beta is used. Otherwise, the method described by Hill (1970) is used. If \( df \) is not an integer, if \( df \) is greater than 19, or if \( df \) is greater than 200, a Cornish-Fisher expansion is used to evaluate the distribution function. If \( df \) is less than 20 and \(|t|\) is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a series given by Hill (1970) that converges well for large values of \( t \) is used.

For greater right tail accuracy, see com.imsl.stat.Cdf.complementaryStudentsT (p. 1255).
Student’s t Distribution Function

Parameters

- $t$ – a double scalar value representing the argument at which the function is to be evaluated
- $df$ – a double scalar value representing the number of degrees of freedom. This must be at least one.

Returns

A double scalar value representing the probability that a Student’s t random variable takes a value less
than or equal to \( t \).

**uniform**

```java
static public double uniform(double x, double aa, double bb)
```

**Description**

Evaluates the uniform cumulative probability distribution function.

Method `uniform` evaluates the distribution function, \( F \), of a uniform random variable with location parameter \( aa \) and scale parameter \( bb \); that is,

\[
f(x) = \begin{cases} 
0 & \text{if } x < aa \\
\frac{x-AA}{bb-aa} & \text{if } aa \leq x \leq bb \\
1 & \text{if } x > bb
\end{cases}
\]
Parameters

- $x$ – a double scalar value representing the argument at which the function is to be evaluated.
- $aa$ – a double scalar value representing the location parameter.
- $bb$ – a double scalar value representing the scale parameter.
Returns

a double scalar value representing the probability that a uniform random variable takes a value less than or equal to \( x \).

Example: The Cumulative Distribution Functions

Various cumulative distribution functions are exercised. Their use in this example typifies the manner in which other functions in the Cdf class would be used.

```java
import com.imsl.stat.*;

public class CdfEx1 {

 public static void main(String args[]) {
 double x, result, pin, qin;
 int k, n;
 // Beta
 x = .5;
 pin = 12.;
 qin = 12.;
 result = Cdf.beta(x, pin, qin);
 System.out.println("beta(.5, 12., 12.) is "+result);

 // binomial
 k = 3;
 n = 5;
 pin = .95;
 result = Cdf.binomial(k, n, pin);
 System.out.println("binomial(3, 5, .95) is "+result);

 // Chi
 x = .15;
 n = 2;
 result = Cdf.chi(x, n);
 System.out.println("chi(.15, 2) is "+result);
 }
}
```

Output

`beta(.5, 12., 12.)` is 0.5000000000000016
`binomial(3, 5, .95)` is 0.02259250000000004
`chi(.15, 2)` is 0.07225651367144709

Pdf class

```java
public final class com.imsl.stat.Pdf
```
Methods

\( F \)

\[ \text{static public double } F(\text{double } x, \text{ double } dfn, \text{ double } dfd) \]

**Description**
Evaluates the F probability density function.
The probability density function of the F distribution is
\[
f(x, dfn, dfd) = \frac{\Gamma \left( \frac{v_1 + v_2}{2} \right) \left( \frac{v_1}{2} \right)^{\frac{v_1}{2}} x^{\frac{v_1}{2}}}{\Gamma \left( \frac{v_1}{2} \right) \Gamma \left( \frac{v_2}{2} \right) \left( 1 + \frac{v_1 x}{v_2} \right)^{\frac{v_1 + v_2}{2}}}
\]
where \( v_1 \) and \( v_2 \) are the shape parameters \( dfn \) and \( dfd \) and \( \Gamma \) is the gamma function,
\[
\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt
\].

**Parameters**
- \( x \) – a double, the argument at which the function is to be evaluated.
- \( dfn \) – a double, the numerator degrees of freedom. It must be positive.
- \( dfd \) – a double, the denominator degrees of freedom. It must be positive.

**Returns**
a double, the value of the probability density function at \( x \).

\( \text{Pareto} \)

\[ \text{static public double } \text{Pareto}(\text{double } x, \text{ double } xm, \text{ double } k) \]

**Description**
Evaluates the Pareto probability density function.
The probability density function of the Pareto distribution is
\[
f(x, xm, k) = 1 - \frac{kx_{xm}^k}{x^{k+1}}
\]
where the scale parameter \( xm > 0 \) and the shape parameter \( k > 0 \). The function is only defined for \( x \geq xm \).

**Parameters**
- \( x \) – a double scalar value representing the argument at which the function is to be evaluated.
- \( xm \) – a double scalar value representing the scale parameter, \( xm \).
- \( k \) – a double scalar value representing the shape parameter.
Returns
a double scalar value representing the probability density function at x.

**Rayleigh**
static public double Rayleigh(double x, double alpha)

**Description**
Evaluates the Rayleigh probability density function.

**Parameters**
- x – a double scalar value representing the argument at which the function is to be evaluated. It must be non-negative.
- alpha – a double scalar value representing the scale parameter.

**Returns**
a double scalar value representing the probability density function at x.

**Weibull**
static public double Weibull(double x, double gamma, double alpha)

**Description**
Evaluates the Weibull probability density function.

**Parameters**
- x – a double scalar value representing the argument at which the function is to be evaluated. It must be non-negative.
- gamma – a double scalar value representing the shape parameter.
- alpha – a double scalar value representing the scale parameter.

**Returns**
a double scalar value, the probability density function at x.

**beta**
static public double beta(double x, double pin, double qin)

**Description**
Evaluates the beta probability density function.

**Parameters**
- x – a double, the argument at which the function is to be evaluated.
- pin – a double, the first beta distribution parameter.
- qin – a double, the second beta distribution parameter.
Returns
a double, the value of the probability density function at x.

**binomial**
static public double binomial(int k, int n, double pin)

**Description**
Evaluates the binomial probability density function.
Method `binomial` evaluates the probability that a binomial random variable with parameters `n` and `p` with `p=pin` takes on the value `k`. It does this by computing probabilities of the random variable taking on the values in its range less than (or the values greater than) `k`. These probabilities are computed by the recursive relationship

\[
\Pr(X = j) = \frac{(n + 1 - j) p}{j(1 - p)} \Pr(X = j - 1)
\]

To avoid the possibility of underflow, the probabilities are computed forward from 0, if `k` is not greater than `n \times p`, and are computed backward from `n`, otherwise. The smallest positive machine number, \( \varepsilon \), is used as the starting value for computing the probabilities, which are rescaled by \((1 - p)^n \varepsilon\) if forward computation is performed and by \(p^n \varepsilon\) if backward computation is done.

For the special case of \( p = 0 \), `binomial` is set to 0 if \( k \) is greater than 0 and to 1 otherwise; and for the case \( p = 1 \), `binomial` is set to 0 if \( k \) is less than \( n \) and to 1 otherwise.
Binomial Probability Function

Parameters

\( k \) – the int argument for which the binomial distribution function is to be evaluated.

\( n \) – the int number of Bernoulli trials.

\( pin \) – a double scalar value representing the probability of success on each independent trial.

Returns

a double scalar value representing the probability that a binomial random variable takes a value equal to
### chi
static public double chi(double chsq, double df)

**Description**
Evaluates the chi-squared probability density function

**Parameters**
- chsq – a double scalar value representing the argument at which the function is to be evaluated.
- df – a double scalar value representing the number of degrees of freedom. df must be positive.

**Returns**
a double scalar value, the value of the probability density function at chsq.

### discreteUniform
static public double discreteUniform(int x, int n)

**Description**
Evaluates the discrete uniform probability density function.

**Parameters**
- x – an int argument for which the discrete uniform probability density function is to be evaluated.
- x should be a value between the lower limit 0 and upper limit n
- n – an int scalar value representing the upper limit of the discrete uniform distribution.

**Returns**
a double scalar value representing the probability that a discrete uniform random variable takes a value equal to x.

### exponential
static public double exponential(double x, double scale)

**Description**
Evaluates the exponential probability density function

**Parameters**
- x – a double scalar value representing the argument at which the function is to be evaluated.
- scale – a double scalar value representing the scale parameter.

**Returns**
a double scalar value, the value of the probability density function at x.

### extremeValue
static public double extremeValue(double x, double mu, double beta)

---

Probability Distribution Functions and Inverses
**Description**
Evaluates the extreme value probability density function.

**Parameters**
- $x$ – a double scalar value representing the argument at which the function is to be evaluated.
- $\mu$ – a double scalar value representing the location parameter.
- $\beta$ – a double scalar value representing the scale parameter.

**Returns**
a double scalar value representing the probability density function at $x$.

---

### gamma

**static public double gamma(double x, double a, double b)**

**Description**
Evaluates the gamma probability density function. The probability density function of the gamma distribution is

$$f(x; a, b) = \frac{x^{a-1}}{\beta^a \Gamma(a)} e^{-x/b}$$

where $a$ is the shape parameter and $b$ is the scale parameter.

**Parameters**
- $x$ – a double scalar value representing the argument at which the function is to be evaluated.
- $a$ – a double scalar value representing the shape parameter. This must be positive.
- $b$ – a double scalar value representing the scale parameter. This must be positive.

**Returns**
a double scalar value, the probability density function at $x$.

---

### geometric

**static public double geometric(int x, double pin)**

**Description**
Evaluates the discrete geometric probability density function.

Method `geometric` evaluates the geometric distribution for the number of trials before the first success.

**Parameters**
- $x$ – the int argument for which the geometric probability function is to be evaluated
- $pin$ – a double scalar value representing the probability parameter of the geometric distribution (the probability of success for each independent trial)
Returns
a double scalar value representing the probability that a geometric random variable takes a value equal to x.

**hypergeometric**

```java
static public double hypergeometric(int k, int sampleSize, int defectivesInLot, int lotSize)
```

**Description**

Evaluates the hypergeometric probability density function.

Method `hypergeometric` evaluates the probability density function of a hypergeometric random variable with parameters \( n \), \( l \), and \( m \). The hypergeometric random variable \( X \) can be thought of as the number of items of a given type in a random sample of size \( n \) that is drawn without replacement from a population of size \( l \) containing \( m \) items of this type. The probability density function is:

\[
Pr(X = k) = \binom{m}{k} \frac{(l-m)}{\binom{n}{k}} \text{for } k = i, i+1, i+2, \ldots, \min(n,m)
\]

where \( i = \max(0, n - l + m) \). `hypergeometric` evaluates the expression using log gamma functions.

**Parameters**

- \( k \) – an int, the argument at which the function is to be evaluated.
- \( \text{sampleSize} \) – an int, the sample size, \( n \).
- \( \text{defectivesInLot} \) – an int, the number of defectives in the lot, \( m \).
- \( \text{lotSize} \) – an int, the lot size, \( l \).

**Returns**

a double, the probability that a hypergeometric random variable takes on a value equal to \( k \).

**logNormal**

```java
static public double logNormal(double x, double mu, double sigma)
```

**Description**

Evaluates the standard lognormal probability density function.

\[
F(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}
\]

**Parameters**

- \( x \) – a double scalar value representing the argument at which the function is to be evaluated.
- \( \mu \) – a double scalar value representing the location parameter.
- \( \sigma \) – a double scalar value representing the shape parameter. \( \sigma \) must be a positive.
Returns
a double scalar value representing the probability density function at x.

**logistic**
static public double logistic(double x, double mu, double s)

Description
Evaluates the logistic probability density function.

The probability density function of the logistic distribution is
\[
f(x, \mu, s) = \frac{e^{-(x-\mu)/s}}{s (1 + e^{-(x-\mu)/s})^2}
\]

where \( \mu \) is the location parameter and the scale parameter \( s > 0 \).

Parameters
- \( x \) – a double scalar value representing the argument at which the function is to be evaluated.
- \( \mu \) – a double scalar value representing the location parameter.
- \( s \) – a double scalar value representing the scale parameter.

Returns
a double scalar value representing the probability density function at x.

**noncentralBeta**
static public double noncentralBeta(double x, double shape1, double shape2, double lambda)

Description
Evaluates the noncentral beta probability density function (PDF).

The noncentral beta distribution is a generalization of the beta distribution. If \( Z \) is a noncentral chi-square random variable with noncentrality parameter \( \lambda \) and \( 2\alpha_1 \) degrees of freedom, and \( Y \) is a chi-square random variable with \( 2\alpha_2 \) degrees of freedom which is statistically independent of \( Z \), then

\[
X = \frac{Z}{Z + Y} = \frac{\alpha_1 F}{\alpha_1 F + \alpha_2}
\]

is a noncentral beta-distributed random variable and

\[
F = \frac{\alpha_2 Z}{\alpha_1 Y} = \frac{\alpha_2 X}{\alpha_1 (1 - X)}
\]

is a noncentral \( F \)-distributed random variable. The PDF for noncentral beta variable \( X \) can thus be simply defined in terms of the noncentral \( F \) PDF:

\[
PDF_{nc\beta}(x, \alpha_1, \alpha_2, \lambda) = PDF_{ncF}(f, 2\alpha_1, 2\alpha_2, \lambda) \frac{df}{dx}
\]
where $PDF_{nc\beta}(x, \alpha_1, \alpha_2, \lambda)$ is the noncentral beta PDF with $x = x$, $\alpha_1 = \text{shape1}$, $\alpha_2 = \text{shape2}$, and noncentrality parameter $\lambda = \text{lambda}$; $PDF_{ncF}(f, 2\alpha_1, 2\alpha_2, \lambda)$ is the noncentral F PDF with argument $f$, numerator and denominator degrees of freedom of freedom $2\alpha_1$ and $2\alpha_2$ respectively, and noncentrality parameter $\lambda$; and

$$\frac{df}{dx} = \frac{(\alpha_1f + \alpha_2)^2}{\alpha_1\alpha_2} = \frac{\alpha_2}{\alpha_1(1 - x)^2}$$

where

$$f = \frac{\alpha_2x}{\alpha_1(1 - x)}$$

and

$$x = \frac{\alpha_1f}{\alpha_1f + \alpha_2}$$

(See documentation for class Cdf method noncentralF for a discussion of how the noncentral F PDF is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

**Parameters**

- $x$ – a double scalar value representing the argument at which the function is to be evaluated. $x$ must be nonnegative and less than or equal to 1.
- $\text{shape1}$ – a double scalar value representing the first shape parameter. $\text{shape1}$ must be positive.
- $\text{shape2}$ – a double scalar value representing the second shape parameter. $\text{shape2}$ must be positive.
- $\text{lambda}$ – a double scalar value representing the noncentrality parameter. $\text{lambda}$ must be nonnegative.

**Returns**

a double scalar value representing the probability density associated with a noncentral beta random variable with value $x$.

**noncentralChi**

static public double noncentralChi(double chsq, double df, double alam)

**Description**

Evaluates the noncentral chi-squared probability density function (PDF).

The noncentral chi-squared distribution is a generalization of the chi-squared distribution. If $\{X_i\}$ are $k$ independent, normally distributed random variables with means $\mu_i$ and variances $\sigma_i^2$, then the random variable

$$X = \sum_{i=1}^{k} \left( \frac{X_i}{\sigma_i} \right)^2$$

is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution has two parameters, $k$ which specifies the number of degrees of freedom (i.e. the number of $X_i$), and $\lambda$ which is related to the mean of the random variables $X_i$ by
The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with \( k + 2i \) degrees of freedom, where \( i \) is the value of a Poisson distributed random variable with parameter \( \lambda/2 \). Thus, the probability density function is given by:

\[
F(x, k, \lambda) = \sum_{i=0}^{\infty} e^{-\lambda/2}(\lambda/2)^i \frac{x}{i!} f(x, k + 2i)
\]

where the (central) chi-squared PDF \( f(x, k) \) is given by:

\[
f(x, k) = \frac{(x/2)^{k/2} e^{-x/2}}{x \Gamma(k/2)} \quad \text{for } x > 0, \ else \ 0
\]

where \( \Gamma(\cdot) \) is the gamma function. The above representation of \( F(x, k, \lambda) \) can be shown to be equivalent to the representation:

\[
F(x, k, \lambda) = \frac{e^{-(\lambda+x)/2}(x/2)^{k/2}}{x} \sum_{i=0}^{\infty} \phi_i
\]

\[
\phi_i = \frac{(\lambda x/4)^i}{i! \Gamma(k/2 + i)}
\]

Method `noncentralChi` evaluates the probability density function, \( F(x, k, \lambda) \), of a noncentral chi-squared random variable with \( df \) degrees of freedom and noncentrality parameter \( \text{alam} \), corresponding to \( k = df \), \( \lambda = \text{alam} \), and \( x = \text{chsq} \).

Method `noncentralChi` evaluates the cumulative distribution function incorporating the above probability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central chi-squared distribution.

**Parameters**

- \( \text{chsq} \) – a double scalar value at which the function is to be evaluated. \( \text{chsq} \) must be nonnegative.
- \( \text{df} \) – a double scalar value representing the number of degrees of freedom. \( \text{df} \) must be positive.
- \( \text{alam} \) – a double scalar value representing the noncentrality parameter. \( \text{alam} \) must be nonnegative.

**Returns**

a double scalar value representing the probability density associated with a noncentral chi-squared random variable with value \( \text{chsq} \).

**noncentralF**

static public double noncentralF(double f, double df1, double df2, double lambda)
Evaluates the noncentral F probability density function (PDF).

The noncentral F distribution is a generalization of the F distribution. If \( x \) is a noncentral chi-square random variable with noncentrality parameter \( \lambda \) and \( v_1 \) degrees of freedom, and \( y \) is a chi-square random variable with \( v_2 \) degrees of freedom which is statistically independent of \( X \), then

\[
F = \frac{x}{v_1}/(y/v_2)
\]

is a noncentral F-distributed random variable whose PDF is given by:

\[
PDF(f, v_1, v_2, \lambda) = \Psi \sum_{k=0}^{\infty} \Phi_k
\]

where

\[
\Psi = e^{-\lambda/2(v_1 f)}\frac{(v_1/2)(v_2/2)}{f(v_1 f + v_2)^{(v_1+v_2)/2}} \Gamma(v_2/2)
\]

\[
\Phi_k = R^k \frac{\Gamma(v_1^2/2 + k)}{k! \Gamma(v_2^2/2 + k)}
\]

\[
R = \frac{\lambda v_1 f}{2(v_1 f + v_2)}
\]

where \( \Gamma(\cdot) \) is the gamma function, \( v_1 = \text{df}_1 \), \( v_2 = \text{df}_2 \), \( \lambda = \text{lambda} \), and \( f = f \).

With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.

The efficiency of the calculation of the above series is enhanced by:

1. calculating each term \( \Phi_k \) in the series recursively in terms of either the term \( \Phi_{k-1} \) preceding it or the term \( \Phi_{k+1} \) following it, and
2. initializing the sum with the largest series term and adding the subsequent terms in order of decreasing magnitude.

Special cases:

For \( R = \lambda f = 0 \):

\[
PDF(f, v_1, v_2, \lambda) = \Psi \Phi_0 = \Psi \frac{\Gamma([v_1 + v_2]/2)}{\Gamma(v_1/2)}
\]

For \( \lambda = 0 \):

\[
PDF(f, v_1, v_2, \lambda) = \frac{(v_1 f)^{v_1/2} (v_2)^{v_2/2}}{f(v_1 f + v_2)^{(v_1+v_2)/2}} \Gamma([v_1 + v_2]/2) \Gamma(v_1/2) \Gamma(v_2/2)
\]

For \( f = 0 \):

\[
PDF(f, v_1, v_2, \lambda) = \frac{e^{-\lambda/2 f^{v_1/2} - 1} (v_1/v_2)^{v_1/2}}{\Gamma(v_1/2) \Gamma(v_2/2)} \Gamma([v_1 + v_2]/2)
\]

\[
PDF(f, v_1, v_2, \lambda) = \begin{cases} 
0 & \text{if } v_1 > 2; \\
e^{-\lambda/2} & \text{if } v_1 = 2; \\
\infty & \text{if } v_1 < 2
\end{cases}
\]
Parameters

\( f \) – a double value representing the argument at which the function is to be evaluated. \( f \) must be nonnegative.

\( df1 \) – a double value representing the number of numerator degrees of freedom. \( df1 \) must be positive.

\( df2 \) – a double value representing the number of denominator degrees of freedom. \( df2 \) must be positive.

\( \lambda \) – a double value representing the noncentrality parameter. \( \lambda \) must be nonnegative.

Returns

a double value representing the probability density associated with a noncentral \( F \) random variable with value \( f \).

\textbf{noncentralStudentsT}

\begin{verbatim}
static public double noncentralStudentsT(double t, double df, double delta)
throws Pdf.AltSeriesAccuracyLossException
\end{verbatim}

Description

Evaluates the noncentral Student’s \( t \) probability density function.

The noncentral Student’s \( t \)-distribution is a generalization of the Student’s \( t \)-distribution. If \( w \) is a normally distributed random variable with unit variance and mean \( \delta \) and \( u \) is a chi-square random variable with \( \nu \) degrees of freedom that is statistically independent of \( w \), then

\[ T = \frac{w}{\sqrt{u/\nu}} \]

is a noncentral \( t \)-distributed random variable with \( \nu \) degrees of freedom and noncentrality parameter \( \delta \), that is, with \( \nu = df \), and \( \delta = delta \). The probability density function for the noncentral \( t \)-distribution is:

\[
f(t, \nu, \delta) = \frac{\nu^{\nu/2} e^{-\delta^2/2}}{\sqrt{\pi} \Gamma(\nu/2) (\nu + t^2)^{(\nu+1)/2}} \sum_{i=0}^{\infty} \Phi_i
\]

where

\[
\Phi_i = \frac{\Gamma((\nu + i + 1)/2)}{i!} [\delta^2 t^2]^{i/2} \left( \frac{2}{\nu + t^2} \right)^{i/2}
\]

and \( t = t \).

For noncentrality parameter \( \delta = 0 \), the PDF reduces to the (central) Student’s \( t \) PDF:

\[
f(t, \nu, 0) = \frac{\Gamma((\nu + 1)/2)}{\sqrt{\nu \pi} \Gamma(\nu/2)} (1 + (t^2/\nu))^{-(\nu+1)/2}
\]

and, for \( t = 0 \), the PDF becomes:

\[
f(0, \nu, \delta) = \frac{\Gamma((\nu + 1)/2)}{\sqrt{\nu \pi} \Gamma(\nu/2)} e^{-\delta^2/2}
\]

Method \textbf{noncentralStudentsT} evaluates the cumulative distribution function incorporating the above probability density function.
Parameters

t – a double value representing the argument at which the function is to be evaluated.
df – a double value representing the number of degrees of freedom. df must be positive.
delta – a double value representing the noncentrality parameter.

Returns

a double value representing the probability density associated with a noncentral Student’s t random variable with value t.

Exception

AltSeriesAccuracyLossException is thrown when the magnitude of alternating series sum is too small relative to the sum of positive terms to permit a reliable accuracy.

normal

class static public double normal(double x, double mean, double stdev)

Description

Evaluates the normal (Gaussian) probability density function.

The probability density function for a normal distribution is given by

\[
\frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2 / 2\sigma^2}
\]

where \( \mu \) and \( \sigma \) are the conditional mean and standard deviation.

Parameters

x – a double scalar value representing the argument at which the function is to be evaluated.
mean – a double scalar value containing the mean.
stddev – a double scalar value containing the standard deviation.

Returns

a double containing the value of the probability density function at x

poisson

class static public double poisson(int k, double theta)

Description

Evaluates the Poisson probability density function.

Method poisson evaluates the probability density function of a Poisson random variable with parameter theta. theta, which is the mean of the Poisson random variable, must be positive. The probability function (with \( \theta = \text{theta} \)) is

\[
f(x) = e^{-\theta} \theta^k / k!, \text{ for } k = 0, 1, 2, \ldots
\]

poisson evaluates this function directly, taking logarithms and using the log gamma function.
Poisson Probability Function

**Parameters**

- $k$ – the int argument for which the Poisson probability function is to be evaluated.
- $\theta$ – a double scalar value representing the mean of the Poisson distribution.

**Returns**

A double scalar value representing the probability that a Poisson random variable takes a value equal to...
Example: The Probability Density Functions

Various probability density functions are exercised. Their use in this example typifies the manner in which other functions in the Pdf class would be used.

```java
import com.imsl.stat.Pdf;
public class PdfEx1 {
 public static void main(String args[]) {
 //F Probability density function
 double result = Pdf.F(1.0, 100.0, 100.0);
 System.out.println("Pdf.F(1.0, 100.0, 100.0) is " + result);

 result = Pdf.normal(0.0, 0.0, 5.0);
 System.out.println("Pdf.normal(0.0, 0.0, 5.0) is " + result);
 }
}
```

Output

Pdf.F(1.0, 100.0, 100.0) is 1.9897309346795427
Pdf.normal(0.0, 0.0, 5.0) is 0.07978845608028655

Pdf.AltSeriesAccuracyLossException class

static public class com.imsl.stat.Pdf.AltSeriesAccuracyLossException extends com.imsl.IMSLException

The magnitude of alternating series sum is too small relative to the sum of positive terms to permit a reliable accuracy.

Constructors

Pdf.AltSeriesAccuracyLossException

public Pdf.AltSeriesAccuracyLossException(String message)

Description

The magnitude of alternating series sum is too small relative to the sum of positive terms to permit a reliable accuracy.
Parameter

message – a String containing the message explaining the cause of the exception.

Pdf.AltSeriesAccuracyLossException

public Pdf.AltSeriesAccuracyLossException(String key, Object[] arguments)

Description

The magnitude of alternating series sum is too small relative to the sum of positive terms to permit a reliable accuracy.

Parameters

key – a String containing the message explaining the cause of the exception.
arguments – an Object containing arguments for message String key.

InvCdf class

public final class com.imsl.stat.InvCdf

Inverse cumulative probability distribution functions.

Methods

F

static public double F(double p, double dfn, double dfd)

Description

Returns the inverse of the F cumulative probability distribution function. Method F evaluates the inverse distribution function of a Snedecor’s F random variable with dfn numerator degrees of freedom and dfd denominator degrees of freedom. The function is evaluated by making a transformation to a beta random variable and then using beta. If X is an F variate with $v_1$ and $v_2$ degrees of freedom and $Y = v_1X/(v_2 + v_1X)$, then Y is a beta variate with parameters $p = v_1/2$ and $q = v_2/2$. If $P \leq 0.5$, F uses this relationship directly, otherwise, it also uses a relationship between X random variables that can be expressed as follows, using f, which is the F cumulative distribution function:

$$F(X, dfn, dfd) = 1 - F(1/X, dfd, dfn)$$
Parameters

\( p \) – a double, the probability for which the inverse of the F distribution function is to be evaluated.

Argument \( p \) must be in the open interval \((0.0, 1.0)\).

\( dfn \) – a double, the numerator degrees of freedom. It must be positive.

\( dfd \) – a double, the denominator degrees of freedom. It must be positive.

Returns

a double, the probability that an F random variable takes a value less than or equal to this returned value is \( p \).

\( \text{Pareto} \)

static public double Pareto(double p, double xm, double k)

Description

Returns the inverse of the Pareto cumulative probability density function.

Parameters

\( p \) – a double scalar value representing the probability for which the inverse Pareto function is to be evaluated.

\( xm \) – a double scalar value representing the scale parameter, \( x_m \).

\( k \) – a double scalar value representing the shape parameter.

Returns

a double scalar value. The probability that a Pareto random variable takes on a value less than or equal to this returned value is \( p \).

\( \text{Rayleigh} \)

static public double Rayleigh(double p, double alpha)

Description

Returns the inverse of the Rayleigh cumulative probability distribution function.

Parameters

\( p \) – a double scalar value representing the probability for which the inverse Rayleigh function is to be evaluated.

\( alpha \) – a double scalar value representing the scale parameter.

Returns

a double scalar value. The probability that a Rayleigh random variable takes a value less than or equal to this returned value is \( p \).

\( \text{Weibull} \)

static public double Weibull(double p, double gamma, double alpha)

Description

Returns the inverse of the Weibull cumulative probability distribution function.
Parameters

- `p` – a `double` scalar value representing the probability for which the inverse Weibull function is to be evaluated.
- `gamma` – a `double` scalar value representing the shape parameter.
- `alpha` – a `double` scalar value representing the scale parameter.

Returns

A `double` scalar value. The probability that a Weibull random variable takes a value less than or equal to this returned value is `p`.

**beta**

```
static public double beta(double p, double pin, double qin)
```

Description

Evaluates the inverse of the beta cumulative probability distribution function.

Method `beta` evaluates the inverse distribution function of a beta random variable with parameters `pin` and `qin`, that is, with \(P = p\), \(p = pin\), and \(q = qin\), it determines \(x\) (equal to `beta (p, pin, qin)`), such that

\[
P = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \int_0^x t^{p-1} (1-t)^{q-1} dt
\]

where \(\Gamma(\cdot)\) is the gamma function. The probability that the random variable takes a value less than or equal to \(x\) is \(P\).

Parameters

- `p` – a `double`, the probability for which the inverse of the beta CDF is to be evaluated.
- `pin` – a `double`, the first beta distribution parameter.
- `qin` – a `double`, the second beta distribution parameter.

Returns

A `double`, the probability that a beta random variable takes a value less than or equal to this returned value is `p`.

**chi**

```
static public double chi(double p, double df)
```

Description

Evaluates the inverse of the chi-squared cumulative probability distribution function.

Method `chi` evaluates the inverse distribution function of a chi-squared random variable with `df` degrees of freedom, that is, with \(P = p\) and \(v = df\), it determines \(x\) (equal to `chi(p, df)`), such that

\[
P = \frac{1}{2^{v/2}\Gamma(v/2)} \int_0^x e^{-t/2}t^{v/2-1} dt
\]
where $\Gamma(\cdot)$ is the gamma function. The probability that the random variable takes a value less than or equal to $x$ is $P$.

For $v < 40$, chi uses bisection, if $v \geq 2$ or $P > 0.98$, or regula falsi to find the point at which the chi-squared distribution function is equal to $P$. The distribution function is evaluated using chi.

For $40 \leq v < 100$, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.18) to the normal distribution is used, and normal is used to evaluate the inverse of the normal distribution function. For $v \geq 100$, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.

**Parameters**

- $p$ – a double scalar value representing the probability for which the inverse chi-squared function is to be evaluated.
- $df$ – a double scalar value representing the number of degrees of freedom. This must be at least 0.5.

**Returns**

A double scalar value. The probability that a chi-squared random variable takes a value less than or equal to this returned value is $p$.

---

### discreteUniform

**static public int discreteUniform(double p, int n)**

**Description**

Returns the inverse of the discrete uniform cumulative probability distribution function.

**Parameters**

- $p$ – a double scalar value representing the probability for which the inverse discrete uniform function is to be evaluated
- $n$ – an int scalar value representing the upper limit of the discrete uniform distribution

**Returns**

An int scalar value. The probability that a discrete uniform random variable takes a value less than or equal to this returned value is $p$.

---

### exponential

**static public double exponential(double p, double scale)**

**Description**

Evaluates the inverse of the exponential cumulative probability distribution function.

Method exponential evaluates the inverse distribution function of a gamma random variable with scale parameter $=b$ and shape parameter $a=1.0$, that is, it determines $x = \text{exponential}(p, 1.0)$, such that

\[
P = \frac{1}{\Gamma(a)} \int_0^x e^{-t/b} dt
\]
where $\Gamma(\cdot)$ is the gamma function. The probability that the random variable takes a value less than or equal to $x$ is $P$. See the documentation for routine gamma for further discussion of the gamma distribution.

**Exponential** uses bisection and modified regula falsi to invert the distribution function, which is evaluated using method gamma.

**Parameters**
- $p$ – a double scalar value representing the probability at which the function is to be evaluated.
- scale – a double scalar value representing the scale parameter.

**Returns**
a double scalar value. The probability that an exponential random variable takes a value less than or equal to this returned value is $p$.

**Gamma**
static public double gamma(double p, double a)

**Description**
Evaluates the inverse of the gamma cumulative probability distribution function.

Method gamma evaluates the inverse distribution function of a gamma random variable with shape parameter $a$, that is, it determines $x = \gamma_p(a)$, such that

$$P = \frac{1}{\Gamma(a)} \int_0^x e^{-t}t^{a-1}dt$$

where $\Gamma(\cdot)$ is the gamma function. The probability that the random variable takes a value less than or equal to $x$ is $P$. See the documentation for routine gamma for further discussion of the gamma distribution.

Gamma uses bisection and modified regula falsi to invert the distribution function, which is evaluated using method gamma.

**Extreme Value**
static public double extremeValue(double p, double mu, double beta)

**Description**
Returns the inverse of the extreme value cumulative probability distribution function.

**Parameters**
- $p$ – a double scalar value representing the probability for which the inverse extreme value function is to be evaluated.
- mu – a double scalar value representing the location parameter.
- beta – a double scalar value representing the scale parameter.

**Returns**
a double scalar value. The probability that an extreme value random variable takes a value less than or equal to this returned value is $p$.
Parameters

\( p \) – a double scalar value representing the probability at which the function is to be evaluated.
\( a \) – a double scalar value representing the shape parameter. This must be positive.

Returns

a double scalar value. The probability that a gamma random variable takes a value less than or equal to this returned value is \( p \).

gamma

static public double gamma(double p, double a)

Description

Returns the inverse of the gamma cumulative probability distribution function.

Parameters

\( p \) – a double scalar value representing the probability at which the function is to be evaluated.
\( a \) – a double scalar value representing the shape parameter. This must be positive.

Returns

a double scalar value. The probability that a gamma random variable takes a value less than or equal to this returned value is \( p \).

gaussianStatic

static public double gaussianStatic(double mu, double sigma)

Description

Returns the inverse of the normal cumulative probability distribution function.

Parameters

\( \mu \) – a double scalar value representing the mean.
\( \sigma \) – a double scalar value representing the standard deviation.

Returns

a double scalar value. The probability that a normal random variable takes a value less than or equal to this returned value is \( p \).

geometric

static public double geometric(double r, double pin)

Description

Returns the inverse of the discrete geometric cumulative probability distribution function.

Parameters

\( r \) – a double scalar value representing the probability for which the inverse geometric function is to be evaluated.
\( pin \) – an int scalar value representing the probability parameter for each independent trial (the probability of success for each independent trial).

Returns

a double scalar value. The probability that a geometric random variable takes a value less than or equal to this returned value is \( r \).

logNormal

static public double logNormal(double p, double mu, double sigma)

Description

Returns the inverse of the standard lognormal cumulative probability distribution function.

Parameters

\( p \) – a double scalar value representing the probability for which the inverse lognormal function is to be evaluated.
\( \mu \) – a double scalar value representing the location parameter.
\( \sigma \) – a double scalar value representing the shape parameter. \( \sigma \) must be a positive.

Returns

a double scalar value. The probability that a standard lognormal random variable takes a value less than or equal to this returned value is \( p \).

logistic

static public double logistic(double p, double mu, double s)

Description

Returns the inverse of the logistic cumulative probability distribution function.

Parameters

\( p \) – a double scalar value representing the probability for which the inverse logistic function is to be evaluated.
\( \mu \) – a double scalar value representing the location parameter.
\( s \) – a double scalar value representing the scale parameter. \( s \) must be a positive.

Returns

a double scalar value. The probability that a logistic random variable takes a value less than or equal to this returned value is \( p \).
Parameters

- \( p \) – a double scalar value representing the probability for which the inverse logistic function is to be evaluated.
- \( \mu \) – a double scalar value representing the location parameter, \( \mu \).
- \( s \) – a double scalar value representing the scale parameter.

Returns

A double scalar value. The probability that a logistic random variable takes a value less than or equal to this returned value is \( p \).

**noncentralBeta**

```java
static public double noncentralBeta(double p, double shape1, double shape2, double lambda)
```

Description

Evaluates the inverse of the noncentral beta cumulative distribution function (CDF).

If \( Z \) is a noncentral chi-square random variable with noncentrality parameter \( \lambda \) and \( 2\alpha_1 \) degrees of freedom, and \( Y \) is a chi-square random variable with \( 2\alpha_2 \) degrees of freedom which is statistically independent of \( Z \), then

\[
X = \frac{Z}{Z + Y} = \frac{\alpha_1 F}{\alpha_1 F + \alpha_2}
\]

is a noncentral beta-distributed random variable and

\[
F = \frac{\alpha_2 Z}{\alpha_1 Y} = \frac{\alpha_2 X}{\alpha_1 (1 - X)}
\]

is a noncentral \( F \)-distributed random variable. The CDF for noncentral beta variable \( X \) can thus be simply defined in terms of the noncentral \( F \) CDF:

\[
CDF_{nc\beta}(x, \alpha_1, \alpha_2, \lambda) = CDF_{ncF}(f, 2\alpha_1, 2\alpha_2, \lambda)
\]

where \( CDF_{nc\beta}(x, \alpha_1, \alpha_2, \lambda) \) is the noncentral beta CDF with \( x = x \), \( \alpha_1 = \text{shape1} \), \( \alpha_2 = \text{shape2} \), and noncentrality parameter \( \lambda = \text{lambda} \); \( CDF_{ncF}(f, 2\alpha_1, 2\alpha_2, \lambda) \) is the noncentral \( F \) CDF with argument \( f \), numerator and denominator degrees of freedom \( 2\alpha_1 \) and \( 2\alpha_2 \) respectively, and noncentrality parameter \( \lambda \); and:

\[
f = \frac{\alpha_2 x}{\alpha_1 (1 - x)}; \quad x = \frac{\alpha_1 f}{\alpha_1 f + \alpha_2}
\]

(See documentation for class Cdf method noncentralF for a discussion of how the noncentral \( F \) CDF is defined and calculated.)

Method noncentralBeta evaluates

\[
x = CDF^{-1}_{nc\beta}(p, \alpha_1, \alpha_2, \lambda)
\]
by first evaluating:

\[ f = CDF^{-1}_{ncF}(p, 2\alpha_1, 2\alpha_2, \lambda) \]

and then solving for \( x \) using \( x = \frac{\alpha_1 f}{\alpha_1 f + \alpha_2} \). (See documentation for class `Cdf` method `noncentralF` for a discussion of how the inverse noncentral F CDF is calculated.)

**Parameters**
- \( p \) – a double scalar value representing the probability for which the inverse of the noncentral beta cumulative distribution function is to be evaluated. \( p \) must be non-negative and less than or equal to one.
- \( \text{shape1} \) – a double scalar value representing the first shape parameter. \( \text{shape1} \) must be positive.
- \( \text{shape2} \) – a double scalar value representing the second shape parameter. \( \text{shape2} \) must be positive.
- \( \lambda \) – a double scalar value representing the noncentrality parameter. \( \lambda \) must be nonnegative.

**Returns**
a double scalar value representing the inverse of the noncentral beta distribution function evaluated at \( p \). The probability that a noncentral beta random variable takes a value less than or equal to \( \text{noncentralBeta} \) is \( p \).

**noncentralF**

```java
static public double noncentralF(double p, double dfn, double dfd, double lambda)
```

**Description**
Evaluates the inverse of the noncentral F cumulative distribution function (CDF).

If \( X \) is a noncentral chi-square random variable with noncentrality parameter \( \lambda \) and \( \nu_1 \) degrees of freedom, and \( Y \) is a chi-square random variable with \( \nu_2 \) degrees of freedom which is statistically independent of \( X \), then

\[ F = \frac{X}{\nu_1}/(Y/\nu_2) \]

is a noncentral F-distributed random variable whose CDF is given by:

\[ \text{CDF}(f, \nu_1, \nu_2, \lambda) = \int_0^f \text{PDF}(x, \nu_1, \nu_2, \lambda)dx \]

where the probability density function \( \text{PDF}(x, \nu_1, \nu_2, \lambda) \) is given by:

\[ \text{PDF}(x, \nu_1, \nu_2, \lambda) = \Psi \sum_{k=0}^{\infty} \Phi_k \]

\[ \Psi = \frac{e^{-\lambda/2}(\nu_1x)^{\nu_1/2}(\nu_2)^{\nu_2/2}}{x(\nu_1x + \nu_2)^{(\nu_1+\nu_2)/2}\Gamma(\nu_2/2)} \]

\[ \Phi_k = \frac{\Gamma(\frac{\nu_1+\nu_2}{2} + k)}{k! \Gamma(\frac{\nu_1}{2} + \frac{\nu_2}{2} + k)} \]

**Probability Distribution Functions and Inverses InvCdf • 1303**
where $\Gamma(\cdot)$ is the gamma function, $v_1 = \text{dfn}$, $v_2 = \text{dfd}$, $\lambda = \text{lambda}$, and $p = CDF(f, v_1, v_2, \lambda)$ is the probability that $F \leq f$.

Method `noncentralF` evaluates

$$f = CDF^{-1}(p, v_1, v_2, \lambda)$$

Method `noncentralF` uses bisection and modified regula falsi search algorithms to invert the distribution function $CDF(f, v_1, v_2, \lambda)$, which is evaluated using method `noncentralF`. For sufficiently small $p$, an accurate approximation of $CDF^{-1}(p, v_1, v_2, \lambda)$ can be used which requires no such inverse search algorithms.

**Parameters**

- $p$ – a double scalar value representing the probability for which the inverse of the noncentral $F$ cumulative distribution function is to be evaluated. $p$ must be non-negative and less than one.
- $\text{dfn}$ – a double scalar value representing the number of numerator degrees of freedom. $\text{dfn}$ must be positive.
- $\text{dfd}$ – a double scalar value representing the number of denominator degrees of freedom. $\text{dfd}$ must be positive.
- $\lambda$ – a double scalar value representing the noncentrality parameter. $\lambda$ must be non-negative.

**Returns**

a double scalar value representing the inverse of the noncentral $F$ distribution function evaluated at $p$.

The probability that a noncentral $F$ random variable takes a value less than or equal to $\text{noncentralF}(p, \text{dfn}, \text{dfd}, \lambda)$ is $p$.

**noncentralchi**

static public double noncentralchi(double p, double df, double alam)

**Description**

Evaluates the inverse of the noncentral chi-squared cumulative probability distribution function.

Method `noncentralchi` evaluates the inverse distribution function of a noncentral chi-squared random variable with $\text{df}$ degrees of freedom and noncentrality parameter $\lambda$, that is, with $P = p$, $v = \text{df}$, and $\lambda = \text{alam}$, it determines $c_0 = \text{noncentralchi}(p$, $\text{df}$, $\lambda)$, such that

$$P = \sum_{i=0}^{\infty} \frac{e^{-\lambda/2} (\lambda/2)^i}{i!} \int_{0}^{c_0} \frac{x^{(v+2i)/2} e^{-x/2}}{2^{(v+2i)/2} \Gamma((v+2i)/2)} \, dx$$

where $\Gamma(\cdot)$ is the gamma function. The probability that the random variable takes a value less than or equal to $c_0$ is $P$.

Method `noncentralchi` uses bisection and modified regula falsi to invert the distribution function, which is evaluated using `noncentralchi`. See `noncentralchi` for an alternative definition of the noncentral chi-squared random variable in terms of normal random variables.
Parameters

\( p \) – a double scalar value representing the probability for which the inverse noncentral chi-squared distribution function is to be evaluated. \( p \) must be in the open interval \((0.0, 1.0)\).

\( df \) – a double scalar value representing the number of degrees of freedom. This must be at least 0.5, but less than or equal to 200,000.

\( \text{alam} \) – a double scalar value representing the noncentrality parameter. This must be nonnegative, and \( \text{alam} + df \) must be less than or equal to 200,000.

Returns

a double scalar value. The probability that a noncentral chi-squared random variable takes a value less than or equal to this returned value is \( p \).

noncentralstudentsT

static public double noncentralstudentsT(double p, int idf, double delta)

Description

Evaluates the inverse of the noncentral Student's t cumulative probability distribution function.

Method noncentralstudentsT evaluates the inverse distribution function of a noncentral \( t \) random variable with \( idf \) degrees of freedom and noncentrality parameter \( \delta \); that is, with \( P = p, \nu = idf, \delta = delta \), it determines \( t_0 = \text{noncentralstudentsT}(p, idf, delta) \), such that

\[
P = \int_{-\infty}^{t_0} \frac{v^{v/2}e^{-\delta^2/2}}{\sqrt{\pi} \Gamma(v/2)(v+x^2)^{(v+1)/2}} \sum_{i=0}^{\infty} \frac{\Gamma\left((v+i+1)/2\right)}{i!} \left(\frac{2x^2}{v+x^2}\right)^{i/2} \ dx
\]

where \( \Gamma(\cdot) \) is the gamma function. The probability that the random variable takes a value less than or equal to \( t_0 \) is \( P \). See noncentralstudentsT for an alternative definition in terms of normal and chi-squared random variables. The method noncentralstudentsT uses bisection and modified regula falsi to invert the distribution function, which is evaluated using noncentralstudentsT.

Parameters

\( p \) – a double scalar value representing the probability for which the function is to be evaluated.

\( idf \) – an int scalar value representing the number of degrees of freedom. This must be positive.

\( delta \) – a double scalar value representing the noncentrality parameter.

Returns

a double scalar value. The probability that a noncentral Student's \( t \) random variable takes a value less than or equal to this returned value is \( p \).

normal

static public double normal(double p)
Description
Evaluates the inverse of the normal (Gaussian) cumulative probability distribution function.

Method normal evaluates the inverse of the distribution function, $\Phi$, of a standard normal (Gaussian) random variable, that is, $\text{normal}(p) = \Phi^{-1}(p)$, where

$$
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt
$$

The value of the distribution function at the point $x$ is the probability that the random variable takes a value less than or equal to $x$. The standard normal distribution has a mean of 0 and a variance of 1.

Parameter

- $p$ – a double scalar value representing the probability at which the function is to be evaluated.

Returns

a double scalar value. The probability that a standard normal random variable takes a value less than or equal to this returned value is $p$.

studentsT
static public double studentsT(double p, double df)

Description
Returns the inverse of the Student’s t cumulative probability distribution function.

studentsT evaluates the inverse distribution function of a Student’s t random variable with $df$ degrees of freedom. Let $v = df$. If $v$ equals 1 or 2, the inverse can be obtained in closed form, if $v$ is between 1 and 2, the relationship of a $t$ to a beta random variable is exploited and beta is used to evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small values of $v$ greater than 2, Hill’s algorithm inverts an integrated expansion in $1/(1+t^2/v)$ of the $t$ density. For larger values, an asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Parameters

- $p$ – a double scalar value representing the probability for which the inverse Student’s t function is to be evaluated.
- $df$ – a double scalar value representing the number of degrees of freedom. This must be at least one.

Returns

a double scalar value. The probability that a Student’s t random variable takes a value less than or equal to this returned value is $p$.

uniform
static public double uniform(double p, double aa, double bb)

Description
Returns the inverse of the uniform cumulative probability distribution function.
Parameters

\( p \) – a double scalar value representing the probability for which the inverse uniform function is to be evaluated.

\( a_a \) – a double scalar value representing the minimum value.

\( b_b \) – a double scalar value representing the maximum value.

Returns

a double scalar value. The probability that a uniform random variable takes a value less than or equal to this returned value is \( p \).

Example: The Inverse Cumulative Distribution Functions

Various inverse cumulative distribution functions are exercised. Their use in this example typifies the manner in which other functions in the InvCdf class would be used.

```java
import com.imsl.stat.InvCdf;

public class InvCdfEx1 {
 public static void main(String args[]) {
 // Inverse Beta
 double x = .5;
 double pin = 12.;
 double qin = 12.;
 double result = InvCdf.beta(x, pin, qin);
 System.out.println("InvCdf.beta(.5, 12., 12.) is " + result);

 // Inverse Chi
 double prob = .99;
 int n = 2;
 result = InvCdf.chi(prob, n);
 System.out.println("InvCdf.chi(.99, 2) is " + result);
 }
}
```

Output

```
InvCdf.beta(.5, 12., 12.) is 0.4999999999999991
InvCdf.chi(.99, 2) is 9.210340371976173
```

CdfFunction interface

```java
public interface com.imsl.stat.CdfFunction
```

```
Probability Distribution Functions and Inverses CdfFunction ● 1307
```
Public interface for the user-supplied cumulative distribution function to be used by InverseCdf and ChiSquaredTest.

Method

cdf
public double cdf(double p)

Description
Public interface for the user-supplied cumulative distribution function to be used by InverseCdf.

Parameter
p – a double scalar value representing the point at which the inverse CDF is desired.

Returns
a double scalar value representing the probability that a random variable for this CDF takes a value less than or equal to this value is p.

InverseCdf class

public class com.imsl.stat.InverseCdf implements Serializable
Inverse of user-supplied cumulative distribution function.

Class InverseCdf evaluates the inverse of a continuous, strictly monotone function. Its most obvious use is in evaluating inverses of continuous distribution functions that can be defined by a user-supplied function, which implements the InverseCdf interface. The inverse is computed using regula falsi and/or bisection, possibly with the Illinois modification (see Dahlquist and Bjorck 1974). A maximum of 100 iterations are performed.

Constructor

InverseCdf
public InverseCdf(CdfFunction cdf)

Description
Constructor for the inverse of a user-supplied cumulative distribution function.
Parameter

cdf – is a CdfFunction object that contains the user-supplied function to be inverted. The cdf function must be continuous and strictly monotone.

Methods

eval
public double eval(double p, double guess) throws InverseCdf.DidNotConvergeException

Description
Evaluates the inverse CDF function.

Parameters

p – a double scalar value representing the point at which the inverse CDF is desired

guess – a double scalar value representing an initial estimate of the inverse at p

Returns
a double scalar value representing the inverse of the CDF at the point p. Cdf(inverseCdf) is “close” to p.

setTolerance
public void setTolerance(double tolerance)

Description
Sets the tolerance to be used as the convergence criterion.

Parameter

tolerance – a double scalar value representing the convergence criterion. When the relative change from one iteration to the next is less than tolerance, convergence is assumed. The default value for tolerance is 0.0001.

Example: Inverse of a User-Supplied Cumulative Distribution Function

In this example, InverseCdf is used to compute the point such that the probability is 0.9 that a standard normal random variable is less than or equal to the computed point.

```java
import com.imsl.stat.*;

public class InverseCdfEx1 implements CdfFunction {
 public double cdf(double x) {
 return Cdf.normal(x);
 }

 public static void main(String args[]) throws Exception {
```
double x1, p;

p = 0.9;
InverseCdfEx1 invcdf = new InverseCdfEx1();
InverseCdf inv = new InverseCdf(invcdf);
inv.setTolerance(1.0e-10);
x1 = inv.eval(p, 0.0);
System.out.println("The 90th percentile of a standard normal is " + x1);
}

Output
The 90th percentile of a standard normal is 1.2815515655446006

InverseCdf.DidNotConvergeException class

static public class com.imsl.stat.InverseCdf.DidNotConvergeException extends com.imsl.IMSLException

The iteration did not converge

Constructors

InverseCdf.DidNotConvergeException
public InverseCdf.DidNotConvergeException(String message)

Description
Constructs a DidNotConvergeException object.

Parameter
message – a String containing the error message

InverseCdf.DidNotConvergeException
public InverseCdf.DidNotConvergeException(String key, Object[] arguments)

Description
Constructs a DidNotConvergeException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string
Distribution interface

public interface com.imsl.stat.Distribution

Public interface for the user-supplied distribution function.
The purpose of this interface is to fit the probability distribution to a given set of data and return the probability density at each value of the given set of data.

Method

eval
public double[] eval(double[] xData)

Description
Evaluation method to fit the user-supplied probability density function to input data

Parameter

xData – a double array representing the points at which the probability density function is to be evaluated.

Returns

a double array representing the probability density at each value of xData

ProbabilityDistribution interface


Public interface for a user-supplied probability distribution.
The purpose of this interface is to evaluate the probability density of a given set of data by either fitting the probability density function to the data or by evaluating the probability density function with supplied parameters. Both eval methods return the probability density at each value of the given set of data. After the probability distribution is fitted to the data, the GetParameters method can be used to return the distribution parameters used to fit the probability density function to the data.
The DataMining package class NaiveBayesClassifier uses an implementation of ProbabilityDistribution to train continuous data.
Methods

**eval**

```java
public double eval(double xData, Object[] parameters)
```

**Description**

Evaluation method for the user-supplied distribution function and parameters. Evaluates the user-supplied probability density at `xData` using the supplied probability distribution parameters.

**Parameters**

- `xData` – a double scalar value containing the point the distribution function is to evaluate
- `parameters` – an Object array containing the probability distribution parameters to be used in evaluating `xData`. See method `getParameters`.

**Returns**

A double scalar value representing the probability density at `xData`.

**eval**

```java
public double[] eval(double[] xData, Object[] parameters)
```

**Description**

Evaluates the user-supplied probability density of each value in `xData` using the supplied probability distribution parameters.

**Parameters**

- `xData` – a double array containing the points at which the probability density function is to be evaluated
- `parameters` – an Object array containing the probability distribution parameters to be used in evaluating `xData`, see method `getParameters`.

**Returns**

An array representing the probability density of each value in `xData`.

**getParameters**

```java
public Object[] getParameters()
```

**Description**

Returns the current parameters of the probability density function.

**Returns**

An Object array containing the parameters resulting from the last invocation of the (Distribution) `eval` method with the following signature, `double[] eval(double[] xData)`. This Object array can be used as input to the `eval` methods that require an Object array of distribution parameters as input.
NormalDistribution class


Evaluates the normal (Gaussian) probability density for a given set of data.

NormalDistribution evaluates the normal probability density of a given set of data, xData. If parameters are not supplied, the eval method fits the normal probability density function to the data by first calculating the mean and standard deviation of xData. The normal probability density function is defined as:

\[ f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

where \(\mu\) and \(\sigma\) are the mean and standard deviation.

The DataMining package class NaiveBayesClassifier uses NormalDistribution as the default method to train continuous data.

Constructor

NormalDistribution
public NormalDistribution()

Methods

eval
public double[] eval(double[] xData)

Description
Fits a normal (Gaussian) probability distribution to xData and returns the probability density at each value.

Parameter
xData – a double array representing the points at which the normal probability distribution function is to be evaluated

Returns
a double array representing the normal probability density at each value in xData

eval
public double eval(double xData, Object[] parameters)
Description
Evaluates a normal (Gaussian) probability density at a given point xData.

Parameters
- **xData** – a double containing the point at which the normal probability density function is to be evaluated
- **parameters** – an Object array representing the parameters used to evaluate the normal probability density, see method getParameters

Returns
- a double representing the normal probability density at xData

---

**eval**

*public double[] eval(double[] xData, Object[] parameters)*

Description
Evaluates a normal (Gaussian) probability distribution with the given parameters at each point in xData and returns the probability density at each value.

Parameters
- **xData** – a double array representing the points at which the normal probability distribution function is to be evaluated
- **parameters** – an Object array representing the parameters used to evaluate the normal probability density function, see method getParameters

Returns
- a double array representing the normal probability density of each value in xData

---

**getMean**

*public double getMean()*

Description
Returns the population mean of xData.

Returns
- a double representing the population mean of xData

---

**getParameters**

*public Object[] getParameters()*

Description
Returns the current parameters of the normal probability density function.
Returns
an Object array containing the parameters resulting from the last invocation of the \((\text{Distribution})\) eval method with the following signature, \(\text{double[]} \ \text{eval}(\text{double[]} \ \text{xData})\). This Object array can be used as input to the eval methods that require an Object array of distribution parameters as input.

getStandardDeviation

public double getStandardDeviation()

Description

Returns the population standard deviation.

Returns

a double representing the population standard deviation of xData

---

**GammaDistribution class**


Evaluates a gamma probability density for a given set of data.

\text{GammaDistribution} \text{evaluates} \text{the} \gamma \text{density of a given set of data,} \text{xData}. \text{If} \text{parameters} \text{are} \text{not supplied, the} \text{Eval} \text{method} \text{fits} \text{the} \gamma \text{probability} \text{density} \text{function} \text{to the data} \text{by} \text{first} \text{calculating} \text{the shape and scale parameters} \text{using} \text{an} \text{MLE technique} \text{for} \text{a best fit}. \text{The} \gamma \text{probability} \text{density function} \text{is defined} \text{as:}

\[ f(x) = x^{a-1} \frac{e^{-x/b}}{b^a \Gamma(a)}, \quad x > 0, \quad a > 0 \text{ and } b > 0, \]

where \(a\) and \(b\) are the scale and shape parameters.

The DataMining package class NaiveBayesClassifier uses GammaDistribution as a method to train continuous data.

---

**Constructor**

\text{GammaDistribution}

public GammaDistribution()
Methods

**eval**

```java
public double[] eval(double[] xData)
```

**Description**
Fits a gamma probability distribution to `xData` and returns the probability density at each value.

**Parameter**
- `xData` – a `double` array representing the points at which the gamma probability distribution function is to be evaluated

**Returns**
a `double` array representing the gamma probability density at each value of `xData`

**eval**

```java
public double eval(double xData, Object[] parameters)
```

**Description**
Evaluates a gamma probability density at a given point `xData`.

**Parameters**
- `xData` – a `double` representing the point at which the gamma probability distribution function is to be evaluated
- `parameters` – an `Object` array representing the parameters used to evaluate the gamma distribution, see method `getParameters`

**Returns**
a `double` representing the gamma probability density at `xData`

**eval**

```java
public double[] eval(double[] xData, Object[] parameters)
```

**Description**
Evaluates a gamma probability distribution with a given set of parameters at each point in `xData` and returns the probability density at each value.

**Parameters**
- `xData` – a `double` array representing the points at which the gamma probability distribution function is to be evaluated
- `parameters` – an `Object` array representing the parameters used to evaluate the gamma distribution, see method `getParameters`

**Returns**
a `double` array representing the gamma probability density at each value of `xData`

**getParameters**

```java
public Object[] getParameters()
```

1316 • GammaDistribution JMSL
Description
Returns the current parameters of the gamma probability density function.

Returns
an Object array containing the parameters resulting from the last invocation of the (Distribution) eval method with the following signature, double[] eval(double[] xData). This Object array can be used as input to the eval methods that require an Object array of distribution parameters as input.

getScaleParameter
public double getScaleParameter()

Description
Returns the maximum-likelihood estimate found for the gamma scale parameter.

Returns
a double representing the maximum-likelihood estimate found for the gamma scale parameter

getShapeParameter
public double getShapeParameter()

Description
Returns the maximum-likelihood estimate found for the gamma shape parameter.

Returns
a double representing the maximum-likelihood estimate found for the gamma shape parameter

LogNormalDistribution class


Evaluates a lognormal probability density for a given set of data.

LogNormalDistribution evaluates the lognormal probability density of a given set of data, xData. If parameters are not supplied, the eval method fits the lognormal probability density function to the data by first calculating the mean and standard deviation. The lognormal probability density function is defined as:

\[
f(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln(x) - \mu)^2}{2\sigma^2}}\]

where \(\mu\) and \(\sigma\) are the mean and standard deviation.

The DataMining package class NaiveBayesClassifier uses LognormalDistribution as a method to train continuous data.
Constructor

LogNormalDistribution
public LogNormalDistribution()

Methods

eval
public double[] eval(double[] xData)

Description
Fits a lognormal probability distribution to xData and returns the probability density at each value.

Parameter
xData – a double array representing the points at which the lognormal probability distribution function is to be evaluated

Returns
a double array representing the lognormal probability density at each value of xData

eval
public double eval(double xData, Object[] parameters)

Description
Evaluates a lognormal probability density function at a given point xData.

Parameters
xData – a double representing the point at which the lognormal probability distribution function is to be evaluated
parameters – an Object array representing the parameters used to evaluate the lognormal distribution, see method getParameters

Returns
a double representing the lognormal probability density at xData

eval
public double[] eval(double[] xData, Object[] parameters)

Description
Evaluates a lognormal probability distribution with a given set of parameters at each point in xData and returns the probability density at each value.
Parameters

xData – a double array representing the points at which the lognormal probability distribution function is to be evaluated

parameters – an Object array representing the parameters used to evaluate the lognormal distribution, see method getParameters

Returns

a double array representing the lognormal probability density at each value of xData

gMean

gMean

Description

Returns the lognormal probability distribution mean parameter.

Returns

a double representing the mean parameter

getParameters

gParameters

Description

Returns the current parameters of the lognormal probability density function

Returns

an Object array containing the parameters resulting from the last invocation of the (Distribution) eval method with the following signature, double[] eval(double[] xData). This Object array can be used as input to the eval methods that require an Object array of distribution parameters as input.

getStandardDeviation

getStandardDeviation

Description

Returns the lognormal probability distribution standard deviation parameter.

Returns

a double representing the standard deviation parameter
Evaluates a Poisson probability density of a given set of data.

The `poissonDistribution` evaluates the Poisson probability density of a given set of data, `xData`. If parameters are not supplied, the `eval` method fits the Poisson probability density function by first calculating \( \theta \). The Poisson probability density function is defined as:

\[
f(x) = \frac{\theta^x e^{-\theta}}{x!}, \quad x \geq 0 \text{ and } \theta > 0.
\]

The DataMining package class `NaiveBayesClassifier` uses `PoissonDistribution` as a method to train continuous data.

**Constructor**

```java
class PoissonDistribution {
 public PoissonDistribution()
}
```

**Methods**

```java
public double[] eval(double[] xData)
```

**Description**

Fits a Poisson probability distribution to `xData` and returns the probability density at each value.

**Parameter**

- `xData` – a `double` array representing the points at which the Poisson probability distribution function is to be evaluated

**Returns**

A `double` array representing the Poisson probability density at each value of `xData`

```java
public double eval(double xData, Object[] parameters)
```

**Description**

Evaluates a Poisson probability density function at a given point `xData`.

**Parameters**

- `xData` – a `double` representing the point at which the Poisson probability distribution function is to be evaluated
- `parameters` – an `Object` array representing the parameters used to evaluate the Poisson distribution, see method `getParameters`
Returns

a double representing the Poisson probability density at xData

eval

public double[] eval(double[] xData, Object[] parameters)

Description

Evaluates a Poisson probability distribution with a given set of parameters at each point in xData and returns the probability density at each value.

Parameters

xData – a double array representing the points at which the Poisson probability distribution function is to be evaluated
parameters – an Object array representing the parameters used to evaluate the Poisson distribution, see method getParameters.

Returns

a double array representing the Poisson probability density at each value of xData

getParameters

public Object[] getParameters()

Description

Returns the current parameters of the Poisson probability density function.

Returns

an Object array containing the parameters resulting from the last invocation of the (Distribution) eval method with the following signature, double[] eval(double[] xData). This Object array can be used as input to the eval methods that require an Object array of distribution parameters as input.

getTheta

public double getTheta()

Description

Returns the mean number of successes in a given time period of the Poisson probability distribution.

Returns

a double representing the mean number of successes in a given time period of the Poisson probability distribution
Chapter 23: Random Number Generation

Types

class Random ................................................................. 1324
class FaureSequence .......................................................... 1349
class MersenneTwister ...................................................... 1353
class MersenneTwister64 ................................................... 1357
interface RandomSequence ............................................. 1361
class RandomSamples ..................................................... 1362

Usage Notes

Overview of Random Number Generation

This chapter describes functions for the generation of random numbers that are useful for applications in simulation studies.

In the following discussions, the phrases random numbers, random deviates, deviates, and variates are used interchangeably. The phrase pseudorandom is sometimes used to emphasize that the numbers generated are really not random since they result from a deterministic process. The usefulness of pseudorandom numbers is derived from the similarity, in a statistical sense, of samples of the pseudorandom numbers to samples of observations from the specified distributions. In short, while the pseudorandom numbers are completely deterministic and repeatable, they simulate the realizations of independent and identically distributed random variables.

Class com.imsl.stat.Random extends java.util.Random. It adds the ability to generate random numbers with a number of different non-uniform distributions. The non-uniform random number generators use a uniform random number generator. The uniform random number generator in java.util.Random can be used. com.imsl.stat.Random adds a linear congruential generator. It is also possible to use another uniform generator as long as it implements the Random.BaseGenerator interface.
The MersenneTwister and MersenneTwister64 uniform random number generators generate random number series with very long periods. They both implement the Random.BaseGenerator interface and so can be used as the base uniform generator in com.imsl.stat.Random.

The class FaureSequence generates the low-discrepancy Faure sequence. This is also called a quasi-random generator. The sequence is a series of points in $n$-dimensions, which are close to being as equally spaced as possible. Low-discrepancy refers to the difference from actually being as equally spaced as possible.

The FaureSequence implements the RandomSequence interface. This interface defines a sequence of points in $n$-dimensions. It is used by the class com.imsl.math.HyperRectangleQuadrature to evaluate $n$-dimensional integrals.

### Random class

```java
public class com.imsl.stat.Random extends java.util.Random implements Serializable, Cloneable

Generate uniform and non-uniform random number distributions.

The non-uniform distributions are generated from a uniform distribution. By default, this class uses the uniform distribution generated by the base class java.util.Random. If the multiplier is set in this class then a multiplicative congruential method is used. The form of the generator is

$$x_i \equiv cx_{i-1} \mod (2^{31} - 1)$$

Each x_i is then scaled into the unit interval $(0,1)$. If the multiplier, c, is a primitive root modulo $2^{31} - 1$ (which is a prime), then the generator will have a maximal period of $2^{31} - 2$. There are several other considerations, however. See Knuth (1981) for a good general discussion. Possible values for c are 16807, 397204094, and 950706376. The selection is made by the method setMultiplier. Evidence suggests that the performance of 950706376 is best among these three choices (Fishman and Moore 1982).

Alternatively, one can select a 32-bit or 64-bit Mersenne Twister generator by first instantiating com.imsl.stat.MersenneTwister (p. 1353) or com.imsl.stat.MersenneTwister64 (p. 1357). These generators have a period of $2^{19937} - 1$ and a 623-dimensional equidistribution property. See Matsumoto et al. 1998 for details.

The generation of uniform $(0,1)$ numbers is done by the method nextDouble.

Nonuniform random numbers are generated using a variety of transformation procedures. All of the transformations used are exact (mathematically). The most straightforward transformation is the inverse CDF technique, but it is often less efficient than others involving acceptance/rejection and mixtures. See Kennedy and Gentle(1980) for discussion of these and other techniques. Many of the nonuniform generators use different algorithms depending on the values of the parameters of the distributions. This is particularly true of the generators for discrete distributions. Schmeiser (1983) gives an overview of techniques for generating deviates from discrete distributions.

1324 • Random

JMSL
Extensive empirical tests of some of the uniform random number generators available in the Random class are reported by Fishman and Moore (1982 and 1986). Results of tests on the generator using the multiplier 16807 are reported by Learmonth and Lewis (1973). If the user wishes to perform additional tests, the routines in Chapter 17, Tests of Goodness of Fit, may be of use. Often in Monte Carlo applications, it is appropriate to construct an ad hoc test that is sensitive to departures that are important in the given application. For example, in using Monte Carlo methods to evaluate a one-dimensional integral, autocorrelations of order one may not be harmful, but they may be disastrous in evaluating a two-dimensional integral. Although generally the routines in this chapter for generating random deviates from nonuniform distributions use exact methods, and, hence, their quality depends almost solely on the quality of the underlying uniform generator, it is often advisable to employ an ad hoc test of goodness of fit for the transformations that are to be applied to the deviates from the nonuniform generator.

Three methods are associated with copulas. A copula is a multivariate cumulative probability distribution (CDF) whose arguments are random variables uniformly distributed on the interval [0,1] corresponding to the probabilities (variates) associated with arbitrarily distributed marginal deviates. The copula structure allows the multivariate CDF to be partitioned into the copula, which has associated with it information characterizing the dependence among the marginal variables, and the set of separate marginal deviates, each of which has its own distribution structure.

Two methods, nextGaussianCopula and nextStudentsTCopula, allow the user to specify a correlation structure (in the form of a Cholesky matrix) which can be used to imprint correlation information on a sequence of multivariate random vectors. Each call to one of these methods returns a random vector whose elements (variates) are each uniformly distributed on the interval [0,1] and correlated according to a user-specified Cholesky matrix. These variate vector sequences may then be inverted to marginal deviate sequences whose distributions and imprinted correlations are user-specified.

Method nextGaussianCopula generates a random Gaussian copula sequence by inverting uniform [0,1] random numbers to N(0,1) deviates vectors, imprinting each vector with the correlation information by multiplying it with the Cholesky matrix, and then using the N(0,1) CDF to map the imprinted deviates back to uniform [0,1] variates.

Method nextStudentsTCopula inverts a vector of uniform [0, 1] random numbers to a N(0,1) deviate vector, imprints the vector with correlation information by multiplying it with the Cholesky matrix, transforms the imprinted N(0,1) vector to an imprinted Student’s t vector (where each element is Student’s t distributed with ν degrees of freedom) by dividing each element of the imprinted N(0,1) vector by \(\sqrt{\nu} \), where s is a random deviate taken from a chi-squared distribution with ν degrees of freedom, and finally maps each element of the resulting imprinted Student’s t vector back to a uniform [0, 1] distributed variate using the Student’s t CDF.

The third copula method, canonicalCorrelation, extracts a correlation matrix from a sequence of multivariate deviate vectors whose component marginals are arbitrarily distributed. This is accomplished by first extracting the empirical CDF from each of the marginal deviates and then using this CDF to map the deviates to uniform [0,1] variates which are then inverted to Normal (0,1) deviates. Each element \(C_{ij} \) of the correlation matrix can then be extracted by averaging the products \(z_{it} z_{jt} \) of deviates i and j over the t-indexed sequence. The utility of method canonicalCorrelation is that because the correlation matrix is derived from N(0,1) deviates, the correlation is unbiased, i.e. undistorted by the arbitrary marginal distribution structures of the original deviate vector sequences. This is important in such financial applications as portfolio optimization, where correlation is used to estimate and minimize risk.
The use of these routines is illustrated with RandomEx2.java, which first uses method nextGaussianCopula to create a correlation imprinted sequence of random deviate vectors and then uses method canonicalCorrelation to extract the correlation matrix from the imprinted sequence of vectors.

Constructors

Random

```java
public Random()
```

Description

Constructor for the Random number generator class.

Random

```java
public Random(Random.BaseGenerator baseGenerator)
```

Description

Constructor for the Random number generator class with an alternate basic number generator.

Parameter

- `baseGenerator` – is used to override the method `next`.

Random

```java
public Random(long seed)
```

Description

Constructor for the Random number generator class with supplied seed.

Parameter

- `seed` – a `long` which represents the random number generator seed in the range of -2,147,483,647 to +2,147,483,647

Methods

canonicalCorrelation

```java
public double[][] canonicalCorrelation(double[][] deviate)
```

Description

Method `canonicalCorrelation` generates a canonical correlation matrix from an arbitrarily distributed multivariate deviate sequence with `nvar` deviate variables, `nseq` steps in the sequence, and a Gaussian Copula dependence structure.

Method `canonicalCorrelation` first maps each of the `j=1..nvar` input deviate sequences `deviate[k=1..nseq][j]` into a corresponding sequence of variates, say `variate[k][j]` (where
variates are values of the empirical cumulative probability function, \(CDF(x)\), defined as the probability that random deviate variable \(X \leq x\), and where \(nseq = \text{deviate}.\text{length}\) and \(nvar = \text{deviate}[0].\text{length}\). The variate matrix \(\text{variate}[k][j]\) is then mapped into Normal(0,1) distributed deviates \(z_{kj}\) using the method \(\text{Cdf}.\text{inverseNormal}(<\text{variate}[k][j])\) and then the standard covariance estimator

\[
C_{ij} = \frac{1}{nseq} \sum_{k=1}^{nseq} z_{ki} z_{kj}
\]

is used to calculate the canonical correlation matrix \(\text{correlation} = \text{canonicalCorrelation}(\text{deviate})\), where \(C_{ij} = \text{correlation}[i][j]\) and \(nseq = nseq\).

If a multivariate distribution has Gaussian marginal distributions, then the standard “empirical” correlation matrix given above is “unbiased”, i.e. an accurate measure of dependence among the variables. But when the marginal distributions depart significantly from Gaussian, i.e. are skewed or flattened, then the empirical correlation may become biased. One way to remove such bias from dependence measures is to map the non-Gaussian-distributed marginal deviates to Gaussian N(0,1) deviates (by mapping the non-Gaussian marginal deviates to empirically derived marginal CDF variate values, then inverting the variates to N(0,1) deviates as described above), and calculating the standard empirical correlation matrix from these N(0,1) deviates as in the equation above. The resulting “(Gaussian) canonical correlation” matrix thereby avoids the bias that would occur if the empirical correlation matrix were extracted from the non-Gaussian marginal distributions directly.

The canonical correlation matrix may be of value in such applications as Markowitz portfolio optimization, where an unbiased measure of dependence is required to evaluate portfolio risk, defined in terms of the portfolio variance which is in turn defined in terms of the correlation among the component portfolio instruments.

The utility of the canonical correlation derives from the observation that a “copula” multivariate distribution with uniformly-distributed deviates (corresponding to the CDF probabilities associated with the marginal deviates) may be mapped to arbitrarily distributed marginals, so that an unbiased dependence estimator derived from one set of marginals (N(0,1) distributed marginals) can be used to represent the dependence associated with arbitrarily-distributed marginals. The “Gaussian Copula” (whose variate arguments are derived from N(0,1) marginal deviates) is a particularly useful structure for representing multivariate dependence.

This is demonstrated in Example 2 where method \(\text{Random}.\text{nextGaussianCopula}(<\text{CholeskyMtrx})\) (where \(\text{CholeskyMtrx}\) is a Cholesky object derived from a user-specified covariance matrix) is used to imprint correlation information on otherwise arbitrarily distributed and independent random sequences. Method \(\text{Random}.\text{canonicalCorrelation}\) is then used to extract an unbiased correlation matrix from these imprinted deviate sequences.

Parameter

\(\text{deviate}\) – is the double \(nseq\) by \(nvar\) array of input deviate values.

next

protected int next(int bits)

Description

Generates the next pseudorandom number. If an alternate base generator was set in the constructor, its next method is used. If the multiplier is set then the multiplicative congruential method is used. Otherwise, \(\text{super.next(bits)}\) is used.
Parameter

- bits – is the number of random bits required.

Returns

the next pseudorandom value from this random number generator’s sequence.

nextBeta

public double nextBeta(double p, double q)

Description

Generate a pseudorandom number from a beta distribution.

Method `nextBeta` generates pseudorandom numbers from a beta distribution with parameters `p` and `q`, both of which must be positive. The probability density function is

\[
f(x) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^{p-1} (1-x)^{q-1} \quad \text{for } 0 \leq x \leq 1
\]

where \(\Gamma(\cdot)\) is the gamma function.

The algorithm used depends on the values of `p` and `q`. Except for the trivial cases of `p = 1` or `q = 1`, in which the inverse CDF method is used, all of the methods use acceptance/rejection. If `p` and `q` are both less than 1, the method of Johnk (1964) is used; if either `p` or `q` is less than 1 and the other is greater than 1, the method of Atkinson (1979) is used; if both `p` and `q` are greater than 1, algorithm BB of Cheng (1978), which requires very little setup time, is used.

The value returned is less than 1.0 and greater than \(\epsilon\), where \(\epsilon\) is the smallest positive number such that 1.0 - \(\epsilon\) is less than 1.0.

Parameters

- `p` – a `double`, the first beta distribution parameter, \(p > 0\)
- `q` – a `double`, the second beta distribution parameter, \(q > 0\)

Returns

a `double`, a pseudorandom number from a beta distribution

nextBinomial

public int nextBinomial(int n, double p)

Description

Generate a pseudorandom number from a binomial distribution.

Method `nextBinomial` generates pseudorandom numbers from a binomial distribution with parameters `n` and `p`. `n` and `p` must be positive, and `p` must be less than 1. The probability function (with \(n = n\) and \(p = p\)) is

\[
f(x) = \binom{n}{x} p^x (1-p)^{n-x}
\]

for \(x = 0, 1, 2, \ldots, n\).
The algorithm used depends on the values of \(n \) and \(p \). If \(np < 10 \) or if \(p \) is less than a machine epsilon, the inverse CDF technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection method using a composition of four regions. (TPE equals Triangle, Parallelogram, Exponential, left and right.)

Parameters
- \(n \) – an int, the number of Bernoulli trials.
- \(p \) – a double, the probability of success on each trial, \(0 < p < 1 \).

Returns
an int, the pseudorandom number from a binomial distribution.

nextCauchy

```java
public double nextCauchy()
```

Description
Generates a pseudorandom number from a Cauchy distribution. The probability density function is

\[
f(x) = \frac{1}{\pi(1+x^2)}
\]

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform \((0, 1)\) deviate, \(u \), as \(\tan[\pi(u - .5)] \). Rather than evaluating a tangent directly, however, `nextCauchy` generates two uniform \((-1, 1)\) deviates, \(x_1 \) and \(x_2 \). These values can be thought of as sine and cosine values. If

\[x_1^2 + x_2^2 < 1\]

is less than or equal to 1, then \(x_1/x_2 \) is delivered as the Cauchy deviate; otherwise, \(x_1 \) and \(x_2 \) are rejected and two new uniform \((-1, 1)\) deviates are generated. This method is also equivalent to taking the ratio of two independent normal deviates.

Deviates from the Cauchy distribution with median \(t \) and first quartile \(t - s \), that is, with density

\[
f(x) = \frac{s}{\pi[s^2 + (x-t)^2]}
\]

can be obtained by scaling the output from `nextCauchy`. To do this, first scale the output from `nextCauchy` by \(S \) and then add \(T \) to the result.

Returns
a double, a pseudorandom number from a Cauchy distribution

nextChiSquared

```java
public double nextChiSquared(double df)
```

Random Number Generation Random • 1329
Description
Generates a pseudorandom number from a Chi-squared distribution.

nextChiSquared generates pseudorandom numbers from a chi-squared distribution with df degrees of freedom. If df is an even integer less than 17, the chi-squared deviate \(r \) is generated as

\[
r = -2 \ln \left(\prod_{i=1}^{n} u_i \right)
\]

where \(n = \frac{df}{2} \) and the \(u_i \) are independent random deviates from a uniform \((0, 1)\) distribution. If df is an odd integer less than 17, the chi-squared deviate is generated in the same way, except the square of a normal deviate is added to the expression above. If df is greater than 16 or is not an integer, and if it is not too large to cause overflow in the gamma random number generator, the chi-squared deviate is generated as a special case of a gamma deviate, using nextGamma. If overflow would occur in nextGamma, the chi-squared deviate is generated in the manner described above, using the logarithm of the product of uniforms, but scaling the quantities to prevent underflow and overflow.

Parameter
\(df \) – a double which specifies the number of degrees of freedom. It must be positive.

Returns
a double, a pseudorandom number from a Chi-squared distribution.

nextDiscrete
public int nextDiscrete(int imin, double[] probabilities)

Description
Generate a pseudorandom number from a general discrete distribution using an alias method.

Method nextDiscrete generates a pseudorandom number from a discrete distribution with probability function given in the vector probabilities; that is

\[
\Pr(X = i) = p_j
\]

for \(i = i_{\text{min}}, i_{\text{min}} + 1, \ldots, i_{\text{min}} + n_m - 1 \), where \(j = i - i_{\text{min}} + 1, p_j = \text{probabilities}[j-1], i_{\text{min}} = \text{imin}, n_m = \text{nmass} \) and \(\text{probabilities}.length \) is the number of mass points.

The algorithm is the alias method, due to Walker (1974), with modifications suggested by Kronmal and Peterson (1979). On the first call with a set of probabilities, the method performs an initial setup after which the number generation phase is very fast. To increase efficiency, the code skips the setup phase on subsequent calls with the same inputs.

Parameters
imin – an int which specifies the smallest value the random deviate can assume. This is the value corresponding to the probability in probabilities[0].

probabilities – a double array containing the probabilities associated with the individual mass points. The elements of probabilities must be nonnegative and must sum to 1.0. The length of probabilities must be greater than 1.
Returns
an int which contains the random discrete deviate.

nextExponential
public double nextExponential()

Description
Generates a pseudorandom number from a standard exponential distribution. The probability density function is \(f(x) = e^{-x} \); for \(x > 0 \).

nextExponential uses an antithetic inverse CDF technique; that is, a uniform random deviate \(U \) is generated and the inverse of the exponential cumulative distribution function is evaluated at \(1.0 - U \) to yield the exponential deviate.

Deviates from the exponential distribution with mean \(\theta \) can be generated by using nextExponential and then multiplying the result by \(\theta \).

Returns
a double which specifies a pseudorandom number from a standard exponential distribution

nextExponentialMix
public double nextExponentialMix(double theta1, double theta2, double p)

Description
Generate a pseudorandom number from a mixture of two exponential distributions. The probability density function is

\[
f(x) = \frac{p}{\theta_1} e^{-x/\theta_1} + \frac{1-p}{\theta_2} e^{-x/\theta_2} \text{ for } x > 0
\]

where \(p = p, \theta_1 = \theta_1, \text{ and } \theta_2 = \theta_2 \).

In the case of a convex mixture, that is, the case \(0 < p < 1 \), the mixing parameter \(p \) is interpretable as a probability; and nextExponentialMix with probability \(p \) generates an exponential deviate with mean \(\theta_1 \), and with probability \(1 - p \) generates an exponential with mean \(\theta_2 \). When \(p \) is greater than 1, but less than \(\theta_1 / (\theta_1 - \theta_2) \), then either an exponential deviate with mean \(\theta_2 \) or the sum of two exponentials with means \(\theta_1 \) and \(\theta_2 \) is generated. The probabilities are \(q = p - (p - 1) \theta_1 / \theta_2 \) and \(1 - q \), respectively, for the single exponential and the sum of the two exponentials.

Parameters

theta1 – a double which specifies the mean of the exponential distribution that has the larger mean.

theta2 – a double which specifies the mean of the exponential distribution that has the smaller mean. theta2 must be positive and less than or equal to theta1.

p – a double which specifies the mixing parameter. It must satisfy \(0 \leq p \leq \frac{\theta_1}{\theta_1 - \theta_2} \).
Returns
a double, a pseudorandom number from a mixture of the two exponential distributions.

`nextExtremeValue`
public double nextExtremeValue(double mu, double beta)

Description
Generate a pseudorandom number from an extreme value distribution.

Parameters
- **mu** – a double scalar value representing the location parameter.
- **beta** – a double scalar value representing the scale parameter.

Returns
a double pseudorandom number from an extreme value distribution

`nextF`
public double nextF(double dfn, double dfd)

Description
Generate a pseudorandom number from the F distribution.

Parameters
- **dfn** – a double, the numerator degrees of freedom. It must be positive.
- **dfd** – a double, the denominator degrees of freedom. It must be positive.

Returns
a double, a pseudorandom number from an F distribution

`nextGamma`
public double nextGamma(double a)

Description
Generates a pseudorandom number from a standard gamma distribution.

Method `nextGamma` generates pseudorandom numbers from a gamma distribution with shape parameter `a`. The probability density function is

\[
P = \frac{1}{\Gamma(a)} \int_0^x e^{-t}t^{a-1}dt
\]

Various computational algorithms are used depending on the value of the shape parameter `a`. For the special case of `a = 0.5`, squared and halved normal deviates are used; and for the special case of `a = 1.0`, exponential deviates (from method `nextExponential`) are used. Otherwise, if `a` is less than 1.0, an acceptance-rejection method due to Ahrens, described in Ahrens and Dieter (1974), is used; if `a` is greater than 1.0, a ten-region rejection procedure developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard gamma distribution with the shape parameter having a value equal to a positive integer; hence, `nextGamma` generates pseudorandom deviates from an Erlang distribution with no modifications required.
Parameter

\(a \) – a double, the shape parameter of the gamma distribution. It must be positive.

Returns

a double, a pseudorandom number from a standard gamma distribution

nextGaussianCopula

public double[] nextGaussianCopula(Cholesky chol)

Description

Generate pseudorandom numbers from a Gaussian Copula distribution.

nextGaussianCopula generates pseudorandom numbers from a multivariate Gaussian Copula distribution which are uniformly distributed on the interval (0,1) representing the probabilities associated with N(0,1) deviates imprinted with correlation information from input Cholesky object chol. Cholesky matrix R is defined as the “square root” of a user-defined correlation matrix, that is R is a lower triangular matrix such that R times the transpose of R is the correlation matrix. First, a length \(k \) vector of independent random normal deviates with mean 0 and variance 1 is generated, and then this deviate vector is pre-multiplied by Cholesky matrix R. Finally, the Cholesky-imprinted random N(0,1) deviates are mapped to output probabilities using the N(0,1) cumulative distribution function (CDF).

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information contained in Cholesky matrix R can then be generated by inverting the output probabilities using user-specified inverse CDF functions.

Parameter

chol – is the Cholesky object containing the Cholesky factorization of the correlation matrix of order \(k \).

Returns

a double array which contains the pseudorandom numbers from a multivariate Gaussian Copula distribution.

nextGeometric

public int nextGeometric(double p)

Description

Generate a pseudorandom number from a geometric distribution.

nextGeometric generates pseudorandom numbers from a geometric distribution with parameter \(p \), where \(P = p \) is the probability of getting a success on any trial. A geometric deviate can be interpreted as the number of trials until the first success (including the trial in which the first success is obtained). The probability function is

\[
 f(x) = P(1 - P)^{x-1}
\]

for \(x = 1, 2, \ldots \) and \(0 < P < 1 \).

The geometric distribution as defined above has mean \(1/P \).
The i-th geometric deviate is generated as the smallest integer not less than $\log(U_i) / \log(1 - P)$, where the U_i are independent uniform (0, 1) random numbers (see Knuth, 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean $(1 - P)/P$. Such deviates can be obtained by subtracting 1 from each element returned value.

Parameter

p – a double, the probability of success on each trial, $0 < p \leq 1$.

Returns

an int, a pseudorandom number from a geometric distribution.

nextHypergeometric

```java
public int nextHypergeometric(int n, int m, int l)
```

Description

Generate a pseudorandom number from a hypergeometric distribution.

Method `nextHypergeometric` generates pseudorandom numbers from a hypergeometric distribution with parameters n, m, and l. The hypergeometric random variable x can be thought of as the number of items of a given type in a random sample of size n that is drawn without replacement from a population of size l containing m items of this type. The probability function is

$$f(x) = \frac{\binom{m}{x} \binom{l-m}{n-x}}{\binom{l}{n}}$$

for $x = \max(0, n - l + m), 1, 2, \ldots, \min(n, m)$.

If the hypergeometric probability function with parameters n, m, and l evaluated at $n - l + m$ (or at 0 if this is negative) is greater than the machine epsilon, and less than 1.0 minus the machine epsilon, then `nextHypergeometric` uses the inverse CDF technique. The method recursively computes the hypergeometric probabilities, starting at $x = \max(0, n - l + m)$ and using the ratio $f(x = x + 1)/f(x = x)$ (see Fishman 1978, page 457).

If the hypergeometric probability function is too small or too close to 1.0, then `nextHypergeometric` generates integer deviates uniformly in the interval $[1, l - i]$, for $i = 0, 1, \ldots$; and at the I-th step, if the generated deviate is less than or equal to the number of special items remaining in the lot, the occurrence of one special item is tallied and the number of remaining special items is decreased by one. This process continues until the sample size or the number of special items in the lot is reached, whichever comes first. This method can be much slower than the inverse CDF technique. The timing depends on n. If n is more than half of l (which in practical examples is rarely the case), the user may wish to modify the problem, replacing n by $l - n$, and to consider the deviates to be the number of special items not included in the sample.

Parameters

- n – an int which specifies the number of items in the sample, $n > 0$
- m – an int which specifies the number of special items in the population, or lot, $m > 0$
- l – an int which specifies the number of items in the lot, $l > \max(n,m)$
Returns
an int which specifies the number of special items in a sample of size n drawn without replacement
from a population of size l that contains m such special items.

nextLogNormal
public double nextLogNormal(double mean, double stdev)

Description
Generate a pseudorandom number from a lognormal distribution.
Method nextLogNormal generates pseudorandom numbers from a lognormal distribution with
parameters mean and stdev. The scale parameter in the underlying normal distribution, stdev, must be
positive. The method is to generate normal deviates with mean mean and standard deviation stdev and
then to exponentiate the normal deviates.

With \(\mu = mean \) and \(\sigma = stdev \), the probability density function for the lognormal distribution is

\[
f(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^2} (\ln x - \mu)^2 \right] \text{ for } x > 0
\]

The mean and variance of the lognormal distribution are \(\exp(\mu + \sigma^2/2) \) and
\(\exp(2\mu + 2\sigma^2) - \exp(2\mu + \sigma^2) \), respectively.

Parameters
mean – a double which specifies the mean of the underlying normal distribution
stdev – a double which specifies the standard deviation of the underlying normal distribution. It
must be positive.

Returns
a double, a pseudorandom number from a lognormal distribution

nextLogarithmic
public int nextLogarithmic(double a)

Description
Generate a pseudorandom number from a logarithmic distribution.
Method nextLogarithmic generates pseudorandom numbers from a logarithmic distribution with
parameter a. The probability function is

\[
f(x) = -\frac{a^x}{x \ln(1-a)}
\]

for \(x = 1, 2, 3, \ldots, \) and \(0 < a < 1 \).

The methods used are described by Kemp (1981) and depend on the value of a. If a is less than 0.95,
Kemp’s algorithm LS, which is a “chop-down” variant of an inverse CDF technique, is used. Otherwise,
Kemp’s algorithm LK, which gives special treatment to the highly probable values of 1 and 2, is used.
Parameter

\(a \) – a double which specifies the parameter of the logarithmic distribution, \(0 < a < 1.0 \).

Returns

an int, a pseudorandom number from a logarithmic distribution.

\textbf{nextMultivariateNormal}

\texttt{public double[]} \texttt{nextMultivariateNormal(Cholesky matrix)}

\textbf{Description}

Generate pseudorandom numbers from a multivariate normal distribution.

nextMultivariateNormal generates pseudorandom numbers from a multivariate normal distribution with mean vector consisting of all zeroes and variance-covariance matrix whose Cholesky factor (or “square root”) is matrix; that is, matrix is a lower triangular matrix such that matrix times the transpose of matrix is the variance-covariance matrix. First, independent random normal deviates with mean 0 and variance 1 are generated, and then the matrix containing these deviates is pre-multiplied by matrix.

Deviates from a multivariate normal distribution with means other than zero can be generated by using nextMultivariateNormal and then by adding the means to the deviates.

Parameter

matrix – is the Cholesky factorization of the variance-covariance matrix of order \(k \).

Returns

a double array which contains the pseudorandom numbers from a multivariate normal distribution.

\textbf{nextNegativeBinomial}

\texttt{public int nextNegativeBinomial(double rk, double p)}

\textbf{Description}

Generate a pseudorandom number from a negative binomial distribution.

Method \texttt{nextNegativeBinomial} generates pseudorandom numbers from a negative binomial distribution with parameters \(r_k \) and \(p \). \(r_k \) and \(p \) must be positive and \(p \) must be less than 1. The probability function with \((r = r_k \text{ and } p = p)\) is

\[
 f(x) = \binom{r + x - 1}{x} (1 - p)^r p^x
\]

for \(x = 0, 1, 2, \ldots \).

If \(r \) is an integer, the distribution is often called the Pascal distribution and can be thought of as modeling the length of a sequence of Bernoulli trials until \(r \) successes are obtained, where \(p \) is the probability of getting a success on any trial. In this form, the random variable takes values \(r, r + 1, r + 2, \ldots \) and can be obtained from the negative binomial random variable defined above by adding \(r \) to the negative binomial variable. This latter form is also equivalent to the sum of \(r \) geometric random variables defined as taking values \(1, 2, 3, \ldots \).
If \(rp/(1 - p) \) is less than 100 and \((1 - p)r\) is greater than the machine epsilon, \texttt{nextNegativeBinomial} uses the inverse CDF technique; otherwise, for each negative binomial deviate, \texttt{nextNegativeBinomial} generates a gamma \((r, p/(1 - p))\) deviate \(y\) and then generates a Poisson deviate with parameter \(y\).

Parameters
- \(rk\) – a double which specifies the negative binomial parameter, \(rk > 0\)
- \(p\) – a double which specifies the probability of success on each trial. It must be greater than machine precision and less than one.

Returns
an \texttt{int} which specifies the pseudorandom number from a negative binomial distribution. If \(rk\) is an integer, the deviate can be thought of as the number of failures in a sequence of Bernoulli trials before \(rk\) successes occur.

nextNormal

Description
Generate a pseudorandom number from a standard normal distribution using an inverse CDF method. In this method, a uniform (0,1) random deviate is generated, then the inverse of the normal distribution function is evaluated at that point using \texttt{inverseNormal}. This method is slower than the acceptance/rejection technique used in \texttt{nextNormalAR} to generate standard normal deviates. Deviates from the normal distribution with mean \(x_m\) and standard deviation \(x_{std}\) can be obtained by scaling the output from \texttt{nextNormal}. To do this first scale the output of \texttt{nextNormal} by \(x_{std}\) and then add \(x_m\) to the result.

Returns
a \texttt{double} which represents a pseudorandom number from a standard normal distribution

nextPoisson

Description
Generate a pseudorandom number from a Poisson distribution. Method \texttt{nextPoisson} generates pseudorandom numbers from a Poisson distribution with parameter \(theta\). \(theta\), which is the mean of the Poisson random variable, must be positive. The probability function (with \(\theta = theta\)) is

\[
f(x) = e^{-\theta} \frac{\theta^x}{x!}
\]

for \(x = 0, 1, 2, \ldots\)

If \(theta\) is less than 15, \texttt{nextPoisson} uses an inverse CDF method; otherwise the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used.

The PTPE method uses a composition of four regions, a triangle, a parallelogram, and two negative exponentials. In each region except the triangle, acceptance/rejection is used. The execution time of the method is essentially insensitive to the mean of the Poisson.
Parameter
theta – a double which specifies the mean of the Poisson distribution, theta > 0

Returns
an int, a pseudorandom number from a Poisson distribution

nextRayleigh
public double nextRayleigh(double alpha)

Description
Generate a pseudorandom number from a Rayleigh distribution.
Method nextRayleigh generates pseudorandom numbers from a Rayleigh distribution with scale parameter alpha.

Parameter
alpha – a double which specifies the scale parameter of the Rayleigh distribution

Returns
a double, a pseudorandom number from a Rayleigh distribution

nextStudentsT
public double nextStudentsT(double df)

Description
Generate a pseudorandom number from a Student’s t distribution.
nextStudentsT generates pseudo-random numbers from a Student’s t distribution with df degrees of freedom, using a method suggested by Kinderman, Monahan, and Ramage (1977). The method (“TMX” in the reference) involves a representation of the t density as the sum of a triangular density over (-2, 2) and the difference of this and the t density. The mixing probabilities depend on the degrees of freedom of the t distribution. If the triangular density is chosen, the variate is generated as the sum of two uniforms; otherwise, an acceptance/rejection method is used to generate a variate from the difference density.
For degrees of freedom less than 100, nextStudentsT requires approximately twice the execution time as nextNormalAR, which generates pseudorandom normal deviates. The execution time of nextStudentsT increases very slowly as the degrees of freedom increase. Since for very large degrees of freedom the normal distribution and the t distribution are very similar, the user may find that the difference in the normal and the t does not warrant the additional generation time required to use nextStudentsT instead of nextNormalAR.

Parameter
df – a double which specifies the number of degrees of freedom. It must be positive.

Returns
a double, a pseudorandom number from a Student’s t distribution

nextStudentsTCopula
public double[] nextStudentsTCopula(double df, Cholesky chol)
Description
Generate pseudorandom numbers from a Student’s t Copula distribution.

nextStudentsTCopula generates pseudorandom numbers from a multivariate Student’s t Copula distribution which are uniformly distributed on the interval (0,1) representing the probabilities associated with Student’s t deviates with df degrees of freedom imprinted with correlation information from the input Cholesky object chol. Cholesky matrix R is defined as the “square root” of a user-defined correlation matrix, i.e. R is a lower triangular matrix such that R times the transpose of R is the correlation matrix. First, a length k vector of independent random normal deviates with mean 0 and variance 1 is generated, and then this deviate vector is pre-multiplied by Cholesky matrix R. Each of the k elements of the resulting vector of Cholesky-imprinted random deviates is then divided by $\sqrt{\nu}$, where $\nu = df$ and s is a random deviate taken from a chi-squared distribution with df degrees of freedom. Each element of the Cholesky-imprinted N(0,1) vector is a linear combination of normally distributed random numbers and is therefore itself normal, and the division of each element by $\sqrt{\nu}$ therefore insures that each element of the resulting vector is Student’s t distributed. Finally each element of the Cholesky-imprinted Student’s t vector is mapped to an output probability using the Student’s t cumulative distribution function (CDF) with df degrees of freedom.

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information contained in Cholesky matrix R can then be generated by inverting the output probabilities using user-specified inverse CDF functions.

Parameters
- df – a double which specifies the degrees of freedom parameter.
- chol – the Cholesky object containing the Cholesky factorization of the correlation matrix of order k.

Returns
a double array which contains the pseudorandom numbers from a multivariate Students t Copula distribution with df degrees of freedom.

nextTriangular
public double nextTriangular()

Description
Generate a pseudorandom number from a triangular distribution on the interval (0,1). The probability density function is $f(x) = 4x$, for $0 \leq x \leq .5$, and $f(x) = 4(1-x)$, for $.5 < x \leq 1$. nextTriangular uses an inverse CDF technique.

Returns
a double, a pseudorandom number from a triangular distribution on the interval (0,1)

nextUniformDiscrete
public int nextUniformDiscrete(int k)
Generate a pseudorandom number from a discrete uniform distribution.

nextUniformDiscrete generates pseudorandom numbers from a discrete uniform distribution with parameter \(k \). The integers \(i = 1, \ldots, k \) occur with equal probability. A random integer is generated by multiplying \(k \) by a uniform \((0,1)\) random number, adding 1.0, and truncating the result to an integer. This, of course, is equivalent to sampling with replacement from a finite population of size \(k \).

Parameter

\(k \) – Parameter of the discrete uniform distribution. The integers 1, \ldots, \(k \) occur with equal probability. Parameter \(k \) must be positive.

Returns

an int, a pseudorandom number from a discrete uniform distribution.

nextVonMises

```java
public double nextVonMises(double c)
```

Description

Generate a pseudorandom number from a von Mises distribution.

Method nextVonMises generates pseudorandom numbers from a von Mises distribution with parameter \(c \), which must be positive. With \(c = C \), the probability density function is

\[
 f(x) = \frac{1}{2\pi I_0(c)} \exp\left[c \cos(x)\right] \text{ for } -\pi < x < \pi
\]

where \(I_0(c) \) is the modified Bessel function of the first kind of order 0. The probability density equals 0 outside the interval \((-\pi, \pi)\).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution as the majorizing distribution. It is due to Best and Fisher (1979).

Parameter

\(c \) – a double which specifies the parameter of the von Mises distribution, \(c > 7.4 \times 10^{-9} \).

Returns

a double, a pseudorandom number from a von Mises distribution

nextWeibull

```java
public double nextWeibull(double a)
```

Description

Generate a pseudorandom number from a Weibull distribution.

Method nextWeibull generates pseudorandom numbers from a Weibull distribution with shape parameter \(a \). The probability density function is

\[
 f(x) = A x^{A-1} e^{-x^a} \text{ for } x \geq 0
\]
nextWeibull uses an antithetic inverse CDF technique to generate a Weibull variate; that is, a uniform random deviate \(U \) is generated and the inverse of the Weibull cumulative distribution function is evaluated at \(1.0 - u \) to yield the Weibull deviate.

Deviates from the two-parameter Weibull distribution, with shape parameter \(a \) and scale parameter \(b \), can be generated by using nextWeibull and then multiplying the result by \(b \).

The Rayleigh distribution with probability density function,

\[
r(x) = \frac{1}{\alpha^2} x e^{-x^2/2\alpha^2} \quad \text{for} \ x \geq 0
\]

is the same as a Weibull distribution with shape parameter \(a \) equal to 2 and scale parameter \(b \) equal to \(\sqrt{2\alpha} \). Hence, nextWeibull and simple multiplication can be used to generate Rayleigh deviates.

Parameter

- \(a \) – a `double` which specifies the shape parameter of the Weibull distribution, \(a > 0 \)

Returns

A `double`, a pseudorandom number from a Weibull distribution

nextZigguratNormalAR

public `double` nextZigguratNormalAR()

Description

Generates pseudorandom numbers using the Ziggurat method.

The `nextZigguratNormalAR` method cuts the density into many small pieces. For each random number generated, an interval is chosen at random and a random normal is generated from the chosen interval. In this implementation, the density is cut into 256 pieces, but symmetry is used so that only 128 pieces are needed by the computation. Following Doornik (2005), different uniform random deviates are used to determine which slice to use and to determine the normal deviate from the slice.

Returns

A `double` containing the random normal deviate.

setMultiplier

public `void` setMultiplier(int multiplier)

Description

Sets the multiplier for a linear congruential random number generator. If a multiplier is set then the linear congruential generator, defined in the base class java.util.Random, is replaced by the generator

\[
\text{seed} = (\text{multiplier} \times \text{seed}) \mod (2^{31} - 1)
\]

See Donald Knuth, The Art of Computer Programming, Volume 2, for guidelines in choosing a multiplier. Some possible values are 16807, 397204094, 950706376.
Parameter

multiplier – an int which represents the random number generator multiplier

setSeed

public void setSeed(long seed)

Description

Sets the seed.

Parameter

seed – a long which represents the random number generator seed

skip

public void skip(int n)

Description

Resets the seed to skip ahead in the base linear congruential generator. This method can be used only if a linear congruential multiplier is explicitly defined by a call to setMultiplier. The method skips ahead in the deviates returned by the protected method next. The public methods use next(int) as their source of uniform random deviates. Some methods call it more than once. For instance, each call to nextDouble calls it twice.

Parameter

n – is the number of random deviates to skip.

Example 1: Random Number Generation

In this example, a discrete normal random sample of size 1000 is generated via Random.nextGaussian. Random.setSeed is first used to set the seed. After the ChiSquaredTest constructor is called, the random observations are added to the test one at a time to simulate streaming data. The Chi-squared test is performed using Cdf.normal as the cumulative distribution function object to see how well the random numbers fit the normal distribution.

```java
import com.imsl.stat.*;

public class RandomEx1 implements CdfFunction {
    public double cdf(double x) {
        return Cdf.normal(x);
    }

    public static void main(String args[]) throws Exception {
        int nObservations = 1000;
        Random r = new Random(123457L);
        ChiSquaredTest test = new ChiSquaredTest(new RandomEx1(), 10, 0);
        for (int k = 0; k < nObservations; k++) {
            test.update(r.nextNormal(), 1.0);
        }
        double p = test.getP();
    }
}
```
Example 2: Using Copulas to imprint and extract correlation information

This example uses method Random.nextGaussianCopula to generate a multivariate sequence GCdevt[k=0..nseq-1][j=0..nvar-1] whose marginal distributions are user-defined and imprinted with a user-specified correlation matrix CorrMtrxIn[i=0..nvar-1][j=0..nvar-1] and then uses method Random.canonicalCorrelation to extract from this multivariate random sequence a canonical correlation matrix CorrMtrx[i=0..nvar-1][j=0..nvar-1].

This example illustrates two useful copula related procedures. The first procedure generates a random multivariate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a user-defined correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate deviate input sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. cumulative distribution function values representing the probability that each random variable has a value less than or equal to the input deviate. The variates are then inverted, using the inverse Normal(0,1) function, to N(0,1) deviates; and finally, a canonical covariance matrix is extracted from the multivariate N(0,1) sequence using the standard sum of products.

This example demonstrates that the nextGaussianCopula method correctly imbeds the user-defined correlation information into an arbitrary marginal distribution sequence by extracting the canonical correlation from these sequences and showing that they differ from the original correlation matrix by a small relative error, which generally decreases as the number of multivariate sequence vectors increases.

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class RandomEx2 {
    static Random IMSLRandom() {
        Random r = new Random();
        r.setSeed(123457);
        r.setMultiplier(16807);
        return r;
    }

    public static void main(String args[]) throws com.imsl.IMSLException {
        double CorrMtrxIn[] = {
            {1., -0.9486832980505138, 0.8164965809277261},
            {-0.9486832980505138, 1., -0.6454972243679028},
            {0.8164965809277261, -0.6454972243679028, 1.}
        };
    }
}
```
int nvar = 3;

System.out.println("Random Example 2:");
System.out.println("\n");
for (int i = 0; i < nvar; i++) {
 for (int j = 0; j < i; j++) {
 System.out.println("CorrMtrxIn[" + i + "]\[" + j + "] = " + CorrMtrxIn[i][j]);
 }
}

PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(new java.text.DecimalFormat("0.000000000"));

new PrintMatrix("Input Correlation Matrix: ").print(pmf, CorrMtrxIn);
System.out.println("Correlation Matrices calculated from' ");
System.out.println(" Gaussian Copula imprinted multivariate sequence:" ");
System.out.println("\n");

// Compute the Cholesky factorization of CorrMtrxIn
Cholesky CholMtrx = new Cholesky(CorrMtrxIn);
for (int kmax = 500; kmax < 1000000; kmax *= 10) {
 System.out.println("# vectors in multivariate sequence: " + kmax);
 double GCvart[][] = new double[kmax][];
 double GCdevt[][] = new double[kmax][nvar];
 Random r = IMSLRandom();
 for (int k = 0; k < kmax; k++) {
 GCvart[k] = r.nextGaussianCopula(CholMtrx); //probs
 for (int j = 0; j < nvar; j++) {
 /*
 invert Gaussian Copula probabilities to deviates using
 variable-specific inversions: j = 0: Chi Square;
 1: F; 2: Normal(0,1);
 will end up with deviate sequences ready for mapping to
 canonical correlation matrix:
 */
 if (j == 0) {
 //convert probs into ChiSquare(df=10) deviates:
 GCdevt[k][j] = InvCdf.chi(GCvart[k][j], 10.);
 } else if (j == 1) {
 //convert probs into F(dfn=15,dfd=10) deviates:
 GCdevt[k][j] = InvCdf.F(GCvart[k][j], 15., 10.);
 } else {
 //convert probs into Normal(mean=0,variance=1) deviates:
 GCdevt[k][j] = InvCdf.normal(GCvart[k][j]);
 }
 }
 }
 /*
 extract Canonical Correlation matrix from arbitrarily
 distributed deviate sequences GCdevt[k=0..kmax-1][j=0..nvar-1]
 which have been imprinted with CorrMtrxIn[i=1..nvar][j=1..nvar]
double CorrMtrx[][] = r.canonicalCorrelation(GCdevt);
double relerr;
for (int i = 0; i < nvar; i++) {
 for (int j = 0; j < i; j++) {
 relerr = Math.abs(1. - (CorrMtrx[i][j] / CorrMtrxIn[i][j]));
 System.out.println("CorrMtrx[" + i + "][" + j + "] = "+ CorrMtrx[i][j] + "; relerr = " + relerr);
 }
 new PrintMatrix("Correlation Matrix: ").print(pmf, CorrMtrx);
}
Example 3: General Discrete Random Numbers

In this example, nextDiscrete is used to generate 2 groups of five pseudorandom variates from the discrete distribution:

\[
\begin{align*}
Pr(X = 1) &= 0.05 \\
Pr(X = 2) &= 0.45 \\
Pr(X = 3) &= 0.31 \\
Pr(X = 4) &= 0.04 \\
Pr(X = 5) &= 0.15
\end{align*}
\]

```java
import com.imsl.stat.*;
import com.imsl.math.*;

public class RandomEx3 {

    static Random IMSLRandom() {
        Random r = new Random();
        r.setSeed(123457);
        r.setMultiplier(16807);
        return r;
    }

    public static void main(String args[]) {
        int[] deviates = new int[5];
        double[] prob1 = {.05, .45, .31, .04, .15};
        PrintMatrix pm = new PrintMatrix("Random deviates");
        PrintMatrixFormat pmf = new PrintMatrixFormat();
        Random r = IMSLRandom();

        for (int i = 0; i < 5; i++) {
            deviates[i] = r.nextDiscrete(1, prob1);
        }
        pmf.setNoColumnLabels();
        pmf.setNoRowLabels();
    }
}
```
pm.print(pmf, deviates);
for (int i = 0; i < 5; i++) {
 deviates[i] = r.nextDiscrete(1, prob1);
}
pm.print(pmf, deviates);
}

Output

Random deviates

3
2
2
3
5

Random deviates

1
3
4
5
3

Example 4: Discrete Uniform Random Numbers

In this example, nextDiscrete and nextUniformDiscrete are each used to generate discrete uniform pseudorandom numbers. Note that the probabilities across the possible values must be equal, in order to generate uniformly from nextDiscrete. Also note that since the same random seed is used, the methods produce the same results.

\[
\begin{align*}
\Pr(X = 1) &= 0.20 \\
\Pr(X = 2) &= 0.20 \\
\Pr(X = 3) &= 0.20 \\
\Pr(X = 4) &= 0.20 \\
\Pr(X = 5) &= 0.20
\end{align*}
\]

import com.imsl.stat.*;
import com.imsl.math::*;

public class RandomEx4 {
 static Random IMSLRandom() {
 Random r = new Random();
 r.setSeed(123457);
 r.setMultiplier(16807);
 return r;
 }
}
public static void main(String args[]) {
 int[] deviates = new int[5];
 int[] deviatesUniform = new int[5];
 double[] prob1 = {0.20, 0.20, 0.20, 0.20};
 PrintMatrix pm = new PrintMatrix("Random deviates");
 PrintMatrixFormat pmf = new PrintMatrixFormat();
 Random r = IMSLRandom();

 for (int i = 0; i < 5; i++) {
 deviates[i] = r.nextDiscrete(1, prob1);
 }

 pmf.setNoColumnLabels();
 pmf.setNoRowLabels();
 pm.print(pmf, deviates);
 Random rUniform = IMSLRandom();

 for (int i = 0; i < 5; i++) {
 deviatesUniform[i] = rUniform.nextUniformDiscrete(5);
 }

 pm.print(pmf, deviatesUniform);
}

Output
Random deviates
5
2
4
3
5

Random deviates
5
2
4
3
5
Random.BaseGenerator interface

public interface com.imsl.stat.Random.BaseGenerator
Base pseudorandom number.

Method

next
public int next(int bits)

Description
Generates the next pseudorandom number.

Parameter
bits – random bits

Returns
the next pseudorandom value from this random number generator’s sequence.

FaureSequence class

public class com.imsl.stat.FaureSequence implements Serializable, com.imsl.stat.RandomSequence, Cloneable
Generates the low-discrepancy Faure sequence.

Discrepancy measures the deviation from uniformity of a point set.
The discrepancy of the point set \(x_1, \ldots, x_n \in [0,1]^d, d \geq 1\), is

\[
D_n^{(d)} = \sup_E \left| \frac{A(E;n)}{n} - \lambda(E) \right|,
\]

where the supremum is over all subsets of \([0,1]^d\) of the form

\[
E = [0,t_1) \times \cdots \times [0,t_d), \ 0 \leq t_j \leq 1, \ 1 \leq j \leq d,
\]

\(\lambda\) is the Lebesque measure, and \(A(E;n)\) is the number of the \(x_j\) contained in \(E\).
The sequence \(x_1, x_2, \ldots \) of points in \([0, 1]^d\) is a low-discrepancy sequence if there exists a constant \(c(d) \), depending only on \(d \), such that
\[
D_n^{(d)} \leq c(d) \frac{(\log n)^d}{n}
\]
for all \(n > 1 \).

Generalized Faure sequences can be defined for any prime base \(b \geq d \). The lowest bound for the discrepancy is obtained for the smallest prime \(b \geq d \), so the base defaults to the smallest prime greater than or equal to the dimension.

The generalized Faure sequence \(x_1, x_2, \ldots \), is computed as follows:

Write the positive integer \(n \) in its \(b \)-ary expansion,
\[
n = \sum_{i=0}^{\infty} a_i(n)b^i
\]
where \(a_i(n) \) are integers, \(0 \leq a_j(n) < b \).

The \(j \)-th coordinate of \(x_n \) is
\[
x_n^{(j)} = \sum_{k=0}^{\infty} \sum_{d=0}^{\infty} c_{kd}^{(j)} a_d(n)b^{-k-1}, \quad 1 \leq j \leq d
\]

The generator matrix for the series, \(c_{kd}^{(j)} \), is defined to be
\[
c_{kd}^{(j)} = j^{d-k}c_{kd}
\]
and \(c_{kd} \) is an element of the Pascal matrix,
\[
c_{kd} = \begin{cases}
\frac{d!}{(d-k)!k!} & k \leq d \\
0 & k > d
\end{cases}
\]

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the \(b \)-ary Gray code. The function \(G(n) \) maps the positive integer \(n \) into the integer given by its \(b \)-ary expansion. The sequence computed by this function is \(\tilde{x}(G(n)) \), where \(\tilde{x} \) is the generalized Faure sequence.

Constructors

FaureSequence

public FaureSequence(int dim)

Description

Creates a Faure sequence with the default base. The base defaults to the smallest prime equal to or greater than \(\text{dim} \).
Parameter

dim – is the dimension of the sequence.

FaureSequence

public FaureSequence(int dim, int base, int nSkip)

Description

Creates a Faure sequence.

Parameters

dim – is the dimension of the sequence.

base – is the base of the sequence, as described above. It must be at least as large as dim.

nSkip – is the number of initial points to skip. If negative then \(\text{base}^{m/2-1} \), where \(m \) is the number of digits needed to represent the Integer.MAX_VALUE in the base, points are skipped.

Methods

clone

public Object clone()

Description

Returns a copy of this object.

getBase

public int getBase()

Description

Returns the base.

getCount

public long getCount()

getDimension

public int getDimension()

Description

Returns the dimension of the sequence.

getSkip

public int getSkip()
Description
Returns the number of points skipped at the beginning of the sequence.

nextDouble
public double nextDouble()

Description
Returns the first value of the next point in the sequence. This method is intended for use when dim is 1.

Returns
a double array, the next sequence value.

nextPoint
public double[] nextPoint()

Description
Returns the next point in the sequence.

Returns
a double array, the next point in the sequence.

nextPrime
static public int nextPrime(int n)

Description
Returns the smallest prime greater than or equal to n.

Parameter
n – is the first number to try as a prime.

Returns
a prime greater than or equal to n. If n is less than or equal to 2 then 2 is returned.

Example: FaureSequence

In this example, ten points of the Faure sequence are computed. The points are in a four-dimensional cube.

```java
import com.imsl.stat.FaureSequence;
import com.imsl.math.PrintMatrix;

public class FaureSequenceEx1 {

    public static void main(String args[]) {
        FaureSequence seq = new FaureSequence(4);
        double x[][] = new double[10][];
        for (int k = 0; k < 10; k++) {
            x[k] = seq.nextPoint();
        }
        new PrintMatrix("Faure Sequence").print(x);
    }
}
```

1352 • FaureSequence JMSL
Output

<table>
<thead>
<tr>
<th>Faure Sequence</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3</td>
<td>0</td>
<td>0.201</td>
<td>0.275</td>
<td>0.533</td>
</tr>
<tr>
<td>1 0.401 0.475 0.733 0.894</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 0.601 0.675 0.933 0.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 0.801 0.875 0.133 0.294</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 0.841 0.115 0.573 0.934</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 0.041 0.315 0.773 0.134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 0.241 0.515 0.973 0.334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 0.441 0.715 0.173 0.534</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 0.641 0.915 0.373 0.734</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 0.681 0.155 0.613 0.374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MersenneTwister class

A 32-bit Mersenne Twister generator. MersenneTwister generates uniform pseudorandom 32-bit numbers with a period of $2^{19937} - 1$ and a 623-dimensional equidistribution property. See Matsumoto et al. 1998 for details. The series of random numbers can be generated using a seed for initialization or by using an array of type int. One can also save the state of the generator at initialization to be re-used later. This generator can be used to generate non-uniform distributions by creating an com.imsl.stat.Random (p. 1324) object using an instance of this class as an argument to the constructor.

This Java code was translated from the following C program.

A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto.

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

email: m-mat@math.sci.hiroshima-u.ac.jp

Constructors

MersenneTwister

public MersenneTwister(int seed)

Description

Constructor for the MersenneTwister class with supplied seed.

Parameter

seed – an int which represents the seed used to initialize the 32-bit Mersenne Twister generator

MersenneTwister

public MersenneTwister(int[] key)

Description

Constructor for the MersenneTwister class with supplied array.

Parameter

key – an int array used to initialize the 32-bit Mersenne Twister generator
Methods

clone
public Object clone()

Description
Returns a clone of this object.

Returns
an Object which is a clone of this MersenneTwister object

next
public int next(int bits)

Description
Generates the next pseudorandom number.

Parameter
 bits – is the number of random bits required.

Returns
the next pseudorandom value from this random number generator’s sequence

nextDouble
public double nextDouble()

Description
Generates the next pseudorandom, uniformly distributed double value from this random number generator’s sequence. Only the first 32 bits of the double are pseudorandom.

Returns
the next pseudorandom, uniformly distributed double value from this random number generator’s sequence

nextFloat
public float nextFloat()

Description
Generates the next pseudorandom, uniformly distributed float value from this random number generator’s sequence.

Returns
the next pseudorandom, uniformly distributed float value from this random number generator’s sequence

nextInt
public int nextInt()
Description
Generates the next pseudorandom number.

Returns
the next pseudorandom value from this random number generator’s sequence. They are uniformly distributed among all 32-bit integer values, both positive and negative.

Example: Mersenne Twister Random Number Generation
In this example, four simulation streams are generated. The first series is generated with the seed used for initialization. The second series is generated using an array for initialization. The third series is obtained by resetting the generator back to the state it had at the beginning of the second stream. Therefore, the second and third streams are identical. The fourth stream is obtained by resetting the generator back to its original, uninitialized state, and having it reinitialize using the seed. The first and fourth streams are therefore the same.

```java
import com.imsl.stat.*;
import java.io.*;

public class MersenneTwisterEx1 {
    public static void main(String args[]) throws Exception {
        int nr = 4;
        double[] r = new double[nr];
        int s = 123457;
        /* Initialize MersenneTwister with a seed */
        MersenneTwister mt1 = new MersenneTwister(s);
        MersenneTwister mt2 = (MersenneTwister) mt1.clone();
        /* Save the state of MersenneTwister */
        FileOutputStream fos = new FileOutputStream("mt");
        ObjectOutputStream oos = new ObjectOutputStream(fos);
        oos.writeObject(mt1);
        oos.close();
        fos.close();
        Random rndm = new Random(mt1);
        /* Get the next five random numbers */
        for (int k = 0; k < nr; k++) {
            r[k] = rndm.nextDouble();
        }
        System.out.println(" First Stream Output");
        System.out.println(r[0] + " + r[1] + " + r[2] + " + r[3]);
        /* Check the cloned copy against the original */
        Random rndm2 = new Random(mt2);
        for (int k = 0; k < nr; k++) {
            r[k] = rndm2.nextDouble();
        }
        System.out.println("\n Clone Stream Output");
        System.out.println(r[0] + " + r[1] + " + r[2] + " + r[3]);
    }
}
```

1356 • MersenneTwister JMSL
/* Check the serialized copy against the original */
FileInputStream fis = new FileInputStream("mt");
ObjectInputStream ois = new ObjectInputStream(fis);
mt2 = (MersenneTwister) ois.readObject();
Random rndm3 = new Random(mt2);
for (int k = 0; k < nr; k++) {
 r[k] = rndm3.nextDouble();
}
System.out.println("\n Serialized Stream Output");
System.out.println(r[0] + " " + r[1] + " " + r[2]
 + " " + r[3]);
}

Output

First Stream Output
0.43474506366564114 0.013851109283287921 0.49560038426424047 0.7012807898922319

Clone Stream Output
0.43474506366564114 0.013851109283287921 0.49560038426424047 0.7012807898922319

Serialized Stream Output
0.43474506366564114 0.013851109283287921 0.49560038426424047 0.7012807898922319

MersenneTwister64 class

public class com.imsl.stat.MersenneTwister64 implements
com.imsl.stat.Random.BaseGenerator, Cloneable, Serializable

A 64-bit Mersenne Twister generator. MersenneTwister64 generates uniform pseudorandom 64-bit numbers with a period of $2^{19937} - 1$ and a 623-dimensional equidistribution property. See Matsumoto et al. 1998 for details. Since 64-bit numbers are generated, all of the bits of both nextFloat and nextDouble are pseudorandom. The series of random numbers can be generated using a seed for initialization or by using an array of type long. One can also save the state of the generator at initialization to be re-used later. This generator can be used to generate non-uniform distributions by creating an com.imsl.stat.Random (p. 1324) object using an instance of this class as an argument to the constructor.

This Java code was translated from the the following C program.

A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto.

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat@math.sci.hiroshima-u.ac.jp

Constructors

MersenneTwister64

```java
public MersenneTwister64(long seed)
```

Description

Constructor for the MersenneTwister64 class with supplied seed.

Parameter

- `seed` - a long which represents the seed used to initialize the 64-bit Mersenne Twister generator.

MersenneTwister64

```java
public MersenneTwister64(long[] key)
```

Description

Constructor for the MersenneTwister64 class with supplied array.
Parameter

 key – a long array used to initialize the 64-bit Mersenne Twister generator.

Methods

clone
public Object clone()

Description
Returns a clone of this object.

Returns
an Object which is a clone of this MersenneTwister64 object

next
public int next(int bits)

Description
Generates the next pseudorandom number.

Parameter
 bits – is the number of random bits required.

Returns
the next pseudorandom value from this random number generator’s sequence.

nextDouble
public double nextDouble()

Description
Generates the next pseudorandom, uniformly distributed double value from this random number generator’s sequence.

Returns
the next pseudorandom, uniformly distributed double value from this random number generator’s sequence.

nextFloat
public float nextFloat()

Description
Generates the next pseudorandom, uniformly distributed float value from this random number generator’s sequence.
Returns
the next pseudorandom, uniformly distributed float value from this random number generator’s sequence.

nextLong
public long nextLong()

Description
Generates the next pseudorandom, uniformly distributed long value from this random number generator’s sequence.

Returns
the next pseudorandom, uniformly distributed long value from this random number generator’s sequence.

Example: Mersenne Twister Random Number Generation
In this example, four simulation streams are generated. The first series is generated with the seed used for initialization. The second series is generated using an array for initialization. The third series is obtained by resetting the generator back to the state it had at the beginning of the second stream. Therefore, the second and third streams are identical. The fourth stream is obtained by resetting the generator back to its original, uninitialized state, and having it reinitialize using the seed. The first and fourth streams are therefore the same.

```
import com.imsl.stat.*;
import java.io.*;

public class MersenneTwister64Ex1 {
    public static void main(String args[]) throws Exception {
        long key[] = {0x123L, 0x234L, 0x345L, 0x456L};
        int nr = 4;
        double[] r = new double[nr];
        long s = 123457;
        /* Initialize MersenneTwister64 with a seed */
        MersenneTwister64 mt1 = new MersenneTwister64(s);
        MersenneTwister64 mt2 = (MersenneTwister64) mt1.clone();
        /* Save the state of MersenneTwister64 */
        FileOutputStream fos = new FileOutputStream("mt");
        ObjectOutputStream oos = new ObjectOutputStream(fos);
        oos.writeObject(mt1);
        oos.close();
        fos.close();
        Random rndm = new Random(mt1);
        /* Get the next five random numbers */
        for (int k = 0; k < nr; k++) {
            r[k] = rndm.nextDouble();
        }
    }
}
```

1360 • MersenneTwister64

JMSL
System.out.println(" First Stream Output");
System.out.println(r[0] + " " + r[1] + " " + r[2]
 + " " + r[3]);

/* Check the cloned copy against the original */
Random rndm2 = new Random(mt2);
for (int k = 0; k < nr; k++) {
 r[k] = rndm2.nextDouble();
}
System.out.println("\n Clone Stream Output");
System.out.println(+r[0] + " " + r[1] + " " + r[2]
 + " " + r[3]);

/* Check the serialized copy against the original */
FileInputStream fis = new FileInputStream("mt");
ObjectInputStream ois = new ObjectInputStream(fis);
mt2 = (MersenneTwister64) ois.readObject();
Random rndm3 = new Random(mt2);
for (int k = 0; k < nr; k++) {
 r[k] = rndm3.nextDouble();
}
System.out.println("\n Serialized Stream Output");
System.out.println(r[0] + " " + r[1] + " " + r[2]
 + " " + r[3]);

Output

First Stream Output
0.5799165508168153 0.7101593787073387 0.5456686378667656 0.516359030432273

Clone Stream Output
0.5799165508168153 0.7101593787073387 0.5456686378667656 0.516359030432273

Serialized Stream Output
0.5799165508168153 0.7101593787073387 0.5456686378667656 0.516359030432273

RandomSequence interface

public interface com.imsl.stat.RandomSequence
Interface implemented by generators of random or quasi-random multidimensional sequences.
Methods

getDimension
public int getDimension()

Description
Returns the dimension of the sequence.

nextPoint
public double[] nextPoint()

Description
Returns the next multidimensional point in the sequence.

Returns
a double array of length dimension.

RandomSamples class

public class com.imsl.stat.RandomSamples

Generates a simple pseudorandom sample from a finite population, a sample of indices, or a permutation of an array of indices.

getPermutation(int k) generates a pseudorandom permutation of the integers from 1 to k. It begins by filling a vector of length k with the consecutive integers 1 to k. Then, with M initially equal to k, a random index j between 1 and M is generated. The element of the vector with the index M-1 and the element with index j swap places in the vector. M is then decremented by 1 and the process repeats until M=1.

getSampleIndices(int nSamp, int nPop) generates the indices of a pseudorandom sample, without replacement, of size nSamp numbers from a population of size nPop. If nSamp is greater than nPop/2, the integers from 1 to nPop are selected sequentially with a probability conditional on the number selected and the number still to be considered. If, when the i-th population index is considered and j items have been included in the sample, then the index i is included with probability (nSamp - j)/(nPop + 1 - i).

If nSamp is not greater than nPop/2, a O(nSamp) algorithm due to Ahrens and Dieter (1985) is used. Of the methods discussed by Ahrens and Dieter, SG* is used in getSampleIndices(int nSamp, int nPop). It involves a preliminary selection of q indices using a geometric distribution for the distances between each index and the next one. If the preliminary sample size q is less than nSamp, a new preliminary sample is chosen, and this is continued until a preliminary sample greater in size than nSamp is chosen. This preliminary sample is then thinned using the same sampling method as that in which the sample size is greater than half of the population size.
getSamples() generates a pseudorandom sample from a given population, without replacement, using an algorithm due to McLeod and Bellhouse (1983). The first nSamp items in the population are included in the sample. Then, for each successive item from the population, a random item in the sample is replaced by that item from the population with probability equal to the sample size divided by the number of population items that have been encountered at that time.

To retrieve the random indices, use getIndices() after calling getSamples().

Constructors

RandomSamples
public RandomSamples()

Description

Constructor for the RandomSamples class.

RandomSamples
public RandomSamples(Random r)

Description

Constructor for the RandomSamples class.

This constructor sets the random number generator to be used by the RandomSamples class.

Parameter

r – a Random that is the random number generator

Methods

getIndices
public int[] getIndices()

Description

Returns the indices computed from a call to getSamples().

Returns

an int array of length nSamp containing the indices of the sample

getPermutation
public int[] getPermutation(int k)

Description

Returns a permutation array of integers.
Parameter

\(k \) – an \text{int} which represents the number of integers to be permuted. The integers to permute are the numbers 1, ..., \(k \).

Returns

an \text{int} array containing the permuted integers

\textbf{getSampleIndices}

public int[] getSampleIndices(int nSamp, int nPop)

Description

Computes and returns an array of sampled indices. This is a random sample (without replacement) of the integers from 0 to \(nPop-1 \), in increasing order.

Parameters

- nSamp – an \text{int} indicating the sample size desired
- nPop – an \text{int} indicating the number of items in the population

Returns

an \text{int} array of length \(nSamp \) containing the indices of the sample

\textbf{getSamples}

public double[] getSamples(double[] population, int nSamp)

Description

Generates a pseudorandom sample from a given population array, without replacement.

Parameters

- population – a \text{double} array containing the population to be sampled
- nSamp – an \text{int} indicating the sample size desired

Returns

a \text{double} array containing the samples

\textbf{getSamples}

public double[][] getSamples(double[][] population, int nSamp)

Description

Generates a pseudorandom sample from a given population matrix, without replacement. \texttt{getSamples()} implements an algorithm due to McLeod and Bellhouse (1983).

The first \(nSamp \) items in the population are included in the sample. Then, for each successive item from the population, a random item in the sample is replaced by that item from the population with probability equal to the sample size divided by the number of population items that have been encountered at that time.

To retrieve the random indices, use \texttt{getIndices()} after calling \texttt{getSamples()}.

1364 • RandomSamples
Parameters

- population – a double matrix containing the population to be sampled
- nSamp – an int indicating the sample size desired

Returns

a double matrix containing the samples

`setRandomObject`

`public void setRandomObject(Random r)`

Description

Sets the seed for the random number generator.

Parameter

- r – a Random that is the random number generator

Example 1: Permutation

In this example, the `getPermutations()` method is used to produce a pseudorandom permutation of the integers from 1 to 10.

```
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class RandomSamplesEx1 {
    public static void main(String[] args) {
        int k = 10;
        RandomSamples rs = new RandomSamples();
        Random r = new Random(123457L);
        r.setMultiplier(16807);
        rs.setRandomObject(r);
        int[] idx = rs.getPermutation(k);
        PrintMatrix pm = new PrintMatrix("Random permutation of the integers "+"from 1 to 10");
        pm.print(idx);
    }
}
```

Output

Random permutation of the integers from 1 to 10

0
0 5
1 9
2 2
3 8
4 1
Example 2: Sample Indices

In this example, the getSampleIndices() method is used to generate the indices of a pseudorandom sample of size 5 from a population of size 100.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

class RandomSamplesEx2 {

    public static void main(String[] args) {
        int nSamp = 5;
        int nPop = 100;

        RandomSamples rs = new RandomSamples();
        Random r = new Random(123457L);
        r.setMultiplier(16807);
        rs.setRandomObject(r);
        int[] idx = rs.getSampleIndices(nSamp, nPop);

        PrintMatrix pm = new PrintMatrix("Random Sample");
        pm.print(idx);
    }
}
```

Output

```
Random Sample
0
0 2
1 22
2 53
3 61
4 79
```

Example 3: Samples

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each year from 1749 through 1924. In this example, the getSamples() method is used to generate five pseudorandom samples from the set of 176 observations of Wolfer sunspot data. The sampled indices are returned via getIndices().

```java
import com.imsl.stat.*;
```
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class RandomSamplesEx3 {
 public static void main(String[] args) {
 double[][] x = {
 {1749.0, 80.9}, {1750.0, 83.4},
 {1751.0, 47.7}, {1752.0, 47.8},
 {1753.0, 30.7}, {1754.0, 12.2},
 {1755.0, 9.6}, {1756.0, 10.2},
 {1757.0, 32.4}, {1758.0, 47.6},
 {1759.0, 54.0}, {1760.0, 62.9},
 {1761.0, 85.9}, {1762.0, 61.2},
 {1763.0, 45.0}, {1764.0, 36.4},
 {1765.0, 20.9}, {1766.0, 11.4},
 {1767.0, 37.8}, {1768.0, 69.8},
 {1769.0, 106.1}, {1770.0, 100.8},
 {1771.0, 81.6}, {1772.0, 66.5},
 {1773.0, 34.8}, {1774.0, 30.6},
 {1775.0, 7.0}, {1776.0, 19.8},
 {1777.0, 92.5}, {1778.0, 154.4},
 {1779.0, 125.9}, {1780.0, 84.8},
 {1781.0, 68.1}, {1782.0, 38.5},
 {1783.0, 22.8}, {1784.0, 10.2},
 {1785.0, 24.1}, {1786.0, 82.9},
 {1787.0, 132.0}, {1788.0, 130.9},
 {1789.0, 118.1}, {1790.0, 89.9},
 {1791.0, 66.6}, {1792.0, 60.0},
 {1793.0, 46.9}, {1794.0, 41.0},
 {1795.0, 21.3}, {1796.0, 16.0},
 {1797.0, 6.4}, {1798.0, 4.1},
 {1799.0, 6.8}, {1800.0, 14.5},
 {1801.0, 34.0}, {1802.0, 45.0},
 {1803.0, 43.1}, {1804.0, 47.5},
 {1805.0, 42.2}, {1806.0, 28.1},
 {1807.0, 10.1}, {1808.0, 8.1},
 {1809.0, 2.5}, {1810.0, 0.0},
 {1811.0, 1.4}, {1812.0, 5.0},
 {1813.0, 12.2}, {1814.0, 13.9},
 {1815.0, 35.4}, {1816.0, 45.8},
 {1817.0, 41.1}, {1818.0, 30.4},
 {1819.0, 23.9}, {1820.0, 16.7},
 {1821.0, 6.6}, {1822.0, 4.0},
 {1823.0, 1.8}, {1824.0, 8.6},
 {1825.0, 16.6}, {1826.0, 36.3},
 {1827.0, 49.7}, {1828.0, 62.5},
 {1829.0, 67.0}, {1830.0, 71.0},
 {1831.0, 47.8}, {1832.0, 27.5},
 {1833.0, 8.5}, {1834.0, 13.2},
 {1835.0, 56.9}, {1836.0, 121.5},
 {1837.0, 138.3}, {1838.0, 103.2},
 {1839.0, 85.8}, {1840.0, 63.2},
 {1841.0, 36.8}, {1842.0, 24.2},
 {1843.0, 10.7}, {1844.0, 15.0},
 {1845.0, 40.1}, {1846.0, 61.5},
 };
RandomSamples JMSL

```java
int nSamp = 5;
RandomSamples rs = new RandomSamples();
Random r = new Random(123457L);
r.setMultiplier(16807);
rs.setRandomObject(r);
double[][] samples = rs.getSamples(x, nSamp);
int[] idx = rs.getIndices();

PrintMatrix pm = new PrintMatrix("Random Samples");
PrintMatrixFormat mf = new PrintMatrixFormat();
```

Random Samples

```java
| 1847.0 | 98.5 |
| 1849.0 | 95.9 |
| 1851.0 | 64.5 |
| 1853.0 | 39.0 |
| 1855.0 | 6.7  |
| 1857.0 | 22.8 |
| 1859.0 | 93.8 |
| 1861.0 | 77.2 |
| 1863.0 | 44.0 |
| 1865.0 | 30.5 |
| 1867.0 | 7.3  |
| 1869.0 | 73.9 |
| 1871.0 | 111.2|
| 1873.0 | 66.3 |
| 1875.0 | 17.1 |
| 1877.0 | 12.3 |
| 1879.0 | 6.0  |
| 1881.0 | 54.3 |
| 1883.0 | 63.7 |
| 1885.0 | 52.2 |
| 1887.0 | 13.1 |
| 1889.0 | 6.3  |
| 1891.0 | 35.6 |
| 1893.0 | 84.9 |
| 1895.0 | 64.0 |
| 1897.0 | 26.2 |
| 1899.0 | 12.1 |
| 1901.0 | 2.7  |
| 1903.0 | 24.4 |
| 1905.0 | 63.5 |
| 1907.0 | 62.0 |
| 1909.0 | 43.9 |
| 1911.0 | 5.7  |
| 1913.0 | 1.4  |
| 1915.0 | 47.4 |
| 1917.0 | 103.9|
| 1919.0 | 63.6 |
| 1921.0 | 26.1 |
| 1923.0 | 5.8  |
```

```java
pm.print(mf, samples);
pm = new PrintMatrix("Sampled Indices");
```
Example 4: Combined Example

In this example, the `getPermutations()` and `getSampleIndices()` methods are used to sample ten values from a hypothetical vector of 1,000,000 values.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class RandomSamplesEx4 {
    public static void main(String[] args) {
        int nsamp = 10;
        int xlength = 1000000;

        RandomSamples rs = new RandomSamples();
        Random r = new Random(123457L);
        r.setMultiplier(16807);
        rs.setRandomObject(r);
        int[] idx = rs.getSampleIndices(nsamp, xlength);
        int[] perm = rs.getPermutation(nsamp);

        int[] samp = new int[nsamp];
        for (int i = 0; i < nsamp; i++) {
            samp[i] = idx[perm[i] - 1];
        }

        PrintMatrix pm = new PrintMatrix("Random Sample");
        pm.print(samp);
    }
}
```
Example 5: Samples

In this example, the `getSamples()` method is used to generate five pseudorandom samples from the set of 150 observations of Fisher's iris data. The sampled indices are returned via `getIndices()`.

```java
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class RandomSamplesEx5 {
    public static void main(String[] args) {
        double[][] x = {
            {5.1, 3.5, 1.4, 0.2}, {4.9, 3.0, 1.4, 0.2},
            {4.7, 3.2, 1.3, 0.2}, {4.6, 3.1, 1.5, 0.2},
            {5.0, 3.6, 1.4, 0.2}, {5.4, 3.9, 1.7, 0.4},
            {4.6, 3.4, 1.4, 0.3}, {5.0, 3.4, 1.5, 0.2},
            {4.4, 2.9, 1.4, 0.2}, {4.9, 3.1, 1.5, 0.1},
            {5.4, 3.7, 1.5, 0.2}, {4.8, 3.4, 1.6, 0.2},
            {4.8, 3.0, 1.4, 0.1}, {4.3, 3.0, 1.1, 0.1},
            {5.8, 4.0, 1.2, 0.2}, {5.7, 4.4, 1.5, 0.4},
            {5.4, 3.9, 1.3, 0.4}, {5.1, 3.5, 1.4, 0.3},
            {5.7, 3.8, 1.7, 0.3}, {5.1, 3.8, 1.5, 0.3},
            {5.4, 3.4, 1.7, 0.2}, {5.1, 3.7, 1.5, 0.4},
            {4.6, 3.6, 1.0, 0.2}, {5.1, 3.3, 1.7, 0.5},
            {4.8, 3.4, 1.9, 0.2}, {5.0, 3.0, 1.6, 0.2},
            {5.0, 3.4, 1.6, 0.4}, {5.2, 3.5, 1.6, 0.2},
            {5.2, 3.4, 1.4, 0.2}, {4.7, 3.2, 1.6, 0.2},
            {4.8, 3.1, 1.6, 0.2}, {5.4, 3.4, 1.5, 0.4},
            {5.2, 4.1, 1.5, 0.1}, {5.5, 4.2, 1.4, 0.2},
            {4.9, 3.1, 1.5, 0.2}, {5.0, 3.2, 1.2, 0.2},
            {5.5, 3.5, 1.3, 0.2}, {4.9, 3.6, 1.4, 0.1},
            {4.4, 3.0, 1.3, 0.2}, {5.1, 3.4, 1.5, 0.2},
            {5.0, 3.5, 1.3, 0.3}, {4.5, 2.3, 1.3, 0.3},
            {4.4, 3.2, 1.3, 0.2}, {5.0, 3.5, 1.6, 0.6},
            {5.1, 3.8, 1.9, 0.4}, {4.8, 3.0, 1.4, 0.3},
            {5.1, 3.8, 1.6, 0.2}, {4.6, 3.2, 1.4, 0.2},
            {5.3, 3.7, 1.5, 0.2}, {5.0, 3.3, 1.4, 0.2}};
```
{7.0, 3.2, 4.7, 1.4}, {6.4, 3.2, 4.5, 1.5},
{6.9, 3.1, 4.9, 1.5}, {5.5, 2.3, 4.0, 1.3},
{6.5, 2.8, 4.6, 1.5}, {5.7, 2.8, 4.5, 1.3},
{6.3, 3.3, 4.7, 1.6}, {4.9, 2.4, 3.3, 1.0},
{6.6, 2.9, 4.6, 1.3}, {5.2, 2.7, 3.9, 1.4},
{5.0, 2.0, 3.5, 1.0}, {5.9, 3.0, 4.2, 1.5},
{6.0, 2.2, 4.0, 1.0}, {6.1, 2.9, 4.7, 1.4},
{5.6, 2.9, 3.6, 1.3}, {6.7, 3.1, 4.4, 1.4},
{5.6, 3.0, 4.5, 1.5}, {5.8, 2.7, 4.1, 1.0},
{6.2, 2.2, 4.5, 1.5}, {5.6, 2.5, 3.9, 1.1},
{5.9, 3.2, 4.8, 1.8}, {6.1, 2.8, 4.0, 1.3},
{6.3, 2.5, 4.9, 1.5}, {6.1, 2.8, 4.7, 1.2},
{6.4, 2.9, 4.3, 1.3}, {6.6, 3.0, 4.4, 1.4},
{6.8, 2.8, 4.8, 1.4}, {6.7, 3.0, 5.0, 1.7},
{6.0, 2.9, 4.5, 1.5}, {5.7, 2.6, 3.5, 1.0},
{5.5, 2.4, 3.8, 1.1}, {5.5, 2.4, 3.7, 1.0},
{5.8, 2.7, 3.9, 1.2}, {6.0, 2.7, 5.1, 1.6},
{5.4, 3.0, 4.5, 1.5}, {6.0, 3.4, 4.5, 1.6},
{6.7, 3.1, 4.7, 1.5}, {6.3, 2.3, 4.4, 1.3},
{5.6, 3.0, 4.1, 1.3}, {5.5, 2.5, 4.0, 1.3},
{5.5, 2.6, 4.4, 1.2}, {6.1, 3.0, 4.6, 1.4},
{5.8, 2.6, 4.0, 1.2}, {5.0, 2.3, 3.3, 1.0},
{5.6, 2.7, 4.2, 1.3}, {5.7, 3.0, 4.2, 1.2},
{5.7, 2.9, 4.2, 1.3}, {6.2, 2.9, 4.3, 1.3},
{5.1, 2.5, 3.0, 1.1}, {5.7, 2.8, 4.1, 1.3},
{6.3, 3.3, 6.0, 2.5}, {5.8, 2.7, 5.1, 1.9},
{7.1, 3.0, 5.9, 2.1}, {6.3, 2.9, 5.6, 1.8},
{6.5, 3.0, 5.8, 2.2}, {7.6, 3.0, 6.6, 2.1},
{4.9, 2.5, 4.5, 1.7}, {7.3, 2.9, 6.3, 1.8},
{6.7, 2.5, 5.8, 1.8}, {7.2, 3.6, 6.1, 2.5},
{6.5, 3.2, 5.1, 2.0}, {6.4, 2.7, 5.3, 1.9},
{6.8, 3.0, 5.5, 2.1}, {5.7, 2.5, 5.0, 2.0},
{5.8, 2.8, 5.1, 2.4}, {6.4, 3.2, 5.3, 2.3},
{6.5, 3.0, 5.5, 1.8}, {7.7, 3.8, 6.7, 2.2},
{7.7, 2.6, 6.9, 2.3}, {6.0, 2.2, 5.0, 1.5},
{6.9, 3.2, 5.7, 2.3}, {5.6, 2.8, 4.9, 2.0},
{7.7, 2.8, 6.7, 2.0}, {6.3, 2.7, 4.9, 1.8},
{6.7, 3.3, 5.7, 2.1}, {7.2, 3.2, 6.0, 1.8},
{6.2, 2.8, 4.8, 1.8}, {6.1, 3.0, 4.9, 1.8},
{6.4, 2.8, 5.6, 2.1}, {7.2, 3.0, 5.8, 1.6},
{7.4, 2.8, 6.1, 1.9}, {7.9, 3.8, 6.4, 2.0},
{6.4, 2.8, 5.6, 2.2}, {6.3, 2.8, 5.1, 1.5},
{6.1, 2.6, 5.6, 1.4}, {7.7, 3.0, 6.1, 2.3},
{6.3, 3.4, 5.6, 2.4}, {6.4, 3.1, 5.5, 1.8},
{6.0, 3.0, 4.8, 1.8}, {6.9, 3.1, 5.4, 2.1},
{6.7, 3.1, 5.6, 2.4}, {6.9, 3.1, 5.1, 2.3},
{5.8, 2.7, 5.1, 1.9}, {6.8, 3.2, 5.9, 2.3},
{6.7, 3.3, 5.7, 2.5}, {6.7, 3.0, 5.2, 2.3},
{6.3, 2.5, 5.0, 1.9}, {6.5, 3.0, 5.2, 2.0},
{6.2, 3.4, 5.4, 2.3}, {5.9, 3.0, 5.1, 1.8}
};

int nSamp = 5;

RandomSamples rs = new RandomSamples();
Random r = new Random(123457L);
r.setMultiplier(16807);
rs.setRandomObject(r);
double[][] samples = rs.getSamples(x, nSamp);
int[] idx = rs.getIndices();

PrintMatrix pm = new PrintMatrix("Random Samples");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNumberFormat(new java.text.DecimalFormat("0.0"));
mf.setNoColumnLabels();
pm.print(mf, samples);
pm = new PrintMatrix("Sampled Indices");
pm.print(mf, idx);

Output

Random Samples

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.7</td>
<td>4.4</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>5.7</td>
<td>2.6</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>6.0</td>
<td>2.2</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>4.8</td>
<td>3.4</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>5.4</td>
<td>3.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Sampled Indices

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.0</td>
</tr>
<tr>
<td>1</td>
<td>79.0</td>
</tr>
<tr>
<td>2</td>
<td>119.0</td>
</tr>
<tr>
<td>3</td>
<td>24.0</td>
</tr>
<tr>
<td>4</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Chapter 24: Input/Output

Types

class AbstractFlatFile ... 1373
class FlatFile ... 1423
class Tokenizer ... 1456
class MPSReader ... 1457

Usage Notes

The class AbstractFlatFile is used to read a data file and return a java.sql.ResultSet object. The ResultSet object is normally used by JDBC to return the result of an SQL query.

Since AbstractFlatFile is abstract it cannot be used directly. The class FlatFile extends AbstractFlatFile and is used to read flat text files. Typical flat files are comma separated files (CSV files) and space separated files. The class FlatFile uses the class Tokenizer class to split tokens on a line. This class can be extended to handle other types of flat files.

The AbstractFlatFile can also be extended to read binary files. It provides the support for the required members of the java.sql.ResultSet interface, but the actual reading of the binary files must be done in user supplied code.

The class MPSReader is used to read linear programming problems written in the standard MPS file format.

AbstractFlatFile class

abstract public class com.ims1.io.AbstractFlatFile implements java.sql.ResultSet

Reads a text or binary file as a ResultSet.

In Java, the result of a database query is normally returned as a ResultSet object. This class is intended
to support reading of text or binary flat files and returning them as a ResultSet.

A flat file is a rectangular data set where each row is an observation and each column is a variable. The data type in any one column is the same for all of the rows.

Constructor

AbstractFlatFile

```java
public AbstractFlatFile()
```

Description

Initializes an AbstractFlatFile. Since AbstractFlatFile is abstract, it cannot be directly instantiated.

Methods

absolute

```java
public boolean absolute(int row) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Moves the cursor to the given row number in this ResultSet object.

Parameter

- `row` – an int that specifies a row, of the ResultSet object, where the cursor is to be moved

Returns

a boolean whose value is true if the cursor is on the result set, false otherwise

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

afterLast

```java
public void afterLast() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Moves the cursor to the end of this ResultSet object, just after the last row. This method has no effect if the result set contains no rows.
Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

beforeFirst

public void beforeFirst() throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Moves the cursor to the front of this ResultSet object, just before the first row. This method has no effect if the result set contains no rows.

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

beginGet

protected void beginGet()

Description

This method should be called at the start of every get Type method. It closes any InputStreams or Readers created by get methods in this object. It also resets the wasNull flag to false.

cancelRowUpdates

public void cancelRowUpdates() throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Cancels the updates made to the current row in this ResultSet object. Since updates are not allowed, this method always throws a SQLException.

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

clearWarnings

public void clearWarnings() throws SQLException

Description

Clears all warnings reported on this ResultSet object. After this method is called, the method getWarnings returns null until a new warning is reported for this ResultSet object.

Exception

SQLException if a database access error occurs

close

public void close() throws SQLException

Description

Releases this ResultSet object’s database and JDBC resources immediately instead of waiting for this to happen when it is automatically closed.

Input/Output

AbstractFlatFile • 1375
deleteRow

public void deleteRow() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Deletes the current row from this ResultSet object and from the underlying database. Since updates are not allowed, this method always throws a SQLException.

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

doGetBytes

abstract protected byte[] doGetBytes(int columnIndex) throws SQLException

Description
Implements the actual getBytes(). The bytes represent the raw values returned by the driver.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a byte array representation of the column value. If the value is SQL null, the value returned is null.

Exception
SQLException if a database access error occurs.

doNext

abstract protected boolean doNext() throws SQLException

Description
Implements the operations on the file required by the method next().

Returns
a boolean, true if the new current row is valid, false if there are no more rows

Exception
SQLException if a database access error occurs.

findColumn

public int findColumn(String columnLabel) throws SQLException

Description
Maps the given ResultSet column name to its ResultSet column index.
Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
an int specifying the column index of the given column name

Exception
SQLException if the ResultSet object does not contain columnLabel or a database access error occurs

findColumnName
protected String findColumnName(int columnIndex) throws SQLException

Description
Maps the given columnIndex into its column name.

Parameter
columnIndex – an int specifying the index of a column for which the name is to be found

Returns
a String containing the name of the column

Exception
SQLException if a database access error occurs

first
public boolean first() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Moves the cursor to the first row in this ResultSet object.

Returns
a boolean whose value is true if the cursor is on the result set, false otherwise

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

getArray
public Array getArray(String columnLabel) throws SQLException

Description
Returns the value of the designated column in the current row of this ResultSet object as an Array object in the Java programming language.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
Returns
an Array object representing the SQL ARRAY value in the specified column

Exception
SQLException if a database access error occurs

getAsciiStream
public InputStream getAsciiStream(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a stream of ASCII characters. The value can then be read in chunks from the stream. This method is particularly suitable for retrieving large LONGVARCHAR values. The JDBC driver does any necessary conversion from the database format into ASCII.

Note: All the data in the returned stream must be read prior to getting the value of any other column. The next call to a getType method implicitly closes the stream. Also, a stream may return 0 when the method InputStream.available is called whether there is data available or not.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a java.io.InputStream that delivers the database column value as a stream of one-byte ASCII characters. If the value is SQL NULL, the value returned is null.

Exception
SQLException if a database access error occurs

getAsciiStream
public InputStream getAsciiStream(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a stream of ASCII characters. The value can then be read in chunks from the stream. This method is particularly suitable for retrieving large LONGVARCHAR values. The JDBC driver does any necessary conversion from the database format into ASCII.

Note: All the data in the returned stream must be read prior to getting the value of any other column. The next call to a getType method implicitly closes the stream. Also, a stream may return 0 when the method available is called whether there is data available or not.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a java.io.InputStream that delivers the database column value as a stream of one-byte ASCII characters. If the value is SQL NULL, the value returned is null.
getBigDecimal
public BigDecimal getBigDecimal(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a java.math.BigDecimal with full precision.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a java.math.BigDecimal object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
SQLException if a conversion or database access error occurs

getBigDecimal
public BigDecimal getBigDecimal(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a java.math.BigDecimal with full precision.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a java.math.BigDecimal object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
SQLException if a database access error occurs

getBinaryStream
public InputStream getBinaryStream(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a binary stream of uninterpreted bytes. The value can then be read in chunks from the stream. This method is particularly suitable for retrieving large LONGVARBINARY values.

Note: All the data in the returned stream must be read prior to getting the value of any other column. The next call to a getType method implicitly closes the stream. Also, a stream may return 0 when the method InputStream.available is called whether there is data available or not.
Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a java.io.InputStream that delivers the database column value as a stream of uninterpreted bytes. If the value is SQL NULL, the value returned is null.

Exception
SQLException if a database access error occurs

getBinaryStream
public InputStream getBinaryStream(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a stream of uninterpreted bytes. The value can then be read in chunks from the stream. This method is particularly suitable for retrieving large LONGVARBINARY values.

Note: All the data in the returned stream must be read prior to getting the value of any other column. The next call to a getType method implicitly closes the stream. Also, a stream may return 0 when the method available is called whether there is data available or not.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a java.io.InputStream that delivers the database column value as a stream of uninterpreted bytes. If the value is SQL NULL, the result is null.

Exception
SQLException if a database access error occurs

getBlob
public Blob getBlob(int columnIndex) throws SQLException

Description
Returns the value of the designated column in the current row of this ResultSet object as a Blob object in the Java programming language.

NOTE: java.sql.Blob.free() has not been implemented (they are empty methods) in the instance returned. java.sql.Blob.getBinaryStream(long, long) returns null and java.sql.Blob.setBinaryStream(long) throws a SQLException.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a Blob object representing the SQL BLOB value in the specified column
SQLException if a database access error occurs

getBlob

public Blob getBlob(String columnLabel) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object as a Blob object in the Java programming language.

Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

a Blob object representing the SQL BLOB value in the specified column

SQLException if a database access error occurs

getBoolean

public boolean getBoolean(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a boolean in the Java programming language.

Parameter

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

a boolean representation of the column value. If the value is SQL NULL, the value returned is false.

Exception

SQLException if a conversion or database access error occurs

getBoolean

public boolean getBoolean(String columnLabel) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a boolean in the Java programming language.

Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
Returns
a boolean representation of the column value. If the value is SQL NULL, the value returned is false.

Exception
SQLException if a database access error occurs

getByte
public byte getByte(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a byte in the Java programming language.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a byte representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception
SQLException if a conversion or database access error occurs

getByte
public byte getByte(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a byte in the Java programming language.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a byte representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception
SQLException if a database access error occurs

getBytes
public byte[] getBytes(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a byte array in the Java programming language. The bytes represent the raw values returned by the driver.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
Returns
a byte array representation of the column value. If the value is SQL NULL, the value returned is null.

Exception
SQLException if a database access error occurs

getBytes
public byte[] getBytes(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a byte array in the Java programming language. The bytes represent the raw values returned by the driver.

Parameter
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a byte array representation of the column value. If the value is SQL NULL, the value returned is null.

Exception
SQLException if a database access error occurs

getCharacterStream
public Reader getCharacterStream(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a java.io.Reader object.

Parameter
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a java.io.Reader object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
SQLException if a database access error occurs

getCharacterStream
public Reader getCharacterStream(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a java.io.Reader object.
Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

a java.io.Reader object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception

SQLException if a database access error occurs

getClob

public Clob getDblob(int columnIndex) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object as a Clob object in the Java programming language.

NOTE: java.sql.Clob.free() has not been implemented (they are empty methods) in the instance returned. java.sql.Clob.getCharacterStream(long, long) returns null. java.sql.Clob.position(Clob, long), java.sql.Clob.setAsciiStream(long), java.sql.Clob.setCharacterStream(long), java.sql.Clob.setString(long, String), and java.sql.Clob.setString(long, String, int, int) throw a SQLException.

Parameter

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

a Clob object representing an SQL Clob value in the specified column

Exception

SQLException if a database access error occurs

getClob

public Clob getClob(String columnLabel) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object as a Clob object in the Java programming language.

Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

a Clob object representing the SQL CLOB value in the specified column
Exception

SQLException if a database access error occurs

getColumnClass

public Class getColumnClass(int columnIndex) throws SQLException

Description

Returns the class of the items in the specified column. The default implementation returns the Class set using getColumnClass. If no class type is set the default implementation returns Object.class.

Parameter

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

a Class object used to specify the class of the data in the column

Exception

SQLException if a database access error occurs

getColumnCount

abstract public int getColumnCount() throws SQLException

Description

Returns the number of columns in this ResultSet object.

Returns

an int that specifies the number of columns

Exception

SQLException if a database access error occurs

getConcurrency

public int getConcurrency() throws SQLException

Description

Returns the concurrency mode of this ResultSet object.

Returns

an int that specifies whether concurrency is read only or an update processes as well. Always returns CONCUR_READ_ONLY.

Exception

SQLException if a database access error occurs

getCursorName

public String getCursorName() throws

AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
Description

Gets the name of the SQL cursor used by this ResultSet object. The default implementation throws a SQLException.

Returns

a String that specifies the SQL name for this ResultSet object's cursor

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

gDate

public Date getDate(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language.

Parameter

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

a java.sql.Date representation of the column value. If the value is SQL NULL, the value returned is null.

Exception

SQLException if a conversion or database access error occurs

gDate

public Date getDate(String columnLabel) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language.

Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

a java.sql.Date representation of the column value. If the value is SQL NULL, the value returned is null.

Exception

SQLException if a database access error occurs

gDate

public Date getDate(int columnIndex, Calendar cal) throws SQLException

1386 • AbstractFlatFile JMSL
Description
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language. This method uses the given calendar to construct an appropriate millisecond value for the date if the underlying database does not store timezone information.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- cal – the java.util.Calendar object to use in constructing the date

Returns
the column value as a java.sql.Date object. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
SQLException if a database access error occurs

gDate
public Date getDate(String columnLabel, Calendar cal) throws SQLException

Description
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language. This method uses the given calendar to construct an appropriate millisecond value for the date if the underlying database does not store timezone information.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- cal – the java.util.Calendar object to use in constructing the date

Returns
the column value as a java.sql.Date object. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
SQLException if a database access error occurs

gDouble
public double getDouble(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a double in the Java programming language.

Parameter
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
Returns
a double representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception
SQLException if a conversion or database access error occurs

getCodeDouble
public double getDouble(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a double in the Java programming language.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a double representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception
SQLException if a database access error occurs

getCodeFetchDirection
public int getFetchDirection() throws SQLException

Description
Returns the fetch direction for this ResultSet object.

Returns
an int that specifies the current fetch direction for this ResultSet object. Always returns FETCH_FORWARD.

Exception
SQLException if a database access error occurs

getCodeFetchSize
public int getFetchSize() throws SQLException

Description
Returns the fetch size for this ResultSet object.

Returns
an int that specifies the current fetch size for this ResultSet object

Exception
SQLException if a database access error occurs

getCodeFloat
public float getFloat(int columnIndex) throws SQLException
Description

Gets the value of the designated column in the current row of this ResultSet object as a float in the Java programming language.

Parameter

`columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

A float representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception

SQLException if a conversion or database access error occurs

getFloat

public float getFloat(String columnLabel) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a float in the Java programming language.

Parameter

`columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

A float representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception

SQLException if a database access error occurs

getInt

public int getInt(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as an int in the Java programming language.

Parameter

`columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

An int representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception

SQLException if a conversion or database access error occurs

getInt

public int getInt(String columnLabel) throws SQLException

Input/Output

AbstractFlatFile • 1389
Description
Gets the value of the designated column in the current row of this ResultSet object as an int in the Java programming language.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
an int representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception
SQLException if a database access error occurs

getLong
public long getLong(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a long in the Java programming language.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a long representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception
SQLException if a conversion or database access error occurs

getLong
public long getLong(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a long in the Java programming language.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a long representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception
SQLException if a database access error occurs

getMetaData
public ResultSetMetaData getMetaData() throws SQLException
Description
Retrieves the number, types and properties of this ResultSet object’s columns.

Returns
a ResultSetMetaData which provides a description of this ResultSet object’s columns

Exception
SQLException if a database access error occurs

getObject
abstract public Object getObject(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.

This method returns the value of the given column as a Java object. The type of the Java object is the default Java object type corresponding to the column’s SQL type, following the mapping for built-in types specified in the JDBC specification.

Parameter
 columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a java.lang.Object representation of the column value

Exception
SQLException if a database access error occurs

getObject
public Object getObject(String columnLabel) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.

This method returns the value of the given column as a Java object. The type of the Java object is the default Java object type corresponding to the column’s SQL type, following the mapping for built-in types specified in the JDBC specification.

This method may also be used to read database-specific abstract data types. In the JDBC 2.0 API, the behavior of the method getObject is extended to materialize data of SQL user-defined types. When a column contains a structured or distinct value, the behavior of this method is as if it were a call to:
getObject(columnIndex, this.getStatement().getConnection().getTypeMap()).

Parameter
 columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.

Input/Output

AbstractFlatFile • 1391
Returns
a java.lang.Object representation of the column value

Exception
SQLException if a database access error occurs

getObject

```java
public Object getObject(int columnIndex, Class type) throws 
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Returns the value of the designated column in the current row of this ResultSet object converted to the requested data type in the Java programming language.

Parameters

- `columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.
- `type` – a Java data type to convert to

Returns

an Object representing the SQL value in the specified column

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

getObject

```java
public Object getObject(int columnIndex, Map map) throws 
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Returns the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language. This method uses the given Map object for the custom mapping of the SQL structured or distinct type that is being retrieved.

Parameters

- `columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.
- `map` – a java.util.Map object that contains the mapping from SQL type names to classes in the Java programming language

Returns

an Object in the Java programming language representing the SQL value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

getObject

```java
public Object getObject(String columnLabel, Class type) throws 
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Returns the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.
Description
Returns the value of the designated column in the current row of this ResultSet object converted to the requested data type in the Java programming language.

Parameters
 columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
 type – a Java data type to convert to

Returns
an Object representing the SQL value in the specified column

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

getObject
public Object getObject(String columnLabel, Map map) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Returns the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language. This method uses the specified Map object for custom mapping if appropriate.

Parameters
 columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
 map – a java.util.Map object that contains the mapping from SQL type names to classes in the Java programming language

Returns
an Object representing the SQL value in the specified column

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

getRef
public Ref getRef(int columnIndex) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Returns the value of the designated column in the current row of this ResultSet object as a Ref object in the Java programming language.

Parameter
 columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Input/Output
AbstractFlatFile • 1393
Returns
a Ref object representing the SQL REF value in the specified column

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

getRef
public Ref getRef(String columnLabel) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Returns the value of the designated column in the current row of this ResultSet object as a Ref object in the Java programming language.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a Ref object representing the SQL REF value in the specified column

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

getRow
public int getRow() throws SQLException

Description
Retrieves the current row number. The first row is number 1, the second number 2, and so on.

Returns
an int that specifies the current row number; 0 if there is no current row

Exception
SQLException if a database access error occurs

getShort
public short getShort(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row of this ResultSet object as a short in the Java programming language.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a short representation of the column value. If the value is SQL NULL, the value returned is 0.
Exception

SQLException if a conversion or database access error occurs

getShort

public short getShort(String columnLabel) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a short in the Java programming language.

Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

a short representation of the column value. If the value is SQL NULL, the value returned is 0.

Exception

SQLException if a database access error occurs

getStatement

public Statement getStatement() throws SQLException

Description

Returns the Statement object that produced this ResultSet object. Since there is no java.sqlStatement, this method always throws a SQLException.

Returns

the Statement object that produced this ResultSet object or null if the result set was produced some other way

Exception

SQLException is always thrown since updates are not allowed

getString

public String getString(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a String in the Java programming language.

Parameter

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

a String representation of the column value. If the value is SQL NULL, the value returned is null.
Exception

SQLException if a database access error occurs

ggetString

public String getString(String columnLabel) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a String in the Java programming language.

Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

a String representation of the column value. If the value is SQL NULL, the value returned is null.

Exception

SQLException if a database access error occurs

ggetTime

public Time getTime(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language.

Parameter

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

a java.sql.Time representation of the column value. If the value is SQL NULL, the value returned is null.

Exception

SQLException if a conversion or database access error occurs

ggetTime

public Time getTime(String columnLabel) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language.

Parameter

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
Returns
a java.sql.Time representation of the column value. If the value is SQL NULL, the value returned is null.

Exception
SQLException if a database access error occurs

gTime
public Time getTime(int columnIndex, Calendar cal) throws SQLException

Description
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language. This method uses the given calendar to construct an appropriate millisecond value for the time if the underlying database does not store timezone information.

Parameters
columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
cal – the java.util.Calendar object to use in constructing the time

Returns
the column value as a java.sql.Time object. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
SQLException if a database access error occurs

gTime
public Time getTime(String columnLabel, Calendar cal) throws SQLException

Description
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language. This method uses the given calendar to construct an appropriate millisecond value for the time if the underlying database does not store timezone information.

Parameters
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
cal – the java.util.Calendar object to use in constructing the time

Returns
the column value as a java.sql.Time object. If the value is SQL NULL, the value returned is null in the Java programming language.

Input/Output

AbstractFlatFile ● 1397
SQLException if a database access error occurs

getTimestamp

```java
public Timestamp getTimestamp(int columnIndex) throws SQLException
```

Description

Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Timestamp object in the Java programming language.

Parameter

- `columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns

- a java.sql.Timestamp representation of the column value. If the value is SQL NULL, the value returned is null.

SQLException if a conversion or database access error occurs

getTimestamp

```java
public Timestamp getTimestamp(String columnLabel) throws SQLException
```

Description

Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Timestamp object.

Parameter

- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

- a java.sql.Timestamp representation of the column value, if the value is SQL NULL, the value returned is null

SQLException if a database access error occurs

getTimestamp

```java
public Timestamp getTimestamp(int columnIndex, Calendar cal) throws SQLException
```

Description

Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Timestamp object in the Java programming language. This method uses the given calendar to construct an appropriate millisecond value for the timestamp if the underlying database does not store timezone information.
Parameters

- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- cal – the java.util.Calendar object to use in constructing the timestamp

Returns

the column value as a java.sql.Timestamp object. If the value is SQL NULL, the value returned is
null in the Java programming language.

Exception

SQLException if a database access error occurs

getTimestamp

public Timestamp getTimestamp(String columnLabel, Calendar cal) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object as a
java.sql.Timestamp object in the Java programming language. This method uses the given calendar
to construct an appropriate millisecond value for the timestamp if the underlying database does not store
timezone information.

Parameters

- columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- cal – the java.util.Calendar object to use in constructing the timestamp

Returns

the column value as a java.sql.Timestamp object. If the value is SQL NULL, the value returned is
null in the Java programming language.

Exception

SQLException if a database access error occurs

ggetType

public int getType() throws SQLException

Description

Returns the type of this ResultSet object. The type is determined by the Statement object that created
the result set.

Returns

an int that specifies the type of this ResultSet object. Always returns TYPE_FORWARDONLY.

Exception

SQLException if a database access error occurs

ggetURL

public URL getURL(int columnIndex) throws SQLException
Description
Retrieves the value of the designated column in the current row of this ResultSet object as a java.net.URL object.

Parameter
 columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Returns
a java.net.URL object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
 SQLException if a conversion or database access error occurs

getURL
public URL getURL(String columnLabel) throws SQLException

Description
Retrieves the value of the designated column in the current row of this ResultSet object as a java.net.URL object.

Parameter
 columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a java.net.URL object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
 SQLException if a database access error occurs

getWarnings
public SQLWarning getWarnings() throws SQLException

Description
Returns the first warning reported by calls on this ResultSet object. Subsequent warnings on this ResultSet object are chained to the SQLWarning object that this method returns.

The warning chain is automatically cleared each time a new row is read.

Note: This warning chain only covers warnings caused by ResultSet methods. Any warning caused by Statement methods (such as reading OUT parameters) are chained on the Statement object.

Returns
the first SQLWarning object reported or null
Exception

SQLException if a database access error occurs

insertRow

```java
public void insertRow() throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Inserts the contents of the insert row into this ResultSet object and into the database. Since updates are not allowed, this method always throws a SQLException.

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

isAfterLast

```java
public boolean isAfterLast() throws SQLException
```

Description

Indicates whether the cursor is after the last row in this ResultSet object.

Returns

a boolean whose value is true if the cursor is after the last row, false if the cursor is at any other position or the ResultSet contains no rows

Exception

SQLException if a database access error occurs

isBeforeFirst

```java
public boolean isBeforeFirst() throws SQLException
```

Description

Indicates whether the cursor is before the first row in this ResultSet object.

Returns

a boolean whose value is true if the cursor is before the first row, false if the cursor is at any other position or the ResultSet contains no rows

Exception

SQLException if a database access error occurs

isFirst

```java
public boolean isFirst() throws SQLException
```

Description

Indicates whether the cursor is on the first row of this ResultSet object.

Returns

a boolean whose value is true if the cursor is on the first row, false otherwise
isLast

public boolean isLast() throws SQLException

Description
Indicates whether the cursor is on the last row of this ResultSet object. Note: Calling the method isLast may be expensive because the JDBC driver might need to fetch ahead one row in order to determine whether the current row is the last row in the result set.

Returns
a boolean whose value is true if the cursor is on the last row, false otherwise

Exception
SQLException if a database access error occurs

last

public boolean last() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Moves the cursor to the last row in this ResultSet object.

Returns
a boolean whose value is true if the cursor is on the result set, false otherwise

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.
Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

next
public boolean next() throws SQLException

Description
Moves the cursor down one row from its current position. A ResultSet cursor is initially positioned before the first row, the first call to the method next makes the first row the current row, the second call makes the second row the current row, and so on.

If an input stream is open for the current row, a call to the method next will implicitly close it. A ResultSet object’s warning chain is cleared when a new row is read.

Returns
a boolean, true if the new current row is valid, false if there are no more rows

Exception
SQLException if a database access error occurs or this method is called on a closed result set

previous
public boolean previous() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Moves the cursor to the previous row in this ResultSet object.

Returns
a boolean whose value is true if the cursor is on the result set, false otherwise

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

refreshRow
public void refreshRow() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Refreshes the current row with its most recent value in the database. Since updates are not allowed, this method always throws a SQLException.

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

relative
public boolean relative(int rows) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Input/Output
AbstractFlatFile • 1403
Description
Moves the cursor a relative number of rows, either positive or negative.

Parameter
- `rows` - an `int` that specifies the number of rows in the `ResultSet` object to advance or regress

Returns
a boolean whose value is `true` if the cursor is on the result set, `false` otherwise

Exception
- `FlatFileSQLExceptionNotSupported` this feature has not been implemented.

rowDeleted

```
public boolean rowDeleted() throws SQLException
```

Description
Indicates whether a row has been deleted. Since updates are not allowed, this always returns `false`.

Returns
a boolean which indicates whether a row has been deleted. Always returns `false` since updates are not allowed.

Exception
- `SQLException` if a database access error occurs

rowInserted

```
public boolean rowInserted() throws SQLException
```

Description
Indicates whether the current row has had an insertion. Since updates are not allowed, this always returns `false`.

Returns
a boolean which indicates whether the current row had an insertion. Always returns `false` since updates are not allowed.

Exception
- `SQLException` if a database access error occurs

rowUpdated

```
public boolean rowUpdated() throws AbstractFlatFile.FlatFileSQLExceptionNotSupported
```

Description
Indicates whether the current row has been updated. Since updates are not allowed, this always returns `false`.
Returns
a boolean which indicates whether a row has been updated. Always returns false since updates are not allowed.

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

setColumnClass
protected void setColumnClass(int columnIndex, Class columnClass)

Description
Sets a column class.

Parameters
- columnIndex – an int specifying the index of a column
- columnClass – a Class object used to specify the class of the data in the column

setName
protected void setName(int columnIndex, String columnName)

Description
Sets a column name. A subclass can define its own mechanism for naming columns. An alternate mechanism would require overriding the methods findColumn and findColumnName.

Parameters
- columnIndex – an int specifying the column index of the column to be named
- columnName – a String specifying the name of the column

setFetchDirection
public void setFetchDirection(int direction) throws SQLException

Description
Gives a hint as to the direction in which the rows in this ResultSet object is processed.

Parameter
direction – an int that specifies the expected direction this ResultSet object is to be processed

Exception
SQLException if the fetch direction is not FETCH_FORWARD

setFetchSize
public void setFetchSize(int rows) throws SQLException

Description
Gives the JDBC driver a hint as to the number of rows that should be fetched from the database when more rows are needed for this ResultSet object. If the fetch size specified is zero, the JDBC driver ignores the value and is free to make its own best guess as to what the fetch size should be. The default value is set by the Statement object that created the result set. The fetch size may be changed at any time.
Parameter

rows – an int that specifies the number of rows to fetch

Exception

SQLException if a database access error occurs or the condition 0 = rows = this.getMaxRows() is not satisfied

setWarning

protected void setWarning(SQLWarning warning)

Description

Sets a SQLWarning.

Parameter

warning – a SQLWarning that is to be added to this object.

updateArray

public void updateArray(int column, Array x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with an Array value. Since updates are not allowed, this method always throws a SQLException.

Parameters

column – an int that specifies the column. The first column is 1, the second is 2, and so on.
x – a java.sql.Array that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateArray

public void updateArray(String columnLabel, Array x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with an Array value. Since updates are not allowed, this method always throws a SQLException.

Parameters

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
x – a java.sql.Array that specifies the new column value
updateAsciiStream
public void updateAsciiStream(int columnIndex, InputStream x, int length)
throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with an ASCII stream value. Since updates are not allowed, this method
always throws a SQLException.

Parameters
 columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
 x – an InputStream that specifies the new column value
 length – an int that specifies the stream length

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateAsciiStream
public void updateAsciiStream(String columnLabel, InputStream x, int length)
throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with an ASCII stream value. Since updates are not allowed, this method
always throws a SQLException.

Parameters
 columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
 x – an InputStream that specifies the new column value
 length – an int that specifies the stream length

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateBigDecimal
public void updateBigDecimal(int columnIndex, BigDecimal x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a java.math.BigDecimal value. Since updates are not allowed,
this method always throws a SQLException.
Parameters

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
x – a java.math.BigDecimal that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateBigDecimal

public void updateBigDecimal(String columnLabel, BigDecimal x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a java.sql.BigDecimal value. Since updates are not allowed, this method always throws a SQLException.

Parameters

columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
If the SQL AS clause was not specified, then the label is the name of the column.
x – a java.sql.BigDecimal that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateBinaryStream

public void updateBinaryStream(int columnIndex, InputStream x, int length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a binary stream value. Since updates are not allowed, this method always throws a SQLException.

Parameters

columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
x – an InputStream that specifies the new column value
length – an int that specifies the stream length

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.
Parameters

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
x – an InputStream that specifies the new column value
length – an int that specifies the stream length

Exception

FlatFileSQLExceptionNotSupported this feature has not been implemented.

updateBlob

public void updateBlob(int column, Blob x) throws AbstractFlatFile.FlatFileSQLExceptionNotSupported

Description

Updates the designated column with an java.sql.Blob value. Since updates are not allowed, this method always throws a SQLException.

Parameters

column – an int that specifies the column. The first column is 1, the second is 2, and so on.
x – a java.sql.Blob that specifies the new column value

Exception

FlatFileSQLExceptionNotSupported this feature has not been implemented.

updateBlob

public void updateBlob(String columnLabel, Blob x) throws AbstractFlatFile.FlatFileSQLExceptionNotSupported

Description

Updates the designated column with an java.sql.Blob value. Since updates are not allowed, this method always throws a SQLException.

Parameters

columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
If the SQL AS clause was not specified, then the label is the name of the column.
x – a java.sql.Blob that specifies the new column value

Exception

FlatFileSQLExceptionNotSupported this feature has not been implemented.

updateBoolean

public void updateBoolean(int columnIndex, boolean x) throws AbstractFlatFile.FlatFileSQLExceptionNotSupported

Input/Output AbstractFlatFile • 1409
Description

Updates the designated column with a boolean value. Since updates are not allowed, this method always throws a SQLException.

Parameters

- `columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.
- `x` – a boolean that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateBoolean

```java
public void updateBoolean(String columnLabel, boolean x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a boolean value. Since updates are not allowed, this method always throws a SQLException.

Parameters

- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `x` – a boolean that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateByte

```java
public void updateByte(int columnIndex, byte x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a byte value. Since updates are not allowed, this method always throws a SQLException.

Parameters

- `columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.
- `x` – a byte that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateByte

```java
public void updateByte(String columnLabel, byte x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

1410 ● AbstractFlatFile

JMSL
Description
Updates the designated column with a byte value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `x` – a byte that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateBytes
public void updateBytes(int columnIndex, byte[] x) throws SQLException

Description
Updates the designated column with a byte array value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- `columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.
- `x` – a byte array that specifies the new column value

Exception
SQLException is always thrown since updates are not allowed

updateBytes
public void updateBytes(String columnLabel, byte[] x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a byte value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `x` – a byte array that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateCharacterStream
public void updateCharacterStream(int columnIndex, Reader x, int length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a character stream. Since updates are not allowed, this method always throws a SQLException.

Parameters
- `columnIndex` – an int that specifies the column. The first column is 1, the second is 2, and so on.
- `x` – a Reader object that specifies the new column value
- `length` – an int that specifies the length of the stream

Exception
SQLException is always thrown since updates are not allowed

Input/Output AbstractFlatFile • 1411
Description
Updates the designated column with a character stream value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a Reader that specifies the new column value
- length – an int that specifies the stream length

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateCharacterStream
public void updateCharacterStream(String columnLabel, Reader reader, int length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a character stream value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- reader – a Reader that specifies the new column value
- length – an int that specifies the stream length

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateClob
public void updateClob(int column, Clob x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a java.sql.Clob value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- column – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a java.sql.Clob that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.
Description
Updates the designated column with a \texttt{java.sql.Clob} value. Since updates are not allowed, this method always throws a \texttt{SQLException}.

Parameters
- \texttt{columnLabel} – a \texttt{String} that indicates the label for the column specified with the SQL \texttt{AS} clause.
 - If the SQL \texttt{AS} clause was not specified, then the label is the name of the column.
- \texttt{x} – a \texttt{java.sql.Clob} that specifies the new column value

Exception
- \texttt{FlatFileSQLFeatureNotSupportedException} this feature has not been implemented.

\texttt{updateDate}
public void updateDate(int columnIndex, Date x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a \texttt{java.sql.Date} value. Since updates are not allowed, this method always throws a \texttt{SQLException}.

Parameters
- \texttt{columnIndex} – an \texttt{int} that specifies the column. The first column is 1, the second is 2, and so on.
- \texttt{x} – a \texttt{java.sql.Date} that specifies the new column value

Exception
- \texttt{FlatFileSQLFeatureNotSupportedException} this feature has not been implemented.

\texttt{updateDate}
public void updateDate(String columnLabel, Date x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a \texttt{java.sql.Date} value. Since updates are not allowed, this method always throws a \texttt{SQLException}.

Parameters
- \texttt{columnLabel} – a \texttt{String} that indicates the label for the column specified with the SQL \texttt{AS} clause.
 - If the SQL \texttt{AS} clause was not specified, then the label is the name of the column.
- \texttt{x} – a \texttt{java.sql.Date} that specifies the new column value

Exception
- \texttt{FlatFileSQLFeatureNotSupportedException} this feature has not been implemented.

\texttt{updateDouble}
public void updateDouble(int columnIndex, double x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Input/Output AbstractFlatFile • 1413
Description

Updates the designated column with a `double` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters

- `columnIndex` – an `int` that specifies the column. The first column is 1, the second is 2, and so on.
- `x` – a `double` that specifies the new column value

Exception

`FlatFileSQLFeatureNotSupportedException` this feature has not been implemented.

updateDouble

```java
public void updateDouble(String columnLabel, double x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a `double` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- `x` – a `double` that specifies the new column value

Exception

`FlatFileSQLFeatureNotSupportedException` this feature has not been implemented.

updateFloat

```java
public void updateFloat(int columnIndex, float x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a `float` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters

- `columnIndex` – an `int` that specifies the column. The first column is 1, the second is 2, and so on.
- `x` – a `float` that specifies the new column value

Exception

`FlatFileSQLFeatureNotSupportedException` this feature has not been implemented.

updateFloat

```java
public void updateFloat(String columnLabel, float x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a `float` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- `x` – a `float` that specifies the new column value

Exception

`FlatFileSQLFeatureNotSupportedException` this feature has not been implemented.
Description
Updates the designated column with a float value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- x – a float that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateInt
public void updateInt(int columnIndex, int x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with an int value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – an int that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateInt
public void updateInt(String columnLabel, int x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with an int value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- x – an int that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateLong
public void updateLong(int columnIndex, long x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a long value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a long that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented.
Description
Updates the designated column with a long value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a long that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateLong
public void updateLong(String columnLabel, long x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a long value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- x – a long that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateNull
public void updateNull(int columnIndex) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Gives a nullable column a null value. Since updates are not allowed, this method always throws a SQLException.

Parameter
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateNull
public void updateNull(String columnLabel) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
Description
Updates the designated column with a null value. Since updates are not allowed, this method always throws a `SQLException`.

Parameter
- `columnLabel` - a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.

Exception
- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented.

updateObject
`public void updateObject(int columnIndex, Object x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException`

Description
Updates the designated column with an `Object` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters
- `columnIndex` - an `int` that specifies the column. The first column is 1, the second is 2, and so on.
- `x` - an `Object` that specifies the new column value

Exception
- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented.

updateObject
`public void updateObject(String columnLabel, Object x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException`

Description
Updates the designated column with an `Object` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters
- `columnLabel` - a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- `x` - a `java.sql.Object` that specifies the new column value

Exception
- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented.

updateObject
`public void updateObject(int columnIndex, Object x, int scale) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException`

Input/Output

AbstractFlatFile • 1417
Description
Updates the designated column with an Object value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – an Object that specifies the new column value
- scale – for java.sql.Types_DECIMAL or java.sql.Types_NUMERIC types, this is the number of digits after the decimal point. For all other types this value is ignored.

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateObject
public void updateObject(String columnLabel, Object x, int scale) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with an Object value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- x – an Object that specifies the new column value
- scale – for java.sql.Types_DECIMAL or java.sql.Types_NUMERIC types, this is the number of digits after the decimal point. For all other types this value is ignored.

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateRef
public void updateRef(int column, Ref x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a java.sql.Ref value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- column – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a java.sql.Ref that specifies the new column value
Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateRef

```java
public void updateRef(String columnLabel, Ref x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a `java.sql.Ref` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- `x` – a `java.sql.Ref` that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateRow

```java
public void updateRow() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the underlying database with the new contents of the current row of this `ResultSet` object. Since updates are not allowed, this method always throws a `SQLException`.

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateShort

```java
public void updateShort(int columnIndex, short x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a `short` value. Since updates are not allowed, this method always throws a `SQLException`.

Parameters

- `columnIndex` – an `int` that specifies the column. The first column is 1, the second is 2, and so on.
- `x` – a `short` that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateShort

```java
public void updateShort(String columnLabel, short x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Input/Output AbstractFlatFile

1419
Description
Updates the designated column with a short value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- x – a short that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateString
public void updateString(int columnIndex, String x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a String value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a String that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateString
public void updateString(String columnLabel, String x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a String value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- x – a String that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateTime
public void updateTime(int columnIndex, Time x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

1420 • AbstractFlatFile JMSL
Description
Updates the designated column with a java.sql.Time value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a java.sql.Time that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateTime
public void updateTime(String columnLabel, Time x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a java.sql.Time value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- x – a java.sql.Time that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateTimestamp
public void updateTimestamp(int columnIndex, Timestamp x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a java.sql.Timestamp value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second is 2, and so on.
- x – a java.sql.Timestamp that specifies the new column value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented.

updateTimestamp
public void updateTimestamp(String columnLabel, Timestamp x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Input/Output AbstractFlatFile • 1421
Description
Updates the designated column with a java.sql.Timestamp value. Since updates are not allowed, this method always throws a SQLException.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- x – a java.sql.Timestamp that specifies the new column value

Exception
- FlatFileSQLExceptionNotSupported Exception this feature has not been implemented.

wasNull
public boolean wasNull() throws SQLException

Description
Reports whether the last column read had a value of SQL NULL. Note that you must first call one of the getType methods on a column to try to read its value and then call the method wasNull to see if the value read was SQL NULL.

Returns
a boolean, true if the last column value read was SQL NULL otherwise false

Exception
- SQLException if a database access error occurs

AbstractFlatFile.FlatFileSQLException class

static protected class com.imsl.io.AbstractFlatFile.FlatFileSQLException extends java.sql.SQLException
A SQLException thrown by the AbstractFlatFile class.

AbstractFlatFile.FlatFileSQLExceptionNotSupported Exception class

static protected class com.imsl.io.AbstractFlatFile.FlatFileSQLExceptionNotSupported Exception extends java.sql.SQLException

A SQLFeatureNotSupportedException thrown by the AbstractFlatFile class.

FlatFile class

```java
class com.imsl.io.FlatFile extends com.imsl.io.AbstractFlatFile
```
Reads a text file as a ResultSet.

FlatFile extends AbstractFlatFile to handle text flat files.

As the file is read, it is split into lines using the java.io.BufferedReader.readLine method. Each line is then split into tokens using a Tokenizer. Finally, each token string is converted into an Object using a Parser.

Parser is an interface defined within this class for converting a String into an Object. Parser objects for standard types are defined as static members of this class. By default, for each column its class is used to select one of these predefined parsers to parse that column.

Fields

```java
PARSE_BYTE
static final public FlatFile.Parser PARSE_BYTE
```
Implements a Parser that converts a String to a Byte.

```java
PARSE_DOUBLE
static final public FlatFile.Parser PARSE_DOUBLE
```
Implements a Parser that converts a String to a Double.

```java
PARSE_FLOAT
static final public FlatFile.Parser PARSE_FLOAT
```
Implements a Parser that converts a String to a Float.

```java
PARSE_INTEGER
static final public FlatFile.Parser PARSE_INTEGER
```
Implements a Parser that converts a String to an Integer.

```java
PARSE_LONG
static final public FlatFile.Parser PARSE_LONG
```
Implements a Parser that converts a String to a Long.
static final public FlatFile.Parser PARSE_SHORT

Implements a Parser that converts a String to a Short.

Constructors

FlatFile
public FlatFile(BufferedReader reader) throws IOException

Description
Creates a FlatFile with the CSV tokenizer.
The CSV tokenizer is for reading comma separated value files.
Parameter
reader – a BufferedReader that is the stream to be read

FlatFile
public FlatFile(String filename) throws IOException

Description
Creates a FlatFile from a CSV file.
A CSV file is a comma separated value file.
Parameter
filename – a String that specifies the name of the file to be read

FlatFile
public FlatFile(BufferedReader reader, Tokenizer tokenizer)

Description
Creates a FlatFile from a BufferedReader.
Parameters
reader – a BufferedReader that is the stream to be read
tokenizer – a Tokenizer that splits a text line into tokens, one per column

FlatFile
public FlatFile(String filename, Tokenizer tokenizer) throws IOException

Description
Creates a FlatFile from a file.
Parameters
- filename – a String that specifies the name of the file to be read
- tokenizer – a Tokenizer that splits a text line into tokens, one per column

Methods

doGetBytes
protected byte[] doGetBytes(int columnIndex) throws SQLException

Description
Gets the value of the designated column in the current row as a byte array.

Parameter
- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

Returns
a byte array that contains the column value. If the value is SQL NULL, the value returned is null.

Exception
SQLException if a database access error occurs

doNext
protected boolean doNext() throws SQLException

Description
Moves the cursor down one row from its current position. A ResultSet cursor is initially positioned before the first row, the first call to the method next makes the first row the current row, the second call makes the second row the current row, and so on.

Returns
a boolean, true if the new current row is valid, false if there are no more rows

Exception
SQLException if a database access error occurs

getColumnCount
public int getColumnCount() throws SQLException

Description
Returns the number of columns in this ResultSet object.

Returns
an int that specifies the number of columns

Input/Output FlatFile • 1425
Exception
SQLException if a database access error occurs

getHoldability

```java
public int getHoldability() throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description
Retrieves the holdability of this ResultSet object.

Returns
an int that is either ResultSet.HOLD_CURSORS_OVER_COMMIT or ResultSet.CLOSE_CURSORS_AT_COMMIT

Exception
FlatFileSQLFeatureNotSupported Exception this feature has not been implemented

getNCharacterStream

```java
public Reader getNCharacterStream(int columnIndex) throws
SQLFeatureNotSupportedException
```

Description
Retrieves the value of the designated column in the current row of this ResultSet object as a java.io.Reader object. It is intended for use when accessing NCHAR, NVARCHAR and LONGNVARCHAR columns.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

Returns
a java.io.Reader object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
FlatFileSQLFeatureNotSupported Exception this feature has not been implemented

getNCharacterStream

```java
public Reader getNCharacterStream(String columnLabel) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description
Retrieves the value of the designated column in the current row of this ResultSet object as a java.io.Reader object. It is intended for use when accessing NCHAR, NVARCHAR and LONGNVARCHAR columns.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
Returns
a java.io.Reader object that contains the column value. If the value is SQL NULL, the value returned is null in the Java programming language.

Exception
FlatFileSQLFeatureNotSupported Exception this feature has not been implemented

getNClob
public NClob getNClob(int columnIndex) throws AbstractFlatFile.FlatFileSQLFeatureNotSupported Exception

Description
Retrieves the value of the designated column in the current row of this ResultSet object as a NClob object in the Java programming language.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

Returns
an NClob object representing the SQL NCLOB value in the specified column

Exception
FlatFileSQLFeatureNotSupported Exception this feature has not been implemented

getNClob
public NClob getNClob(String columnLabel) throws AbstractFlatFile.FlatFileSQLFeatureNotSupported Exception

Description
Retrieves the value of the designated column in the current row of this ResultSet object as a NClob object in the Java programming language.

Parameter
columnLabel – an String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
an NClob object representing the SQL NCLOB value in the specified column

Exception
FlatFileSQLFeatureNotSupported Exception this feature has not been implemented

getNString
public String getNString(int columnIndex) throws AbstractFlatFile.FlatFileSQLFeatureNotSupported Exception

Input/Output
FlatFile ● 1427
getNString

public String getNString(String columnLabel) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Retrieves the value of the designated column in the current row of this ResultSet object as a String in
the Java programming language. It is intended for use when accessing NCHAR, NVARCHAR and
LONGNVARCHAR columns.

Parameter

columnLabel – an String that indicates the label for the column specified with the SQL AS
clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns

a String that specifies the column value. If the value is SQL NULL, the value returned is null.

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

getNString

public String getNString(String columnLabel) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Retrieves the value of the designated column in the current row of this ResultSet object as a String in
the Java programming language. It is intended for use when accessing NCHAR, NVARCHAR and
LONGNVARCHAR columns.

Parameter

columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

Returns

a String that specifies the column value. If the value is SQL NULL, the value returned is null.

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

getObject

public Object getObject(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as an Object in the
Java programming language.

This method returns the value of the given column as a Java object. The type of the Java object is the
default Java object type corresponding to the column’s SQL type, following the mapping for built-in
types specified in the JDBC specification.

This method may also be used to read database-specific abstract data types. In the JDBC 2.0 API, the
behavior of method getObject is extended to materialize data of SQL user-defined types. When a
column contains a structured or distinct value, the behavior of this method is as if it were a call to:

getObject(columnIndex, this.getStatement().getConnection().getTypeMap()).
Parameter
columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

Returns
a java.lang.Object holding the column value

Exception
SQLException if a database access error occurs

getRowId
public RowId getRowId(int columnIndex) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Retrieves the value of the designated column in the current row of this ResultSet object as a java.sql.RowId object in the Java programming language.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

Returns
a RowId that is the column value. If the value is a SQL NULL the value returned is null.

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented

getRowId
public RowId getRowId(String columnLabel) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Retrieves the value of the designated column in the current row of this ResultSet object as a java.sql.RowId object in the Java programming language.

Parameter
columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
a RowId that is the column value. If the value is a SQL NULL the value returned is null.

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented

getSQLXML
public SQLXML getSQLXML(int columnIndex) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Input/Output FlatFile • 1429
Description
Retrieves the value of the designated column in the current row of this ResultSet as a java.sql.SQLXML object in the Java programming language.

Parameter
columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

Returns
an SQLXML object that maps an SQL XML value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented

getSQLXML
public SQLXML getSQLXML(String columnLabel) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Retrieves the value of the designated column in the current row of this ResultSet as a java.sql.SQLXML object in the Java programming language.

Parameter
columnLabel – an String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.

Returns
an SQLXML object that maps an SQL XML value

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented

isClosed
public boolean isClosed() throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Retrieves whether this ResultSet object has been closed. A ResultSet is closed if the method close has been called on it, or if it is automatically closed.

Returns
a boolean, true if this ResultSet object is closed, false if it is still open

Exception
FlatFileSQLFeatureNotSupportedException this feature has not been implemented

isWrapperFor
public boolean isWrapperFor(Class iface) throws SQLException

1430 • FlatFile JMSL
Description
Returns true if this either implements the interface argument or is directly or indirectly a wrapper for an object that does. Returns false otherwise. If this implements the interface then return true, else if this is a wrapper then return the result of recursively calling isWrapperFor on the wrapped object. If this does not implement the interface and is not a wrapper, return false. This method should be implemented as a low-cost operation compared to unwrap so that callers can use this method to avoid expensive unwrap calls that may fail. If this method returns true then calling unwrap with the same argument should succeed.

Parameter
 iface – a Class defining an interface

Returns
 a boolean, false

Exception
 SQLException if an error occurs while determining whether this is a wrapper for an object with the given interface

readLine
protected String readLine() throws IOException

Description
Reads and returns a line from the input.

Returns
 a String that contains a line from the input

Exception
 IOException thrown if an IO exception occurs

setColumnClass
protected void setColumnClass(int columnIndex, Class columnClass)

Description
Sets a column class.

Parameters
 columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
 columnClass – a Class object used to specify the class of the data in the column

setColumnParser
protected void setColumnParser(int columnIndex, FlatFile.Parser columnParser)

Description
Sets the Parser for the specified column.
Parameters
- `columnIndex` – an int that specifies the column. The first column is 1, the second 2, and so on.
- `columnParser` – a `Parser` that is the parser to be used to parse entries in the specified column

setDateColumnParser
```java
protected void setDateColumnParser(int columnIndex, String pattern, Locale locale)
```

Description
Creates a pattern string and sets the `Parser` for the specified column.

Parameters
- `columnIndex` – an int that specifies the column. The first column is 1, the second 2, and so on.
- `pattern` – a `String` that specifies a pattern used to construct a `java.text.SimpleDateFormat` object used to parse the column
- `locale` – a `Locale` that specifies the locale for the date format parser

unwrap
```java
public Object unwrap(Class iface) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description
Returns an object that implements the given interface to allow access to non-standard methods, or standard methods not exposed by the proxy. If the receiver implements the interface then the result is the receiver or a proxy for the receiver. If the receiver is a wrapper and the wrapped object implements the interface then the result is the wrapped object or a proxy for the wrapped object. Otherwise returns the result of calling `unwrap` recursively on the wrapped object or a proxy for that result. If the receiver is not a wrapper and does not implement the interface, then an `SQLException` is thrown.

Parameter
- `iface` – a `Class` defining an interface that the result must implement

Returns
an object that implements the interface. The object may be a proxy for the actual implementing object.

Exception
- `FlatFileSQLFeatureNotSupportedException` – this feature has not been implemented

updateAsciiStream
```java
public void updateAsciiStream(int columnIndex, InputStream x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description
Updates the designated column with an ASCII stream value. The data will be read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.
Parameters

- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- x – a InputStream that specifies the new column value

Exception

- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateAsciiStream

public void updateAsciiStream(String columnLabel, InputStream x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with an ASCII stream value. The data will be read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- x – a InputStream that specifies the new column value

Exception

- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateAsciiStream

public void updateAsciiStream(int columnIndex, InputStream x, int length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with an ASCII stream value, which is the specified number of bytes.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- x – a InputStream that specifies the new column value
- length – an int that specifies the length of the stream

Exception

- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateAsciiStream

public void updateAsciiStream(int columnIndex, InputStream x, long length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Input/Output FlatFile
Description
Updates the designated column with an ASCII stream value, which is the specified number of bytes.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- x – a InputStream that specifies the new column value
- length – an int that specifies the length of the stream

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateAsciiStream
public void updateAsciiStream(String columnLabel, InputStream x, int length)
throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with an ASCII stream value, which is the specified number of bytes.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- x – a InputStream that specifies the new column value
- length – an int that specifies the length of the stream

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateAsciiStream
public void updateAsciiStream(String columnLabel, InputStream x, long length)
throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with an ASCII stream value, which is the specified number of bytes.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.
Parameters

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
x – a InputStream that specifies the new column value
length – an long that specifies the length of the stream

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBinaryStream

public void updateBinaryStream(int columnIndex, InputStream x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a binary stream value. The data will be read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
x – a InputStream that specifies the new column value

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBinaryStream

public void updateBinaryStream(String columnLabel, InputStream x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a binary stream value. The data will be read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
x – a InputStream that specifies the new column value
Exception
 FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBinaryStream
public void updateBinaryStream(int columnIndex, InputStream x, int length)
throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a binary stream value, which is the specified number of bytes.
The updater methods are used to update column values in the current row or the insert row. The updater
methods do not update the underlying database. Instead the updateRow or insertRow methods are
called to update the database.

Parameters
 columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
 x – a InputStream that specifies the new column value
 length – an int that specifies the length of the stream

Exception
 FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBinaryStream
public void updateBinaryStream(int columnIndex, InputStream x, long length)
throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a binary stream value, which is the specified number of bytes.
The updater methods are used to update column values in the current row or the insert row. The updater
methods do not update the underlying database. Instead the updateRow or insertRow methods are
called to update the database.

Parameters
 columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
 x – a InputStream that specifies the new column value
 length – an long that specifies the length of the stream

Exception
 FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBinaryStream
public void updateBinaryStream(String columnLabel, InputStream x, int length)
throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
Description

Updates the designated column with a binary stream value. The data will be read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- `x` – a `InputStream` that specifies the new column value
- `length` – an `int` that specifies the length of the stream

Exception

- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

updateBinaryStream

```java
public void updateBinaryStream(String columnLabel, InputStream x, long length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a binary stream value. The data will be read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- `x` – a `InputStream` that specifies the new column value
- `length` – an `int` that specifies the length of the stream

Exception

- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

updateBlob

```java
public void updateBlob(int columnIndex, InputStream inputStream) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column using the given input stream. The data will be read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Input/Output

- `FlatFile`
Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- inputStream – an InputStream that contains the data to set the parameter value to

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBlob
def updateBlob(int columnIndex, Blob x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a java.sql.Blob value.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- x – a Blob that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBlob
def updateBlob(String columnLabel, InputStream inputStream) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column using the given input stream. The data will be read from the stream as needed until end-of-stream is reached.

Parameters
- columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- inputStream – an InputStream that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateBlob
def updateBlob(String columnLabel, Blob x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
Description
Updates the designated column with a `java.sql.Blob` value.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters
- `columnLabel` – a `String` that indicates the label for the column specified with the SQL `AS` clause.
 If the SQL `AS` clause was not specified, then the label is the name of the column.
- `x` – a `Blob` that specifies the new column value

Exception
`FlatFileSQLExceptionNotSupported` this feature has not been implemented

`updateBlob`
`public void updateBlob(int columnIndex, InputStream inputStream, long length)`
throws `AbstractFlatFile.FlatFileSQLExceptionNotSupported`

Description
Updates the designated column using the given input stream, which is the specified number of bytes.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters
- `columnIndex` – an `int` that specifies the column. The first column is 1, the second 2, and so on.
- `inputStream` – a `InputStream` that contains the data to set the parameter value to
- `length` – a `long` that specifies the number of bytes in the parameter data

Exception
`FlatFileSQLExceptionNotSupported` this feature has not been implemented

`updateBlob`
`public void updateBlob(String columnLabel, InputStream inputStream, long length)`
throws `AbstractFlatFile.FlatFileSQLExceptionNotSupported`

Description
Updates the designated column using the given input stream, which is the specified number of bytes.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.
Parameters

- **columnLabel** – a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- **inputStream** – an `InputStream` that specifies the new column value
- **length** – an `int` that specifies the number of bytes in the parameter data

Exception

- `FlatFileSQLFeatureNotSupportedException` – this feature has not been implemented

updateCharacterStream

```java
public void updateCharacterStream(int columnIndex, Reader x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a character stream value. The data is read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- **columnIndex** – an `int` that specifies the column. The first column is 1, the second 2, and so on.
- **x** – a `Reader` that specifies the new column value

Exception

- `FlatFileSQLFeatureNotSupportedException` – this feature has not been implemented

updateCharacterStream

```java
public void updateCharacterStream(String columnLabel, Reader reader) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a character stream value. The data is read from the stream as needed until end-of-stream is reached.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- **columnLabel** – a `String` that indicates the label for the column specified with the SQL `AS` clause. If the SQL `AS` clause was not specified, then the label is the name of the column.
- **reader** – a `Reader` that specifies the new column value
Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateCharacterStream

public void updateCharacterStream(int columnIndex, Reader x, int length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a character stream value, which is the specified number of bytes.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

x – a Reader that specifies the new column value

length – an int that specifies the length of the stream

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateCharacterStream

public void updateCharacterStream(int columnIndex, Reader x, long length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a character stream value, which is the specified number of bytes.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.

x – a Reader that specifies the new column value

length – a long that specifies the length of the stream

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateCharacterStream

public void updateCharacterStream(String columnLabel, Reader reader, int length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
Description

Updates the designated column with a character stream value, which is the specified number of bytes. The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `reader` – a Reader that specifies the new column value
- `length` – an int that specifies the length of the stream

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateCharacterStream

public void updateCharacterStream(String columnLabel, Reader reader, long length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a character stream value, which is the specified number of bytes. The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `reader` – a Reader that specifies the new column value
- `length` – an int that specifies the length of the stream

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateClob

public void updateClob(int columnIndex, Reader reader) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column using the given Reader object. The data is read from the stream as needed until end-of-stream is reached. The JDBC driver does any necessary conversion from UNICODE to the database char format.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.
Parameters

- `columnIndex` – an int that specifies the column. The first column is 1, the second 2, and so on.
- `reader` – a `Reader` that specifies the new column value

Exception

- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

updateClob

```java
public void updateClob(int columnIndex, Clob x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a `java.sql.Clob` value.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- `columnIndex` – an int that specifies the column. The first column is 1, the second 2, and so on.
- `x` – a `Clob` that specifies the new column value

Exception

- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

updateClob

```java
public void updateClob(String columnLabel, Reader reader) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column using the given `Reader` object. The data is read from the stream as needed until end-of-stream is reached. The JDBC driver does any necessary conversion from UNICODE to the database `char` format.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL `AS` clause.

 If the SQL `AS` clause was not specified, then the label is the name of the column.
- `reader` – a `Reader` that specifies the new column value

Exception

- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

updateClob

```java
public void updateClob(String columnLabel, Clob x) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Input/Output
Description
Updates the designated column with a java.sql.Clob value.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- reader – a Reader that specifies the new column value
- length – a long that specifies the number of characters in the parameter data

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateClob
public void updateClob(int columnIndex, Reader reader, long length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column using the given Reader object, which is the given number of characters long. When a very large UNICODE value is input to a LONGVARCHAR parameter, it may be more practical to send it via a java.io.Reader object. The JDBC driver does any necessary conversion from UNICODE to the database char format.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- columnIndex – a String that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- x – a Clob that specifies the new column value

Exception
- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateClob
public void updateClob(String columnLabel, Reader reader, long length) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column using the given Reader object, which is the given number of characters long. When a very large UNICODE value is input to a LONGVARCHAR parameter, it may be more practical to send it via a java.io.Reader object. The JDBC driver does any necessary conversion from UNICODE to the database char format.
The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.
Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- `reader` – a `Reader` that specifies the new column value
- `length` – a `long` that specifies the number of characters in the parameter data

Exception

- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

`updateNCharacterStream`

```java
public void updateNCharacterStream(int columnIndex, Reader x) throws
    AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a character stream value. The data is read from the stream as needed until end-of-stream is reached. The driver does the necessary conversion from Java character format to the national character set in the database. It is intended for use when updating `NCHAR`, `NVARCHAR` and `LONGNVARCHAR` columns.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- `columnIndex` – an `int` that specifies the column. The first column is 1, the second 2, and so on.
- `x` – a `Reader` that specifies the new column value

Exception

- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

`updateNCharacterStream`

```java
public void updateNCharacterStream(String columnLabel, Reader reader) throws
    AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a character stream value. The data is read from the stream as needed until end-of-stream is reached. The driver does the necessary conversion from Java character format to the national character set in the database. It is intended for use when updating `NCHAR`, `NVARCHAR` and `LONGNVARCHAR` columns.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the `updateRow` or `insertRow` methods are called to update the database.

Parameters

- `columnLabel` – a `String` that indicates the label for the column specified with the SQL AS clause.
 If the SQL AS clause was not specified, then the label is the name of the column.
- `reader` – a `Reader` that specifies the new column value
Exception

FlatFileSQLExceptionNotSupported Exception: this feature has not been implemented

updateNCharacterStream

public void updateNCharacterStream(int columnIndex, Reader x, long length)
throws AbstractFlatFile.FlatFileSQLExceptionNotSupported

Description

Updates the designated column with a character stream value, which is the specified number of bytes. The driver does the necessary conversion from Java character format to the national character set in the database. It is intended for use when updating NCHAR, NVARCHAR and LONGNVARCHAR columns.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
x – a Reader that specifies the new column value
length – a long that specifies the length of the stream

Exception

FlatFileSQLExceptionNotSupported Exception: this feature has not been implemented

updateNCharacterStream

public void updateNCharacterStream(String columnLabel, Reader reader, long length) throws AbstractFlatFile.FlatFileSQLExceptionNotSupported

Description

Updates the designated column with a character stream value, which is the specified number of bytes. The driver does the necessary conversion from Java character format to the national character set in the database. It is intended for use when updating NCHAR, NVARCHAR and LONGNVARCHAR columns.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

columnLabel – a String that indicates the label for the column specified with the SQL AS clause.
If the SQL AS clause was not specified, then the label is the name of the column.
reader – a Reader that specifies the new column value
length – a long that specifies the length of the stream

Exception

FlatFileSQLExceptionNotSupported Exception: this feature has not been implemented

updateNClob

public void updateNClob(int columnIndex, Reader reader) throws
AbstractFlatFile.FlatFileSQLExceptionNotSupported

...
Description
Updates the designated column using the given Reader. The data is read from the stream as needed until end-of-stream is reached. The JDBC driver does any necessary conversion from UNICODE to the database char format.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- reader – a Reader that contains the data to set the parameter value to

Exception
FlatFileSQLExceptionNotSupported Exception this feature has not been implemented

updateNClob
public void updateNClob(int columnIndex, NClob nClob) throws
AbstractFlatFile.FlatFileSQLExceptionNotSupported

Description
Updates the designated column with a java.sql.NClob value.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
- nClob – an NClob that specifies the value for the column to be updated

Exception
FlatFileSQLExceptionNotSupported Exception this feature has not been implemented

updateNClob
public void updateNClob(String columnLabel, Reader reader) throws
AbstractFlatFile.FlatFileSQLExceptionNotSupported

Description
Updates the designated column using the given Reader object. The data is read from the stream as needed until end-of-stream is reached. The JDBC driver does any necessary conversion from UNICODE to the database char format.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Input/Output
Parameters

- **columnLabel** – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- **reader** – a Reader that contains the data to set the parameter value to

Exception

- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateNClob

```java
public void updateNClob(String columnLabel, NClob nClob) throws 
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a java.sql.NClob value.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- **columnLabel** – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- **nClob** – a NClob that specifies the value for the column to be updated

Exception

- FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateNClob

```java
public void updateNClob(int columnIndex, Reader reader, long length) throws 
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column using the given Reader object, which is the given number of characters long. When a very large UNICODE value is input to a LONGVARCHAR parameter, it may be more practical to send it via a java.io.Reader object. The JDBC driver does any necessary conversion from UNICODE to the database char format.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- **columnIndex** – an int that specifies the column. The first column is 1, the second 2, and so on.
- **reader** – a Reader that contains the data to set the parameter value to
- **length** – a long that specifies the number of characters in the parameter data
updateNClob

```java
public void updateNClob(String columnLabel, Reader reader, long length) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column using the given Reader object, which is the given number of characters long. When a very large UNICODE value is input to a LONGVARCHAR parameter, it may be more practical to send it via a java.io.Reader object. The JDBC driver does any necessary conversion from UNICODE to the database char format.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `reader` – a Reader that contains the data to set the parameter value to
- `length` – a long that specifies the number of characters in the parameter data

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateNString

```java
public void updateNString(int columnIndex, String nString) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Description

Updates the designated column with a String value. It is intended for use when updating, NCHAR, NVARCHAR and LONGNVARCHAR columns.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

- `columnIndex` – an int that specifies the column. The first column is 1, the second 2, and so on.
- `nString` – a String that specifies the value for the column to be updated

Exception

FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateNString

```java
public void updateNString(String columnLabel, String nString) throws
AbstractFlatFile.FlatFileSQLFeatureNotSupportedException
```

Input/Output FlatFile

- 1449
Description
Updates the designated column with a String value. It is intended for use when updating NCHAR, NVARCHAR and LONGNVARCHAR columns.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `nString` – a String that specifies the value for the column to be updated

Exception
- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

updateRowId
public void updateRowId(int columnIndex, RowId x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a RowId value.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- `columnIndex` – an int that specifies the column. The first column is 1, the second 2, and so on.
- `x` – a RowId that specifies the column value

Exception
- `FlatFileSQLFeatureNotSupportedException` this feature has not been implemented

updateRowId
public void updateRowId(String columnLabel, RowId x) throws AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description
Updates the designated column with a RowId value.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters
- `columnLabel` – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
- `x` – a RowId that specifies the column value
Exception

 FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateSQLXML

 public void updateSQLXML(int columnIndex, SQLXML xmlObject) throws
 AbstractFlatFile.FlatFileSQLFeatureNotSupportedException

Description

Updates the designated column with a java.sql.SQLXML value.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

 columnIndex – an int that specifies the column. The first column is 1, the second 2, and so on.
 xmlObject – a SQLXML object that specifies the value for the column to be updated

Exception

 FlatFileSQLFeatureNotSupportedException this feature has not been implemented

updateSQLXML

 public void updateSQLXML(String columnLabel, SQLXML xmlObject) throws
 SQLFeatureNotSupportedException

Description

Updates the designated column with a java.sql.SQLXML value.

The updater methods are used to update column values in the current row or the insert row. The updater methods do not update the underlying database. Instead the updateRow or insertRow methods are called to update the database.

Parameters

 columnLabel – a String that indicates the label for the column specified with the SQL AS clause. If the SQL AS clause was not specified, then the label is the name of the column.
 xmlObject – a SQLXML object the specifies the column value

Exception

 FlatFileSQLFeatureNotSupportedException this feature has not been implemented

Example: Fisher Iris Data Set

The Fisher iris data set is frequently used as a sample statistical data set. This example reads the data set in a CVS (comma separated value) format.

The first few lines of the data set are as follows:

Input/Output

 FlatFile • 1451
Species,Sepal Length,Sepal Width,Petal Length,Petal Width
1.0, 5.1, 3.5, 1.4, .2
1.0, 4.9, 3.0, 1.4, .2
1.0, 4.7, 3.2, 1.3, .2
1.0, 4.6, 3.1, 1.5, .2
1.0, 5.0, 3.6, 1.4, .2
1.0, 5.4, 3.9, 1.7, .4

The first line contains the column names, with a comma as the separator. The rest of the lines contain double data, one observation per line, with comma as a separator.

The class FlatFileEx1 extends com.imsl.io.FlatFile. The FlatFileEx1 constructor constructs a BufferedReader object and calls the com.imsl.io.FlatFile constructor. It then reads the line containing the column names. The column names are parsed and used to set the column names in com.imsl.io.FlatFile. All of the columns are also set to type Double.

The class FlatFileEx1 is used in the method main. The data set is assumed to be in a file called "FisherIris.csv" in the same location as the example class file, so the getResourceAsStream can be used to open the file as a stream. A com.imsl.stat.Summary is created and used to compute statistics for the "Sepal Width" column.

```java
import com.imsl.io.FlatFile;
import com.imsl.stat.Summary;
import java.io.*;
import java.sql.SQLException;
import java.util.StringTokenizer;

public class FlatFileEx1 extends FlatFile {

    public FlatFileEx1(InputStream is) throws IOException {
        super(new BufferedReader(new InputStreamReader(is)));
        String line = readLine();
        StringTokenizer st = new StringTokenizer(line, "");
        for (int j = 0; st.hasMoreTokens(); j++) {
            setColumnName(j + 1, st.nextToken().trim());
            setColumnClass(j, Double.class);
        }
    }

    public static void main(String[] args) throws SQLException, IOException {
        InputStream is = FlatFileEx1.class.getResourceAsStream("FisherIris.csv");
        FlatFileEx1 iris = new FlatFileEx1(is);

        Summary summary = new Summary();
        while (iris.next()) {
            summary.update(iris.getDouble("Sepal Width"));
        }

        System.out.println("Sepal Width mean " + summary.getMean());
        System.out.println("Sepal Width variance " + summary.getVariance());

        iris.close();
        is.close();
    }
```

1452 • FlatFile

JMSL
Output

Sepal Width mean 3.057333333333334
Sepal Width variance 0.18837128888888907

Reference

Example: Space Separated Data

This example reads a set of stock prices in a space separated form.

The first few lines of the data set are as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-Apr-03</td>
<td>3.3</td>
<td>3.34</td>
<td>3.27</td>
<td>3.33</td>
<td>37224400</td>
</tr>
<tr>
<td>25-Apr-03</td>
<td>3.35</td>
<td>3.38</td>
<td>3.25</td>
<td>3.26</td>
<td>57117400</td>
</tr>
<tr>
<td>24-Apr-03</td>
<td>3.32</td>
<td>3.40</td>
<td>3.30</td>
<td>3.38</td>
<td>47019800</td>
</tr>
<tr>
<td>23-Apr-03</td>
<td>3.34</td>
<td>3.44</td>
<td>3.30</td>
<td>3.37</td>
<td>63243800</td>
</tr>
<tr>
<td>22-Apr-03</td>
<td>3.24</td>
<td>3.38</td>
<td>3.22</td>
<td>3.36</td>
<td>67392500</td>
</tr>
</tbody>
</table>

The first line contains the column names, with a comma as the separator. The rest of the lines contain data, one day per line. The first column is Date data and the last column is int data. All of the rest is double data. The data’s class is set for each column. The parser is explicitly set for the date column, because it cannot be guessed by FlatFile. The date’s locale is set to US, so that the example will work with a different default locale.

A Tokenizer is created and used that counts multiple separators (spaces) as one separator.

The class FlatFileEx2 extends com.imsl.io.FlatFile. The FlatFileEx2 constructor reads the line containing the column names, parses the names, and sets the column names.

The class FlatFileEx2 is used in the method main. The data set is assumed to be in a file called “SUNW.txt” in the same location as the example class file, so the getResourceAsStream method can be used to open the file as a stream. Some of the columns are printed out for each stock price.

```java
import com.imsl.io.*;
import java.text.SimpleDateFormat;
import java.io.*;
import java.sql.*;
import java.util.StringTokenizer;
public class FlatFileEx2 extends FlatFile {
    static SimpleDateFormat dateFormat = SimpleDateFormat.getDateTimeInstance();
```
public FlatFileEx2(BufferedReader br, Tokenizer tokenizer)
 throws IOException {
 super(br, tokenizer);
 String line = readline();
 StringTokenizer st = new StringTokenizer(line, " ", false);
 for (int j = 0; st.hasMoreTokens(); j++) {
 setColumnName(j + 1, st.nextToken().trim());
 }
 setColumnClass(1, Date.class); // Date
 setDateColumnParser(1, "dd-MMM-yy", java.util.Locale.US);
 setColumnClass(2, Double.class); // Open
 setColumnClass(3, Double.class); // High
 setColumnClass(4, Double.class); // Low
 setColumnClass(5, Double.class); // Close
 setColumnClass(6, Integer.class); // Volume
}

public static void main(String[] args) throws SQLException, IOException {
 InputStream is = FlatFileEx2.class.getResourceAsStream("SUNW.txt");
 BufferedReader br = new BufferedReader(new InputStreamReader(is));
 Tokenizer tokenizer = new Tokenizer(" ", (char) 0, true);
 FlatFileEx2 reader = new FlatFileEx2(br, tokenizer);
 while (reader.next()) {
 Date date = reader.getDate("Date");
 double close = reader.getDouble("Close");
 int volume = reader.getInt("Volume");
 System.out.println(dateFormat.format(date) + "
+ close + " + volume);
 }
 reader.close();
 br.close();
 is.close();
}

Output
Apr 28, 2003 3.33 37224400
Apr 25, 2003 3.26 57117400
Apr 24, 2003 3.38 47019800
Apr 23, 2003 3.37 63243800
Apr 22, 2003 3.36 67392500
Apr 21, 2003 3.28 57117400
Apr 17, 2003 3.24 101856900
Apr 16, 2003 3.32 54912900
Apr 15, 2003 3.35 33604200
Apr 14, 2003 3.29 38851800
Apr 11, 2003 3.31 38424000
Apr 10, 2003 3.37 38608500
Apr 9, 2003 3.28 50669700
Apr 8, 2003 3.31 46104600
Apr 7, 2003 3.36 47462900
FlatFile.Parser interface

public interface com.imsl.io.FlatFile.Parser

Defines a method that parses a String into an Object.

Method

parse
public Object parse(String input) throws SQLException

Description

Parses a String into an Object.

Parameter

input – a String that specifies the input to be parsed

Returns

an Object that contains the value of the String

Exception

SQLException thrown if a database error occurs
Tokenizer class

public class com.imsl.io.Tokenizer

Breaks a line into tokens.

The Tokenizer divides a line into tokens separated by delimiters. There can be any number of delimiters set. All of the delimiters are treated equally.

There can be at most one quote character set. If it is set then delimiters inside of a quoted string are treated as part of the string and not as delimiters. The quotes are not returned as part of the token. To escape a quote, repeat it.

Constructor

Tokenizer

public Tokenizer(String delimiters, char quote, boolean mergeMultipleDelimiters)

Description

Creates a Tokenizer.

Parameters

delimiters – is a String containing the delimiter characters.
quote – is a char containing the quote character. If 0 then quoting is disabled.
mergeMultipleDelimiters – is true if multiple consecutive delimiters are to be treated as a single delimiter.

Methods

countTokens

public int countTokens()

Description

Returns the number of times that the nextToken method can be called without generating an exception.

hasMoreTokens

public boolean hasMoreTokens()
Description
Returns true if a call to nextToken will not generate an exception.

nextToken
public String nextToken()

Description
Returns the next token.

Returns
the next token.

Exception
NoSuchElementException if there are no more tokens to be returned.

parse
public void parse(String line)

Description
Sets the line to be tokenized. Any tokens left from the previous line are discarded.

Parameter
 line – is the line to be tokenized.

MPSReader class

public class com.imsl.io.MPSReader implements Serializable
Reads a linear programming problem from an MPS file.

An MPS file defines a linear or quadratic programming problem. Linear programming problems read using this class are assumed to be of the form:

\[
\min \ c^T x \\
\text{s.t.} \\
\quad b_l \leq Ax \leq b_u \\
\quad x_l \leq x \leq x_u
\]

where \(c \) is the objective coefficient vector, \(A \) is the coefficient matrix, and the vectors \(b_l, b_u, x_l, \text{ and } x_u \) are the lower and upper bounds on the constraints and the variables, respectively.

Input/Output
The following table helps map this notation into the use of MPSReader:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Objective</td>
</tr>
<tr>
<td>A</td>
<td>Constraint matrix</td>
</tr>
<tr>
<td>(b_l)</td>
<td>Lower Range</td>
</tr>
<tr>
<td>(b_u)</td>
<td>Upper Range</td>
</tr>
<tr>
<td>(x_l)</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>(x_u)</td>
<td>Upper Bound</td>
</tr>
</tbody>
</table>

If the MPS file specifies an equality constraint or bound, the corresponding lower and upper values will be exactly equal.

The problem formulation assumes that the constraints and bounds are two-sided. If a particular constraint or bound has no lower limit, then the corresponding entry in the structure is set to negative machine infinity. If the upper limit is missing, then the corresponding entry in the structure is set to positive machine infinity.

MPS File Format

There is some variability in the MPS format. This section describes the MPS format accepted by this reader.

An MPS file consists of a number of sections. Each section begins with a name in column 1. With the exception of the NAME section, the rest of this line is ignored. Lines with a '*' or '$' in column 1 are considered comment lines and are ignored.

The body of each section consists of lines divided into fields, as follows:

<table>
<thead>
<tr>
<th>Field Number</th>
<th>Columns</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-3</td>
<td>Indicator</td>
</tr>
<tr>
<td>2</td>
<td>5-12</td>
<td>Name</td>
</tr>
<tr>
<td>3</td>
<td>15-22</td>
<td>Name</td>
</tr>
<tr>
<td>4</td>
<td>25-36</td>
<td>Value</td>
</tr>
<tr>
<td>5</td>
<td>40-47</td>
<td>Name</td>
</tr>
<tr>
<td>6</td>
<td>50-61</td>
<td>Value</td>
</tr>
</tbody>
</table>

The format limits MPS names to 8 characters and values to 12 characters. The names in fields 2, 3 and 5 are case sensitive. Leading and trailing blanks are ignored, but internal spaces are significant.

The sections in an MPS file are as follows:

NAME

ROWS

COLUMNS

RHS

RANGES (optional)

BOUNDS (optional)
NAME Section
The NAME section contains the single line. A problem name can occur anywhere on the line after NAME and before columns 62. The problem name is truncated to 8 characters.

ROWS Section
The ROWS section defines the name and type for each row. Field 1 contains the row type and field 2 contains the row name. Row type values are not case sensitive. Row names are case sensitive. The following row types are allowed:

<table>
<thead>
<tr>
<th>Row Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Equality constraint</td>
</tr>
<tr>
<td>L</td>
<td>Less than or equal constraint</td>
</tr>
<tr>
<td>G</td>
<td>Greater than or equal constraint</td>
</tr>
<tr>
<td>N</td>
<td>Objective of a free row</td>
</tr>
</tbody>
</table>

COLUMNS Section
The COLUMNS section defines the nonzero entries in the objective and the constraint matrix. The row names here must have been defined in the ROWS section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Column name</td>
</tr>
<tr>
<td>3</td>
<td>Row name</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose row and column are given by fields 2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>Row name</td>
</tr>
<tr>
<td>6</td>
<td>Value for the entry whose row and column are given by fields 2 and 5</td>
</tr>
</tbody>
</table>

Note: Fields 5 and 6 are optional.

The COLUMNS section can also contain markers. These are indicated by the name 'MARKER' (with the quotes) in field 3 and the marker type in field 4 or 5.

Marker type 'INTORG' (with the quotes) begins an integer group. The marker type 'INTEND' (with the quotes) ends this group. The variables corresponding to the columns defined within this group are required to be integer.

RHS Section
The RHS section defines the right-hand side of the constraints. An MPS file can contain more than one RHS set, distinguished by the RHS set name. The row names here must be defined in the ROWS section.
Note: Fields 5 and 6 are optional.

RANGES Section

The optional RANGES section defines two-sided constraints. An MPS file can contain more than one range set, distinguished by the range set name. The row names here must have been defined in the ROWS section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RHS name</td>
</tr>
<tr>
<td>3</td>
<td>Row name</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose row and column are given by fields 2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>Row name</td>
</tr>
<tr>
<td>6</td>
<td>Value for the entry whose row and column are given by fields 2 and 5</td>
</tr>
</tbody>
</table>

Note: Fields 5 and 6 are optional.

Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints. The two-sided constraint for row \(i \) depends on the range value, \(r_i \), defined in this section. The right-hand side value, \(b_i \), is defined in the RHS section. The two-sided constraints for row \(i \) are given in the following table:

<table>
<thead>
<tr>
<th>Row Type</th>
<th>Lower Constraint</th>
<th>Upper Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>(b_i)</td>
<td>(b_i +</td>
</tr>
<tr>
<td>L</td>
<td>(b_i -</td>
<td>r_i</td>
</tr>
<tr>
<td>E</td>
<td>(b_i + min(0,r_i))</td>
<td>(b_i + max(0,r_i))</td>
</tr>
</tbody>
</table>

BOUNDS Section

The optional BOUNDS section defines bounds on the variables. By default, the bounds are \(0 \leq x_i \leq \infty \). The bounds can also be used to indicate that a variable must be an integer.

More than one bound can be set for a single variable. For example, to set \(2 \leq x_i \leq 6 \) use a LO bound with value 2 to set \(2 \leq x_i \) and an UP bound with value 6 to add the condition \(x_i \leq 6 \).

An MPS file can contain more than one bounds set, distinguished by the bound set name.
<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bounds type</td>
</tr>
<tr>
<td>2</td>
<td>Bounds set name</td>
</tr>
<tr>
<td>3</td>
<td>Column name</td>
</tr>
<tr>
<td>4</td>
<td>Value for the entry whose set and column are given by fields 2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>Column name</td>
</tr>
<tr>
<td>6</td>
<td>Value for the entry whose set and column are given by fields 2 and 5</td>
</tr>
</tbody>
</table>

Note: Fields 5 and 6 are optional.

The bound types are as follows. Here b_i are the bound values defined in this section, the x_i are the variables, and I is the set of integers.

<table>
<thead>
<tr>
<th>Bound Type</th>
<th>Definition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>Lower bound</td>
<td>$b_i \leq x_i$</td>
</tr>
<tr>
<td>UP</td>
<td>Upper bound</td>
<td>$x_i \leq b_i$</td>
</tr>
<tr>
<td>FX</td>
<td>Fixed Variable</td>
<td>$x_i = b_i$</td>
</tr>
<tr>
<td>FR</td>
<td>Free variable</td>
<td>$-\infty \leq x_i \leq \infty$</td>
</tr>
<tr>
<td>MI</td>
<td>Lower bound is minus infinity</td>
<td>$-\infty \leq x_i$</td>
</tr>
<tr>
<td>PL</td>
<td>Upper bound is positive infinity</td>
<td>$x_i \leq \infty$</td>
</tr>
<tr>
<td>BV</td>
<td>Binary variable (variable must be 0 or 1)</td>
<td>$x_i \in {0,1}$</td>
</tr>
<tr>
<td>UI</td>
<td>Upper bound and integer</td>
<td>$x_i \leq b_i$ and $x_i \in I$</td>
</tr>
<tr>
<td>LI</td>
<td>Lower bound and integer</td>
<td>$b_i \leq x_i$ and $x_i \in I$</td>
</tr>
<tr>
<td>SC</td>
<td>Semicontinuous</td>
<td>0 or $b_i \leq x_i$</td>
</tr>
</tbody>
</table>

The bound type names are not case sensitive.

If the bound type is UP or UI and $b_i \leq x_i$ then the lower bound is set to $-\infty$.

ENDATA Section

The ENDATA section ends the MPS file.

Fields

BINARY_VARIABLE

```java
static final public int BINARY_VARIABLE
```

Variable must be either 0 or 1.

CONTINUOUS_VARIABLE

```java
static final public int CONTINUOUS_VARIABLE
```

Variable is a real number.

INTEGER_VARIABLE

```java
static final public int INTEGER_VARIABLE
```

MPSReader

1461
Variable must be an integer.

Constructor

MPSReader

public MPSReader()

Methods

getLowerBound

public double getLowerBound(int iVariable)

Description

Returns the lower bound for a variable.

Parameter

iVariable – is the number of the variable.

getLowerRange

public double getLowerRange(int iRow)

Description

Returns the lower range value for a constraint equation.

Parameter

iRow – is the row number of the equation.

getName

public String getName()

Description

Returns the name of the MPS problem. This is the value of the NAME field.

getNameBounds

public String getNameBounds()

Description

Returns the name of the BOUNDS set. An MPS file can contain multiple sets of BOUNDS, but only one is retained by this reader. Returns null if there is no BOUNDS set.

getNameColumn

public String getNameColumn(int iColumn) throws MPSReader.InvalidMPSFileException
Description

Returns the name of a constraint column. Constraint column names are also variable names.

Parameter

iColumn – is the number of the column.

getNameObjective

public String getNameObjective()

Description

Returns the name of the free row containing the objective.

getNameRHS

public String getNameRHS()

Description

Returns the name of the RHS section.

getNameRanges

public String getNameRanges()

Description

Returns the name of the RANGES set. An MPS file can contain multiple sets of RANGES, but only one is retained by this reader. Returns null if there is no RANGES set.

getNameRow

public String getNameRow(int iRow)

Description

Returns the name of a constraint row.

getNumberOfBinaryConstraints

public int getNumberOfBinaryConstraints()

Description

Returns the number of binary constraints. An binary constraint is the requirement that a variable be either 0 or 1. Binary constraints are also integer constraints.

getNumberOfColumns

public int getNumberOfColumns()

Description

Returns the number of columns in the constraint matrix.

getNumberOfIntegerConstraints

public int getNumberOfIntegerConstraints()
getDescription:
Returns the number of integer constraints. An integer constraint is the requirement that a variable be an integer.

getNumberOfNonZeros
public int getNumberOfNonZeros()

getDescription:
Returns the number of nonzeros in the constraint matrix.

getNumberOfRows
public int getNumberOfRows()

getDescription:
Returns the number of rows in the constraint matrix.

getObjective
public MPSReader.Row getObjective()

getDescription:
Returns the objective as a Row.

getObjectiveCoefficients
public double[] getObjectiveCoefficients()

getDescription:
Returns the coefficients of the objective row.

getRow
public MPSReader.Row getRow(int iRow)

getDescription:
Returns a row of the constraint matrix or a free row.

Parameter
- iRow – is the number of the row.

getRowCoefficients
public double[] getRowCoefficients(int iRow)

getDescription:
Returns the coefficients of a row.

Parameter
- iRow – is the number of the row.

getTypeVariable
public int getTypeVariable(int iVariable)
Description
Returns the type of a variable. The variable types are CONTINUOUS_VARIABLE, BINARY_VARIABLE or INTEGER_VARIABLE.

Parameter
 iVariable – is the number of the variable.

getUpperBound
public double getUpperBound(int iVariable)

Description
Returns the upper bound for a variable.

Parameter
 iVariable – is the number of the variable.

getUpperRange
public double getUpperRange(int iRow)

Description
Returns the upper range value for a constraint equation.

Parameter
 iRow – is the row number of the equation.

processCommand
protected String processCommand(String command, String line) throws IOException, MPSReader.InvalidMPSFileException

Description
Process a section of the MPS file.

Returns
the next line to be processed. This line was read, but was not part of the section being processed.

read
public void read(Reader reader) throws IOException, MPSReader.InvalidMPSFileException

Description
Reads and parses the MPS file.

setNameBounds
public void setNameBounds(String nameBounds)
Description
Sets the name of the BOUNDS set to be used. An MPS file can contain multiple sets of BOUNDS, but only one is retained by this reader. If not set name is set, then the first set in the file is used.

setNameObjective
public void setNameObjective(String nameObjective)

Description
Sets the name of the free row containing the objective. An MPS file can contain free rows, but only one is retained by this reader as the objective. If not set name is set, then the first free row in the file is used as the objective.

setNameRHS
public void setNameRHS(String nameRHS)

Description
Sets the name of the RHS set to be used. An MPS file can contain multiple sets of RHS values, but only one is retained by this reader. If not set name is set, then the first set in the file is used.

setNameRanges
public void setNameRanges(String nameRanges)

Description
Sets the name of the RANGES set to be used. An MPS file can contain multiple sets of RANGES, but only one is retained by this reader. If not set name is set, then the first set in the file is used.

Example: Reading an MPS file.
This example reads the data for a linear programming problem from an MPS file.

```java
import com.imsl.io.MPSReader;
import java.io.*;
import java.util.Iterator;

public class MPSReaderEx1 {
    static public void main(String arg[])
        throws IOException, MPSReader.InvalidMPSFileException {
            InputStream stream = MPSReaderEx1.class.getResourceAsStream("testprob.mps");
            Reader reader = new InputStreamReader(stream);
            MPSReader mps = new MPSReader();
            mps.read(reader);

            System.out.println("Name   " + mps.getName());
            System.out.println("RHS    " + mps.getNameRHS());
            System.out.println("BOUNDS  " + mps.getNameBounds());
            System.out.println("RANGES  " + mps.getNameRanges());

            int nRows = mps.getNumberOfRows();
```
System.out.println("NumberOfConstraints " + nRows);
for (int i = 0; i < nRows; i++) {
 System.out.println(" + mps.getLowerRange(i)
+ " <= row[" + i + "] = "
+ mps.getNameRow(i)
+ " <= " + mps.getUpperRange(i));
}

int nColumns = mps.getNumberOfColumns();
System.out.println("NumberOfColumns " + nColumns);
for (int i = 0; i < nColumns; i++) {
 System.out.println(" + mps.getLowerBound(i)
+ " <= var[" + i + "] = "
+ mps.getNameColumn(i)
+ " <= " + mps.getUpperBound(i));
}

System.out.println("NumberOfNonZeros " + mps.getNumberOfNonZeros());
for (int iRow = 0; iRow < nRows; iRow++) {
 System.out.println(" + mps.getNameRow(iRow));
 Iterator iter = mps.getRow(iRow).iterator();
 while (iter.hasNext()) {
 MPSReader.Element elem = (MPSReader.Element) iter.next();
 int iColumn = elem.getColumn();
 String nameColumn = mps.getNameColumn(iColumn);
 System.out.println(" + nameColumn
+ ": " + elem.getValue());
 }
}
}
reader.close();
stream.close();

Output
Name TESTPROB
RHS RHS1
BOUNDS BND1
RANGES null
NumberOfConstraints 3
-Infinity <= row[0] = LIM1 <= 5.0
10.0 <= row[1] = LIM2 <= Infinity
7.0 <= row[2] = MYEQN <= 7.0
NumberOfColumns 3
0.0 <= var[0] = XONE <= 4.0
-1.0 <= var[1] = YTWO <= 1.0
0.0 <= var[2] = ZTHREE <= Infinity
NumberOfNonZeros 6
row LIM1
 XONE: 1.0
 YTWO: 1.0
MPSReader.InvalidMPSFileException class

static public class com.imsl.io.MPSReader.InvalidMPSFileException extends com.imsl.IMSLException

The MPS file is invalid.

Constructors

MPSReader.InvalidMPSFileException
public MPSReader.InvalidMPSFileException(String message)

Description
Constructs a InvalidMPSFileException object.

Parameter
message – a String containing the error message

MPSReader.InvalidMPSFileException
public MPSReader.InvalidMPSFileException(String key, Object[] arguments)

Description
Constructs a InvalidMPSFileException object.

Parameters
key – a String containing the error message
arguments – an Object array containing arguments used within the error message string

MPSReader.Row class

public class com.imsl.io.MPSReader.Row implements Serializable
A row either in the constraint matrix or a free row.

Methods

getCoefficients

```java
public double[] getCoefficients()
```

Description

Returns the coefficients of this row as a dense array.

getName

```java
public String getName()
```

Description

Returns the name of this row.

getNumberOfNonZeros

```java
public int getNumberOfNonZeros()
```

Description

Returns the number of nonzero elements in this row.

iterator

```java
public Iterator iterator()
```

Description

Returns an iterator over the elements in this row. This is used to retrieve the coefficients in a sparse form.

MPSReader.Element class

```java
static public class com.imsl.io.MPSReader.Element implements Serializable
```

An element in the sparse constraint matrix.

Methods

getColumn

```java
public int getColumn()
```

Input/Output

MPSReader • 1469
Description
Returns the column index.

getValue
public double getValue()

Description
Returns the value of the element.
Chapter 25: Finance

Types

interface BasisPart ... 1472
class Bond .. 1473
class DayCountBasis ... 1527
class Finance ... 1530

Usage Notes

Users can perform financial computations by using pre-defined data types. Most of the financial functions require one or more of the following:

- Date
- Number of payments per year
- A variable to indicate when payments are due
- Day count basis

The Bond class provides constants to indicate the number of payments for each year.

<table>
<thead>
<tr>
<th>Class member</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond.ANNUAL</td>
<td>One payment per year (Annual payment)</td>
</tr>
<tr>
<td>Bond.SEMIANNUAL</td>
<td>Two payments per year (Semi-annual payment)</td>
</tr>
<tr>
<td>Bond.QUARTERLY</td>
<td>Four payments per year (Quarterly payment)</td>
</tr>
</tbody>
</table>

The Finance class provides constants to indicate when payments are due.

<table>
<thead>
<tr>
<th>Class member</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance.AT_END_OF_PERIOD</td>
<td>Payments are due at the end of the period</td>
</tr>
<tr>
<td>Finance.AT_BEGINNING_OF_PERIOD</td>
<td>Payments are due at the beginning of the period</td>
</tr>
</tbody>
</table>

The DayCountBasis class provides constants to indicate the type of day count basis. Day count basis is the method for computing the number of days between two dates.
Additional Information

In preparing the finance and bond functions we incorporated standards used by *SIA Standard Securities Calculation Methods*.

More detailed information on finance and bond functionality can be found in the following manuals:

- *Microsoft Excel 5, Worksheet Function Reference*.

BasisPart interface

public interface com.imsl.finance.BasisPart

Component of `com.imsl.finance.DayCountBasis` (p. 1527). The day count basis consists of a month basis and a yearly basis. Each of these components implements this interface.

Methods

daysBetween

public int daysBetween(GregorianCalendar date1, GregorianCalendar date2)

Description

Returns the number of days from `date1` to `date2`.

Parameters

- `date1` – a `GregorianCalendar` which specifies the initial date
- `date2` – a `GregorianCalendar` which specifies the final date

Returns

an `int` indicating the number of days from `date1` to `date2`.

daysInPeriod

public double daysInPeriod(GregorianCalendar date, int frequency)

<table>
<thead>
<tr>
<th>Class member</th>
<th>Day count basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DayCountBasis.BasisNASD</td>
<td>US (NASD) 30/360</td>
</tr>
<tr>
<td>DayCountBasis.BasisActualActual</td>
<td>Actual/Actual</td>
</tr>
<tr>
<td>DayCountBasis.BasisActual360</td>
<td>Actual/360</td>
</tr>
<tr>
<td>DayCountBasis.BasisActual365</td>
<td>Actual/365</td>
</tr>
<tr>
<td>DayCountBasis.Basis30e360</td>
<td>European 30/360</td>
</tr>
</tbody>
</table>
Description
Returns the number of days in a coupon period.

Parameters
 date – a GregorianCalendar which specifies the final date of the coupon period
 frequency – an int containing the number of coupon periods per year. This is typically 1, 2 or 4.

Returns
an int which specifies the number of days in the coupon period

getDaysInYear
public int getDaysInYear(GregorianCalendar date)

Description
Returns the number of days in the year.

Parameter
 date – a GregorianCalendar date.

Returns
an int which specifies the number of days in the year

Bond class

public class com.imsl.finance.Bond
Collection of bond functions.

Definitions
rate is an annualized rate of return based on the par value of the bills.
yield is an annualized rate based on the purchase price and reflects the actual yield to maturity.
coupons are interest payments on a bond.
redemption is the amount a bond pays at maturity.
frequency is the number of times a year that a bond makes interest payments.
basis is the method used to calculate dates. For example, sometimes computations are done assuming 360 days in a year.
issue is the day a bond is first sold.
settlement is the day a purchaser acquires a bond.
maturity is the day a bond’s principal is repaid.
Discount Bonds

Discount bonds, also called zero-coupon bonds, do not pay interest during the life of the security, instead they sell at a discount to their value at maturity. The discount bond methods all have settlement, maturity, basis, and redemption as arguments. In the following list these common arguments are omitted.

- price = pricedisc(rate)
- price = priceyield(yield)
- price = pricemat(issue, rate, yield)
- rate = disc(price)
- yield = yielddisc(price)

A related method is accrintm, which returns the interest that has accumulated on the discount bond.

Treasury Bills

US Treasury bills are a special case of discount bonds. The basis is fixed for treasury bills and the redemption value is assumed to be $100. So these functions have only settlement and maturity as common arguments.

- price = tbillprice(rate)
- yield = tbillyield(price)
- yield = tbilleq(rate)

Interest-Paying Bonds

Most bonds pay interest periodically. The interest-paying bond methods all have settlement, maturity, basis, and frequency as arguments. Again suppressing the common arguments,

- price = price(rate, yield, redemption)
- yield = yield(rate, price, redemption)
- redemption = received(price, rate)

A related method is accrint, which returns the interest that has accumulated at settlement from the previous coupon date.

Interest-Paying Bonds with Odd Coupon Periods

An odd coupon period is one that is either shorter or longer than the regular coupon period. Odd coupon periods typically occur in the first or the last payment period. The yield and price functions accept two additional arguments in order to make the proper adjustments for odd coupon periods: issueDate and firstCouponDate or lastCouponDate.
- oddFirstPrice = price(settlement, maturity, issueDate, firstCouponDate, rate, yield, redemption, frequency, basis)
- oddLastPrice = price(settlement, maturity, lastCouponDate, rate, yield, redemption, frequency, basis)
- oddFirstYield = yield(settlement, maturity, issueDate, firstCouponDate, rate, price, redemption, frequency, basis)
- oddLastYield = yield(settlement, maturity, lastCouponDate, rate, price, redemption, frequency, basis)

Coupon days

In this diagram, the settlement date is shown as a hollow circle and the adjacent coupon dates are shown as filled circles.

- couppcd is the coupon date immediately prior to the settlement date.
coupncd is the coupon date immediately after the settlement date.

coupdaybs is the number of days from the immediately prior coupon date to the settlement date.

coupdaysnc is the number of days from the settlement date to the next coupon date.

coupdays is the number of days between these two coupon dates.

A related method is coupnum, which returns the number of coupons payable between settlement and maturity.

Another related method is yearfrac, which returns the fraction of the year between two days.

Duration

Duration is used to measure the sensitivity of a bond to changes in interest rates. Convexity is a measure of the sensitivity of duration.

- duration
- modified duration
- convexity

Fields

ANNUAL

```
static final public int ANNUAL
```

Coupon payments are made annually.

BIMONTHLY

```
static final public int BIMONTHLY
```

Coupon payments are made bimonthly (6 times per year).

MONTHLY

```
static final public int MONTHLY
```

Coupon payments are made monthly.

QUARTERLY

```
static final public int QUARTERLY
```

Coupon payments are made quarterly.

SEMIANNUAL

```
static final public int SEMIANNUAL
```

Coupon payments are made semiannually (twice per year).
Methods

acrint

```java
static public double acrint(GregorianCalendar issue, GregorianCalendar firstCoupon, GregorianCalendar settlement, double rate, double par, int frequency, DayCountBasis basis)
```

Description

Returns the interest which has accrued on a security that pays interest periodically. In the equation below, \(A_i \) represents the number of days which have accrued for the \(i \)th quasi-coupon period within the odd period. The quasi-coupon periods are periods obtained by extending the series of equal payment periods to before or after the actual payment periods. \(NC \) represents the number of quasi-coupon periods within the odd period, rounded to the next highest integer. \(NL_i \) represents the length of the normal \(i \)th quasi-coupon period within the odd period. \(NL_i \) is expressed in days. Function acrint can be found by solving the following:

\[
par \left(\frac{rate}{frequency} \sum_{i=1}^{NC} \frac{A_i}{NL_i} \right)
\]

Parameters

- `issue` – a `GregorianCalendar` issue date of the security
- `firstCoupon` – a `GregorianCalendar` date of the security’s first interest date
- `settlement` – a `GregorianCalendar` settlement date of the security
- `rate` – a `double` which specifies the security’s annual coupon rate
- `par` – a `double` which specifies the security’s par value
- `frequency` – an `int` which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNUAL for semiannual, and QUARTERLY for quarterly
- `basis` – a `DayCountBasis` object which contains the type of day count basis to use. See `DayCountBasis`.

Returns

A `double` which specifies the accrued interest

acrintm

```java
static public double acrintm(GregorianCalendar issue, GregorianCalendar maturity, double rate, double par, DayCountBasis basis)
```

Description

Returns the interest which has accrued on a security that pays interest at maturity.

\[
= par \times rate \times \frac{A}{D}
\]

In the above equation, \(A \) represents the number of days starting at issue date to maturity date and \(D \) represents the annual basis.
Parameters

- issue – a GregorianCalendar issue date of the security
- maturity – a GregorianCalendar date of the security’s maturity
- rate – a double which specifies the security’s annual coupon rate
- par – a double which specifies the security’s par value
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

A double which specifies the accrued interest

amordegrc

static public double amordegrc(double cost, GregorianCalendar issue, GregorianCalendar firstPeriod, double salvage, int period, double rate, DayCountBasis basis)

Description

Returns the depreciation for each accounting period. This method is similar to amorlinc. However, in this method a depreciation coefficient based on the asset life is applied during the evaluation of the function.

Parameters

- cost – a double which specifies the cost of the asset
- issue – a GregorianCalendar issue date of the asset
- firstPeriod – a GregorianCalendar date of the end of the first period
- salvage – a double which specifies the asset’s salvage value at the end of the life of the asset
- period – an int which specifies the period
- rate – a double which specifies the rate of depreciation
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

A double which specifies the depreciation

amorlinc

static public double amorlinc(double cost, GregorianCalendar issue, GregorianCalendar firstPeriod, double salvage, int period, double rate, DayCountBasis basis)

Description

Returns the depreciation for each accounting period. This method is similar to amordegrc, except that amordegrc has a depreciation coefficient that is applied during the evaluation that is based on the asset life.
Parameters

- cost – a double which specifies the cost of the asset
- issue – a GregorianCalendar issue date of the asset
- firstPeriod – a GregorianCalendar date of the end of the first period
- salvage – a double which specifies the asset’s salvage value at the end of the life of the asset
- period – an int which specifies the period
- rate – a double which specifies the rate of depreciation
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

a double which specifies the depreciation

convexity

static public double convexity(GregorianCalendar settlement, GregorianCalendar maturity, double coupon, double yield, int frequency, DayCountBasis basis)

Description

Returns the convexity for a security. Convexity is the sensitivity of the duration of a security to changes in yield. It is computed using the following:

\[
\frac{1}{(q \times \text{frequency})^2} \left\{ \sum_{t=1}^{n} \left(\frac{\text{coupon}}{\text{frequency}} \right) q^{-t} + n (n+1) q^{-n} \right\}
\]

where \(n \) is calculated from coupnum, and \(q = 1 + \frac{\text{yield}}{\text{frequency}} \).

Parameters

- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- coupon – a double which specifies the security’s annual coupon rate
- yield – a double which specifies the security’s annual yield
- frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIAnnual for semiannual, and QUARTERLY for quarterly
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

a double which specifies the convexity for a security

coupdaybs

static public int coupdaybs(GregorianCalendar settlement, GregorianCalendar maturity, int frequency, DayCountBasis basis)
Description

Returns the number of days starting with the beginning of the coupon period and ending with the settlement date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol. 1, pages 17-35.

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNUAL for semiannual, and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

an int which specifies the number of days from the beginning of the coupon period to the settlement date

coupdays

static public double coupdays(GregorianCalendar settlement, GregorianCalendar maturity, int frequency, DayCountBasis basis)

Description

Returns the number of days in the coupon period containing the settlement date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol. 1, pages 17-35.

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNUAL for semiannual, and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

a double which specifies the number of days in the coupon period that contains the settlement date

coupdaysnc

static public int coupdaysnc(GregorianCalendar settlement, GregorianCalendar maturity, int frequency, DayCountBasis basis)

Description

Returns the number of days starting with the settlement date and ending with the next coupon date. For a good discussion on day count basis, see *SIA Standard Securities Calculation Methods* 1993, vol. 1, pages 17-35.
Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual,
SEMIANNUAL for semiannual, and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

an int which specifies the number of days from the settlement date to the next coupon date

coupncd

static public GregorianCalendar coupncd(GregorianCalendar settlement,
GregorianCalendar maturity, int frequency, DayCountBasis basis)

Description

Returns the first coupon date which follows the settlement date. For a good discussion on day count

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual,
SEMIANNUAL for semiannual, and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis

Returns

a GregorianCalendar which specifies the next coupon date after the settlement date

coupnum

static public int coupnum(GregorianCalendar settlement, GregorianCalendar
maturity, int frequency, DayCountBasis basis)

Description

Returns the number of coupons payable between the settlement date and the maturity date. For a good
discussion on day count basis, see SIA Standard Securities Calculation Methods 1993, vol. 1, pages
17-35.

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual,
SEMIANNUAL for semiannual, and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.
Returns

an int which specifies the number of coupons payable between the settlement date and maturity date

couppcd

static public GregorianCalendar couppcd(GregorianCalendar settlement,
 GregorianCalendar maturity, int frequency, DayCountBasis basis)

Description

Returns the coupon date which immediately precedes the settlement date. For a good discussion on day

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual,
 SEMIANNUAL for semiannual, and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See
 DayCountBasis

Returns

a GregorianCalendar which specifies the previous coupon date before the settlement date

disc

static public double disc(GregorianCalendar settlement, GregorianCalendar
 maturity, double price, double redemption, DayCountBasis basis)

Description

Returns the implied interest rate of a discount bond. The discount rate is the interest rate implied when a
security is sold for less than its value at maturity in lieu of interest payments. It is computed using the
following:

\[
\frac{\text{redemption} - \text{price}}{\text{price}} \times \frac{B}{DSM}
\]

In the equation above, \(B\) represents the number of days in a year based on the annual basis and \(DSM\)
represents the number of days starting with the settlement date and ending with the maturity date.

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
price – a double which specifies the security’s price per $100 face value
redemption – a double which specifies the security’s redemption value per $100 face value
basis – a DayCountBasis object which contains the type of day count basis to use. See
 DayCountBasis.
Returns
da double which specifies the discount rate for a security

duration
static public double duration(GregorianCalendar settlement, GregorianCalendar maturity, double coupon, double yield, int frequency, DayCountBasis basis)

Description
Returns the Macaulay duration of a security where the security has periodic interest payments. The Macaulay duration is the weighted-average time to the payments, where the weights are the present value of the payments. It is computed using the following:

\[
\frac{\left(\frac{N-1+DSC}{1+freq}\right)\times 100}{\left(\frac{N-1+DSC}{1+freq}\right)^{N-1+DSC}} + \sum_{k=1}^{N} \left(\frac{100\times coupon \times (k-1+DSC)}{freq \times (1+freq \times (k-1+DSC) \times E)} \times \left(k - 1 + \frac{DSC}{E}\right) \right) \times \frac{1}{freq}
\]

In the equation above, DSC represents the number of days starting with the settlement date and ending with the next coupon date. E represents the number of days within the coupon period. N represents the number of coupons payable from the settlement date to the maturity date. freq represents the frequency of the coupon payments annually.

Parameters
- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- coupon – a double which specifies the security’s annual coupon rate
- yield – a double which specifies the security’s annual yield
- frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNUAL for semiannual, and QUARTERLY for quarterly
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns
a double which specifies the annual duration of a security with periodic interest payments

intrate
static public double intrate(GregorianCalendar settlement, GregorianCalendar maturity, double investment, double redemption, DayCountBasis basis)

Finance

Bond • 1483
Description
Returns the interest rate of a fully invested security. It is computed using the following:

\[
\frac{\text{redemption} - \text{investment}}{\text{investment}} \times \frac{B}{DSM}
\]

In the equation above, \(B \) represents the number of days in a year based on the annual basis, and \(DSM \) represents the number of days in the period starting with the settlement date and ending with the maturity date.

Parameters
- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- investment – a double which specifies the amount invested
- redemption – a double which specifies the amount to be received at maturity
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns
a double which specifies the interest rate for a fully invested security

\textit{mduration}

static public double mduration(GregorianCalendar settlement, GregorianCalendar maturity, double coupon, double yield, int frequency, DayCountBasis basis)

Description
Returns the modified Macaulay duration for a security with an assumed par value of $100. It is computed using the following:

\[
\frac{\text{duration}}{1 + \frac{\text{yield}}{\text{frequency}}}
\]

where \(\text{duration} \) is calculated from \textit{mduration}.

Parameters
- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- coupon – a double which specifies the security’s annual coupon rate
- yield – a double which specifies the security’s annual yield
- frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNUAL for semiannual, and QUARTERLY for quarterly
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.
Returns
a double which specifies the modified Macaulay duration for a security with an assumed par value of $100

price
static public double price(GregorianCalendar settlement, GregorianCalendar maturity, double rate, double yield, double redemption, int frequency, DayCountBasis basis)

Description
Returns the price, per $100 face value, of a security that pays periodic interest. It is computed using the following:

\[
\frac{\text{redemption}}{1 + \frac{\text{yield}}{\text{frequency}}} \left(\frac{N - \frac{DSC}{E}}{N-1} \right) + \sum_{k=1}^{N} \frac{100 \times \frac{\text{rate}}{\text{frequency}}}{1 + \frac{\text{yield}}{\text{frequency}}} \left(\frac{k - \frac{DSC}{E}}{k-1} \right) - \left(100 \times \frac{\text{rate}}{\text{frequency}} \times \frac{A}{E} \right)
\]

In the above equation, \(DSC\) represents the number of days in the period starting with the settlement date and ending with the next coupon date. \(E\) represents the number of days within the coupon period. \(N\) represents the number of coupons payable in the timeframe from the settlement date to the redemption date. \(A\) represents the number of days in the timeframe starting with the beginning of coupon period and ending with the settlement date.

Parameters
- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- rate – a double which specifies the security’s annual coupon rate
- yield – a double which specifies the security’s annual yield
- redemption – a double which specifies the security’s redemption value per $100 face value
- frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNOTAL for semiannual, and QUARTERLY for quarterly
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns
a double which specifies the price per $100 face value of a security that pays periodic interest
Description
Returns the price of an odd last period coupon bond, given its yield.

In the case of a short last period with one coupon period or less to redemption, the following formula is used:

\[P = \left[\frac{\text{redemption} + \left(\frac{100 \times \text{rate}}{\text{frequency}} + \frac{\text{DLC}}{E} \right)}{1 + \left(\frac{\text{DSR}}{E} \times \frac{\text{yield}}{\text{frequency}} \right)} \right] - \left[\frac{A \times 100 \times \text{rate}}{E \times \text{frequency}} \right] \]

where

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Number of days from last coupon date before redemption to settlement date.</td>
</tr>
<tr>
<td>DLC</td>
<td>Number of days from last coupon date before redemption to redemption.</td>
</tr>
<tr>
<td>DSR</td>
<td>Number of days from settlement date to redemption date.</td>
</tr>
<tr>
<td>E</td>
<td>Number of days in the quasi-coupon period.</td>
</tr>
</tbody>
</table>

In the case of a short last period with more than one coupon period to redemption, the following formula is used:

\[P = \left[\frac{\text{redemption}}{\left(1 + \frac{\text{yield}}{\text{frequency}} \right)^{N-1} + \frac{\text{DSC}}{E} + \frac{\text{DLC}}{NLL}} \right] + \left[\sum_{k=1}^{N} \frac{100 \times \text{rate}}{E \times \text{frequency}} \left(1 + \frac{\text{yield}}{\text{frequency}} \right)^{k-1} \right] \]

\[+ \left[\frac{100 \times \text{rate}}{E \times \text{frequency}} \left(1 + \frac{\text{yield}}{\text{frequency}} \right)^{N-1} + \frac{\text{DLC}}{E} \right] - \left[100 \times \text{rate} \times \frac{A}{E} \right] \]

where

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Number of days from beginning of coupon period to settlement date.</td>
</tr>
<tr>
<td>DLC</td>
<td>Number of days from last coupon date before redemption to redemption.</td>
</tr>
<tr>
<td>DSC</td>
<td>Number of days from settlement date to next coupon date.</td>
</tr>
<tr>
<td>E</td>
<td>Number of days in coupon period in which the settlement date falls.</td>
</tr>
<tr>
<td>N</td>
<td>Number of coupons payable between settlement date and last coupon date before redemption.</td>
</tr>
<tr>
<td>NLL</td>
<td>Number of days in the full quasi-coupon period in which the odd last period falls.</td>
</tr>
</tbody>
</table>

In the case of a long last period with one coupon period or less to redemption, the following formula is used:
\[P = \left[\text{redemption} + \left(\frac{\sum_{i=1}^{NCL} DLC_i \times 100 \times \text{rate frequency}}{\sum_{i=1}^{NLL_i}} \right) \right] - \left[\left(\frac{\sum_{i=1}^{NCL} A_i \times 100 \times \text{rate frequency}}{\sum_{i=1}^{NLL_i}} \right) \right] \]

where

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_i)</td>
<td>Number of accrued days for the (i)th quasi-coupon period within the odd period counting forward from the last interest date before redemption.</td>
</tr>
<tr>
<td>(DLC_i)</td>
<td>Number of days in the (i)th quasi-coupon period as delimited by the length of the actual coupon period.</td>
</tr>
<tr>
<td>(DSC_i)</td>
<td>Number of days from settlement date (or beginning of quasi-coupon period) to next quasi-coupon within odd period (or to redemption date) for the (i)th quasi-coupon period.</td>
</tr>
<tr>
<td>(NCL)</td>
<td>Number of quasi-coupon periods that fit in odd period.</td>
</tr>
<tr>
<td>(NLL_i)</td>
<td>Normal length in days of the full (i)th quasi-coupon period within odd last period.</td>
</tr>
</tbody>
</table>

In the case of a long first period with more than one coupon period to redemption, the following formula is used:

\[P = \left[\text{redemption} \times \left(\frac{\sum_{i=1}^{NCL} DLC_i \times 100 \times \text{rate frequency}}{\sum_{i=1}^{NLL_i}} \right) \right] + \left[\frac{\sum_{K=1}^{N} \left(\frac{100 \times \text{rate frequency}}{1 + \text{yield frequency}} \right) {K-1 \times DSC} + Nqf + DLQ LQ} \right] \]

+ \left[\frac{100 \times \text{rate frequency}}{1 + \text{yield frequency}} \right] \left[\frac{\sum_{i=1}^{NCL} DLC_i \times 100 \times \text{rate frequency}}{\sum_{i=1}^{NLL_i}} \right] - \left[\frac{100 \times \text{rate frequency}}{1 + \text{yield frequency}} \right] \left[\frac{A \times DSC}{E} \right] \]

where
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Number of days from beginning of coupon period to settlement date.</td>
</tr>
<tr>
<td>DLC<sub>i</sub></td>
<td>Number of days from last coupon date before redemption to first quasi-coupon or number of days in quasi-coupon.</td>
</tr>
<tr>
<td>DLQ</td>
<td>Number of days counted in the last quasi-coupon period within the last odd period.</td>
</tr>
<tr>
<td>DSC</td>
<td>Number of days from settlement date to next coupon date.</td>
</tr>
<tr>
<td>E</td>
<td>Number of days in coupon period in which the settlement falls.</td>
</tr>
<tr>
<td>LQL</td>
<td>Normal length in days of the last quasi-coupon period within the last odd period.</td>
</tr>
<tr>
<td>N</td>
<td>Number of coupons payable between settlement date and last coupon date before redemption.</td>
</tr>
<tr>
<td>NCL</td>
<td>Number of quasi-coupon periods that fit in odd period.</td>
</tr>
<tr>
<td>NLL<sub>i</sub></td>
<td>Normal length in days of the full <sup>i</sup>th quasi-coupon period within odd last period.</td>
</tr>
<tr>
<td>Nql</td>
<td>Number of whole quasi-coupon periods between last coupon date before redemption and the redemption date.</td>
</tr>
</tbody>
</table>

Parameters

- `settlement` – a `GregorianCalendar` settlement date of the security
- `maturity` – a `GregorianCalendar` maturity date of the security
- `lastCoupon` – a `GregorianCalendar` last interest date of the security
- `rate` – a `double` which specifies the security’s annual coupon rate
- `yield` – a `double` which specifies the security’s annual yield
- `redemption` – a `double` which specifies the security’s redemption value per $100 face value
- `frequency` – an `int` which specifies the number of coupon payments per year: `ANNUAL` for annual, `SEMIANNUAL` for semiannual, and `QUARTERLY` for quarterly
- `basis` – a `DayCountBasis` object which contains the type of day count basis to use. See `DayCountBasis`.

Returns

A `double` that indicates the bond price.

price

```java
static public double price(GregorianCalendar settlement, GregorianCalendar maturity, GregorianCalendar issueDate, GregorianCalendar firstCoupon, double rate, double yield, double redemption, int frequency, DayCountBasis basis)
```

Description

Returns the price of an odd first period, coupon bond, given its yield.

In the case of a short first period, the following formula is used:
\[P = \left(\frac{\text{redemption}}{\left(1 + \frac{\text{yield}}{\text{frequency}}\right)^{N - 1 + \frac{\text{DSC}}{E}}\right)} + \left[\frac{100 \times \frac{\text{rate}}{\text{frequency}} \times \frac{\text{DFC}}{E}}{\frac{1}{1 + \frac{\text{yield}}{\text{frequency}}}}\right] \right. \\
+ \sum_{K=2}^{N} \left[\frac{100 \times \frac{\text{rate}}{\text{frequency}}}{\left(1 + \frac{\text{yield}}{\text{frequency}}\right)^{K - 1 + \frac{\text{DSC}}{E}}} \right] - \left[100 \times \frac{\text{rate}}{\text{frequency}} \times \frac{\text{A}}{E}\right] \right.
\]

where

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Number of days from the beginning of coupon period to the settlement date (accrued days).</td>
</tr>
<tr>
<td>DFC</td>
<td>Number of days from the beginning of odd first coupon period (issueDate) to the first coupon date.</td>
</tr>
<tr>
<td>DSC</td>
<td>Number of days from the settlement date to first coupon date.</td>
</tr>
<tr>
<td>E</td>
<td>Number of days in the quasi-coupon period in which the settlement date falls.</td>
</tr>
<tr>
<td>N</td>
<td>Number of coupons payable between settlement date and redemption date.</td>
</tr>
</tbody>
</table>

In the case of a long first period, the following formula is used:

\[P = \left(\frac{\text{redemption}}{\left(1 + \frac{\text{yield}}{\text{frequency}}\right)^{N - Nqf + \frac{\text{DSC}}{E}}\right)} + \left[\frac{100 \times \frac{\text{rate}}{\text{frequency}} \times \left[\sum_{i=1}^{\text{NCF}} \frac{\text{DFC}}{\text{NLF}}\right]}{\frac{1}{1 + \frac{\text{yield}}{\text{frequency}}}}\right] \right. \\
+ \sum_{K=1}^{N} \left[\frac{100 \times \frac{\text{rate}}{\text{frequency}}}{\left(1 + \frac{\text{yield}}{\text{frequency}}\right)^{K + Nqf + \frac{\text{DSC}}{E}}} \right] - \left[100 \times \frac{\text{rate}}{\text{frequency}} \times \left[\sum_{i=1}^{\text{NCF}} \frac{\text{A}_i}{\text{NLF}}\right]\right] \right.
\]

where
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_i</td>
<td>Number of accrued days for the i^{th} quasi-coupon period within the odd period.</td>
</tr>
<tr>
<td>DFC_i</td>
<td>Number of days from the $issueDate$ to the first quasi-coupon or number of days in the the quasi-coupon.</td>
</tr>
<tr>
<td>DSC</td>
<td>Number of days from the settlement date to the next coupon or quasi-coupon date.</td>
</tr>
<tr>
<td>E</td>
<td>Number of days in the quasi-coupon or coupon period in which the settlement date falls.</td>
</tr>
<tr>
<td>N</td>
<td>Number of coupon periods between the first real coupon date and redemption date.</td>
</tr>
<tr>
<td>NCF</td>
<td>Number of quasi-coupon periods that fall in the odd period.</td>
</tr>
<tr>
<td>NLF_i</td>
<td>Number of days in the full i^{th} quasi-coupon period within the odd period.</td>
</tr>
<tr>
<td>Nqf</td>
<td>Number of whole quasi-coupon periods between $settlement$ and $firstCoupon$.</td>
</tr>
</tbody>
</table>

Parameters

- `settlement` – a `GregorianCalendar` settlement date of the security
- `maturity` – a `GregorianCalendar` maturity date of the security
- `issueDate` – a `GregorianCalendar` issue date of the security
- `firstCoupon` – a `GregorianCalendar` first coupon date of the security
- `rate` – a `double` which specifies the security’s annual coupon rate
- `yield` – a `double` which specifies the security’s annual yield
- `redemption` – a `double` which specifies the security’s redemption value per $100 face value
- `frequency` – an `int` which specifies the number of coupon payments per year: `ANNUAL` for annual, `SEMIANNUAL` for semiannual, and `QUARTERLY` for quarterly
- `basis` – a `DayCountBasis` object which contains the type of day count basis to use. See `DayCountBasis`.

Returns

A `double` that indicates the bond price.

`pricedisc`

```java
static public double pricedisc(GregorianCalendar settlement, GregorianCalendar maturity, double rate, double redemption, DayCountBasis basis)
```

Description

Returns the price of a discount bond given the discount rate. It is computed using the following:

$$redemption - rate \times redemption \times \frac{DSM}{B}$$

In the equation above, DSM represents the number of days starting at the settlement date and ending with the maturity date. B represents the number of days in a year based on the annual basis.
Parameters

- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- rate – a double which specifies the security’s discount rate
- redemption – a double which specifies the security’s redemption value per $100 face value
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

a double which specifies the price per $100 face value of a discounted security

pricemat

static public double pricemat(GregorianCalendar settlement, GregorianCalendar maturity, GregorianCalendar issue, double rate, double yield, DayCountBasis basis)

Description

Returns the price, per $100 face value, of a discount bond. It is computed using the following:

\[
\frac{100 + \left(\frac{DIM}{B} \times rate \times 100\right)}{1 + \left(\frac{DSM}{B} \times yield\right)} - \frac{A}{B} \times rate \times 100
\]

In the equation above, \(B\) represents the number of days in a year based on the annual basis. \(DSM\) represents the number of days in the period starting with the settlement date and ending with the maturity date. \(DIM\) represents the number of days in the period starting with the settlement date and ending with the maturity date. \(A\) represents the number of days in the period starting with the issue date and ending with the settlement date.

Parameters

- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- issue – a GregorianCalendar issue date of the security
- rate – a double which specifies the security’s interest rate at issue date
- yield – a double which specifies the security’s annual yield
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

a double which specifies the price per $100 face value of a security that pays interest at maturity

priceyield

static public double priceyield(GregorianCalendar settlement, GregorianCalendar maturity, double yield, double redemption, DayCountBasis basis)
Description
Returns the price of a discount bond given the yield. It is computed using the following:

\[
\text{redemption} \frac{1}{1 + \left(\frac{DSM}{B}\right)\text{yield}}
\]

In the equation above, DSM represents the number of days starting at the settlement date and ending with the maturity date. B represents the number of days in a year based on the annual basis.

Parameters
- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- yield – a double which specifies the security's yield
- redemption – a double which specifies the security's redemption value per $100 face value
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis

Returns
a double which specifies the price per $100 face value of a discounted security

received
static public double received(GregorianCalendar settlement, GregorianCalendar maturity, double investment, double rate, DayCountBasis basis)

Description
Returns the amount one receives when a fully invested security reaches the maturity date. It is computed using the following:

\[
\text{investment} \frac{1}{1 - (rate \times \frac{DIM}{B})}
\]

In the equation above, B represents the number of days in a year based on the annual basis, and DIM represents the number of days in the period starting with the issue date and ending with the maturity date.

Parameters
- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- investment – a double which specifies the amount invested in the security
- rate – a double which specifies the security’s rate at issue date
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.
Returns
a double which specifies the amount received at maturity for a fully invested security

tbilleq
static public double tbilleq(GregorianCalendar settlement, GregorianCalendar maturity, double rate)

Description
Returns the bond-equivalent yield of a Treasury bill. It is computed using the following:

If $DSM \leq 182$

$$\frac{365 \times rate}{360 - rate \times DSM}$$

otherwise,

$$\frac{- DSM}{365} + \sqrt{\left(\frac{DSM}{365}\right)^2 - \left(2 \times \frac{DSM}{365} - 1\right) \times \frac{rate \times DSM}{rate \times DSM - 360}}$$

In the above equation, DSM represents the number of days starting at settlement date to maturity date.

Parameters

settlement – a GregorianCalendar settlement date of the Treasury bill

maturity – a GregorianCalendar maturity date of the Treasury bill. The maturity cannot be more than a year after the settlement.

rate – a double which specifies the Treasury bill’s discount rate at issue date. The discount rate is an annualized rate of return based on the par value of the bills. The discount rate is calculated on a 360-day basis (twelve 30-day months).

Returns
a double which specifies the bond-equivalent yield for the Treasury bill. This is an annualized rate based on the purchase price of the bills and reflects the actual yield to maturity.

tbillprice
static public double tbillprice(GregorianCalendar settlement, GregorianCalendar maturity, double rate)

Description
Returns the price, per $100 face value, of a Treasury bill. It is computed using the following:

$$100 \left(1 - \frac{rate \times DSM}{360}\right)$$

In the equation above, DSM represents the number of days in the period starting with the settlement date and ending with the maturity date (any maturity date that is more than one calendar year after the settlement date is excluded).
Parameters

- `settlement` – a `GregorianCalendar` settlement date of the Treasury bill
- `maturity` – a `GregorianCalendar` maturity date of the Treasury bill. The maturity cannot be more than a year after the settlement
- `rate` – a `double` which specifies the Treasury bill’s discount rate at issue date. The discount rate is an annualized rate of return based on the par value of the bills. The discount rate is calculated on a 360-day basis (twelve 30-day months).

Returns

A `double` which specifies the price per $100 face value for the Treasury bill

```java
static public double tbillyield(GregorianCalendar settlement, GregorianCalendar maturity, double rate)
```

Description

Returns the yield of a Treasury bill. It is computed using the following:

\[
\frac{100 - \text{price}}{\text{price}} \times \frac{360}{DSM}
\]

In the equation above, `DSM` represents the number of days in the period starting with the settlement date and ending with the maturity date (any maturity date that is more than one calendar year after the settlement date is excluded).

Parameters

- `settlement` – a `GregorianCalendar` settlement date of the Treasury bill
- `maturity` – a `GregorianCalendar` maturity date of the Treasury bill. The maturity cannot be more than a year after the settlement.
- `price` – a `double` which specifies the Treasury bill’s price per $100 face value

Returns

A `double` which specifies the yield for the Treasury bill. This is an annualized rate based on the purchase price of the bills and reflects the actual yield to maturity.

```java
static public double yearfrac(GregorianCalendar start, GregorianCalendar end, DayCountBasis basis)
```

Description

Returns the fraction of a year represented by the number of whole days between two dates. It is computed using the following:

\[
\frac{A}{D}
\]

where `A` equals the number of days from `start` to `end`, `D` equals annual basis.
Parameters

- start – a GregorianCalendar start date of the security
- end – a GregorianCalendar end date of the security
- basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

a double which specifies the annual yield of a security that pays interest at maturity

yield

static public double yield(GregorianCalendar settlement, GregorianCalendar maturity, double rate, double price, double redemption, int frequency, DayCountBasis basis)

Description

Returns the yield of a security that pays periodic interest. If there is one coupon period, use the following:

\[
\frac{\text{redemption} + \frac{\text{rate}}{\text{frequency}}}{{\text{price}} + \frac{\text{rate} \times \frac{A}{E} \times \frac{\text{frequency}}{\text{DSR}}}{100}} - \left[\frac{\text{price} + \left(\frac{\text{AE}}{\text{frequency}} \times \frac{\text{rate}}{\text{DSR}} \right)}{100} \right] \times \frac{\text{DSR} \times \text{frequency} \times E}{100}
\]

In the equation above, \(DSR\) represents the number of days in the period starting with the settlement date and ending with the redemption date. \(E\) represents the number of days within the coupon period. \(A\) represents the number of days in the period starting with the beginning of coupon period and ending with the settlement date.

If there is more than one coupon period, use the following:

\[
\text{price} - \frac{\text{redemption}}{\frac{1}{1 + \text{yield}} \times \frac{\text{frequency}}{k}} - \left(\sum_{k=1}^{N} \frac{100 \times \frac{\text{rate}}{\text{frequency}}}{1 + \text{yield}} \times \frac{\text{frequency}}{k} \right) + 100 \times \frac{\text{rate}}{\text{frequency}} \times \frac{A}{E}
\]

In the equation above, \(DSC\) represents the number of days in the period from the settlement to the next coupon date. \(E\) represents the number of days within the coupon period. \(N\) represents the number of coupons payable in the period starting with the settlement date and ending with the redemption date. \(A\) represents the number of days in the period starting with the beginning of the coupon period and ending with the settlement date.

Parameters

- settlement – a GregorianCalendar settlement date of the security
- maturity – a GregorianCalendar maturity date of the security
- rate – a double which specifies the security’s annual coupon rate
- price – a double which specifies the security’s price per $100 face value
- redemption – a double which specifies the security’s redemption value per $100 face value
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNUAL for semiannual, and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns
a double which specifies the yield of a security that pays periodic interest

yield
static public double yield(GregorianCalendar settlement, GregorianCalendar maturity, GregorianCalendar lastCoupon, double rate, double price, double redemption, int frequency, DayCountBasis basis)

Description
Returns the yield of a security with an odd last coupon period that pays periodic interest.
The yield is determined by finding the zero of the function desired price - computed price, where computed price is the output of com.imsl.finance.Bond.price (p. 1485).

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
lastCoupon – a GregorianCalendar last coupon date of the security
rate – a double which specifies the security’s annual coupon rate
price – a double which specifies the security’s price per $100 face value
redemption – a double which specifies the security’s redemption value per $100 face value
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns
a double which specifies the yield of a security that pays periodic interest

yield
static public double yield(GregorianCalendar settlement, GregorianCalendar maturity, GregorianCalendar issueDate, GregorianCalendar firstCoupon, double rate, double price, double redemption, int frequency, DayCountBasis basis)

Description
Returns the yield of a security with an odd first coupon period that pays periodic interest.
The yield is determined by finding the zero of the function desired price - computed price, where computed price is the output of com.imsl.finance.Bond.price (p. 1488).
Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
issueDate – a GregorianCalendar issueDate date of the security
firstCoupon – a GregorianCalendar first coupon date of the security
rate – a double which specifies the security’s annual coupon rate
price – a double which specifies the security’s price per $100 face value
redemption – a double which specifies the security’s redemption value per $100 face value
frequency – an int which specifies the number of coupon payments per year: ANNUAL for annual,
 SEMIANNUAL for semiannual, and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use. See
 DayCountBasis.

Returns

a double which specifies the yield of a security that pays periodic interest

yielddisc

static public double yielddisc(GregorianCalendar settlement, GregorianCalendar maturity, double price, double redemption, DayCountBasis basis)

Description

Returns the annual yield of a discount bond. It is computed using the following:

$$\frac{\text{redemption} - \text{price}}{\text{price}} \times \frac{B}{\text{DSM}}$$

In the equation above, B represents the number of days in a year based on the annual basis, and DSM represents the number of days starting with the settlement date and ending with the maturity date.

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
price – a double which specifies the security’s price per $100 face value
redemption – a double which specifies the security’s redemption value per $100 face value
basis – a DayCountBasis object which contains the type of day count basis to use. See
 DayCountBasis.

Returns

a double which specifies the annual yield for a discounted security

yieldmat

static public double yieldmat(GregorianCalendar settlement, GregorianCalendar maturity, GregorianCalendar issue, double rate, double price, DayCountBasis basis)
Returns the annual yield of a security that pays interest at maturity. It is computed using the following:

\[
\left[1 + \left(\frac{DIM}{B} \times rate\right)\right] - \left[\frac{price}{100} + \left(\frac{A}{B} \times rate\right)\right] \times \frac{B}{DSM}
\]

In the equation above, \(DIM\) represents the number of days in the period starting with the issue date and ending with the maturity date. \(DSM\) represents the number of days in the period starting with the settlement date and ending with the maturity date. \(A\) represents the number of days in the period starting with the issue date and ending with the settlement date. \(B\) represents the number of days in a year based on the annual basis.

Parameters

- **settlement** – a GregorianCalendar settlement date of the security
- **maturity** – a GregorianCalendar maturity date of the security
- **issue** – a GregorianCalendar issue date of the security
- **rate** – a double which specifies the security’s interest rate at date of issue
- **price** – a double which specifies the security’s price per $100 face value
- **basis** – a DayCountBasis object which contains the type of day count basis to use. See DayCountBasis.

Returns

a double which specifies the annual yield of a security that pays interest at maturity

Example: Accrued Interest - Periodic Payments

In this example, the accrued interest is calculated for a bond which pays interest semiannually. The day count basis used is 30/360.

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class accrIntEx1 {
    static final DateFormat dateFormat
        = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

    static private GregorianCalendar parse(String s) throws ParseException {
        GregorianCalendar cal = new GregorianCalendar();
        cal.setTime(dateFormat.parse(s));
        return cal;
    }

    public static void main(String args[]) throws ParseException {
        GregorianCalendar issue = parse("10/1/91");
        GregorianCalendar firstCoupon = parse("3/31/92");
        GregorianCalendar settlement = parse("11/3/91");
    }
}
```
double rate = .06;
double par = 1000.;
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double accrint = Bond.accrint(issue, firstCoupon, settlement, rate,
par, freq, dcb);
System.out.println("The accrued interest is " + accrint);
}
}

Output
The accrued interest is 5.333333333333334

Example: Accrued Interest - Payment at Maturity
In this example, the accrued interest is calculated for a bond which pays at maturity. The day count basis used is 30/360.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;
public class accrintmEx1 {
 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }
 public static void main(String args[]) throws ParseException {
 GregorianCalendar issue = parse("10/1/91");
 GregorianCalendar settlement = parse("11/3/91");
 double rate = .06;
 double par = 1000.;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double accrintm = Bond.accrintm(issue, settlement, rate, par, dcb);
 System.out.println("The accrued interest is " + accrintm);
 }
}

Output
The accrued interest is 5.333333333333334

Example: Depreciation - French Accounting System
In this example, the depreciation for the second accounting period is calculated for an asset.
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class amordegrcEx1 {

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 double cost = 2400.;
 GregorianCalendar issue = parse("11/1/92");
 GregorianCalendar firstPeriod = parse("11/30/93");
 double salvage = 300.;
 int period = 2;
 double rate = .15;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double amordegrc = Bond.amordegrc(cost, issue, firstPeriod,
 salvage, period, rate, dcb);
 System.out.println("The depreciation for the second accounting
 + "period is " + amordegrc);
 }
}

Output
The depreciation for the second accounting period is 334.0

Example: Depreciation - French Accounting System
In this example, the depreciation for the second accounting period is calculated for an asset.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class amorlincEx1 {

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

}
public static void main(String args[]) throws ParseException {
 double cost = 2400.;
 GregorianCalendar issue = parse("11/1/92");
 GregorianCalendar firstPeriod = parse("11/30/93");
 double salvage = 300.;
 int period = 2;
 double rate = .15;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double amorlinc = Bond.amorlinc(cost, issue, firstPeriod,
 salvage, period, rate, dcb);
 System.out.println("The depreciation for the second accounting "
 + "period is " + amorlinc);
}

Output
The depreciation for the second accounting period is 360.0

Example: Convexity for a Security
The convexity of a 10 year bond which pays interest semiannually is returned in this example.

Output

Example: Days - Beginning of Period to Settlement Date
In this example, the settlement date is 11/11/86. The number of days from the beginning of the coupon period to the settlement date is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;
public class coupdaybsEx1 {

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("11/11/86");
 GregorianCalendar maturity = parse("3/1/99");
 int freq = Bond.SEMIANNUAL;
 DayCountBasis dcb = DayCountBasis.BasisActual365;
 int coupdaybs = Bond.coupdaybs(settlement, maturity, freq, dcb);

 }
}
System.out.println("The number of days from the beginning of the"
 + "coupon period to the settlement date is " + coupdaybs);
}

Output
The number of days from the beginning of the coupon period to the settlement date is 71

Example: Days in the Settlement Date Period
In this example, the settlement date is 11/11/86. The number of days in the coupon period containing this date is returned.

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class coupdaysEx1 {

  static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

  static private GregorianCalendar parse(String s) throws ParseException {
    GregorianCalendar cal = new GregorianCalendar();
    cal.setTime(dateFormat.parse(s));
    return cal;
  }

  public static void main(String args[]) throws ParseException {
    GregorianCalendar settlement = parse("11/11/86");
    GregorianCalendar maturity = parse("3/1/99");
    int freq = Bond.SEMIANNUAL;
    DayCountBasis dcb = DayCountBasis.BasisActual365;
    double coupdays = Bond.coupdays(settlement, maturity, freq, dcb);
    System.out.println("The number of days in the coupon period that " 
      + "contains the settlement date is " + coupdays);
  }
}
```

Output
The number of days in the coupon period that contains the settlement date is 182.5

Example: Days - Settlement Date to Next Coupon Date
In this example, the settlement date is 11/11/86. The number of days from this date to the next coupon date is returned.
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class coupdaysncEx1 {
 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("11/11/86");
 GregorianCalendar maturity = parse("3/1/99");
 int freq = Bond.SEMIANNUAL;
 DayCountBasis dcb = DayCountBasis.BasisActual365;
 int coupdaysnc = Bond.coupdaysnc(settlement, maturity, freq, dcb);
 System.out.println("The number of days from the settlement date "
 + "to the next coupon date is " + coupdaysnc);
 }
}

Output

The number of days from the settlement date to the next coupon date is 110

Example: Next Coupon Date After the Settlement Date

In this example, the settlement date is 11/11/86. The previous coupon date before this date is returned.
DayCountBasis dcb = DayCountBasis.BasisActual365;
GregorianCalendar coupncd = Bond.coupncd(settlement, maturity, freq, dcb);
System.out.println("The next coupon date after the settlement date is "+ dateFormat.format(coupncd.getTime()));

Output
The next coupon date after the settlement date is 3/1/87

Example: Number of Payable Coupons
In this example, the settlement date is 11/11/86. The number of payable coupons between this date and
the maturity date is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;
public class coupnumEx1 {
 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("11/11/86");
 GregorianCalendar maturity = parse("3/1/99");
 int freq = Bond.SEMIANNUAL;
 DayCountBasis dcb = DayCountBasis.BasisActual365;
 int coupnum = Bond.coupnum(settlement, maturity, freq, dcb);
 System.out.println("The number of coupons payable between the "+
 "settlement date and the maturity date is " + coupnum);
 }
}

Output
The number of coupons payable between the
settlement date and the maturity date is 25

Example: Previous Coupon Date Before the Settlement Date
In this example, the settlement date is 11/11/86. The previous coupon date before this date is returned.
public class couppcdEx1 {

 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String[] args) throws ParseException {
 GregorianCalendar settlement = parse("11/11/86");
 GregorianCalendar maturity = parse("3/1/99");
 int freq = Bond.SEMIANNUAL;
 DayCountBasis dcb = DayCountBasis.BasisActual365;
 GregorianCalendar couppcd = Bond.couppcd(settlement, maturity, freq, dcb);
 System.out.println("The previous coupon date before the settlement date is " + dateFormat.format(couppcd.getTime()));
 }
}

Output
The previous coupon date before the settlement date is 9/1/86

Example: Discount Rate for a Security
In this example, the discount rate for a security is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class discEx1 {

 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String[] args) throws ParseException {
 GregorianCalendar settlement = parse("2/15/92");
 GregorianCalendar maturity = parse("6/10/92");
 }
double price = 97.975;
double redemption = 100.;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double disc = Bond.disc(settlement, maturity, price, redemption, dcb);
System.out.println("The discount rate for the security is " + disc);
}
}

Output
The discount rate for the security is 0.06371767241379328

Example: Duration of a Security with Periodic Payments

The annual duration of a 10 year bond which pays interest semiannually is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class durationEx1 {
 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/95");
 double coupon = .075;
 double yield = .09;
 int freq = Bond.SEMIANNUAL;
 DayCountBasis dcb = DayCountBasis.BasisActual365;
 double duration = Bond.duration(settlement, maturity, coupon,
 yield, freq, dcb);
 System.out.println("The annual duration of the bond with"
 + "\nsemiannual interest payments is " + duration);
 }
}

Output
The annual duration of the bond with
semiannual interest payments is 7.041953377972151
Example: Interest Rate of a Fully Invested Security

The discount rate of a 10 year bond is returned in this example.

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class intrateEx1 {

    static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

    static private GregorianCalendar parse(String s) throws ParseException {
        GregorianCalendar cal = new GregorianCalendar();
        cal.setTime(dateFormat.parse(s));
        return cal;
    }

    public static void main(String args[]) throws ParseException {
        GregorianCalendar settlement = parse("7/1/85");
        GregorianCalendar maturity = parse("7/1/95");
        double investment = 7000.;
        double redemption = 10000.;
        DayCountBasis dcb = DayCountBasis.BasisActual365;
        double intrate = Bond.intrate(settlement, maturity, investment,
                                      redemption, dcb);
        System.out.println("The interest rate of the bond is " + intrate);
    }
}
```

Output

The interest rate of the bond is 0.042833672351744644

Example: Modified Macauley Duration of a Security with Periodic Payments

The modified Macauley duration of a 10 year bond which pays interest semiannually is returned in this example.

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class mdurationEx1 {

    static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

    static private GregorianCalendar parse(String s) throws ParseException {
        GregorianCalendar cal = new GregorianCalendar();
    }

    public static void main(String args[]) throws ParseException {
        GregorianCalendar settlement = parse("7/1/85");
        GregorianCalendar maturity = parse("7/1/95");
        double investment = 7000.;
        double redemption = 10000.;
        DayCountBasis dcb = DayCountBasis.BasisActual365;
        double intrate = Bond.intrate(settlement, maturity, investment,
                                      redemption, dcb);
        System.out.println("The interest rate of the bond is " + intrate);
    }
}
```
cal.setTime(dateFormat.parse(s));
return cal;
}

cal.setTime(dateFormat.parse(s));
return cal;
}

public static void main(String[] args) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/95");
 double coupon = .075;
 double yield = .09;
 int freq = Bond.SEMIANNUAL;
 DayCountBasis dcb = DayCountBasis.BasisActual365;
 double mduration = Bond.mduration(settlement, maturity,
 coupon, yield, freq, dcb);
 System.out.println("The modified Macauley duration of the bond" + "\nwith semiannual interest payments is " + mduration);
}

Output

The modified Macauley duration of the bond
with semiannual interest payments is 6.738711366480527

Example: Price of a Security

The price per $100 face value of a 10 year bond which pays interest semiannually is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class priceEx1 {

 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String[] args) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/95");
 double rate = .06;
 double yield = .07;
 double redemption = 105.0;
 int frequency = Bond.SEMIANNUAL;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double price = Bond.price(settlement, maturity, rate, yield,
 redemption, frequency, dcb);
 }
}

1508 • Bond JMSL
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class pricediscEx1 {
 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/86");
 double rate = .05;
 double redemption = 100.;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double pricedisc = Bond.pricedisc(settlement, maturity, rate, redemption, dcb);
 System.out.println("The price of the discounted bond is " + pricedisc);
 }
}

Output
The price of the discounted bond is 95.0

Example: Price of a Security that Pays at Maturity
The price per $100 face value of 1 year bond that pays interest at maturity is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

Finance Bond • 1509
public class pricematEx1 {

 static final DateFormat dateFormat
 = DateFormat.getDateTimeInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/86");
 GregorianCalendar issue = parse("7/1/85");
 double rate = .05;
 double yield = .05;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double pricemat = Bond.pricemat(settlement, maturity, issue,
 rate, yield, dcb);
 System.out.println("The price of the bond is " + pricemat);
 }
}

Output
The price of the bond is 99.98173970783533

Price of a Discounted Security
The price of a discounted 1 year bond is returned in this example.

priceyieldEx1
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class priceyieldEx1 {

 static final DateFormat dateFormat
 = DateFormat.getDateTimeInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s)
 throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/86");
 GregorianCalendar issue = parse("7/1/85");
 double rate = .05;
 double yield = .05;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double pricemat = Bond.priceyield(settlement, maturity, issue,
 rate, yield, dcb);
 System.out.println("The price of the bond is " + pricemat);
 }
}
double yield = 0.010055244588347783;
double redemption = 105.;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double priceyield = Bond.priceyield(settlement, maturity,
yield, redemption, dcb);
System.out.println("The price of the discounted bond is "+ priceyield);
}
}

Output
The price of the discounted bond is 95.40663

Example: Amount Received at Maturity for a Fully Invested Security
The amount to be received at maturity for a 10 year bond is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;
public class receivedEx1 {
 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }
 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/95");
 double investment = 7000.;
 double discount = .06;
 DayCountBasis dcb = DayCountBasis.BasisActual365;
 double received = Bond.received(settlement, maturity,
 investment, discount, dcb);
 System.out.println("The amount received at maturity for the bond is "+ NumberFormat.getCurrencyInstance().format(received));
 }
}

Output
The amount received at maturity for the bond is $17,514.40
Example: Bond-Equivalent Yield

The bond-equivalent yield for a 1 year Treasury bill is returned in this example.

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class tbilleqEx1 {

    static final DateFormat dateFormat
        = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

    static private GregorianCalendar parse(String s) throws ParseException {
        GregorianCalendar cal = new GregorianCalendar();
        cal.setTime(dateFormat.parse(s));
        return cal;
    }

    public static void main(String args[]) throws ParseException {
        GregorianCalendar settlement = parse("7/1/85");
        GregorianCalendar maturity = parse("7/1/86");
        double discount = .05;
        double tbilleq = Bond.tbilleq(settlement, maturity, discount);
        System.out.println("The bond-equivalent yield for the T-bill is "+tbilleq);
    }
}
```

Output

The bond-equivalent yield for the T-bill is 0.05270709977197674

Example: Treasury Bill Price

The price per $100 face value for a 1 year Treasury bill is returned in this example.

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class tbillpriceEx1 {

    static final DateFormat dateFormat
        = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

    static private GregorianCalendar parse(String s) throws ParseException {
        GregorianCalendar cal = new GregorianCalendar();
        cal.setTime(dateFormat.parse(s));
        return cal;
    }

    public static void main(String args[]) throws ParseException {
        GregorianCalendar settlement = parse("7/1/85");
        GregorianCalendar maturity = parse("7/1/86");
        double discount = .05;
        double tbilleq = Bond.tbilleq(settlement, maturity, discount);
        System.out.println("The bond-equivalent yield for the T-bill is "+tbilleq);
    }
}
```
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/86");
double discount = .05;
double tbillprice = Bond.tbillprice(settlement, maturity, discount);
System.out.println("The price per $100 face value for the T-bill is "+tbillprice);
}

Output
The price per $100 face value for the T-bill is 94.93055555555556

Example: Treasury Bill Yield
The yield for a 1 year Treasury bill is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;
public class tbillyieldEx1 {
 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }
 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("7/1/85");
 GregorianCalendar maturity = parse("7/1/86");
 double price = 94.93;
 double tbillyield = Bond.tbillyield(settlement, maturity, price);
 System.out.println("The yield for the T-bill is " + tbillyield);
 }
}

Output
The yield for the T-bill is 0.05267616080486118

Example: Year Fraction
The year fraction of a 30/360 year starting 8/1/85 and ending 7/1/86 is returned in this example.

import com.imsl.finance.*;

Finance

Bond • 1513
import java.text.*;
import java.util.*;

public class yearfracEx1 {
 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String[] args) throws ParseException {
 GregorianCalendar start = parse("8/1/85");
 GregorianCalendar end = parse("7/1/86");
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double yearfrac = Bond.yearfrac(start, end, dcb);
 System.out.println("The year fraction of the 30/360 period is "+yearfrac);
 }
}

Output
The year fraction of the 30/360 period is 0.9166666666666667

Example: Yield on a Security
The yield on a 10 year bond which pays interest semiannually is returned in this example.
```java
int frequency = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double yield = Bond.yield(settlement, maturity, rate, price, redemption, frequency, dcb);
System.out.println("The yield of the bond is " + yield);
```
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class yieldmatEx1 {
 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("8/1/85");
 GregorianCalendar maturity = parse("7/1/95");
 GregorianCalendar issue = parse("7/1/85");
 double rate = .06;
 double price = 95.40663;
 DayCountBasis dcb = DayCountBasis.BasisNASD;
 double yieldmat = Bond.yieldmat(settlement, maturity, issue, rate,
 price, dcb);
 System.out.println("The yield on a bond which pays at maturity is "
 + yieldmat);
 }
}

Output
The yield on a bond which pays at maturity is 0.06739051278091948

Example: Bond Price - Odd Short First Coupon
This example calculates the price of an odd short first coupon.

<table>
<thead>
<tr>
<th>Settlement</th>
<th>11/11/1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>03/01/2005</td>
</tr>
<tr>
<td>Issue Date</td>
<td>10/15/1992</td>
</tr>
<tr>
<td>First Coupon</td>
<td>03/01/1993</td>
</tr>
<tr>
<td>Rate</td>
<td>0.0785</td>
</tr>
<tr>
<td>Yield</td>
<td>0.0625</td>
</tr>
<tr>
<td>Redemption Value</td>
<td>100.0</td>
</tr>
<tr>
<td>Payment Frequency</td>
<td>Bond.SEMIANNUAL</td>
</tr>
<tr>
<td>Day Count Basis</td>
<td>DayCountBasis.BasisActualActual</td>
</tr>
</tbody>
</table>
public class OddShortFirstCoupPriceEx {

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("11/11/1992");
 GregorianCalendar maturity = parse("03/01/2005");
 GregorianCalendar issueDate = parse("10/15/1992");
 GregorianCalendar firstCoupon = parse("03/01/1993");
 double price = Bond.price(settlement, maturity, issueDate,
 firstCoupon, 0.0785, .0625, 100.0, Bond.SEMIANNUAL,
 DayCountBasis.BasisActualActual);
 System.out.println("The price is " + price);
 }
}

Output
The price is 113.59771747407882

Example: Bond Price - Odd Long First Coupon
This example calculates the price of an odd long first coupon.

<table>
<thead>
<tr>
<th>Settlement</th>
<th>11/11/1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>03/01/2005</td>
</tr>
<tr>
<td>Issue date</td>
<td>06/15/1992</td>
</tr>
<tr>
<td>First Coupon</td>
<td>03/01/1993</td>
</tr>
<tr>
<td>Rate</td>
<td>0.0935</td>
</tr>
<tr>
<td>Yield</td>
<td>0.0775</td>
</tr>
<tr>
<td>Redemption Value</td>
<td>100.0</td>
</tr>
<tr>
<td>Payment Frequency</td>
<td>Bond.SEMIANNUAL</td>
</tr>
<tr>
<td>Day Count Basis</td>
<td>DayCountBasis.BasisActualActual</td>
</tr>
</tbody>
</table>

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class OddLongFirstCoupPriceEx {

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("11/11/1992");
 GregorianCalendar maturity = parse("03/01/2005");
 GregorianCalendar issueDate = parse("10/15/1992");
 GregorianCalendar firstCoupon = parse("03/01/1993");
 double price = Bond.price(settlement, maturity, issueDate,
 firstCoupon, 0.0785, .0625, 100.0, Bond.SEMIANNUAL,
 DayCountBasis.BasisActualActual);
 System.out.println("The price is " + price);
 }
}
static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
}

public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("11/11/1992");
 GregorianCalendar maturity = parse("03/01/2005");
 GregorianCalendar issue = parse("06/15/1992");
 GregorianCalendar firstCoupon = parse("03/01/1993");
 double price = Bond.price(settlement, maturity, issue, firstCoupon,
 0.0935, .0775, 100.0, Bond.SEMIANNUAL,
 DayCountBasis.BasisActualActual);
 System.out.println("The price is "+ price);
}

Output
The price is 112.47810623329781

Example: Bond Price - Odd Short Last Coupon
This example calculates the price of an odd short last coupon with one or less coupon period to redemption.

<table>
<thead>
<tr>
<th>Settlement</th>
<th>02/07/1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>08/01/1993</td>
</tr>
<tr>
<td>Last Coupon</td>
<td>02/04/1993</td>
</tr>
<tr>
<td>Rate</td>
<td>0.065</td>
</tr>
<tr>
<td>Yield</td>
<td>0.0535</td>
</tr>
<tr>
<td>Redemption Value</td>
<td>100.0</td>
</tr>
<tr>
<td>Payment Frequency</td>
<td>Bond.SEMIANNUAL</td>
</tr>
<tr>
<td>Day Count Basis</td>
<td>DayCountBasis.Basis30e360</td>
</tr>
</tbody>
</table>

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

class OddShortLastOneCoupPriceEx {
 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

1518 • Bond JMSL
public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("02/25/1993");
 GregorianCalendar maturity = parse("06/01/2005");
 GregorianCalendar lastCoupon = parse("12/15/2004");
 double price = Bond.price(settlement, maturity, lastCoupon, 0.06875,
 0.0725, 100.0, Bond.SEMIANNUAL,
 DayCountBasis.Basis30e360);
 System.out.println("The price is " + price);
}

Output
The price is 100.54045734737038

Example: Bond Price - Odd Short Last Coupon
This example calculates the price of an odd short last coupon with multiple coupon period to redemption.

<table>
<thead>
<tr>
<th>Settlement</th>
<th>02/25/1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>06/01/2005</td>
</tr>
<tr>
<td>Last Coupon</td>
<td>12/15/2004</td>
</tr>
<tr>
<td>Rate</td>
<td>0.06875</td>
</tr>
<tr>
<td>Yield</td>
<td>0.0725</td>
</tr>
<tr>
<td>Redemption Value</td>
<td>100.0</td>
</tr>
<tr>
<td>Payment Frequency</td>
<td>Bond.SEMIANNUAL</td>
</tr>
<tr>
<td>Day Count Basis</td>
<td>DayCountBasis.Basis30e360</td>
</tr>
</tbody>
</table>

import com.imsl.finance.*;
import java.text.*;
import java.util.*;
import java.util.text.*;

public class OddShortLastMultiCoupPriceEx {
 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("02/25/1993");
 GregorianCalendar maturity = parse("06/01/2005");
 GregorianCalendar lastCoupon = parse("12/15/2004");
 double price = Bond.price(settlement, maturity, lastCoupon, 0.06875,
The price is 96.97412041120907

Example: Bond Price - Odd Long Last Coupon

This example calculates the price of an odd long last coupon with one coupon period to redemption.

<table>
<thead>
<tr>
<th>Settlement</th>
<th>02/07/1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>06/15/1993</td>
</tr>
<tr>
<td>Last Coupon</td>
<td>10/15/1992</td>
</tr>
<tr>
<td>Rate</td>
<td>0.0375</td>
</tr>
<tr>
<td>Yield</td>
<td>0.0405</td>
</tr>
<tr>
<td>Redemption Value</td>
<td>100.0</td>
</tr>
<tr>
<td>Payment Frequency</td>
<td>Bond.SEMIANNUAL</td>
</tr>
<tr>
<td>Day Count Basis</td>
<td>DayCountBasis.Basis30e360</td>
</tr>
</tbody>
</table>

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;
public class OddLongLastOneCoupPriceEx {
    static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
    static private GregorianCalendar parse(String s) throws ParseException {
        GregorianCalendar cal = new GregorianCalendar();
        cal.setTime(dateFormat.parse(s));
        return cal;
    }
    public static void main(String args[]) throws ParseException {
        GregorianCalendar settlement = parse("02/07/1993");
        GregorianCalendar maturity = parse("06/15/1993");
        GregorianCalendar lastCoupon = parse("10/15/1992");
        double price = Bond.price(settlement, maturity, lastCoupon, 0.0375,
                                    0.0405, 100.0, Bond.SEMIANNUAL,
                                    DayCountBasis.Basis30e360);
        System.out.println("The price is " + price);    
    }
}
```
Example: Bond Price - Odd Long Last Coupon

This example calculates the price of an odd long last coupon with multiple coupon periods to redemption.

<table>
<thead>
<tr>
<th>Settlement</th>
<th>02/25/1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>09/15/2004</td>
</tr>
<tr>
<td>Last Coupon</td>
<td>12/15/2003</td>
</tr>
<tr>
<td>Rate</td>
<td>0.06875</td>
</tr>
<tr>
<td>Yield</td>
<td>0.0893</td>
</tr>
<tr>
<td>Redemption Value</td>
<td>100.0</td>
</tr>
<tr>
<td>Payment Frequency</td>
<td>Bond.SEMIANNUAL</td>
</tr>
<tr>
<td>Day Count Basis</td>
<td>DayCountBasis.Basis30e360</td>
</tr>
</tbody>
</table>

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class OddLongLastMultiCoupPriceEx {
 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("02/25/1993");
 GregorianCalendar maturity = parse("09/15/2004");
 GregorianCalendar lastCoupon = parse("12/15/2003");
 double price = Bond.price(settlement, maturity, lastCoupon, 0.06875, 0.0893, 100.0, Bond.SEMIANNUAL, DayCountBasis.Basis30e360);
 System.out.println("The price is "+ price);
 }
}

Output
The price is 85.33445170277066

Example: Bond Yield - Odd Short First Coupon

This example calculates the yield of an odd short first coupon.
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class OddShortFirstCoupYieldEx {

 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("11/11/1992");
 GregorianCalendar maturity = parse("03/01/2005");
 GregorianCalendar issueDate = parse("10/15/1992");
 GregorianCalendar firstCoupon = parse("03/01/1993");
 double yield = Bond.yield(settlement, maturity, issueDate, firstCoupon, 0.0785, 113.597717, 100.0, Bond.SEMIANNUAL, DayCountBasis.BasisActualActual);
 System.out.println("The yield is "+ yield);
 }
}

Output
The yield is 0.06250000051314245

Example: Bond Yield - Odd Long First Coupon
This example calculates the yield of an odd long first coupon.
Example: Bond Yield - Odd Short Last Coupon

This example calculates the yield of an odd short last coupon with one or less coupon period to redemption.

Output

The yield is 0.07750000027421643
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class OddShortLastOneCoupYieldEx {

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("02/07/1993");
 GregorianCalendar maturity = parse("08/01/1993");
 GregorianCalendar lastCoupon = parse("02/04/1993");
 double yield = Bond.yield(settlement, maturity, lastCoupon, 0.065,
 100.540457, 100.0, Bond.SEMIANNUAL,
 DayCountBasis.Basis30e360);
 System.out.println("The yield is " + yield);
 }
}

Output
The yield is 0.05350000732923516

Example: Bond Yield - Odd Short Last Coupon
This example calculates the yield of an odd short last coupon with multiple coupon period to redemption.
import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class OddShortLastMultiCoupYieldEx {

 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("02/25/1993");
 GregorianCalendar maturity = parse("06/01/2005");
 GregorianCalendar lastCoupon = parse("12/15/2004");
 double yield = Bond.yield(settlement, maturity, lastCoupon, 0.06875,
 96.974120, 100.0, Bond.SEMIANNUAL,
 DayCountBasis.Basis30e360);
 System.out.println("The yield is " + yield);
 }
}

Output
The yield is 0.07250000052203028

Example: Bond Yield - Odd Long Last Coupon

This example calculates the yield of an odd long last coupon with one coupon period to redemption.
<table>
<thead>
<tr>
<th>Settlement</th>
<th>02/07/1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>06/15/1993</td>
</tr>
<tr>
<td>Last Coupon</td>
<td>10/15/1992</td>
</tr>
<tr>
<td>Rate</td>
<td>0.0375</td>
</tr>
<tr>
<td>Price</td>
<td>99.878286</td>
</tr>
<tr>
<td>Redemption Value</td>
<td>100.0</td>
</tr>
<tr>
<td>Payment Frequency</td>
<td>Bond.SEMIANNUAL</td>
</tr>
<tr>
<td>Day Count Basis</td>
<td>DayCountBasis.Basis30e360</td>
</tr>
</tbody>
</table>

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class OddLongLastOneCoupYieldEx {
 static final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

 static private GregorianCalendar parse(String s) throws ParseException {
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(dateFormat.parse(s));
 return cal;
 }

 public static void main(String args[]) throws ParseException {
 GregorianCalendar settlement = parse("02/07/1993");
 GregorianCalendar maturity = parse("06/15/1993");
 GregorianCalendar lastCoupon = parse("10/15/1992");
 double yield = Bond.yield(settlement, maturity, lastCoupon, 0.0375,
 99.878286, 100.0, Bond.SEMIANNUAL,
 DayCountBasis.Basis30e360);
 System.out.println("The yield is " + yield);
 }
}

Output
The yield is 0.04050000041565726

Example: Bond Yield - Odd Long Last Coupon
This example calculates the yield of an odd long last coupon with multiple coupon periods to redemption.
DayCountBasis class

The `DayCountBasis` class is part of the `com.imsl.finance` package. It represents rules for computing the number of days between two dates or number of days in a year. These rules are often used in financial calculations, especially for interest rate computations, where the number of days in a year can affect the calculation of interest and the valuation of financial instruments.

The class provides methods for various types of day count basis, such as Actual/360, Actual/365, Actual/Actual, and Act/360, among others. Each type is suitable for different financial instruments and market conventions.

Finance - DayCountBasis

The `DayCountBasis` class is crucial for accurately calculating the time value of money and the day count conventions used in financial markets. It helps in determining the effective yield of financial instruments, ensuring that calculations reflect the actual number of days in a given period, which is essential for accurate pricing and valuation.

For example, the `DayCountBasis.Basis30E360` represents a day count basis where the year is considered to have 360 days, with 30 days in each month. This is commonly used in the United States for determining the yield to maturity of bonds, where the calculation of accrued interest is based on this convention.

The `DayCountBasis` class offers flexibility in choosing the appropriate day count basis based on the specific requirements of the financial instrument or market practice.

Output

The yield is 0.0892999995362467
Fields

Basis30e360
static final public DayCountBasis Basis30e360

Computations are based on the assumption of 30 days per month and 360 days per year.

BasisActual360
static final public DayCountBasis BasisActual360

Computations are based on the number of days in a month based on the actual calendar value and the number of days, but assuming 360 days per year.

BasisActual365
static final public DayCountBasis BasisActual365

Computations are based on the number of days in a month based on the actual calendar value and the number of days, but assuming 365 days per year.

BasisActualActual
static final public DayCountBasis BasisActualActual

Computations are based on the actual calendar.

BasisNASD
static final public DayCountBasis BasisNASD

Computations are based on the assumption of 30 days per month and 360 days per year.

BasisPart30E360
static final public BasisPart BasisPart30E360

Computations are based on the assumption of 30 days per month and 360 days per year. This computes the number of days between two dates differently than BasisPartNASD for months with other than 30 days.

BasisPart365
static final public BasisPart BasisPart365

Computations are based on the assumption of 365 days per year.

BasisPartActual
static final public BasisPart BasisPartActual

Computations are are based on the actual calendar.

BasisPartNASD
static final public BasisPart BasisPartNASD

Computations based on the assumption of 30 days per month and 360 days per year.
Constructor

DayCountBasis

```java
public DayCountBasis(BasisPart monthBasis, BasisPart yearBasis)
```

Description

Creates a new DayCountBasis.

Parameters

- `monthBasis` – a `BasisPart` that contains the month basis
- `yearBasis` – a `BasisPart` that contains the year basis

Methods

getMonthBasis

```java
public BasisPart getMonthBasis()
```

Description

Returns the (days in month) portion of the Day Count Basis.

Returns

a `BasisPart` object which represents the month Basis for this DayCountBasis

getYearBasis

```java
public BasisPart getYearBasis()
```

Description

Returns the (days in year) portion of the Day Count Basis.

Returns

a `BasisPart` object which represents the year Basis for this DayCountBasis

setEOM

```java
public void setEOM(boolean EOM)
```

Description

Specifies whether to use the End-Of-Month rule.

If a security follows the End-Of-Month rule:

1. If Date2 (day) is the last day of February
 - and Date1 (day) is the last day of February
 - change Date2 (day) to 30
2. If Date1 (day) is the last day of February
 - change Date1 (day) to 30

The EOM rule is only used in day count calculations of the basis type, 30/360 (NASD Superclass).
Parameter

EOM – a boolean which indicates if the End-Of-Month rule is to be used.
Default: EOM = true.

Finance class

public class com.imsl.finance.Finance
Collection of finance functions.

Fields

AT_BEGINNING_OF_PERIOD
static final public int AT_BEGINNING_OF_PERIOD
Flag used to indicate that payment is made at the beginning of each period.

AT_END_OF_PERIOD
static final public int AT_END_OF_PERIOD
Flag used to indicate that payment is made at the end of each period.

Methods

cumipmt
static public double cumipmt(double rate, int nper, double pv, int start, int end, int when)

Description
Returns the cumulative interest paid between two periods. It is computed using the following:

\[\sum_{i=\text{start}}^{\text{end}} \text{interest}_i \]

where \(\text{interest}_i \) is computed from \(\text{ipmt} \) for the \(i \)th period.
Parameters
rate – a double, the interest rate
nper – an int, the total number of payment periods
pv – a double, the present value
start – an int, the first period in the calculation. Periods are numbered starting with one.
end – an int, the last period in the calculation
when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530) or
com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)

Returns
a double, the cumulative interest paid between the first period and the last period

cumprinc
static public double cumprinc(double rate, int nper, double pv, int start, int end, int when)

Description
Returns the cumulative principal paid between two periods. It is computed using the following:

\[
\sum_{i=\text{start}}^{\text{end}} \text{principal}_i
\]

where principal, is computed from ppmt for the ith period.

Parameters
rate – a double, the interest rate
nper – an int, the total number of payment periods
pv – a double, the present value
start – an int, the first period in the calculation. Periods are numbered starting with one.
end – an int, the last period in the calculation
when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530) or

Returns
a double, the cumulative principal paid between the first period and the last period

db
static public double db(double cost, double salvage, int life, int period, int month)
Description
Returns the depreciation of an asset using the fixed-declining balance method. Method db varies depending on the specified value for the argument period, see table below.

If period = 1,
\[
\text{cost} \times \text{rate} \times \frac{\text{month}}{12}
\]

If period = life,
\[
(cost - \text{total depreciation from prior periods}) \times \text{rate} \times \frac{12-\text{month}}{12}
\]

If period other than 1 or life,
\[
(cost - \text{total depreciation from prior periods}) \times \text{rate}
\]

where
\[
\text{rate} = 1 - \left(\frac{\text{salvage}}{\text{cost}}\right)^{\left(\frac{\text{period}}{\text{life}}\right)}
\]

NOTE: rate is rounded to three decimal places.

Parameters
- cost – a double, the initial cost of the asset
- salvage – a double, the salvage value of the asset
- life – an int, the number of periods over which the asset is being depreciated
- period – an int, the period for which the depreciation is to be computed
- month – an int, the number of months in the first year

Returns
a double, the depreciation of an asset for a specified period using the fixed-declining balance method

ddb
static public double ddb(double cost, double salvage, int life, int period, double factor)

Description
Returns the depreciation of an asset using the double-declining balance method. It is computed using the following:
\[
\left[\text{cost} - \text{salvage \ (total \ depreciation \ from \ prior \ periods)}\right] \times \frac{\text{factor}}{\text{life}}
\]
Parameters
- cost – a double, the initial cost of the asset
- salvage – a double, the salvage value of the asset
- life – an int, the number of periods over which the asset is being depreciated
- period – an int, the period
- factor – a double, the rate at which the balance declines

Returns
- a double, the depreciation of an asset for a specified period

dollarde
static public double dollarde(double fractionalDollar, int fraction)

Description
Converts a fractional price to a decimal price. It is computed using the following:

\[idollar + \left(\frac{fractionalDollar - idollar}{10^{ifrac+1}} \right) \times \frac{10^{ifrac+1}}{fraction} \]

where \(idollar \) is the integer part of \(fractionalDollar \), and \(ifrac \) is the integer part of \(\log(fraction) \).

Parameters
- fractionalDollar – a double, a fractional number
- fraction – an int, the denominator

Returns
- a double, the dollar price expressed as a decimal number

dollarfr
static public double dollarfr(double decimalDollar, int fraction)

Description
Converts a decimal price to a fractional price. It is computed using the following:

\[idollar + \frac{decimalDollar - idollar}{10^{ifrac+1}/fraction} \]

where \(idollar \) is the integer part of the \(decimalDollar \), and \(ifrac \) is the integer part of \(\log(fraction) \).

Parameters
- decimalDollar – a double, a decimal number
- fraction – an int, the denominator
Returns
a double, a dollar price expressed as a fraction

effect
static public double effect(double nominalRate, int nper)

Description
Returns the effective annual interest rate. The nominal interest rate is the periodically-compounded interest rate as stated on the face of a security. The effective annual interest rate is computed using the following:

\[
\left(1 + \frac{\text{nominalRate}}{\text{nper}}\right)^{\text{nper}} - 1
\]

Parameters
- nominalRate – a double, the nominal interest rate
- nper – an int, the number of compounding periods per year

Returns
a double, the effective annual interest rate

fv
static public double fv(double rate, int nper, double pmt, double pv, int when)

Description
Returns the future value of an investment. The future value is the value, at some time in the future, of a current amount and a stream of payments. It can be found by solving the following:

If \(rate = 0 \),
\[
\text{pv} + \text{pmt} \times \text{nper} + \text{fv} = 0
\]

If \(rate \neq 0 \),
\[
\text{pv}(1 + rate)^{\text{nper}} + \text{pmt} \left[1 + rate(\text{when})\right] \frac{(1 + rate)^{\text{nper}} - 1}{rate} + \text{fv} = 0
\]

Parameters
- rate – a double, the interest rate
- nper – an int, the total number of payment periods
- pmt – a double, the payment made in each period
- pv – a double, the present value
- when – an int, the time in each period when the payment is made, either com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530) or com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)
Returns
a double, the future value of an investment

fvschedule
static public double fvschedule(double principal, double[] schedule)

Description
Returns the future value of an initial principal taking into consideration a schedule of compound interest rates. It is computed using the following:
\[
\sum_{i=1}^{\text{count}} (\text{principal} \times \text{schedule}_i)
\]
where \(\text{schedule}_i\) = interest rate at the \(i\)th period, and the count is \(\text{schedule}.\text{length}\).

Parameters
- principal – a double, the present value
- schedule – a double array of interest rates to apply

Returns
a double, the future value of an initial principal

ipmt
static public double ipmt(double rate, int period, int nper, double pv, double fv, int when)

Description
Returns the interest payment for an investment for a given period. It is computed using the following:
\[
\left\{pv(1 + rate)^{\text{period}-1} + pmt(1 + rate \times \text{when}) \left(\frac{(1 + rate)^{\text{nper}-1}}{rate}\right)\right\} \times rate
\]

Parameters
- rate – a double, the interest rate
- period – an int, the payment period
- nper – an int, the total number of periods
- pv – a double, the present value
- fv – a double, the future value
- when – an int, the time in each period when the payment is made, either com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530) or com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)
Returns
a double, the interest payment for a given period for an investment

irr
static public double irr(double[] pmt)

Description
Returns the internal rate of return for a schedule of cash flows. It is found by solving the following:

\[0 = \sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^i} \]

where \(\text{value}_i \) = the \(i \)th cash flow, \(\text{rate} \) is the internal rate of return, and \(\text{count} \) is \(\text{pmt}.\text{length} \).

Parameter
- \(\text{pmt} \) – a double array which contains cash flow values which occur at regular intervals

Returns
a double, the internal rate of return

irr
static public double irr(double[] pmt, double guess)

Description
Returns the internal rate of return for a schedule of cash flows. It is found by solving the following:

\[0 = \sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^i} \]

where \(\text{value}_i \) = the \(i \)th cash flow, \(\text{rate} \) is the internal rate of return.

Parameters
- \(\text{pmt} \) – a double array which contains cash flow values which occur at regular intervals
- \(\text{guess} \) – a double value which represents an initial guess at the return value from this function

Returns
a double, the internal rate of return

mirr
static public double mirr(double[] value, double financeRate, double reinvestRate)
returns the modified internal rate of return for a schedule of periodic cash flows. The modified internal rate of return differs from the ordinary internal rate of return in assuming that the cash flows are reinvested at the cost of capital, not at the internal rate of return. It also eliminates the multiple rates of return problem. It is computed using the following:

\[
\left\{ \frac{-pnpv \left(1 + reinvestRate\right)^{nper}}{nnpv \left(1 + financeRate\right)} \right\}^{\frac{1}{nper-1}} - 1
\]

where \(pnpv \) is calculated from \(npv \) for positive values in \(value \) using \(reinvestRate \), \(nnpv \) is calculated from \(npv \) for negative values in \(value \) using \(financeRate \), and \(nper = value.length \).

Parameters

- value – a double array of cash flows
- financeRate – a double, the interest you pay on the money you borrow
- reinvestRate – a double, the interest rate you receive on the cash flows

Returns

a double, the modified internal rate of return

nominal

static public double nominal(double effectiveRate, int nper)

Description

Returns the nominal annual interest rate. The nominal interest rate is the interest rate as stated on the face of a security. It is computed using the following:

\[
\left\{ \left(1 + effectiveRate\right)^{\frac{1}{nper}} - 1 \right\} \times nper
\]

Parameters

- effectiveRate – a double, the effective interest rate
- nper – an int, the number of compounding periods per year

Returns

a double, the nominal annual interest rate

nper

static public double nper(double rate, double pmt, double pv, double fv, int when)

Finance
Description
Returns the number of periods for an investment for which periodic, and constant payments are made and the interest rate is constant. It can be found by solving the following:

If $rate = 0$,

$$pv + pmtnpertime + fv = 0$$

If $rate \neq 0$,

$$pv(1 + rate)^{nper} + pmtn1 + rate(when)\frac{(1 + rate)^{nper} - 1}{rate} + fv = 0$$

Parameters
- rate – a double, the interest rate
- pmtn double, the payment
- pv – a double, the present value
- fv – a double, the future value
- when – an int, the time in each period when the payment is made, either com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530) or com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)

Returns
an int, the number of periods for an investment

npv
static public double npv(double rate, double[] value)

Description
Returns the net present value of a stream of equal periodic cash flows, which are subject to a given discount rate. It is found by solving the following:

$$\sum_{i=1}^{count} \frac{value_i}{(1 + rate)^i}$$

where $value_i$ = the ith cash flow, and count is value.length.

Parameters
- rate – a double, the interest rate per period. It must not be -1.
- value – a double array of equally-spaced cash flows

Returns
a double, the net present value of the investment

pmt
static public double pmt(double rate, int nper, double pv, double fv, int when)
Description

Returns the periodic payment for an investment. It can be found by solving the following:

If \(rate = 0 \),

\[
pv + pmt \times nper + fv = 0
\]

If \(rate \neq 0 \),

\[
pv(1 + rate)^{nper} + pmt [1 + rate (when)] \left(\frac{(1 + rate)^{nper} - 1}{rate} \right) + fv = 0
\]

Parameters

- \(rate \) – a double, the interest rate
- \(nper \) – an int, the total number of periods
- \(pv \) – a double, the present value
- \(fv \) – a double, the future value
- \(when \) – an int, the time in each period when the payment is made, either
 - com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530)
 - com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)

Returns

A double, the interest payment for a given period for an investment

```java
static public double ppmt(double rate, int period, int nper, double pv, double fv, int when)
```

Description

Returns the payment on the principal for a specified period. It is computed using the following:

\[
payment_i - interest_i
\]

where \(payment_i \) is computed from \(pmt \) for the \(i \)th period, \(interest_i \) is calculated from \(ipmt \) for the \(i \)th period.

Parameters

- \(rate \) – a double, the interest rate
- \(period \) – an int, the payment period
- \(nper \) – an int, the total number of periods
- \(pv \) – a double, the present value
- \(fv \) – a double, the future value
- \(when \) – an int, the time in each period when the payment is made, either
 - com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530)
 - com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)
Returns
a double, the payment on the principal for a given period

\[pv \]

static public double pv(double rate, int nper, double pmt, double fv, int when)

Description
Returns the net present value of a stream of equal periodic cash flows, which are subject to a given
discount rate. It can be found by solving the following:

If \(rate = 0 \),
\[pv + pmt \times nper + fv = 0 \]

If \(rate \neq 0 \),
\[pv(1 + rate)^{nper} + pmt[1 + rate(when)] \frac{(1 + rate)^{nper} - 1}{rate} + fv = 0 \]

Parameters
- \(rate \) – a double, the interest rate per period
- \(nper \) – an int, the number of periods
- \(pmt \) – a double, the payment made each period
- \(fv \) – a double, the annuity’s value after the last payment
- \(when \) – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530) or
com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)

Returns
a double, the present value of the investment

\[rate \]

static public double rate(int nper, double pmt, double pv, double fv, int when)

Description
Returns the interest rate per period of an annuity. rate is calculated by iteration and can have zero or
more solutions. It can be found by solving the following:

If \(rate = 0 \),
\[pv + pmt \times nper + fv = 0 \]

If \(rate \neq 0 \),
\[pv(1 + rate)^{nper} + pmt[1 + rate(when)] \frac{(1 + rate)^{nper} - 1}{rate} + fv = 0 \]
Parameters

- nper – an int, the number of periods
- pmt – a double, the payment made each period
- pv – a double, the present value
- fv – a double, the annuity’s value after the last payment
- when – an int, the time in each period when the payment is made, either
 - com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530)
 - com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)

Returns

da double, the interest rate per period of an annuity

rate

static public double rate(int nper, double pmt, double pv, double fv, int when, double guess)

Description

Returns the interest rate per period of an annuity with an initial guess. rate is calculated by iteration and can have zero or more solutions. It can be found by solving the following:

If \(rate = 0 \),

\[
 pv + pmt \times nper + fv = 0
\]

If \(rate \neq 0 \),

\[
 pv(1 + rate)^{nper} + pmt[1 + rate(when)] \frac{(1 + rate)^{nper} - 1}{rate} + fv = 0
\]

Parameters

- nper – an int, the number of periods
- pmt – a double, the payment made each period
- pv – a double, the present value
- fv – a double, the annuity’s value after the last payment
- when – an int, the time in each period when the payment is made, either
 - com.imsl.finance.Finance.AT_END_OF_PERIOD (p. 1530)
 - com.imsl.finance.Finance.AT_BEGINNING_OF_PERIOD (p. 1530)
- guess – a double value which represents an initial guess at the interest rate per period of an annuity

Returns

da double, the interest rate per period of an annuity

sln

static public double sln(double cost, double salvage, int life)
Description
Returns the depreciation of an asset using the straight line method. It is computed using the following:

\[cost - \frac{salvage}{life} \]

Parameters
- cost – a double, the initial cost of the asset
- salvage – a double, the salvage value of the asset
- life – an int, the number of periods over which the asset is being depreciated

Returns
a double, the straight line depreciation of an asset for one period

syd
static public double syd(double cost, double salvage, int life, int per)

Description
Returns the depreciation of an asset using the sum-of-years digits method. It is computed using the following:

\[(cost - salvage)(per) \frac{(life + 1)(life)}{2} \]

Parameters
- cost – a double, the initial cost of the asset
- salvage – a double, the salvage value of the asset
- life – an int, the number of periods over which the asset is being depreciated
- per – an int, the period

Returns
a double, the sum-of-years digits depreciation of an asset

vdb
static public double vdb(double cost, double salvage, int life, int start, int end, double factor, boolean no_sl)
Description
Returns the depreciation of an asset for any given period using the variable-declining balance method. It is computed using the following:

If \(no_sl = 0 \),

\[
\sum_{i=start+1}^{end} ddb_i
\]

If \(no_sl \neq 0 \),

\[
A + \sum_{i=k}^{end} \frac{cost - A - salvage}{end - k + 1}
\]

where \(ddb_i \) is computed from \(ddb \) for the \(i \)th period. \(k \) = the first period where straight line depreciation is greater than the depreciation using the double-declining balance method.

\[
A = \sum_{i=start+1}^{k-1} ddb_i
\]

Parameters
- \(cost \) – a double, the initial cost of the asset
- \(salvage \) – a double, the salvage value of the asset
- \(life \) – an int, the number of periods over which the asset is being depreciated
- \(start \) – an int, the initial period for the calculation
- \(end \) – an int, the final period for the calculation
- \(factor \) – a double, the rate at which the balance declines
- \(no_sl \) – a boolean flag. If true, do not switch to straight-line depreciation even when the depreciation is greater than the declining balance calculation.

Returns
a double, the depreciation of the asset

\textbf{xirr}

static public double xirr(double[] pmt, Date[] dates)

Description
Returns the internal rate of return for a schedule of cash flows. It is not necessary that the cash flows be periodic. It can be found by solving the following:

\[
0 = \sum_{i=1}^{count} \frac{value_i}{(1 + rate)^{\frac{d_i - d_1}{365}}}
\]

In the equation above, \(d_i \) represents the \(i \)th payment date. \(d_1 \) represents the 1st payment date. \(value \) represents the \(i \)th cash flow. \(rate \) is the internal rate of return, and \(count \) is \(pmt \).length.
Parameters
pmt – a double array which contains cash flow values which correspond to a schedule of payments in dates
dates – a Date array which contains a schedule of payment dates

Returns
a double, the internal rate of return

xirr
static public double xirr(double[] pmt, Date[] dates, double guess)

Description
Returns the internal rate of return for a schedule of cash flows with a user supplied initial guess. It is not necessary that the cash flows be periodic. It can be found by solving the following:

\[0 = \sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^{(d_i-d_1)/365}} \]

In the equation above, \(d_i\) represents the \(i\)th payment date, \(d_1\) represents the 1st payment date, \(\text{value}_i\) represents the \(i\)th cash flow. \(\text{rate}\) is the internal rate of return. Count is \(\text{pmt}.\text{length}\).

Parameters
pmt – a double array which contains cash flow values which correspond to a schedule of payments in dates
dates – a Date array which contains a schedule of payment dates
guess – a double value which represents an initial guess at the return value from this function

Returns
a double, the internal rate of return

xnpv
static public double xnpv(double rate, double[] value, Date[] dates)

Description
Returns the present value for a schedule of cash flows. It is not necessary that the cash flows be periodic. It is computed using the following:

\[\sum_{i=1}^{\text{count}} \frac{\text{value}_i}{(1 + \text{rate})^{(d_i-d_1)/365}} \]

In the equation above, \(d_i\) represents the \(i\)th payment date, \(d_1\) represents the first payment date, \(\text{value}_i\) represents the \(i\)th cash flow. and count is \(\text{value}.\text{length}\)

Parameters
rate – a double, the interest rate
value – a double array containing the cash flows
dates – a Date array which contains a schedule of payment dates
Returns
da double, the present value

Example: Cumulative Interest Example
The amount of interest paid in the first year of a 30 year fixed rate mortgage is computed. The amount financed is $200,000 at an interest rate of 7.25% for 30 years.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;

public class cumipmtEx1 {
    public static void main(String args[]) {
        double rate = 0.0725 / 12;
        int periods = 12 * 30;
        double pv = 200000;
        int start = 1;
        int end = 12;
        double total;

        total = Finance.cumipmt(rate, periods, pv, start, end,
                                Finance.AT_END_OF_PERIOD);

        System.out.println("First year interest = "+NumberFormat.getCurrencyInstance().format(total));
    }
}
```

Output
First year interest = ($14,436.52)

Example: Cumulative Principal Example
The amount of principal paid in the first year of a 30 year fixed rate mortgage is computed. The amount financed is $200,000 at an interest rate of 7.25% for 30 years.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;

public class cumprincEx1 {
    public static void main(String args[]) {
        double rate = 0.0725 / 12;
        int periods = 12 * 30;
        double pv = 200000;
        int start = 1;
        int end = 12;
        double total;
```
Example: Depreciation - Fixed Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over a period of 3 years is calculated. Here month is 6 since the life of the asset did not begin until the seventh month of the first year.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;

public class dbEx1 {
    public static void main(String args[]) {
        double cost = 2500;
        double salvage = 500;
        int life = 3;
        int month = 6;

        for (int period = 1; period <= life + 1; period++) {
            double db = Finance.db(cost, salvage, life, period, month);
            System.out.println("For period "+ period + " db = "+ NumberFormat.getCurrencyInstance().format(db));
        }
    }
}
```

Output
For period 1 db = $518.75
For period 2 db = $822.22
For period 3 db = $481.00
For period 4 db = $140.69

Example: Depreciation - Double-Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over a period of 2 years is calculated. A factor of 2 is used (the double-declining balance method).

```java
import com.imsl.finance.*;
```
import java.text.NumberFormat;

public class ddbEx1 {
 public static void main(String args[]) {
 double cost = 2500;
 double salvage = 500;
 double factor = 2;
 int life = 24;

 for (int period = 1; period <= life; period++) {
 double ddb = Finance.ddb(cost, salvage, life, period, factor);
 System.out.println("For period " + period + " ddb =
 + NumberFormat.getCurrencyInstance().format(ddb));
 }
 }
}

Output
For period 1 ddb = $208.33
For period 2 ddb = $190.97
For period 3 ddb = $175.06
For period 4 ddb = $160.47
For period 5 ddb = $147.10
For period 6 ddb = $134.84
For period 7 ddb = $123.60
For period 8 ddb = $113.30
For period 9 ddb = $103.86
For period 10 ddb = $95.21
For period 11 ddb = $87.27
For period 12 ddb = $80.00
For period 13 ddb = $73.33
For period 14 ddb = $67.22
For period 15 ddb = $61.62
For period 16 ddb = $56.48
For period 17 ddb = $51.78
For period 18 ddb = $47.46
For period 19 ddb = $22.09
For period 20 ddb = $0.00
For period 21 ddb = $0.00
For period 22 ddb = $0.00
For period 23 ddb = $0.00
For period 24 ddb = $0.00

Example: Price Conversion - Fractional Dollars
A fractional dollar price, in this case 1 3/8, is converted to a decimal price.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class dollardeEx1 {
public static void main(String args[]) {
 double fractionalDollar = 1.3;
 int fraction = 8;

 double dollardec = Finance.dollarde(fractionalDollar, fraction);
 System.out.println("The fractional dollar 1.3 = "+NumberFormat.getCurrencyInstance().format(dollardec));
}

Output
The fractional dollar 1.3 = $1.38

Example: Price Conversion - Decimal Dollars
A decimal dollar price, in this case $1.38, is converted to a fractional price.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class dollarfrEx1 {

 public static void main(String args[]) {
 double decimalDollar = 1.38;
 int fraction = 8;

 double dollarfrc = Finance.dollarfr(decimalDollar, fraction);
 NumberFormat nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(2);
 System.out.println("The decimal dollar $1.38 as a fractional dollar = "+nf.format(dollarfrc));
 }
}

Output
The decimal dollar $1.38 as a fractional dollar = 1.3

Example: Effective Rate
In this example the effective interest rate is computed given that the nominal rate is 6.0% and that the interest will be compounded quarterly.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class effectEx1 {

public static void main(String args[]) {
 double nominalRate = .06;
 int nper = 4;
 double effectiveRate;

 effectiveRate = Finance.effect(nominalRate, nper);
 NumberFormat nf = NumberFormat.getPercentInstance();
 nf.setMaximumFractionDigits(2);
 System.out.println("The effective rate of the nominal rate, 6.0%, " + "compounded quarterly is " + nf.format(effectiveRate));
}

Output
The effective rate of the nominal rate, 6.0%, compounded quarterly is 6.14%

Example: Future Value of an Investment
A couple starts setting aside $30,000 a year when they are 45 years old. They expect to earn 5% interest on the money compounded yearly. The future value of the investment is computed for a 20 year period.

import com.imsi.finance.*;
import java.text.NumberFormat;

public class fvEx1 {
 public static void main(String args[]) {
 double rate = .05;
 int nper = 20;
 double payment = -30000.00;
 double pv = -30000.00;
 int when = Finance.AT_BEGINNING_OF_PERIOD;

 double fv = Finance.fv(rate, nper, payment, pv, when);
 System.out.println("After 20 years, the value of the investments " + "will be " + NumberFormat.getCurrencyInstance().format(fv));
 }
}

Output
After 20 years, the value of the investments will be $1,121,176.49

Example: Future Value - Adjustable Rates
An investment of $10,000 is made. The investment will grow at the rate of 5.1% the first year, with the rate increasing by .1% each year thereafter for a total of 5 years. The future value of the investment is computed.
import com.imsl.finance.*;
import java.text.NumberFormat;

public class fvscheduleEx1 {
 public static void main(String args[]) {
 double principal = 10000.0;
 double[] schedule = {.050, .051, .052, .053, .054};
 double fvschedule;

 fvschedule = Finance.fvschedule(principal, schedule);
 System.out.println("After 5 years the $10,000 investment "
 + "will have grown to "
 + NumberFormat.getCurrencyInstance().format(fvschedule));
 }
}

Output
After 5 years the $10,000 investment will have grown to $12,884.77

Example: Interest Payments
The interest due the second year on a $100,000 25 year loan is calculated. The loan is at 8%.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class ipmtEx1 {
 public static void main(String args[]) {
 double rate = .08;
 int per = 2;
 int nper = 25;
 double pv = 100000.00;
 double fv = 0.0;
 int when = Finance.AT_END_OF_PERIOD;

 double ipmt = Finance.ipmt(rate, per, nper, pv, fv, when);
 System.out.println("The interest due the second year on"
 + " the $100,000 loan is "
 + NumberFormat.getCurrencyInstance().format(ipmt));
 }
}

Output
The interest due the second year on the $100,000 loan is ($7,890.57)
Example: Internal Rate of Return

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to sell any calves, he just expects to feed them. Thereafter, he expects to be able to sell calves to offset the cost of feed. He expects them to be productive for 9 years, after which time he will liquidate the herd. The internal rate of return is computed after 9 years.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;
public class irrEx1 {
    public static void main(String args[]) {
        double[] pmt = {-4500., -800., 800., 800., 600., 600.,
                        800., 800., 700., 3000.};
        double irr = Finance.irr(pmt);
        NumberFormat nf = NumberFormat.getPercentInstance();
        nf.setMaximumFractionDigits(2);
        System.out.println("After 9 years, the internal rate of return on "
                            + "the cows is " + nf.format(irr));
    }
}
```

Output

After 9 years, the internal rate of return on the cows is 7.21%

Example: Modified Internal Rate of Return

A farmer uses a $4500 loan to buy 10 young cows and a bull. The interest rate on the loan is 8%. He expects to reinvest the profits received in any one year in the money market and receive 5.5%. The first year he does not expect to sell any calves, he just expects to feed them. Thereafter, he expects to be able to sell calves to offset the cost of feed. He expects them to be productive for 9 years, after which time he will liquidate the herd. The modified internal rate of return is computed after 9 years.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;
public class mirrEx1 {
    public static void main(String args[]) {
        double[] value = {-4500., -800., 800., 800., 600., 600.,
                          800., 800., 700., 3000.};
        double financeRate = .08;
        double reinvestRate = .055;
        double mirr = Finance.mirr(value, financeRate, reinvestRate);
        NumberFormat nf = NumberFormat.getPercentInstance();
        nf.setMaximumFractionDigits(2);
        System.out.println("After 9 years, the modified internal rate of "
                            + "return on the cows is " + nf.format(mirr));
    }
}
```
Output
After 9 years, the modified internal rate of return on the cows is 6.66%

Example: Nominal Rate
In this example the nominal interest rate is computed given that the effective rate is 6.14% and that the interest has been compounded quarterly.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class nominalEx1 {
 public static void main(String args[]) {
 double effectiveRate = .0614;
 int nper = 4;

 double nominalRate = Finance.nominal(effectiveRate, nper);
 NumberFormat nf = NumberFormat.getPercentInstance();
 nf.setMaximumFractionDigits(2);
 System.out.println("The nominal rate of the effective rate, 6.14%, " + "compounded quarterly is \" + nf.format(nominalRate));
 }
}

Output
The nominal rate of the effective rate, 6.14%, compounded quarterly is 6%

Example: Number of Periods for an Investment
Someone obtains a $20,000 loan at 7.25% to buy a car. They want to make $350 a month payments. Here, the number of payments necessary to pay off the loan is computed.

import com.imsl.finance.*;

public class nperEx1 {
 public static void main(String args[]) {
 double rate = 0.0725 / 12;
 double pmt = -350.;
 double pv = 20000;
 double fv = 0.;
 int when = Finance.AT_BEGINNING_OF_PERIOD;
 double nperiods;
nperiods = Finance.nper(rate, pmt, pv, fv, when);
System.out.println("Number of payment periods = " + nperiods);
}
}

Output
Number of payment periods = 69.78051136628257

Example: Net Present Value of an Investment
A lady wins a $10 million lottery. The money is to be paid out at the end of each year in $500,000 payments for 20 years. The current treasury bill rate of 6% is used as the discount rate. Here, the net present value of her prize is computed.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;
public class npvEx1 {
    public static void main(String args[]) {
        double rate = 0.06;
        double[] value = new double[20];
        for (int i = 0; i < 20; i++) {
            value[i] = 500000.;
        }
        double npv = Finance.npv(rate, value);
        System.out.println("The net present value of the $10 million " + "prize is " + NumberFormat.getCurrencyInstance().format(npv));
    }
}
```

Output
The net present value of the $10 million prize is $5,734,960.61

Example: Periodic Payments
The payment due each year on a 25 year, $100,000 loan is calculated. The loan is at 8%.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;
public class pmtEx1 {
```
public static void main(String args[]) {
 double rate = .08;
 int nper = 25;
 double pv = 100000.00;
 double fv = 0.0;
 int when = Finance.AT_END_OF_PERIOD;

 double pmt = Finance.pmt(rate, nper, pv, fv, when);
 System.out.println("The payment due each year on the $100,000 loan is "+
 NumberFormat.getCurrencyInstance().format(pmt));
}

Output
The payment due each year on the $100,000 loan is ($9,367.88)

Example: Principal Payments
The payment on the principal the first year on a 25 year, $100,000 loan is calculated. The loan is at 8%.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class ppmtEx1 {
 public static void main(String args[]) {
 double rate = .08;
 int per = 1;
 int nper = 25;
 double pv = 100000.00;
 double fv = 0.0;
 int when = Finance.AT_END_OF_PERIOD;

 double ppmt = Finance.ppmt(rate, per, nper, pv, fv, when);
 System.out.println("The payment on the principal the first year "+
 "of the $100,000 loan is "+
 NumberFormat.getCurrencyInstance().format(ppmt));
 }
}

Output
The payment on the principal the first year of the $100,000 loan is ($1,367.88)

Example: Present Value of an Investment
A lady wins a $10 million lottery. The money is to be paid out at the end of each year in $500,000 payments for 20 years. The current treasury bill rate of 6% is used as the discount rate. Here, the present value of her prize is computed.
import com.imsl.finance.*;
import java.text.NumberFormat;

public class pvEx1 {
 public static void main(String args[]) {
 double rate = 0.06;
 double pmt = 500000.;
 double fv = 0.;
 int nper = 20;
 int when = Finance.AT_END_OF_PERIOD;
 double pv = Finance.pv(rate, nper, pmt, fv, when);
 System.out.println("The present value of the $10 million prize is " + NumberFormat.getCurrencyInstance().format(pv));
 }
}

Output
The present value of the $10 million prize is ($5,734,960.61)

Example: Interest Rate
Someone obtains a $20,000 loan to buy a car. They make $350 a month payments for 70 months. Here, the interest rate of the loan is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class rateEx1 {
 public static void main(String args[]) {
 double rate;
 int nper = 70;
 double pmt = -350.;
 double pv = 20000;
 double fv = 0.;
 int when = Finance.AT_BEGINNING_OF_PERIOD;
 rate = Finance.rate(nper, pmt, pv, fv, when) * 12;
 NumberFormat nf = NumberFormat.getPercentInstance();
 nf.setMaximumFractionDigits(2);
 System.out.println("The computed interest rate on the loan is " + nf.format(rate));
 }
}

Output
The computed interest rate on the loan is 7.35%
Example: Depreciation - Straight Line Method

The straight line depreciation for one period of an asset with a life of 24 months, an initial cost of $2500 and a salvage value of $500 is computed.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;

public class slnEx1 {
    public static void main(String args[]) {
        double cost = 2500;
        double salvage = 500;
        int life = 24;

        double sln = Finance.sln(cost, salvage, life);
        System.out.println("The straight line depreciation of the " + "asset for one period is "+ NumberFormat.getCurrencyInstance().format(sln));
    }
}
```

Output

The straight line depreciation of the asset for one period is $83.33

Example: Depreciation - Sum-of-years’ Digits

The sum-of-years’ digits depreciation for the 14th year of an asset with a life of 15 years, an initial cost of $25000 and a salvage value of $5000 is computed.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;

public class sydEx1 {
    public static void main(String args[]) {
        double cost = 25000;
        double salvage = 5000;
        int life = 15;
        int per = 14;

        double syd = Finance.syd(cost, salvage, life, per);
        System.out.println("The depreciation allowance for the 14th year is "+ NumberFormat.getCurrencyInstance().format(syd));
    }
}
```

Output

The depreciation allowance for the 14th year is $333.33
Example: Depreciation - Variable Declining Balance

The depreciation between the 10th and 15th year of an asset with a life of 15 years, an initial cost of $25000 and a salvage value of $5000 is computed. The variable-declining balance method is used.

```java
import com.imsl.finance.*;
import java.text.NumberFormat;
public class vdbEx1 {
    public static void main(String args[]) {
        double cost = 25000;
        double salvage = 5000;
        int life = 15;
        int start = 10;
        int end = 15;
        double factor = 2.;
        boolean no_sl = false;
        double vdb = Finance.vdb(cost, salvage, life, start, end, factor, no_sl);
        System.out.println("The depreciation allowance between the " + "10th and 15th year is "+ NumberFormat.getCurrencyInstance().format(vdb));
    }
}
```

Output

The depreciation allowance between the 10th and 15th year is $976.69

Example: Internal Rate of Return - Variable Schedule

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to sell any calves, he just expects to feed them. Thereafter, he expects to be able to sell calves to offset the cost of feed. He expects them to be productive for 9 years, after which time he will liquidate the herd. The internal rate of return is computed after 9 years.

```java
import com.imsl.finance.*;
import java.text.*;
import java.util.*;
public class xirrEx1 {
    static final DateFormat dateFormat
        = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
    private static Date parse(String s) throws ParseException {
        return dateFormat.parse(s);
    }
    public static void main(String args[]) throws ParseException {
```
double[] pmt = {-4500., -800., 800., 800., 600., 600.,
800., 800., 700., 3000.};
Date dates[] = {
 parse("1/1/98"), parse("10/1/98"), parse("5/5/99"),
 parse("5/5/00"), parse("6/1/01"), parse("7/1/02"),
 parse("8/30/03"), parse("9/15/04"), parse("10/15/05"),
 parse("11/1/06")
};
double xirr = Finance.xirr(pmt, dates);
NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMaximumFractionDigits(2);
System.out.println("After approximately 9 years, the internal rate "+ "of return on the cows is " + nf.format(xirr));
}

Output
After approximately 9 years, the internal rate of return on the cows is 7.69%

Example: Present Value of a Schedule of Cash Flows
In this example, the present value of 3 payments, $1,000, $2,000, and $1,000, with an interest rate of 5%

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class xnpvEx1 {
 static final DateFormat dateFormat
 = DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
 private static Date parse(String s) throws ParseException {
 return dateFormat.parse(s);
 }
 public static void main(String args[]) throws ParseException {
 double rate = 0.05;
 double value[] = {1000., 2000., 1000.};
 Date dates[] = {parse("1/3/1997"), parse("1/3/1999"),
 parse("1/3/2000")};
 double pv = Finance.xnpv(rate, value, dates);
 System.out.println("The present value of the schedule of cash "+ "flows is " + NumberFormat.getCurrencyInstance().format(pv));
 }
}

Output
The present value of the schedule of cash flows is $3,677.90
Chapter 26: Chart 2D

Types

class Chart .. 1562
class AbstractChartNode 1567
class ChartNode .. 1586
class Background .. 1608
class ChartTitle .. 1609

class Annotation ... 1610
class Grid .. 1612
class Axis .. 1613
class AxisXY .. 1615
class Axis1D .. 1617
class AxisLabel .. 1622
class AxisLine ... 1623
class AxisTitle ... 1623
class AxisUnit ... 1624
class MajorTick ... 1625
class MinorTick ... 1625
interface Transform 1626
class TransformDate 1627
class AxisR .. 1628
class AxisRLabel .. 1630
class AxisRLine .. 1631
class AxisRMajorTick 1631
class AxisTheta .. 1632
class GridPolar .. 1633
class Data .. 1634
interface ChartFunction 1645
class ChartSpline .. 1645
class Text .. 1646
class ToolTip ... 1648
class FillPaint ... 1650
Chart class

The root node of the chart tree.

This chart node creates the following child nodes: com.imsl.chart.Background (p. 1608), com.imsl.chart.ChartTitle (p. 1609) and com.imsl.chart.Legend (p. 1609).
Constructors

Chart
public Chart()

Description
This is the root of our tree, it has no parent. This creates the Chart with a null component

Chart
public Chart(Component component)

Description
This is the root of our tree, it has no parent. This creates the Chart with the named component
Parameter
 component – the Component that contains the chart.

Chart
public Chart(Image image)

Description
This is the root of our tree, it has no parent. This creates the Chart drawn into the image.
Parameter
 image – the Image into which the chart is to be drawn.

Methods

addLegendItem
public void addLegendItem(int type, ChartNode node)

Description
Adds a legend to this ChartNode. This method is intended to be called from within the paint method of classes which explicitly paint their own child chart nodes. The child chart nodes to be included in the legend must be added to the legend during each call to paint of the parent chart node.
Typical users of the chart library do not need to call this routine. This method is for use by those writing new charting classes.
Parameters
 type – an int which specifies the LegendItem type. 0 = DATA_TYPE_NONE; 1 = DATA_TYPE_LINE; 2 = DATA_TYPE_MARKER; 3 = DATA_TYPE_FILL
 node – the ChartNode object to which this legend is to be added

addMouseListener
public void addMouseListener(MouseListener listener)
Description

Adds a MouseListener to the component associated with this chart. If the component is null the listener will be saved and added to the component when it is assigned.

addMouseMotionListener

```java
public void addMouseMotionListener(MouseMotionListener listener)
```

Description

Adds a MouseMotionListener to the component associated with this chart. If the component is null the listener will be saved and added to the component when it is assigned.

clone

```java
public Object clone()
```

Description

Returns a clone of the graphics tree.

Returns

an Object which is a clone of this graphics tree

clone

```java
protected Object clone(Map hashClonedNode)
```

Description

Returns a clone of this node.

Parameter

hashClonedNode – the Hashtable to be cloned

Returns

an Object which is a clone of this node

copy

```java
public void copy()
```

Description

Copy the chart to the clipboard.

finalize

```java
protected void finalize()
```

paint

```java
public void paint(Draw draw)
```

Description

Paints this node and all of its children.
Parameter
draw – a Draw object to be painted

paint
public void paint(Graphics g)

Description
Paints this node and all of its children. This should be called whenever the paint member function in the Component used in this object’s constructor is called.

Parameter
g – Graphics object to be painted

paintChart
public void paintChart(Graphics graphics)

Description
Draw the chart using the given Graphics object.

Parameter
graphics – is the object for which the chart is to be drawn.

paintImage
public Image paintImage()

Description
Returns an Image of the chart.

Returns
an Image containing a picture of the chart. Call flush() on the image when it is no longer needed.

pick
public void pick(MouseEvent event)

Description
Fire the PickListeners for the nodes hit by the event.

Parameter
event – MouseEvent whose position determines which nodes have been selected

print
public int print(Graphics graphics, PageFormat pageFormat, int param) throws PrinterException

Description
This method implements the Printable interface. It prints the chart on a single page. The output is scaled to fill the page as much as possible while preserving the aspect ratio.

repaint
public void repaint()
Description
Prepares the chart to be repainted by deleting any double buffering image.

setComponent
```java
public void setComponent(Component component)
```

Description
Sets the Component for this chart. Also registers MouseListeners or MouseMotionListeners that could not be added previously.

update
```java
public void update(Graphics g)
```

writePNG
```java
public void writePNG(OutputStream os, int width, int height) throws IOException
```

Description
Writes the chart as an PNG file. PNG (Portable Network Graphics) is a lossless bitmap format.

Parameters
- `os` – is the output stream to which the PNG image is to be written.
- `width` – is the width of the output image.
- `height` – is the height of the output image.

Exceptions
- `java.io.IOException` if there is a problem writing the image to the stream.
- `java.lang.NoClassDefFoundError` if an older version of J2SE is used and the Java Advanced Imaging Toolkit cannot be found.

writeSVG
```java
public void writeSVG(Writer writer, boolean useCSS) throws IOException
```

Description
Writes the chart as an SVG file. This method requires the Apache Batik library.

Parameters
- `writer` – is the output character stream
- `useCSS` – is true if the CSS style attribute is to be used

Exceptions
- `java.io.IOException` if there is a problem writing the file.
- `java.lang.NoClassDefFoundError` if the Batik library cannot be found.
AbstractChartNode class

abstract public class com.imsl.chart.AbstractChartNode implements Serializable, Cloneable

The base class of all of the nodes in both the 2D and 3D chart trees.

Fields

AUTOSCALE.DATA
static final public int AUTOSCALE_DATA

Flag used to indicate that autoscaling is to be done by scanning the data nodes.

AUTOSCALE.DENSITY
static final public int AUTOSCALE_DENSITY

Flag used to indicate that autoscaling is to adjust the “Density” attribute. This applies only to time axes.

AUTOSCALE.NUMBER
static final public int AUTOSCALE_NUMBER

Flag used to indicate that autoscaling is to adjust the “Number” attribute.

AUTOSCALE.OFF
static final public int AUTOSCALE_OFF

Flag used to indicate that autoscaling is turned off.

AUTOSCALE.WINDOW
static final public int AUTOSCALE_WINDOW

Flag used to indicate that autoscaling is to be done by using the “Window” attribute.

AXIS_X
static final public int AXIS_X

Flag to indicate x-axis.

AXIS_Y
static final public int AXIS_Y

Flag to indicate y-axis.
Axis

`static final public int AXIS_Z`

Flag to indicate z-axis.

Label Type

`static final public int LABEL_TYPE_NONE`

Flag used to indicate that an element is not to be labeled.

`static final public int LABEL_TYPE_TITLE`

Flag used to indicate that an element is to be labeled with the value of its title attribute.

`static final public int LABEL_TYPE_X`

Flag used to indicate that an element is to be labeled with the value of its x-coordinate.

`static final public int LABEL_TYPE_Y`

Flag used to indicate that an element is to be labeled with the value of its y-coordinate.

`static final public int LABEL_TYPE_Z`

Flag used to indicate that an element is to be labeled with the value of its y-coordinate.

Transform

`static final public int TRANSFORM_CUSTOM`

Flag used to indicate that the axis using a custom transformation.

`static final public int TRANSFORM_LINEAR`

Flag used to indicate that the axis uses linear scaling.

`static final public int TRANSFORM_LOG`

Flag used to indicate that the axis uses logarithmic scaling.

Constructor

`AbstractChartNode`

`public AbstractChartNode(AbstractChartNode parent)`
Methods

clone

```java
protected Object clone(Map hashClonedNode)
```

Description

Returns a deep-copy clone of this node. Each class derived from this class should override this function if the derived class contains ChartNode objects or double[] arrays as member data. The overridden function should call this function and then clone each of its ChartNode data members. For example, in AxisXY we have

```java
protected Object clone(Hashtable hashClonedNode)
{
    AxisXY t = (AxisXY)super.clone(hashClonedNode);
    t.axisX = (Axis1D)axisX.clone(hashClonedNode);
    t.axisY = (Axis1D)axisY.clone(hashClonedNode);
    return t;
}
```

Parameter

- `hashClonedNode` – Hashtable of nodes that have already been cloned. We need to clone each ChartNode exactly once even if multiple references to it exist in the graphics tree. In this hashtable keys are existing ChartNode objects and values are their clones.

clone

```java
protected Object clone(Object value, Map hashClonedNode)
```

Description

Returns a deep copy of an Object. Handles non-immutable object types ChartNode, Hashtable, Vector, double[], String[], and int[]. (Immutable objects can just be reused, they do not have to be cloned.) If other non-immutable object types are used in the tree then the nodes where they are defined should override this function to handle the cloning. The new function calls super.clone(value, hashClonedNode) for values handled here.

clone

```java
final protected List clone(List in, Map hashClonedNode)
```

Description

Returns a deep copy of a vector of ChartNode’s.

clone

```java
final protected Map clone(Map hashIn, Map hashClonedNode)
```

Description

Returns a deep copy of a Hashtable. We assume the keys are immutable (e.g. Strings) and so do not have to be cloned. We cannot just use Hashtable.clone() because we want to specially handle cloning of ChartNodes that may occur in the hashtable. (Need to clone each ChartNode exactly once even if multiple references to it exist in the graphics tree.)
getAbstractParent
public AbstractChartNode getAbstractParent()

Description
Returns the parent of this node. Note that this is not an attribute setting. Note that there is no setParent function.

Returns
A AbstractChartNode object which contains this node’s parent. This is null in the case of the root node of the chart tree, since that node has no parent.

ggetAttribute
public Object getAttribute(String name)

Description
Gets an attribute.

Parameter
name – a String which contains the name of the attribute

ggetAutoscaleInput
public int getAutoscaleInput()

Description
Returns the value of the “AutoscaleInput” attribute.

Returns
The int value of the “AutoscaleInput” attribute.

ggetAutoscaleMinimumTimeInterval
public int getAutoscaleMinimumTimeInterval()

Description
Returns the value of the “AutoscaleMinimumTimeInterval” attribute.

Returns
The int value of the “AutoscaleMinimumTimeInterval” attribute.

ggetAutoscaleOutput
public int getAutoscaleOutput()

Description
Returns the value of the “AutoscaleOutput” attribute.

Returns
The int value of the “AutoscaleOutput” attribute.

ggetBooleanAttribute
public boolean getBooleanAttribute(String name, boolean defaultValue)
Description
Convenience routine to get a Boolean-valued attribute.

Parameters
- name – a String which contains the name of the attribute
- defaultValue – the boolean default value of the attribute

Returns
the boolean value of the attribute, if defined and if its value is of type Boolean. Otherwise defaultValue is returned.

getchildList
final protected List getchildList()

Description
Returns the children of this node.

Returns
a List array which contains the children of this node. It may be null.

ggetColorAttribute
public Color getColorAttribute(String name)

Description
Convenience routine to get a Color-valued attribute.

Parameter
- name – a String which contains the name of the attribute.

Returns
the Color value of the attribute, if defined and if its value is of type Color. Otherwise, a default color value is returned.

ggetCustomTransform
public Transform getCustomTransform()

Description
Returns the value of the “CustomTransform” attribute.

Returns
an Transform which contains the value of the “Transform” attribute

ggetDensity
public int getDensity()

Description
Returns the value of the “Density” attribute.
Returns
The int value of the “Density” attribute, if defined. Otherwise, a default value of zero is returned.

getDoubleAttribute
public double getDoubleAttribute(String name, double defaultValue)

Description
Convenience routine to get a Double-valued attribute.

Parameters
- name – a String which contains the name of the attribute
- defaultValue – the double default value of the attribute.

Returns
the double value of the attribute, if defined and if its value is of type Double. Otherwise defaultValue is returned.

getFillColor
public Color getFillColor()

Description
Returns the value of the “FillColor” attribute.

Returns
The Color value of the “FillColor” attribute, if defined. Otherwise, a default color value is returned.

getFont
public Font getFont()

Description
Convenience routine which gets a Font object based on the “FontName”, “FontStyle” and “FontSize” attributes. There is no “Font” attribute.

getFontName
public String getFontName()

Description
Returns the value of the “FontName” attribute.

Returns
The String value of the “FontName” attribute, if defined. Otherwise, the empty string is returned.

getFontSize
public int getFontSize()

Description
Returns the value of the “FontSize” attribute.
Returns
The int value of the “FontSize” attribute, if defined. Otherwise, 10 is returned.

getFontStyle

```java
public int getFontStyle()
```

Description

Returns the value of the “FontStyle” attribute.

Returns

The int value of the “FontStyle” attribute, if defined. Otherwise, java.awt.Font.PLAIN is returned.

getImage

```java
public Image getImage()
```

Description

Returns the value of the “Image” attribute.

Returns

the Image value of the “Image” attribute

getIntegerAttribute

```java
public int getIntegerAttribute(String name, int defaultValue)
```

Description

Convenience routine to get an Integer-valued attribute.

Parameters

- `name` – a String which contains the name of the attribute.
- `defaultValue` – the int default value of the attribute

Returns

the int value of the attribute, if defined and if its value is of type Integer. Otherwise defaultValue is returned.

getLabelType

```java
public int getLabelType()
```

Description

Returns the value of the “LabelType” attribute. If the attribute has not been set
com.imsl.chart.AbstractChartNode.LABEL_TYPE_NONE (p. 1568) is returned.

Returns

The int value of the “LabelType” attribute.

getLightColor

```java
public Color getLightColor()
```
Description
Returns the value of the “LightColor” attribute.

Returns
The Color value of the “LightColor” attribute, if defined. Otherwise, a default color value is returned.

getLineColor
public Color getLineColor()

Description
Returns the value of the “LineColor” attribute.

Returns
The LineColor value of the “LineColor” attribute, if defined. Otherwise, a default color value is returned.

getLineWidth
public double getLineWidth()

Description
Returns the value of the “LineWidth” attribute.

Returns
The double value of the “LineWidth” attribute, if defined. Otherwise, the default value of one is returned.

getLocale
public Locale getLocale()

Description
Returns the value of the “Locale” attribute.

Returns
The Locale value of the “Locale” attribute, if defined. Otherwise, a default value is returned.

getMarkerColor
public Color getMarkerColor()

Description
Returns the value of the “MarkerColor” attribute. Otherwise, a default color value is returned.

Returns
a Color which contains the “MarkerColor” value

getMarkerSize
public double getMarkerSize()

Description
Returns the value of the “MarkerSize” attribute.
Returns
The double value of the “MarkerSize” attribute, if defined. Otherwise, a default of 1.0 is returned.

(getName()
public String getName()

Description
Returns the value of the “Name” attribute.

Returns
The String value of the “Name” attribute, if defined. Otherwise, the empty string is returned.

getNumber
public int getNumber()

Description
Returns the value of the “Number” attribute.

Returns
The int value of the “Number” attribute, if defined. Otherwise, zero is returned.

getPaint
public boolean getPaint()

Description
Returns the value of the “Paint” attribute.

Returns
The boolean value of the “Paint” attribute, if defined. Otherwise, true is returned.

getStringAttribute
public String getStringAttribute(String name)

Description
Convenience routine to get a String-valued attribute.

Parameter
name – a String which contains the name of the attribute.

Returns
the String value of the attribute, if defined and if its value is of type String.

getTextColor
public Color getTextColor()

Description
Returns the value of the “TextColor” attribute.
Returns
The Color value of the “TextColor” attribute, if defined. Otherwise, a default color value is returned.

getTextFormat
public Format getTextFormat()

Description
Returns the value of the “TextFormat” attribute.

Returns
The Format value of the “TextFormat” attribute, if defined. Otherwise, a default format is returned. The
default is a NumberFormat that allows exactly two digits after the decimal.

getTickLength
public double getTickLength()

Description
Returns the value of the “TickLength” attribute.

Returns
The double value of the “TickLength” attribute, if defined. Otherwise, 1.0 is returned.

getTransform
public int getTransform()

Description
Returns the value of the “Transform” attribute.

Returns
an int which contains the value of the “Transform” attribute

getX
public double[] getX()

Description
Returns the value of the “X” attribute.

Returns
the double array which contains the value of the “X” attribute

getY
public double[] getY()

Description
Returns the value of the “Y” attribute.
Returns the double array which contains the value of the “Y” attribute

isAncestorOf

```java
public boolean isAncestorOf(AbstractChartNode node)
```

Description

Returns true if this node is an ancestor of the argument node.

Parameter

- `node` – a AbstractChartNode object

Returns

a boolean, true if this node is an ancestor of the argument, node

isAttributeSet

```java
public boolean isAttributeSet(String name)
```

Description

Determines if an attribute is defined (may have been inherited).

Parameter

- `name` – a String which contains the name of the attribute

Returns

a boolean, true if the attribute is defined for this node. The definition may have been inherited from its parent node.

isAttributeSetAtThisNode

```java
public boolean isAttributeSetAtThisNode(String name)
```

Description

Determines if an attribute is defined in this node (not inherited).

Parameter

- `name` – a String which contains the name of the attribute

Returns

a boolean, true if the attribute is defined in this node. The definition must have been set directly in this node, not just inherited from its parent node.

isBitSet

```java
static public boolean isBitSet(int flag, int mask)
```

Description

Returns true if the bit set in flag is set in mask.
Parameters
- flag – the int which contains the bit to be tested against mask
- mask – the int which is used as the mask

Returns
a boolean, true if the bit set in flag is set in mask

parseColor
static public Color parseColor(String nameColor)

Description
Returns a color specified by name or a red-green-blue triple.

Parameter
- nameColor – is the name of a color (this name is not case sensitive) or a comma separated list of red, green, blue values all in the range 0 to 255. For example, “red” or “255,0,0”.

Returns
the named Color.

Exception
IllegalArgumentException is thrown if the color name is not known.

remove
public void remove()

Description
Removes the node from its parents list of children.

setAttribute
public void setAttribute(String name, Object value)

Description
Sets an attribute.

Parameters
- name – a String which contains the name of the attribute to be set
- value – an Object which contains the value of the attribute

setAutoscaleInput
public void setAutoscaleInput(int value)

Description
Sets the value of the “AutoscaleInput” attribute. This attribute determines what inputs are use for autoscaling.
Parameter

value – “AutoscaleInput” value. Legal values are

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOSCALE_OFF</td>
<td>Do not do autoscaling.</td>
</tr>
<tr>
<td>AUTOSCALE_DATA</td>
<td>Use the data values. This is the default.</td>
</tr>
<tr>
<td>AUTOSCALE_WINDOW</td>
<td>Use the “Window” attribute value.</td>
</tr>
</tbody>
</table>

setAutoscaleMinimumTimeInterval

public void setAutoscaleMinimumTimeInterval(int value)

Description

Sets the value of the “AutoscaleMinimumTimeInterval” attribute. This attribute determines the minimum tick mark interval for autoscaled time axes.

Parameter

value – “AutoscaleMinimumTimeInterval” value. Legal values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILLISECOND</td>
<td>Millisecond</td>
</tr>
<tr>
<td>SECOND</td>
<td>Second</td>
</tr>
<tr>
<td>MINUTE</td>
<td>Minute</td>
</tr>
<tr>
<td>HOUR_OF_DAY</td>
<td>Hour</td>
</tr>
<tr>
<td>DAY_OF_WEEK</td>
<td>Day</td>
</tr>
<tr>
<td>WEEK_OF_YEAR</td>
<td>Week</td>
</tr>
<tr>
<td>MONTH</td>
<td>Month</td>
</tr>
<tr>
<td>YEAR</td>
<td>Year</td>
</tr>
</tbody>
</table>

The default is MILLISECOND.

setAutoscaleOutput

public void setAutoscaleOutput(int value)

Description

Sets the value of the “AutoscaleOutput” attribute. This attribute determines what attributes to change as a result of autoscaling.

Parameter

value – “AutoscaleOutput” value. Legal values are bitwise-or combinations of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOSCALE_OFF</td>
<td>Do not autoscale.</td>
</tr>
<tr>
<td>AUTOSCALE_WINDOW</td>
<td>Change the “Window” attribute value.</td>
</tr>
<tr>
<td>AUTOSCALE_NUMBER</td>
<td>Change the “Number” attribute value.</td>
</tr>
<tr>
<td>AUTOSCALE_DENSITY</td>
<td>Change the “Density” attribute value.</td>
</tr>
</tbody>
</table>

The default is (AUTOSCALE_NUMBER | AUTOSCALE_WINDOW | AUTOSCALE_DENSITY).

setCustomTransform

public void setCustomTransform(Transform value)
Description
Sets the value of the “CustomTransform” attribute. This is used only if the “Transform” attribute is set to TRANSFORM_CUSTOM.

Parameter
value – an object implementing the Transform interface.

setDensity
public void setDensity(int value)

Description
Sets the value of the “Density” attribute. This attribute controls the number of minor tick marks in the interval between major tick marks.

Parameter
value – int “Density” value which specifies the number of minor tick marks per major tick mark.

setFillColor
public void setFillColor(Color color)

Description
Sets the value of the “FillColor” attribute.

Parameter
color – Color “FillColor” value

color – String name of a color.

setFont
public void setFont(Font font)

Description
Sets the value of the font attributes. This function sets the “FontName”, “FontStyle” and “FontSize” attributes. There is no “Font” attribute.

Parameter
font – Font object whose components are used to set three different attributes.

setFontName
public void setFontName(String value)
Description
Sets the value of the “FontName” attribute. This is used in the constructor for java.awt.Font.

Parameter
value – a String which contains the “FontName” value

setFontSize
public void setFontSize(int value)

Description
Sets the value of the “FontSize” attribute. This is used in the constructor for java.awt.Font.

Parameter
value – an int “FontSize” value

setFontStyle
public void setFontStyle(int value)

Description
Sets the value of the “FontStyle” attribute. This is used in the constructor for java.awt.Font.

Parameter
value – an int “FontStyle” value.

setImage
public void setImage(ImageIcon value)

Description
Sets the value of the “Image” attribute.

Parameter
value – ImageIcon value.

setLabelType
public void setLabelType(int type)

Description
Sets the value of the “LabelType” attribute. This indicates how a data point is to be labeled. The default
is to not label data points.

Parameter
type – the int “LabelType” value

setLightColor
public void setLightColor(Color color)

Description
Sets the value of the “LightColor” attribute.
Parameter
color – a Color which contains the “LightColor” value

setLightColor
public void setLightColor(String color)

Description
Sets the value of the “LightColor” attribute to a color specified by name.

Parameter
color – String name of a color.

setLineColor
public void setLineColor(Color color)

Description
Sets the value of the “LineColor” attribute.

Parameter
color – the LineColor value

setLineWidth
public void setLineWidth(double value)

Description
Sets the value of the “LineWidth” attribute.

Parameter
value – the double “LineWidth” value

setLocale
public void setLocale(Locale value)

Description
Sets the value of the “Locale” attribute. This attribute controls how formatting is done.

Parameter
value – the Locale value

setMarkerColor
public void setMarkerColor(Color color)
Description
Sets the value of the “MarkerColor” attribute.

Parameter
- `color` – a Color which contains the “MarkerColor” value

setMarkerColor
```java
public void setMarkerColor(String color)
```

Description
Sets the value of the “MarkerColor” attribute to a color specified by name.

Parameter
- `color` – String name of a color.

setMarkerSize
```java
public void setMarkerSize(double size)
```

Description
Sets the value of the “MarkerSize” attribute. The default marker size is 1.0. If “MarkerSize” is 2.0 then markers are drawn twice as large as normal.

Parameter
- `size` – a double which specifies the “MarkerSize” value

setName
```java
public void setName(String value)
```

Description
Sets the value of the “Name” attribute. This the user-friendly name of the node.

Parameter
- `value` – a String which contains the “Name” value

setNumber
```java
public void setNumber(int value)
```

Description
Sets the value of the “Number” attribute. This is the number of tick marks along an axis.

Parameter
- `value` – the int “Number” value

setPaint
```java
public void setPaint(boolean value)
```

Description
Sets the value of the “Paint” attribute.
Parameter

value – the boolean “Paint” value. If false, this node and its children are not drawn.

setTextColor
public void setTextColor(Color color)

Description
Sets the value of the “TextColor” attribute.

Parameter

color – a Color which contains the “TextColor” value

setTextColor
public void setTextColor(String color)

Description
Sets the value of the “TextColor” attribute to a color specified by name.

Parameter

color – String name of a color.

setTextFormat
public void setTextFormat(String value)

Description
Sets the value of the “TextFormat” attribute.

The TextFormat attribute is normally a java.text.Format object, but, as a convenience, it can be set as a String. The following special values are defined. In this table, “locale” is the value of the locale attribute.

<table>
<thead>
<tr>
<th>value</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Date(SHORT)”</td>
<td>DateFormat.getDateInstance(DateFormat.SHORT, locale)</td>
</tr>
<tr>
<td>“Date(MEDIUM)”</td>
<td>DateFormat.getDateInstance(DateFormat.MEDIUM, locale)</td>
</tr>
<tr>
<td>“Date(LONG)”</td>
<td>DateFormat.getDateInstance(DateFormat.LONG, locale)</td>
</tr>
<tr>
<td>“Currency”</td>
<td>DateFormat.getCurrencyInstance(locale)</td>
</tr>
<tr>
<td>“Number”</td>
<td>DateFormat.getNumberInstance(locale)</td>
</tr>
<tr>
<td>“Percent”</td>
<td>DateFormat.getPercentInstance(locale)</td>
</tr>
</tbody>
</table>

If the value does not match one of these special cases then an interpretation as a java.text.DecimalFormat object is attempted. If this fails then an interpretation as a java.text.SimpleDateFormat object is attempted.

Parameter

value – a String which contains the “TextFormat” value

setTextFormat
public void setTextFormat(Format value)
Description
Sets the value of the “TextFormat” attribute.

Parameter
value – a Format which contains the “TextFormat” value

setTickLength
public void setTickLength(double tickLength)

Description
Sets the value of the “TickLength” attribute. This scales the length of the tick mark lines. A value of 2.0 makes the tick marks twice as long as normal. A negative value causes the tick marks to be drawn pointing into the plot area.

Parameter
tickLength – a double which contains the “TickLength” value

setTransform
public void setTransform(int value)

Description
Sets the value of the “Transform” attribute. This sets the axis to be linear, logarithmic or a custom transform.

Parameter
value – The “Transform” value. Legal values are TRANSFORM_LINEAR (the default), TRANSFORM_LOG and TRANSFORM_CUSTOM.

setX
public void setX(Object value)

Description
Sets the value of the “X” attribute.

Parameter
value – an Object which contains the “X” value

setY
public void setY(Object value)

Description
Sets the value of the “Y” attribute.

Parameter
value – the Object which contains the “Y” value

toString
public String toString()
Description
Returns the name of this ChartNode

Returns
a String, the name of this ChartNode

ChartNode class

The base class of all of the nodes in the 2D chart tree.

It may be desirable to enable anti-aliasing on a particular ChartNode. This can be accomplished in the following way:

```java
AxisXY axis = new AxisXY(chart);
RenderingHints hints = new RenderingHints(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
axis.setAttribute("RenderingHints", hints);
```

Fields

AXIS_X_TOP
static final public int AXIS_X_TOP

Flag to indicate x-axis placed on top of the chart.

AXIS_Y_RIGHT
static final public int AXIS_Y_RIGHT

Flag to indicate y-axis placed to the right of the chart.

BAR_TYPE_HORIZONTAL
static final public int BAR_TYPE_HORIZONTAL

Flag to indicate a horizontal bar chart.

BAR_TYPE_VERTICAL
static final public int BAR_TYPE_VERTICAL

Flag to indicate a vertical bar chart.
DASH_PATTERN_DASH
static final public double[] DASH_PATTERN_DASH

Flag to draw a dashed line.

DASH_PATTERN_DASH_DOT
static final public double[] DASH_PATTERN_DASH_DOT

Flag to draw a dash-dot pattern line.

DASH_PATTERN_DOT
static final public double[] DASH_PATTERN_DOT

Flag to draw a dotted line.

DASH_PATTERN_SOLID
static final public double[] DASH_PATTERN_SOLID

Flag to draw solid line.

DATA_TYPE_FILL
static final public int DATA_TYPE_FILL

Value for attribute “DataType” indicating that the area between the lines connecting the data points and the horizontal reference line (y = attribute “Reference”) should be filled. This is an area chart.

DATA_TYPE_LINE
static final public int DATA_TYPE_LINE

Value for attribute “DataType” indicating that the data points should be connected with line segments. This is the default setting.

DATA_TYPE_MARKER
static final public int DATA_TYPE_MARKER

Value for attribute “DataType” indicating that a marker should be drawn at each data point.

DATA_TYPE_PICTURE
static final public int DATA_TYPE_PICTURE

Value for attribute “DataType” indicating that an image (attribute “Image”) should be drawn at each data point. This can be used to draw fancy markers.

DATA_TYPE_TUBE
static final public int DATA_TYPE_TUBE

Value for attribute “DataType” indicating that an a tube connecting the data points should be drawn. Tubes are similar to lines, but tubes are shaded. The diameter of the tube is controlled by the attribute “LineWidth”. Tube color is controlled by the attribute “LineColor.”
DENDROGRAM_TYPE_HORIZONTAL
static final public int DENDROGRAM_TYPE_HORIZONTAL

Flag to indicate a horizontal dendrogram.

DENDROGRAM_TYPE_VERTICAL
static final public int DENDROGRAM_TYPE_VERTICAL

Flag to indicate a vertical dendrogram.

FILL_TYPE_GRADIENT
static final public int FILL_TYPE_GRADIENT

Value for attribute “FillType” indicating that the region is to be drawn in a color gradient as specified by the attribute Gradient.

FILL_TYPE_NONE
static final public int FILL_TYPE_NONE

Value for attribute “FillType” and “FillOutlineType” indicating that the region is not to be drawn.

FILL_TYPE_PAINT
static final public int FILL_TYPE_PAINT

Value for attribute “FillType” indicating that the region is to be drawn using the texture specified by the attribute FillPaint.

FILL_TYPE_SOLID
static final public int FILL_TYPE_SOLID

Value for attribute “FillType” and “FillOutlineType” indicating that the region is to be drawn using the solid color specified by the attribute FillColor or FillOutlineColor.

LABEL_TYPE_PERCENT
static final public int LABEL_TYPE_PERCENT

Flag used to indicate that a pie slice is to be labeled with a percentage value. This attribute only applies to pie charts.

MARKER_TYPE_ASTERISK
static final public int MARKER_TYPE_ASTERISK

Flag for a asterisk data marker.

MARKER_TYPE_CIRCLE_CIRCLE
static final public int MARKER_TYPE_CIRCLE_CIRCLE

Flag for a circle in a circle data marker.
MARKER_TYPE_CIRCLE_PLUS
static final public int MARKER_TYPE_CIRCLE_PLUS
Flag for a plus in a circle data marker.

MARKER_TYPE_CIRCLE_X
static final public int MARKER_TYPE_CIRCLE_X
Flag for an x in a circle data marker.

MARKER_TYPE_DIAMOND_PLUS
static final public int MARKER_TYPE_DIAMOND_PLUS
Flag for a plus in a diamond data marker.

MARKER_TYPE_FILLED_CIRCLE
static final public int MARKER_TYPE_FILLED_CIRCLE
Flag for a filled circle data marker.

MARKER_TYPE_FILLED_DIAMOND
static final public int MARKER_TYPE_FILLED_DIAMOND
Flag for a filled diamond data marker.

MARKER_TYPE_FILLED_SQUARE
static final public int MARKER_TYPE_FILLED_SQUARE
Flag for a filled square data marker.

MARKER_TYPE_FILLED_TRIANGLE
static final public int MARKER_TYPE_FILLED_TRIANGLE
Flag for a filled triangle data marker.

MARKER_TYPE_HOLLOW_CIRCLE
static final public int MARKER_TYPE_HOLLOW_CIRCLE
Flag for a hollow circle data marker.

MARKER_TYPE_HOLLOW_DIAMOND
static final public int MARKER_TYPE_HOLLOW_DIAMOND
Flag for a hollow diamond data marker.

MARKER_TYPE_HOLLOW_SQUARE
static final public int MARKER_TYPE_HOLLOW_SQUARE
Flag for a hollow square data marker.
MARKER_TYPE_HOLLOW_TRIANGLE
static final public int MARKER_TYPE_HOLLOW_TRIANGLE
Flag for hollow triangle data marker.

MARKER_TYPE_OCTAGON_PLUS
static final public int MARKER_TYPE_OCTAGON_PLUS
Flag for a plus in an octagon data marker.

MARKER_TYPE_OCTAGON_X
static final public int MARKER_TYPE_OCTAGON_X
Flag for a x in an octagon data marker.

MARKER_TYPE_PLUS
static final public int MARKER_TYPE_PLUS
Flag for a plus-shaped data marker.

MARKER_TYPE_SQUARE_PLUS
static final public int MARKER_TYPE_SQUARE_PLUS
Flag for a plus in a square data marker.

MARKER_TYPE_SQUARE_X
static final public int MARKER_TYPE_SQUARE_X
Flag for an x in a square data marker.

MARKER_TYPE_X
static final public int MARKER_TYPE_X
Flag for a x-shaped data marker.

TEXT_X_CENTER
static final public int TEXT_X_CENTER
Value for attribute “TextAlignment” indicating that the text should be centered.

TEXT_X_LEFT
static final public int TEXT_X_LEFT
Value for attribute “TextAlignment” indicating that the text should be left adjusted. This is the default setting.

TEXT_X_RIGHT
static final public int TEXT_X_RIGHT
Value for attribute “TextAlignment” indicating that the text should be right adjusted.
TEXT_Y_BOTTOM

static final public int TEXT_Y_BOTTOM

Value for attribute “TextAlignment” indicating that the text should be drawn on the baseline. This is the default setting.

TEXT_Y_CENTER

static final public int TEXT_Y_CENTER

Value for attribute “TextAlignment” indicating that the text should be vertically centered.

TEXT_Y_TOP

static final public int TEXT_Y_TOP

Value for attribute “TextAlignment” indicating that the text should be drawn with the top of the letters touching the top of the drawing region.

Constructor

ChartNode

public ChartNode(ChartNode parent)

Description

Construct a ChartNode object.

Parameter

parent – the ChartNode parent of this object

Methods

addPickListener

public void addPickListener(PickListener pickListener)

Description

Adds a PickListener to this node. Unlike simple attributes, the pickListener is added to a list of existing PickListeners defined at this node. The existing listeners remain defined at this node. If this pickListener is already registered in this node, it will not be added again.

Parameter

pickListener – the PickListener to be added to this node

firePickListeners

public void firePickListeners(MouseEvent event)
Description
Fires the pick listeners defined at this node and at all of its ancestors, if the event “hits” the node.

Parameter
- `event` – `MouseEvent` which determines which nodes have been selected

getALT
public String getALT()

Description
Returns the value of the “ALT” attribute.

Returns
The value of the “ALT” attribute.

getAxis
public Axis getAxis()

Description
Returns the value of the “Axis” attribute.

Returns
the Axis value of the “Axis” attribute.

getBackground
public Background getBackground()

Description
Returns the value of the “Background” attribute. This is the node used to draw the chart’s background.

Returns
The Background value of the “Background” attribute, if defined. Otherwise, null is returned.

getBarGap
public double getBarGap()

Description
Returns the value of the “BarGap” attribute.

Returns
the double value of the “BarGap” attribute, if defined. Otherwise, 0.0 is returned.

getBarType
public int getBarType()

Description
Returns the value of the “BarType” attribute.
Returns an int which specifies BarType

getBarWidth
public double getBarWidth()

Description
Returns the value of the “BarWidth” attribute.

Returns
the double value of the “BarWidth” attribute, if defined. Otherwise, 0.5 is returned.

getChart
public Chart getChart()

Description
Returns the value of the “Chart” attribute. This is the root node of the chart tree.

Returns
The Chart value of the attribute, if defined. Otherwise, null is returned.

getChartTitle
public ChartTitle getChartTitle()

Description
Returns the value of the “ChartTitle” attribute.

Returns
the ChartTitle value of the attribute.

getChildren
final public ChartNode[] getChildren()

Description
Returns an array of the children of this node. If there are no children, a 0-length array is returned.

Returns
a ChartNode array which contains the children of this node

getClipData
public boolean getClipData()

Description
Returns the value of the “ClipData” attribute.

Returns
The boolean value of the attribute, if defined. Otherwise, true is returned.

getComponent
public Component getComponent()

Description

Returns the value of the “Component” attribute. This is the AWT object into which the chart is rendered.

Returns

The `Component` value of the attribute, if defined. Otherwise, null is returned.

getConcatenatedViewport

```java
public double[] getConcatenatedViewport()
```

Description

Returns the value of the “Viewport” attribute concatenated with the “Viewport” attributes set in its ancestor nodes.

Returns

getDataType

```java
public int getDataType()
```

Description

Returns the value of the “DataType” attribute.

Returns

The `int` value of the “DataType” attribute, if defined. Otherwise, `DATA_TYPE_LINE` is returned.

getDoubleBuffering

```java
public boolean getDoubleBuffering()
```

Description

Returns the value of the “DoubleBuffering” attribute.

Returns

The `boolean` value of the “DoubleBuffering” attribute, if defined. Otherwise, false is returned.

getExplode

```java
public double getExplode()
```

Description

Returns the value of the “Explode” attribute.

Returns

The `double` value of the “Explode” attribute, if defined. Otherwise, a default value of zero is returned. (The pie slice begins at the center.)

getFillOutlineColor

```java
public Color getFillOutlineColor()
```

Description

Returns the value of the “FillOutlineColor” attribute.
Returns
The Color value of the “FillOutlineColor” attribute, if defined. Otherwise, a default color value is returned.

getFillOutlineType
public int getFillOutlineType()

Description
Returns the value of the “FillOutlineType” attribute.

Returns
The int value of the “FillOutlineType” attribute, if defined. Otherwise, FILL_TYPE_SOLID is returned.

getFillPaint
public Paint getFillPaint()

Description
Returns the value of the “FillPaint” attribute.

Returns
The value of the “FillPaint” attribute, if defined. Otherwise, null is returned.

getFillType
public int getFillType()

Description
Returns the value of the “FillType” attribute.

Returns
The int value of the “FillType” attribute, if defined. Otherwise, FILL_TYPE_SOLID is returned.

getGradient
public Color[] getGradient()

Description
Returns the value of the “Gradient” attribute.

Returns
a Color array which contains the color value of the “Gradient” attribute, if defined. Otherwise, null is returned. The array is of length four, containing {colorLL, colorLR, colorUR, colorUL}.

getHREF
public String getHREF()

Description
Returns the value of the “HREF” attribute.
Returns
The value of the “HREF” attribute.

getLegend
public Legend getLegend()

Description
Returns the value of the “Legend” attribute.

Returns
the Legend value of the “Legend” attribute

getLineDashPattern
public double[] getLineDashPattern()

Description
Returns the value of the “Line Dash Pattern” attribute.

Returns
double array containing the value of the “LineDashPattern” attribute, if defined. Otherwise, null is returned.

getMarkerDashPattern
public double[] getMarkerDashPattern()

Description
Returns the value of the “Marker Pattern” attribute.

Returns
The double array which contains the value of the “MarkerPattern” attribute, if defined. Otherwise, null is returned.

getMarkerThickness
public double getMarkerThickness()

Description
Returns the value of the “Marker Thickness” attribute.

Returns
The double value of the “MarkerThickness” attribute, if defined. Otherwise, a default of 1.0 is returned.

getMarkerType
public int getMarkerType()

Description
Returns the value of the “Marker Type” attribute.
Returns
The int value of the “MarkerType” attribute, if defined. Otherwise, a default of MARKER_TYPE_PLUS is returned.

getParent
public ChartNode getParent()

Description
Returns the parent of this node. Note that this is not a setting. Note that there is no setParent function.

Returns
A ChartNode object which contains this node’s parent. This is null in the case of the root node of the chart tree, since that node has no parent.

getReference
public double getReference()

Description
Returns the value of the “Reference” attribute.

Returns
The double value of the “Reference” attribute, if defined. Otherwise, zero is returned.

getScreenAxis
public AxisXY getScreenAxis()

Description
Returns the value of the “ScreenAxis” attribute. This provides a default mapping from the user coordinates [0,1] by [0,1] to the screen. This is set by the root Chart node, so there is no setScreenAxis function.

Returns
The AxisXY value of the “ScreenAxis” attribute

getScreenSize
public Dimension getScreenSize()

Description
Returns the value of the “ScreenSize” attribute.

Returns
The Dimension value of the “ScreenSize” attribute, if defined. Otherwise, the size of the “Component” attribute is returned. If neither the “ScreenSize” nor the “Component” attributes are defined then null is returned.

getScreenViewport
public int[] getScreenViewport()
Description
Returns the value of the “Viewport” attribute scaled by the screen size.

Returns
the int[4] value of the “Viewport” attribute scaled by the screen size containing the pixel coordinates for xmin, xmax, ymin, ymax

ggetSize
public Dimension getSize()

Description
Returns the value of the “Size” attribute.

Returns
the Dimension value of the “Size” attribute

g SkipWeekends
public boolean getSkipWeekends()

Description
Returns the value of the “SkipWeekends” attribute. If true then autoscaling will not select an interval of less than a day.

Returns
the value of the “SkipWeekends” attribute.

g TextAngle
public int getTextAngle()

Description
Returns the value of the “TextAngle” attribute.

Returns
The int value of the “TextAngle” attribute, if defined. Otherwise, zero is returned.

g TextColor
public Color getTextColor()

Description
Returns the value of the “TextColor” attribute.

Returns
The Color value of the “TextColor” attribute, if defined. Otherwise, a default color value is returned.

g Title
public Text getTitle()

Description
Returns the value of the “Title” attribute.
Returns
the Text value of the “Title” attribute

getToolTip
public String getToolTip()

Description
Returns the value of the “ToolTip” attribute.

Returns
the String value of the “ToolTip” attribute

getViewport
public double[] getViewport()

Description
Returns the value of the “Viewport” attribute.

Returns
a double[4] array containing xmin, xmax, ymin, ymax

isBitSet
static public boolean isBitSet(int flag, int mask)

Description
Returns true if the bit set in flag is set in mask.

Parameters
- flag – the int which contains the bit to be tested against mask
- mask – the int which is used as the mask

Returns
a boolean, true if the bit set in flag is set in mask

paint
abstract public void paint(Draw draw)

Description
Paints this node and all of its children.

Parameter
- draw – the Draw object to be painted

prePaint
public void prePaint()
Description
The prePaint method is called in all nodes in a chart just before the chart is painted. The default implementation does nothing. Override this method to do computations just before painting in a chart node.

removePickListener
public void removePickListener(PickListener pickListener)

Description
Removes a PickListener from this node.

Parameter
pickListener – the PickListener to be removed from this node

setALT
public void setALT(String value)

Description
Sets the value of the “ALT” attribute. The “ALT” attribute is used when client-side image maps are generated. A client-side image map has an entry for each node in which the chart attribute HREF is defined. Some browsers use the alt tag value as tooltip text.

Parameter
value – “ALT” value.

setBarGap
public void setBarGap(double value)

Description
Sets the value of the “BarGap” attribute. This is the gap between bars in a group. A gap of 1.0 means that space between bars is the same as the width of an individual bar in the group.

Parameter
value – the double “BarGap” value

setBarType
public void setBarType(int value)

Description
Sets the value of the “BarType” attribute.

Parameter
value – an int which specifies BarType. Legal values are BAR_TYPE_VERTICAL or BAR_TYPE_HORIZONTAL.

setBarWidth
public void setBarWidth(double value)
Description
Sets the value of the “BarWidth” attribute. This is the width of all of the groups of bars at each index.

Parameter
value – the double “BarWidth” value.

setChartTitle
public void setChartTitle(ChartTitle value)

Description
Sets the value of the “ChartTitle” attribute. This is effective only in the Chart node, where it replaces the existing ChartTitle node. The Chart node constructor creates a ChartTitle node and uses it to define its “ChartTitle” attribute, so there is generally no need to call this routine.

Parameter
value – ChartTitle node

setClipData
public void setClipData(boolean value)

Description
Sets the value of the “ClipData” attribute. This indicates that the data elements are to be clipped to the current window.

Parameter
value – “ClipData” value

setCustomTransform
public void setCustomTransform(Transform value)

Description
Sets the value of the “CustomTransform” attribute. This is used only if the “Transform” attribute is set to TRANSFORM_CUSTOM.

Parameter
value – an object implementing the Transform interface.

setDataType
public void setDataType(int value)

Description
Sets the value of the “DataType” attribute.

Parameter
value – “DataType” value. This should be some xor-ed combination of DATA_TYPE_LINE, DATA_TYPE_MARKER.

setDoubleBuffering
public void setDoubleBuffering(boolean value)
Description
Sets the value of the “DoubleBuffering” attribute. Double buffering reduces flicker when the screen is updated. This attribute only has an effect if it is set at the root node of the chart tree.

Parameter
value – boolean “DoubleBuffering” value

setExplode
public void setExplode(double value)

Description
Sets the value of the “Explode” attribute. This attribute controls how far from the center pie slices are drawn. The scale is proportional to the pie chart’s radius.

Parameter
value – a double “Explode” value. This attribute controls how far from the center pie slices are drawn. The scale is proportional to the pie chart’s radius.

setFillOutlineColor
public void setFillOutlineColor(Color color)

Description
Sets the value of the “FillOutlineColor” attribute.

Parameter
color – a Color “FillOutlineColor” value.

setFillOutlineColor
public void setFillOutlineColor(String color)

Description
Sets the value of the “FillOutlineColor” attribute to a color specified by name.

Parameter
color – String name of a color.

setFillOutlineType
public void setFillOutlineType(int value)

Description
Sets the value of the “FillOutlineType” attribute.

Parameter
value – “FillOutlineType” value. This value should be FILL_TYPE_NONE or FILL_TYPE_SOLID.

setFillPaint
public void setFillPaint(Paint value)
Description
Sets the value of the “FillPaint” attribute.

Parameter
- `value` – “FillPaint” value.

setFillPaint
public void setFillPaint(URL urlImage)

Description
Sets the value of the “FillPaint” attribute.

Parameter
- `urlImage` – is the URL of an image used to set the FillPaint attribute.

setFillPaint
public void setFillPaint(ImageIcon imageIcon)

Description
Sets the value of the “FillPaint” attribute.

Parameter
- `imageIcon` – is used to create a Paint object that is used as the value of the “FillPaint” attribute.

setFillType
public void setFillType(int value)

Description
Sets the value of the “FillType” attribute.

Parameter
- `value` – “FillType” value. This value should be FILL_TYPE_NONE, FILL_TYPE_SOLID, FILL_TYPE_GRADIENT or FILL_TYPE_PAINT.

setGradient
public void setGradient(Color[] colorGradient)

Description
Sets the value of the “Gradient” attribute.

Parameter
- `colorGradient` – is a Color array of length four, containing the colors at the lower left, lower right, upper right and upper left corners of the bounding box of the regions being filled. See com.imsl.chart.ChartNode.setGradient (p. 1603) for details on the interpretation of these colors.

setGradient
public void setGradient(Color colorLL, Color colorLR, Color colorUR, Color colorUL)
Description
Sets the value of the “Gradient” attribute.

Parameters
 colorLL – Color value which specifies the color of the lower left corner.
 colorLR – Color value which specifies the color of the lower right corner.
 colorUR – Color value which specifies the color of the upper right corner.
 colorUL – Color value which specifies the color of the upper left corner.
This attribute defines a color gradient used to fill regions. Only two of the four colors given are actually used.
 If colorLL==colorLR and colorUL==colorUR then a vertical gradient is drawn.
 If colorLL==colorUL and colorLR==colorUR then a horizontal gradient is drawn.
 If colorLR==null and colorUL==null then a diagonal gradient is used.
 If colorLL==null and colorUR==null then a diagonal gradient is used.
 If none of these conditions is met then no gradient is drawn.

setGradient
public void setGradient(String colorLL, String colorLR, String colorUR, String colorUL)

Description
Sets the value of the “Gradient” attribute using named colors.

Parameters
 colorLL – String value which specifies the color of the lower left corner.
 colorLR – String value which specifies the color of the lower right corner.
 colorUR – String value which specifies the color of the upper right corner.
 colorUL – String value which specifies the color of the upper left corner. This attribute defines a color gradient used to fill regions. Only two of the four colors given are actually used.
 If colorLL==colorLR and colorUL==colorUR then a vertical gradient is drawn.
 If colorLL==colorUL and colorLR==colorUR then a horizontal gradient is drawn.
 If colorLR==null and colorUL==null then a diagonal gradient is used.
 If colorLL==null and colorUR==null then a diagonal gradient is used.
 If none of these conditions is met then no gradient is drawn.

setHREF
public void setHREF(String value)

Description
Sets the value of the “HREF” attribute. The “HREF” attribute is used when client-side image maps are generated. A client-side image map has an entry for each node in which the chart attribute HREF is defined. The values of HREF attributes are URLs. Such regions treated by the browser as hyperlinks.
Parameter
value – “HREF” value.

setImage
public void setImage(Image value)

Description
Sets the value of the “Image” attribute. This function also loads the image, if necessary, using the
java.awt.MediaTracker class. The component associated with this chart is redrawn after the image is
loaded by MediaTracker.

Note that Image objects are not serializable and their presence in the chart tree will make the entire chart
non-serializable. javax.swing.ImageIcon objects are serializable.

Parameter
value – Image value.

setLineDashPattern
public void setLineDashPattern(double[] value)

Description
Sets the value of the “LineDashPattern” attribute.

Parameter
value – double “LineDashPattern” value.

setMarkerDashPattern
public void setMarkerDashPattern(double[] value)

Description
Sets the value of the “MarkerDashPattern” attribute.

Parameter
value – double array which contains the “MarkerDashPattern” value.

setMarkerThickness
public void setMarkerThickness(double width)

Description
Sets the value of the “MarkerThickness” attribute. This determines the line thickness used to draw the
markers. The default marker width is 1.0. If “MarkerThickness” is 2.0 then markers are drawn twice as
thick as normal.

Parameter
width – the double “MarkerThickness” value.

setMarkerType
public void setMarkerType(int type)
Description
Sets the value of the “MarkerType” attribute. This indicates which marker is to be drawn.

Parameter
- **type** – the int “MarkerType” value.

setReference
public void setReference(double value)

Description
Sets the value of the “Reference” attribute. This is used as the baseline in drawing area charts. It is also used as the angle (in degrees) of the first slice in a pie chart.

Parameter
- **value** – the double “Reference” value

setScreenSize
public void setScreenSize(Dimension value)

Description
Sets the value of the “ScreenSize” attribute.

Parameter
- **value** – the Dimension “ScreenSize” value

setSize
public void setSize(Dimension value)

Description
Sets the value of the “Size” attribute.

Parameter
- **value** – the Dimension “Size” value

setSkipWeekends
public void setSkipWeekends(boolean skipWeekends)

Description
Sets the value of the “SkipWeekends” attribute. If this attribute is true and weekends are skipped on date axes. (A date axis is an Axis1D whose AxisLabel has a TextFormat value that extends java.text.DateFormat.)

If this attribute is set to true, the attribute “AutoscaleMinimumTimeInterval” should also be set to value of a day or longer.

Parameter
- **skipWeekends** – the boolean value.

setTextAngle
public void setTextAngle(int value)
Description
Sets the value of the “TextAngle” attribute. This indicates the angle, in degrees, at which text is to be
drawn. Only multiples of 90 are allowed at this time.

Parameter
value – an int “TextAngle” value

setTextColor
public void setTextColor(Color color)

Description
Sets the value of the “TextColor” attribute.

Parameter
color – a Color which contains the “TextColor” value

setTextColor
public void setTextColor(String color)

Description
Sets the value of the “TextColor” attribute to a color specified by name.

Parameter
color – String name of a color.

setTitle
public void setTitle(Text value)

Description
Sets the value of the “Title” attribute.

Parameter
value – a Text which contains the “Title” value

setTitle
public void setTitle(String value)

Description
Sets the value of the “Title” attribute.

Parameter
value – a String which contains the “Title” value

setToolTip
public void setToolTip(String value)

Description
Sets the value of the “ToolTip” attribute.
Parameter

value – a String which contains the “ToolTip” value

setViewport

public void setViewport(double[] value)

Description

Sets the value of the “Viewport” attribute. The viewport is the subregion of the drawing surface where the plot is to be drawn. “Viewport” coordinates are [0,1] by [0,1] with (0,0) in the upper left corner. This attribute affects only Axis nodes, since they contain the mappings to device space.

Parameter

value – A double array of length 4 which contains the “Viewport” values for xmin, xmax, ymin, ymax. The value saved is a copy of the input array.

setViewport

public void setViewport(double xmin, double xmax, double ymin, double ymax)

Description

Sets the value of the “Viewport” attribute.

Parameters

- xmin – a double, the left side of the viewport
- xmax – a double, the right side of the viewport
- ymin – a double, the bottom side of the viewport
- ymax – a double, the top side of the viewport

Background class

```java
class Background extends AxisXY
```

The background of a chart.

Grid is created by `com.imsl.chart.Chart` (p. 1562) as its child. It can be retrieved using the method `com.imsl.chart.ChartNode.getBackground` (p. 1592).

Fill attributes in this node control the drawing of the background.

Method

```java
public void paint(Draw draw)
```

1608 • Background
Description
Paint this node. This is not normally called by a user program.

Parameter

draw – the Draw object to be painted

ChartTitle class

public class com.imsl.chart.ChartTitle extends com.imsl.chart.AxisXY
The main title of a chart.
ChartTitle is created by com.imsl.chart.Chart (p. 1562) as its child. It can be retrieved using the method com.imsl.chart.ChartNode.getChartTitle (p. 1593).
The chart title is the value of the “Title” attribute at this node. Text attributes in this node control the drawing of the title.

Method

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

Legend class

public class com.imsl.chart.Legend extends com.imsl.chart.AxisXY
The chart legend.
Legend is created by com.imsl.chart.Chart (p. 1562) as its child. It can be retrieved using the method com.imsl.chart.ChartNode.getLegend (p. 1596).
By default the legend is not drawn. To have it drawn, set its “Paint” attribute to true.
com.imsl.chart.Data (p. 1634) objects that have their “Title” attribute defined are automatically entered into the legend. The “Viewport” attribute for this node is set to [0.83,0.98] by [0.1,0.6].

The drawing of the background of the legend box is controlled by the fill attributes in this node. Text attributes control the drawing of the text strings in the box.

Constructor

Legend

```java
protected Legend(Chart chart)
```

Method

```java
public void paint(Draw draw)
```

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

- `draw` – the Draw object to be painted

Annotation class

```java
public class com.imsl.chart.Annotation extends com.imsl.chart.Data
```

Draws an annotation. Locations are defined in chart (user) coordinates. To convert between device and user coordinates see `com.imsl.chart.Axis.mapDeviceToUser` (p. 1614) and `com.imsl.chart.Axis.mapUserToDevice` (p. 1614).

Constructors

```java
public Annotation(ChartNode parent, Text text, double x, double y)
```
Description
Creates a Text object at the specific x,y location in chart coordinates.

Parameters
- parent – the ChartNode parent of this data node, usually an Axis object
- text – the Text object to draw
- x – the x location in user coordinates
- y – the y location in user coordinates

Annotation
public Annotation(ChartNode parent, Image img, double x, double y)

Description
Renders an Image object centered at an x,y location in chart coordinates.

Parameters
- parent – the ChartNode parent of this data node, usually an Axis object
- img – the Image object to draw
- x – the x location in user coordinates
- y – the y location in user coordinates

Annotation
public Annotation(ChartNode parent, String string, double x, double y)

Description
Draws a String at the specific x,y location in chart coordinates.

Parameters
- parent – the ChartNode parent of this data node, usually an Axis object
- string – the String to draw
- x – the x location in user coordinates
- y – the y location in user coordinates

Methods

getText
public Text getText()

Description
Gets the Text for this Annotation object.

paint
public void paint(Draw draw)
Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – the Draw object to be painted

setLocation
public void setLocation(double x, double y)

Description
Update the location of this Annotation instance.

Parameters
x – a double specifying the new x location in chart coordinates.
y – a double specifying the new y location in chart coordinates.

setString
public void setString(String string)

Description
Sets the String for the Text object to render.

Parameter
string – the new String value

setText
public void setText(Text text)

Description
Sets the Text object to render.

Parameter
text – the new Text object

Grid class

public class com.imsl.chart.Grid extends com.imsl.chart.ChartNode

Draws the grid lines perpendicular to an axis.

Grid is created by com.imsl.chart.Axis1D (p. 1617) as its child. It can be retrieved using the method com.imsl.chart.Axis1D.getGrid (p. 1619).

Line attributes in this node control the drawing of the grid lines.
Methods

getType
public int getType()

Description
Returns the axis type.

Returns
an int, the axis type

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – the Draw object to be painted

Axis class

abstract public class com.imsl.chart.Axis extends com.imsl.chart.ChartNode

The Axis node provides the mapping for all of its children from the user coordinate space to the device (screen) space.

Constructor

Axis
public Axis(Chart chart)

Description
Contracts an Axis node. Its parent must be a Chart node. This node’s “Axis” attribute has itself as a value, so that descendents nodes can easily obtain their controlling axis node.

Parameter
chart – a Chart object, the parent of this node
Methods

mapDeviceToUser
abstract public void mapDeviceToUser(int devX, int devY, double[] userXY)

Description
Maps the device coordinates to user coordinates.

Parameters
- devX – an int which specifies the device x-coordinate
- devY – an int which specifies the device y-coordinate
- userXY – an double[2] array on input, on output, the user coordinates

mapUserToDevice
abstract public void mapUserToDevice(double userX, double userY, int[] devXY)

Description
Maps the user coordinates (userX, userY) to the device coordinates devXY.

Parameters
- userX – a double which specifies the user x-coordinate
- userY – a double which specifies the user y-coordinate
- devXY – an int[2] array on input, on output, the device coordinates

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
- draw – a Draw object which specifies the chart tree to be rendered on the screen

setupMapping
abstract public void setupMapping()

Description
Initializes the mappings between user and coordinate space. This must be called whenever the screen size, the window or the viewport may have changed. Generally, it is safest to call this each time the chart is repainted.
AxisXY class

public class com.imsl.chart.AxisXY extends com.imsl.chart.Axis

The axes for an x-y chart.

This node is used when the mapping to and from user and device space can be decomposed into an x and a y mapping. This is when the mapping map(userX,userY) = (deviceX,deviceY) can be written as map(userX,userY) = (mapX(userX),mapY(userY)) = (deviceX,deviceY)

Constructor

AxisXY
public AxisXY(Chart chart)

Description
Create an AxisXY. This also creates two Axis1D nodes as children of this node. They hold the decomposed mapping. The “Viewport” attribute for this node is set to [0.2,0.8] by [0.2,0.8].

Parameter
chart – the Chart parent of this node

Methods

getAxisX
public Axis1D getAxisX()

Description
Return the x-axis node.

Returns
the Axis1D x-axis node

getAxisY
public Axis1D getAxisY()

Description
Return the y-axis node.
Returns the Axis1D y-axis node

getCross

```java
public double[] getCross()
```

Description

Returns the value of the “Cross” attribute.

Returns

A `double[2]` array containing the value of the “Cross” attribute, if defined. The value is the point where the X and Y axes intersect, (xcross,ycross). If “Cross” is not defined then `null` is returned.

mapDeviceToUser

```java
public void mapDeviceToUser(int devX, int devY, double[] userXY)
```

Description

Map the device coordinates to user coordinates.

Parameters

- `devX` – an `int` which specifies the device x-coordinate
- `devY` – an `int` which specifies the device y-coordinate

mapUserToDevice

```java
public void mapUserToDevice(double userX, double userY, int[] devXY)
```

Description

Map the user coordinates (userX,userY) to the device coordinates devXY.

Parameters

- `userX` – a `double` which specifies the user x-coordinate
- `userY` – a `double` which specifies the user y-coordinate

paint

```java
public void paint(Draw draw)
```

Description

Paints this node and all of its children. This is normally called only by the `paint` method in this node’s parent.

Parameter

- `draw` – the `Draw` object to be painted

setCross

```java
public void setCross(double[] cross)
```
Description
Sets the value of the “Cross” attribute. This defines the point where the X and Y axes intersect. If “Cross” is not defined then the attribute “Window” is used to determine the crossing point.

Parameter
cross – is a double of length two containing the x and y-coordinate where the axes cross

setCross
class com.imsl.chart.AxisXY
public void setCross(double xcross, double ycross)

Description
Sets the value of the “Cross” attribute. This defines the point where the X and Y axes intersect. If “Cross” is not defined then the attribute “Window” is used to determine the crossing point.

Parameters
xcross – a double which specifies the x-coordinate where the axes cross
ycross – a double which specifies the y-coordinate where the axes cross

setWindow
class com.imsl.chart.AxisXY
public void setWindow(double[] value)

Description
Sets the window in user coordinates along an axis.

Parameter
value – a double array which contains the minimum and maximum of the window along an axis

setupMapping
public void setupMapping()

Description
Initializes the mappings between user and coordinate space. This must be called whenever the screen size, the window or the viewport may have changed. Generally, it is safest to call this each time the chart is repainted.

Axis1D class

public class com.imsl.chart.Axis1D extends com.imsl.chart.ChartNode

An x-axis or a y-axis.

Axis1D is created by com.imsl.chart.AxisXY (p. 1615) as its child. It can be retrieved using the method com.imsl.chart.AxisXY.getAxisX (p. 1615) or com.imsl.chart.AxisXY.getAxisY (p. 1615).

The number of tick marks ("Number" attribute) is set to 5, but autoscaling can change this value.

Methods

getAxisLabel

```java
public AxisLabel getAxisLabel()
```

Description
Returns the label node associated with this axis.

Returns
the `AxisLabel` node created as a child by this node

getAxisLine

```java
public AxisLine getAxisLine()
```

Description
Returns the axis line node associated with this axis.

Returns
the `AxisLine` node created as a child by this node

getAxisTitle

```java
public AxisTitle getAxisTitle()
```

Description
Returns the title node associated with this axis.

Returns
the `AxisTitle` node created as a child by this node

getAxisUnit

```java
public AxisUnit getAxisUnit()
```

Description
Returns the unit node associated with this axis.

Returns
the `AxisUnit` node created as a child by this node

getFirstTick

```java
public double getFirstTick()
```
Description
Convenience routine to get the “FirstTick” attribute.

Returns
the double value of the “FirstTick” attribute, if defined. Otherwise, window[0] is returned.

getGrid
public Grid getGrid()

Description
Returns the grid node associated with this axis.

Returns
the Grid node created as a child by this node

getMajorTick
public MajorTick getMajorTick()

Description
Returns the major tick node associated with this axis.

Returns
the MajorTick node created as a child by this node

getMinorTick
public MinorTick getMinorTick()

Description
Returns the minor tick node associated with this axis.

Returns
the MinorTick node created as a child by this node

getTickInterval
public double getTickInterval()

Description
Retrieves the tick interval.

Returns
a double which specifies the tick interval

getTicks
public double[] getTicks()

Description
Returns the value of the “Ticks” attribute, if set. If not set, then computed tick values are returned.
Returns
the double value of the “Ticks” attribute, if defined. Otherwise, the computed tick values are returned.

getType
public int getType()

Description
Returns the axis type.

Returns
an int which specifies the node type; can be AXIS_X, AXIS_Y, AXIS_X_TOP or AXIS_Y_RIGHT

getWindow
public double[] getWindow()

Description
Returns the window for an Axis1D.

Returns
a double array of length two containing the range of this axis.

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

setFirstTick
public void setFirstTick(double firstTick)

Description
Convenience routine to set the “FirstTick” attribute.

Parameter

firstTick – a double, the location of the first tick

setTickInterval
public void setTickInterval(double tickInterval)

Description
Sets the tick interval.
Parameter
tickInterval – a double which specifies a tick interval

setTicks
public void setTicks(double[] ticks)

Description
Sets the value of the “Ticks” attribute. The attribute Number is set to the length of the array.

Parameter
ticks – an array of doubles which contain the location, in user coordinates, of the major tick marks. If set, this attribute overrides the automatic computation of the tick values.

setType
public void setType(int type)

Description
Sets the type of this node.

Parameter
type – an int which specifies the node type; can be AXIS_X, AXIS_Y, AXIS_X_TOP or AXIS_Y_RIGHT

setWindow
public void setWindow(double[] window)

Description
Sets the window for an Axis1D.

Parameter
window – is an array of length two containing the range of this axis.

setWindow
public void setWindow(double min, double max)

Description
Sets the window for an Axis1D.

Parameters
min – a double which specifies the value of the left/bottom end of the axis
max – a double which specifies the value of the right/top end of the axis
AxisLabel class

public class com.imsl.chart.AxisLabel extends com.imsl.chart.ChartNode

The labels on an axis.

AxisLabel is created by com.imsl.chart.Axis1D (p. 1617) as its child. It can be retrieved using the method com.imsl.chart.Axis1D.getAxisLabel (p. 1618).

Axis labels are placed at the tick mark locations. The number of tick marks is determined by the attribute “Number”. Tick marks are evenly spaced. If the attribute “Labels” is defined then it is used to label the tick marks.

If “Labels” is not defined, the ticks are labeled numerically. The endpoint label values are obtained from the attribute “Window”. The numbers are formatted using the attribute “TextFormat”.

Text attributes in this node control the drawing of the axis labels.

Methods

getLabels
public Text[] getLabels()

Description
Returns the “Labels” attribute.

Returns
a String array containing the axis labels, if set. Otherwise, null is returned.

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – the Draw object to be painted

setLabels
public void setLabels(String[] value)

Description
Sets the axis label values for this node to be used instead of the default numbers. The attribute “Number” is also set to value.length.
Parameter

value – a String array containing the labels for the major tick marks

AxisLine class

public class com.imsl.chart.AxisLine extends com.imsl.chart.ChartNode

The axis line.

AxisLine is created by com.imsl.chart.Axis1D (p. 1617) as its child. It can be retrieved using the method com.imsl.chart.Axis1D.getAxisLine (p. 1618).

Line attributes in this node control the drawing of the axis line.

Method

paint

public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

AxisTitle class

public class com.imsl.chart.AxisTitle extends com.imsl.chart.ChartNode

The title on an axis.

AxisTitle is created by com.imsl.chart.Axis1D (p. 1617) as its child. It can be retrieved using the method com.imsl.chart.Axis1D.getAxisTitle (p. 1618).

The axis title is the value of the “Title” attribute at this node. Text attributes in this node control the drawing of the axis title.
Method

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

AxisUnit class

public class com.imsl.chart.AxisUnit extends com.imsl.chart.ChartNode
The unit title on an axis.

AxisUnit is created by com.imsl.chart.Axis1D (p. 1617) as its child. It can be retrieved using the method com.imsl.chart.Axis1D.getAxisUnit (p. 1618).

The unit title is the value of the “Title” attribute at this node. Text attributes in this node control the drawing of the unit title.
MajorTick class

public class com.imsl.chart.MajorTick extends com.imsl.chart.ChartNode

The major tick marks.

MajorTick is created by com.imsl.chart.Axis1D (p. 1617) as its child. It can be retrieved using the method com.imsl.chart.Axis1D.getMajorTick (p. 1619).

Line attributes in this node control the drawing of the major tick marks.

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

MinorTick class

public class com.imsl.chart.MinorTick extends com.imsl.chart.ChartNode

The minor tick marks.

MinorTick is created by com.imsl.chart.Axis1D (p. 1617) as its child. It can be retrieved using the method com.imsl.chart.Axis1D.getMinorTick (p. 1619).

Line attributes in this node control the drawing of the minor tick marks.

Method

paint
public void paint(Draw draw)
Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

Transform interface

```java
public interface com.imsl.chart.Transform
```

Defines a custom transformation along an axis. Axis1D has built in support for linear and logarithmic transformations. Additional transformations can be specified by setting the “CustomTransform” attribute in an Axis1D to an object that implements this interface. The interface consists of two methods that must be implemented. Each method is the inverse of the other.

Methods

mapUnitToUser

```java
public double mapUnitToUser(double unit)
```

Description

Maps points in the interval [0,1] to user coordinates.

mapUserToUnit

```java
public double mapUserToUnit(double user)
```

Description

Maps user coordinate to the interval [0,1]. The user coordinate interval is specified by the “Window” attribute for the axis with which the transform is associated.

setupMapping

```java
public void setupMapping(Axis1D axis1d)
```

Description

Initializes the mappings between user and coordinate space.
TransformDate class

public class com.imsl.chart.TransformDate implements com.imsl.chart.Transform
Defines a transformation along an axis that skips weekend dates.

Constructor

TransformDate
public TransformDate()

Methods

isWeekday
public boolean isWeekday(GregorianCalendar cal)

Description
Returns true if the specified date is a weekday.

mapUnitToUser
public double mapUnitToUser(double unit)

Description
Maps points in the interval [0,1] to user coordinates.

mapUserToUnit
public double mapUserToUnit(double user)

Description
Maps user coordinate to the interval [0,1]. The user coordinate interval is specified by the “Window” attribute for the axis with which the transform is associated.

setupMapping
public void setupMapping(Axis1D axis1d)

Description
Initializes the mappings between user and coordinate space.
AxisR class

public class com.imsl.chart.AxisR extends com.imsl.chart.ChartNode

The R-axis in a polar plot.

AxisR is created by com.imsl.chart.Polar (p. 1741) as its child. It can be retrieved using the method com.imsl.chart.Polar.getAxisR (p. 1742).

It in turn creates the following child nodes: com.imsl.chart.AxisRLine (p. 1631), com.imsl.chart.AxisRLabel (p. 1630) and com.imsl.chart.AxisRMajorTick (p. 1631).

The number of tick marks (“Number” attribute) is set to 4, but autoscaling can change this value.

Methods

getAxisRLabel

public AxisRLabel getAxisRLabel()

Description

Returns the AxisRLabel node.

getAxisRLine

public AxisRLine getAxisRLine()

Description

Returns the AxisRLine node.

getAxisRMajorTick

public AxisRMajorTick getAxisRMajorTick()

Description

Returns the major tick node associated with this axis.

Returns

the MajorTick node created as a child by this node

getTickInterval

public double getTickInterval()

Description

Retrieves the tick interval.
Returns
a double which indicates the tick interval

getTicks
public double[] getTicks()

Description
Returns the value of the “Ticks” attribute, if set. If not set, then it computes and returns tick values, based on the attributes “Number” and “TickInterval”.

Returns
the double values of the “Ticks” attribute, if defined. Otherwise, computed tick values are returned.

getWindow
public double getWindow()

Description
Returns the Window attribute.

Returns
a double which specifies the Window value

paint
public void paint(Draw draw)

Description
Paints this node and all of its children.

Parameter
 draw – the Draw object to be painted

setTickInterval
public void setTickInterval(double tickInterval)

Description
Sets the tick interval.

Parameter
 tickInterval – a double which specifies the tick interval

setWindow
public void setWindow(double rmax)

Description
Sets the Window attribute. The R-axis always starts at 0. The Window attribute is the maximum value of R.

Parameter
 rmax – a double specifying the radius at which the AxisTheta is drawn.
AxisRLabel class

public class com.imsl.chart.AxisRLabel extends com.imsl.chart.ChartNode

The labels on an axis.

AxisRLabel is created by com.imsl.chart.AxisR (p. 1628) as its child. It can be retrieved using the method com.imsl.chart.AxisR.getAxisRLabel (p. 1628).

Axis labels are placed at the tick mark locations. The number of tick marks is determined by the attribute “Number”. Tick marks are evenly spaced. If the attribute “Labels” is defined then it is used to label the tick marks.

If “Labels” is not defined, the ticks are labeled numerically. The endpoint label values are obtained from the attribute “Window”. The numbers are formatted using the attribute “TextFormat”.

Text attributes in this node control the drawing of the axis labels.

Methods

getLabels
public Text[] getLabels()

Description
Returns the “Labels” attribute.

Returns
a Text array containing the axis labels and formatting information, if set. Otherwise, null is returned.

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – the Draw object to be painted

setLabels
public void setLabels(String[] value)

Description
Sets the axis label values for this node to be used instead of the default numbers. The attribute “Number” is also set to value.length.

1630 • AxisRLabel
Parameter
value – a String array containing the labels to be used to label the major tick marks

AxisRLine class

```java
public class com.imsl.chart.AxisRLine extends com.imsl.chart.ChartNode
```
The radius axis line in a polar plot.

AxisRLine is created by `com.imsl.chart.AxisR` (p. 1628) as its child. It can be retrieved using the method `com.imsl.chart.AxisR.getAxisRLine` (p. 1628).

Line attributes in this node control the drawing of the axis line.

Method

```java
public void paint(Draw draw)
```

Description
Paints this node and all of its children. This is normally called only by the `paint` method in this node’s parent.

Parameter
draw – the `Draw` object to be painted

AxisRMajorTick class

```java
public class com.imsl.chart.AxisRMajorTick extends com.imsl.chart.ChartNode
```
The major tick marks for the radius axis in a polar plot.

AxisRMajorTick is created by `com.imsl.chart.AxisR` (p. 1628) as its child. It can be retrieved using the method `com.imsl.chart.AxisR.getAxisRMajorTick` (p. 1628).

Line attributes in this node control the drawing of the major tick marks.
Method

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – the Draw object to be painted

AxisTheta class

public class com.imsl.chart.AxisTheta extends com.imsl.chart.ChartNode

The angular axis in a polar plot.

AxisTheta is created by com.imsl.chart.Polar (p. 1741) as its child. It can be retrieved using the method com.imsl.chart.Polar.getAxisTheta (p. 1742).

The angles are labeled using the TextFormat attribute, which is set to ‘‘0.##\u00b0’’, where \u00b0 is the Unicode character for degrees. This labels the angles in degrees. More generally, TextFormat can be set to a NumberFormat object to format the angles in degrees.

TextFormat can also be set to a MessageFormat object. In this case, field {0} is the value in degrees, field {1} is the value in radians and field {2} is the value in radians/\pi. So, for labels like 1.5\u03c0, where \u03c0 is the Unicode character for \pi, set TextFormat to new MessageFormat(‘‘{2,number,0.##\u03c0}\’’).

The number of tick marks (“Number” attribute) is set to 9, but autoscaling can change this value.

Methods

getTicks
public double[] getTicks()

Description
Returns the value of the “Ticks” attribute, if set. If not set then computed tick values are returned. These are the positions at which the angles are labeled.
Returns
the double value of the “Ticks” attribute, if defined. Otherwise, computed tick values are returned. The
ticks are in radians, not degrees.

getWindow
public double[] getWindow()

Description
Returns the window for an AxisTheta.

Returns
a double array of length two containing the angular range of the window.

paint
public void paint(Draw draw)

Description
Paints this node and all of its children.

Parameter
draw – the Draw object to be painted

setWidth
public void setWindow(double[] window)

Description
Sets the window for an AxisTheta.

Parameter
window – a double array of length two containing the angular range.

setWidth
public void setWindow(double min, double max)

Description
Sets the window for an AxisTheta. The default Window is [0,2pi].

Parameters
min – a double which specifies the initial angular value, in radians.
max – a double which specifies the final angular value, in radians.

GridPolar class

Draws the grid lines for a polar plot.

PolarGrid is created by \texttt{com.imsl.chart.Polar (p. 1741)} as its child. It can be retrieved using the method \texttt{com.imsl.chart.Polar.getGridPolar (p. 1742)}.

Line attributes in this node control the drawing of the grid lines.

Method

\texttt{paint}

\texttt{public void paint(Draw draw)}

Description

Paints this node and all of its children.

Parameter

\texttt{draw} – the \texttt{Draw} object to be painted

Data class

\texttt{public class com.imsl.chart.Data extends com.imsl.chart.ChartNode}

Draws a data node.

Drawing of a Data node is determined by the setting of the “DataType” attribute. Multiple bits can be set in “DataType”. If the \texttt{com.imsl.chart.ChartNode.DATA_TYPE_LINE (p. 1587)} bit is set, the line attributes are active. If the \texttt{com.imsl.chart.ChartNode.DATA_TYPE_MARKER (p. 1587)} bit is set, the marker attributes are active. If the \texttt{com.imsl.chart.ChartNode.DATA_TYPE_FILL (p. 1587)} bit is set, the fill attributes are active.

If the attribute “LabelType” is set to other than the default, then the data points are labeled. The contents of the labels are determined by the value of the “LabelType” attribute. See Chart Programmer’s Guide: Labels for details. The drawing of the labels is controlled by the text attributes.

Constructors

\texttt{Data}

\texttt{public Data(ChartNode parent)}

Description

Creates a data node.
Parameter
- parent – the ChartNode parent of this data node

Data
public Data(ChartNode parent, double[] y)

Description
Creates a data node with y values. The attribute “X” is set to the double array containing {0,1,...,y.length-1}.

Parameters
- parent – the ChartNode parent of this data node
- y – a double array containing the “Y” attribute in this node

Data
public Data(ChartNode parent, double[] x, double[] y)

Description
Creates a data node with x and y values.

Parameters
- parent – the ChartNode parent of this data node
- x – a double array which contains the value for the attribute “X” in this node
- y – a double array which contains the value for the attribute “Y” in this node

Data
public Data(ChartNode parent, ChartFunction cf, double a, double b)

Description
Creates a data node with y values. The attribute “X” is set to the double array containing {0,1,...,y.length-1}.

Parameters
- parent – the ChartNode parent of this data node
- cf – a ChartFunction object that defines the function to be plotted
- a – a double, the left endpoint
- b – a double, the right endpoint

Methods

dataRange
public void dataRange(double[] range)
Description
Update the data range, \(\text{range} = \{\text{xmin}, \text{xmax}, \text{ymin}, \text{ymax}\} \). The entries in range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

\[
\text{range} \quad - \quad \text{a double array which contains the updated range, } \{\text{xmin}, \text{xmax}, \text{ymin}, \text{ymax}\}
\]

formatLabel

protected Text formatLabel(double x, double y)

paint

public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

\[
\text{draw} \quad - \quad \text{the Draw object to be painted}
\]

Example: Scatter Chart

A scatter plot is constructed in this example. Three data sets are used and a legend is added to the chart. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import java.awt.Color;

public class ScatterEx1 extends javax.swing.JApplet {

    private JPanelChart panel;

    public void init() {
        Chart chart = new Chart(this);
        panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);

        int npoints = 20;
        double dx = .5 * Math.PI / (npoints - 1);
        double x[] = new double[npoints];
        double y1[] = new double[npoints];
        double y2[] = new double[npoints];
        double y3[] = new double[npoints];

        // Generate some data
    }
}
```
for (int i = 0; i < npoints; i++) {
 x[i] = i * dx;
 y1[i] = Math.sin(x[i]);
 y2[i] = Math.cos(x[i]);
 y3[i] = Math.atan(x[i]);
}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

 // Set Data Type to Marker
 d1.setDataType(Data.DATA_TYPE_MARKER);
 d2.setDataType(Data.DATA_TYPE_MARKER);
 d3.setDataType(Data.DATA_TYPE_MARKER);

 // Set Marker Types
 d1.setMarkerType(Data.MARKER_TYPE_CIRCLE_PLUS);
 d2.setMarkerType(Data.MARKER_TYPE_HOLLOW_SQUARE);
 d3.setMarkerType(Data.MARKER_TYPE_ASTERISK);

 // Set Marker Colors
 d1.setMarkerColor(Color.red);
 d2.setMarkerColor(Color.black);
 d3.setMarkerColor(Color.blue);

 // Set Data Labels
 d1.setTitle("Sine");
 d2.setTitle("Cosine");
 d3.setTitle("ArcTangent");

 // Add a Legend
 Legend legend = chart.getLegend();
 legend.setTitle(new Text("Legend");
 legend.setPaint(true);

 // Set the Chart Title
 chart.getChartTitle().setTitle("Scatter Plot");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 ScatterEx1.setup(frame.getChart());
 frame.setVisible(true);
}
Example: Line Chart

A simple line chart is constructed in this example. Three data sets are used and a legend is added to the chart. An annotation is included indicating a feature on the chart. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import java.awt.Color;

public class LineEx1 extends javax.swing.JApplet {
    private JPanelChart panel;
```
public void init() {
 Chart chart = new Chart(this);
 panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);

 int npoints = 20;
 double dx = .5 * Math.PI / (npoints - 1);
 double x[] = new double[npoints];
 double y1[] = new double[npoints];
 double y2[] = new double[npoints];
 double y3[] = new double[npoints];

 // Generate some data
 for (int i = 0; i < npoints; i++) {
 x[i] = i * dx;
 y1[i] = Math.sin(x[i]);
 y2[i] = Math.cos(x[i]);
 y3[i] = Math.atan(x[i]);
 }
 Data d1 = new Data(axis, x, y1);
 Data d2 = new Data(axis, x, y2);
 Data d3 = new Data(axis, x, y3);

 // Set Data Type to Line
 axis.setDataType(Axis.DATA_TYPE_LINE);

 // Set Line Colors
 d1.setLineColor(Color.red);
 d2.setLineColor(Color.black);
 d3.setLineColor(Color.blue);

 // Set Data Labels
 d1.setTitle("Sine");
 d2.setTitle("Cosine");
 d3.setTitle("ArcTangent");

 // Add a Legend
 Legend legend = chart.getLegend();
 legend.setTitle(new Text("Legend"));
 legend.setPaint(true);

 // Add an Annotation
 Text label = new Text("Maximum Values");
 label.setAlignment(Axis.TEXT_X_RIGHT);
 Annotation ann = new Annotation(axis, label, 1.6, 1.02);
 ann.setTextColor(Color.darkGray);

 // Set the Chart Title
 chart.getChartTitle().setTitle("Line Plots");
}
public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 LineEx1.setup(frame.getChart());
 frame.setVisible(true);
}

Output

![Line Plots](image)

Legend
- Sine
- Cosine
- ArcTangent

Maximum Values
Example: Picture Chart

A picture plot is constructed in this example. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import javax.swing.ImageIcon;

public class PictureEx1 extends javax.swing.JApplet {
    private JPanelChart panel;

    public void init() {
        Chart chart = new Chart(this);
        panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);
        int npoints = 20;
        double dx = .5 * Math.PI / (npoints - 1);
        double x[] = new double[npoints];
        double y1[] = new double[npoints];
        double y2[] = new double[npoints];

        // Generate some data
        for (int i = 0; i < npoints; i++) {
            x[i] = i * dx;
            y1[i] = Math.sin(x[i]);
            y2[i] = Math.cos(x[i]);
        }
        Data d1 = new Data(axis, x, y1);
        Data d2 = new Data(axis, x, y2);

        // Load Images
        d1.setDataType(Data.DATA_TYPE_PICTURE);
        d1.setImage(loadImage("marker.gif"));
        d2.setDataType(Data.DATA_TYPE_PICTURE);
        d2.setImage(loadImage("marker2.gif"));

        // Set the Chart Title
        chart.getChartTitle().setTitle("Picture Plot");
    }

    static private java.awt.Image loadImage(String name) {
        return new ImageIcon(PictureEx1.class.getResource(name)).getImage();
    }

    public static void main(String argv[]) {
        JFrameChart frame = new JFrameChart();
        PictureEx1.setup(frame.getChart());
        frame.setVisible(true);
    }
}
```

Chart 2D Data • 1641
Example: Area Chart

An area chart is constructed in this example. Three data sets are used and a legend is added to the chart. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import java.awt.Color;
```
public class AreaEx1 extends javax.swing.JApplet {

 private JPanelChart panel;

 public void init() {
 Chart chart = new Chart(this);
 panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
 }

 static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);

 int npoints = 20;
 double dx = .5 * Math.PI / (npoints - 1);
 double x[] = new double[npoints];
 double y1[] = new double[npoints];
 double y2[] = new double[npoints];
 double y3[] = new double[npoints];

 // Generate some data
 for (int i = 0; i < npoints; i++) {
 x[i] = i * dx;
 y1[i] = Math.sin(x[i]);
 y2[i] = Math.cos(x[i]);
 y3[i] = Math.atan(x[i]);
 }
 Data d1 = new Data(axis, x, y1);
 Data d2 = new Data(axis, x, y2);
 Data d3 = new Data(axis, x, y3);

 // Set Data Type to Fill Area
 axis.setDataType(d1.DATA_TYPE_FILL);

 // Set Line Colors
 d1.setLineColor(Color.red);
 d2.setLineColor(Color.black);
 d3.setLineColor(Color.blue);

 // Set Fill Colors
 d1.setFillColor(Color.red);
 d2.setFillColor(Color.black);
 d3.setFillColor(Color.blue);

 // Set Data Labels
 d1.setTitle("Sine");
 d2.setTitle("Cosine");
 d3.setTitle("ArcTangent");

 // Add a Legend
 Legend legend = chart.getLegend();
 legend.setTitle(new Text("Legend"));
 legend.setPaint(true);

 // Set the Chart Title
 }
}
chart.getChartTitle().setTitle("Area Plots");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 AreaEx1.setup(frame.getChart());
 frame.setVisible(true);
}

Output
ChartFunction interface

public interface com.imsl.chart.ChartFunction
An interface that allows a function to be plotted.

Method

f
public double f(double x)

Description
Function to be charted.

ChartSpline class

public class com.imsl.chart.ChartSpline implements com.imsl.chart.ChartFunction
Wrap a spline into a ChartFunction to be plotted.

Constructors

ChartSpline
public ChartSpline(Spline spline)

Description
Creates a ChartSpline from a Spline.

Parameter
spline – The Spline to be plotted.

ChartSpline
public ChartSpline(Spline spline, int ideriv)

Description
Creates a ChartSpline from the derivative of a Spline.
Parameters

- spline – The Spline to be plotted.
- ideriv – The derivative to be plotted. If zero, the function value is plotted. If one, the first derivative is plotted, etc.

Method

f
public double f(double x)

Description
Function to be charted.

Text class

public class com.imsl.chart.Text implements Serializable

The value of the attribute “Title”. A Title is a multi-line string with alignment information.
Line breaks are indicated by the newline character (“n”) within the string.
Titles are drawn relative to a reference point. Alignment determines the position of the reference point on the horizontally-aligned box that bounds the text.

Constructors

Text
public Text(String string)

Description
Construct a Text object.

Parameter
- string – a String

Text
public Text(String string, int alignment)

Description
Construct a Text object with specified alignment.
Parameters

- **string** – a String
 - **alignment** – an int which specifies the alignment. The alignment determines the position of the reference point on the horizontally aligned box containing the drawn text. It is the bitwise combination of one of `TEXT_X_LEFT`, `TEXT_X_CENTER`, `TEXT_X_RIGHT` and one of `TEXT_Y_BOTTOM`, `TEXT_Y_CENTER`, `TEXT_Y_TOP`.

Text

```java
public Text(Format format, double value)
```

Description

Creates a text object by applying a java.text.Format to a double.

Parameters

- **format** – a java.text.Format
 - **value** – the double to which the java.text.Format is to be applied.

Methods

- **getAlignment**

  ```java
  public int getAlignment()
  ```

 Description

 Gets the alignment for this Text object.

 Returns

 the int which specifies the alignment for this Text object.

- **getOffset**

  ```java
  public double getOffset()
  ```

 Description

 Returns the offset.

- **getString**

  ```java
  public String getString()
  ```

 Description

 Gets the string for this Text object.

 Returns

 the String

- **setAlignment**

  ```java
  public void setAlignment(int alignment)
  ```

Chart 2D
Description
Sets the alignment for this Text object.

Parameter
- **alignment** – the int which specifies the alignment.

setDefaultAlignment
public void setDefaultAlignment(int alignment)

Description
Sets the alignment to use, if it has not been set using setAlignment(int).

Parameter
- **alignment** – the int which specifies the default alignment.

setDefaultOffset
public void setDefaultOffset(double offset)

Description
Sets the default value of the offset. Offset is in units of the default marker size. Text drawn is offset in the direction of the alignment.

setOffset
public void setOffset(double offset)

Description
Sets the offset. Offset is in units of the default marker size. Text drawn is offset in the direction of the alignment.

setString
public void setString(String string)

Description
Sets the string for this Text object.

Parameter
- **string** – the String

ToolTip class

A ToolTip for a chart element.
This class requires that the chart’s component be a subclass of javax.swing.JComponent. The JComponent class can be subclassed to provide different behaviors for displaying ToolTips.

To use, create an instance of ToolTip to activate the ToolTips in a node and in the node’s descendants. The ToolTip string is the value of a node’s “ToolTip” attribute or, if it is null, the node’s “Title” attribute.

Constructor

ToolTip

public ToolTip(ChartNode parent)

Description

Creates a ToolTip node that enables ToolTips on charts.

Parameter

parent – The ChartNode parent of this node. Do not use the root chart node for this argument, because it will normally select only the background node.

Methods

mouseDragged

public void mouseDragged(MouseEvent e)

Description

Part of the MouseMotionListener interface.

mouseMoved

public void mouseMoved(MouseEvent event)

Description

Part of the MouseMotionListener interface.

paint

public void paint(Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – the Draw object to be painted

pickPerformed

public void pickPerformed(PickEvent event)
Description
Part of the PickListener interface.

FillPaint class

public class com.imsl.chart.FillPaint

A collection of methods to create Paint objects for fill areas. All of the Paint objects returned by the methods in this class are Serializable, unlike most Paint objects.

Methods

checkerboard
static public Paint checkerboard(int n, Color colorA, Color colorB)

Description
Returns a checkerboard pattern.

Parameters

n – is the size of the pattern in pixels.
 colorA – is one of the colors.
 colorB – is the other color.

Returns

a Paint containing the checkerboard pattern.

crosshatch
static public Paint crosshatch(int n, int p, Color colorBackground, Color colorLine)

Description
Returns a horizontal and vertical crosshatch pattern.

Parameters

n – is the size of the pattern in pixels.
 p – is the number of pixels between the vertical lines.
 colorBackground – is the background color.
 colorLine – is the line color.
Returns a Paint containing the pattern.

diagonal
static public Paint diagonal(int n, Color colorA, Color colorB)

Description
Returns a diagonal pattern.

Parameters
- n – is the size of the pattern in pixels.
- colorA – is one of the colors.
- colorB – is the other color.

Returns
a Paint containing the checkerboard pattern.

diamond
static public Paint diamond(int n, int p, Color colorBackground, Color colorLine)

Description
Returns a diamond pattern (a checkerboard rotated 45 degrees).

Parameters
- n – is the size of the pattern in pixels.
- p – is the thickness of the line.
- colorBackground – is the color of the background.
- colorLine – is the color of the line.

Returns
a Paint containing the diamond pattern.

diamondHatch
static public Paint diamondHatch(int n, int p, Color colorBackground, Color colorLine)

Description
Returns a crosshatch on a 45 degree angle.

Parameters
- n – is the size of the pattern in pixels.
- p – is the number of pixels between the vertical lines.
- colorBackground – is the background color.
- colorLine – is the line color.
Returns a Paint containing the pattern.

dot
static public Paint dot(int n, int r, Color colorBackground, Color colorCircle)

Description
Returns a pattern that is an array of circles.

Parameters
- n – is the size of the pattern in pixels.
- r – is the radius, in pixels, of the circles in the pattern.
- colorBackground – is the background color.
- colorCircle – is the color of the circles.

Returns a Paint containing the pattern.

horizontalStripe
static public Paint horizontalStripe(int n, int p, Color colorBackground, Color colorLine)

Description
Returns a horizontally striped pattern.

Parameters
- n – is the size of the pattern in pixels.
- p – is the number of pixels between the vertical lines.
- colorBackground – is the background color.
- colorLine – is the line color.

Returns a Paint containing the pattern.

image
static public Paint image(ImageIcon imageIcon)

Description
Returns a tiling of an image.

Parameter
- imageIcon – is the image to be tiled.
Returns
a Paint containing the tiling of the image.

verticalStripe
static public Paint verticalStripe(int n, int p, Color colorBackground, Color colorLine)

Description
Returns a vertically striped pattern.

Parameters
- \(n \) – is the size of the pattern in pixels.
- \(p \) – is the number of pixels between the vertical lines.
- colorBackground – is the background color.
- colorLine – is the line color.

Returns
a Paint containing the pattern.

Draw class

public class com.imsl.chart.Draw

Chart tree renderer.
Renders the chart tree to the screen.

Fields

ERROR_BAR
static final protected int ERROR_BAR

FILL
static final protected int FILL

IMAGE
static final protected int IMAGE
LAST
static final protected int LAST
Flag for the last data marker.

LINE
static final protected int LINE

MARKER
static final protected int MARKER

MARKER_SCALE
static final protected float MARKER_SCALE
Normal marker size in pixels is screen width times MARKER_SCALE.

NONE
static final protected int NONE

RADIANS
static final protected double RADIANS

TEXT
static final protected int TEXT

currentType
protected int currentType

fillColor
protected Color fillColor

fillOutlineColor
protected Color fillOutlineColor

fillOutlineType
protected int fillOutlineType

fillPaint
protected Paint fillPaint

fillType
protected int fillType

graphics
protected Graphics2D graphics
haveErrorBarProperties
protected boolean haveErrorBarProperties

haveFillProperties
protected boolean haveFillProperties

haveImageProperties
protected boolean haveImageProperties

haveLineProperties
protected boolean haveLineProperties

haveMarkerProperties
protected boolean haveMarkerProperties

haveTextProperties
protected boolean haveTextProperties

imageObserver
protected Component imageObserver

LineColor
protected Color lineColor

lineDashPattern
protected float[] lineDashPattern

lineWidth
protected float lineWidth

markerColor
protected Color markerColor

markerDashPattern
protected float[] markerDashPattern

markerSize
protected float markerSize

markerThickness
protected float markerThickness

markerType
protected int markerType
Markers defined on a [-1,1] x [-1,1] grid. Each row is a continuous polyline, \{x_1,y_1, x_2,y_2, x_3,y_3, etc.\}
If a row contains only a single number then that number is taken as the radius of a circle with center at (0,0).

Constructors

Draw

```java
public Draw(Graphics graphics, Dimension bounds)
```

Description

Contracts a Draw object.

Parameters

- `graphics` – is the graphics context in which to draw.
- `bounds` – is the size of the chart to be drawn.

Methods

check

```java
protected void check(int type)
```
drawArc

```java
public void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)
```

Description

Draws the outline of a circular or elliptical arc covering the specified rectangle. The center of the arc is center of this rectangle.

Parameters

- `x` – An `int` which specifies the x of the rectangle.
- `y` – An `int` which specifies the y of the rectangle origin.
- `width` – An `int` which specifies the width of the rectangle.
- `height` – An `int` which specifies the height of the rectangle.
- `startAngle` – An `int` which specifies the start angle in degrees. `startAngle = 0` is equivalent to the 3-o’clock position.
- `arcAngle` – An `int` which specifies the arcAngle. `drawArc` draws the arc from `startAngle` to `startAngle+arcAngle`. A positive `arcAngle` indicates a counter-clockwise rotation. A negative `arcAngle` implies a clockwise rotation.

drawClippedImage

```java
public void drawClippedImage(Image image, int x, int y)
```

Description

Draws an image such that any portion of the image beyond the axis range is clipped.

Parameters

- `image` – the `Image` object to be drawn
- `x` – an `int` which specifies the x-coordinate of the reference point
- `y` – an `int` which specifies the y-coordinate of the reference point

drawErrorBar

```java
public void drawErrorBar(int x0, int y0, int x1, int y1, int flag)
```

Description

Draw an error bar.

Parameters

- `x0` – an `int` which specifies the x-coordinate of the beginning reference point
- `y0` – an `int` which specifies the y-coordinate of the beginning reference point
- `x1` – an `int` which specifies the x-coordinate of the ending reference point
- `y1` – an `int` which specifies the y-coordinate of the ending reference point
- `flag` – indicates which caps to draw (0=none, 1=bottom, 2=top, 3=both).

drawImage

```java
public void drawImage(Image image, int x, int y)
```

Chart 2D

`• 1657`
Description
Draw an image.

Parameters
- `image` – the Image object to be drawn
- `x` – an int which specifies the x-coordinate of the reference point
- `y` – an int which specifies the y-coordinate of the reference point

drawLine
public void drawLine(int x0, int y0, int x1, int y1)

Description
Draw a line from (x0,y0) to (x1,y1).

Parameters
- `x0` – an int which specifies the x0 of the line origin, (x0,y0)
- `y0` – an int which specifies the y0 of the line origin, (x0,y0)
- `x1` – an int which specifies the x1 of the line destination, (x1,y1)
- `y1` – an int which specifies the y1 of the line destination, (x1,y1)

drawMarker
public void drawMarker(int x, int y)

Description
Draw a marker.

Parameters
- `x` – an int which specifies the x of the marker destination, (x,y)
- `y` – an int which specifies the y of the marker destination, (x,y)

drawRotatedText
protected void drawRotatedText(Text text, int x, int y, float angle)

Description
Draws a text object, at the specified angle, with its lower left point being at (x,y).

drawText
protected void drawText(Graphics g, Text text)

Description
Draws the text.

drawText
public Dimension drawText(Text text, int x, int y)
drawText
protected Dimension drawText(Text text, int x, int y, boolean dimensionOnly)

Description
Draws a text object. The angle of the string is given by textAngle. Consider the horizontally and vertically aligned bounding box around the string. The box below corresponds to textAngle == 45.

```
*--*--*
|   o |
|   l |
*   l *
|   e |
|H   |
*--*--*
```

The reference point corresponds to one of the 8 starred points on the bounding box, as indicated by the “alignment” attribute in the text object.

Parameters
- text – a Text object to be drawn.
- x – an int which specifies the x-coordinate of the reference point.
- y – an int which specifies the y-coordinate of the reference point.
- dimensionOnly – a boolean which is true if only the bounding box is to be computed and no text actually drawn.

Returns
the dimension of the bounding box.

endErrorBar
public void endErrorBar()

Description
Stop drawing an error bar.

endFill
public void endFill()
Description
Stop drawing a filled region.

endImage
public void endImage()

Description
Stop drawing an image.

endLine
public void endLine()

Description
Finish drawing lines.

endMarker
public void endMarker()

Description
Finish drawing markers.

endText
public void endText()

Description
Stop drawing text.

fillArc
public void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)

Description
Fills a circular or elliptical arc covering the specified rectangle. The center of the arc is center of this rectangle.

Parameters
x – An int which specifies the x of the rectangle.
y – An int which specifies the y of the rectangle origin.
width – An int which specifies the width of the rectangle.
height – An int which specifies the height of the rectangle.
startAngle – An int which specifies the start angle in degrees. startAngle = 0 is equivalent to the 3-o’clock position.
arcAngle – An int which specifies the arcAngle.

fillPolygon
public void fillPolygon(Polygon polygon)
Description
Fill a polygon defined by a `Polygon` object.

Parameter
- `polygon` – a `Polygon` object which specifies the polygon to be filled

fillPolygon
```java
public void fillPolygon(int[] xpoints, int[] ypoints, int npoints)
```

Description
Fill a polygon.

Parameters
- `xpoints` – an `int` array which contains the abscissae of the points which define the polygon
- `ypoints` – an `int` array which contains the ordinates of the points which define the polygon
- `npoints` – an `int` which specifies the number of points

fillRectangle
```java
public void fillRectangle(int x, int y, int width, int height)
```

Description
Fill a rectangle.

Parameters
- `x` – an `int` which specifies the abscissa of the origin of the rectangle
- `y` – an `int` which specifies the ordinate of the origin of the rectangle
- `width` – an `int` which specifies the width of the rectangle
- `height` – an `int` which specifies the height of the rectangle

getClipBounds
```java
public Rectangle getClipBounds()
```

Description
Get the clipping rectangle.

Returns
a `Rectangle` object which contains the clipping bounds

getDeviceMarkerSize
```java
public float getDeviceMarkerSize()
```

Description
Returns the marker size in device coordinates.

getScaleFont
```java
public double getScaleFont()
```
Description
Returns the factor by which fonts are to be scaled.

getSize
protected Dimension getSize(Text text)

Description
Returns the size of the bounding box for a text object. This does not take into account any rotation.

setClip
public void setClip(Rectangle clip)

Description
Set the clipping rectangle.

Parameter
clip – a Rectangle object which contains the clipping bounds

setNode
public void setNode(ChartNode node)

Description
Set the current ChartNode. This is used to get drawing attributes from the tree.

Parameter
node – a ChartNode object

setScaleFont
public void setScaleFont(double scaleFont)

Description
Set a factor by which fonts are to be scaled.

start
public void start(Chart chart)

Description
Called just before a chart is drawn.

startErrorBar
public void startErrorBar()

Description
Start drawing an error bar.

startFill
public void startFill()
Description
Start drawing a filled region.

startImage
public void startImage()

Description
Start drawing an image.

startLine
public void startLine()

Description
Start drawing lines.

startMarker
public void startMarker()

Description
Start drawing markers.

startText
public void startText()

Description
Start drawing text.

stop
public void stop()

Description
Called when a chart is finished being drawn.

translate
public void translate(int x, int y)

Description
Translates the origin to the point (x,y)

Parameters
x – an int which specifies the x of the new origin
y – an int which specifies the y of the new origin
JFrameChart class

```java
class com.imsl.chart.JFrameChart extends javax.swing.JFrame
```

`JFrameChart` is a `JFrame` that contains a chart. It is designed to allow simple charting applications to be quickly implemented. It contains a menu bar with “File”, “Edit”, and “Help” menu items.

Constructors

- **`JFrameChart`**
  ```java
  public JFrameChart()
  ```
 Description
 Creates new `JFrameChart` to display a chart.

- **`JFrameChart`**
  ```java
  public JFrameChart(Chart chart)
  ```
 Description
 Creates new `JFrameChart` to display a given chart.
 Parameter
  ```java
  chart – is the Chart to be displayed
  ```

Methods

- **getChart**
  ```java
  public Chart getChart()
  ```
 Description
 Return the Chart object.
 Returns
 the chart being displayed by this container

- **getPanel**
  ```java
  public JPanelChart getPanel()
  ```
Description
Returns the JPanelChart into which the chart is drawn.

setChart
public void setChart(Chart chart)

Description
Sets the chart to be handled.

Parameter
- chart – is the new chart

JPanelChart class

```java
public class com.imsl.chart.JPanelChart extends javax.swing.JPanel
```

A Swing JPanel that contains a chart. This class causes the contained chart to be redrawn as necessary.

Field

```java
chart
protected Chart chart
```

The embedded chart.

Constructors

JPanelChart
public JPanelChart()

Description
Creates new JPanelChart. This creates a new Chart object.

JPanelChart
public JPanelChart(Chart chart)

Description
Creates new JPanelChart using a given Chart object.
Parameter

chart – is the Chart to be displayed in this panel

Methods

getChart
public Chart getChart()

Description
Return the Chart object.

Returns

the chart being displayed by this container

paintComponent
public void paintComponent(Graphics g)

Description

Calls the UI delegate’s paint method, if the UI delegate is non-null. We pass the delegate a copy of the Graphics object to protect the rest of the paint code from irrevocable changes (for example, Graphics.translate). If you override this in a subclass you should not make permanent changes to the passed in Graphics. For example, you should not alter the clip Rectangle or modify the transform. If you need to do these operations you may find it easier to create a new Graphics from the passed in Graphics and manipulate it. Further, if you do not invoke super’s implementation you must honor the opaque property, that is if this component is opaque, you must completely fill in the background in a non-opaque color. If you do not honor the opaque property you will likely see visual artifacts.

Parameter

 g – the Graphics for painting the chart.

print
public void print()

Description

Print the chart, centered on a page.

setChart
public void setChart(Chart chart)

Description

Sets the Chart to be handled by this container.

Parameter

 chart – is the Chart to be displayed by this container
DrawPick class

public class com.imsl.chart.DrawPick extends com.imsl.chart.Draw

The DrawPick class.

Constructor

DrawPick
public DrawPick(MouseEvent event, Graphics graphics, Dimension bounds)

Description
Contracts a DrawPick object.

Parameters
- event – is a MouseEvent
- graphics – is the graphics context in which to draw.
- bounds – is the size of the chart to be drawn.

Methods

drawArc
public void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)

Description
Draw an arc.

Parameters
- x – An int which specifies the x of the rectangle origin, (x,y). The center of the arc is the center of this rectangle.
- y – An int which specifies the y of the rectangle origin, (x,y). The center of the arc is the center of this rectangle.
- width – An int which specifies the width of the rectangle.
- height – An int which specifies the height of the rectangle.
- startAngle – An int which specifies the start angle in degrees. startAngle = 0 is equivalent to the 3-o’clock position.
arcAngle – An int which specifies the arcAngle. drawArc draws the arc from startAngle to
startAngle+arcAngle. A positive arcAngle indicates a counter-clockwise rotation. A negative
arcAngle implies a clockwise rotation.

drawErrorBar
public void drawErrorBar(int x0, int y0, int x1, int y1, int flag)

Description
Draw ErrorBar

Parameters
x0 – an int which specifies the x-coordinate of the beginning reference point
y0 – an int which specifies the y-coordinate of the beginning reference point
x1 – an int which specifies the x-coordinate of the ending reference point
y1 – an int which specifies the y-coordinate of the ending reference point
flag – an int that indicates which caps to draw (0=none, 1=bottom, 2=top, 3=both).

drawImage
public void drawImage(Image image, int x, int y)

Description
Draw Image

Parameters
image – the Image object to be drawn
x – an int which specifies the x-coordinate of the reference point
y – an int which specifies the y-coordinate of the reference point

drawLine
public void drawLine(int x0, int y0, int x1, int y1)

Description
Draw a line from (x0,y0) to (x1,y1).

Parameters
x0 – an int which specifies the x0 of the line origin, (x0,y0)
y0 – an int which specifies the y0 of the line origin, (x0,y0)
x1 – an int which specifies the x1 of the line destination, (x1,y1)
y1 – an int which specifies the y1 of the line destination, (x1,y1)

drawMarker
public void drawMarker(int x, int y)

Description
Draw a marker.
Parameters
x – an int which specifies the x of the marker destination, (x,y)
y – an int which specifies the y of the marker destination, (x,y)

drawText
public Dimension drawText(Text text, int x, int y)

drawText

drawText

drawText

endErrorBar
public void endErrorBar()

Description
End ErrorBar

endFill
public void endFill()

Description
End fill

endImage
public void endImage()

Description
End Image

endLine
public void endLine()

Description
Finish drawing lines.

endMarker
public void endMarker()

Description
Finish drawing markers.

endText
public void endText()

Description
End Text

fillArc
public void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)

Chart 2D

DrawPick • 1669
Description

Fills a circular or elliptical arc covering the specified rectangle. The center of the arc is center of this rectangle.

Parameters

- **x** – An int which specifies the x of the rectangle.
- **y** – An int which specifies the y of the rectangle origin.
- **width** – An int which specifies the width of the rectangle.
- **height** – An int which specifies the height of the rectangle.
- **startAngle** – An int which specifies the start angle in degrees. $\text{startAngle} = 0$ is equivalent to the 3-o’clock position.
- **arcAngle** – An int which specifies the arcAngle. `drawArc` draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

fillPolygon

```java
public void fillPolygon(Polygon polygon)
```

Description

Fill a polygon defined by a Polygon object.

Parameter

- **polygon** – a Polygon object which specifies the polygon to be filled

fillPolygon

```java
public void fillPolygon(int[] xpoints, int[] ypoints, int npoints)
```

Description

Fill a polygon.

Parameters

- **xpoints** – an int array which contains the abscissae of the points which define the polygon
- **ypoints** – an int array which contains the ordinates of the points which define the polygon
- **npoints** – an int which specifies the number of points

fillRectangle

```java
public void fillRectangle(int x, int y, int width, int height)
```

Description

Fill a rectangle.
Parameters
x – an int which specifies the abscissa of the origin of the rectangle
y – an int which specifies the ordinate of the origin of the rectangle
width – an int which specifies the width of the rectangle
height – an int which specifies the height of the rectangle

fire
public void fire()

Description
Fires the pickListeners for all of the picked nodes.

getTolerance
public int getTolerance()

Description
Get the minimum distance that an event can be from a point or a line and still be considered a hit.

Returns
an int which specifies the minimum distance that an event can be from a point or a line and still be considered a hit

pickNode
protected void pickNode()

Description
Register the currentNode as the “picked” node if the “PickListener” attribute is defined for the current node.

setNode
public void setNode(ChartNode node)

Description
Set the current ChartNode. This is used to get drawing attributes from the tree.

Parameter
node – a ChartNode object

setTolerance
public void setTolerance(int tolerance)

Description
Set the minimum distance that an event can be from a point or a line and still be considered a hit.
Parameter
tolerance – an int which specifies the minimum distance that an event can be from a point or a line and still be considered a hit

startErrorBar
public void startErrorBar()

Description
Start ErrorBar

startFill
public void startFill()

Description
Fill

startImage
public void startImage()

Description
Start Image

startLine
public void startLine()

Description
Start drawing lines.

startMarker
public void startMarker()

Description
Start drawing markers.

startText
public void startText()

Description
Start drawing text

translate
public void translate(int x, int y)

Description
Translates the origin to the point (x,y)

Parameters
x – an int which specifies the x of the new origin
y – an int which specifies the y of the new origin
PickEvent class

public class com.imsl.chart.PickEvent extends java.awt.event.MouseEvent

An event that indicates that a chart element has been selected.

Constructors

PickEvent

```java
public PickEvent(MouseEvent event)
```

Description

Construct a PickEvent object.

Parameter

- `event` – a MouseEvent

PickEvent

```java
public PickEvent(Component source, int id, long when, int modifiers, int x, int y, int clickCount, boolean popupTrigger)
```

Description

Construct a PickEvent object at point (x,y).

Parameters

- `source` – the Component that originated the event
- `id` – an int that identifies the event
- `when` – a long that gives the time the event occurred
- `modifiers` – an int that gives the modifier keys down during event (e.g. shift, ctrl, alt, meta)
- `x` – an int, the x coordinate of the point (x,y)
- `y` – an int, the y coordinate of the point (x,y)
- `clickCount` – an int which specifies the number of mouse button clicks necessary to trigger the event
- `popupTrigger` – is a boolean, true if this event is a trigger for a popup menu

Methods

getNode

```java
public ChartNode getNode()
```
Description
Gets this `ChartNode`.

pointToLine

```java
static public double pointToLine(int Px, int Py, int[] devA, int[] devB)
```

Description
Compute the distance from the point (Px,Py) to the line segment AB. If the closest point from P to the line AB is not between A and B then the distance to the closer of A and B is returned.

Parameters
- Px – an int, the x coordinate of the point (Px,Py)
- Py – an int, the y coordinate of the point (Px,Py)
- devA – an int array which contains the point which defines the head of the line segment.
- devB – an int array which contains the point which defines the tail of the line segment.

Returns
a double, the distance from the point (Px,Py) to the line segment AB.

setNode

```java
public void setNode(ChartNode node)
```

Description
Sets the `ChartNode`.

Parameter
- node – the `ChartNode` to be set

PickListener interface

```java
public interface com.imsl.chart.PickListener implements java.util.EventListener
```

The listener interface for receiving pick events.

Method

pickPerformed

```java
public void pickPerformed(PickEvent event)
```

Description
Public interface for `PickListener`.

1674 • PickListener
Parameter
event – a PickEvent

JspBean class

```java
public class com.imsl.chart.JspBean implements Serializable
```

JspBean is used to refer to charts in a Java Server Page that are later rendered using the ChartServlet.

Constructor

```java
public JspBean()
```

Description

Creates a JspBean object.

Methods

getChartServletName

```java
public String getChartServletName()
```

Description

Returns the URL of the servlet used to render the chart.

getCreateImageMap

```java
public boolean getCreateImageMap()
```

Description

Returns true if a client-side imagemap is to be created.

getId

```java
public String getId()
```

Description

Returns the identifier number for the chart. It is assigned a unique random value by the constructor.

getImageMap

```java
public String getImageMap()
```
Description
Returns an HTML for the client-side imagemap. This HTML is to be inserted into the page being generated.

Returns
the HTML map tag. If no map is defined the empty string is returned.

getImageTag
public String getImageTag()

Description
Returns an HTML image tag. This is normally inserted into the HTML being generated.

Returns
the HTML tag referring to the servlet-generated chart. If no image is defined the empty string is returned.

getMapName
public String getMapName()

Description
Returns the name of the client-size imagemap. This is null if CreateImageMap is false.

getSize
public Dimension getSize()

Description
Returns the size of the generated image.

registerChart
public void registerChart(Chart chart, HttpServletRequest request)

Description
Saves the chart and sets the chart attribute “Size”. The chart is saved using the saveChart method. If the ChartServletName has not been set, it is set to “ContextPath/servlet/com.imsl.chart.ChartServlet”, where ”ContextPath” is the context path in the request.

Parameters
chart – is the chart to be registered. The java.awt.Dimension -value attribute “Size” is set in the root node of the chart tree. The Size attribute is used by com.imsl.chart.ChartServlet (p. 1678).
request – from the Java Server Page.

saveChart
protected void saveChart(Chart chart, HttpServletRequest request)
Description
Saves the chart so that a servlet can later render it. The chart is saved in the HttpSession, associated with the request, under the key “chartNNN”, where NNN is the value of the id property. This method can be overridden to change the mechanism by which the bean and the servlet correspond.

Parameters
- chart – is the chart to be registered.
- request – from the Java Server Page. The chart is saved in its session object.

setChartServletName
public void setChartServletName(String chartServletName)

Description
Sets the URL of the servlet used to render the chart. Its initial value is null. It is usually set in the registerChart method. Since this is used only in the image tag, it can be specified relative to the URL of the page in which the image tag is used.

Parameter
- chartServletName – is the location of the chart servlet to be used in the generated image tag.

setCreateImageMap
public void setCreateImageMap(boolean createImageMap)

Description
Sets a flag indicating if a client-size imagemap is to be generated. Its initial value is false. A client-side image map has an entry for each node in which the chart attribute HREF is defined. The values of HREF attributes are URLs. Such regions are treated by the browser as hyperlinks.

Parameter
- createImageMap – is true if a client-side image map is to be generated.

setSize
public void setSize(Dimension size)

Description
Sets the size of the generated image. Its initial value is new Dimension(300,300).

Parameter
- size – is the size of the generated image.

setSize
public void setSize(int width, int height)

Description
Sets the size of the generated image. Its initial value is new Dimension(300,300).

Chart 2D

JspBean • 1677
Parameters

- width – is the width of the generated image.
- height – is the height of the generated image.

ChartServlet class

The base class for chart servlets.

This class requires a javax.servlet.Images are rendered using javax.imageio.ImageIO This class can be used on a headless server. Java runs in a headless mode if the system property java.awt.headless=true. This class turns off caching in the ImageIO class (calls javax.imageio.ImageIO.setUseCache(false)).

Constructor

ChartServlet

public ChartServlet()

Methods

doGet

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

Description

Returns the chart as a PNG image. The HTTP request parameter “id” selects the chart.

Parameters

- request – an HttpServletRequest object that contains the request the client has made of the servlet
- response – an HttpServletResponse object that contains the response the servlet sends to the client

getChart

protected Chart getChart(HttpServletRequest request)
Returns the chart found in the session saved with the key “chart”+id, where id is the value of the “id” parameter in the request. This method can be overridden to change how charts are communicated to this servlet.

Parameter

request – an HttpServletRequest object that contains the request the client has made of the servlet

Returns

the chart to be rendered or null if the chart cannot be found.

init

public void init() throws ServletException

DrawMap class

public class com.imsl.chart.DrawMap extends com.imsl.chart.Draw

Creates an HTML client-side imagemap from a chart tree. Entries in the imagemap correspond to nodes that define the HREF attribute.

Constructor

DrawMap

public DrawMap(Graphics graphics, Dimension bounds)

Description

Contracts a DrawMap object.

Parameters

- graphics – is the graphics context in which to draw.
- bounds – is the size of the chart to be drawn.

Methods

circle

protected void circle(int x, int y, int r)
Description
Sets a circle as the target.

Parameters
- **x** – is the x-coordinate of the center of the circle
- **y** – is the y-coordinate of the center of the circle
- **r** – is the radius of the circle

drawArc
```java
public void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)
```

Description
Draws the outline of a circular or elliptical arc covering the specified rectangle. The center of the arc is center of this rectangle.

Parameters
- **x** – An int which specifies the x of the rectangle.
- **y** – An int which specifies the y of the rectangle origin.
- **width** – An int which specifies the width of the rectangle.
- **height** – An int which specifies the height of the rectangle.
- **startAngle** – An int which specifies the start angle in degrees. startAngle = 0 is equivalent to the 3-o’clock position.
- **arcAngle** – An int which specifies the arcAngle. drawArc draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

drawErrorBar
```java
public void drawErrorBar(int x0, int y0, int x1, int y1, int flag)
```

Description
Draw an error bar.

Parameters
- **x0** – an int which specifies the x-coordinate of the beginning reference point.
- **y0** – an int which specifies the y-coordinate of the beginning reference point.
- **x1** – an int which specifies the x-coordinate of the ending reference point.
- **y1** – an int which specifies the y-coordinate of the ending reference point.
- **flag** – an int that indicates which caps to draw (0=none, 1=bottom, 2=top, 3=both).

drawImage
```java
public void drawImage(Image image, int x, int y)
```
Description

Draw Image

Parameters

- image – the Image object to be drawn
- x – an int which specifies the x-coordinate of the reference point
- y – an int which specifies the y-coordinate of the reference point

drawLine

public void drawLine(int x0, int y0, int x1, int y1)

Description

Draw a line from (x0,y0) to (x1,y1).

Parameters

- x0 – an int which specifies the x0 of the line origin, (x0,y0)
- y0 – an int which specifies the y0 of the line origin, (x0,y0)
- x1 – an int which specifies the x1 of the line destination, (x1,y1)
- y1 – an int which specifies the y1 of the line destination, (x1,y1)

drawMarker

public void drawMarker(int x, int y)

Description

Draw a marker.

Parameters

- x – an int which specifies the x of the marker destination, (x,y)
- y – an int which specifies the y of the marker destination, (x,y)

drawText

protected Dimension drawText(Text text, int x, int y, boolean dimensionOnly)

endErrorBar

public void endErrorBar()

endFill

public void endFill()

endImage

public void endImage()

endLine

public void endLine()
fillArc

```java
public void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)
```

Description
Fills a circular or elliptical arc covering the specified rectangle. The center of the arc is center of this rectangle.

Parameters
- `x` – An `int` which specifies the x of the rectangle.
- `y` – An `int` which specifies the y of the rectangle origin.
- `width` – An `int` which specifies the width of the rectangle.
- `height` – An `int` which specifies the height of the rectangle.
- `startAngle` – An `int` which specifies the start angle in degrees. `startAngle = 0` is equivalent to the 3-o’clock position.
- `arcAngle` – An `int` which specifies the `arcAngle`. `drawArc` draws the arc from `startAngle` to `startAngle+arcAngle`. A positive `arcAngle` indicates a counter-clockwise rotation. A negative `arcAngle` implies a clockwise rotation.

fillPolygon

```java
public void fillPolygon(Polygon polygon)
```

Description
Fill a polygon defined by a `Polygon` object.

Parameter
- `polygon` – a `Polygon` object which specifies the polygon to be filled

fillPolygon

```java
public void fillPolygon(int[] xpoints, int[] ypoints, int npoints)
```

Description
Fill a polygon.

Parameters
- `xpoints` – an `int` array which contains the abscissae of the points which define the polygon
- `ypoints` – an `int` array which contains the ordinates of the points which define the polygon
- `npoints` – an `int` which specifies the number of points

fillRectangle

```java
public void fillRectangle(int x, int y, int width, int height)
```
Description
Fill a rectangle.

Parameters
- x – an int which specifies the abscissa of the origin of the rectangle
- y – an int which specifies the ordinate of the origin of the rectangle
- width – an int which specifies the width of the rectangle
- height – an int which specifies the height of the rectangle

getALT
protected String getALT()

Description
Returns the current ALT string.

getHREF
protected String getHREF()

Description
Returns the current HREF string.

getMap
public String getMap()

Description
Returns the body of the HTML imagemap.

Returns
the body of the HTML client-side imagemap. The actual <map> and </map> tags are not included, so that the client code can more easily add attributes to the <map> tag.

getTolerance
public int getTolerance()

Description
Get the minimum distance that an event can be from a point or a line and still be considered a hit.

Returns
an int which specifies the minimum distance that an event can be from a point or a line and still be considered a hit

poly
protected void poly(int[] x, int[] y)

Description
Sets a polygon as the target.
Parameters

- **x** – is an array containing the x-coordinates of the polygon.
- **y** – is an array containing the y-coordinates of the polygon.

rect

```java
protected void rect(int x, int y, int w, int h)
```

Description

Sets a rectangle as the target.

Parameters

- **x** – is the x-coordinate of the left edge of the rectangle
- **y** – is the y-coordinate of the top edge of the rectangle
- **w** – is the width of the rectangle
- **h** – is the height of the rectangle

setNode

```java
public void setNode(ChartNode node)
```

Description

Set the current ChartNode. This is used to get drawing attributes from the tree.

Parameter

- **node** – a ChartNode object

setTolerance

```java
public void setTolerance(int tolerance)
```

Description

Set the minimum distance that an event can be from a point or a line and still be considered a hit.

Parameter

- **tolerance** – an int which specifies the minimum distance that an event can be from a point or a line and still be considered a hit

startErrorBar

```java
public void startErrorBar()
```

startFill

```java
public void startFill()
```

startImage

```java
public void startImage()
```

startLine

```java
public void startLine()
```
Description
Start drawing lines.

startMarker
public void startMarker()

Description
Start drawing markers.

startText
public void startText()

translate
public void translate(int x, int y)

Description
Translates the origin to the point (x,y)

Parameters
- x – an int which specifies the x of the new origin
- y – an int which specifies the y of the new origin

BoxPlot class

```java
public class com.imsl.chart.BoxPlot extends com.imsl.chart.Data
```

Draws a multiple-group Box plot.

For each group of observations, the box limits represent the lower quartile (25th percentile) and upper quartile (75th percentile). The median is displayed as a line across the box. Whiskers are drawn from the upper quartile to the upper adjacent value, and from the lower quartile to the lower adjacent value.

Optional notches may be displayed to show a 95 percent confidence interval about the median, at

\[\pm 1.58 \times \text{IRQ} / \sqrt{n} \]

where \(\text{IRQ} \) is the interquartile range and \(n \) is the number of observations. Outside and far outside values may be displayed as symbols. Outside values are outside the inner fence. Far out values are outside the outer fence.

The BoxPlot has several child nodes. Any of these nodes can be disabled by setting their “Paint” attribute to false.

- The “Bodies” node has the main body of the box plot elements. Its fill attributes determine the drawing of (notched) rectangle. Its line attributes determine the drawing of the median line. The width of the box is controlled by the “MarkerSize” attribute.
- The “Whiskers” node draws the lines to the upper and lower quartile. Its drawing is affected by the marker attributes.
- The “FarMarkers” node hold the far markers. Its drawing is affected by the marker attributes.
- The “OutsideMarkers” node hold the outside markers. Its drawing is affected by the marker attributes.

Fields

BOXPLOT_TYPE_HORIZONTAL

```
static final public int BOXPLOT_TYPE_HORIZONTAL
```

Value for attribute “BoxPlotType” indicating that this is a horizontal box plot. Used in connection with BoxPlot nodes.

BOXPLOT_TYPE_VERTICAL

```
static final public int BOXPLOT_TYPE_VERTICAL
```

Value for attribute “BoxPlotType” indicating that this is a horizontal box plot. Used in connection with BoxPlot nodes.

Constructors

BoxPlot

```
public BoxPlot(AxisXY axis, double[][] obs)
```

Description

Constructs a box plot chart.

Parameters

- **axis** – an AxisXY object, the parent of this node
- **obs** – a double array which contains the observations. The length of each row in obs must be at least 4.

BoxPlot

```
public BoxPlot(AxisXY axis, double[] x, BoxPlot.Statistics[] statistics)
```

Description

Constructs a box plot chart node with specified x values.
Parameters
axis – an AxisXY object, the parent of this node
x – a double array which contains the x values
statistics – is an array of BoxPlot.Statistics objects. The number of
BoxPlot.Statistics must equal the length of x.

BoxPlot
public BoxPlot(AxisXY axis, double[] x, double[][] obs)

Description
Constructs a box plot chart node with specified x values.

Parameters
axis – an AxisXY object, the parent of this node
x – a double array which contains the x values
obs – a double array which contains the observations for each x. The number of rows in obs must
equal the length of x. The length of each row in obs must be at least 4.

Methods

dataRange
public void dataRange(double[] range)

Description
Update the data range, range = {xmin,xmax,ymin,ymax}. The entries in range are updated to reflect
the extent of the data in this node. The argument range is an input/output variable. Its value should be
updated only if the data in this node is outside the range already in the array.

Parameter
range – a double array which contains the updated range, {xmin,xmax,ymin,ymax}

getBodies
public ChartNode getBodies()

Description
Returns a node containing the body elements in the Box plot.

Returns
a ChartNode containing the bodies.

getBoxPlotType
public int getBoxPlotType()
Description
Returns the value of the “BoxPlotType” attribute.

Returns
an int which contains the “BoxPlotType”. Legal values are BOXPLOT_TYPE.VERTICAL or BOXPLOT_TYPE.HORIZONTAL.

getFarMarkers
public ChartNode getFarMarkers()

Description
Returns the FarMarkers node.

Returns
a ChartNode containing the far markers

getNotch
public boolean getNotch()

Description
Gets the “Notch” attribute value. return a boolean which specifies whether the notches are to be displayed; true if so false otherwise

getOutsideMarkers
public ChartNode getOutsideMarkers()

Description
Returns the OutsideMarkers node.

Returns
a ChartNode containing the outside markers

getStatistics
public BoxPlot.Statistics[] getStatistics()

Description
Returns an array of BoxPlot.Statistics objects, one for each set of observations.

Returns
an array of BoxPlot.Statistics objects

getStatistics
public BoxPlot.Statistics getStatistics(int iSet)

Description
Returns a BoxPlot.Statistics for a set of observations.

Parameter
 iSet – an int which specifies the index of a set whose statistics are to be returned
Returns

a BoxPlot.Statistics object related to the iSet set of observations

getWhiskers

public ChartNode getWhiskers()

Description

Returns the Whiskers node. return a ChartNode containing the whiskers

isProportionalWidth

public boolean isProportionalWidth()

Description

Returns the value of the attribute “ProportionalWidth”. The width of the narrowest box is determined by the “MarkerSize” attribute.

Returns

a boolean which specifies whether the box widths are proportional. If true the box widths are proportional to the square root of the number of observations. If false all of the boxes have the same width.

paint

public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

setBoxPlotType

public void setBoxPlotType(int value)

Description

Sets the “BoxPlotType” attribute value.

Parameter

value – an int which specifies the “BoxPlotType” attribute. Legal values are BOXPLOT_TYPE_VERTICAL or BOXPLOT_TYPE_HORIZONTAL.

setLabels

public void setLabels(String[] labels)

Description

Sets up an axis with labels. This turns off the tick marks and sets the “BoxPlotType” attribute. It also turns off autoscaling for the axis and sets its “Window” and “Number” and “Ticks” attribute as appropriate for a labeled Box plot. The existing value of the “BoxPlotType” attribute is used to determine the axis to be modified.
Parameter

labels – is an array of strings with which to label the axis. The number of labels must equal the number of items.

setLabels
public void setLabels(String[] labels, int type)

Description
Sets up an axis with labels. This turns off the tick marks and sets the “BoxPlotType” attribute. It also turns off autoscaling for the axis and sets its “Window” and “Number” and “Ticks” attribute as appropriate for a labeled Box plot.

Parameters

labels – an array of Strings with which to label the axis. The number of labels must equal the number of items.

type – an int which specifies the BoxPlotType. Legal values are BOXPLOT_TYPE_VERTICAL or BOXPLOT_TYPE_HORIZONTAL. This determines the axis to be modified.

setNotch
public void setNotch(boolean value)

Description
Sets the attribute “Notch”.

Parameter

value – a boolean which specifies whether notches are to be displayed; true if so false otherwise

setProportionalWidth
public void setProportionalWidth(boolean proportionalWidth)

Description
Sets the value of the attribute “ProportionalWidth”.

Parameter

proportionalWidth – a boolean which specifies whether the box widths are to be proportional. Is true if the box widths are to be proportional to the square root of the number of observations. If false all of the boxes have the same width. The default value is false.

Example: Box Plot Chart

A simple box plot chart is constructed in this example. Display of far and outside values is turned on.

```java
import com.imsl.chart.*;

public class BoxPlotEx1 extends javax.swing.JApplet {

    public void init() {
        Chart chart = new Chart(this);
        
```
JPanelChart panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);
}

static private void setup(Chart chart) {
 double obs[][] = {
 {66.0, 52.0, 49.0, 64.0, 68.0, 26.0, 86.0, 52.0,
 43.0, 75.0, 87.0, 188.0, 118.0, 103.0, 82.0,
 71.0, 103.0, 240.0, 31.0, 40.0, 47.0, 51.0, 31.0,
 47.0, 14.0, 71.0},
 {61.0, 47.0, 196.0, 131.0, 173.0, 37.0, 47.0,
 215.0, 230.0, 69.0, 98.0, 125.0, 94.0, 72.0,
 72.0, 125.0, 143.0, 192.0, 122.0, 32.0, 114.0,
 32.0, 23.0, 71.0, 38.0, 136.0, 169.0},
 {152.0, 201.0, 134.0, 206.0, 92.0, 101.0, 119.0,
 124.0, 133.0, 83.0, 60.0, 124.0, 142.0, 124.0, 64.0,
 75.0, 103.0, 46.0, 68.0, 87.0, 27.0,
 73.0, 59.0, 119.0, 64.0, 111.0},
 {80.0, 68.0, 24.0, 24.0, 82.0, 100.0, 55.0, 91.0,
 87.0, 64.0, 170.0, 86.0, 202.0, 71.0, 85.0, 122.0,
 155.0, 80.0, 71.0, 28.0, 212.0, 80.0, 24.0,
 80.0, 169.0, 174.0, 141.0, 202.0},
 {113.0, 38.0, 38.0, 28.0, 52.0, 14.0, 38.0, 94.0,
 89.0, 99.0, 150.0, 146.0, 113.0, 38.0, 66.0, 38.0,
 80.0, 80.0, 99.0, 71.0, 42.0, 52.0, 33.0, 38.0,
 24.0, 61.0, 108.0, 38.0, 28.0}};
 String xLabels[] = {"May", "June", "July", "August", "September"};

 // Create an instance of a BoxPlot Chart
 AxisXY axis = new AxisXY(chart);
 BoxPlot boxPlot = new BoxPlot(axis, obs);
 boxPlot.setLabels(xLabels);

 // Customize the fill color and the outside and far markers
 boxPlot.getBodies().setFillColor(java.awt.Color.blue);
 boxPlot.getOutsideMarkers().
 setMarkerType(boxPlot.MARKER_TYPE_HOLLOW_CIRCLE);
 boxPlot.getOutsideMarkers().setMarkerColor("purple");
 boxPlot.getFarMarkers().setMarkerType(boxPlot.MARKER_TYPE_ASTERISK);
 boxPlot.getFarMarkers().setMarkerColor(java.awt.Color.red);

 // Set titles
 chart.getChartTitle().setTitle("Ozone Levels in Stanford by Month");
 axis.getAxisX().getAxisTitle().setTitle("Month");
 axis.getAxisY().getAxisTitle().setTitle("Ozone Level");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 BoxPlotEx1.setup(frame.getChart());
 frame.setVisible(true);
}
BoxPlot.Statistics class

`static public class com.imsl.chart.BoxPlot.Statistics implements Serializable`
Computes the statistics for one set of observations in a Boxplot.
Constructor

BoxPlot.Statistics
public BoxPlot.Statistics(double[] obs)

Description
Creates a new instance of BoxPlot.Statistics.

Parameter
obs – a double array containing the set of observations. There must be at least 4 observations to compute the statistics.

Exception
IllegalArgumentException is thrown if there are fewer than 4 observations.

Methods

getFarMarkers
public double[] getFarMarkers()

Description
Returns the array of far markers.

Returns
a double array containing the far markers for this set

getLowerAdjacentValue
public double getLowerAdjacentValue()

Description
Returns the lower adjacent value.

Returns
a double which specifies the lower adjacent value

getLowerQuartile
public double getLowerQuartile()

Description
Returns the lower quartile value.

Returns
a double which specifies the lower quartile value (25th percentile)

getMaximumValue
public double getMaximumValue()
Description
Returns the maximum value of the observations.

Returns
a double which specifies the the maximum value of this set

getMedian
public double getMedian()

Description
Returns the median value.

Returns
a double which specifies the median value for the set of observations

getMedianLowerConfidenceInterval
public double getMedianLowerConfidenceInterval()

Description
Returns the lower confidence interval for the median.

Returns
a double which specifies the lower confidence interval for the median value of this set of observations

getMedianUpperConfidenceInterval
public double getMedianUpperConfidenceInterval()

Description
Returns the upper confidence interval for the median.

Returns
a double which specifies the upper confidence interval for the median value of this set of observations

getMinimumValue
public double getMinimumValue()

Description
Returns the minimum value of the observations.

Returns
a double which specifies the the minimum value of this set

getNumberObservations
public int getNumberObservations()

Description
Returns the number of observations.
Returns
an int which specifies the number of observations in this set

getOutsideMarkers
public double[] getOutsideMarkers()

Description
Returns the array of outside markers.

Returns
a double array containing the outside markers for this set

getUpperAdjacentValue
public double getUpperAdjacentValue()

Description
Returns the lower adjacent value.

Returns
a double which specifies the upper adjacent value

getUpperQuartile
public double getUpperQuartile()

Description
Returns the upper quartile value.

Returns
a double which specifies the upper quartile value (75th percentile)

Contour class

public class com.imsl.chart.Contour extends com.imsl.chart.Data

A Contour chart shows level curves of a two-dimensional function.

The function can be defined either as values on a rectangular grid or by scattered data points.

A set of ContourLevel objects are created as children of this node. The number of ContourLevels is one more than the number of level curves. If the level curve values are c_0, \ldots, c_{n-1} then the k-th ContourLevel child corresponds to $c_{k-1} < z \leq c_k$.

To change the look of the contour chart, change the line attributes and fill attributes in the ContourLevel nodes.

A Legend object is also created as a child of this node. It should be used instead of the usual chart legend. By default, this legend is not shown. To show it, set its paint method to true.
Constructors

Contour

```java
public Contour(AxisXY axis, double[] x, double[] y, double[] z)
```

Description

Create a Contour chart from scattered data with computed contour levels. The contour chart is created by using a RadialBasis approximation to estimate the functions value on a rectangular grid. The contour chart is then computed as for gridded data.

Parameters

- `axis` – an AxisXY object, the parent of this node.
- `x` – a double array which contains the x-values of the data points.
- `y` – a double array which contains the y-values of the data points.
- `z` – a double array which contains the z-values of the data points.

Contour

```java
public Contour(AxisXY axis, double[] xGrid, double[] yGrid, double[][] zData)
```

Description

Create a Contour chart from rectangularly gridded data with computed contour levels. The contour levels are chosen to span the data and to be “nice” values.

Parameters

- `axis` – an AxisXY object, the parent of this node.
- `xGrid` – a double array which contains the x-coordinate values of the grid.
- `yGrid` – a double array which contains the y-coordinate values of the grid.
- `zData` – a double rectangular matrix which contains the function values to be contoured. The value of the function at (xGrid[i],yGrid[j]) is given by zData[i][j]. The size of this matrix must be xGrid.length by yGrid.length.

Contour

```java
public Contour(AxisXY axis, double[] xGrid, double[] yGrid, double[][] zData, double[] cLevel)
```

Description

Create a Contour chart from rectangularly gridded data.

Parameters

- `axis` – an AxisXY object, the parent of this node.
- `xGrid` – a double array which contains the x-coordinate values of the grid.
- `yGrid` – a double array which contains the y-coordinate values of the grid.
- `zData` – a double rectangular matrix which contains the function values to be contoured. The value of the function at (xGrid[i],yGrid[j]) is given by zData[i][j]. The size of this matrix must be xGrid.length by yGrid.length.
Contour

```java
public Contour(AxisXY axis, double[] x, double[] y, double[] z, double[] cLevel, int nCenters)
```

Description
Create a Contour chart from scattered data. The contour chart is created by using a RadialBasis approximation to estimate the functions value on a rectangular grid. The contour chart is then computed as for gridded data.

Parameters
- `axis` – an `AxisXY` object, the parent of this node.
- `x` – a `double` array which contains the x-values of the data points.
- `y` – a `double` array which contains the y-values of the data points.
- `z` – a `double` array which contains the z-values of the data points.
- `cLevel` – a `double` array which contains the values of the contour levels.
- `nCenters` – is the number of centers to use for the radial basis approximation. The larger the number the closer, but noiser, the approximation.

Methods

dataRange

```java
public void dataRange(double[] range)
```

Description
Update the data range, `range = {xmin,xmax,ymin,ymax}`. The entries in range are updated to reflect the extent of the data in this node. The argument `range` is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter
- `range` – a `double` array which contains the updated range, `{xmin,xmax,ymin,ymax}`

getContourLegend

```java
public Contour.Legend getContourLegend()
```

Description
Returns the contour chart legend.

By default, the legend is not drawn because its “Paint” attribute is set to false. To show the legend set “Paint” to true, i.e., `contour.getContourLegend().setPaint(true);`
Returns
the Legend associated with the contour chart.

getContourLevel

public ContourLevel[] getContourLevel()

Description
Returns all of the contour levels.

Returns
an array containing the contour levels.

getContourLevel

public ContourLevel getContourLevel(int k)

Description
Returns a ContourLevel. The k-th contour level contains the level curve equal to cLevel[k] in the constructor. It also contains the fill areas for the values in the interval (cLevel[k-1], cLevel[k]). The first contour level (k=0) contains the fill area for values less than cLevel[0] and the level curves lines where the function value equals cLevel[0]. The last contour level (k=cLevel.length) contains the fill area for values greater than cLevel[cLevel.length-1], but no level curve lines.

paint

public void paint(Draw draw)

Example: Contour Chart from Gridded Data

In the restricted three-body problem, two large objects (masses M_1 and M_2) a distance a apart, undergoing mutual gravitational attraction, circle a common center-of-mass. A third small object (mass m) is assumed to move in the same plane as M_1 and M_2 and is assumed to be two small to affect the large bodies. For simplicity, we use a coordinate system that has the center of mass at the origin. M_1 and M_2 are on the x-axis at x_1 and x_2, respectively.

In the center-of-mass coordinate system, the effective potential energy of the system is given by

$$V = \frac{m(M_1 + M_2)G}{a} \left[\frac{x_2}{\sqrt{(x-x_1)^2 + y^2}} - \frac{x_1}{\sqrt{(x-x_2)^2 + y^2}} - \frac{1}{2} \frac{1}{x^2 + y^2} \right]$$

The universal gravitational constant is G. The following program plots the part of $V(x,y)$ inside of the square bracket. The factor $\frac{m(M_1 + M_2)G}{a}$ is ignored because it just scales the plot.

```java
import com.imsl.chart.*;

public class ContourEx1 extends javax.swing.JApplet {

    private JPanelChart panel;

    public void init() {

```
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);
}

static private void setup(Chart chart) {
 int nx = 80;
 int ny = 80;

 // Allocate space
 double xGrid[] = new double[nx];
 double yGrid[] = new double[ny];
 double zData[][] = new double[nx][ny];

 // Setup the grids points
 for (int i = 0; i < nx; i++) {
 xGrid[i] = -2 + 4.0 * i / (double) (nx - 1);
 }
 for (int j = 0; j < ny; j++) {
 yGrid[j] = -2 + 4.0 * j / (double) (ny - 1);
 }

 // Evaluate the function at the grid points
 for (int i = 0; i < nx; i++) {
 for (int j = 0; j < ny; j++) {
 double x = xGrid[i];
 double y = yGrid[j];
 double rm = 0.5;
 double x1 = rm / (1.0 + rm);
 double x2 = x - 1.0;
 double d1 = Math.sqrt((x - x1) * (x - x1) + y * y);
 double d2 = Math.sqrt((x - x2) * (x - x2) + y * y);
 zData[i][j] = x2 / d1 - x1 / d2 - 0.5 * (x * x + y * y);
 }
 }

 // Create the contour chart, with user-specified levels and a legend
 AxisXY axis = new AxisXY(chart);
 double cLevel[] = {-7, -5.4, -3, -2.3, -2.1, -1.97, -1.85, -1.74, -1.51, -1.39, -1};
 Contour c = new Contour(axis, xGrid, yGrid, zData, cLevel);
 c.getContourLegend().setPaint(true);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 ContourEx1.setup(frame.getChart());
 frame.setVisible(true);
}
Example: Contour Chart from Scattered Data

In this example, a contour chart is created from 150, randomly choosen, scattered data points. The function is $\sqrt{x^2 + y^2}$, so the level curve should be circles.

The input data is shown on top of the contours as small green circles. The chart data nodes are drawn in the order in which they are added, so the input data marker node has to be added to the axis after the contour, so that the markers are not hidden.

```java
import com.imsl.chart.*;
import java.util.Random;
```
public class ContourEx2 extends javax.swing.JApplet {

 private JPanelChart panel;

 public void init() {
 Chart chart = new Chart(this);
 panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
 }

 static private void setup(Chart chart) {
 int n = 150;

 // Allocate space
 double x[] = new double[n];
 double y[] = new double[n];
 double z[] = new double[n];

 // Evaluate the function at n random points
 Random random = new Random(123457);
 for (int k = 0; k < n; k++) {
 x[k] = random.nextDouble();
 y[k] = random.nextDouble();
 z[k] = Math.sqrt(x[k] * x[k] + y[k] * y[k]);
 }

 // Setup the contour plot and its legend
 AxisXY axis = new AxisXY(chart);
 Contour contour = new Contour(axis, x, y, z);
 contour.getContourLegend().setPaint(true);

 // Show the input data points as small green circles
 Data dataPoints = new Data(axis, x, y);
 dataPoints.setDataType(Data.DATA_TYPE_MARKER);
 dataPoints.setMarkerType(Data.MARKER_TYPE_FILLED_CIRCLE);
 dataPoints.setMarkerColor(java.awt.Color.green);
 dataPoints.setMarkerSize(0.5);
 }

 public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 ContourEx2.setup(frame.getChart());
 frame.setVisible(true);
 }
}
Contour.Legend class

A legend for a contour chart.

This legend should be used for contour charts, instead of usual chart legend. The “Viewport” attribute
for this node is set to [0.83,0.98] by [0.1,0.6].

Method

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – the Draw object to be painted

ErrorBar class

public class com.imsl.chart.ErrorBar extends com.imsl.chart.Data
Data points with error bars.

Fields

DATA_TYPE_ERROR_X
static final public int DATA_TYPE_ERROR_X
Value for attribute “DataType” indicating that this is a horizontal error bar. Used in connection with ErrorBar nodes.

DATA_TYPE_ERROR_Y
static final public int DATA_TYPE_ERROR_Y
Value for attribute “DataType” indicating that this is a vertical error bar. Used in connection with ErrorBar nodes.
Constructor

ErrorBar

```java
public ErrorBar(AxisXY axis, double[] x, double[] y, double[] low, double[] high)
```

Description

Creates a set of error bars centered at (x[k], y[k]) and with extents low[k], high[k]. If the attribute “DataType” has the bit DATA_TYPE_ERROR_X set then this is a horizontal error bar. If the bit DATA_TYPE_ERROR_Y is set then this is a vertical error bar. If neither bit is set then no error bar is drawn.

A Data node with the same x and y values can be used to put markers at the center of each error bar.

Parameters

- `axis` – an `Axis` object
- `x` – a `double` array which contains the x coordinates of the points at which the error bars will be centered. This is used to set the “X” attribute.
- `y` – a `double` array which contains the y coordinates of the points at which the error bars will be centered. This is used to set the “Y” attribute.
- `low` – a `double` array which contains the values which define the minimum extent of the error bars. This is used to set the “Low” attribute.
- `high` – a `double` array which contains the values which define the maximum extent of the error bars. This is used to set the “High” attribute.

Methods

dataRange

```java
public void dataRange(double[] range)
```

Description

Update the data range, `range = {xmin, xmax, ymin, ymax}`. The entries in range are updated to reflect the extent of the data in this node. The argument `range` is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

- `range` – a `double` array which contains the updated range, `{xmin, xmax, ymin, ymax}`

getHigh

```java
public double[] getHigh()
```

Description

Convenience routine to get the “High” attribute.
Returns
the double array which contains the value of the “High” attribute

getLow
public double[] getLow()

Description
Convenience routine to get the “Low” attribute.

Returns
the double array which contains the value of the “Low” attribute

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – the Draw object to be painted

setHigh
public void setHigh(double[] value)

Description
Convenience routine to set the “High” attribute.

Parameter
value – an double array which contains the “High” values.

setLow
public void setLow(double[] value)

Description
Convenience routine to set the “Low” attribute.

Parameter
value – an double array which contains the “Low” values.

Example: ErrorBar Chart
An ErrorBar chart is constructed in this example. Three data sets are used and a legend is added to the chart. This class can be used either as an applet or as an application.

import com.imsl.chart.);
import java.awt.Color;

public class ErrorBarEx1 extends javax.swing.JApplet {

Chart 2D

ErrorBar • 1705
private JPanelChart panel;

public void init() {
 Chart chart = new Chart(this);
 panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 int npoints = 20;
 double dx = .5 * Math.PI / (npoints - 1);
 double x[] = new double[npoints];
 double y1[] = new double[npoints];
 double y2[] = new double[npoints];
 double y3[] = new double[npoints];
 double low1[] = new double[npoints];
 double low2[] = new double[npoints];
 double low3[] = new double[npoints];
 double hi1[] = new double[npoints];
 double hi2[] = new double[npoints];
 double hi3[] = new double[npoints];
 // Generate some data
 for (int i = 0; i < npoints; i++) {
 x[i] = i * dx;
 y1[i] = Math.sin(x[i]);
 low1[i] = x[i] - .05;
 hi1[i] = x[i] + .05;
 y2[i] = Math.cos(x[i]);
 low2[i] = y2[i] - .07;
 hi2[i] = y2[i] + .03;
 y3[i] = Math.atan(x[i]);
 low3[i] = y3[i] - .01;
 hi3[i] = y3[i] + .04;
 }
 Data d1 = new Data(axis, x, y1);
 Data d2 = new Data(axis, x, y2);
 Data d3 = new Data(axis, x, y3);
 // Set Data Type to Marker
 d1.setDataType(Data.DATA_TYPE_MARKER);
 d2.setDataType(Data.DATA_TYPE_MARKER);
 d3.setDataType(Data.DATA_TYPE_MARKER);
 // Set Marker Types
 d1.setMarkerType(Data.MARKER_TYPE_CIRCLE_PLUS);
 d2.setMarkerType(Data.MARKER_TYPE_HOLLOW_SQUARE);
 d3.setMarkerType(Data.MARKER_TYPE_ASTERISK);
 // Set Marker Colors
 d1.setMarkerColor(Color.red);
d2.setMarkerColor(Color.black);
d3.setMarkerColor(Color.blue);

// Create instances of ErrorBars
ErrorBar ebar1 = new ErrorBar(axis, x, y1, low1, hi1);
ErrorBar ebar2 = new ErrorBar(axis, x, y2, low2, hi2);
ErrorBar ebar3 = new ErrorBar(axis, x, y3, low3, hi3);

// Set Data Type to Error_X
ebar1.setDataType(ErrorBar.DATA_TYPE_ERROR_X);
// Set Data Type to Error_Y
ebar2.setDataType(ErrorBar.DATA_TYPE_ERROR_Y);
ebar3.setDataType(ErrorBar.DATA_TYPE_ERROR_Y);

// Set Marker Colors
ebar1.setMarkerColor(Color.red);
ebar2.setMarkerColor(Color.black);
ebar3.setMarkerColor(Color.blue);

// Set Data Labels
d1.setTitle("Sine");
d2.setTitle("Cosine");
d3.setTitle("ArcTangent");

// Add a Legend
Legend legend = chart.getLegend();
legend.setTitle(new Text("Legend");
legend.setPaint(true);

// Set the Chart Title
chart.getChartTitle().setTitle("ErrorBar Plot");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 ErrorBarEx1.setup(frame.getChart());
 frame.setVisible(true);
}
HighLowClose class

```java
public class com.imsl.chart.HighLowClose extends com.imsl.chart.Data
High-low-close plot of stock data.
```

Legend
- Sine
- Cosine
- ArcTangent
Field

DAY
static final public long DAY

Milliseconds per day

Constructors

HighLowClose
public HighLowClose(AxisXY axis, double[] x, double[] high, double[] low,
double[] close)

Description
Constructs a high-low-close chart node at specified axis points.

Parameters
- axis – an Axis object, the parent of this node.
- x – a double array which contains the axis points. This is used to set the “X” attribute.
- high – a double array which contains the stock’s high prices. This is used to set the “High” attribute.
- low – a double array which contains the stock’s low prices. This is used to set the “Low” attribute.
- close – a double array which contains the stock’s closing prices. This is used to set the “Close” attribute.

HighLowClose
public HighLowClose(AxisXY axis, Date start, double[] high, double[] low,
double[] close)

Description
Constructs a high-low-close chart node beginning with specified start date.

Parameters
- axis – an Axis object, the parent of this node.
- start – a date object which contains the first date.
- high – a double array which contains the stock’s high prices. This is used to set the “High” attribute.
- low – a double array which contains the stock’s low prices. This is used to set the “Low” attribute.
- close – a double array which contains the stock’s closing prices. This is used to set the “Close” attribute.

HighLowClose
public HighLowClose(AxisXY axis, double[] x, double[] high, double[] low,
double[] close, double[] open)
Description
Constructs a high-low-close-open chart node at specified axis points.

Parameters
- **axis** – an `Axis` object, the parent of this node.
- **x** – a `double` array which contains the axis points. This is used to set the “X” attribute.
- **high** – a `double` array which contains the stock’s high prices. This is used to set the “High” attribute.
- **low** – a `double` array which contains the stock’s low prices. This is used to set the “Low” attribute.
- **close** – a `double` array which contains the stock’s closing prices. This is used to set the “Close” attribute.
- **open** – a `double` array which contains the stock’s opening prices. This is used to set the “Open” attribute.

HighLowClose

`public HighLowClose(AxisXY axis, Date start, double[] high, double[] low, double[] close, double[] open)`

Description
Constructs a high-low-close-open chart node beginning with specified start date.

Parameters
- **axis** – an `Axis` object, the parent of this node.
- **start** – a `date` object which contains the first date.
- **high** – a `double` array which contains the stock’s high prices. This is used to set the “High” attribute.
- **low** – a `double` array which contains the stock’s low prices. This is used to set the “Low” attribute.
- **close** – a `double` array which contains the stock’s closing prices. This is used to set the “Close” attribute.
- **open** – a `double` array which contains the stock’s opening prices. This is used to set the “Open” attribute.

Methods

dataRange

`public void dataRange(double[] range)`

Description
Update the data range, `range = {xmin, xmax, ymin, ymax}`. The entries in range are updated to reflect the extent of the data in this node. The argument `range` is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.
Parameter

range – a double array which contains the updated range, {xmin,xmax,ymin,ymax}

getClose

public double[] getClose()

Description

Gets the value of the attribute “Close”. return a double array of closing stock prices.

getHigh

public double[] getHigh()

Description

Convenience routine to get the “High” attribute.

Returns

the double array of high stock prices.

getLow

public double[] getLow()

Description

Convenience routine to get the “Low” attribute.

Returns

the double array of low stock prices.

getOpen

public double[] getOpen()

Description

Gets the value of the attribute “Open”. return a double array of opening stock prices.

paint

public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

draw – the Draw object to be painted

setClose

public void setClose(double[] value)

Description

Sets the attribute “Close”.

Chart 2D

HighLowClose • 1711
Parameter

value – a double array of closing stock prices.

setDateAxis

public void setDateAxis(String labelFormat)

Description

Sets up the x-axis for high-low-close plot. This turns off autoscaling on the x-axis and sets the Window attribute depending on the number of dates being plotted. The Number attribute determines the number of intervals along the x-axis.

Parameter

 * labelFormat – is used to format the date axis labels. It sets the TextFormat attribute in the AxisLabel node.

setHigh

public void setHigh(double[] value)

Description

Convenience routine to set the “High” attribute.

Parameter

 * value – an double array of high stock prices.

setLow

public void setLow(double[] value)

Description

Convenience routine to set the “Low” attribute.

Parameter

 * value – an double array of low stock prices.

setOpen

public void setOpen(double[] value)

Description

Sets the attribute “Open”.

Parameter

 * value – a double array of opening stock prices.

Example: High-Low-Close Chart

A simple high-low-close chart is constructed in this example.

Autoscaling does not properly handle time data, so autoscaling is turned off for the x (time) axis and the axis limits are set explicitly.
import com.imsl.chart.*;
import java.util.Date;
import java.util.GregorianCalendar;

public class HiLoEx1 extends javax.swing.JApplet {

 private JPanelChart panel;

 public void init() {
 Chart chart = new Chart(this);
 panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
 }

 static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 // Date is June 27, 1999
 Date date = new GregorianCalendar(1999, GregorianCalendar.JUNE, 27).getTime();
 double high[] = {75., 75.25, 75.25, 75., 74.125, 74.25};
 double low[] = {74.125, 74.25, 74., 74.5, 73.75, 73.50};
 double close[] = {75., 74.75, 74.25, 74.75, 74., 74.0};

 // Create an instance of a HighLowClose Chart
 HighLowClose hilo = new HighLowClose(axis, date, high, low, close);
 hilo.setMarkerColor(java.awt.Color.blue);

 // Set the HighLowClose Chart Title
 chart.getChartTitle().setTitle("A Simple HighLowClose Chart");

 // Configure the x-axis
 hilo.setDateAxis("Date(SHORT)");
 }

 public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 HiLoEx1.setup(frame.getChart());
 frame.setVisible(true);
 }
}
Candlestick class

public class com.imsl.chart.Candlestick extends com.imsl.chart.HighLowClose

Candlestick plot of stock data.

Two nodes are created as children of this node. One for the up days and one for the down days.
Constructors

Candlestick

```java
public Candlestick(AxisXY axis, double[] x, double[] high, double[] low, double[] close, double[] open)
```

Description
Constructs a candlestick chart node at specified axis points.

Parameters
- `axis` – an `Axis` object, the parent of this node
- `x` – a `double` array which contains the axis points. This is used to set the “X” attribute.
- `high` – a `double` array which contains the stock’s high prices. This is used to set the “High” attribute.
- `low` – a `double` array which contains the stock’s low prices. This is used to set the “Low” attribute.
- `close` – a `double` array which contains the stock’s closing prices. This is used to set the “Close” attribute.
- `open` – a `double` array which contains the stock’s opening prices This is used to set the “Open” attribute.

Candlestick

```java
public Candlestick(AxisXY axis, Date start, double[] high, double[] low, double[] close, double[] open)
```

Description
Constructs a candlestick chart node beginning with specified start date.

Parameters
- `axis` – an `Axis` object, the parent of this node
- `start` – a `Date` object which contains the first date
- `high` – a `double` array which contains the stock’s high prices This is used to set the “High” attribute.
- `low` – a `double` array which contains the stock’s low prices This is used to set the “Low” attribute.
- `close` – a `double` array which contains the stock’s closing prices This is used to set the “Close” attribute.
- `open` – a `double` array which contains the stock’s opening prices This is used to set the “Open” attribute.

Methods

getDown

```java
public CandlestickItem getDown()
```

Chart 2D Candlestick • 1715
CandlestickItem class

```java
public class com.imsl.chart.CandlestickItem extends com.imsl.chart.Data

A candlestick for the up days or the down days.
CandlestickItem's are created by Candlestick; one for up days and one for down days.
```

Method

```java
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.
Parameter
draw – the Draw object to be painted
```
SplineData class

public class com.imsl.chart.SplineData extends com.imsl.chart.Data
A data set created from a Spline.

Constructor

SplineData
public SplineData(ChartNode parent, Spline spline)

Description
Creates a data node from Spline values.

Parameters
parent – the ChartNode parent of this data node
spline – the Spline to be plotted

Example: SplineData Chart

This example makes use of the SplineData class as well as the two spline smoothing classes in the package com.imsl.math. This class can be used either as an applet or as an application.

import com.imsl.math.*;
import com.imsl.chart.*;
import com.imsl.stat.Random;
import java.awt.Color;

public class SplineDataEx1 extends javax.swing.JApplet {

 static private final int nData = 21;

 private JPanelChart panel;

 public void init() {
 Chart chart = new Chart(this);
 panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
 }

 static private void setup(Chart chart) {
 chart.getChartTitle().setTitle(new Text("Smoothed Spline"));
 Legend legend = chart.getLegend();
 legend.setTitle(new Text("Legend"));
 }
}
// Original data
double xData[] = grid(nData);
double yData[] = new double[nData];
for (int k = 0; k < nData; k++) {
 yData[k] = f(xData[k]);
}
AxisXY axis = new AxisXY(chart);
Data data = new Data(axis, xData, yData);
data.setDataType(Data.DATA_TYPE_MARKER);
data.setMarkerType(Data.MARKER_TYPE_HOLLOW_CIRCLE);
data.setMarkerColor(Color.red);
data.setTitle("Original Data");

// Noisy data
Random random = new Random(123457);
double yNoisy[] = new double[nData];
for (int k = 0; k < nData; k++) {
 yNoisy[k] = yData[k] + (2. * random.nextDouble() - 1.);
}
data = new Data(axis, xData, yNoisy);
data.setDataType(Data.DATA_TYPE_MARKER);
data.setMarkerType(Data.MARKER_TYPE_FILLED_SQUARE);
data.setMarkerSize(0.75);
data.setMarkerColor(Color.blue);
data.setTitle("Noisy Data");
chartSpline(axis, new CsSmooth(xData, yData), Color.red, "CsSmooth");
chartSpline(axis, new CsSmoothC2(xData, yData, nData), Color.orange, "CsSmoothC2");

static private void chartSpline(AxisXY axis, Spline spline, Color color, String title) {
 Data data = new SplineData(axis, spline);
data.setDataType(data.DATA_TYPE_LINE);
data.setLineColor(color);
data.setTitle(title);
}

static private double[] grid(int nData) {
 double xData[] = new double[nData];
 for (int k = 0; k < nData; k++) {
 xData[k] = 3.0 * k / (double) (nData - 1);
 }
 return xData;
}

static private double f(double x) {
 return 1.0 / (0.1 + Math.pow(3.0 * (x - 1.0), 4));
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 legend.setViewport(0.7, 0.9, 0.1, 0.3);
 legend.setPaint(true);
}
SplineDataEx1.setup(frame.getChart());
frame.setVisible(true);

Output

Smoothed Spline

Legend
- Original Data
- Noisy Data
- CsSmooth
- CsSmoothC2
Bar class

```java
public class com.imsl.chart.Bar extends com.imsl.chart.Data
```

A bar chart.

The class `Bar` has children of class `com.imsl.chart.BarLayoutItem` (p. 1726). The attribute “BarItem” in class `Bar` is set to the `BarItem` array of children.

Constructors

Bar
```java
public Bar(AxisXY axis)
```

Description
Constructs a bar chart.

Parameter

- `axis` – the `AxisXY` parent of this node

Bar
```java
public Bar(AxisXY axis, double[] y)
```

Description
Constructs a simple bar chart using supplied y data.

Parameters

- `axis` – the `AxisXY` parent of this node
- `y` – a `double` array which contains the y data for the simple bar chart

Bar
```java
public Bar(AxisXY axis, double[][] y)
```

Description
Constructs a grouped bar chart using supplied x and y data.

Parameters

- `axis` – the `AxisXY` parent of this node
- `y` – a `double` array which contains the y data for the grouped bar chart. The first index refers to the group and the second refers to the x position.
Description
Constructs a stacked, grouped bar chart using supplied y data.

Parameters
axis – the AxisXY parent of this node
y – a double array which contains the y data for the stacked, grouped bar chart. The first index refers to the stack, the second refers to the group and the third refers to the x position.

Bar
public Bar(AxisXY axis, double[] x, double[] y)

Description
Constructs a simple bar chart using supplied x and y data.

Parameters
axis – the AxisXY parent of this node
x – a double array which contains the x data for the simple bar chart
y – a double array which contains the y data for the simple bar chart

Bar
public Bar(AxisXY axis, double[] x, double[][] y)

Description
Constructs a grouped bar chart using supplied x and y data.

Parameters
axis – the AxisXY parent of this node
x – a double array which contains the x data for the grouped bar chart
y – a double array which contains the y data for the grouped bar chart. The first index refers to the group and the second refers to the x position.

Bar
public Bar(AxisXY axis, double[] x, double[][][] y)

Description
Constructs a stacked, grouped bar chart using supplied x and y data.

Parameters
axis – the AxisXY parent of this node
x – a double array which contains the x data for the stacked, grouped bar chart
y – a double array which contains the y data for the stacked, grouped bar chart. The first index refers to the “stack”, the second refers to the group and the third refers to the x position.
Methods

dataRange

```java
public void dataRange(double[] range)
```

Description

Update the data range, `range = \{xmin, xmax, ymin, ymax\}`. The entries in range are updated to reflect the extent of the data in this node. The argument `range` is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

- `range` – a double array which contains the updated range, \{xmin,xmax,ymin,ymax\}

getBarData

```java
public double[][][] getBarData()
```

Description

Returns the “BarData” attribute.

Returns

a `BarData[][][]` value

getBarSet

```java
public BarSet[][] getBarSet()
```

Description

Returns the `BarSet` object.

Returns

a `BarSet[][]` value

getBarSet

```java
public BarSet getBarSet(int group)
```

Description

Returns the `BarSet` object. The group index is assumed to be zero. This method is most useful for charts with only a single group.

Parameter

- `group` – an int which specifies the group index

Returns

a `BarSet` value

getBarSet

```java
public BarSet getBarSet(int stack, int group)
```
Description
Returns the BarSet object.

Parameters
- `stack` – an int which specifies the stack index
- `group` – an int which specifies the group index

Returns
a BarSet value

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
- `draw` – the Draw object to be painted

setBarData
public void setBarData(double[][][] value)

Description
Convenience routine to set the “BarData” attribute.

Parameter
- `value` – a BarData[][][] array of objects that make up this bar chart. The first index refers to the “stack”, the second refers to the group and the third refers to the x position.

setLabels
public void setLabels(String[] labels)

Description
Sets up an axis with bar labels. This turns off the tick marks and sets the BarType attribute. It also turns off autoscaling for the axis and sets its Window and Number and Ticks attribute as appropriate for a labeled bar chart. The existing value of the BarType attribute is used to determine the axis to be modified.

Parameter
- `labels` – a String array with which to label the axis. The number of labels must equal the number of items.

setLabels
public void setLabels(String[] labels, int type)
Description
Sets up an axis with bar labels. This turns off the tick marks and sets the “BarType” attribute. It also
turns off autoscaling for the axis and sets its “Window”, “Number” and “Ticks” attributes as appropriate
for a labeled bar chart.

Parameters
- labels – a String array with which to label the axis. The number of labels must equal the
 number of items.
- type – an int which specifies the BarType. Legal values are BAR_TYPE_VERTICAL or
 BAR_TYPE_HORIZONTAL. This determines the axis to be modified.

Example: Stacked Bar Chart
A stacked bar chart is constructed in this example. Bar labels and colors are set and axis labels are set.
This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.stat.Random;
import java.awt.Color;

public class BarEx1 extends javax.swing.JApplet {

    private JPanelChart panel;

    public void init() {
        Chart chart = new Chart(this);
        panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);
        int nStacks = 2;
        int nGroups = 3;
        int nItems = 6;

        // Generate some random data
        Random r = new Random(123457);
        double y[][][] = new double[nStacks][nGroups][nItems];
        for (int istack = 0; istack < y.length; istack++) {
            for (int jgroup = 0; jgroup < y[istack].length; jgroup++) {
                for (int kitem = 0; kitem < y[istack][jgroup].length;
                    kitem++) {
                    y[istack][jgroup][kitem] = r.nextDouble();
                }
            }
        }

        // Create an instance of a Bar Chart
        Bar bar = new Bar(axis, y);
    }
}
```

This class can be used either as an applet or as an application.
// Set the Bar Chart Title
chart.getChartTitle().setTitle("Sales by Region");

// Set the fill outline type;
bar.setFillOutlineType(Bar.FILL_TYPE_SOLID);

// Set the Bar Item fill colors
bar.getBarSet(0, 0).setFillColor(Color.red);
bar.getBarSet(0, 1).setFillColor(Color.yellow);
bar.getBarSet(0, 2).setFillColor(Color.green);
bar.getBarSet(1, 0).setFillColor(Color.blue);
bar.getBarSet(1, 1).setFillColor(Color.cyan);
bar.getBarSet(1, 2).setFillColor(Color.magenta);

chart.getLegend().setPaint(true);
bar.getBarSet(0, 0).setTitle("Red");
bar.getBarSet(0, 1).setTitle("Yellow");
bar.getBarSet(0, 2).setTitle("Green");
bar.getBarSet(1, 0).setTitle("Blue");
bar.getBarSet(1, 1).setTitle("Cyan");
bar.getBarSet(1, 2).setTitle("Magenta");

// Setup the vertical axis for a labeled bar chart.
String labels[] = {
 "New York",
 "Texas",
 "Northern\nCalifornia",
 "Southern\nCalifornia",
 "Colorado",
 "New Jersey"
};
bar.setLabels(labels, bar.BAR_TYPE_VERTICAL);

// Set the text angle
axis.getAxisX().getAxisLabel().setTextAngle(270);

// Set the Y axis title
axis.getAxisY().getAxisTitle().setTitle("Sales ($million)\nby " + "widget color");

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 BarEx1.setup(frame.getChart());
 frame.setVisible(true);
}

BarItem class

public class com.imsl.chartBarItem extends com.imsl.chart.Data

A single bar in a bar chart.
Methods

dataRange
public void dataRange(double[] range)

Description
Update the data range, range = \{xmin, xmax, ymin, ymax\}. The entries in range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter
- range – a double array which contains the updated range, \{xmin, xmax, ymin, ymax\}

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node's parent.

Parameter
draw – the Draw object to be painted

BarSet class

public class com.imsl.chart.BarSet extends com.imsl.chart.ChartNode

A set of bars in a bar chart.

A BarSet is created by Bar and contains a collection of BarItems. Bar creates a BarSet for each stack-group combination. Each BarSet contains the BarItems for that combination. Normally all of the BarItems in a BarSet have the same color, title, etc.

Methods

dataRange
public void dataRange(double[] range)
Description
Update the data range, \(\text{range} = \{\text{xmin, xmax, ymin, ymax}\} \). The entries in range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

\[
\text{range} \rightarrow \text{a double array which contains the updated range, } \{\text{xmin, xmax, ymin, ymax}\}
\]

getBarItem

public BarItem[] getBarItem()

Description
Returns an array of BarItems. This is the collection of all BarItems contained in this bar group.

Returns

a BarItem array

getBarItem

public BarItem getBarItem(int index)

Description
Returns the BarItem given the index.

Parameter

\[
\text{index} \rightarrow \text{an int which specifies the index}
\]

Returns

a BarItem associated with the specified index

paint

public void paint(Draw draw)

Pie class

public class com.imsl.chart.Pie extends com.imsl.chart.Axis

A pie chart.

The angle of the first slice is determined by the attribute “Reference”.

The Pie class is an Axis, because it defines its own mapping to device space.
Constructors

Pie

```java
public Pie(Chart chart)
```

Description

Constructs a Pie chart object. The “Viewport” attribute for this node is set to [0.2,0.8] by [0.2,0.8].

Parameter

- `chart` – the `Chart` parent of this node

Pie

```java
public Pie(Chart chart, double[] y)
```

Description

Constructs a Pie chart object with a specified number of slices. An array of `y.length` PieSlice nodes are created as children of this node and this array is used to define the attribute “PieSlice” in this node. The “Viewport” attribute for this node is set to [0.2,0.8] by [0.2,0.8].

Parameters

- `chart` – the `Chart` parent of this node
- `y` – a `double` array which contains the values for the pie chart

Methods

getPieSlice

```java
public PieSlice[] getPieSlice()
```

Description

Returns the PieSlice objects.

Returns

A `PieSlice` array of `PieSlice` objects

getPieSlice

```java
public PieSlice getPieSlice(int index)
```

Description

Returns a specified PieSlice.

Parameter

- `index` – an `int`, the 0-based index of the pie slice to return
Returns
a `PieSlice` array of `PieSlice` objects

mapDeviceToUser
```java
public void mapDeviceToUser(int devX, int devY, double[] userXY)
```

Description
Maps the device coordinates to user coordinates.

Parameters
- `devX` – an `int` which specifies the device x-coordinate
- `devY` – an `int` which specifies the device y-coordinate
- `userXY` – an `int[2]` array in which the the user coordinates are returned.

mapUserToDevice
```java
public void mapUserToDevice(double userX, double userY, int[] devXY)
```

Description
Maps the user coordinates (userX, userY) to the device coordinates devXY.

Parameters
- `userX` – a `double` which specifies the user x-coordinate
- `userY` – a `double` which specifies the user y-coordinate
- `devXY` – an `int[2]` array in which the device coordinates are returned.

setData
```java
public PieSlice[] setData(double[] y)
```

Description
Changes the data in a Pie chart object.

Parameter
- `y` – a `double` array which contains the values for the pie chart.

Returns
A `PieSlice` array containing the updated `PieSlice`. If the number of slices is unchanged then the existing pie slice array, defined by the attribute “PieSlice” in this node, is reused. If the number is different, a new array is allocated, using the existing `PieSlice` elements to initialize the new array.

setupMapping
```java
public void setupMapping()
```

Description
Initializes the mappings between user and coordinate space. This must be called whenever the screen size, the window or the viewport may have changed. Generally, it is safest to call this each time the chart is repainted.
Example: Pie Chart

A simple Pie chart is constructed in this example. Pie slice labels and colors are set and one pie slice is exploded from the center. This class extends JFrameChart, which manages the window.

```java
import com.imsl.chart.*;
import java.awt.Color;

public class PieEx1 extends javax.swing.JApplet {
    private JPanelChart panel;

    public void init() {
        Chart chart = new Chart(this);
        panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        // Create an instance of a Pie Chart
        double y[] = {10., 20., 30., 40.};
        Pie pie = new Pie(chart, y);

        // Set the Pie Chart Title
        chart.getChartTitle().setTitle("A Simple Pie Chart");

        // Set the colors of the Pie Slices
        PieSlice[] slice = pie.getPieSlice();
        slice[0].setFillColor(Color.red);
        slice[1].setFillColor(Color.blue);
        slice[2].setFillColor(Color.black);
        slice[3].setFillColor(Color.yellow);

        // Set the Pie Slice Labels
        pie.setLabelType(pie.LABEL_TYPE_TITLE);
        slice[0].setTitle("Fish");
        slice[1].setTitle("Pork");
        slice[2].setTitle("Poultry");
        slice[3].setTitle("Beef");

        // Explode a Pie Slice
        slice[0].setExplode(0.2);
    }

    public static void main(String argv[]) {
        JFrameChart frame = new JFrameChart();
        PieEx1.setup(frame.getChart());
        PieEx1.setup(frame.getChart());
        frame.setVisible(true);
    }
}
```

Chart 2D
PieSlice class

public class com.imsl.chart.PieSlice extends com.imsl.chart.Data

One wedge of a pie chart.

com.imsl.chart.Pie (p. 1728) creates PieSlice objects as its children, one per pie wedge. A specific
slice can be retrieved using the method `com.imsl.chart.Pie.getPieSlice` (p. 1729). All of the slices can be retrieved using the method `com.imsl.chart.Pie.getPieSlice` (p. 1729).

The drawing of the slice is controlled by the fill attributes in this node.

Methods

paint

```java
public void paint(Draw draw)
```

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

setAngles

```java
protected void setAngles(double angleA, double angleB)
```

Description

Sets the angles, in degrees, that determine the extent of this slice.

Parameters

- `angleA` – is the angle, in degrees, at which the slice begins
- `angleB` – is the angle, in degrees, at which the slice ends

Dendrogram class

```java
public class com.imsl.chart.Dendrogram extends com.imsl.chart.Data
```

A Dendrogram chart for cluster analysis.

Constructors

Dendrogram

```java
public Dendrogram(AxisXY axis, ClusterHierarchical clusterHierarchical)
```

Description

Constructs a vertical dendrogram chart using supplied ClusterHierarchical object.
Parameters

- **axis** – the AxisXY parent of this node
- **clusterHierarchical** – a ClusterHierarchical object

Dendrogram

```java
public Dendrogram(AxisXY axis, ClusterHierarchical clusterHierarchical, int type)
```

Description

Constructs a dendrogram chart using supplied ClusterHierarchical object.

Parameters

- **axis** – the AxisXY parent of this node
- **clusterHierarchical** – a ClusterHierarchical object
- **type** – an int which specifies the DendrogramType. Legal values are `DENDROGRAM_TYPE_VERTICAL` or `DENDROGRAM_TYPE_HORIZONTAL`.

Dendrogram

```java
public Dendrogram(AxisXY axis, double[] clusterLevel, int[] leftSons, int[] rightSons)
```

Description

Constructs a vertical dendrogram chart using supplied data.

Parameters

- **axis** – the AxisXY parent of this node
- **clusterLevel** – a double array which contains the levels at which the clusters are joined
- **leftSons** – an int array which contains the left sons of each merged cluster
- **rightSons** – an int array which contains the right sons of each merged cluster

Dendrogram

```java
public Dendrogram(AxisXY axis, double[] clusterLevel, int[] leftSons, int[] rightSons, int type)
```

Description

Constructs a dendrogram chart using supplied data.

Parameters

- **axis** – the AxisXY parent of this node
- **clusterLevel** – a double array which contains the levels at which the clusters are joined
- **leftSons** – an int array which contains the left sons of each merged cluster
- **rightSons** – an int array which contains the right sons of each merged cluster
- **type** – an int which specifies the DendrogramType. Legal values are `DENDROGRAM_TYPE_VERTICAL` or `DENDROGRAM_TYPE_HORIZONTAL`.

1734 • Dendrogram

JMSL
Methods

dataRange

```java
public void dataRange(double[] range)
```

Description

Update the data range, `range = {xmin,xmax,ymin,ymax}`. The entries in `range` are updated to reflect the extent of the data in this node. The argument `range` is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

- `range` – a double array which contains the updated range, `{xmin,xmax,ymin,ymax}`

getCoordinates

```java
public double[][] getCoordinates()
```

Description

Convenience routine to get the “Coordinates” attribute.

Returns

the double[][] array of coordinates.

getLeftSons

```java
public int[] getLeftSons()
```

Description

Convenience routine to get the “LeftSons” attribute.

Returns

the int array of left sons.

getLevels

```java
public double[] getLevels()
```

Description

Convenience routine to get the “Levels” attribute.

Returns

the double array of cluster levels.

getOrder

```java
public int[] getOrder()
```

Description

Convenience routine to get the “Order” attribute.
Returns

an int array of the order of clusters as they appear in the dendrogram.

getRightSons

public int[] getRightSons()

Description

Convenience routine to get the “RightSons” attribute.

Returns

an int array of right sons.

paint

public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

- draw – the Draw object to be painted

setCoordinates

public void setCoordinates(double[][] value)

Description

Convenience routine to set the “Coordinates” attribute.

Parameter

- value – a double[][] array of coordinates.

setLabels

public void setLabels(String[] labels)

Description

Sets up the axis labels for dendrogram plot. This turns off autoscaling on the axis and sets the Window attribute depending on the number of points being plotted.

Note that user-defined labels will be re-ordered to match the order of the clusters displayed in the plot.

Parameter

- labels – a String array with which to label the axis. The number of labels must equal the number of items.

setLeftSons

public void setLeftSons(int[] value)

Description

Convenience routine to set the “LeftSons” attribute.
Parameter

value – an int array of left sons.

setLevels

public void setLevels(double[] value)

Description

Convenience routine to set the “Levels” attribute.

Parameter

value – a double array of cluster levels.

setLineColor

public void setLineColor(Color[] colors)

Description

Define colors for individual clusters. The color of the topmost level should be set using `ChartNode.setLineColor(java.awt.Color color)`. This method will color N clusters, where N is the number of elements in the colors[] array.

Parameter

colors – a Color array which contains each color to use for the subclusters.

setLineColor

public void setLineColor(String[] colors)

Description

Define colors for individual clusters. The color of the topmost level should be set using `ChartNode.setLineColor(String color)`. This method will color N clusters, where N is the number of elements in the colors[] array.

Parameter

colors – a String array which contains each color to use for the subclusters.

setOrder

public void setOrder(int[] value)

Description

Convenience routine to set the “Order” attribute.

Parameter

value – an int array of the order of clusters as they appear in the dendrogram.

setRightSons

public void setRightSons(int[] value)

Description

Convenience routine to set the “RightSons” attribute.
Parameter

value – an int array of right sons.

Example: Dendrogram

A Dendrogram.

```java
import com.imsl.stat.*;
import com.imsl.chart.*;

public class DendrogramEx1 extends javax.swing.JApplet {

    private JPanelChart panel;

    public void init() {
        Chart chart = new Chart(this);
        panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        /* 1998 test data from 17 school districts in Los Angeles County.

        The variables were:
        lep - Proportion of LEP students to total tested
        read - The Reading Scaled Score for 5th Grade
        math - The Math Scaled Score for 5th Grade
        lang - The Language Scaled Score for 5th Grade

        The districts were:
        lau - Los Angeles
        ccu - Culver City
        bhu - Beverly Hills
        ing - Inglewood
        com - Compton
        smm - Santa Monica Malibu
        bur - Burbank
        gln - Glendale
        pvu - Palos Verdes
        sgu - San Gabriel
        abc - Artesia, Bloomfield, and Carmenita
        pas - Pasadena
        lan - Lancaster
        plm - Palmdale
        tor - Torrance
        dow - Downey
        lbu - Long Beach

        input lep read math lang str3 district
        .38 626.5 601.3 605.3 lau
        .18 654.0 647.1 641.8 ccu
        */
```
double[][] data = {
 {.38, 626.5, 601.3, 605.3},
 {.18, 654.0, 647.1, 641.8},
 {.07, 677.2, 676.5, 670.5},
 {.09, 639.9, 640.3, 636.0},
 {.19, 614.7, 617.3, 606.2},
 {.12, 670.2, 666.0, 659.3},
 {.20, 651.1, 645.2, 643.4},
 {.41, 645.4, 645.8, 644.8},
 {.07, 683.5, 682.9, 674.3},
 {.39, 648.6, 647.8, 643.1},
 {.21, 650.4, 650.8, 643.9},
 {.24, 637.0, 636.9, 626.5},
 {.09, 641.1, 628.8, 629.4},
 {.12, 638.0, 627.7, 628.6},
 {.11, 661.4, 659.0, 651.8},
 {.22, 646.4, 646.2, 647.0},
 {.33, 634.1, 632.0, 627.8}
};

String[] lab = {
 "lau", "ccu", "bhu", "ing", "com", "smm",
 "bur", "gln", "pvu", "sgu", "abc", "pas",
 "lan", "plm", "tor", "dow", "lbu"};

// 3rd arg in Dissimilarities gives different results for 0,1,2
try {
 Dissimilarities dist = new Dissimilarities(data);
 dist.setScalingOption(Dissimilarities.STD_DEV);
 dist.compute();

 ClusterHierarchical clink
 = new ClusterHierarchical(dist.getDistanceMatrix());
 clink.setMethod(ClusterHierarchical.LINKAGE_WARDS);
 clink.compute();

 AxisXY axis = new AxisXY(chart);

 Dendrogram dc = new Dendrogram(axis, clink,
 Data.DENDROGRAM_TYPE_HORIZONTAL);
dc.setLabels(lab);
dc.setLineColor(new java.awt.Color[]{java.awt.Color.blue,
 java.awt.Color.green, java.awt.Color.red,
 java.awt.Color.orange});
} catch (com.imsl.IMSLException e) {
 System.out.println(e.getStackTrace());
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 DendrogramEx1.setup(frame.getChart());
 frame.setVisible(true);
}
Polar class

public class com.imsl.chart.Polar extends com.imsl.chart.Axis

This Axis node is used for polar charts. In a polar plot, the \((x,y) \) coordinates in Data nodes are interpreted as \((r,\theta) \) values. The “Viewport” attribute for this node is set to \([0.1,0.9]\) by \([0.1,0.9]\).
Constructor

Polar
public Polar(Chart chart)

Description
Create an AxisPolar.

Parameter
chart – a Chart object, the parent of this node

Methods

getAxisR
public AxisR getAxisR()

Description
Return the radius axis node.

Returns
the AxisR radius axis node

getAxisTheta
public AxisTheta getAxisTheta()

Description
Return the angular axis node.

Returns
the AxisTheta axis node

getGridPolar
public GridPolar getGridPolar()

Description
Returns the grid.

Returns
the grid, a GridPolar object

mapDeviceToUser
public void mapDeviceToUser(int devX, int devY, double[] userRT)

Description
Map the device coordinates to polar coordinates.
Parameters

 devX – an int, the device x-coordinate
 devY – an int, the device y-coordinate
 userRT – a double[2] array in which the user coordinates, (radius, theta), are returned.

mapUserToDevice

 public void mapUserToDevice(double userRadius, double userTheta, int[] devXY)

Description

 Map the polar coordinates (userRadius, userAngle) to the device coordinates devXY.

Parameters

 userRadius – a double, the user radius coordinate
 userTheta – a double, the user angle coordinate
 devXY – an int[2] array in which the device coordinates are returned.

paint

 public void paint(Draw draw)

Description

 Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

 draw – the Draw object to be painted

setupMapping

 public void setupMapping()

Description

 Initializes the mappings between user and coordinate space. This must be called whenever the screen size, the window or the viewport may have changed.

Example: Polar Chart

 A simple Polar chart is constructed in this example. The function r = 0.5 + cos(theta), for 0 = theta = pi is plotted. This class extends JFrameChart, which manages the window.

 import com.imsl.chart.*;
 import java.awt.Color;

 public class PolarEx1 extends javax.swing.JApplet {
 private JPanelChart panel;
 public void init() {
 Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);
}

static private void setup(Chart chart) {
 Polar axis = new Polar(chart);

 double r[] = new double[20];
 double theta[] = new double[r.length];
 for (int k = 0; k < r.length; k++) {
 theta[k] = Math.PI * k / (r.length - 1);
 r[k] = 0.5 + Math.cos(theta[k]);
 }
 Data data = new Data(axis, r, theta);
 data.setDataType(Data.DATA_TYPE_MARKER | Data.DATA_TYPE_LINE);
 data.setLineColor(Color.green);
 data.setMarkerColor(Color.blue);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 PolarEx1.setup(frame.getChart());
 frame.setVisible(true);
}
Heatmap class

```java
public class com.imsl.chart.Heatmap extends com.imsl.chart.Data

Heatmap creates a chart from a two-dimensional array of double precision values or java.awt.Color values. Optionally, each cell in the heatmap can be labeled.
```
If the input is a two-dimensional array of double values then a Colormap object is used to map the real values to colors.

Constructors

Heatmap

public Heatmap(AxisXY axis, double xmin, double xmax, double ymin, double ymax, Color[][] color)

Description

Creates a Heatmap from an array of Color values.

Parameters

- axis – An AxisXY object, the parent of this node.
- xmin – The minimum x-value of the color data.
- xmax – The maximum x-value of the color data.
- ymin – The minimum y-value of the color data.
- ymax – The maximum y-value of the color data.
- color – A two-dimensional Color array of the color values. The value of color[0][0] is the color of the cell whose lower left corner is (xmin, ymin).

Heatmap

public Heatmap(AxisXY axis, double xmin, double xmax, double ymin, double ymax, double zmin, double zmax, double[][] data, Colormap colormap)

Description

Creates a Heatmap from an array of double values and a Colormap.

Parameters

- axis – An AxisXY object, the parent of this node.
- xmin – The minimum x-value of the color data.
- xmax – The maximum x-value of the color data.
- ymin – The minimum y-value of the color data.
- ymax – The maximum y-value of the color data.
- zmin – The data value that corresponds to the initial (t=0) value in the Colormap.
- zmax – The data value that corresponds to the final (t=1) value in the Colormap.
- data – A two-dimensional double array containing the data values. The x-interval (xmin, xmax) is uniformly divided and mapped into the first index of data. The y-interval (ymin, ymax) is uniformly divided and mapped into the second index of data. So, the value of data[0][0] is used to determine the color of the cell whose lower left corner is (xmin, ymin).
 colormap – Maps the values in data to colors. If a cell has a data value equal to \(t \) then its color is the value of the colormap at \(s \), where

\[
s = \frac{t - z_{\text{min}}}{z_{\text{max}} - z_{\text{min}}}
\]

Methods

dataRange

```java
public void dataRange(double[] range)
```

Description
Update the data range, \(\text{range} = \{\text{xmin}, \text{xmax}, \text{ymin}, \text{ymax}\} \). The entries in range are updated to reflect the extent of the data in this node. The argument \(\text{range} \) is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter
- \(\text{range} \) – a double array which contains the updated range, \(\{\text{xmin, xmax, ymin, ymax}\} \)

getColormap

```java
public Colormap getColormap()
```

Description
Returns the value of the “Colormap” attribute. This is the Colormap associated with this Heatmap.

Returns
The Colormap value of the “Colormap” attribute, if defined. Otherwise, null is returned.

getHeatmapLabels

```java
public Text[][] getHeatmapLabels()
```

Description
Returns the value of the “HeatmapLabels” attribute.

Returns
A two-dimensional array of Text objects that are the value of the “HeatmapLabels” attribute, if defined. Otherwise, null is returned.

getHeatmapLegend

```java
public Heatmap.Legend getHeatmapLegend()
```

Description
Returns the heatmap legend.

By default, the legend is not drawn because its “Paint” attribute is set to false. To show the legend set “Paint” to true, i.e., `contour.getContourLegend().setPaint(true);`
Returns
The Legend object associated with the Heatmap.

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – The Draw object to be painted.

setColormap
public void setColormap(Colormap colorMap)

Description
Sets the value of the “Colormap” attribute. This is the Colormap associated with this Heatmap.

Parameter
colorMap – The Colormap object’s “ColorMap” value.

setHeatmapLabels
public void setHeatmapLabels(Text[][] labels)

Description
Sets the value of the “HeatmapLabels” attribute.

Parameter
labels – A two-dimensional array of com.imsl.chart.Text (p. 1646) objects that are used to set the “HeatmapLabels” attribute.

setHeatmapLabels
public void setHeatmapLabels(String[][] labels)

Description
Sets the value of the “HeatmapLabels” attribute. The value of the “HeatmapLabels” attribute is a two dimensional array of Text objects. Each Text object is created from the corresponding label value with TEXT_X_CENTER|TEXT_Y_CENTER alignment.

Parameter
labels – A two-dimensional array of String objects used to create the two dimensional array of Text objects that is the value of the attribute. The array of labels and the array of Text objects have the same shape.
Example: Heatmap from Color array

A 5 by 10 array of Color objects is created by linearly interpolating red along the x-axis, blue along the y-axis and mixing in a random amount of green. The data range is set to [0,10] by [0,1].

```java
import com.imsl.chart.*;
import java.awt.Color;
import java.util.Random;

public class HeatmapEx1 extends javax.swing.JApplet {

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);

        double xmin = 0.0;
        double xmax = 10.0;
        double ymin = 0.0;
        double ymax = 1.0;

        int nxRed = 5;
        int nyBlue = 10;
        Random random = new Random(123457L);
        Color color[][] = new Color[nxRed][nyBlue];
        for (int i = 0; i < nxRed; i++) {
            for (int j = 0; j < nyBlue; j++) {
                int r = (int) (255. * i / nxRed);
                int g = random.nextInt(255);
                int b = (int) (255. * j / nyBlue);
                color[i][j] = new Color(r, g, b);
            }
        }
        Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, color);
        axis.getAxisX().getAxisTitle().setTitle("Red");
        axis.getAxisY().getAxisTitle().setTitle("Blue");
    }

    public static void main(String argv[]) {
        JFrameChart frame = new JFrameChart();
        HeatmapEx1.setup(frame.getChart());
        frame.setVisible(true);
    }
}
```
Example: Heatmap from Color array

A 5 by 10 data array is created by linearly interpolating from the lower left corner to the upper right corner and adding in a uniform random variable. A red temperature color map is used. This maps the minimum data value to light green and the maximum data value to dark green.

The legend is enabled by setting its paint attribute to true.

```java
import com.imsl.chart.*;
import java.util.Random;

public class HeatmapEx2 extends javax.swing.JApplet {
```
public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);

 int nx = 5;
 int ny = 10;
 double xmin = 0.0;
 double xmax = 10.0;
 double ymin = -3.0;
 double ymax = 2.0;
 double fmin = 0.0;
 double fmax = nx + ny - 1;

 double data[][] = new double[nx][ny];
 Random random = new Random(123457L);
 for (int i = 0; i < nx; i++) {
 for (int j = 0; j < ny; j++) {
 data[i][j] = i + j + random.nextDouble();
 }
 }
 Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax,
 fmin, fmax, data, Colormap.RED_TEMPERATURE);
 heatmap.getHeatmapLegend().setPaint(true);
 heatmap.getHeatmapLegend().setTitle("Heat");
 heatmap.getHeatmapLegend().setTextFormat("0");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 HeatmapEx2.setup(frame.getChart());
 frame.setVisible(true);
}
Example: Heatmap with Labels

A 5 by 10 array of random data is created and a similarly sized array of strings is also created. These labels contain spreadsheet-like indices and the random data value expressed as a percentage.

The legend is enabled by setting its paint attribute to true. The tick marks in the legend are formatted using the percentage NumberFormat object. A title is also set in the legend.

```java
import com.imsl.chart.*;
import java.text.NumberFormat;
import java.util.Random;

public class HeatmapEx3 extends javax.swing.JApplet {
```

JMSL

Output

![Heatmap Image]

Heatmap JMSL
public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 double xmin = 0.0;
 double xmax = 10.0;
 double ymin = 0.0;
 double ymax = 1.0;

 NumberFormat format = NumberFormat.getPercentInstance();
 int nx = 5;
 int ny = 10;
 double data[][] = new double[nx][ny];
 String labels[][] = new String[nx][ny];
 Random random = new Random(123457L);
 for (int i = 0; i < nx; i++) {
 for (int j = 0; j < ny; j++) {
 data[i][j] = random.nextDouble();
 labels[i][j] = "ABCDE".charAt(i) + Integer.toString(j) + "\n" + format.format(data[i][j]);
 }
 }
 Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax,
 0.0, 1.0, data, Colormap.BLUE);
 heatmap.setHeatmapLabels(labels);
 heatmap.setTextColor(java.awt.Color.orange);
 heatmap.getHeatmapLegend().setPaint(true);
 heatmap.getHeatmapLegend().setTextFormat(format);
 heatmap.getHeatmapLegend().setTitle("Percentage");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 HeatmapEx3.setup(frame.getChart());
 frame.setVisible(true);
}
Heatmap.Legend class

public class com.imsl.chart.Heatmap.Legend extends com.imsl.chart.AxisXY

A legend for use with a heatmap.

This Legend should be used with heatmaps, rather than the usual chart legend. The “Viewport” attribute
for this node is set to [0.83,0.98] by [0.1,0.6].

Method

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
draw – The Draw object to be painted.

Treemap class

public class com.imsl.chart.Treemap extends com.imsl.chart.Data

Treemap creates a chart from two arrays of double precision values or one data array and one array of java.awt.Color values. The size of each element is scaled using the first input array. The second array of values or colors is used to shade the corresponding area.

Fields

AUTOMATIC
static final public int AUTOMATIC
Flag to set the treemap orientation automatically.

COLUMNFIRST
static final public int COLUMNFIRST
Flag to set the treemap orientation drawing columns first.

ROWFIRST
static final public int ROWFIRST
Flag to set the treemap orientation drawing rows first.
Constructors

Treemap
public Treemap(AxisXY axis, double[] data, Color[] colors)

Description
Constructs a treemap using supplied data and colors array.

Parameters
- axis – the AxisXY parent of this node
- data – the area values for the treemap in decreasing order
- colors – an array of colors for each area

Treemap
public Treemap(AxisXY axis, double[] data, double[] shades, Colormap colormap)

Description
Constructs a treemap using supplied data and a colormap.

Parameters
- axis – the AxisXY parent of this node
- data – the area values for the treemap in decreasing order
- shades – an array of values to use for shading each area
- colormap – a Colormap to use for the shading

Methods

dataRange
public void dataRange(double[] range)

Description
Updates the data range, range = {xmin,xmax,ymin,ymax} or range = {xmin,xmax,ymin,ymax,zmin,zmax}. The entries in the range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array. The third dimension is not required. Default values are {0,100,0,100} for the data extents and the z range is computed from the color data.

Parameter
- range – a double array which contains the updated range, {xmin,xmax,ymin,ymax} or {xmin, xmax,ymin,ymax,zmin,zmax}

getColormap
public Colormap getColormap()
getColormap

`public String getColormap()`

Description
Returns the value of the “Colormap” attribute. This is the Colormap associated with this Treemap.

Returns
The Colormap value of the “Colormap” attribute, if defined. Otherwise, null is returned.

getLabels

`public Text[] getLabels()`

Description
Returns the value of the “TreemapLabels” attribute.

Returns
An array of Text objects that are the value of the “TreemapLabels” attribute, if defined. Otherwise, null is returned.

getOrientation

`public int getOrientation()`

Description
Gets the value of the “Orientation” attribute.

Returns
One of AUTOMATIC, ROWFIRST or COLUMNFIRST. The default behavior is AUTOMATIC and filling the graph is based on the aspect ratio of the parent Axis object such that if the height is less than the width, columns are drawn first; otherwise rows are drawn first.

getTreemapLegend

`public Treemap.Legend getTreemapLegend()`

Description
Returns the treemap legend.

By default, the legend is not drawn because its “Paint” attribute is set to false. To show the legend set “Paint” to true, i.e., `contour.getTreemapLegend().setPaint(true)`.

Returns
The Legend object associated with the Treemap.

paint

`public void paint(Draw draw)`

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter

 `draw` – the Draw object to be painted

setAxisRange

`public void setAxisRange(double[] range)`
Description
Set the axis range, \(\text{range} = \{ \text{xmin}, \text{xmax}, \text{ymin}, \text{ymax} \} \). The default value is \{0, 100, 0, 100\}. In some cases the aspect ratio of the graph should be changed so as to result in an improved layout. Adjust this array to modify the layout in that manner. The actual values are not important, but the values should match the aspect ratio of the final chart for best results.

Parameter

\[\text{range} \] – a double array which contains the data range, \(\{ \text{xmin}, \text{xmax}, \text{ymin}, \text{ymax} \} \)

setColormap

\text{Description}
Sets the value of the “Colormap” attribute. This is the Colormap associated with this Treemap.

\text{Parameter}

\[\text{colorMap} \] – The Colormap object’s “ColorMap” value.

setLabels

\text{Description}
Sets the value of the “TreemapLabels” attribute.

\text{Parameter}

\[\text{labels} \] – an array of \text{com.imsl.chart.Text} (p. 1646) objects that are used to set the “TreemapLabels” attribute.

setOrientation

\text{Description}
Sets the value of the “Orientation” attribute.
Parameter

value – One of AUTOMATIC, ROWFIRST, or COLUMNFIRST. The default behavior is AUTOMATIC and filling the graph is based on the aspect ratio of the parent Axis object such that if the height is less than the width, columns are drawn first; otherwise rows are drawn first.

setZRange

public void setZRange(double[] range)

Description

Set the Z data (shading) range, range = \{zmin,zmax\}. The default value is computed from the input shades array or else is \{0,1\}.

Parameter

range – a double array which contains the data range, \{zmin,zmax\}

Example 1: Treemap

A treemap is constructed from area and population data of the 15 largest US states. Each rectangle is proportional to the state’s area (in square miles) and is shaded by its population (in millions).

```
import com.imsl.chart.*;

public class TreemapEx1 extends javax.swing.JApplet {
    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);
        double[] areas = {
            570374, 261914, 155973, 145556, 121364,
            113642, 109806, 103729, 97105, 96002,
            82751, 82168, 81823, 79617, 76878
        };

        double[] population = {
            0.626932, 20.851820, 33.871648, 9.02195, 1.819046,
            5.130632, 1.998257, 4.301261, 0.493782, 3.421399,
            1.293953, 2.233169, 2.688418, 4.919479, 0.1711263
        };

        String[] names = {
            "Alaska", "Texas", "California", "Montana", "New Mexico",
            "Idaho", "Utah", "Kansas", "Minnesota", "Nebraska"
        };
```

Chart 2D

Treemap ● 1759
Treemap treemap = new Treemap(axis, areas, population,
 Colormap.BLUE_WHITE);
treemap.setZRange(new double[]{0, 40});
treemap.setLabels(names);
treemap.setTextColor(java.awt.Color.gray);
treemap.getTreemapLegend().setPaint(true);
treemap.getTreemapLegend().setTitle("Pop. (M)");
treemap.getTreemapLegend().setTextFormat("0");
axis.setViewport(0.05, 0.8, 0.1, 0.95);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 TreemapEx1.setup(frame.getChart());
 frame.setVisible(true);
 }
}
Example 2: Treemap with unsorted data

A treemap is constructed from business analytics data. The area is proportional to the company’s sales volume and the color scale maps to a performance indicator. The raw data are unsorted and must be sorted by the area values before creating the chart.

```java
import com.ims1.chart.*;

public class TreemapEx2 extends javax.swing.JApplet {

    public void init() {
        Chart chart = new Chart(this);
```

![Treemap chart](image_url)

Chart 2D

Treemap • 1761
JPanelChart panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);

double[] areas = {
 834, 11359, 1621, 12282, 14646, 8686,
 12114, 61402, 582, 9448, 1678
 };
 double[] perf = {
 -1.75, -.99, -1.4, 0.12, -0.28, -1.14,
 -0.06, 0.37, -0.66, 0, 0.75};
 String[] labels = {
 "Amer. It. Pasta", "Campbell Soup", "Dean Foods",
 "General Mills", "Heinz", "Hershey Foods", "Kellogg",
 "Kraft Foods", "Ralston Purina", "Sara Lee", "Suiza Foods"
 };

 // sort data
 double[] s_perf = new double[perf.length];
 String[] s_lab = new String[perf.length];
 int[] idx = new int[perf.length];
 com.imsl.stat.Sort.descending(areas, idx);
 for (int i = 0; i < perf.length; i++) {
 s_perf[i] = perf[idx[i]];
 s_lab[i] = labels[idx[i]];
 }

 Treemap treemap = new Treemap(axis, areas, s_perf,
 Colormap.BLUE_GREEN_RED_YELLOW);
 treemap.setLabels(s_lab);
 treemap.setTextColor(java.awt.Color.gray);
 treemap.getTreemapLegend().setPaint(true);
 treemap.getTreemapLegend().setTitle("Scale");
 treemap.getTreemapLegend().setTextFormat("0.0");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 TreemapEx2.setup(frame.getChart());
 frame.setVisible(true);
}
}
 输出

Treemap.Legend class

public class com.imsl.chart.Treemap.Legend extends com.imsl.chart.AxisXY

A legend for use with a treemap.

This Legend should be used with treemaps, rather than the usual chart legend. The “Viewport” attribute
for this node is set to [0.83,0.98] by [0.1,0.6].

Method

```java
public void paint(Draw draw)
```

Description

Paints this node and all of its children. This is normally called only by the `paint` method in this node’s parent.

Parameter

- `draw` – The `Draw` object to be painted.

Colormap interface

```java
public interface com.imsl.chart.Colormap
```

Colormaps are mappings from the unit interval to Colors. They are a one-dimensional parameterized path through the color cube.

Fields

```java
BLUE
```

```java
static final public Colormap BLUE
```

Linear blue colormap.

```java
BLUE_GREEN_RED_YELLOW
```

```java
static final public Colormap BLUE_GREEN_RED_YELLOW
```

Blue/green/red/yellow colormap.

```java
BLUE_RED
```

```java
static final public Colormap BLUE_RED
```

Blue/red colormap.

```java
BLUE_WHITE
```

```java
static final public Colormap BLUE_WHITE
```

1764 • Colormap JMSL
Blue/white colormap.

BW_LINEAR
static final public Colormap BW_LINEAR

Black and white (grayscale) colormap.

GREEN
static final public Colormap GREEN

Linear green colormap.

GREEN_PINK
static final public Colormap GREEN_PINK

Green/pink colormap.

GREEN_RED_BLUE_WHITE
static final public Colormap GREEN_RED_BLUE_WHITE

Green/red/blue/white colormap.

GREEN_WHITE_EXPONENTIAL
static final public Colormap GREEN_WHITE_EXPONENTIAL

Exponential green/white colormap.

GREEN_WHITE_LINEAR
static final public Colormap GREEN_WHITE_LINEAR

Linear green/white colormap.

PRISM
static final public Colormap PRISM

Prism colormap.

RED
static final public Colormap RED

Linear red colormap.

RED_PURPLE
static final public Colormap RED_PURPLE

Red/purple colormap.

RED_TEMPERATURE
static final public Colormap RED_TEMPERATURE

Red temperature colormap.

Chart 2D

Colormap • 1765
SPECTRAL
static final public Colormap SPECTRAL
Spectral colormap.

STANDARD_GAMMA
static final public Colormap STANDARD_GAMMA
Standard gamma colormap.

WB_LINEAR
static final public Colormap WB_LINEAR
Black and white (grayscale) colormap, the reverse of BW_LINEAR.

Method

color
color(double t)

Description
Maps the parameterization interval [0,1] into Colors.

Parameter
t – A parameter value in the interval [0,1].

Returns
A Color value corresponding to t.

Exception
IllegalArgumentException is thrown if t is outside of the range [0,1]

ChartXML class

public class com.imsl.chart.xml.ChartXML implements org.xml.sax.ErrorHandler
Create a Chart from an XML file.
Constructors

ChartXML
public ChartXML(String filename) throws SAXException, IOException, ParserConfigurationException

Description
Creates a ChartXML from an XML file. A validating XML parser is used.

Parameter
filename – is the name of a file containing an XML description of a chart.

Exceptions
IOException if there is a problem reading the file.
SAXException if there is a problem parsing the file.
ParserConfigurationException if there is a problem configuring the XML parser.

ChartXML
public ChartXML(Document document) throws SAXException

Description
Creates a ChartXML from a DOM tree.

Parameter
document – is a description of a chart.

ChartXML
public ChartXML(String filename, boolean validating) throws SAXException, IOException, ParserConfigurationException

Description
Creates a ChartXML from an XML file.

Parameters
filename – is the name of a file containing an XML description of a chart.
validating – is true if a validating parser is to be used.

Exceptions
IOException if there is a problem reading the file.
SAXException if there is a problem parsing the file.
ParserConfigurationException if there is a problem configuring the XML parser.

ChartXML
public ChartXML(InputSource source, boolean validating) throws SAXException, IOException, ParserConfigurationException
Description
Creates a ChartXML from an XML source.

Parameters
- source – is an InputSource containing an XML description of a chart.
- validating – is true if a validating parser is to be used.

Exceptions
- IOException if there is a problem reading the source.
- SAXException if there is a problem parsing the source.
- ParserConfigurationException if there is a problem configuring the XML parser.

Methods

error
public void error(SAXParseException exception)

Description
Receive notification of a recoverable error.

error
protected void error(String key, Object[] args)

Description
Handles error messages.

Parameters
- key – is the key to the error message string in the ErrorMessages bundle in this package.
- args – are the arguments to be filled into the error message string.

fatalError
public void fatalError(SAXParseException exception)

Description
Receive notification of a non-recoverable error.

get
public Object get(String id)

Description
Returns a generated object given the id attribute in the XML tag that created the object. This allows charts generated from XML files to be programmatically manipulated.

getChart
public Chart getChart()
Description
Returns the root node of the chart tree.

getEnumValue
static protected Integer getEnumValue(String value)

Description
Returns the int corresponding to an enumeration. The resource bundle Enum in this package is searched for the value.

keySet
public Set keySet()

Description
Returns the Set view of all id’s defined in the XML file.

main
static public void main(String[] argv) throws Exception

Description
Displays a chart created from an XML file. Usage: java com.imsl.chart.xml.ChartXML filename

stringToObject
protected Object stringToObject(Class theClass, String value)

Description
Converts a String into an Object of the given class.

warning
public void warning(SAXParseException exception)

Description
Receive notification of a warning.
Chapter 27: Quality Control and Improvement Charts

Types

- `class ShewhartControlChart` ... 1771
- `class ControlLimit` ... 1777
- `class XbarR` ... 1779
- `class RChart` ... 1785
- `class XbarS` ... 1789
- `class SChart` ... 1796
- `class XmR` ... 1799
- `class NpChart` ... 1802
- `class PChart` ... 1805
- `class CChart` ... 1809
- `class UChart` ... 1812
- `class EWMA` ... 1815
- `class CuSum` ... 1819
- `class CuSumStatus` ... 1822
- `class ParetoChart` ... 1830

ShewhartControlChart class

```java
public class com.imsl.chart.qc.ShewhartControlChart extends com.imsl.chart.Data
```

ShewhartControlChart is the base class for the Shewhart control charts.

The control limits are generally calculated as

\[\text{center} + k\sigma \]
where the meaning of center and σ depend on the specific control chart being drawn. The variable k is the value of the attribute “ControlLimit” associated with the line being drawn. Typically there are three lines with \(k = -3, 0, 3 \).

If all of the samples sizes are equal, the lines are horizontal. If the sample sizes are unequal, the lines have a “stairstep” pattern. Horizontal lines have a title drawn just above the line and right-adjusted on the chart. The contents of the title is determined by the line’s “Title” attribute. If the title contains the placeholder “\{0\}”, it is replaced by the lines value. This replacement is done using java.text.MessageFormat.

Fields

- **d2**

 static final public double[] d2

 This field contains \(d_{2,n} \) the mean of the ranges of \(n \) samples from a Gaussian distribution. The entries for \(n=0 \) and \(1 \) are NaN because these values are not defined. Valid entries in the table are for \(n=2 \) through 50.

- **d3**

 static final public double[] d3

 This field contains \(d_{3,n} \) the standard deviation of the ranges of \(n \) samples from a Gaussian distribution. The entries for \(n=0 \) and \(1 \) are NaN because these values are not defined. Valid entries in the table are for \(n=2 \) through 50.

Constructor

- **ShewhartControlChart**

 public ShewhartControlChart(AxisXY axis)

 Description

 Constructs a Shewhart control chart.

 Parameter

 axis – the AxisXY parent of this node

Methods

- **addCenterLine**

 public ControlLimit addCenterLine()
addControlLimit
public ControlLimit addControlLimit()

Description
Adds the center line to the control chart and returns the newly added line.

Returns
the ControlLimit which draws the center line.

addLowerControlLimit
public ControlLimit addLowerControlLimit()

Description
Adds a control limit to the chart. These can be used as tolerance limit lines or warning control limit lines.

Returns
a ControlLimit object.

addUpperControlLimit
public ControlLimit addUpperControlLimit()

Description
Creates upper ControlLimit, adds it to the control chart, and returns the newly created object.

Returns
the ControlLimit which draws the upper control limit line.

addWecoLimits
public ControlLimit[] addWecoLimits()

Description
Adds lines for the Western Electric Company Rules. These additional lines are at

\[\text{center} + k\sigma \quad \text{for} \quad k = -2, -1, 1, 2 \]

The meaning of center and σ depend on the chart to which these lines are added. The “LineColor” attribute for these lines is set to yellow.

Returns
an array containing the four added lines. They are in order with the ControlLimit corresponding to \(k = -2 \) first and the ControlLimit corresponding to \(k = +2 \) last.

dataRange
public void dataRange(double[] range)
Update the data range, range = \{xmin, xmax, ymin, ymax\}. The entries in range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

\text{range} – a double array which contains the updated range, \{xmin, xmax, ymin, ymax\}

getCenter

\text{public double getCenter()}

Description

Returns the value of the attribute “Center”. This is used to position the center line.

Returns

the value of the attribute “Center”. Its default value is 0.

getCenterLine

\text{public ControlLimit getCenterLine()}

Description

Returns the center line.

Returns

the ControlLimit which draws the center line.

getControlData

\text{public Data getControlData()}

Description

Returns the Data object for the control data.

Returns

a Data object for charting the control data.

getLowerControlLimit

\text{public ControlLimit getLowerControlLimit()}

Description

Returns the lower control limit.

Returns

the ControlLimit which draws the lower control limit line.

getMeanSampleSize

\text{public double getMeanSampleSize()}

Description

Returns the value of the attribute “MeanSampleSize”. This is set by the method setSampleSize. Its default value is zero.
Returns
the average sample size

gSampleSize
public int[] getSampleSize()

Description
Returns the value of the attribute “SampleSize”.

Returns
sampleSize is the value of the attribute “SampleSize”. Its default value is an array of length one containing a one, \([1]\).

getUpperControlLimit
public ControlLimit getUpperControlLimit()

Description
Returns the upper control limit.

Returns
the ControlLimit which draws the upper control limit line.

paint
public void paint(Draw draw)

Description
Paints this node and all of its children. This is normally called only by the paint method in this node’s parent.

Parameter
 - draw – a Draw object which specifies the chart tree to be rendered on the screen

removeControlLimit
public void removeControlLimit(ControlLimit line)

Description
Removes a control limit from the chart.

Parameter
 - line – is the ControlLimit object to be removed from this chart.

setCenter
public void setCenter(double center)

Description
Sets the value of the attribute “Center”. This is used to position the center line. Its default value is 0.
Parameter

center – is the value of the attribute “Center”.

setData

```java
public Data setData(double[] y)
```

Description

Sets the data in the control chart. By default, the data points are drawn as filled circle markers connected by a line.

Parameter

y – is an array containing the data values.

Returns

a Data object containing the data points.

setData

```java
public Data setData(int[] y)
```

Description

Sets the integer data in the control chart. By default, the data points are drawn as filled circle markers connected by a line.

Parameter

y – is an array containing the data values.

Returns

a Data object containing the data points.

setSampleSize

```java
public void setSampleSize(int sampleSize)
```

Description

Sets the value of the attribute “SampleSize”. Its default value is an array of length one containing a one, (new int[]{1}).

Parameter

sampleSize – is the value of the attribute “SampleSize”.

setSampleSize

```java
public void setSampleSize(int[] sampleSize)
```

Description

Sets the value of the attribute “SampleSize”.

1776 • ShewhartControlChart

JMSL
Parameter

sampleSize – is the value of the attribute “SampleSize”.

setX

public void setX(double[] x)

Description

Sets the x-coordinates of the data. The “X” chart attribute of each ControlLimit added to this chart is also set. If not set the values 0, 1, 2, ... are used.

Parameter

x – is an array containing the x-coordinates. The length of x must equal the length of the data array used to construct this object.

ControlLimit class

public class com.imsl.chart.qc.ControlLimit extends com.imsl.chart.Data

ControlLimit is a control limit line on a process control chart.

This class draw either a horizontal line or a stair step line depending on the value of the attribute “Value”. Its value is an array. If the has a just one entry then a horizontal line is drawn at y equal to this value. This line extends across the limit given by the x-axis window attribute. If the array has more than one entry then a stair step line is drawn using the array values as the y-coordinates of the stair step line.

Methods

dataRange

public void dataRange(double[] range)

Description

Update the data range, range = {xmin,xmax,ymin,ymax}. The entries in range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

range – a double array which contains the updated range, {xmin,xmax,ymin,ymax}

cgetControlLimit

public double getControlLimit()
Description
Returns the value of the attribute “ControlLimit”. This is the \(i\)-coordinate at which the line is drawn.

getMaximumValue
```java
public double getMaximumValue()
```

Description
Returns the maximum value of this control limit line.

Returns
the maximum value for this control limit line. The default maximum value is positive infinity (no upper limit).

getMinimumValue
```java
public double getMinimumValue()
```

Description
Returns the minimum value of this control limit line.

Returns
the minimum value for this control limit line. The default minimum value is negative infinity (no lower limit).

getValue
```java
public double[] getValue()
```

Description
Returns the value of this control limit line.

Returns
the \(y\)-coordinate at which this control limit line is drawn.

paint
```java
public void paint(Draw draw)
```

Description
Paints the horizontal control limit line as wide as the window.

setControlLimit
```java
public void setControlLimit(double controlLimit)
```

Description
Sets the attribute “ControlLimit”.

Parameter
controlLimit – is the value of the “ControlLimit” attribute. This is the \(y\)-coordinate at which the line is drawn. Its default value is zero.

setMaximumValue
```java
public void setMaximumValue(double maximumValue)
```
Description
Set the maximum value of this control limit line. The default maximum value is positive infinity (no upper limit).

Parameter

maximumValue – is the maximum value for this control limit line.

setMinimumValue
```
public void setMinimumValue(double minimumValue)
```

Description
Set the minimum value of this control limit line. The default minimum value is negative infinity (no lower limit).

Parameter

minimumValue – is the minimum value for this control limit line.

setValue
```
public void setValue(double y)
```

Description
Sets the value of this control limit line. The actual value used is subject to minimum and maximum values set as attributes to this object.

Parameter

y – is the y-coordinate at which this control limit line is drawn.

setValue
```
public void setValue(double[] y)
```

Description
Sets the value of this control limit line to an array of values.

Parameter

y – is an array containing the y-coordinates of a stair step line.

XbarR class

```
public class com.imsl.chart.qc.XbarR extends com.imsl.chart.qc.ShewhartControlChart

XbarR is an X-bar chart for monitoring a process using sample ranges.
```

The control limits are at

\[\bar{x} + k \frac{\tilde{R}}{d_{2,n} \sqrt{n}} \]
where \(\bar{x} \) is the grand mean of all of the observations, \(\bar{R} \) is the mean of the observed ranges, \(n \) is the sample size, and \(k \) is the value of the “ControlLimit” attribute for the limit. Additionally, \(d_{2,n} = E[R]/\sigma \), where \(R \) is the range of data from a Gaussian distribution. Therefore \(\bar{R}/d_{2,n} \) is an estimate of the within sample standard deviation. By default, the chart contains an upper control limit with \(k=3 \), a lower control limit with \(k=-3 \), and a central line equal to \(\bar{x} \). Additional control limits can be added. The method `addWeco` adds control limits with \(k = -2, -1, 1, 2 \).

Constructors

XbarR

```java
public XbarR(AxisXY axis, double[][] x)
```

Description

Creates an X-bar chart from sample data using sample ranges.

Parameters

- `axis` – the AxisXY parent of this node.
- `x` – is an array of arrays containing sample data. The data of the \(i \)-th sample is in \(x[i] \). Each row must have between 2 and 50 entries.

XbarR

```java
public XbarR(AxisXY axis, int sampleSize, double[] xbar, double[] range)
```

Description

Creates an X-bar control chart given the means and ranges for a series of equally sized samples.

Parameters

- `axis` – the AxisXY parent of this node.
- `sampleSize` – is the number of observations in each sample. It must be between 2 and 50.
- `xbar` – is an array containing the mean values for a series of samples.
- `range` – is an array containing the ranges of the samples. The arrays `xbar` and `range` must have the same lengths.

XbarR

```java
public XbarR(AxisXY axis, int[] sampleSize, double[] xbar, double[] range)
```

Description

Creates an X-bar control chart given the means and ranges for a series of unequally sized samples.

Parameters

- `axis` – the AxisXY parent of this node.
- `sampleSize` – is an array containing the number of observations in each sample. Each sample must contain between 2 and 50 observations.
- `xbar` – is an array containing the mean values for a series of samples.
- `range` – is an array containing the ranges of the samples.
Methods

capabilityIndexCp
public double capabilityIndexCp(double lowerSpecificationLimit, double upperSpecificationLimit)

Description
Returns the capability index c_p

$$c_p = \frac{USL - LSL}{6\sigma}$$

where LSL and USL are the lower and upper specification limits and

$$\sigma = \frac{\bar{R}}{d_{2,n} \sqrt{n}}$$

Parameters
lowerSpecificationLimit – is the lower specification limit.
upperSpecificationLimit – is the upper specification limit.

Returns
the capability index.

capabilityIndexCpk
public double capabilityIndexCpk(double lowerSpecificationLimit, double upperSpecificationLimit)

Description
Returns the capability index c_{pk}

$$c_{pk} = \min \left[\frac{USL - \bar{x}}{3\sigma}, \frac{\bar{x} - LSL}{3\sigma} \right]$$

where LSL and USL are the lower and upper specification limits, \bar{x} is the center line, and

$$\sigma = \frac{\bar{R}}{d_{2,n} \sqrt{n}}$$

Parameters
lowerSpecificationLimit – is the lower specification limit.
upperSpecificationLimit – is the upper specification limit.

Returns
the capability index.

createCharts
static public ShewhartControlChart[] createCharts(Chart chart, double[][] x)

Quality Control and Improvement Charts
Description
Creates a combined XbarR chart and RChart from data. The viewport of the XbarR chart is [0.2, 0.9] by [0.1, 0.4]. The viewport of the RChart chart is [0.2, 0.9] by [0.5, 0.8].

Parameters
- chart – is the Chart object which is the parent of the two charts being created.
- x – is an array of arrays containing sample data. The data of the i-th sample is in x[i]. Each sample must contain at least 2 and no more than 50 observations.

Returns
an array of length two containing the XBarR chart and the RChart.

createCharts
static public ShewhartControlChart[] createCharts(Chart chart, int sampleSize, double[] xbar, double[] range)

Description
Creates a combined XbarR chart and RChart given the means and ranges for a series of equally sized samples. The viewport of the XbarR chart is [0.2, 0.9] by [0.1, 0.4]. The viewport of the RChart chart is [0.2, 0.9] by [0.5, 0.8].

Parameters
- chart – is the Chart object which is the parent of the two charts being created.
- sampleSize – is the number of observations in each sample. It must be between 2 and 50.
- xbar – is an array containing the mean values for a series of samples.
- range – is an array containing the ranges of the samples.

Returns
an array of length two containing the XBarR chart and the RChart.

createCharts
static public ShewhartControlChart[] createCharts(Chart chart, int[] sampleSize, double[] xbar, double[] range)

Description
Creates a combined XbarR chart and RChart given the means and ranges for a series of unequally sized samples. The viewport of the XbarR chart is [0.2, 0.9] by [0.1, 0.4]. The viewport of the RChart chart is [0.2, 0.9] by [0.5, 0.8].

Parameters
- chart – is the Chart object which is the parent of the two charts being created.
- sampleSize – is an array containing the number of observations in each sample. Each sample must have between 2 and 50 observations.
- xbar – is an array containing the mean values for a series of samples.
- range – is an array containing the ranges of the samples.
Returns
an array of length two containing the XBarR chart and the RChart.

getRbar

```java
public double getRbar()
```

Description

Returns the value of the “Rbar” attribute, the mean of the ranges for a series of samples.

Returns

the mean of the ranges for a series of samples

prePaint

```java
public void prePaint()
```

Description

Setup chart with current settings.

setRbar

```java
public void setRbar(double rbar)
```

Description

Sets the value of the “Rbar” attribute, the mean of the ranges for a series of samples.

Parameter

`rbar` – is the mean of the ranges for a series of samples.

Example: XbarR Chart

During a manufacturing process 15 samples, each containing 5 items, were measured. An XbarR chart was contructed from the 15 sample ranges. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.);

public class XbarREx1 extends javax.swing.JApplet {

    static private final double data[][] = {
        {44.73, 45.47, 45.39, 45.33, 45.24},
        {46.57, 46.87, 45.40, 46.68, 44.29},
        {46.39, 45.31, 46.74, 46.06, 45.51},
        {45.54, 46.27, 44.57, 45.36, 45.72},
        {45.58, 45.59, 46.02, 45.45, 46.42},
        {45.91, 45.38, 44.98, 44.91, 45.17},
        {45.98, 45.29, 45.50, 45.77, 46.44},
        {46.30, 45.65, 45.21, 45.43, 45.57},
        {45.77, 45.38, 45.65, 45.25, 45.89},
        {44.10, 45.44, 45.27, 45.53, 44.65},
        {45.95, 46.22, 46.71, 45.92, 45.90},
        {44.87, 44.98, 45.91, 45.18, 45.64},
    }
```

Quality Control and Improvement Charts

XbarR • 1783
public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 ShewhartControlChart control[] = XbarR.createCharts(chart, data);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 XbarREx1.setup(frame.getChart());
 frame.setVisible(true);
}

Output

\begin{center}
\begin{figure}
\begin{tabular}{c}
\includegraphics[width=\textwidth]{chart.png}
\end{tabular}
\end{figure}
\end{center}

RChart class

```java
public class com.imsl.chart.qc.RChart extends com.imsl.chart.qc.ShewhartControlChart

RChart is an R chart using sample ranges to monitor the variability of a process. Each sample must contain at least two observations. The range of a sample is the maximum observed value minus the
```

Quality Control and Improvement Charts RChart • 1785
minimum observed value.

The control limits are at

$$\bar{R} + k \frac{d_{3,n}}{d_{2,n}} \bar{R}$$

$$\bar{R}$$ is the mean of the observed ranges, $$n$$ is the sample size, and $$k$$ is the value of the “ControlLimit” attribute for the line. Additionally, $$d_{3,n}$$ is the mean of the distribution of the ranges of $$n$$ samples from the normal distribution with mean zero and standard deviation one. The standard deviation of this distribution is $$d_{3,n}$$. Therefore

$$\frac{d_{3,n}}{d_{2,n}} \bar{R}$$

is an estimator of the standard deviation of the ranges.

By default, the chart contains an upper control limit line with $$k=3$$, a lower control limit line with $$k=-3$$, and a central line with $$k=0$$. Additional control limit lines can be added. The method addWeco adds control limit lines with $$k = -2, -1, 1, 2$$.

Constructors

RChart

```java
public RChart(AxisXY axis, double[][] x)
```

Description

Creates an R chart given sample data.

Parameters

- `axis` – the `AxisXY` parent of this node
- `x` – is an array of arrays containing sample data. The data of the $$i$$-th sample is in $$x[i]$$. Each sample must contain at least 2 and no more than 50 observations.

Exception

`IllegalArgumentException` is thrown if the number of samples is less than 2 or greater than 50.

RChart

```java
public RChart(AxisXY axis, int sampleSize, double[] range)
```

Description

Creates an R chart given the ranges for a series of equally sized samples.

Parameters

- `axis` – the `AxisXY` parent of this node
- `sampleSize` – is the number of observations in each sample. It must be at least 2 and no more than 50.
- `range` – is an array containing the data ranges for a series of samples.
RChart
public RChart(AxisXY axis, int[] sampleSize, double[] range)

Description
Creates an R chart given the means for a series of equally sized samples.

Parameters
axis – the AxisXY parent of this node
sampleSize – is an array containing the number of observations in each sample. It must be at least
2 and no more than 50.
range – is an array containing the data ranges for a series of samples.

Method
prePaint
public void prePaint()

Description
Setup chart with current settings.

Example: R Chart
During a manufacturing process 15 samples, each containing 3 to 5 items, were measured. An R chart
was contructed from the 15 sample ranges. Since the sample sizes are unequal the upper control limit is
a stair step line. This class can be used either as an applet or as an application.

import com.imsl.chart.*;
import com.imsl.chart.qc. *

public class RChartEx1 extends javax.swing.JApplet {

 static private final double data[][] = {
 {44.73, 45.47, 45.39, 45.33, 45.24},
 {45.57, 46.87, 45.40},
 {46.39, 45.31, 46.74, 46.06, 45.51},
 {45.54, 46.27, 44.57, 45.36},
 {45.58, 45.59, 46.02, 45.45, 46.42},
 {45.91, 45.38, 44.98, 44.91, 45.17},
 {45.98, 45.29, 45.50, 45.77, 46.44},
 {46.30, 45.65, 45.21, 45.43},
 {45.77, 45.38, 45.65, 45.25, 45.89},
 {44.10, 45.53, 44.65},
 {45.95, 46.22, 45.92, 45.90},
 {44.87, 44.98, 45.91, 45.18, 45.64},
 {44.70, 45.89, 45.84, 45.07},
 {45.90, 45.80, 46.30, 46.34, 46.34},
 {44.90, 46.23, 45.16}...
public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 new RChart(axis, data);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 RChartEx1.setup(frame.getChart());
 frame.setVisible(true);
}

public class com.imsl.chart.qc.XbarS extends com.imsl.chart.qc.ShewhartControlChart

XbarS is an X-bar chart for monitoring a process using sample standard deviations.
The control limits are at

\[\bar{x} + k \frac{\bar{s}}{c_{4,n} \sqrt{n}} \]

where \(\bar{x} \) is the grand mean of all of the observations, \(n \) is the sample size, and \(k \) is the value of the “ControlLimit” attribute for the limit. Additionally, \(c_{4,n} \) is a factor such that \(\bar{s}/c_{4,n} \) is an unbiased estimator of the within sample standard deviation. By default, the chart contains an upper control limit line with \(k = 3 \), a lower control limit line with \(k = -3 \), and a central line equal to \(\bar{x} \). Additional control limit lines can be added. The method \texttt{addWeco} adds control limits with \(k = -2, -1, 1, 2 \).

Constructors

XbarS

```java
public XbarS(AxisXY axis, double[][] x)
```

Description

Creates an \texttt{XbarS} chart from sample data using within sample standard deviations.

Parameters

- \texttt{axis} – the \texttt{AxisXY} parent of this node.
- \texttt{x} – is an array of arrays containing sample data. The data of the \texttt{i}-th sample is in \texttt{x[i]}. Each row must have at least one entry.

XbarS

```java
public XbarS(AxisXY axis, int sampleSize, double[] xbar, double[] w)
```

Description

Creates an \texttt{XbarS} chart given the means and standard deviations for a series of equally sized samples.

Parameters

- \texttt{axis} – the \texttt{AxisXY} parent of this node
- \texttt{sampleSize} – is the number of observations in each sample. It must be at least one.
- \texttt{xbar} – is an array containing the mean values for a series of samples.
- \texttt{w} – is an array containing the within sample variation for a series of samples.

Exception

\texttt{IllegalArgumentException} is thrown if the two input arrays do not have the same length.

XbarS

```java
public XbarS(AxisXY axis, int[] sampleSize, double[] xbar, double[] w)
```

Description

Creates an \texttt{XbarS} chart given the means and standard deviations for a series of unequally sized samples.
Parameters

- `axis` – the `AxisXY` parent of this node
- `sampleSize` – is an array containing the number of observations in each sample. Each sample must have at least one observation.
- `xbar` – is an array containing the mean values for a series of samples.
- `w` – is an array containing the within sample variation for a series of samples.

Exception

`IllegalArgumentException` is thrown if the three input arrays do not all have the same length.

Methods

`capabilityIndexCp`

public double capabilityIndexCp(double lowerSpecificationLimit, double upperSpecificationLimit)

Description

Returns the capability index c_p

$$c_p = \frac{USL - LSL}{6\sigma}$$

where LSL and USL are the lower and upper specification limits and

$$\sigma = \frac{\bar{s}}{c_{4,n}\sqrt{n}}$$

Parameters

- `lowerSpecificationLimit` – is the lower specification limit.
- `upperSpecificationLimit` – is the upper specification limit.

Returns

the capability index.

`capabilityIndexCpk`

public double capabilityIndexCpk(double lowerSpecificationLimit, double upperSpecificationLimit)

Description

Returns the capability index c_{pk}

$$c_{pk} = \min \left[\frac{USL - \bar{x}}{3\sigma}, \frac{\bar{x} - LSL}{3\sigma} \right]$$
where LSL and USL are the lower and upper specification limits, \bar{x} is the center line, and

$$\sigma = \frac{\bar{x}}{c_4 \sqrt{n}}$$

Parameters

- `lowerSpecificationLimit` – is the lower specification limit.
- `upperSpecificationLimit` – is the upper specification limit.

Returns

the capability index.

createCharts

```java
static public ShewhartControlChart[] createCharts(Chart chart, double[][] x)
```

Description

Creates a combined XbarS chart and SChart from data. The viewport of the XbarS chart is [0.2, 0.9] by [0.1, 0.4]. The viewport of the SChart chart is [0.2, 0.9] by [0.5, 0.8].

Parameters

- `chart` – is the Chart object which is the parent of the two charts being created.
- `x` – is an array of arrays containing sample data. The data of the i-th sample is in $x[i]$. Each row must have at least one entry.

Returns

an array of length two containing the XBarS chart and the SChart.

createCharts

```java
static public ShewhartControlChart[] createCharts(Chart chart, int sampleSize, double[] xbar, double[] w)
```

Description

Creates a combined XbarS chart and SChart given the means and in sample standard deviations for a series of equally sized samples. The viewport of the XbarS chart is [0.2, 0.9] by [0.1, 0.4]. The viewport of the SChart chart is [0.2, 0.9] by [0.5, 0.8].

Parameters

- `chart` – is the Chart object which is the parent of the two charts being created.
- `xbar` – is an array containing the mean values for a series of samples.
- `sampleSize` – is the number of observations in each sample. It must be at least one.
- `w` – is an array containing the in sample standard deviations of the samples.
Returns an array of length two containing the XBarS chart and the SChart.

createCharts
static public ShewhartControlChart[] createCharts(Chart chart, int[] sampleSize, double[] xbar, double[] w)

Description
Creates a combined X-bar chart and S-chart given the means and in sample standard deviations for a series of unequally sized samples.

Parameters
- chart – is the Chart object which is the parent of the two charts being created.
- xbar – is an array containing the mean values for a series of samples.
- sampleSize – is an array containing the number of observations in each sample. Each sample must have at least one observation.
- w – is an array containing the in sample standard deviations of the samples.

Returns
an array of length two containing the XBarS chart and the SChart.

getWbar
public double getWbar()

Description
Returns the value of the “Wbar” attribute, the within sample variation for a series of samples. Its default value is set by the constructor to an estimate of the within sample variation

Returns
the within sample variation for a series of samples.

prePaint
public void prePaint()

Description
Setup chart with current settings.

setWbar
public void setWbar(double wbar)

Description
Sets the value of the “Wbar” attribute, the within sample variation for a series of samples. Its default value is set by the constructor to an estimate of the within sample variation.

Parameter
- wbar – is the within sample variation for a series of samples.
Example: XbarS Chart

During a manufacturing process 15 samples, each containing 12 items, were measured. An XbarS chart was constructed from the 15 sample standard deviations. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.*;

public class XbarSEx1 extends javax.swing.JApplet {
    static private final double data[][] = {
        {23.97, 24.08, 23.16, 23.49, 24.73, 25.26,
         22.97, 23.12, 24.66, 24.20, 24.62, 24.56},
        {24.20, 24.50, 23.45, 22.22, 25.10, 24.41,
         24.05, 23.75, 23.89, 24.83, 25.21, 23.70},
        {23.73, 22.70, 23.54, 24.37, 24.08, 23.74,
         24.08, 23.95, 24.20, 23.43, 24.26, 23.61},
        {23.46, 23.14, 23.96, 23.37, 23.73, 24.29,
         24.13, 23.62, 24.08, 23.73, 23.91, 23.65},
        {23.95, 24.13, 22.95, 24.72, 24.40, 22.82,
         22.66, 22.71, 24.21, 23.39, 23.41, 22.56},
        {24.13, 24.28, 23.84, 24.55, 23.53, 23.77,
         24.38, 22.58, 24.47, 23.63, 22.64, 24.12},
        {23.69, 24.19, 24.76, 23.29, 24.84, 24.12,
         23.83, 22.60, 24.35, 22.96, 23.81, 23.46},
        {24.35, 23.11, 25.24, 24.10, 24.93, 22.93,
         23.47, 23.55, 23.91, 24.08, 22.45, 24.13},
        {24.98, 24.58, 23.52, 24.42, 23.90, 23.55,
         23.67, 24.25, 23.85, 23.08, 23.44, 23.43},
        {23.90, 24.04, 24.29, 23.62, 23.29, 23.16,
         24.34, 24.37, 24.19, 24.33, 22.17, 23.66},
        {23.51, 24.98, 24.34, 23.87, 23.29, 23.96,
         23.06, 23.47, 23.53, 22.87, 23.38, 22.86},
        {23.13, 23.17, 23.40, 23.68, 23.41, 23.67,
         23.37, 24.40, 24.64, 24.16, 24.17, 23.88},
        {23.52, 24.23, 24.25, 24.31, 23.89, 24.02,
         24.04, 23.83, 22.82, 23.93, 23.55, 23.40},
        {23.66, 23.59, 23.79, 24.07, 23.76, 23.34,
         23.65, 23.73, 25.12, 23.65, 23.23, 23.13},
        {23.04, 23.75, 22.84, 23.46, 21.72, 23.81,
         24.51, 24.01, 24.73, 23.88, 23.34, 24.98}];

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        ShewhartControlChart control[] = XbarS.createCharts(chart, data);
    }
```
public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 XbarSEx1.setup(frame.getChart());
 frame.setVisible(true);
}

Output

![Output Diagram]

Quality Control and Improvement Charts XbarS 1795
SChart class

public class com.imsl.chart.qc.SChart extends com.imsl.chart.qc.ShewhartControlChart

SChart is an S chart using sample standard deviations to monitor the variability of a process. This is normally used with sample sizes greater than 10. The control limits are at

\[\bar{s} + k \frac{\bar{s}}{c_{4,n}} \sqrt{1 - c_{4,n}^2} \]

where \(\bar{s} \) is the mean of the within sample standard deviations, \(n \) is the sample size, and \(k \) is the value of the “ControlLimit” attribute for the line. Additionally,

\[c_{4,n} = \sqrt{\frac{2}{n-1} \Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{n+1}{2}\right)} \]

is a factor such that \(\bar{s}/c_{4,n} \) is an unbiased estimator of the within sample standard deviation. By default, the chart contains an upper control limit line with \(k=3 \), a lower control limit line with \(k=-3 \), and a central line equal to \(\bar{s} \). Additional control limit lines can be added. The method addWeco adds control limits with \(k = -2, -1, 1, 2 \).

Constructors

SChart
public SChart(AxisXY axis, double[][] x)

Description
Creates an S chart given sample data.

Parameters
- axis – the AxisXY parent of this node
- x – is an array of arrays containing sample data. The data of the \(i \)-th sample is in \(x[i] \). Each row must have at least two entries.

SChart
public SChart(AxisXY axis, int sampleSize, double[] s)

Description
Creates an S chart given the within sample standard deviations for a series of equally sized samples.
Parameters

axis – the AxisXY parent of this node
sampleSize – is the number of observations in each sample. It must be at least 2.
s – is an array containing the within sample standard deviations for a series of samples.

SChart
public SChart(AxisXY axis, int[] sampleSize, double[] s)

Description
Creates an S chart given the within sample standard deviations for a series of unequally sized samples.

Parameters

axis – the AxisXY parent of this node
sampleSize – is an array containing the number of observations in each sample. All samples must have at least two observations.
s – is an array containing the within sample standard deviations for a series of samples.

Exception
IllegalArgumentException is thrown if the two input arrays do not have the same length.

Method

prePaint
public void prePaint()

Description
Setup chart with current settings.

Example: S Chart
During a manufacturing process 15 samples, each containing up to 12 items, were measured. An S chart was constructed from the 15 sample standard deviations. Since the sample sizes are unequal the upper and lower control limit lines are stair step lines.

This class can be used either as an applet or as an application.

import com.imsl.chart.*;
import com.imsl.chart.qc.*;

public class SChartEx1 extends javax.swing.JApplet {

 static private final double data[][] = {
 {23.97, 24.08, 23.16, 23.49, 24.73, 25.26, 22.97, 23.12, 24.66, 24.20, 24.62, 24.56},
 {24.20, 24.50, 23.45, 24.05, 23.75, 23.89, 24.83, 25.21, 23.70},
 };

Quality Control and Improvement Charts
public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 new SChart(axis, data);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 SChartEx1.setup(frame.getChart());
 frame.setVisible(true);
}
}
XmR class

```java
public class com.imsl.chart.qc.XmR extends com.imsl.chart.qc.ShewhartControlChart

XmR is an XmR chart for monitoring a process using moving ranges.
```

Quality Control and Improvement Charts XmR • 1799
The moving range control chart uses the moving range of two successive observations to measure the process variability. This control chart is used for individual measurements (sample size = 1). The moving range is defined to be \(MR_i = |x_i - x_{i-1}| \). The control limits are at

\[
\bar{x} + k \frac{\overline{MR}}{d_{2,2}}
\]

where \(\bar{x} \) is the mean of all of the individual observations, \(\overline{MR} \) is the mean of the moving averages, and \(k \) is the value of the “ControlLimit” attribute for the line. Additionally, \(d_{2,2} = \frac{E(R)}{\sigma} \) where \(R \) is the range of a Gaussian distribution. Therefore \(\frac{\overline{MR}}{d_{2,2}} \) is an estimate of the standard deviation. By default, the chart contains an upper control limit line with \(k=3 \), a lower control limit line with \(k=-3 \), and a central line equal to \(\bar{x} \). Additionally control limits can be added. The method addWeco adds control limits with \(k = -2, -1, 1, 2 \).

Constructor

XmR

```java
public XmR(AxisXY axis, double[] x)
```

Description

Creates an XmR chart given sample data.

Parameters

- `axis` – the AxisXY parent of this node
- `x` – is an array containing sample data.

Methods

getMRBar

```java
public double getMRBar()
```

Description

Returns the expected mean of all of the moving ranges of two observations.

Returns

the expected mean of the moving ranges.

prePaint

```java
public void prePaint()
```
Description
Setup chart with current settings.

setMRBar
public void setMRBar(double mrBar)

Description
Sets the expected mean of all of the moving ranges of two observations. This defaults to the mean of the moving ranges computed by the constructor from the data. Its default value is the computed from the data passed to the constructor.

Parameter
mrBar – is the expected mean of the moving ranges.

Example: Moving Range Chart
This moving range chart plots the flowrate for 10 batches. The data is from NIST Engineering Statistics Handbook: Individuals Control Charts. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.XmR;

public class XmREx1 extends javax.swing.JApplet {

    static private final double flowrate[] = {
        49.6, 47.6, 49.9, 51.3, 47.8, 51.2, 52.6, 52.4, 53.6, 52.1
    };

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);
        XmR mr = new XmR(axis, flowrate);
    }

    public static void main(String argv[]) {
        JFrameChart frame = new JFrameChart();
        XmREx1.setup(frame.getChart());
        frame.setVisible(true);
    }
}
```

Quality Control and Improvement Charts

XmR • 1801
NpChart class

public class com.imsl.chart.qc.NpChart extends com.imsl.chart.qc.ShewhartControlChart

NpChart is an np-chart for monitoring the number of defects when defects are not rare.
Control limits are computed using the binomial distribution. If defects are rare, \texttt{com.imsl.chart.qc.CChart} (p. 1809) should be used instead. The control limits are at

$$np + k\sqrt{np(1-p)}$$

where \(p\) is the proportion of defective items, \(n\) is the sample size, and \(k\) is the value of the “ControlLimit” attribute for the line. By default, the chart contains an upper control limit line with \(k=3\), a lower control limit line with \(k=-3\), and a central line equal to \(\bar{c}\). If \(p = \bar{c}/n\) is the proportion defective then the equation can be written as

$$np + k\sqrt{np(1-p)}$$

Additional control limits can be added. The method \texttt{addWeco} adds control limits with \(k = -2, -1, 1, 2\). The lower control limit is forced to have a minimum value of zero. The y-axis labels are formatted as integers.

** Constructors **

\textbf{NpChart}

```java
public NpChart(AxisXY axis, int sampleSize, int[] numberDefective)
```

** Description **

Creates an np-Chart given the number of defects in a series of samples.

** Parameters **

- \texttt{axis} – the \texttt{AxisXY} parent of this node.
- \texttt{sampleSize} – is the number of observations in each sample. It must be at least one.
- \texttt{numberDefective} – is an array containing the number of defects in each of a series of samples.
 All of its entries must be nonnegative.

\textbf{NpChart}

```java
public NpChart(AxisXY axis, int[] sampleSize, int[] numberDefective)
```

** Description **

Creates a np-Chart given the number of defects in a series of samples, where the number of observations per sample is not constant.

** Parameters **

- \texttt{axis} – the \texttt{AxisXY} parent of this node.
- \texttt{sampleSize} – is an array containing the number of observations in each sample. Each sample must contain at least one observation.
- \texttt{numberDefective} – is an array containing the number of defects in each of a series of samples.
 All of its entries must be nonnegative.
Method

prePaint
public void prePaint()

Description
Setup chart with current settings.

Example: np-Chart
The location of 50 chips on each of 30 successive wafers is measured. The number of defects is the
number of horizontal or vertical misregistrations of chips. The data is from NIST Engineering Statistics
Handbook: Proportions Control Charts. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.NpChart;

public class NpChartEx1 extends javax.swing.JApplet {

    static private final int numberDefective[] = {
        24, 30, 16, 20, 8, 14, 32, 18, 28, 20, 10, 12, 34,
        24, 44, 16, 20, 10, 26, 22, 40, 36, 48, 30, 18, 24,
        14, 26, 18, 12
    };
    static private final int sampleSize = 100;

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);
        axis.getAxisY().getAxisTitle().setTitle("Number Defective");
        NpChart np = new NpChart(axis, sampleSize, numberDefective);
    }

    public static void main(String argv[]) {
        JFrameChart frame = new JFrameChart();
        NpChartEx1.setup(frame.getChart());
        frame.setVisible(true);
    }
}
```
PChart class

public class com.imsl.chart.qc.PChart extends com.imsl.chart.qc.ShewhartControlChart

PChart is a p-chart for monitoring the defect rate when defects are not rare.
The defect rate is the number of defects found divided by the number of samples inspected. The number of defects are not assumed to be rare. Control limits are computed using the binomial distribution. If defects are rare, use com.imsl.chart.qc.UChart (p. 1812) instead. The control limits are at

\[\bar{p} + k \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \]

where \(\bar{p}\) is the mean defect rate, \(n\) is the sample size, and \(k\) is the value of the “ControlLimit” attribute for the line. By default, the chart contains an upper control limit line with \(k=3\), a lower control limit line with \(k=-3\), and a central line equal to \(\bar{p}\). Additional control limits can be added. The method addWeco adds control limits with \(k = -2, -1, 1, 2\). The true fraction conforming \(p\) can be used by setting the attribute “Center” to \(p\). The lower control limit is forced to have a minimum value of zero. The upper control limit is forced to have a maximum value of one.

Constructors

PChart

```java
public PChart(AxisXY axis, int sampleSize, double[] defectRate)
```

Description

Creates a p-Chart given the defect rates for a series of samples with equal sample sizes.

Parameters

- `axis` – the AxisXY parent of this node
- `sampleSize` – is the number of observations in each sample. It must be at least one.
- `defectRate` – is an array containing defect rates of the samples. The defect rates must all be in the range \([0, 1]\).

PChart

```java
public PChart(AxisXY axis, int[] sampleSize, double[] defectRate)
```

Description

Creates a p-Chart given the defect rates for a series of samples with varying sample sizes.

Parameters

- `axis` – the AxisXY parent of this node
- `sampleSize` – is an array containing the number of observations in each sample. It must be at least one.
- `defectRate` – is an array containing defect rates of the samples. The defect rates must all be in the range \([0, 1]\). The lengths of the arrays `sampleSize` and `defectRate` must be equal.

PChart

```java
public PChart(AxisXY axis, int sampleSize, int[] numberDefects)
```
Description
Creates a p-Chart given the number of defects for a series of samples with equal sample sizes.

Parameters
- **axis** – the AxisXY parent of this node
- **sampleSize** – is the number of observations in each sample. Each sample must contain at least one observation.
- **numberDefects** – is an array containing the number of defects in each of a series of samples. The number of defects should not be less than zero.

```java
public PChart(AxisXY axis, int[] sampleSize, int[] numberDefects)
```

Description
Creates a p-Chart given the number of defects for a series of samples with varying sample sizes.

Parameters
- **axis** – the AxisXY parent of this node
- **sampleSize** – is an array containing the number of observations in each sample. It must be at least one.
- **numberDefects** – is an array of arrays containing the number of defects in each of a series of samples. The number of defects should not be less than zero.

Method

```java
public void prePaint()
```

Description
Setup chart with current settings.

Example: p-Chart
The location of 50 chips on each of 30 successive wafers is measured. The number of defects is the number of horizontal or vertical misregistrations of chips. The data is from NIST Engineering Statistics Handbook: Proportions Control Charts. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.PChart;

public class PChartEx1 extends javax.swing.JApplet {

    static private final double defectRate[] = {
        0.24, 0.3, 0.16, 0.2, 0.08, 0.14, 0.32, 0.18, 0.28, 0.2,
        0.1, 0.12, 0.34, 0.24, 0.44, 0.16, 0.2, 0.1, 0.26, 0.22,
    }
```
static private final int sampleSize = 50;

public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
}

static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 axis.getAxisY().getAxisTitle().setTitle("Defect Rate");
 axis.getAxisY().getAxisLabel().setTextFormat("percent");
 PChart pc = new PChart(axis, sampleSize, defectRate);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 PChartEx1.setup(frame.getChart());
 frame.setVisible(true);
}

};

0.4, 0.36, 0.48, 0.3, 0.18, 0.24, 0.14, 0.26, 0.18, 0.12
Output

CChart class

```java
public class com.imsl.chart.qc.CChart extends com.imsl.chart.qc.ShewhartControlChart

CChart is a c-chart for monitoring the count of the number of defects when defects are rare. Control limits are computed using the Poisson distribution. If defects are not rare
```
com.imsl.chart.qc.NpChart (p. 1802) should be used instead. The control limits are at

\[\bar{c} + k\sqrt{\bar{c}} \]

where \(\bar{c} \) is the mean number of defects per sample and \(k \) is the value of the “ControlLimit” attribute for the line. By default, the chart contains an upper control limit line with \(k=3 \), a lower control limit line with \(k=-3 \), and a central line equal to \(\bar{c} \). Additional control limits can be added. The method `addWeco` adds control limits with \(k = -2, -1, 1, 2 \). The lower control limit is computed using the Poisson distribution. First the probability of the number of defects being less than \(k \) (the “ControlLimit” value) standard deviations from the mean in a normal distribution is computed. The number of defects required to produce the same probability assuming a Poisson distribution, with the same mean, is then computed. The lower limit is set to be one more than this number of defects.

Constructor

CChart

```java
public CChart(AxisXY axis, int[] numberDefects)
```

Description

Creates a C-chart given the number of defects in a series of samples.

Parameters

- `axis` – the `AxisXY` parent of this node
- `numberDefects` – is the number of defects in a series of samples. The number of defects should not be less than zero. There should be the same number of items in each sample.

Method

prePaint

```java
public void prePaint()
```

Description

Setup chart with current settings.

Example: c-Chart

The number of defects on each of 25 successive wafers is plotted. The data is from NIST Engineering Statistics Handbook: Counts Control Charts. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.CChart;
```
public class CChartEx1 extends javax.swing.JApplet {

 static private final int numberOfDefects[] = {
 16, 14, 28, 16, 12, 20, 10, 12, 10, 17, 19, 17, 14, 16, 15, 13,
 14, 16, 11, 20, 11, 19, 16, 31, 13
 };

 public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
 }

 static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 CChart control = new CChart(axis, numberOfDefects);
 }

 public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 CChartEx1.setup(frame.getChart());
 frame.setVisible(true);
 }
}
UChart class

public class com.imsl.chart.qc.UChart extends com.imsl.chart.qc.ShewhartControlChart

UChart is a \(u \)-chart for monitoring the defect rate when defects are rare.
The defect rate is the number of defects found divided by the number of samples inspected. The number of defects are assumed to be rare. Control limits are computed using the Poisson distribution. If defects are not rare, use com.imsl.chart.qc.PChart (p. 1805) instead. The sample sizes are not required to be equal. The control limits are at
\[\bar{p} + k \sqrt{\bar{p}/n} \]
where \(\bar{p} \) is the mean defect rate, \(n \) is the sample size, and \(k \) is the value of the “ControlLimit” attribute for the line. By default, the chart contains an upper control limit line with \(k=3 \), a lower control limit line with \(k=-3 \), and a central line equal to \(\bar{p} \). Additional control limits can be added. The method addWeco adds control limits with \(k = -2, -1, 1, 2 \).

Constructors

UChart

```java
public UChart(AxisXY axis, double sizeSample, int[] numberDefects)
```

Description

Creates a u-Chart given the number of defects for a series of samples with equal sample sizes.

Parameters

- `axis` – the AxisXY parent of this node
- `sizeSample` – is the size of each sample.
- `numberDefects` – is an array of arrays containing the number of defects. The number of defects must all be nonnegative.

UChart

```java
public UChart(AxisXY axis, double[] sizeSample, int[] numberDefects)
```

Description

Creates a u-Chart given the number of defects rates for a series of samples with varying sample sizes.

Parameters

- `axis` – the AxisXY parent of this node
- `sizeSample` – is an array containing the size of each sample.
- `numberDefects` – is an array of arrays containing the number of defects. The number of defects must all be nonnegative. The length of the `sizeSample` and `numberDefects` arrays must be equal.

Method

prePaint

```java
public void prePaint()
```

Quality Control and Improvement Charts
Description
Setup chart with current settings.

Example: u-Chart
The number of defects in each of 12 samples was counted. The number of items in the samples varied from 8 to 12.

This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.UChart;

public class UChartEx1 extends javax.swing.JApplet {

    static private final int numberDefects[] = {
        3, 4, 2, 3, 2, 1, 4, 2, 4, 3, 1, 1
    };
    static private final double sizeSample[] = {
        10, 8, 8, 10, 12, 12, 10, 10, 8, 8, 10, 12
    };

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    static private void setup(Chart chart) {
        AxisXY axis = new AxisXY(chart);
        axis.getAxisY().getAxisTitle().setTitle("Number Defective");
        UChart pcc = new UChart(axis, sizeSample, numberDefects);
    }

    public static void main(String argv[]) {
        JFrameChart frame = new JFrameChart();
        UChartEx1.setup(frame.getChart());
        frame.setVisible(true);
    }
}
```
EWMA class

public class com.imsl.chart.qc.EWMA extends com.imsl.chart.qc.ShewhartControlChart

EWMA is an exponentially weighted moving average control chart.
The EWMA statistic is given by

\[\text{EWMA}_t = \lambda x_t + (1 - \lambda) \text{EWMA}_{t-1} \]

where \(x_t \) is the observation at time \(t \) and \(0 < \lambda \leq 1 \) is the decay parameter which determines the depth of memory of EWMA.

** Constructors**

EWMA

```java
public EWMA(AxisXY axis, double[] x, double lambda)
```

Description

Creates an exponentially weighted moving average chart. The expected mean and standard deviation are computed from the sample data.

Parameters

- `axis` – the `AxisXY` parent of this node
- `x` – is an array containing the data.
- `lambda` – is the decay parameter. It is usually between 0.2 and 0.3.

Exception

`IllegalArgumentException` is thrown if \(0 < \lambda \leq 1 \) does not hold.

```java
public EWMA(AxisXY axis, double[] data, double lambda, double expectedMean, double expectedStandardDeviation)
```

Description

Creates an exponentially weighted moving average chart using the given values for the expected mean and standard deviation.

Parameters

- `axis` – the `AxisXY` parent of this node
- `data` – is an array containing data.
- `lambda` – is the decay parameter. It is usually between 0.2 and 0.3.
- `expectedMean` – is the expected mean of the data.
- `expectedStandardDeviation` – is the expected standard deviation of the data.

Exception

`IllegalArgumentException` is thrown if \(0 < \lambda \leq 1 \) does not hold.
Methods

getLambda

```java
public double getLambda()
```

Description

Returns the value of the attribute “Lambda”. This is the decay parameter.

Returns

the value of the attribute “Lambda”. Its default value is 0.25.

prePaint

```java
public void prePaint()
```

Description

Setup chart with current settings.

setLambda

```java
public void setLambda(double lambda)
```

Description

Sets the value of the attribute “Lambda”. This is the decay parameter. Its default value is 0.25.

Parameter

lambda – is the value of the attribute “Lambda”.

Example: EWMA Chart

A process is monitored using the EWMA control chart. The data is from NIST Engineering Statistics Handbook: EWMA Control Charts. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.*;

public class EWMAEx1 extends javax.swing.JApplet {
    static private final double data[] = {
        52.0, 47.0, 53.0, 49.3, 50.1, 47.0,
        51.0, 50.1, 51.2, 50.5, 49.6, 47.6,
        49.9, 51.3, 47.8, 51.2, 52.6, 52.4,
        53.6, 52.1
    };

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }
}
```

Quality Control and Improvement Charts
static private void setup(Chart chart) {
 AxisXY axis = new AxisXY(chart);
 double lambda = 0.3;
 EWMA ewma = new EWMA(axis, data, lambda);
 ewma.getControlData().setMarkerColor(java.awt.Color.blue);
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 EWMAEx1.setup(frame.getChart());
 frame.setVisible(true);
}
}
CuSum class

```java
public class com.imsl.chart.qc.CuSum extends com.imsl.chart.qc.ShewhartControlChart

CuSum is a cumulative sum chart. It is more efficient than a Shewhart chart for detecting small shifts in the mean of a process. CuSum plots the cumulative sum of the deviations of the expected value. If $\mu_0$ is
```
the expected mean for a process and \(\bar{x}_i \) are the sample means then the cumulative sum is

\[
C_i = C_{i-1} + (\bar{x}_i - \mu_0)
\]

Constructor

CuSum

```java
public CuSum(AxisXY axis, double[] xbar)
```

Description

Creates a CuSum chart given the means of a series of samples.

Parameters

- `axis` – the `AxisXY` parent of this node
- `xbar` – are the means of the samples.

Methods

dataRange

```java
public void dataRange(double[] range)
```

Description

Update the data range. `range = {xmin, xmax, ymin, ymax}`. The entries in range are updated to reflect the extent of the data in this node. The argument `range` is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

- `range` – a double array which contains the updated range, `{xmin, xmax, ymin, ymax}`

getExpectedMean

```java
public double getExpectedMean()
```

Description

Returns the expected mean of all of the data from all of the samples. This is either the mean of the `xbar` data as computed by the constructor or the value set using `setExpectedMean`.

Returns

the expected mean of all of the data.

prePaint

```java
public void prePaint()
```

setExpectedMean

```java
public void setExpectedMean(double expectedMean)
```
Description
Sets the expected mean of all of the data from all of the samples. The value of the ExpectedMean attribute is either the expected mean value or the target mean. This defaults to the mean of the \(\bar{x} \) data given to the constructor.

Parameter
- \texttt{expectedMean} – is the expected mean of all of the data.

Example: CuSum Chart
A CuSum chart is constructed from the data at NIST Engineering Statistics Handbook: CuSum Control Charts. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.chart.qc.CuSum;

public class CuSumEx1 extends javax.swing.JApplet {
    static private final double data[] = {
        324.925, 324.675, 324.725, 324.350, 325.350, 325.225, 324.125,
        324.525, 325.225, 324.600, 324.625, 325.150, 328.325, 327.250,
        327.825, 328.500, 326.675, 327.775, 326.875, 328.350
    };

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    private void setup(final Chart chart) {
        AxisXY axis = new AxisXY(chart);
        double mean = 325;
        CuSum cusum = new CuSum(axis, data);
        cusum.setExpectedMean(mean);
    }

    public static void main(String argv[]) {
        JFrameChart frame = new JFrameChart();
        new CuSumEx1().setup(frame.getChart());
        frame.setVisible(true);
    }
}
```
CuSumStatus class

public class com.imsl.chart.qc.CuSumStatus extends com.imsl.chart.qc.ShewhartControlChart

CuSumStatus is a cumulative sum status chart. CuSumStatus plots the tabular CuSum results.
The one-sided upper and lower cusums, C^+ and C^- are computed. These are plotted as two bar charts. The C^+ are plotted as a bar chart above the x-axis and C^- is below the axis. By default, in-control bars are green and out-of-control bars are red.

Control limit lines are drawn at $\pm h$, where h is the value of the `getAbsoluteH`. This can be set either to an absolute number, using `setAbsoluteH`, or relative to the standard deviation of the data, using `setRelativeH`.

Constructor

CuSumStatus

```java
public CuSumStatus(AxisXY axis, double[] data, double expectedMean, double slackValue)
```

Description

Creates a CuSumStatus chart.

Parameters

- `axis` – the `AxisXY` parent of this node
- `data` – is an array of measurements of a continuous variable.
- `expectedMean` – is the expected (or target) mean.
- `slackValue` – is the slack value. This is also called K, or the reference value or the allowance.

Methods

addDataMarkers

```java
public Data addDataMarkers()
```

Description

Adds the original data to the chart on a newly created axis. The new axis is stored as attribute “DataMarkersAxis” and the new Data node is stored as attribute “DataMarkers”.

Returns

the Data object containing the markers.

```java
public Data addDataMarkers(AxisXY axisDataMarkers)
```

Description

Adds the original data to the chart. The axis is stored as attribute “DataMarkersAxis” and the new Data node is stored as attribute “DataMarkers”.

Quality Control and Improvement Charts CuSumStatus
Parameter

axisDataMarkers – is the axis for the data markers.

Returns
the Data object containing the markers.

creatDataAxis
public AxisXY createDataAxis()

Description
Creates a new axis to hold a cumulative line. The created axis is drawn on the right side. Its x-axis is not drawn, since it would overlap with the primary chart axis. The x-axis is set to have the same window size as the original axis and its autoscaling attribute is turned off.

Returns
the newly created axis.

getAbsoluteH
public double getAbsoluteH()

Description
Returns the value for H used for setting limits. There is no attribute “AbsoluteH”. This method computes its value using the value of the attribute “RelativeH”.

Returns
the value for H.

getBarMinus
public Bar getBarMinus()

Description
Returns the value of the attribute “BarMinus” containing the C^- bars. To access the C^- bars for where the process is in control, apply the method getBarSet(0,0) to the Bar object returned by this method. For the bars for where the process is not in control, apply the method getBarSet(1,0) to the Bar object returned by this method.

Returns
the Bar object for the negative CuSum bars.

getBarPlus
public Bar getBarPlus()

Description
Returns the value of the attribute “BarPlus” containing the C^+ bars. To access the C^+ bars for where the process is in control, apply the method getBarSet(0,0) to the Bar object returned by this method. For the bars for where the process is not in control, apply the method getBarSet(1,0) to the Bar object returned by this method.
Returns
the Bar object for the positive CuSum bars.

getCMinus
public double[] getCMinus()

Description
Returns the C^- values.

Returns
an array containing the C^- values.

getCPlus
public double[] getCPlus()

Description
Returns the C^+ values.

Returns
an array containing the C^+ values.

dataMarkers
public Data getDataMarkers()

Description
Returns the “DataMarkers” attribute containing the data markers.

Returns
the data markers Data object.

dataMarkersAxis
public AxisXY getDataMarkersAxis()

Description
Returns the “DataMarkersAxis” attribute containing the axis associated with the data markers. This is normally the right-side axis.

Returns
AxisXY associated with the data markers.

genericMean
public double getExpectedMean()

Description
Returns the expected (target) mean value.
Returns
the expected (target) mean value.

getInitialCMinus
public double getInitialCMinus()

Description
Returns the initial value of \(C^- \). This is used to initiate a fast initial response (headstart). Typically, this would be set to \(H/2 \) for a 50% headstart. Its default value is zero.

Returns
initialCMinus is the initial value for \(C^- \).

getInitialCPlus
public double getInitialCPlus()

Description
Returns the initial value of \(C^+ \). This is used to initiate a fast initial response (headstart). Typically, this would be set to \(H/2 \) for a 50% headstart. Its default value is zero.

Returns
initialCPlus is the initial value for \(C^+ \).

getNMinus
public int[] getNMinus()

Description
Returns \(N^- \), the number of consecutive periods that the cusums \(C^-_i \) have been nonzero.

Returns
an array containing the \(N^- \) values.

getNPlus
public int[] getNPlus()

Description
Returns \(N^+ \), the number of consecutive periods that the cusums \(C^+_i \) have been nonzero.

Returns
an array containing the \(N^+ \) values.

getRelativeH
public double getRelativeH()

Description
Returns the value for relative \(h \). This is the value of the attribute “RelativeH”. Its default value is 3.0.
Returns
the relative h value.

getSigma
public double getSigma()

Description
Returns the standard deviation of the data.

Returns
a double containing the standard deviation.

getSlackValue
public double getSlackValue()

Description
Returns the slack value. This is also called K, or the reference value or the allowance.

Returns
the slack value.

prePaint
public void prePaint()

Description
Setup chart with current settings.

print
public void print()

Description
Prints the tabular CuSum results. This prints the input data, C^+, N^+, C^-, N^-.

setAbsoluteH
public void setAbsoluteH(double H)

Description
Sets the value for h used for setting limits. The relative h and absolute H are related by $H = h\sigma$. There is no attribute “AbsoluteH”. This method sets the attribute “RelativeH”.

Parameter

- **H** – the value for absolute H.

setExpectedMean
public void setExpectedMean(double expectedMean)

Description
Sets the expected mean of all of the data from all of the samples. The value of the ExpectedMean attribute is either the expected mean value or the target mean. This defaults to the mean of the xbar data given to the constructor.
Parameter

- **expectedMean** – is the expected mean of all of the data.

setInitialCMinus
public void setInitialCMinus(double initialCMinus)

Description

Sets the initial value of C^-. This is used to initiate a fast initial response (headstart). Typically, this would be set to $H/2$ for a 50% headstart.

Parameter

- **initialCMinus** – is the initial value for C^-.

setInitialCPlus
public void setInitialCPlus(double initialCPlus)

Description

Sets the initial value of C^+. This is used to initiate a fast initial response (headstart). Typically, this would be set to $H/2$ for a 50% headstart.

Parameter

- **initialCPlus** – is the initial value for C^+.

setRelativeH
public void setRelativeH(double h)

Description

Sets the value for relative h. This sets the value of the attribute “RelativeH”.

Parameter

- **h** – the value for h.

setSigma
public void setSigma(double sigma)

Description

Sets the standard deviation of the data. The default is the sample standard deviation of the data used to construct the chart.

Parameter

- **sigma** – is the value to be used for the standard deviation.

setX
public void setX(double[] x)

Description

Sets the x-coordinates of the bars. This also sets the “BarWidth” attribute to $(x[1] - x[0]) / 2$.

Parameter

- is an array containing the x-coordinates. Its length must equal the length of the data array used to construct this object.

Example: CuSumStatus Chart

A process is monitored using the CuSumStatus control chart. The solid red bars indicate the process is out-of-control. The hollow green bars indicate that the process is in control. The data is from NIST Engineering Statistics Handbook: CuSumStatus Control Charts. This class can be used either as an applet or as an application.

```java
import com.imsl.chart.*;
import com.imsl.stat.Summary;
import com.imsl.chart.qc.CuSumStatus;

public class CuSumStatusEx1 extends javax.swing.JApplet {

    static private final double data[] = {
        52.0, 47.0, 53.0, 49.3, 50.1, 47.0,
        51.0, 50.1, 51.2, 50.5, 49.6, 47.6,
        49.9, 51.3, 47.8, 51.2, 52.6, 52.4,
        53.6, 52.1
    };

    public void init() {
        Chart chart = new Chart(this);
        JPanelChart panel = new JPanelChart(chart);
        getContentPane().add(panel, java.awt.BorderLayout.CENTER);
        setup(chart);
    }

    private void setup(final Chart chart) {
        AxisXY axis = new AxisXY(chart);
        double mean = Summary.mean(data);
        double slackValue = 0.5;
        CuSumStatus cusum = new CuSumStatus(axis, data, mean, slackValue);
        cusum.getBarPlus().getBarSet(0, 0).setFillType(cusum.FILL_TYPE_NONE);
        cusum.getBarMinus().getBarSet(0, 0).setFillType(cusum.FILL_TYPE_NONE);
        cusum.getBarPlus().getBarSet(0, 0).setFillOutlineColor(java.awt.Color.green);
        cusum.getBarMinus().getBarSet(0, 0).setFillOutlineColor(java.awt.Color.green);
    }

    public static void main(String[] argv) {
        JFrameChart frame = new JFrameChart();
        new CuSumStatusEx1().setup(frame.getChart());
        frame.setVisible(true);
    }
}
```

Quality Control and Improvement Charts

CuSumStatus • 1829
ParetoChart class

```java
public class com.imsl.chart.qc.ParetoChart extends com.imsl.chart.Bar

ParetoChart is a Pareto bar chart. The bars are sorted into descending order. It is used in quality assurance tracking to identify and prioritize areas of greatest impact. It extends Bar.
```
The method addCumulativeLine adds a cumulative percentage line to the chart. This is the percent of defects accounted for by the current item and items to its left. If the cumulative percentage line is added, a second axis is created on the right. This is required because the units for this line are 0% to 100%. The units of the original axis (on the left) are the number of defects.

Constructors

ParetoChart

```java
public ParetoChart(AxisXY axisBar, String[] labels, int[] numberDefects)
```

Description

Constructs a Pareto chart.

Parameters

- `axisBar` – the AxisXY parent of this node. Its formatting is changed to integer formatting.
- `labels` – a String array which contains the labels for the data values.
- `numberDefects` – an int array which contains the number of defects. These data values must be in the same order as the values in `labels`, but they do not need to be sorted.

Exception

- `IllegalArgumentException` is thrown if the length of the `labels` and `numberDefects` arrays are unequal or if any element of `numberDefects` is negative.

ParetoChart

```java
public ParetoChart(AxisXY axisBar, String[] labels, int[] numberDefects, double maximumFractionCategoriesPlotted, String otherLabel)
```

Description

Constructs a Pareto chart showing only the most important bars. The numberDefects-axis formatting is changed to integer formatting.

Parameters

- `axisBar` – the AxisXY parent of this node. Its formatting is changed to integer formatting.
- `labels` – a String array which contains the labels for the data values.
- `numberDefects` – an int array which contains the number of defects. These data values must be in the same order as the values in `labels`, but they do not need to be sorted.
- `maximumFractionCategoriesPlotted` – is maximum cumulative fraction to be represented in separate categories. The remaining categories are consolidated into a single bar. A typical value for this argument is 0.80. This must be at least 0 and no more than 1.
- `otherLabel` – is the label of the bar holding total defect count of the categories not plotted.
Exception
IllegalArgumentException is thrown if the length of the labels and numberDefects arrays are unequal or if any element of numberDefects is negative.

ParetoChart
public ParetoChart(AxisXY axisBar, String[] labels, int[] numberDefects, int maximumCategoriesPlotted, String otherLabel)

Description
 Constructs a Pareto chart showing only a limited number of bars. The numberDefects-axis formatting is changed to integer formatting.

Parameters
 axisBar – the AxisXY parent of this node
 labels – a String array which contains the labels for the data values.
 numberDefects – an int array which contains the number of defects. These data values must be in the same order as the values in labels, but they do not need to be sorted.
 maximumCategoriesPlotted – is the maximum number of categories to be plotted. Categories with smaller number of defects are consolidated into a single bar. The total number of bars will be maximumCategoriesPlotted+1. This must be at least 0 and no more than the length of numberDefects.
 otherLabel – is the label of the bar holding total defect count of the categories not plotted.

Exception
IllegalArgumentException is thrown if the length of the labels and numberDefects arrays are unequal or if any element of numberDefects is negative.

Methods

addCumulativeLine
public Data addCumulativeLine()

Description
 Creates a new right-side axis and adds a cumulative line to it.

Returns
 a Data object containing the cumulative percentage line.

addCumulativeLine
public Data addCumulativeLine(AxisXY axisCumulativeLine)

Description
 Adds a cumulative line to the specified axis.
Parameter

axisCumulativeLine – is the axis for the cumulative line.

createCumulativeLineAxis

public AxisXY createCumulativeLineAxis()

Description

Creates a new axis to hold a cumulative line. The created axis is drawn on the right side. Its x-axis is not
drawn, since it would overlap with the primary Pareto chart axis. Its y-axis is labeled using the “percent”
format. Its y-axis is scaled to [0,1], it is not autoscaled.

Returns

the newly created axis

cumulativeAxis

public AxisXY getCumulativeAxis()

Description

Returns the “CumulativeAxis” attribute.

Returns

AxisXY object containing the cumulative line.

cumulativeLine

public Data getCumulativeLine()

Description

Returns the “CumulativeLine” attribute.

Returns

the cumulative line Data object.

Example: Pareto Chart

The number of defects caused by four different factors were measured and plotted as a Pareto Chart. The
class ParetoChart sorts the factors in order of number of defects. This class can be used either as an
applet or as an application.

import com.imsl.chart.*;
import com.imsl.chart.qc.ParetoChart;

public class ParetoEx1 extends javax.swing.JApplet {

 public void init() {
 Chart chart = new Chart(this);
 JPanelChart panel = new JPanelChart(chart);
 getContentPane().add(panel, java.awt.BorderLayout.CENTER);
 setup(chart);
 }
}
static private void setup(Chart chart) {
 AxisXY axisBar = new AxisXY(chart);
 int numberDefects[] = {71, 23, 128, 37};
 String labels[] = {"Gear", "Diode", "Relay", "Spindle"};
 ParetoChart paretos = new ParetoChart(axisBar, labels, numberDefects);
 paretos.setFillColor(java.awt.Color.red);
 paretos.addCumulativeLine();
 Data cumulativeLine = paretos.getCumulativeLine();
 cumulativeLine.setMarkerType(Data.MARKER_TYPE_FILLED_CIRCLE);
 cumulativeLine.setLineColor(java.awt.Color.blue);
 cumulativeLine.setMarkerColor(java.awt.Color.blue);
 chart.getChartTitle().setTitle("Manufacturing Defects");
 axisBar.getAxisY().getAxisTitle().setTitle("Defects");
 paretos.getCumulativeAxis().getAxisY().getAxisTitle().setTitle("Cumulative Defect Percentage");
}

public static void main(String argv[]) {
 JFrameChart frame = new JFrameChart();
 ParetoEx1.setup(frame.getChart());
 frame.setVisible(true);
}

Chapter 27. Quality Control and Improvement Charts

ParetoChart • 1835
Chapter 28: Chart 3D

Types

class Chart3D .. 1837
class JFrameChart3D ... 1840
class ChartNode3D ... 1842
class Background ... 1852
class Canvas3DChart ... 1852
class BufferedImage .. 1856
class ChartLights .. 1857
class AmbientLight ... 1857
class DirectionalLight .. 1858
class PointLight ... 1860
class AxisXYZ ... 1861
class AxisBox ... 1863
class Axis3D .. 1865
class AxisLabel ... 1868
class AxisLine ... 1869
class AxisTitle ... 1869
class MajorTick .. 1870
class Surface .. 1870
class Data ... 1881
interface ColorFunction ... 1893
class ColormapLegend .. 1893

Chart3D class

public class com.imsl.chart3d.Chart3D extends com.imsl.chart3d.ChartNode3D
implements Serializable
Constructor

Chart3D
public Chart3D()

Description
Creates a new instance of Chart3D

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

cleanup
public void cleanup()

Description
Cleanup memory use and references used by the chart. Typically it should be invoked by an applet's destroy method.

cloned
public Object clone()

Description
Returns a clone of the graphics tree.

Returns
an Object which is a clone of this graphics tree

cloned
protected Object clone(Map hashClonedNode)

Description
Returns a clone of this node.

Parameter
hashClonedNode – the Hashtable to be cloned
Returns an Object which is a clone of this node

finalize
protected void finalize()

getBackground
public Background getBackground()

Description
Returns the value of the “Background” attribute. This is the node used to draw the chart’s background.

Returns
The Background value of the “Background” attribute, if defined. Otherwise, null is returned.

getCanvas
public Canvas3D getCanvas()

getKeyboard
public boolean getKeyboard()

Description
Returns the value of the “Keyboard” attribute. If true then the mouse can be used to zoom, translate and reset the chart. Its default value is true.

Returns
the value for the “Keyboard” attribute.

getOrbit
public boolean getOrbit()

Description
Returns the value of the “Orbit” attribute. If true then the mouse can be used to rotate, zoom and translate the chart. Its default value is true.

Returns
the value for the “Orbit” attribute.

getViewPlatformTransformation
public void getViewPlatformTransformation(Transform3D t3d)

Description
Sets the transformation for the view platform.

Parameter
t3d – is set to the ViewPlatform transformation.

resetViewPlatformTransformation
public void resetViewPlatformTransformation()
Description
Resets the view platform transformation to its default value.

setCanvas
public void setCanvas(Canvas3D canvas)

Description
Sets the value of the “Keyboard” attribute. If true then the keyboard can be used to zoom, translate and reset the chart.

Parameter
keyboard – is the value for the “Keyboard” attribute.

setOrbit
public void setOrbit(boolean orbit)

Description
Sets the value of the “Orbit” attribute. If true then the mouse can be used to rotate, zoom and translate the chart.

Parameter
orbit – is the value for the “Orbit” attribute.

setViewPlatformTransformation
public void setViewPlatformTransformation(Transform3D t3d)

Description
Sets the transformation for the view platform.

Parameter
t3d – is the new ViewPlatform transformation.

JFrameChart3D class

public class com.imsl.chart3d.JFrameChart3D extends javax.swing.JFrame implements Serializable

JFrameChart3D is a JFrame that contains a chart. It is designed to allow simple charting applications to be quickly implemented. It contains a menu bar with “Print” and “Exit” menu items.
Constructors

JFrameChart3D

public JFrameChart3D()

Description

Creates new JFrameChart3D to display a chart.

JFrameChart3D

public JFrameChart3D(Chart3D chart)

Description

Creates new JFrameChart3D to display a given chart.

Parameter

chart – is the Chart to be displayed

Methods

getCanvas

public Canvas3DChart getCanvas()

Description

Returns the Canvas3DChart into which the chart is drawn.

getChart3D

public Chart3D getChart3D()

Description

Return the Chart object.

Returns

the chart being displayed by this container

render

public void render()

Description

Renders the 3D chart node tree into a Java 3D scene graph.
ChartNode3D class

abstract public class com.imsl.chart3d.ChartNode3D extends com.imsl.chart.AbstractChartNode implements Serializable

The base class of all of the nodes in the 3D chart tree.

Fields

AXIS_TITLE_AT_END
static final public int AXIS_TITLE_AT_END
Value for attribute “AxisTitlePosition” indicating that the axis title should be placed at the end of the axis.

AXIS_TITLE_PARALLEL
static final public int AXIS_TITLE_PARALLEL
Value for attribute “AxisTitlePosition” indicating that the axis title should be placed parallel to the axis.

DATA_TYPE_LINE
static final public int DATA_TYPE_LINE
Value for attribute “DataType” indicating that the data points should be connected with line segments. This is the default setting.

DATA_TYPE_MARKER
static final public int DATA_TYPE_MARKER
Value for attribute “DataType” indicating that a marker should be drawn at each data point.

DATA_TYPE_PICTURE
static final public int DATA_TYPE_PICTURE
Value for attribute “DataType” indicating that an image (attribute “Image”) should be drawn at each data point. This can be used to draw fancy markers.

DATA_TYPE_TUBE
static final public int DATA_TYPE_TUBE
Value for attribute “DataType” indicating that a tube connecting the data points should be drawn. Tubes are similar to lines, but tubes are shaded. The diameter of the tube is controlled by the attribute “LineWidth”. Tube color is controlled by the attribute “LineColor”.

MARKER_TYPE_CUBE
static final public int MARKER_TYPE_CUBE
Flag for a cube data marker.

```java
public static final int MARKER_TYPE_CUSTOM
```
Flag for a custom marker

```java
public static final int MARKER_TYPE_PLUS
```
Flag for a 3D plus sign data marker.

```java
public static final int MARKER_TYPE_SIMPLE_CUBE
```
Flag for a simple cube (no edge) data marker.

```java
public static final int MARKER_TYPE_SIMPLE_PLUS
```
Flag for a simple 2D plus sign (no edge) data marker.

```java
public static final int MARKER_TYPE_SIMPLE_TETRAHEDRON
```
Flag for a simple tetrahedron (no edge) data marker.

```java
public static final int MARKER_TYPE_SPHERE
```
Flag for a sphere data marker.

```java
public static final int MARKER_TYPE_TETRAHEDRON
```
Flag for a tetrahedron data marker.

Constructor

```java
public ChartNode3D(ChartNode3D parent)
```

Description

Construct a `ChartNode3D` object.

Parameter

- `parent` – the `ChartNode3D` parent of this object
Methods

addToSceneGraph

```java
abstract protected void addToSceneGraph(Group parent)
```

Description

Called to add this object to the scene graph.

Parameter

parent – is the node in the scene graph at which this object is to be added.

getAxisTitlePosition

```java
public int getAxisTitlePosition()
```

Description

Returns the value of the “AxisTitlePosition” attribute.

Returns

The int value of the “AxisTitlePosition” attribute, if defined. Otherwise, AXIS_TITLE_AT_END is returned.

getBoundingSphere

```java
public BoundingSphere getBoundingSphere()
```

Description

Gets the spherical bounding region object BoundingSphere.

Returns

a BoundingSphere object which is defined by a centerpoint and a radius.

getChildren

```java
final public ChartNode3D[] getChildren()
```

Description

Returns an array of the children of this node. If there are no children, a 0-length array is returned.

Returns

a ChartNode3D array which contains the children of this node

getColorFunction

```java
public ColorFunction getColorFunction()
```

Description

Returns the value of the “ColorFunction” attribute.

Returns

The ColorFunction value of the “ColorFunction” attribute, if defined. If not defined null is returned.

getConcatenatedViewport

```java
public double[] getConcatenatedViewport()
```

1844 • ChartNode3D

JMSL
Description
Returns the value of the “Viewport” attribute concatenated with the “Viewport” attributes set in its ancestor nodes.

Returns
a double[4] array containing xmin, xmax, ymin, ymax, zmin, zmax

getDataType
public int getDataType()

Description
Returns the value of the “DataType” attribute.

Returns
The int value of the “DataType” attribute, if defined. Otherwise, DATA_TYPE_MARKER is returned.

getLightingEnabled
public boolean getLightingEnabled()

Description
Returns the value of the “LightingEnabled” attribute.

Returns
true if lights are to be used. Its default value is true.

getMarkerPulsingCycle
public double getMarkerPulsingCycle()

Description
Returns the value of the “MarkerPulsingCycle” attribute.

Returns
The double value of the “MarkerPulsingCycle” attribute, if defined. Otherwise, a default of 0.0 is returned.

getMarkerPulsingCycleOffset
public double getMarkerPulsingCycleOffset()

Description
Returns the value of the “MarkerPulsingCycleOffset” attribute.

Returns
The double value of the “MarkerPulsingCycleOffset” attribute, if defined. Otherwise, a default of 0.0 is returned.

getMarkerPulsingMaximumScale
public double getMarkerPulsingMaximumScale()

Description
Returns the value of the “MarkerPulsingMaximumScale” attribute.
Returns
The double value of the “MarkerPulsingMaximumScale” attribute, if defined. Otherwise, a default of 2.0 is returned.

getMarkerPulsingMaximumScale
public double getMarkerPulsingMinimumScale()

Description
Returns the value of the “MarkerPulsingMaximumScale” attribute.

Returns
The double value of the “MarkerPulsingMaximumScale” attribute, if defined. Otherwise, a default of 2.0 is returned.

getMarkerPulsingMinimumScale
public double getMarkerPulsingMinimumScale()

Description
Returns the value of the “MarkerPulsingMinimumScale” attribute.

Returns
The double value of the “MarkerPulsingMinimumScale” attribute, if defined. Otherwise, a default of 0.0 is returned.

getMarkerRotatingAxis
public double[] getMarkerRotatingAxis()

Description
Returns the value of the “MarkerRotatingAxis” attribute.

Returns
The double value of the “MarkerRotatingAxis” attribute, if defined. Otherwise, a default of 0.0 is returned.

getMarkerRotatingCycle
public double getMarkerRotatingCycle()

Description
Returns the value of the “MarkerRotatingCycle” attribute.

Returns
The double value of the “MarkerRotatingCycle” attribute, if defined. Otherwise, a default of 0.0 is returned.

getMarkerRotatingCycleOffset
public double getMarkerRotatingCycleOffset()

Description
Returns the value of the “MarkerRotatingCycleOffset” attribute.

Returns
The double value of the “MarkerRotatingCycleOffset” attribute, if defined. Otherwise, a default of 0.0 is returned.

getMarkerType
public int getMarkerType()

Description
Returns the value of the “MarkerType” attribute.
Returns
The int value of the “MarkerType” attribute, if defined. Otherwise, a default of MARKER_TYPE_CUBE is returned.

getMaterial

```java
public Material getMaterial()
```

Description

Returns the value of the “Material” attribute.

Returns

The value of the “Material” attribute, if defined. Otherwise, a default of material is returned.

getParent

```java
public ChartNode3D getParent()
```

Description

Returns the parent of this node. Note that this is not an attribute setting. Note that there is no setParent function.

Returns

A ChartNode3D object which contains this node’s parent. This is null in the case of the root node of the chart tree, since that node has no parent.

getTitle

```java
public String getTitle()
```

Description

Returns the value of the “Title” attribute.

Returns

the String value of the “Title” attribute

getViewport

```java
public double[] getViewport()
```

Description

Returns the value of the “Viewport” attribute.

Returns

a double[6] array containing xmin, xmax, ymin, ymax, zmin, zmax

getVirtualUniverse

```java
public VirtualUniverse getVirtualUniverse()
```

Description

Returns the value of the “Universe” attribute.
Returns
The value of the “Universe” attribute.

getZ
public double[] getZ()

Description
Returns the value of the “Z” attribute.

Returns
the double array which contains the value of the “Z” attribute

setAxisTitlePosition
public void setAxisTitlePosition(int value)

Description
Sets the value of the “AxisTitlePosition” attribute.

Parameter
value – “AxisTitlePosition” value. This should be AXIS_TITLE_AT_END or
AXIS_TITLE_PARALLEL. AXIS_TITLE_AT_END is the default value.

setBoundingSphere
public void setBoundingSphere(BoundingSphere bounds)

Description
Sets the spherical bounding region object BoundingSphere.

Parameter
bounds – a BoundingSphere object which is defined by a centerpoint and a radius.

setColorFunction
public void setColorFunction(ColorFunction colorFunction)

Description
Sets the value of the “ColorFunction” attribute. ColorFunction defines a value-dependent coloring.

Parameter
colorFunction – defines a mapping from x,y,z to a color.

setDataType
public void setDataType(int value)

Description
Sets the value of the “DataType” attribute.
Parameter
 value – “DataType” value. This should be some xor-ed combination of DATA_TYPE_LINE, DATA_TYPE_MARKER.

setLightingEnabled
public void setLightingEnabled(boolean lightingEnabled)

Description
Sets the value of the “LightingEnabled” attribute.

Parameter
 lightingEnabled – is true if lights are to be used. Its default value is true.

setMarkerPulsingCycle
public void setMarkerPulsingCycle(double time)

Description
Sets the value of the “MarkerPulsingCycle” attribute. The default marker cycle time is zero. If “MarkerPulsingCycle” is greater then zero then markers pulse with the specified cycle time.

Parameter
 time – a double which specifies the “MarkerPulsingCycle” time in seconds.

setMarkerPulsingCycleOffset
public void setMarkerPulsingCycleOffset(double offset)

Description
Sets the value of the “MarkerPulsingCycleOffset” attribute.

Parameter
 offset – a double which specifies the “MarkerPulsingCycleOffset”. This is the time, in seconds, by which a pulsing marker starting time is offset from the initial time. This allows different markers to pulse with different phases.

setMarkerPulsingMaximumScale
public void setMarkerPulsingMaximumScale(double max)

Description
Sets the value of the “MarkerPulsingMaximumScale” attribute.

Parameter
 max – a double which specifies the “MarkerPulsingMaximumScale”. This is the amount by which a pulsing marker is scaled at the top of a pulse. Its default value is 2.0.

setMarkerPulsingMinimumScale
public void setMarkerPulsingMinimumScale(double min)
setMarkerPulsingMinimumScale

public void setMarkerPulsingMinimumScale(double min)

Description

Sets the value of the “MarkerPulsingMinimumScale” attribute.

Parameter

- **min** – a double which specifies the “MarkerPulsingMinimumScale”. This is the amount by which a pulsing marker is scaled at the bottom of a pulse. Its default value is 0.0.

setMarkerRotatingAxis

public void setMarkerRotatingAxis(double x, double y, double z)

Description

Sets the value of the “MarkerRotatingAxis” attribute. The default marker cycle time is zero. If “MarkerRotatingAxis” is greater then zero then markers rotate with the specified cycle time.

Parameters

- **x** – is the x-coordinate of the rotation axis.
- **y** – is the y-coordinate of the rotation axis.
- **z** – is the z-coordinate of the rotation axis.

setMarkerRotatingCycle

public void setMarkerRotatingCycle(double time)

Description

Sets the value of the “MarkerRotatingCycle” attribute. The default marker cycle time is zero. If “MarkerRotatingCycle” is greater then zero then markers rotate with the specified cycle time.

Parameter

- **time** – a double which specifies the “MarkerRotatingCycle” time in seconds.

setMarkerRotatingCycleOffset

public void setMarkerRotatingCycleOffset(double offset)

Description

Sets the value of the “MarkerRotatingCycleOffset” attribute.

Parameter

- **offset** – a double which specifies the “MarkerRotatingCycleOffset”. This is the time, in seconds, by which a rotating marker starting time is offset from the initial time. This allows different markers to rotate with different phases.

setMarkerType

public void setMarkerType(int type)

Description

Sets the value of the “MarkerType” attribute. This indicates which marker is to be drawn.
Parameter
type – the int “MarkerType” value.

setMaterial
public void setMaterial(Material material)

Description
Sets the value of the “Material” attribute. This indicates which material is to be used when lighting a surface.

Parameter
material – is a Java 3D Material value.

setTitle
public void setTitle(String value)

Description
Sets the value of the “Title” attribute.

Parameter
value – a String which contains the “Title” value

setViewport
public void setViewport(double[] value)

Description
Sets the value of the “Viewport” attribute. The viewport is the subregion of the drawing surface where the plot is to be drawn. “Viewport” coordinates are [0,1] by [0,1] by [0,1] This attribute affects only Axis nodes, since they contain the mappings to device space.

Parameter
value – A double array of length 6 which contains the “Viewport” values for xmin, xmax, ymin, ymax, zmin, zmax. The value saved is a copy of the input array.

setViewport
public void setViewport(double xmin, double xmax, double ymin, double ymax, double zmin, double zmax)

Description
Sets the value of the “Viewport” attribute.

Parameters
xmin – a double, the minimum x-coordinate of the viewport
xmax – a double, the maximum x-coordinate of the viewport
ymin – a double, the minimum y-coordinate of the viewport
ymax – a double, the maximum y-coordinate of the viewport
zmin – a double, the minimum z-coordinate of the viewport
zmax – a double, the maximum z-coordinate of the viewport

setZ
public void setZ(Object value)

Description
Sets the value of the “Z” attribute.

Parameter
 value – the Object which contains the “Z” value

Background class

public class com.imsl.chart3d.Background extends com.imsl.chart3d.ChartNode3D
implements Serializable

Background of the chart. The chart’s background is a solid color defined by this node’s “FillColor” attribute value. The default background color is white.

This node is created by the Chart3D node. To disable this node, set its “Paint” attribute value to false.

More complex background’s can be implemented by registering com.imsl.chart3d.Canvas3DChart.Paint (p. 1855) objects with com.imsl.chart3d.Canvas3DChart (p. 1852). These objects can be used to draw to the background either in front or behind the 3D chart.

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

Canvas3DChart class

public class com.imsl.chart3d.Canvas3DChart extends javax.media.j3d.Canvas3D

A canvas for rendering a 3D chart.
Constructors

Canvas3DChart
public Canvas3DChart()

Description
Creates a Canvas3DChart with a new Chart3D object.

Canvas3DChart
public Canvas3DChart(Chart3D chart)

Description
Creates a Canvas3DChart with a given Chart3D object.

Parameter
chart – is the Chart3D object associated with this canvas.

Methods

addPostRenderPaint
public void addPostRenderPaint(Canvas3DChart.Paint paint)

Description
Adds a Paint object to draw to the canvas after the the 3D image is rendered.

Parameter
paint – is the Paint object to be removed.

addPreRenderPaint
public void addPreRenderPaint(Canvas3DChart.Paint paint)

Description
Adds a Paint object to draw to the canvas before the the 3D image is rendered.

Parameter
paint – implements the paint method to be called before the 3D image is rendered.

getChart3D
public Chart3D getChart3D()

Description
Returns the Chart3D associated with this canvas.
Returns
the Chart3D associated with this canvas.

paint
public void paint(Graphics g)

Description
Paint method overriden to correct a problem in JDK 1.4. See bug ID Bug ID 4374079 for details.

postRender
public void postRender()

Description
Calls the Paint objects added to the post-render list. This routine is called by the Java 3D rendering loop after completing all rendering to the canvas for this frame and before the buffer swap.
NOTE: Applications should *not* call this method.

postSwap
public void postSwap()

Description
Writes the chart to a file as a bitmap image. Use the `write` method to trigger writing of the image.
NOTE: Applications should *not* call this method.

preRender
public void preRender()

Description
Calls the Paint objects added to the pre-render list. This routine is called by the Java 3D rendering loop after clearing the canvas and before any rendering has been done for this frame.
NOTE: Applications should *not* call this method.

removePostRenderPaint
public void removePostRenderPaint(Canvas3DChart.Paint paint)

Description
Removes a Paint object from the list of post-render Paint objects.

Parameter
paint – is the Paint object to be removed.

removePreRenderPaint
public void removePreRenderPaint(Canvas3DChart.Paint paint)

Description
Removes a Paint object from the list of pre-render Paint objects.
Parameter
paint – implements the paint method to be called before the 3D image is rendered.

render
public void render()

Description
Creates a scene graph from the chart tree and starts rendering the scene graph into this canvas. This method must be called after the chart tree has been created and associated with this canvas.

write
public void write(String filename, String format)

Description
Write the canvas as an image file after it is next redrawn.

Parameters
filename – is the name of the file to which the image is to be written.
format – is the image format name, such as “PNG” or “JPEG”. The supported formats are the same as for ImageIO.write.

Canvas3DChart.Paint interface

public interface com.imsl.chart3d.Canvas3DChart.Paint

Interface for 2D drawing on the canvas before or after the the 3D image is drawn.

Method

paint
public void paint(Graphics graphics)

Parameter
graphics – is a java.awt.Graphics2D object.
BufferedPaint class

public class com.imsl.chart3d.BufferedPaint implements com.imsl.chart3d.Canvas3DChart.Paint, Cloneable

A Paint object cached into an image. This is used to cache a static image that will be painted into the canvas containing a 3D chart. Since the 3D chart canvas will be repainted many times each second, it is faster to compose the image once.

Constructor

BufferedPaint
public BufferedPaint(Canvas3DChart.Paint paint, int x, int y, int width, int height, Component component)

Description
The paint method in Canvas3DChart.Paint is written into an image of size width by height. Any whitespace around the image is trimmed. The trimmed image is then used to paint onto the canvas.

Parameters

 - paint – is the Canvas3DChart.Paint object to be cached.
 - x – is the pixel position in the canvas of the left edge of the image. If x is negative then |x| is the distance from the right edge of the image to the right edge of the component.
 - y – is the pixel position in the canvas of the top edge of the image. If y is negative then |y| is the distance from the bottom edge of the image to the bottom edge of the component.
 - width – is the maximum width of the image.
 - height – is the maximum height of the image.
 - component – is the Component in which the image is to be painted.

Methods

clone
public Object clone() throws CloneNotSupportedException

paint
public void paint(Graphics g)
Description
Paint the image onto the canvas. This method should be called by the canvas, not by any application.

Parameter

\(g \) – is the Graphics object.

trim

public void trim()

Description
Returns a subimage with the white space trimmed off.

ChartLights class

public class com.imsl.chart3d.ChartLights extends com.imsl.chart3d.ChartNode3D
implements Serializable

Default set of lights.
ChartLights defines a default set of lights for the chart. If customized lights are desired, then this node can be disabled by setting its “Paint” attribute to false and explicitly adding lights to the scene.

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

AmbientLight class

public class com.imsl.chart3d.AmbientLight extends com.imsl.chart3d.ChartNode3D
implements Serializable

An ambient light. Ambient light is light that seems to come from all directions.
Constructor

AmbientLight

```java
public AmbientLight(Chart3D parent)
```

Description

Creates an ambient light.

Parameter

- `parent` – is the Chart3D parent of this node.

Method

addToSceneGraph

```java
protected void addToSceneGraph(Group parent)
```

DirectionalLight class

```java
public class com.imsl.chart3d.DirectionalLight extends com.imsl.chart3d.ChartNode3D implements Serializable
```

A directional light.

A directional light is an oriented light with an origin at infinity. The direction is defined by the attribute “Direction”.

The light’s position is in a coordinate system in which the default viewport is the cube [-1,1] by [-1,1] by [-1,1].

Constructors

DirectionalLight

```java
public DirectionalLight(Chart3D parent)
```

Description

Creates a directional light pointing in the negative z direction.
Parameter

parent – is the Chart3D parent of this node.

DirectionalLight

public DirectionalLight(Chart3D parent, double x, double y, double z)

Description

Creates a directional light pointing with a specified direction.

Parameters

- parent – is the Chart3D parent of this node.
- x – is the x-component of the direction vector.
- y – is the y-component of the direction vector.
- z – is the z-component of the direction vector.

Methods

addToSceneGraph

protected void addToSceneGraph(Group parent)

getDirection

public Vector3f getDirection()

Description

Returns the value of the “Direction” attribute.

Returns

The Vector3f value of the “Direction” attribute, if defined. Otherwise, (0, 0, -1) is returned.

setDirection

public void setDirection(Vector3f direction)

Description

Sets the value of the “Direction” attribute to a light direction.

Parameter

direction – Vector3f direction.

setDirection

public void setDirection(double x, double y, double z)

Description

Sets the value of the “Direction” attribute to a light direction.
Parameters

- x – is the x-component of the direction vector.
- y – is the y-component of the direction vector.
- z – is the z-component of the direction vector.

PointLight class

```java
public class com.imsl.chart3d.PointLight extends com.imsl.chart3d.ChartNode3D
implements Serializable
```

A point light source.

A point light source is at a fixed point in space and radiates light equally in all directions away from the light source. The light's position is defined by the attribute “Position”.

The light’s position is in a coordinate system in which the default viewport is the cube $[-1,1]$ by $[-1,1]$ by $[-1,1]$.

Constructors

PointLight

```java
public PointLight(Chart3D parent)
```

Description

Creates a point light source at the origin.

Parameter

- $parent$ – is the Chart3D parent of this node.

PointLight

```java
public PointLight(Chart3D parent, double x, double y, double z)
```

Description

Creates a point light at a specified position.

Parameters

- $parent$ – is the Chart3D parent of this node.
- x – is the x-component of the position.
- y – is the y-component of the position.
- z – is the z-component of the position.
Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getPosition
public Point3f getPosition()

Description
Returns the value of the “Position” attribute.

Returns
The Point3f value of the “Position” attribute, if defined. Otherwise, (0, 0, 0) is returned.

setPosition
public void setPosition(Point3f position)

Description
Sets the value of the “Point” attribute to a light point.

Parameter
position – is the location of the light.

setPosition
public void setPosition(double x, double y, double z)

Description
Sets the value of the “Point” attribute to a light point.

AxisXYZ class

public class com.imsl.chart3d.AxisXYZ extends com.imsl.chart3d.ChartNode3D
implements Serializable

The axes for an x-y-z chart.

This node is used when the mapping to and from user and device space can be decomposed into an x, a y and a z mapping.
Constructor

AxisXYZ
public AxisXYZ(Chart3D chart)

Description
Create an AxisXYZ. This also creates three Axis3D nodes as children of this node. They hold the decomposed mapping.

Parameter
 chart – the Chart3D parent of this node

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getAxisBox
public AxisBox getAxisBox()

Description
Return the axis box node.

Returns
the AxisBox node

getAxisX
public Axis3D getAxisX()

Description
Return the x-axis node.

Returns
the Axis3D x-axis node

getAxisY
public Axis3D getAxisY()

Description
Return the y-axis node.

Returns
the Axis3D y-axis node

getAxisZ
public Axis3D getAxisZ()
Description

Return the z-axis node.

Returns

the Axis3D z-axis node

mapCubeToUser

```java
public void mapCubeToUser(double cubeX, double cubeY, double cubeZ, double[] userXYZ)
```

Description

Map the cube coordinates to user coordinates.

Parameters

- `cubeX` – an int, the cube x-coordinate
- `cubeY` – an int, the cube y-coordinate
- `cubeZ` – an int, the cube z-coordinate
- `userXYZ` – a double[3] array on input. On output, the user coordinates.

mapUserToCube

```java
public void mapUserToCube(double userX, double userY, double userZ, double[] cubeXYZ)
```

Description

Map the user coordinates (userX,userY) to the cube coordinates cubeXYZ.

Parameters

- `userX` – a double, the user x-coordinate
- `userY` – a double, the user y-coordinate
- `userZ` – a double, the user y-coordinate

AxisBox class

```java
public class com.imsl.chart3d.AxisBox extends com.imsl.chart3d.ChartNode3D
    implements Serializable
```

Box behind the axis.

The axis box is drawn behind the axis. The color is defined by this node’s “FillColor” attribute value. The default color is a transparent gray.

The box also includes grid lines. They are drawn with this node’s “LineColor” attribute.

This node is created by the Chart3D node. To disable this node, set its “Paint” attribute value to false.
Fields

FACE_XA
static final public int FACE_XA
Show the x = a face of the box.

FACE_XB
static final public int FACE_XB
Show the x = b face of the box.

FACE_YA
static final public int FACE_YA
Show the y = a face of the box.

FACE_YB
static final public int FACE_YB
Show the y = b face of the box.

FACE_ZA
static final public int FACE_ZA
Show the z = a face of the box.

FACE_ZB
static final public int FACE_ZB
Show the z = b face of the box.

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getVisibleFaces
public int getVisibleFaces()

Description
Returns the flag indicating which faces of the box are to be drawn. The default value is FACE_XB | FACE_YB | FACE_ZA.

setVisibleFaces
public void setVisibleFaces(int visibleFaces)
Description
Sets the “VisibleFaces” attribute indicating which faces of the box are to be drawn.

Parameter
visibleFaces – is an or-ed combination of the flags FACE_XA, FACE_YA, FACE_ZA, FACE_XB, FACE_YB, FACE_ZB.

Axis3D class

public class com.imsl.chart3d.Axis3D extends com.imsl.chart3d.ChartNode3D
implements Serializable

An x-axis, y-axis or a z-axis.

Axis3D is created by com.imsl.chart3d.AxisXYZ (p. 1861) as its child. It can be retrieved using the method com.imsl.chart3d.AxisXYZ.getAxisX (p. 1862) or com.imsl.chart3d.AxisXYZ.getAxisY (p. 1862) or com.imsl.chart3d.AxisXYZ.getAxisZ (p. 1862).

It in turn creates the following child nodes: com.imsl.chart3d.AxisLine (p. 1869), com.imsl.chart3d.AxisLabel (p. 1868), com.imsl.chart3d.AxisTitle (p. 1869) and com.imsl.chart3d.MajorTick (p. 1870).

The number of tick marks (“Number” attribute) is set to 4, but autoscaling can change this value.

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getAxisLabel
public AxisLabel getAxisLabel()

Description
Returns the label node associated with this axis.

Returns
the AxisLabel node created as a child by this node

getAxisLine
public AxisLine getAxisLine()
Description
Returns the axis line node associated with this axis.

Returns
the *AxisLine* node created as a child by this node

getAxisTitle
public *AxisTitle* getAxisTitle()

Description
Returns the title node associated with this axis.

Returns
the *AxisTitle* node created as a child by this node

getFirstTick
public *double* getFirstTick()

Description
Convenience routine to get the “FirstTick” attribute.

Returns
the *double* value of the “FirstTick” attribute, if defined. Otherwise, *window[0]* is returned.

getMajorTick
public *MajorTick* getMajorTick()

Description
Returns the major tick node associated with this axis.

Returns
the *MajorTick* node created as a child by this node

getTickInterval
public *double* getTickInterval()

Description
Retrieves the tick interval.

Returns
a *double* which specifies the tick interval

getTicks
public *double*[] getTicks()

Description
Returns the value of the “Ticks” attribute, if set. If not set, then computed tick values are returned.
Returns
the double value of the “Ticks” attribute, if defined. Otherwise, the computed tick values are returned.

gType
public int getType()

Description
Returns the axis type.

Returns
an int which specifies the node type; can be AXIS_X, AXIS_Y, or AXIS_Z

gWindow
public double[] getWindow()

Description
Returns the window for an Axis1D.

Returns
an array of length two containing the range of this axis.

setFirstTick
public void setFirstTick(double firstTick)

Description
Convenience routine to set the “FirstTick” attribute.

Parameter
 firstTick – a double, the location of the first tick

setTickInterval
public void setTickInterval(double tickInterval)

Description
Sets the tick interval.

Parameter
 tickInterval – a double which specifies a tick interval

setTicks
public void setTicks(double[] ticks)

Description
Sets the value of the “Ticks” attribute. The attribute Number is set to the length of the array.
Parameter

 ticks – an array of doubles which contain the location, in user coordinates, of the major tick marks. If set, this attribute overrides the automatic computation of the tick values.

setWindow

public void setWindow(double[] window)

Description

Sets the window for an Axis1D.

Parameter

 window – is an array of length two containing the range of this axis.

setWindow

public void setWindow(double min, double max)

Description

Sets the window for an Axis1D.

Parameters

 min – is the value of the left/bottom end of the axis.
 max – is the value of the right/top end of the axis.

AxisLabel class

public class com.imsl.chart3d.AxisLabel extends com.imsl.chart3d.ChartNode3D implements Serializable

The labels on an axis.

AxisLabel is created by com.imsl.chart3d.Axis3D (p. 1865) as its child. It can be retrieved using the method com.imsl.chart3d.Axis3D.getAxisLabel (p. 1865).

Axis labels are placed at the tick mark locations. The number of tick marks is determined by the attribute “Number”. Tick marks are evenly spaced. If the attribute “Labels” is defined then it is used to label the tick marks.

If “Labels” is not defined, the ticks are labeled numerically. The endpoint label values are obtained from the attribute “Window”. The numbers are formatted using the attribute “TextFormat”.

Methods

addToSceneGraph

protected void addToSceneGraph(Group parent)
getLabels
public String[] getLabels()

Description
Returns the “Labels” attribute.

Returns
a String array containing the axis labels, if set. Otherwise, null is returned.

setLabels
public void setLabels(String[] value)

Description
Sets the axis label values for this node to be used instead of the default numbers. The attribute “Number” is also set to value.length.

Parameter
value – a String array containing the labels for the major tick marks

AxisLine class

public class com.imsl.chart3d.AxisLine extends com.imsl.chart3d.ChartNode3D implements Serializable

The axis line.

AxisLine is created by com.imsl.chart3d.Axis3D (p. 1865) as its child. It can be retrieved using the method com.imsl.chart3d.Axis3D.getAxisLine (p. 1865).

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

AxisTitle class

public class com.imsl.chart3d.AxisTitle extends com.imsl.chart3d.ChartNode3D implements Serializable
Axis title. The position of the axis title is controlled by the attribute “AxisTitlePosition”. It can be either parallel to the axis line or at the end of the axis line.

This node is created by the Axis3D node. To disable this node, set its “Paint” attribute value to false.

Method

```java
addToSceneGraph
protected void addToSceneGraph(Group parent)
```

MajorTick class

```java
public class com.imsl.chart3d.MajorTick extends com.imsl.chart3d.ChartNode3D implements Serializable
```

Major ticks marks.

This node is created by the Axis3D node. To disable this node, set its “Paint” attribute value to false.

Method

```java
addToSceneGraph
protected void addToSceneGraph(Group parent)
```

Surface class

```java
public class com.imsl.chart3d.Surface extends com.imsl.chart3d.Data implements Serializable
```

Surface from a function or from a set of scattered data points.
Fields

SURFACE_TYPE_FLAT
static final public int SURFACE_TYPE_FLAT

Draws the surface using flat shading.
In a flat shaded surface, each polygon has a uniform color.

SURFACE_TYPE_GOURAUD
static final public int SURFACE_TYPE_GOURAUD

Draws the surface using Gouraud shading. In a Gouraud shaded surface, colors are interpolated across each polygon.

SURFACE_TYPE_MESH
static final public int SURFACE_TYPE_MESH

Draws the surface as a mesh.

SURFACE_TYPE_NICEST
static final public int SURFACE_TYPE_NICEST

Draws the surface using the best shading available.

Constructors

Surface
public Surface(AxisXYZ parent, double[] x, double[] y, double[] z)

Description
Creates a surface from a scattered set of 3D points.
A surface is created from a scattered set of points. A function is interpolated to the given point over the rectangular area determined by that point’s ranges.

Parameters
 parent – an AxisXYZ object, the parent of this node.
 x – is the array of x values.
 y – is the array of y values.
 z – is the array of z values.

Surface
public Surface(AxisXYZ parent, double[] x, double[] y, double[][] z)
Description
Creates a surface from a gridded data set. A surface is created from a grid of points in a rectangular area. The point \(z[i][j] \) is the \(z \)-value at \((x[i], y[j])\).

Parameters
- parent – an AxisXYZ object, the parent of this node.
- \(x \) – is the array of \(x \) values.
- \(y \) – is the array of \(y \) values.
- \(z \) – is the two-dimensional array of \(z \) values of size \(x.length \) by \(y.length \).

Surface
public Surface(AxisXYZ parent, double[] x, double[] y, double[][] z, Color[] color)

Description
Creates a surface from a scattered set of 3D points with a color given at each point. A surface is created from a scattered set of points. A function is interpolated to the given point over the rectangular area determined by that point’s ranges.

Parameters
- parent – an AxisXYZ object, the parent of this node.
- \(x \) – is the array of \(x \) values.
- \(y \) – is the array of \(y \) values.
- \(z \) – is the array of \(z \) values.
- color – is array of color values at each point.

Surface
public Surface(AxisXYZ parent, double[] x, double[] y, double[][] z, Color[][] color)

Description
Creates a colored surface from a gridded data set. A surface is created from a grid of points in a rectangular area. The point \(z[i][j] \) is the \(z \)-value at \((x[i], y[j])\).

Parameters
- parent – an AxisXYZ object, the parent of this node.
- \(x \) – is the array of \(x \) values.
- \(y \) – is the array of \(y \) values.
- \(z \) – is the two-dimensional array of \(z \) values.
- color – is the two-dimensional array of color values. The array must have the same size as the array \(z \).

Surface
public Surface(AxisXYZ parent, Surface.ZFunction zFunction, double xmin, double xmax, double ymin, double ymax)

1872 • Surface
Description

Creates a surface from a function. A surface is created by evaluation of the function on a grid of points in a rectangular area, \([\text{xmin}, \text{xmax}] \) by \([\text{ymin}, \text{ymax}]\), of the \(xy\)-plane.

Parameters

- **parent** – an AxisXYZ object, the parent of this node.
- **zFunction** – the function, \(z = f(x, y) \).
- **xmin** – the minimum x-value of the function rectangle.
- **xmax** – the maximum x-value of the function rectangle.
- **ymin** – the minimum y-value of the function rectangle.
- **ymax** – the maximum y-value of the function rectangle.

Methods

- **addToSceneGraph**

  ```java
  protected void addToSceneGraph(Group parent)
  ```

- **dataRange**

  ```java
  public void dataRange(double[] range)
  ```

Description

Update the data range, \(\text{range} = \{\text{xmin}, \text{xmax}, \text{ymin}, \text{ymax}\} \). The entries in range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

- **range** – a double array which contains the updated range, \(\{\text{xmin}, \text{xmax}, \text{ymin}, \text{ymax}\} \)

- **getNumberGridPointsX**

  ```java
  public int getNumberGridPointsX()
  ```

Description

Returns the value of the “NumberGridPointsX” attribute.

This is the grid points in the x-direction for surfaces defined by a function.

Returns

The number of grid points in the x-direction. Default is 40.

- **getNumberGridPointsY**

  ```java
  public int getNumberGridPointsY()
  ```

Description

Returns the value of the “NumberGridPointsY” attribute.

This is the grid points in the y-direction for surfaces defined by a function.
Returns
The number of grid points in the y-direction. Default is 40.

getSurfaceType
public int getSurfaceType()

Description
Returns the attribute “SurfaceType”.

Returns
one of SURFACE_TYPE_MESH, SURFACE_TYPE_FLAT, SURFACE_TYPE_GOURAUD, SURFACE_TYPE_NICEST or SURFACE_TYPE_MESH or-ed with one of the other types. Default value is SURFACE_TYPE_NICEST.

setNumberGridPointsX
public void setNumberGridPointsX(int nx)

Description
Sets the value of the “NumberGridPointsX” attribute.
This is the grid points in the x-direction for surfaces defined by a function.

Parameter

nx – The number of grid points in the x-direction. Default is 40.

setNumberGridPointsY
public void setNumberGridPointsY(int ny)

Description
Sets the value of the “NumberGridPointsY” attribute.
This is the grid points in the y-direction for surfaces defined by a function.

Parameter

ny – The number of grid points in the y-direction. Default is 40.

setSurfaceType
public void setSurfaceType(int surfaceType)

Description
Sets the attribute “SurfaceType”.

Parameter

surfaceType – is one of SURFACE_TYPE_MESH, SURFACE_TYPE_FLAT, SURFACE_TYPE_GOURAUD, SURFACE_TYPE_NICEST or SURFACE_TYPE_MESH or-ed with one of the other types.
Example: Call Option Surface shaded by Vega

A surface chart of call option values shaded by vega is rendered. The X, Y, and Z axes represent Stock Price, Time, and Option Value respectively.

```java
import com.imsl.chart3d.*;
import com.imsl.chart.Colormap;
import com.imsl.stat.Cdf;
import java.awt.Color;

// Surface chart of call option value shaded by vega.
public class SurfaceEx1 extends JFrameChart3D {

    // Creates new form CallOptionSurface
    public SurfaceEx1() {
        Chart3D chart = getChart3D();
        chart.setTextFormat("0.0000");

        AxisXYZ axis = new AxisXYZ(chart);
        axis.setAxisTitlePosition(AxisXYZ.AXIS_TITLE_PARALLEL);
        axis.setTextFormat("0.0");

        axis.GetAxisX().setTitle("Stock Price");
        axis.GetAxisY().setTitle("Time");
        axis.GetAxisZ().setTitle("Option Value");

        double strike = 20.0;
        double rate = 0.045;
        double sigma = 0.25;
        CallOption callOption = new CallOption(strike, rate, sigma);

        double minStock = 0.0;
        double maxStock = 2.0 * strike;
        double minTime = 0.0;
        double maxTime = 1.0;
        Surface surface = new Surface(axis, callOption, minStock,
                                        maxStock, minTime, maxTime);
        surface.setColorFunction(callOption);
        surface.setSurfaceType(Surface.SURFACE_TYPE_MESH | Surface.SURFACE_TYPE_NICEST);

        ColormapLegend colormapLegend = new ColormapLegend(chart, Colormap.RED_TEMPERATURE, -10., 60.);
        colormapLegend.setTitle("Vega");
        colormapLegend.setTextFormat("0.00");
        colormapLegend.setNumber(25);
        colormapLegend.setAutoscaleInput(ColormapLegend.AUTOSCALE_WINDOW);
        colormapLegend.setAutoscaleOutput(ColormapLegend.AUTOSCALE_NUMBER);

        this.setSize(375, 375);
        render();
    }
}
```

public class CallOption implements Surface.ZFunction, ColorFunction {

```java
```

Chart 3D

Surface • 1875
private double strike, rate, sigma;

// Compute call option value using the Black-Scholes formula.
public CallOption(double strike, double rate, double sigma) {
 this.strike = strike;
 this.rate = rate;
 this.sigma = sigma;
}

calculated = f(double stock, double time) {
 double d1 = (Math.log(stock / strike) + (rate + 0.5 * sigma * sigma) * time) / (sigma * Math.sqrt(time));
 double d2 = d1 - sigma * Math.sqrt(time);
 return stock * Cdf.normal(d1) - strike * Math.exp(-rate * time) * Cdf.normal(d2);
}

delta(double stock, double time) {
 double d1 = (Math.log(stock / strike) + (rate + 0.5 * sigma * sigma) * time) / (sigma * Math.sqrt(time));
 return Cdf.normal(d1);
}

vega(double stock, double time) {
 double d1 = (Math.log(stock / strike) + (rate + 0.5 * sigma * sigma) * time) / (sigma * Math.sqrt(time));
 return stock * Math.sqrt(time) * Cdf.normal(d1);
}

color(double stock, double time, double optionValue) {
 double vega = vega(stock, time);
 double s = (vega + 10.0) / (60.0 + 10.);
 return Colormap.RED_TEMPERATURE.color(s);
}

public static void main(String[] args) {
 new SurfaceEx1().setVisible(true);
}
Example: Daily Carbon Monoxide Levels by Time of Day

A surface plot is rendered to show the carbon monoxide levels in a metropolitan area over the course of a year by time of day.

```java
import com.imsl.chart3d.*;
import com.imsl.chart.Colormap;
import com.imsl.io.*;
import java.awt.Color;
import java.io.*;
import java.sql.SQLException;
import java.util.GregorianCalendar;
```
public class SurfaceEx2 extends JFrameChart3D {

 static private final int xMax = 365;
 static private final int yMin = 0;
 static private final int yMax = 144;

 private double temp[][];
 private double co[][];

 private double tempMin, tempMax;

 private Colormap colormap = Colormap.SPECTRAL;

 // Creates new form COSurface
 public SurfaceEx2() throws IOException, SQLException {
 temp = readData("temp.csv");
 co = readData("co.csv");

 tempMin = temp[0][0];
 tempMax = temp[0][0];
 for (int i = 0; i < xMax; i++) {
 for (int j = 0; j < yMax; j++) {
 tempMin = Math.min(temp[i][j], tempMin);
 tempMax = Math.max(temp[i][j], tempMax);
 }
 }

 Chart3D chart = getChart3D();
 chart.setBackgroundColor("lightyellow");
 AxisXYZ axis = new AxisXYZ(chart);
 axis.setAxisTitlePosition(AxisXYZ.AXIS_TITLE_PARALLEL);

 axis.getAxisX().getAxisTitle().setTitle("Day of Year");
 final GregorianCalendar initialDate = new GregorianCalendar(2000, GregorianCalendar.JANUARY, 1);
 axis.getAxisX().setAutoscaleOutput(0);
 GregorianCalendar lastDate = (GregorianCalendar) initialDate.clone();
 lastDate.add(GregorianCalendar.DATE, 365);
 axis.getAxisX().setWindow(initialDate.getTimeInMillis(), lastDate.getTimeInMillis());
 axis.getAxisX().setTextFormat(new java.text.SimpleDateFormat("MMM"));

 axis.getAxisY().getAxisTitle().setTitle("Time of Day");
 axis.getAxisY().setAutoscaleOutput(0);
 String labelsY[] = {"0:00", "6:00", "12:00", "18:00", "24:00"};
 axis.getAxisY().setAxisLabel().setLabelFormat(labelsY);

 axis.getAxisZ().getAxisTitle().setTitle("CO");
 axis.getAxisZ().setAxisTitlePosition(Axis UNSIGNED_AXIS_TITLE_AT_END);
 axis.getAxisZ().setTextFormat("0.0");

 GregorianCalendar date = (GregorianCalendar) initialDate.clone();
 double x[] = new double[xMax];
for (int i = 0; i < xMax; i++) {
 x[i] = date.getTimeInMillis();
 date.add(GregorianCalendar.DATE, 1);
}

double y[] = new double[yMax];
for (int j = 0; j < yMax; j++) {
 y[j] = j - 1;
}

Color color[][] = new Color[xMax][yMax];
for (int i = 0; i < xMax; i++) {
 for (int j = 0; j < yMax; j++) {
 double t = (tempMax - temp[i][j]) / (tempMax - tempMin);
 color[i][j] = colormap.color(t);
 }
}

Surface surface = new Surface(axis, x, y, co, color);
surface.setSurfaceType(Surface.SURFACE_TYPE_NICEST);
int nTicks = 10;
double ticks[] = new double[nTicks];
for (int i = 0; i < nTicks; i++) {
 ticks[i] = tempMax - i * (tempMax - tempMin) / (nTicks - 1);
}
ColormapLegend colormapLegend = new ColormapLegend(chart, colormap, ticks);
colormapLegend.setPosition(-1, 10);
colormapLegend.setTitle("Temperature");

setSize(375, 375);
render();

static private double[][] readData(String name)
 throws IOException, SQLException {
 InputStream is = SurfaceEx2.class.getResourceAsStream(name);
 BufferedReader br = new BufferedReader(new InputStreamReader(is));
 FlatFile ff = new FlatFile(br);
 double data[][] = new double[xMax][yMax];
 for (int j = 0; j < yMax; j++) {
 if (!ff.next()) {
 throw new IOException("Error in file " + name);
 }
 for (int i = 0; i < xMax; i++) {
 data[i][j] = ff.getDouble(i + 1);
 }
 }
 is.close();
 return data;
}

public static void main(String args[]) throws IOException, SQLException {
 new SurfaceEx2().setVisible(true);
}
public interface com.imsl.chart3d.Surface.ZFunction

Functional representation of a surface.
Method

\[f \]

\[\text{public double } f(\text{double } x, \text{double } y) \]

Description

Define the surface function.

Parameters

- \(x \) – is the \(x \) value.
- \(y \) – is the \(y \) value.

Returns

the \(z \) value.

Data class

```java
public class com.imsl.chart3d.Data extends com.imsl.chart3d.ChartNode3D
implements Serializable
```

Draws a 3D data node.

Drawing of a Data node is determined by the setting of the “DataType” attribute. Multiple bits can be set in “DataType”. If the `com.imsl.chart3d.ChartNode3D.DATA_TYPE_MARKER` (p. 1842) bit is set, the marker attributes are active. If the `com.imsl.chart3d.ChartNode3D.DATA_TYPE_LINE` (p. 1842) bit is set, the points are connected by lines using the line attributes. If the `com.imsl.chart3d.ChartNode3D.DATA_TYPE_TUBE` (p. 1842) bit is set, the points are connected by tubes using the line attributes. Tubes are similar to lines, but are fully 3d objects and so can be shaded.

If the attribute “LabelType” is set to other than the default, then the data points are labeled. The contents of the labels are determined by the value of the “LabelType” attribute.

Constructors

Data

```java
public Data(AxisXYZ parent)
```

Description

Creates a data node.
Parameter

parent – the AxisXYZ parent of this data node

Data

public Data(AxisXYZ parent, double[] x, double[] y, double[] z)

Description

Creates a data node with x, y and z values.

Parameters

parent – the AxisXYZ parent of this data node
x – a double array which contains the value for the attribute “X” in this node
y – a double array which contains the value for the attribute “Y” in this node
z – a double array which contains the value for the attribute “Z” in this node

Methods

addToSceneGraph

protected void addToSceneGraph(Group parent)

dataRange

public void dataRange(double[] range)

Description

Update the data range, range = {xmin,xmax,ymin,ymax}. The entries in range are updated to reflect the extent of the data in this node. The argument range is an input/output variable. Its value should be updated only if the data in this node is outside the range already in the array.

Parameter

range – a double array which contains the updated range, {xmin,xmax,ymin,ymax}

getCustomMarkerFactory

public Data.CustomMarkerFactory getCustomMarkerFactory()

Description

Returns a custom marker factory.

setCustomMarker

public void setCustomMarker(Data.CustomMarkerFactory customMarkerFactory)
Description
Sets a custom marker factory. This factory is used when the “MarkerType” attribute is set to MARKER_TYPE_CUSTOM.

update
public void update()

Description
Update the surface by reevaluation of the z-function and the color function.

Example: Spiral Data connected with Tubes
A spiral data set is charted with tubes connecting the data points.

```java
import com.imsl.chart3d.*;
import com.imsl.chart3d.ColorFunction;
import java.awt.Color;

public class DataEx1 extends JFrameChart3D implements ColorFunction {

    public DataEx1() {
        Chart3D chart = getChart3D();
        AxisXYZ axis = new AxisXYZ(chart);
        axis.GetAxisBox().setPaint(false);

        int nSpiral = 400;
        double xSpiral[] = new double[nSpiral];
        double ySpiral[] = new double[nSpiral];
        double zSpiral[] = new double[nSpiral];
        for (int i = 0; i < nSpiral; i++) {
            double t = 8.0 * Math.PI * i / (double) (nSpiral - 1);
            double r = 0.6 + (double) i / (double) (nSpiral - 1);
            xSpiral[i] = r * Math.cos(t);
            ySpiral[i] = r * Math.sin(t);
            zSpiral[i] = (double) i / (double) (nSpiral - 1);
        }
        Data spiral = new Data(axis, xSpiral, ySpiral, zSpiral); 
        spiral.setDataType(Data.DATA_TYPE_TUBE);
        spiral.setLineWidth(2);
        spiral.setColorFunction(this);
        this.setSize(375, 375);
        render();
    }

    public Color color(double x, double y, double z) {
        return com.imsl.chart.Colormap.SPECTRAL.color(z);
    }

    public static void main(String args[]) {
        new DataEx1().setVisible(true);
    }
}
```
Example: Fisher Iris Data marked by spheres

The classic Fisher iris data is plotted in this chart. This example shows use of the 3D marker type. A sphere has been chosen in this example to highlight data points.

```java
import com.imsl.chart3d.*;
import com.imsl.io.FlatFile;
import java.awt.Color;
import java.io.*;
import java.sql.SQLException;
import java.util.StringTokenizer;

public class DataEx2 extends JFrameChart3D {
```
private int species[];
private double sepalLength[];
private double sepalWidth[];
private double petalLength[];
private double petalWidth[];

public DataEx2() throws IOException, SQLException {
 read();

 chart = getChart3D();
 chart.setBackground().setFillColor("lightyellow");
 AxisXYZ axis = new AxisXYZ(chart);
 axis.setAxisTitlePosition(AxisXYZ.AXIS_TITLE_PARALLEL);
 axis.setAxisTitle().setTitle("Sepal Length");
 axis.getAxis().setTitle("Sepal Width");
 axis.getAxis().setTitle("Petal Length");
 axis.setDataType(Data.DATA_TYPE_MARKER);
 axis.setMarkerType(Data.MARKER_TYPE_SPHERE);
 Color color[] = {java.awt.Color.red, java.awt.Color.green,
 java.awt.Color.blue};
 for (int k = 0; k < species.length; k++) {
 // marker type = Species
 // x = Sepal Length
 // y = Sepal Width
 // z = Petal Length
 // marker size = Petal Width
 double xp[] = {sepalLength[k]};
 double yp[] = {sepalWidth[k]};
 double zp[] = {petalLength[k]};
 Data data = new Data(axis, xp, yp, zp);
 data.setMarkerSize(Math.sqrt(petalWidth[k]));
 data.setMarkerColor(color[species[k] - 1]);
 }
 setSize(375, 375);
 render();
}

private void read() throws IOException, SQLException {
 InputStream is = getClass().getResourceAsStream("FisherIris.csv");
 FisherIrisReader fisherIrisReader = new FisherIrisReader(is);
 int nObs = 150;
 species = new int[nObs];
 sepalLength = new double[nObs];
 sepalWidth = new double[nObs];
 petalLength = new double[nObs];
 petalWidth = new double[nObs];
 for (int k = 0; fisherIrisReader.next(); k++) {
 species[k] = fisherIrisReader.getInt("Species");
 sepalLength[k] = fisherIrisReader.getDouble("Sepal Length");
 sepalWidth[k] = fisherIrisReader.getDouble("Sepal Width");
 petalLength[k] = fisherIrisReader.getDouble("Petal Length");
 petalWidth[k] = fisherIrisReader.getDouble("Petal Width");
 }
}
static private class FisherIrisReader extends FlatFile {

 public FisherIrisReader(InputStream is) throws IOException {
 super(new BufferedReader(new InputStreamReader(is)));
 String line = readLine();
 StringTokenizer st = new StringTokenizer(line, ",");
 for (int j = 0; st.hasMoreTokens(); j++) {
 setColumnName(j + 1, st.nextToken().trim());
 setColumnClass(j, Double.class);
 }
 }

 public static void main(String args[]) throws IOException, SQLException {
 new DataEx2().setVisible(true);
 }
}
Example: Heart Data

Each observation in the data set is represented by a marker. The encoding of the variables into the chart is described in the following table:
<table>
<thead>
<tr>
<th>Representation</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-coordinate</td>
<td>Age (years)</td>
</tr>
<tr>
<td>y-coordinate</td>
<td>Height (cm)</td>
</tr>
<tr>
<td>z-coordinate</td>
<td>Initial Body Surface Area (m²)</td>
</tr>
<tr>
<td>Marker Type</td>
<td>Survival?</td>
</tr>
<tr>
<td>Marker Size</td>
<td>Initial Mean Circulation Time (sec)</td>
</tr>
<tr>
<td>Color</td>
<td>Initial Cardiac Index (liters/min-m²)</td>
</tr>
<tr>
<td>Min Pulse Size</td>
<td>Initial Hemoglobin (gm/100 ml)</td>
</tr>
<tr>
<td>Max Pulse Size</td>
<td>Final Hemoglobin (gm/100 ml)</td>
</tr>
<tr>
<td>Rotation Direction</td>
<td>Sex (Gender)</td>
</tr>
</tbody>
</table>

```java
import com.imsl.chart.Colormap;
import com.imsl.chart3d.*;
import com.imsl.io.*;
import com.imsl.stat.Summary;
import java.awt.Color;
import java.io.*;
import java.sql.*;
import java.util.StringTokenizer;
import javax.swing.*;

public class DataEx3 extends javax.swing.JFrame {
    static private final int nVariables = 34;
    static private final int nObs = 113;
    static private final Colormap colormap = Colormap.BLUE_GREEN_RED_YELLOW;

    // Age (years)
    static private final int ivarX = 1;

    // Height (cm)
    static private final int ivarY = 2;

    // Initial Body Surface Area (m²)
    static private final int ivarZ = 11;

    // Survival?
    static private final int ivarMarkerType = 4;

    // Initial Mean Circulation Time (sec)
    static private final int ivarMarkerSize = 14;

    // Initial Cardiac Index (liters/min-m²)
    static private final int ivarMarkerColor = 12;

    // Initial Hemoglobin (gm/100 ml)
    static private final int ivarMarkerPulseMin = 18;

    // Final Hemoglobin (gm/100 ml)
    static private final int ivarMarkerPulseMax = 32;

    // Sex (Gender)
```
static private final int ivarRotationAxis = 3;

private ResultSetMetaData meta;
private JPanel jPanelLegend;

public DataEx3() throws IOException, SQLException {
 InputStream is = DataEx3.class.getResourceAsStream("AfifiAzen.csv");
 AfifiAzenReader reader = new AfifiAzenReader(is);
 double data[][] = reader.readData();
 is.close();

 Chart3D chart = new Chart3D();
 AxisXYZ axis = new AxisXYZ(chart);
 axis.setAxisTitlePosition(AxisXYZ.AXIS_TITLE_PARALLEL);

 meta = reader.getMetaData();
 axis.getAxisX().getAxisTitle().setTitle(meta.getColumnName(ivarX + 1));
 axis.getAxisY().getAxisTitle().setTitle(meta.getColumnName(ivarY + 1));
 axis.getAxisZ().getAxisTitle().setTitle(meta.getColumnName(ivarZ + 1));

 int markerTypes[] = {Data.MARKER_TYPE_CUBE, Data.MARKER_TYPE_TETRAHEDRON};
 double minMarkerSize = 0.0;
 double maxMarkerSize = 0.0;
 if (ivarMarkerSize >= 0) {
 Summary summary = getSummary(data, ivarMarkerSize);
 minMarkerSize = summary.getMinimum();
 maxMarkerSize = summary.getMaximum();
 }
 double minColor = 0.0;
 double maxColor = 0.0;
 if (ivarMarkerColor >= 0) {
 Summary summary = getSummary(data, ivarMarkerColor);
 minColor = summary.getMinimum();
 maxColor = summary.getMaximum();
 }
 double maxPulse = 0.0;
 if (ivarMarkerPulseMax >= 0) {
 maxPulse = getSummary(data, ivarMarkerPulseMax).getMaximum();
 }
 axis.setDataType(Data.DATA_TYPE_MARKER);
 for (int i = 0; i < data.length; i++) {
 double xp[] = {data[i][ivarX]};
 double yp[] = {data[i][ivarY]};
 double zp[] = {data[i][ivarZ]};
 Data data3D = new Data(axis, xp, yp, zp);
 double size = (data[i][ivarMarkerSize] - minMarkerSize) / (maxMarkerSize - minMarkerSize);
 data3D.setMarkerSize(1.0 + size);
 double t = (data[i][ivarMarkerColor] - minColor) / (maxColor - minColor);
 data3D.setMarkerColor(colormap.color(t));
 }

 chart3D.getData().add(data3D);
data3D.setMarkerPulsingMinimumScale(data[i][ivarMarkerPulseMin] / maxPulse);
data3D.setMarkerPulsingMaximumScale(data[i][ivarMarkerPulseMax] / maxPulse);
data3D.setMarkerPulsingCycle(1.0);

double zaxis = (data[i][ivarRotationAxis] == 1 ? 1.0 : -1.0);
data3D.setMarkerRotatingAxis(0.0, 0.0, zaxis);
data3D.setMarkerRotatingCycle(8.0);

data3D.setMarkerType(data[i][ivarMarkerType] == 1.0 ? markerTypes[0] : markerTypes[1]);
}

Canvas3DChart canvas = new Canvas3DChart(chart);
canvas.setSize(375, 375);
getContentPane().add(canvas, java.awt.BorderLayout.CENTER);

jPanelLegend = new JPanel(new java.awt.GridBagLayout());
setupLegend();
getContentPane().add(jPanelLegend, java.awt.BorderLayout.WEST);
setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
pack();

ColormapLegend colormapLegend = new ColormapLegend(chart, colormap, minColor, maxColor);
colormapLegend.setPosition(10, 10);
colormapLegend.setTitle(meta.getColumnName(ivarMarkerColor + 1));
canvas.render();
}

private class AfifiAzenReader extends FlatFile {

AfifiAzenReader(InputStream is) throws IOException {
super(new BufferedReader(new InputStreamReader(is)));
String line = readLine();
line = readLine();
line = readLine();
StringTokenizer st = new StringTokenizer(line, "");
for (int j = 0; st.hasMoreTokens(); j++) {
 setColumnName(j + 1, st.nextToken().trim());
 setColumnClass(j, Double.class);
}
}

double[][] readData() throws IOException, java.sql.SQLException {
double data[][] = new double[nObs][nVariables];
for (int i = 0; i < nObs; i++) {
 if (!next()) {
 throw new IOException("Error in file");
 }
 for (int j = 0; j < nVariables; j++) {
 data[i][j] = getDouble(j + 1);
 }
}
static Summary getSummary(double data[][], int ivar) {
 Summary summary = new Summary();
 for (int i = 0; i < nObs; i++) {
 summary.update(data[i][ivar]);
 }
 return summary;
}

private void setupLegend() throws SQLException {
 addLegendTitle("Marker Color:");
 addLegendValue(ivarMarkerColor, 1.0);
 addLegendTitle("Marker Size:");
 addLegendValue(ivarMarkerSize, 1.0);
 addLegendTitle("Marker Pulse (min/max):");
 addLegendValue(ivarMarkerPulseMin, 0.0);
 addLegendValue(ivarMarkerPulseMax, 1.0);
 addLegendTitle("Rotation Axis:");
 addLegendValue(ivarRotationAxis, 1.0);
 addLegendTitle("Marker Type:");
 addLegendValue(ivarMarkerType, 1.0);
}

private void addLegendTitle(String title) {
 JLabel jLabel = new JLabel(title);
 java.awt.GridBagConstraints gridBagConstraints = new java.awt.GridBagConstraints();
 gridBagConstraints.gridwidth = java.awt.GridBagConstraints.REMAINDER;
 gridBagConstraints.anchor = java.awt.GridBagConstraints.WEST;
 jPanelLegend.add(jLabel, gridBagConstraints);
}

private void addLegendValue(int ivar, double weight) throws SQLException {
 JLabel jLabel = new JLabel(meta.getColumnName(ivar + 1));
 java.awt.GridBagConstraints gridBagConstraints = new java.awt.GridBagConstraints();
 gridBagConstraints.gridwidth = java.awt.GridBagConstraints.REMAINDER;
 gridBagConstraints.anchor = java.awt.GridBagConstraints.WEST;
 gridBagConstraints.weighty = weight;
 jPanelLegend.add(jLabel, gridBagConstraints);
 jLabel.setForeground(Color.BLUE);
}

public static void main(String args[]) throws IOException, java.sql.SQLException {
 new DataEx3().setVisible(true);
}
Data.CustomMarkerFactory interface

public interface com.imsl.chart3d.Data.CustomMarkerFactory

Factory to create customized markers.

Method

createCustomMarker

public Node createCustomMarker()
Description

Returns a custom marker.

ColorFunction interface

```java
public interface com.imsl.chart3d.ColorFunction
```

Interface to define value dependent colors.

Method

```java
color
public Color color(double x, double y, double z)
```

ColormapLegend class

```java
public class com.imsl.chart3d.ColormapLegend extends com.imsl.chart3d.ChartNode3D implements Serializable
```

Adds a legend for a Colormap gradient to the background of the canvas.

Constructors

```java
ColormapLegend
public ColormapLegend(Chart3D chart, Colormap colormap, double[] ticks)
```

Description

Creates a legend for a Colormap and adds it to the canvas. If set, the attribute “Title” is used to provide a title for the legend.

The `paint` method in `Canvas3DChart.Paint` is written into an image of size `width` by `height`. Any whitespace around the image is trimmed. The trimmed image is then used to paint onto the canvas.

Parameters

- `chart` – is the `Chart3D` object on which the legend is to be painted.
colormap – is the Colormap for the legend.
ticks – is an array of values used to label the legend. These should be equally spaced.

ColormapLegend
public ColormapLegend(Chart3D chart, Colormap colormap, double min, double max)

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getPosition
public int[] getPosition()

Description
Returns the position of the legend.

Returns
an array containing the legend’s position.

getTicks
public double[] getTicks()

Description
Returns the value of the “Ticks” attribute, if set. If not set, then computed tick values are returned.

Returns
double value of the “Ticks” attribute, if defined. Otherwise, the computed tick values are returned.

ggetWindow
public double[] getWindow()

Description
Returns the window for a ColormapLegend.

Returns
window an array of length two containing the range of this colormap.

remove
public void remove()

Description
Removes the node from its parents list of children.

setPosition
public void setPosition(int x, int y)
Description
Sets the position of the legend. The default position is (0,0).

Parameters
- x – is the pixel position in the canvas of the left edge of the legend. If x is negative then |x| is the distance from the right edge of the legend to the right edge of the component.
- y – is the pixel position in the canvas of the top edge of the legend. If y is negative then |y| is the distance from the bottom edge of the legend to the bottom edge of the component.

def setTicks
public void setTicks(double[] ticks)

Description
Sets the value of the “Ticks” attribute. The attribute Number is set to the length of the array.

Parameter
- ticks – an array of doubles which contain the location, in user coordinates, of the major tick marks. If set, this attribute overrides the automatic computation of the tick values.

def setWindow
public void setWindow(double[] window)

Description
Sets the window for a ColormapLegend.

Parameter
- window – is an array of length two containing the range of this axis.

def setWindow
public void setWindow(double min, double max)

Description
Sets the window for a ColormapLegend.

Parameters
- min – is the value of the bottom end of the colormap legend labels.
- max – is the value of the top of the colormap legend labels.
Chapter 29: Data Mining

Types

class NaiveBayesClassifier ... 1902
class Itemsets .. 1923
class AssociationRule ... 1925
class Apriori .. 1926
class KohonenSOM ... 1934
class KohonenSOMTrainer ... 1942
class PredictiveModel ... 1945
class BootstrapAggregation ... 1962
class CrossValidation ... 1969
class GradientBoosting .. 1976

Usage Notes

Data Mining - An Overview

Data mining refers to the process of using statistical and analytical methods to extract useful information from large databases. The problem of extracting information from data is prevalent everywhere, in government, business, education, industry, engineering and sciences. The methods and algorithms used in data mining have been developed and invented, with considerable overlap, within fields known as machine learning, statistical learning, and statistics. While there may be theoretical or philosophical differences between the fields of study, these nuances are not important from a practical standpoint. They all have the same goal: learning from data.

Data Types

In general, data fall into two major categories: continuous and categorical. A continuous variable can assume any real number within a certain range. Examples of continuous variables include temperature, height, weight, circumference, body mass index, rate of return, etc. Count data are often treated as continuous variables in data mining algorithms. Even though they only assume discrete values, their set of possible values is infinite. Examples of count data include the number of accidents per year, the number of units sold, the number of insurance claims, and so on.
Categorical variables take on values from a finite list of categories. There are two types of categorical data: ordinal and nominal. Ordinal data have a natural ordering among the categories, such as a school grade. Nominal data are categories without a natural ordering, such as eye color.

Sometimes continuous variables are binned into a finite set, for example, income level: {less than 25K, between 25K and 50K, over 50K}, or body weight: {underweight, normal, overweight, obese}. For modeling purposes, these are often treated as ordinal categorical, especially when, for whatever reason, the raw observations on the subjects are no longer available.

Other types of data deserve a special mention: transaction or invoice data and text data. A transaction (think of a grocery store receipt) has attributes such as date and time, total amount, the set of products that were purchased, their quantities and prices, and possibly attributes of the individual customer making the purchases. Text data is discrete and not ordered, but the association of text or words in sentences, forming context, makes text data an important subtype for data mining applications.

Data Mining Problem Types

The primary types of data mining problems are pattern recognition and prediction. Prediction includes the subtypes classification, regression, and forecasting.

Pattern recognition algorithms are designed to detect patterns in large, high-dimensional, and complex data sets. Pattern recognition problems fall under two broad categories: supervised and unsupervised. In supervised problems, the number of groups or categories is known and each example (observation) in the training data has a known outcome (or response). The set of attributes or predictor variables measured on each example may relate to the response variable, and may then be used to predict the outcomes of future or new examples. Supervised learning algorithms try to detect the relationship between the set of attributes and the outcome of the response variable.

Prediction problems are supervised problems concerned with predicting an outcome of a variable using known attributes as inputs into a statistical model. In prediction problems, there is a single variable of interest called a dependent variable, or a response variable, or sometimes a label when the variable is categorical. The set of attributes consists of other variables that may have some relationship with the variable of interest. These variables are variously referred to as independent, explanatory, predictor variables, attributes, or features.

Classification is a prediction problem in which the response is categorical; regression is a prediction problem in which the response is continuous; and forecasting is a prediction problem in which the response variable and predictor variables are indexed by time. Most algorithms in this chapter have methods for either classification or regression. For time series, neural networks and support vector machines have both been used successfully.

In unsupervised problems, there is no known outcome or response. Each example in the training data is a vector of measurements on a number (often a very large number) of variables. The problem is to detect any patterns or structure that might exist in the high-dimensional space spanned by the variables. With a smaller set of natural groupings (clusters) or structures in lower dimensions, stronger inferences can be made about the population or the distribution of the variables. In this chapter, the Kohonen self-organizing map (KohonenSOM) is an example of an unsupervised learning algorithm. Many of the algorithms described in the Multivariate Analysis chapter are unsupervised learning algorithms.

For any data mining model to be useful, it must be given data it can learn from. This data has examples of known values of predictor variables and known value of the dependent variable. This data is called
training data. Once the model is trained or fitted to the training data, new examples (ones not used to train the model) are run through the model to obtain an estimated (predicted) value of the dependent variable. If the true value of the dependent variable is known, the predicted value is compared to the known value and a prediction error can be recorded. New examples with known (or realized) values of the dependent variable comprise what is often called a test data set, which is used to evaluate how accurately the model predicts the dependent variable. For the purpose of such model assessment, a complete data set can be randomly partitioned into a training set and a test set. See below the summary of cross-validation.

Data Filtering and Scaling

Regardless of the type or the source of the data, it must be filtered from its raw form into formats required by data mining and analytical algorithms. Categorical data must be mapped into a corresponding numerical representation. Some algorithms, for example DecisionTrees, treat categorical data appropriately, while other algorithms interpret all data as continuous. In these cases, categorical variables must be transformed.

Dummy variables are used to indicate the distinct values of categorical variables without implying order. To illustrate, suppose in a survey of consumer preferences, the categorical variable x indicates the type of chocolate, \{White, Milk, Dark\} and that these values are encoded to \{1, 2, 3\} in the data. If x is used directly, the algorithm presumes a scale ($1 < 2 < 3$) that is not really true or meaningful, and will lead to invalid inferences about the relationships between the variables. The reason for creating dummy variables is to represent a categorical variable with a set of indicators that puts each distinct value on the same numerical level. In the table, the binary encoding of x into 3 dummy variables is shown.

<table>
<thead>
<tr>
<th>Chocolate</th>
<th>x-value</th>
<th>dummy1</th>
<th>dummy2</th>
<th>dummy3</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dark</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The class UnsupervisedNominalFilter uses binary encoding to map nominal data into a matrix of zeros and ones. The resulting columns are often referred to as dummy variables.

If the categorical variable is ordinal, so that order between the levels is meaningful, the class UnsupervisedOrdinalFilter encodes and decodes ordinal data into the range [0, 1] using cumulative percentages.

Continuous data may need to be scaled. Many algorithms, such as neural networks and support vector machines, perform better if continuous data are mapped into a common scale. Class ScaleFilter implements several techniques for automatically scaling continuous data, including several variations of z-score scaling. If the continuous data represent a time series, TimeSeriesFilter and TimeSeriesClassFilter can be used to create a matrix of lagged values required as input to neural networks. More details on these methods can be found in the Neural Networks chapter.

Apriori Market Basket Analysis

Market basket analysis is an unsupervised data mining problem for detecting strong associations between products or items in transactional data. The problem arose especially with the advent of digital scanners and scanner data in supermarkets, hence the name “market basket”. The class Apriori performs the Apriori algorithm for finding strong association rules. Association rules are statements of
the form, “if X, then Y”, given with some measure of confidence. For example, in a supermarket X and Y are different products such as bread and butter. Learning which products are strongly associated helps managers make more profitable marketing decisions, such as product placement or sales promotions. There are other applications for association rule discovery, such as in text mining and bioinformatics.

Kohonen Self-organizing Map

A self-organizing map (SOM), also known as a Kohonen map or Kohonen SOM, is a technique for gathering high-dimensional data into clusters that are constrained to lie in low dimensional space, usually two dimensions. It is a widely used technique for the purpose of feature extraction and visualization for very high dimensional data. The Kohonen SOM is equivalent to a neural network having inputs linked to every node in the network. The creation of a Kohonen map involves two steps: training and forecasting. Training builds the map using input examples, and forecasting classifies new input.

Naive Bayes

Naive Bayes is a classification algorithm. A classifier is trained using `NaiveBayesClassifier` with known classifications. Once the classifier is trained, the classifier can be used to classify patterns with unknown classifications through `NaiveBayesClassifier` methods `predictClass` and `probabilities`.

Classification problems can be solved using other algorithms such as discriminant analysis and neural networks. In general, these alternatives have smaller classification error rates, but they are too slow for large classification problems. During training, `NaiveBayesClassifier` uses the non-missing training data to estimate two-way correlations among the attributes. Higher order correlations are assumed to be zero. This can increase the classification error rate, but it significantly reduces the time needed to train the classifier.

Neural Networks

An artificial neural network, or neural network, is a very flexible modeling framework that can be used in many of the applications and problem areas in data mining. The elements of a neural network (terminology inspired by the biological brain) are nodes and layers and activation functions. There are many options for setting up a network. Once the architecture of the network is specified, it can be trained on the training data and evaluated on test data, similar to other supervised learning algorithms. For more details, see the Neural Networks chapter.

Predictive Models

Class `PredictiveModel` is the abstract base class for predictive models like decision trees. It contains methods and members common to different predictive models in regression or classification problems. Users can leverage the abstract class and its methods to create customized predictive models. Presently, JMSL includes two major packages that extend `PredictiveModel`: `DecisionTrees` and `SupportVectorMachine`.

Decision Trees

Decision trees are predictive models for classification or regression. They are so named because they mimic a branching decision making process. The outcome of a decision tree algorithm is a set of decision rules, making them often preferable to other algorithms which are difficult to interpret, even though they may be accurate for a given problem. The DecisionTrees chapter includes 4 specific
algorithms, ALACART, C45, CHAID, and QUEST, for generating a decision tree. For more details and examples, see the DecisionTrees chapter.

Support Vector Machines

Support Vector Machines (SVMs) are a widely used machine learning method for regression, classification and other learning tasks. Class SVRegression implements the ν- and ε-SVMs for regression, ν-SVR and ε-SVR. Class SVCClassification contains implementations of the C- and ν-SVMs for classification, C-SVC and ν-SVC. Class SVOneClass estimates the support of a high-dimensional distribution, using the One-class SVM. All three classes are subclasses of class SupportVectorMachine. This parent class contains methods which can be used by all SVM formulations. Furthermore, all SVMs can use different kernels for optimization and the calculation of predictions. The kernels are implemented in classes LinearKernel, PolynomialKernel, RadialBasisKernel and SigmoidKernel. More information on the available SVMs and kernels can be found in the Support Vector Machines chapter.

Cross-Validation

Cross-validation is an important resampling method that can be used for model assessment or model selection. Class CrossValidation performs k-fold cross-validation on predictive models, like decision trees or support vector machines. In k-fold cross-validation, the set of observations is randomly split into k disjoint folds of approximately equal size. The first fold is then treated as a test set, and the model trained on the remaining k-1 folds. This procedure is repeated k times, with each of the folds serving once as a test set. Applying the fitted models to their test sets results in k estimates for the test error. The cross-validated error is computed by averaging these values. For classification problems, stratified cross-validation can be performed via the setStratifiedCrossValidation method.

Ensemble Methods

An ensemble method involves fitting a collection of predictive models and combining their collective outputs. The approach helps reduce variability and overfitting and improves predictive accuracy. In particular, decision trees have been shown to dramatically improve when used in ensembles.

Bootstrap Aggregation

Bootstrap aggregation (bagging) is an important statistical tool that helps to improve the accuracy of predictions from predictive models, like decision trees. Given a specific predictive model and a single training data set of size N, class BootstrapAggregation performs bagging by taking repeated bootstrap samples of size N from the training data set. The samples are drawn randomly with replacement from the training set so that an observation can occur more than once in the bootstrap data set. The predictive model is then trained on each bootstrap sample separately, and predictions are generated. The predictions are finally combined into a single value by averaging (for regression problems) or majority vote (for classification problems).

Gradient Boosting

Like bagging, gradient boosting is another approach to iteratively improve the predictions from a predictive model, specifically a decision tree. Class GradientBoosting implements a special form of gradient boosting, the stochastic gradient tree boosting algorithm of Friedman (1999). Class GradientBoosting can be applied to regression and classification problems. For classification problems, the binomial or multinomial deviance loss function must be used.
Random Decision Trees

Class RandomTrees implements the ensemble method called *random forest* (Breiman, 2001). A random forest is a collection of decision trees on bootstrap samples. In addition, the set of predictor variables is randomized before each branching or splitting decision within the decision tree algorithms. This extra randomization reduces correlation among the different trees in the ensemble. The class RandomTrees is in the DecisionTrees chapter.

NaiveBayesClassifier class

```java
public class com.imsl.datamining.NaiveBayesClassifier implements Serializable

Trains a Naive Bayes Classifier

NaiveBayesClassifier trains a Naive Bayes classifier for classifying data into one of nClasses target classes. Input attributes can be a combination of both nominal and continuous data. Ordinal data can be treated as either nominal attributes or continuous. If the distribution of the ordinal data is known or can be approximated using one of the continuous distributions, then associating them with continuous attributes allows a user to specify that distribution. Missing values are allowed.

Before training the classifier the input attributes must be specified. For each nominal attribute, use method `createNominalAttribute` to specify the number of categories in each nNominal attribute. Specify the input attributes in the same column order that they will be supplied to the `train` method. For example, if the input attribute in the first two columns of the nominal input data, `nominalData`, represent the first two nominal attributes and have two and three categories respectively, then the first call to the `createNominalAttribute` method would specify two categories and the second call to `createNominalAttribute` would specify three categories.

Likewise, for each continuous attribute, the method `createContinuousAttribute` can be used to specify a `ProbabilityDistribution` other than the default `NormalDistribution`. A second `createContinuousAttribute` is provided to allow specification of a different distribution for each target class (see Example 3). Create each continuous attribute in the same column order they will be supplied to the `train` method. If `createContinuousAttribute` is not invoked for all nContinuous attributes, the `NormalDistribution ProbabilityDistribution` will be used. For example, if five continuous attributes have been specified in the constructor, but only three calls to `createContinuousAttribute` have been invoked, the last two attributes, or columns of `continuousData` in the `train` method, will use the `NormalDistribution ProbabilityDistribution`.

Nominal only, continuous only, and a combination of both nominal and continuous input attributes are allowed. The three `train` methods allow for a combination of input attribute types.

Let $C$ be the classification attribute with target categories $0, 1, \ldots, nClasses - 1$, and let $X = \{x_1, x_2, \ldots, x_k\}$ be a vector valued array of $k=nNominal+nContinuous$ input attributes, where nNominal is the number of nominal attributes and $nContinuous$ is the number of continuous attributes. See methods `createNominalAttribute` to specify the number of categories for each nominal attribute.
and createContinuousAttribute to specify the distribution for each continuous attribute. The classification problem simplifies to estimate the conditional probability \( P(C|X) \) from a set of training patterns. The Bayes rule states that this probability can be expressed as the ratio:

\[
P(C = c|X = \{x_1,x_2,\ldots,x_k\}) = \frac{P(C = c)P(X = \{x_1,x_2,\ldots,x_k\}|C = c)}{P(X = \{x_1,x_2,\ldots,x_k\})}
\]

where \( c \) is equal to one of the target classes \( 0,1,\ldots,\text{nClasses} - 1 \). In practice, the denominator of this expression is constant across all target classes since it is only a function of the given values of \( X \). As a result, the Naive Bayes algorithm does not expend computational time estimating \( P(X = \{x_1,x_2,\ldots,x_k\}) \) for every pattern. Instead, a Naive Bayes classifier calculates the numerator \( P(C = c)P(X = \{x_1,x_2,\ldots,x_k\}|C = c) \) for each target class and then classifies \( X \) to the target class with the largest value, i.e.,

\[
X \sim \max_{c=0,1,\ldots,\text{nClasses}-1} P(C = c)P(X|C = c)
\]

The classifier simplifies this calculation by assuming conditional independence. That is it assumes that:

\[
P(X = \{x_1,x_2,\ldots,x_k\}|C = c) = \prod_{j=1}^{k} P(x_j|C = c)
\]

This is equivalent to assuming that the values of the input attributes, given \( C \), are independent of one another, i.e.,

\[
P(x_j|x_j, C = c) = P(x_j|C = c), \text{ for all } i \neq j
\]

In real world data this assumption rarely holds, yet in many cases this approach results in surprisingly low classification error rates. Since, the estimate of \( P(C = c|X = \{x_1,x_2,\ldots,x_k\}) \) from a Naive Bayes classifier is generally an approximation, classifying patterns based upon the Naive Bayes algorithm can have acceptably low classification error rates.

For nominal attributes, this implementation of the Naive Bayes classifier estimates conditional probabilities using a smoothed estimate:

\[
P(x_j|C = c) = \frac{\#N\{x_j \cap C = c\} + \lambda}{\#N\{C = c\} + \lambda \cdot j},
\]

where \( \#N\{Z\} \) is the number of training patterns with attribute \( Z \) and \( j \) is equal to the number of categories associated with the \( j \)-th attribute.

The probability \( P(C=c) \) is also estimated using a smoothed estimate:

\[
P(C = c) = \frac{\#N\{C = c\} + \lambda}{\text{nPatterns} + \lambda \cdot \text{nClasses}} .
\]

These estimates correspond to the maximum a priori (MAP) estimates for a Dirichelet prior assuming equal priors. The smoothing parameter can be any non-negative value. Setting \( \lambda = 0 \) corresponds to no smoothing. The default smoothing used in this algorithm, \( \lambda = 1 \), is commonly referred to as Laplace smoothing. This can be specified using the optional setDiscreteSmoothingValue.

For continuous attributes, the same conditional probability \( P(x_j|C = c) \) in the Naive Bayes formula is replaced with the conditional probability density function \( f(x_j|C = c) \). By default, the density function
for continuous attributes is the normal (Gaussian) probability density function (see NormalDistribution):

\[ f(x_j|C = c) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x_j - \mu)^2}{2\sigma^2}} \]

where \( \mu \) and \( \sigma \) are the conditional mean and standard deviation, i.e. the mean and standard deviation of \( x_j \) when \( C = c \). For convenience, methods getMeans and getStandardDeviations are provided to calculate the conditional mean and standard deviations of the training patterns.

In addition to the default normal pdf, users can select any continuous distribution to model the continuous attribute by providing an implementation of the com.imsl.stat.ProbabilityDistribution interface. See NormalDistribution, LogNormalDistribution, GammaDistribution, and PoissonDistribution for classes that implement the ProbabilityDistribution interface.

Smoothing conditional probability calculations for continuous attributes is controlled by the methods setContinuousSmoothingValue and setZeroCorrection. By default, conditional probability calculations for continuous attributes are unadjusted for calculations near zero. The value specified in the setContinuousSmoothingValue method will be added to each continuous probability calculation. This is similar to the effect of using setDiscreteSmoothingValue for the corresponding discrete calculations.

The value specified in the setZeroCorrection method is used when \( f(x|C = c) + \lambda = 0 \), where \( \lambda \) is the smoothing parameter setting. If this condition occurs, the conditional probability is replaced with the value set in setZeroCorrection.

Methods getClassificationErrors, getPredictedClass, getProbabilities, and getTrainingErrors provide information on how well the trained NaiveBayesClassifier predicts the known target classifications of the training patterns.

Methods probabilities and predictClass estimate classification probabilities and predict classification of the input pattern using the trained Naive Bayes Classifier. The predicted classification returned by predictClass is the class with the largest estimated classification probability. Method classError predicts the classification from the trained Naive Bayes classifier and compares the predicted classifications with the known target classification provided. This allows verification of the classifier with a set of patterns other than the training patterns.

Constructor

**NaiveBayesClassifier**

public NaiveBayesClassifier(int nContinuous, int nNominal, int nClasses)

**Description**

Constructs a NaiveBayesClassifier

**Parameters**

nContinuous – an int containing the number of continuous attributes
nNominal – an int containing the number of nominal attributes
nClasses – an int containing the number of target classifications

Methods

classError
public double classError(double[] continuous, int[] nominal, int classification)

Description
Returns the classification probability error for the input pattern and known target classification.

Parameters
continuous – a double array of length nContinuous containing an input pattern of continuous attributes. If nContinuous = 0, a null is allowed.
nominal – an int array of length nNominal containing an input pattern of nominal attributes. If nNominal = 0, a null is allowed.
classification – an int containing the target classification.

Returns
a double containing the classification probability error for the input pattern. The classification error for the input pattern is equal to 1-p, where p is the predicted class probability of input classification. The predicted class probability of input classification can be obtained by the method probabilities. If \( p = \text{probabilities} \) and \( k \) is equal to classification, then the classification error is \( 1 - p[k] \).

createContinuousAttribute
public void createContinuousAttribute(ProbabilityDistribution pdf)

Description
Create a continuous variable and the associated distribution function.

Parameter
pdf – a ProbabilityDistribution to be applied to the continuous attribute. The distribution function will be applied to all classes. By default, NormalDistribution is used.

createContinuousAttribute
public void createContinuousAttribute(ProbabilityDistribution[] pdf)

Description
Create a continuous variable and the associated distribution functions for each target classification.
Parameter

pdf – an array of ProbabilityDistributions containing nClasses distribution functions for a continuous attribute. This allows a different distribution function to be applied to each classification. By default, NormalDistribution is used.

createNominalAttribute

public void createNominalAttribute(int nCategories)

Description
Create a nominal attribute and the number of categories

Parameter

nCategories – an int containing the number of categories in the nominal attribute. The category values are expected to be encoded with integers ranging from 0 to nCategories -1. No default is used for nCategories. If nNominal is not zero, and createNominalAttribute is not invoked for each nNominal attribute, an IllegalStateException will be thrown when the train method is invoked.

getClassCounts

public int[] getClassCounts(int[] classificationData)

Description
Returns the number of patterns for each target classification.

Parameter

classificationData – an int array containing the target classifications for the training patterns. These must be encoded from zero to nClasses-1. Any value outside this range is considered a missing value. In this case, the data in that pattern are not used to train the Naive Bayes classifier. However, any pattern with missing values is still classified after the classifier is trained.

Returns
an int array containing the class counts.

getClassificationErrors

public double[] getClassificationErrors()

Description
Returns the classification probability errors for each pattern in the training data.

Returns
a double array containing the classification probability errors for each pattern in the training data. The classification error for the i-th training pattern is equal to 1-predictedClassProbability[i][k], where predictedClassProbability is returned from getProbabilities and k is equal to classificationData[i].

getMeans

public double[][] getMeans(double[][] continuousData, int[] classificationData)
Description
Returns a table of means for each continuous attribute in continuousData segmented by the target classes in classificationData.
This method is provided as a utility, prior training is not necessary.

Parameters
- continuousData – a double matrix containing training values for the continuous attributes.
- classificationData – an int array containing the target classifications for the training patterns.

Returns
a continuousData[0].length by nClasses double matrix, means, containing the means segmented by the target classes. The i-th row contains the means of the i-th continuous attribute for each value of the target classification. That is, means[i][j] is the mean for the i-th continuous attribute when the target classification equals j, unless there are no training patterns for this condition.

generateClassifiers(...)
generateClassifier(int[][] row)

generateStandardDeviations(...)
generateStandardDeviation(double[] row)

generateVariance(...)
generateVariance(double[] row)

getPredictedClass
public int[] getPredictedClass()

Description
Returns the predicted classification for each training pattern.

Returns
an int array containing the predicted classification for each training pattern.

generateProbabilities(...)
generateProbability(double[] row)

generateProbability(int i, double[] row)

generateVariance(...)
generateVariance(double[] row)

getProbabilities
public double[][] getProbabilities()

Description
Returns the predicted classification probabilities for each target class.

Returns
a double matrix, prob, of size nPatterns by nClasses containing the predicted classification probabilities for each target class, where nPatterns is the number of patterns trained. prob[i][j] is the estimated probability that the i-th pattern belongs to the j-th target class.

generateProbabilities(...)
generateProbability(double[] row)

generateProbability(int i, double[] row)

generateVariance(...)
generateVariance(double[] row)

getStandardDeviations
public double[][] getStandardDeviations(double[][] continuousData, int[] classificationData)

Description
Returns a table of standard deviations for each continuous attribute in continuousData segmented by the target classes in classificationData.
This method is provided as a utility, prior training is not necessary.

Parameters
- continuousData – a double matrix containing training values for the continuous attributes.
- classificationData – an int array containing the target classifications for the training patterns.
Returns
a continuousData[0].length by nClasses double matrix, stdev, containing the standard deviations segmented by the target classes. The i-th row contains the standard deviation of the i-th continuous attribute for each value of the target classification. That is, stdev[i][j] is the standard deviations for the i-th continuous attribute when the target classification equals j, unless there are no training patterns for this condition.

getTrainingErrors
public int[][] getTrainingErrors()

Description
Returns a table of classification errors of non-missing classifications for each target classification plus the overall total of classification errors.

Returns
an int matrix containing nClasses + 1 rows and two columns. The first column contains the number of misclassifications and the second column contains the total number of classifications for the i-th row target class. The last row of the matrix contains the total number of misclassifications in column one and the total non-missing classifications in column two.

ignoreMissingValues
public void ignoreMissingValues(boolean ignoreMissing)

Description
Specifies whether or not missing values will be ignored during the training process.

Parameter

ignoreMissing – a boolean specifying whether or not to ignore patterns during training when one or more input attributes are missing. By default, both missing and non-missing values are used to train the classifier. Classification predictions are still returned for all patterns even when set to true. By default, ignoreMissing = false.

predictClass
public int predictClass(double[] continuous, int[] nominal)

Description
Predicts the classification for the input pattern using the trained Naive Bayes classifier.

Parameters

continuous – a double array containing an input pattern of nContinuous continuous attributes. If nContinuous = 0, a null is allowed.

nominal – an int array of length nNominal containing an input pattern of nominal attributes. If nNominal = 0, a null is allowed.

Returns
an int containing the predicted classification for the input pattern using the trained Naive Bayes Classifier. The predicted classification returned is the class with the largest estimated classification probability. The classification probabilities can be predicted using the probabilities method.
probabilities

public double[] probabilities(double[] continuous, int[] nominal)

Description

Predicts the classification probabilities for the input pattern using the trained Naive Bayes classifier.

Parameters

- **continuous** – a double array containing an input pattern of nContinuous continuous attributes. If nContinuous = 0, a null is allowed.
- **nominal** – an int array of length nNominal containing an input pattern of nominal attributes. If nNominal = 0, a null is allowed.

Returns

A double array of length nClasses containing the predicted classification probabilities for each target class.

setContinuousSmoothingValue

public void setContinuousSmoothingValue(double clambda)

Description

Parameter for calculating smoothed estimates of conditional probabilities for continuous attributes.

Parameter

- **clambda** – a double containing the smoothing parameter to be used for calculating smoothed estimates of conditional probabilities for continuous attributes. clambda must be non-negative. By default, clambda=0, i.e. no smoothing is done.

setDiscreteSmoothingValue

public void setDiscreteSmoothingValue(double dlambda)

Description

Parameter for calculating smoothed estimates of conditional probabilities for discrete (nominal) attributes.

Parameter

- **dlambda** – a double containing the smoothing parameter to be used for calculating smoothed estimates of conditional probabilities for discrete attributes. dlambda must be non-negative. By default, dlambda = 1.0, i.e. Laplace smoothing of conditional probabilities.

setZeroCorrection

public void setZeroCorrection(double zeroCorrection)

Description

Specifies the replacement value to be used for conditional probabilities equal to zero.
Parameter

zeroCorrection – a double containing the value to replace conditional probabilities equal to zero. zeroCorrection must be non-negative. By default, no correction will be performed.

train
public void train(double[][] continuousData, int[] classificationData)

Description
Trains a Naive Bayes classifier for classifying data into one of nClasses target classifications.

Parameters

continuousData – a double matrix containing the training values for the nContinuous continuous attributes. The i-th row contains the input attributes for the i-th training pattern. The j-th column contains the values for the j-th continuous attribute. Missing values should be set to Double.NaN. Patterns with both non-missing and missing values are used to train the classifier unless the ignoreMissingValues method has been set to true.

classificationData – an int array containing the target classifications for the training patterns. These must be encoded from zero to nClasses-1. Any value outside this range is considered a missing value. In this case, the data in that pattern are not used to train the Naive Bayes classifier. However, any pattern with missing values is still classified after the classifier is trained.

train
public void train(int[][] nominalData, int[] classificationData)

Description
Trains a Naive Bayes classifier for classifying data into one of nClasses target classifications.

Parameters

nominalData – an int matrix containing the training values for the nNominal nominal attributes. The i-th row contains the input attributes for the i-th training pattern. The j-th column contains the classifications for the j-th nominal attribute. The values for the j-th nominal attribute are expected to be encoded with integers starting from 0 to nCategories - 1, where nCategories is specified in the createNominalAttribute method. Any value outside this range is treated as a missing value. Patterns with both non-missing and missing values are used to train the classifier unless the ignoreMissingValues method has been set to true.

classificationData – an int array containing the target classifications for the training patterns. These must be encoded from zero to nClasses-1. Any value outside this range is considered a missing value. In this case, the data in that pattern are not used to train the Naive Bayes classifier. However, any pattern with missing values is still classified after the classifier is trained.

train
public void train(double[][] continuousData, int[][] nominalData, int[] classificationData)

Description
Trains a Naive Bayes classifier for classifying data into one of nClasses target classifications.
Parameters

- **continuousData** – a double matrix containing the training values for the nContinuous continuous attributes. The i-th row contains the input attributes for the i-th training pattern. The j-th column contains the values for the j-th continuous attribute. Missing values should be set to Double.NaN. Patterns with both non-missing and missing values are used to train the classifier unless the ignoreMissingValues method has been set to true.

- **nominalData** – an int matrix containing the training values for the nNominal nominal attributes. The i-th row contains the input attributes for the i-th training pattern. The j-th column contains the classifications for the j-th nominal attribute. The values for the j-th nominal attribute are expected to be encoded with integers starting from 0 to nCategories - 1, where nCategories is specified in the createNominalAttribute method. Any value outside this range is treated as a missing value. Patterns with both non-missing and missing values are used to train the classifier unless the ignoreMissingValues method has been set to true.

- **classificationData** – an int array containing the target classifications for the training patterns. These must be encoded from zero to nClasses-1. Any value outside this range is considered a missing value. In this case, the data in that pattern are not used to train the Naive Bayes classifier. However, any pattern with missing values is still classified after the classifier is trained.

Example 1: Continuous Attribute Example

Fisher’s (1936) Iris data is often used for benchmarking classification algorithms. It consists of the following continuous input attributes and a classification target:

- **Continuous Attributes Usage**
  - Sepal Length
  - Sepal Width
  - Petal Length
  - Petal Width

- **Classification of Iris Type**
  - Setosa
  - Versicolour
  - Virginica

This example trains a Naive Bayes classifier using 140 of the 150 continuous patterns, then classifies ten unknown plants using their sepal and petal measurements.

```java
import com.imsl.datamining.*;
import com.imsl.stat.NormalDistribution;

public class NaiveBayesClassifierEx1 {

 private static double[][] irisData = {
 {1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
 {1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
 }
```
<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0, 5.0, 3.6, 1.4, .2</td>
<td>1.0, 5.4, 3.9, 1.7, .4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.6, 3.4, 1.4, .3</td>
<td>1.0, 5.0, 3.4, 1.5, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.4, 2.9, 1.4, .2</td>
<td>1.0, 4.9, 3.1, 1.5, .1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.4, 3.7, 1.5, .2</td>
<td>1.0, 4.8, 3.4, 1.6, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.8, 3.0, 1.4, .1</td>
<td>1.0, 4.3, 3.0, 1.1, .1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.8, 4.0, 1.2, .2</td>
<td>1.0, 5.7, 4.4, 1.5, .4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.4, 3.9, 1.3, .4</td>
<td>1.0, 5.1, 3.5, 1.4, .3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.7, 3.8, 1.7, .3</td>
<td>1.0, 5.1, 3.8, 1.5, .3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.4, 3.4, 1.7, .2</td>
<td>1.0, 5.1, 3.7, 1.5, .4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.6, 3.6, 1.0, .2</td>
<td>1.0, 5.1, 3.3, 1.7, .5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.8, 3.4, 1.9, .2</td>
<td>1.0, 5.0, 3.0, 1.6, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.0, 3.4, 1.6, .4</td>
<td>1.0, 5.2, 3.5, 1.5, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.2, 3.4, 1.4, .2</td>
<td>1.0, 4.7, 3.2, 1.6, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.8, 3.1, 1.6, .2</td>
<td>1.0, 5.4, 3.4, 1.5, .4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.2, 4.1, 1.5, .1</td>
<td>1.0, 5.5, 4.2, 1.4, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.9, 3.1, 1.5, .2</td>
<td>1.0, 5.0, 3.2, 1.2, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.5, 3.5, 1.3, .2</td>
<td>1.0, 4.9, 3.6, 1.4, .1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.4, 3.0, 1.3, .2</td>
<td>1.0, 5.1, 3.4, 1.5, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.0, 3.5, 1.3, .3</td>
<td>1.0, 4.5, 2.3, 1.3, .3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 4.4, 3.2, 1.3, .2</td>
<td>1.0, 5.0, 3.5, 1.6, .6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.1, 3.8, 1.9, .4</td>
<td>1.0, 4.8, 3.0, 1.4, .3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.1, 3.8, 1.6, .2</td>
<td>1.0, 4.6, 3.2, 1.4, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0, 5.3, 3.7, 1.5, .2</td>
<td>1.0, 5.0, 3.3, 1.4, .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 7.0, 3.2, 4.7, 1.4</td>
<td>2.0, 6.4, 3.2, 4.5, 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.9, 3.1, 4.9, 1.5</td>
<td>2.0, 5.5, 2.3, 4.0, 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.5, 2.8, 4.6, 1.5</td>
<td>2.0, 5.7, 2.8, 4.5, 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.3, 3.3, 4.7, 1.6</td>
<td>2.0, 4.9, 2.4, 3.3, 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.6, 2.9, 4.6, 1.3</td>
<td>2.0, 5.2, 2.7, 3.9, 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.0, 2.0, 3.5, 1.0</td>
<td>2.0, 5.9, 3.0, 4.2, 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.0, 2.2, 4.0, 1.0</td>
<td>2.0, 6.1, 2.9, 4.7, 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.6, 2.9, 3.6, 1.3</td>
<td>2.0, 6.7, 3.1, 4.4, 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.6, 3.0, 4.5, 1.5</td>
<td>2.0, 5.8, 2.7, 4.1, 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.2, 2.2, 4.5, 1.5</td>
<td>2.0, 5.6, 2.5, 3.9, 1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.9, 3.2, 4.8, 1.8</td>
<td>2.0, 6.1, 2.8, 4.0, 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.3, 2.5, 4.9, 1.5</td>
<td>2.0, 6.1, 2.8, 4.7, 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.4, 2.9, 4.3, 1.3</td>
<td>2.0, 6.6, 3.0, 4.4, 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.8, 2.8, 4.8, 1.4</td>
<td>2.0, 6.7, 3.0, 5.0, 1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.0, 2.9, 4.5, 1.5</td>
<td>2.0, 5.7, 2.6, 3.5, 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.5, 2.4, 3.8, 1.1</td>
<td>2.0, 5.5, 2.4, 3.7, 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.8, 2.7, 3.9, 1.2</td>
<td>2.0, 6.0, 2.7, 5.1, 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.4, 3.0, 4.5, 1.5</td>
<td>2.0, 6.0, 3.4, 4.5, 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 6.7, 3.1, 4.7, 1.5</td>
<td>2.0, 6.3, 2.3, 4.4, 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.6, 3.0, 4.1, 1.3</td>
<td>2.0, 5.5, 2.5, 4.0, 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.5, 2.6, 4.4, 1.2</td>
<td>2.0, 6.1, 3.0, 4.6, 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.8, 2.6, 4.0, 1.2</td>
<td>2.0, 5.0, 2.3, 3.3, 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.6, 2.7, 4.2, 1.3</td>
<td>2.0, 5.7, 3.0, 4.2, 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.7, 2.9, 4.2, 1.3</td>
<td>2.0, 6.2, 2.9, 4.3, 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0, 5.1, 2.5, 3.0, 1.1</td>
<td>2.0, 5.7, 2.8, 4.1, 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 6.3, 3.3, 6.0, 2.5</td>
<td>3.0, 5.8, 2.7, 5.1, 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 7.1, 3.0, 5.9, 2.1</td>
<td>3.0, 6.3, 2.9, 5.6, 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 6.5, 3.0, 5.8, 2.2</td>
<td>3.0, 7.6, 3.0, 6.6, 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 4.9, 2.5, 4.5, 1.7</td>
<td>3.0, 7.3, 2.9, 6.3, 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 6.7, 2.5, 5.8, 1.8</td>
<td>3.0, 7.2, 3.6, 6.1, 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 6.5, 3.2, 5.1, 2.0</td>
<td>3.0, 6.4, 2.7, 5.3, 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 6.8, 3.0, 5.5, 2.1</td>
<td>3.0, 5.7, 2.5, 5.0, 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0, 5.8, 2.8, 5.1, 2.4</td>
<td>3.0, 6.4, 3.2, 5.3, 2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
public static void main(String[] args) throws Exception {
    /* Data corrections described in the KDD data mining archive */
    irisData[34][4] = 0.1;
    irisData[37][2] = 3.1;
    irisData[37][3] = 1.5;

    /* Train first 140 patterns of the iris Fisher Data */
    int[] irisClassificationData = new int[irisData.length - 10];
    double[][] irisContinuousData
        = new double[irisData.length - 10][irisData[0].length - 1];
    for (int i = 0; i < irisData.length - 10; i++) {
        irisClassificationData[i] = (int) irisData[i][0] - 1;
        System.arraycopy(irisData[i], 1,
            irisContinuousData[i], 0, irisData[0].length - 1);
    }

    int nNominal = 0; /* no nominal input attributes */
    int nContinuous = 4; /* four continuous input attributes */
    int nClasses = 3; /* three classification categories */
    NaiveBayesClassifier nbTrainer
        = new NaiveBayesClassifier(nContinuous, nNominal, nClasses);
    for (int i = 0; i < nContinuous; i++) {
        nbTrainer.createContinuousAttribute(new NormalDistribution());
    }
    nbTrainer.train(irisContinuousData, irisClassificationData);

    int[][] classErrors = nbTrainer.getTrainingErrors();

    System.out.println(" Iris Classification Training Error Rates");
    System.out.println("------------------------------------------------");
    System.out.println(" Setosa Versicolour Virginica | Total");
    System.out.println("  " + classErrors[0][0] + "/" + classErrors[0][1] + "");
}
/* Classify last 10 iris data patterns with the trained classifier */

double[] continuousInput = new double[(irisData[0].length - 1)];
double[] classifiedProbabilities = new double[nClasses];

System.out.println("Probabilities for Incorrect Classifications");
System.out.println(" Predicted ");
System.out.println(" Class | Class | P(0) P(1) P(2) ");
System.out.println("---------------------------------------------------");

for (int i = 0; i < 10; i++) {
    int targetClassification = (int) irisData[(irisData.length - 10) + i][0] - 1;
    System.arraycopy(irisData[(irisData.length - 10) + i], 1, continuousInput, 0, (irisData[0].length - 1));
    classifiedProbabilities = nbTrainer.probabilities(continuousInput, null);
    int classification = nbTrainer.predictClass(continuousInput, null);
    if (classification == 0) {
        System.out.print("Setosa | ");
    } else if (classification == 1) {
        System.out.print("Versicolour | ");
    } else if (classification == 2) {
        System.out.print("Virginica | ");
    } else {
        System.out.print("Missing | ");
    }
    if (targetClassification == 0) {
        System.out.print(" Setosa | ");
    } else if (targetClassification == 1) {
        System.out.print(" Versicolour | ");
    } else if (targetClassification == 2) {
        System.out.print(" Virginica | ");
    } else {
        System.out.print(" Missing | ");
    }
    for (int j = 0; j < nClasses; j++) {
        Object[] pArgs = {new Double(classifiedProbabilities[j])};
        System.out.printf(" %2.3f ", pArgs);
    }
    System.out.println();
}
Output

The Naive Bayes classifier incorrectly classifies 6 of the 150 training patterns.

--- Iris Classification Training Error Rates -------------------------------------
<table>
<thead>
<tr>
<th>Setosa</th>
<th>Versicolour</th>
<th>Virginica</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/50</td>
<td>0/50</td>
<td>20/40</td>
<td>20/140</td>
</tr>
</tbody>
</table>
---

Probabilities for Incorrect Classifications

<table>
<thead>
<tr>
<th>Predicted Class</th>
<th>Class</th>
<th>P(0)</th>
<th>P(1)</th>
<th>P(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.436</td>
<td>0.564</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.466</td>
<td>0.534</td>
</tr>
<tr>
<td>Versicolour</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.542</td>
<td>0.458</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.441</td>
<td>0.559</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.412</td>
<td>0.588</td>
</tr>
<tr>
<td>Versicolour</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.466</td>
<td>0.534</td>
</tr>
<tr>
<td>Versicolour</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.542</td>
<td>0.458</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.515</td>
<td>0.485</td>
</tr>
<tr>
<td>Versicolour</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.460</td>
<td>0.540</td>
</tr>
<tr>
<td>Versicolour</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.551</td>
<td>0.449</td>
</tr>
</tbody>
</table>

Example 2: Nominal Attribute Usage

This example trains a Naive Bayes classifier using 24 training patterns with four nominal input attributes. The first nominal attribute has three classifications and the others have two. The target classifications are contact lens prescriptions: hard, soft or neither recommended. These data are benchmark data from the Knowledge Discovery Databases archive maintained at the University of California, Irvine:

```java
import com.imsl.datamining.*;

public class NaiveBayesClassifierEx2 {

 public static void main(String[] args) throws Exception {
 int[][] contactLensData = {
 {1, 1, 1, 1}, {1, 1, 1, 2}, {1, 1, 2, 1}, {1, 1, 2, 2},
 {1, 2, 1, 1}, {1, 2, 1, 2}, {1, 2, 2, 1}, {1, 2, 2, 2},
 {2, 1, 1, 1}, {2, 1, 1, 2}, {2, 1, 2, 1}, {2, 1, 2, 2},
 {2, 2, 1, 1}, {2, 2, 1, 2}, {2, 2, 2, 1}, {2, 2, 2, 2},
 {3, 1, 1, 1}, {3, 1, 1, 2}, {3, 1, 2, 1}, {3, 1, 2, 2},
 {3, 2, 1, 1}, {3, 2, 1, 2}, {3, 2, 2, 1}, {3, 2, 2, 2}
 };

 int[] classificationData = {
 3, 2, 3, 1,
 3, 2, 3, 1,
 3, 2, 3, 1,
 3, 2, 3, 1
 };
 }
}
```
3, 3, 3, 1,
3, 2, 3, 3
); /* classification values must start at 0 */
for (int i = 0; i < classificationData.length; i++) {
    classificationData[i] -= 1;
    for (int j = 0; j < contactLensData[0].length; j++) {
        contactLensData[i][j] -= 1;
    }
}
NaiveBayesClassifier nbTrainer = new NaiveBayesClassifier(0, 4, 3);

int nNominal = 4;
int categories[] = {3, 2, 2, 2};
for (int i = 0; i < nNominal; i++) {
    nbTrainer.createNominalAttribute(categories[i]);
}
nbTrainer.train(contactLensData, classificationData);

int[][] classErrors = nbTrainer.getTrainingErrors();
System.out.println("\n Contact Lens Error Rates\n");
System.out.println("----------------------------------------");
System.out.println(" Hard Soft Neither | Total\n");
System.out.println(" + classErrors[0][0] + " + classErrors[0][1] + " + classErrors[1][0] + " + classErrors[1][1] + " + classErrors[2][0] + " + classErrors[2][1] + " + classErrors[3][0] + " + classErrors[3][1];
System.out.println("----------------------------------------");

/* Classify all patterns with the trained classifier */
int[] nominalInput = new int[contactLensData[0].length];
double[] classifiedProbabilities = new double[3];

System.out.println("Probabilities for Incorrect Classifications\n");
System.out.println(" Predicted ");
System.out.println(" Class | Class | " + "P(0) P(1) P(2) | classification error\n");
System.out.println("------------------------------------------" + "---------------------------------------");
for (int i = 0; i < contactLensData.length; i++) {
    System.arraycopy(contactLensData[i], 0,
    nominalInput, 0, contactLensData[0].length);
    classifiedProbabilities = nbTrainer.probabilities(null, nominalInput);
    int classification = nbTrainer.predictClass(null, nominalInput);
    double error = nbTrainer.classError(
        null, nominalInput, classificationData[i]);
    if (classification == 0) {
        System.out.print(" Hard |\n    } else if (classification == 1) {
        System.out.print(" Soft |\n    } else if (classification == 2) {
System.out.print(" Neither | ");
) else {
    System.out.print(" Missing | ");
}
if (classificationData[i] == 0) {
    System.out.print(" Hard | ");
} else if (classificationData[i] == 1) {
    System.out.print(" Soft | ");
} else if (classificationData[i] == 2) {
    System.out.print(" Neither | ");
} else {
    System.out.print(" Missing | ");
}
}
for (int j = 0; j < 3; j++) {
    Object[] pArgs = {new Double(classifiedProbabilities[j])};
    System.out.printf(" %2.3f ", pArgs);
}
System.out.println(" | " + error);
}

Output
-------------------------------------
Contact Lens Error Rates
-------------------------------------
Hard | Soft | Neither | Total
0/4  | 0/5  | 1/15    | 1/24
-------------------------------------
Probabilities for Incorrect Classifications

Predicted

<table>
<thead>
<tr>
<th>Class</th>
<th>Class</th>
<th>P(0)</th>
<th>P(1)</th>
<th>P(2)</th>
<th>classification error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.044</td>
<td>0.130</td>
<td>0.827</td>
<td>0.17328273537224337</td>
</tr>
<tr>
<td>Soft</td>
<td>Soft</td>
<td>0.174</td>
<td>0.622</td>
<td>0.203</td>
<td>0.3777037515962849</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.186</td>
<td>0.018</td>
<td>0.795</td>
<td>0.2048148453118481</td>
</tr>
<tr>
<td>Hard</td>
<td>Hard</td>
<td>0.724</td>
<td>0.086</td>
<td>0.190</td>
<td>0.2762213881704395</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.019</td>
<td>0.154</td>
<td>0.827</td>
<td>0.1731192809428289</td>
</tr>
<tr>
<td>Soft</td>
<td>Soft</td>
<td>0.076</td>
<td>0.724</td>
<td>0.200</td>
<td>0.27580075885359856</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.092</td>
<td>0.024</td>
<td>0.884</td>
<td>0.11636647828065916</td>
</tr>
<tr>
<td>Hard</td>
<td>Hard</td>
<td>0.524</td>
<td>0.166</td>
<td>0.310</td>
<td>0.4759671271915246</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.025</td>
<td>0.113</td>
<td>0.862</td>
<td>0.1379488917359677</td>
</tr>
<tr>
<td>Soft</td>
<td>Soft</td>
<td>0.118</td>
<td>0.633</td>
<td>0.248</td>
<td>0.36667756449941913</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.113</td>
<td>0.017</td>
<td>0.870</td>
<td>0.130091614979002</td>
</tr>
<tr>
<td>Hard</td>
<td>Hard</td>
<td>0.606</td>
<td>0.108</td>
<td>0.286</td>
<td>0.3943953202159177</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.011</td>
<td>0.133</td>
<td>0.856</td>
<td>0.1438071275344872</td>
</tr>
<tr>
<td>Soft</td>
<td>Soft</td>
<td>0.050</td>
<td>0.714</td>
<td>0.236</td>
<td>0.28621890950268947</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.054</td>
<td>0.021</td>
<td>0.925</td>
<td>0.07477065629881141</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.394</td>
<td>0.187</td>
<td>0.419</td>
<td>0.5812071082121901</td>
</tr>
<tr>
<td>Neither</td>
<td>Neither</td>
<td>0.023</td>
<td>0.068</td>
<td>0.909</td>
<td>0.09075297709414065</td>
</tr>
</tbody>
</table>
Example 3: Naive Bayes Classifier Using User Supplied Probability Function

This example is the same as Example 1, using Fisher’s (1936) Iris data to train a Naive Bayes classifier using 140 of the 150 continuous patterns, then classifies ten unknown plants using their sepal and petal measurements.

Instead of using the NormalDistribution class from the com.imsl.stat package, a user supplied normal (Gaussian) distribution is used. Rather than calculating the means and standard deviations from the data, as is done by the NormalDistribution’s eval(double[]) method, the user supplied class requires the means and standard deviations in the class constructor. The output is the same as in Example 1, since the means and standard deviations in this example are simply rounded means and standard deviations of the actual data subset by target classifications.

```java
import com.imsl.datamining.*;
import com.imsl.stat.ProbabilityDistribution;

public class NaiveBayesClassifierEx3 {
 private static double[][] irisData = {
 {1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
 {1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
 {1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
 {1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
 {1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
 {1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
 {1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
 {1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
 {1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
 {1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
 {1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
 {1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
 {1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
 {1.0, 5.0, 3.4, 1.6, .4}, {1.0, 5.2, 3.5, 1.5, .2},
 {1.0, 5.2, 3.4, 1.4, .2}, {1.0, 4.7, 3.2, 1.6, .2},
 {1.0, 4.8, 3.1, 1.6, .2}, {1.0, 5.4, 3.4, 1.5, .4},
 {1.0, 5.2, 4.1, 1.5, .1}, {1.0, 5.5, 4.2, 1.4, .2},
 {1.0, 4.9, 3.1, 1.5, .2}, {1.0, 5.0, 3.2, 1.2, .2},
 {1.0, 5.5, 3.5, 1.3, .2}, {1.0, 4.9, 3.6, 1.4, .1},
 {1.0, 4.4, 3.0, 1.3, .2}, {1.0, 5.1, 3.4, 1.5, .2},
 {1.0, 5.0, 3.5, 1.3, .3}, {1.0, 4.5, 2.3, 1.3, .3},
 {1.0, 4.4, 3.2, 1.3, .2}, {1.0, 5.0, 3.5, 1.6, .6},
 {1.0, 5.1, 3.8, 1.9, .4}, {1.0, 4.8, 3.0, 1.4, .3},
 {1.0, 5.1, 3.8, 1.6, .2}, {1.0, 4.6, 3.2, 1.4, .2},
 };
```
public static void main(String[] args) throws Exception {
    /* Data corrections described in the KDD data mining archive */
}

Data Mining NaiveBayesClassifier ● 1919
```java
irisData[34][4] = 0.1;
irisData[37][2] = 3.1;
irisData[37][3] = 1.5;

/* Train first 140 patterns of the iris Fisher Data */
int[] irisClassificationData = new int[irisData.length - 10];
double[][] irisContinuousData
 = new double[irisData.length - 10][irisData[0].length - 1];

for (int i = 0; i < irisData.length - 10; i++) {
 irisClassificationData[i] = (int) irisData[i][0] - 1;
 System.arraycopy(irisData[i], 1,
 irisContinuousData[i], 0, irisData[0].length - 1);
}

int nNominal = 0; /* no nominal input attributes */
int nContinuous = 4; /* four continuous input attributes */
int nClasses = 3; /* three classification categories */

NaiveBayesClassifier nbTrainer
 = new NaiveBayesClassifier(nContinuous, nNominal, nClasses);

double[][] means = {
 {5.06, 5.94, 6.58}, {3.42, 2.8, 2.97},
 {1.5, 4.3, 5.6}, {0.25, 1.33, 2.1}
};
double[][] stdev = {
 {0.35, 0.52, 0.64}, {0.38, 0.3, 0.32},
 {0.17, 0.47, 0.55}, {0.12, 0.198, 0.275}
};

for (int i = 0; i < nContinuous; i++) {
 ProbabilityDistribution[] pdf
 = new ProbabilityDistribution[nClasses];
 for (int j = 0; j < nClasses; j++) {
 pdf[j] = new TestGaussFcn1(means[i][j], stdev[i][j]);
 }
 nbTrainer.createContinuousAttribute(pdf);
}

nbTrainer.train(irisContinuousData, irisClassificationData);

int[] classErrors = nbTrainer.getTrainingErrors();

System.out.println(" Iris Classification Error Rates");
System.out.println("--");
System.out.println(" Setosa Versicolour Virginica | Total");
System.out.println(" " + classErrors[0][0] + "/" + classErrors[0][1]
 + " + classErrors[1][0] + "/" + classErrors[1][1]
 + " + classErrors[2][0] + "/" + classErrors[2][1]
 + " + classErrors[3][0] + "/" + classErrors[3][1]);
System.out.println("--

1920 • NaiveBayesClassifier JMSL
```
/* Classify last 10 iris data patterns with the trained classifier */
double[] continuousInput = new double[(irisData[0].length - 1)];
double[] classifiedProbabilities = new double[nClasses];

System.out.println("Probabilities for Incorrect Classifications");
System.out.println(" Predicted ");
System.out.println(" Class | Class | P(0)  P(1)  P(2) ");
System.out.println("-------------------------------------------------------");
for (int i = 0; i < 10; i++) {
    int targetClassification
        = (int) irisData[(irisData.length - 10) + i][0] - 1;
    System.arraycopy(irisData[(irisData.length - 10) + i], 1,
        continuousInput, 0, (irisData[0].length - 1));
    classifiedProbabilities
        = nbTrainer.probabilities(continuousInput, null);
    int classification
        = nbTrainer.predictClass(continuousInput, null);
    if (classification == 0) {
        System.out.print("Setosa |");
    } else if (classification == 1) {
        System.out.print("Versicolour |");
    } else if (classification == 2) {
        System.out.print("Virginica |");
    } else {
        System.out.print("Missing |");
    }
    if (targetClassification == 0) {
        System.out.print(" Setosa |");
    } else if (targetClassification == 1) {
        System.out.print(" Versicolour |");
    } else if (targetClassification == 2) {
        System.out.print(" Virginica |");
    } else {
        System.out.print(" Missing |");
    }
    for (int j = 0; j < nClasses; j++) {
        Object[] pArgs = {new Double(classifiedProbabilities[j])};
        System.out.printf(" %2.3f ", pArgs);
    }
    System.out.println("\n");
}

static public class TestGaussFcn1 implements ProbabilityDistribution {
    private double mean;
    private double stdev;

    public TestGaussFcn1(double mean, double stdev) {
        this.mean = mean;
        this.stdev = stdev;
    }

    public double[] eval(double[] xData) {

double[] pdf = new double[xData.length];
for (int i = 0; i < xData.length; i++) {
    pdf[i] = eval(xData[i], null);
}
return pdf;
}

public double[] eval(double[] xData, Object[] Params) {
    double[] pdf = new double[xData.length];
    for (int i = 0; i < xData.length; i++) {
        pdf[i] = eval(xData[i], Params);
    }
    return pdf;
}

public double eval(double xData, Object[] Params) {
    return l_gaussian_pdf(xData, mean, stdev);
}

public Object[] getParameters() {
    Double[] parms = new Double[2];
    parms[0] = this.mean;
    parms[1] = this.stdev;
    return parms;
}

private double l_gaussian_pdf(double x, double mean, double stdev) {
    double e, phi2, z, s;
    double sqrt_pi2 = 2.506628274631; /* sqrt(2*pi) */
    if (Double.isNaN(x)) {
        return Double.NaN;
    }
    if (Double.isNaN(mean) || Double.isNaN(stdev)) {
        return Double.NaN;
    } else {
        z = x - mean;
        s = stdev;
        phi2 = sqrt_pi2 * s;
        e = -0.5 * (z * z) / (s * s);
        return Math.exp(e) / phi2;
    }
}

Output
The Naive Bayes classifier incorrectly classifies 6 of the 150 training patterns.

Iris Classification Error Rates
-------------------------------------
Setosa  Versicolour  Virginica  |  Total
-------------------------------------
1922  •  NaiveBayesClassifier
Probabilities for Incorrect Classifications

<table>
<thead>
<tr>
<th>Predicted Class</th>
<th>Actual Class</th>
<th>P(0)</th>
<th>P(1)</th>
<th>P(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.051</td>
<td>0.949</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.001</td>
<td>0.999</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Virginica</td>
<td>Virginica</td>
<td>0.000</td>
<td>0.126</td>
<td>0.874</td>
</tr>
</tbody>
</table>

Itemsets class

```java
public class com.imsl.datamining.Itemsets implements Serializable, Cloneable
```

Object containing a set of frequent items and the number of transactions examined to obtain the frequent item set.

**Methods**

**getItemset**
```java
public int[] getItemset(int i)
```

**Description**
Returns a particular itemset.

**Parameter**

- `i` – an int indicating which itemset to retrieve.

**Returns**

an int array that contains the `i`th itemset.

**getItemsetsMatrix**
```java
public int[][] getItemsetsMatrix()
```
**Description**

Returns the set of Itemsets as an integer matrix.

**Returns**

an int matrix. The number of rows is consistent with the number of item sets that meet the specified support criterion. The rows are jagged. The length of each row is determined by the number of elements (frequently simultaneous items) in the item set and an element for the corresponding support. Therefore an item set with two elements would produce a row of length 3. The first two elements of the row would be the items of the set, with the support at position length-1; that is, {item1, item2, support value}. More generally: {item1, ..., itemN, support value}.

---

**getNumberOfItemsets**

```
public int getNumberOfItemsets()
```

**Description**

Returns the number of itemsets in this Itemsets.

**Returns**

an int specifying the number of itemsets in this Itemsets.

---

**getNumberOfTransactions**

```
public int getNumberOfTransactions()
```

**Description**

Returns an int indicating the number of transactions used to construct the itemsets.

**Returns**

an int indicating the number of transactions used to construct the itemsets.

---

**getSupport**

```
public double getSupport(int i)
```

**Description**

Returns the support determined for a particular itemset.

**Parameter**

i – an int indicating which itemset to retrieve the support for.

**Returns**

a double that specifies the support determined for the i\(^{th}\) itemset.

---

**print**

```
public void print()
```

**Description**

Prints a standard representation of the members of this object.
AssociationRule class

```java
public class com.imsl.datamining.AssociationRule implements Serializable, Cloneable

Contains association rules discovered by the Apriori algorithm.

An association rule has the form, \(X \implies Y \), where \(X \) and \(Y \) are two disjoint sets of items (or products) that are represented in a set of occurrences (transactions). The AssociationRule object contains members:

- \(X: \{X_1, \ldots, X_n\} \)
- \(Y: \{Y_1, \ldots, Y_m\} \)
- Support of \(Z = X \cap Y \)
- Support of \(X \)
- Support of \(Y \)
- Confidence measure for \(X \implies Y \)
- Lift measure for \(X \implies Y \)
```

Methods

getConfidence

```java
public double getConfidence()
```

**Description**
The confidence measure of the association rule.

**Returns**
a double specifying the confidence measure of the association rule.

getLift

```java
public double getLift()
```

**Description**
The lift measure of the association rule.

**Returns**
a double specifying the lift measure of the association rule.

getSupport

```java
public int[] getSupport()
```

**Description**
Support for the \( Z, X, \) and \( Y \) components of the association rule.
Returns
an int array containing the Z, X, and Y components of the association rule.

**getX**
public int[] getX()

**Description**
The X components of the association rule.

**Returns**
an int array containing the X components of the association rule.

**getY**
public int[] getY()

**Description**
The Y components of the association rule.

**Returns**
an int array containing the Y components of the association rule.

**print**
public void print()

**Description**
Print the member data in this object.

The following is an example of this format:
X = {0} ⟹ Y = {2}
supp(X)=27, supp(Y)=33, supp(X and Y)=22
conf= 0.81, lift=1.23

**print**
static public void print(AssociationRule[] ar)

**Description**
Print out the association rules in ar.

**Parameter**

ar – an AssociationRule array containing the association rules generated from a set of itemsets.

---

**Apriori class**

public class com.imsl.datamining.Apriori implements Serializable, Cloneable
Performs the Apriori algorithm for association rule discovery.

Association rules are statements of the form, “if X, then Y”, given with some measure of confidence. The main application for association rule discovery is market basket analysis, where X and Y are products or groups of products, and the occurrences are individual transactions, or “market baskets”. The results help sellers learn relationships between the different products they sell, supporting better marketing decisions. There are other applications for association rule discovery, such as the problem areas of text mining and bioinformatics. The Apriori algorithm (Agrawal and Srikant, 1994) is one of the most popular algorithms for association rule discovery in transactional datasets.

In the first and most critical stage, the Apriori algorithm mines the transactions for frequent itemsets. An itemset is frequent if it appears in more than a minimum number of transactions. The number of transactions containing an itemset is known as its “support”, and the minimum support (as a percentage of transactions) is a control parameter in the algorithm. The algorithm begins by finding the frequent single items. Then the algorithm generates all two-item sets from the frequent single items and determines which among them are frequent. From the collection of frequent pairs, Apriori forms candidate three-item subsets and determines which are frequent, and so on. The algorithm stops when either a maximum itemset size is reached, or when none of the candidate itemsets are frequent. In this way, the Apriori algorithm exploits the apriori-property: for an itemset to be frequent, all of its proper subsets must also be frequent. At each step the problem is reduced to only the frequent subsets.

In the second stage, the algorithm generates association rules. These are of the form, $X \implies Y$ (read, “if X, then Y”), where Y and X are disjoint frequent itemsets. The confidence measure associated with the rule is defined as the proportion of transactions containing X that also contain Y. Denote the support of X (the number of transactions containing X) as $S_X$ and $S_Z$ is the support of $Z = X \cup Y$. The confidence of the rule, $X \implies Y$ is the ratio, $S_Z / S_X$. Note that the confidence ratio is the conditional probability

$$P[Y|X] = \frac{P[XY]}{P[X]}$$

where $P[XY]$ denotes the probability of both X and Y. The probability of an itemset X is estimated by $S_X / N$, where N is the total number of transactions.

Another measure of the strength of the association is known as the lift, which is the ratio $(S_Z N) / (S_X S_Y)$. Lift values close to 1.0 suggest the sets are independent, and that they occur together by chance. Large lift values indicate a strong association. A minimum confidence threshold and a lift threshold can be specified.

If the transaction dataset is too large to fit in memory, Apriori can be applied to separate blocks of the transactions. The union of the frequent itemsets from each of the blocks becomes the set of candidate frequent itemsets. The frequencies of the itemsets are then accumulated over each block of data, and those with minimum support are the frequent itemsets for the entire dataset. The method is due to Savasere, Omiecinski, and Navathe (1995) and is also summarized and compared with other approaches in Rajaran and Ullman (2010).
**Methods**

**countFrequency**

static public int[] countFrequency(Itemsets candItemsets, int[][] x)

**Description**

Returns the frequency of each itemset in the transaction data set, x.

**Parameters**

- candItemsets – an Itemsets object containing the candidate itemsets and the corresponding number of transactions.
- x – an int[][] containing the transaction data. The first column of x contains the transaction IDs, and the second column contains the item IDs. There will be a row for each transaction ID/item ID combination, and all records for a single transaction ID must be in adjacent rows. Furthermore, the algorithm assumes that an individual transaction is complete within a single dataset. That is, there is no matching of transaction IDs between different data sets.

**Returns**

- an int array of length equal to the number of sets in candItemsets containing the frequencies of each itemset in x.

**countFrequency**

static public int[] countFrequency(Itemsets candItemsets, int[][] x, int[] prevFrequencies)

**Description**

Returns the frequency of each itemset in the transaction data set, x, added to the previous frequencies.

**Parameters**

- candItemsets – an Itemsets object containing the candidate itemsets and the corresponding number of transactions.
- x – an int[][] containing the transaction data. The first column of x contains the transaction IDs, and the second column contains the item IDs. There will be a row for each transaction ID/item ID combination, and all records for a single transaction ID must be in adjacent rows. Furthermore, the algorithm assumes that an individual transaction is complete within a single dataset. That is, there is no matching of transaction IDs between different data sets.
- prevFrequencies – an int array containing the itemset frequencies counted so far in other blocks of transaction data.

**Returns**

- an int array of length equal to the number of sets in candItemsets containing the frequencies of each itemset in x added to prevFrequencies.

**getAssociationRules**

static public AssociationRule[] getAssociationRules(Itemsets itemsets, double confidence, double lift)

**1928 • Apriori**

**JMSL**
Returns strong association rules among the itemsets in itemsets.

confidence and lift are the two criterion used to determine a strong association. If either is exceeded, the association rule will be considered “strong”.

Parameters

itemsets – an Itemsets object that contains the itemsets.

confidence – a double scalar containing the minimum confidence used to determine the strong association rules. confidence must be in [0,1].

lift is the other criterion which determines whether an association is “strong”. If either criterion, confidence or lift is exceeded, the association rule will be considered “strong”.

lift – a double scalar containing the minimum lift used to determine the strong association rules. lift must be non-negative.

If either criterion, lift or confidence is exceeded, the association rule will be considered “strong”.

Returns

an AssociationRule object containing association rules.

getFrequentItemsets

static public Itemsets getFrequentItemsets(int[][] x, int maxNumProducts, int maxSetSize, double minPctSupport)

Description

Computes the frequent itemsets in the transaction set x.

Parameters

x – an int[][] containing the transaction data. The first column of x contains the transaction IDs, and the second column contains the item IDs. There will be a row for each transaction ID/ item ID combination, and all records for a single transaction ID must be in adjacent rows. Furthermore, the algorithm assumes that an individual transaction is complete within a single dataset. That is, there is no matching of transaction IDs between different data sets.

maxNumProducts – an int scalar containing the maximum number of items or products that may be present in the transactions. maxNumProducts must be greater than or equal to the number of items in x.

maxSetSize – an int scalar containing the maximum size of an itemset. Only frequent itemsets with maxSetSize or fewer items are considered in the analysis.

minPctSupport – a double scalar containing the minimum percentage of transactions in which an item or itemset must be present to be considered frequent. minPctSupport must be in the interval [0,1].

Returns

an Itemsets containing the frequent itemsets.

getUnion

static public Itemsets getUnion(Itemsets[] itemsets)
Description
Return the union of a sequence of sets of itemsets.
The attributes of each Itemsets object must agree. If maxNumProducts, maxSetSize or minPctSupport differ between the input arguments, an exception will be thrown.

Parameter
- itemsets – a sequence of Itemsets objects containing the frequent itemsets for the union.

Returns
an Itemsets object containing the union of the itemsets.

sum
static public int[] sum(int[][] freq)

Description
Sums up the itemset frequencies.

Parameter
- freq – a sequence of int arrays containing the itemset frequencies counted over one or more blocks of transaction data.
  Note: the length of the arrays in the sequence must be equal.

Returns
an int array containing the sum of the frequencies.

updateFrequentItemsets
static public Itemsets updateFrequentItemsets(Itemsets candItemsets, int[] freq)

Description
Updates the set of frequent items in candItemsets. The minimum support is determined by minSupportPercentage times the total number of transactions.

Parameters
- candItemsets – an Itemsets object containing the candidate itemsets and the corresponding number of transactions.
- freq – an int array containing the frequencies for each itemset in candItemsets.

Returns
an Itemsets object containing the updated itemsets.

Example 1: Apriori
The data are 50 transactions involving five different product ID’s. This example applies Apriori to find the frequent itemsets and strong association rules. The minimum support percentage is set to 0.30, giving a minimum required support of 15 transactions.
import com.imsl.datamining.*;

public class AprioriEx1 {
    public static void main(String[] args) {
        int nprods = 5;
        int[][] x = {
            {1, 3}, {1, 2}, {1, 1}, {2, 1}, {2, 2}, {2, 4}, {2, 5},
            {3, 3}, {4, 4}, {4, 3}, {4, 5}, {4, 1}, {5, 5}, {6, 1}, {6, 2},
            {6, 3}, {7, 5}, {7, 3}, {7, 2}, {8, 3}, {8, 4}, {8, 1}, {8, 5},
            {8, 2}, {9, 4}, {10, 5}, {10, 3}, {11, 2}, {11, 3}, {12, 4},
            {13, 4}, {14, 2}, {14, 3}, {14, 1}, {15, 3}, {15, 5}, {15, 1},
            {16, 2}, {17, 3}, {17, 5}, {17, 1}, {18, 5}, {18, 1}, {18, 2},
            {18, 3}, {19, 2}, {20, 4}, {21, 1}, {21, 4}, {21, 2}, {21, 5},
            {22, 5}, {22, 4}, {23, 2}, {23, 5}, {23, 3}, {23, 1}, {23, 4},
            {24, 3}, {24, 1}, {24, 5}, {25, 3}, {25, 5}, {26, 1}, {26, 4},
            {26, 2}, {26, 3}, {27, 2}, {27, 3}, {27, 1}, {27, 5}, {28, 5},
            {28, 3}, {28, 4}, {28, 1}, {28, 2}, {29, 4}, {29, 5}, {29, 2},
            {30, 2}, {30, 4}, {30, 3}, {31, 2}, {32, 5}, {32, 1}, {32, 4},
            {33, 4}, {33, 1}, {33, 5}, {33, 3}, {34, 3}, {35, 5},
            {35, 3}, {36, 3}, {36, 5}, {36, 4}, {36, 1}, {36, 2}, {37, 1},
            {37, 3}, {37, 2}, {38, 4}, {38, 2}, {38, 3}, {39, 3}, {39, 2},
            {39, 1}, {40, 2}, {40, 1}, {41, 3}, {41, 5}, {41, 1}, {41, 4},
            {41, 2}, {42, 5}, {42, 1}, {42, 4}, {43, 3}, {43, 2}, {43, 4},
            {44, 4}, {44, 5}, {44, 2}, {44, 3}, {44, 1}, {45, 4}, {45, 5},
            {45, 3}, {45, 2}, {45, 1}, {46, 2}, {46, 4}, {46, 5}, {46, 3},
            {46, 1}, {47, 4}, {47, 5}, {48, 2}, {49, 1}, {49, 4}, {49, 3},
            {50, 3}, {50, 4}
        };

        // Run the algorithm on transactions X.
        Itemsets itemsets = Apriori.getFrequentItemsets(x, nprods, 10, 0.30);
        itemsets.print();

        // Get and print the strong association rules.
        AssociationRule.print(Apriori.getAssociationRules(itemsets, 0.80, 2.0));
    }
}

Output

Frequent Itemsets (Out of 50 Transactions):
Size  Support  Itemset
1    27    {0}
1    30    {1}
1    33    {2}
1    27    {3}
1    27    {4}
2    20    {0 1}
2    22    {0 2}
2    16    {0 3}
2    19    {0 4}
2    22    {1 2}
2    16    {1 3}
2    15    {1 4}
Association Rules (itemset $X$ implies itemset $Y$):

$X = \{0\} \implies Y = \{2\}$
$\text{supp}(X) = 27$, $\text{supp}(Y) = 33$, $\text{supp}(X \text{ and } Y) = 22$
$\text{conf} = 0.81$, $\text{lift} = 1.23$

$X = \{0, 1\} \implies Y = \{2\}$
$\text{supp}(X) = 20$, $\text{supp}(Y) = 33$, $\text{supp}(X \text{ and } Y) = 17$
$\text{conf} = 0.85$, $\text{lift} = 1.29$

Example 2: Apriori

The data are two separate blocks of 50 transactions involving five different product ID's. This example shows how to apply Apriori to separate blocks of data and combine results. The minimum support percentage is set to 0.30, giving a minimum required support of 30 transactions overall.

```java
import com.imsl.datamining.*;

public class AprioriEx2 {

 public static void main(String[] args) {
 int numProducts = 5;
 int[][] x1 = {
 {1, 3}, {1, 2}, {1, 1}, {2, 1}, {2, 2}, {2, 4}, {2, 5},
 {3, 3}, {4, 4}, {4, 3}, {4, 5}, {4, 1}, {5, 5}, {6, 1}, {6, 2},
 {6, 3}, {7, 5}, {7, 3}, {7, 2}, {8, 3}, {8, 4}, {8, 1}, {8, 5},
 {8, 2}, {9, 4}, {10, 5}, {10, 3}, {11, 2}, {11, 3}, {12, 4},
 {13, 4}, {14, 2}, {14, 3}, {14, 1}, {15, 3}, {15, 5}, {16, 1},
 {16, 2}, {17, 3}, {17, 5}, {17, 1}, {18, 5}, {18, 1}, {18, 2},
 {18, 3}, {19, 2}, {20, 4}, {21, 1}, {21, 4}, {21, 2}, {21, 5},
 {22, 5}, {22, 4}, {23, 2}, {23, 5}, {23, 3}, {23, 1}, {23, 4},
 {24, 3}, {24, 1}, {24, 5}, {25, 3}, {25, 5}, {26, 1}, {26, 4},
 {26, 2}, {26, 3}, {27, 2}, {27, 3}, {27, 1}, {27, 5}, {28, 5},
 {28, 3}, {28, 4}, {28, 1}, {28, 2}, {29, 4}, {29, 5}, {29, 2},
 {30, 2}, {30, 4}, {30, 3}, {31, 2}, {32, 5}, {32, 1}, {32, 4},
 {33, 4}, {33, 1}, {33, 5}, {33, 3}, {33, 2}, {34, 3}, {35, 5},
 {35, 3}, {36, 3}, {36, 5}, {36, 4}, {36, 1}, {36, 2}, {37, 1},
 {37, 3}, {37, 2}, {38, 4}, {38, 2}, {38, 3}, {39, 3}, {39, 2},
 {39, 1}, {40, 2}, {40, 1}, {41, 3}, {41, 5}, {41, 1}, {41, 4},
 {41, 2}, {42, 5}, {42, 1}, {42, 4}, {43, 3}, {43, 2}, {43, 4},
 {44, 4}, {44, 5}, {44, 2}, {44, 3}, {44, 1}, {45, 4}, {45, 5},
 {45, 3}, {45, 2}, {45, 1}, {46, 2}, {46, 4}, {46, 5}, {46, 3},
 {46, 1}, {47, 4}, {47, 5}, {48, 2}, {49, 1}, {49, 4}, {49, 3},
 {50, 3}, {50, 4}
 };

 int[][] x2 = {
 {1, 2}, {1, 1}, {1, 4}, {1, 3}, {2, 2}, {2, 5}, {2, 3}, {2, 1},
 {2, 4}, {3, 5}, {3, 4}, {4, 2}, {5, 4}, {5, 2}, {5, 3}, {5, 5},
 {6, 3}, {6, 5}, {7, 2}, {7, 5}, {7, 4}, {7, 1}, {7, 3}, {8, 2},
 {8, 3}, {8, 4}, {8, 1}, {8, 5}, {9, 4}, {9, 3}, {9, 2}, {9, 5},
 {10, 4}, {10, 3}, {10, 2}, {10, 5}, {11, 4}, {11, 3}, {11, 2},
 {11, 5}, {12, 4}, {12, 3}, {12, 1}, {12, 5}, {13, 4}, {13, 3},
 {13, 2}, {13, 1}, {13, 5}, {14, 4}, {14, 3}, {14, 2}, {14, 1},
 {15, 4}, {15, 3}, {15, 2}, {15, 1}, {15, 5}, {16, 4}, {16, 3},
 {16, 2}, {16, 1}, {16, 5}, {17, 4}, {17, 3}, {17, 2}, {17, 1},
 {18, 4}, {18, 3}, {18, 2}, {18, 1}, {18, 5}, {19, 4}, {19, 3},
 {19, 2}, {19, 1}, {20, 4}, {20, 3}, {20, 2}, {20, 1}, {20, 5},
 {21, 4}, {21, 3}, {21, 2}, {21, 1}, {21, 5}, {22, 4}, {22, 3},
 {22, 2}, {22, 5}, {22, 1}, {23, 4}, {23, 3}, {23, 2}, {23, 1},
 {23, 5}, {24, 4}, {24, 3}, {24, 2}, {24, 1}, {24, 5}, {25, 4},
 {25, 3}, {25, 2}, {25, 1}, {25, 5}, {26, 4}, {26, 3}, {26, 2},
 {26, 1}, {26, 5}, {27, 4}, {27, 3}, {27, 2}, {27, 1}, {27, 5},
 {27, 3}, {28, 4}, {28, 3}, {28, 2}, {28, 1}, {28, 5}, {28, 2},
 {28, 1}, {29, 4}, {29, 3}, {29, 2}, {29, 1}, {29, 5}, {30, 4},
 {30, 3}, {30, 2}, {31, 4}, {31, 3}, {31, 2}, {31, 1}, {32, 5},
 {32, 4}, {32, 3}, {32, 2}, {32, 1}, {33, 4}, {33, 3}, {33, 2},
 {33, 1}, {34, 3}, {34, 2}, {34, 1}, {35, 4}, {35, 3}, {35, 2},
 {35, 1}, {36, 4}, {36, 3}, {36, 2}, {36, 1}, {36, 5}, {37, 4},
 {37, 3}, {37, 2}, {38, 4}, {38, 3}, {38, 2}, {38, 1}, {38, 5},
 {39, 4}, {39, 3}, {39, 2}, {39, 1}, {40, 4}, {40, 3}, {40, 2},
 {40, 1}, {41, 4}, {41, 3}, {41, 2}, {41, 1}, {42, 4}, {42, 3},
 {42, 2}, {42, 1}, {43, 4}, {43, 3}, {43, 2}, {43, 1}, {44, 4},
 {44, 3}, {44, 2}, {44, 1}, {45, 4}, {45, 3}, {45, 2}, {45, 1},
 {46, 4}, {46, 3}, {46, 2}, {46, 1}, {47, 4}, {47, 3}, {47, 2},
 {47, 1}, {48, 4}, {48, 3}, {48, 2}, {48, 1}, {49, 4}, {49, 3},
 {49, 2}, {49, 1}, {50, 4}, {50, 3}, {50, 2}, {50, 1}, {50, 5}
 };
 }
```
\{9, 2\}, \{9, 4\}, \{10, 4\}, \{10, 2\}, \{11, 4\}, \{11, 1\}, \{12, 3\},
\{12, 1\}, \{12, 5\}, \{12, 2\}, \{13, 2\}, \{14, 3\}, \{14, 4\}, \{14, 2\},
\{15, 2\}, \{16, 5\}, \{16, 2\}, \{16, 4\}, \{17, 1\}, \{18, 2\}, \{18, 3\},
\{18, 4\}, \{19, 3\}, \{19, 1\}, \{19, 2\}, \{19, 4\}, \{20, 5\}, \{20, 1\},
\{21, 5\}, \{21, 4\}, \{21, 1\}, \{21, 3\}, \{22, 4\}, \{22, 1\}, \{22, 5\},
\{23, 1\}, \{23, 2\}, \{24, 4\}, \{25, 4\}, \{25, 3\}, \{26, 5\}, \{26, 2\},
\{26, 3\}, \{26, 4\}, \{26, 1\}, \{27, 2\}, \{27, 1\}, \{27, 5\}, \{27, 3\},
\{28, 1\}, \{28, 2\}, \{28, 3\}, \{28, 4\}, \{29, 5\}, \{29, 2\}, \{29, 1\},
\{30, 5\}, \{30, 3\}, \{30, 2\}, \{30, 4\}, \{31, 4\}, \{31, 1\}, \{32, 1\},
\{32, 2\}, \{32, 3\}, \{32, 4\}, \{32, 5\}, \{33, 3\}, \{33, 2\}, \{33, 4\},
\{33, 5\}, \{33, 1\}, \{34, 3\}, \{34, 4\}, \{34, 5\}, \{34, 2\}, \{35, 2\},
\{35, 3\}, \{36, 3\}, \{36, 5\}, \{36, 4\}, \{37, 1\}, \{37, 4\}, \{37, 2\},
\{37, 3\}, \{37, 5\}, \{38, 5\}, \{38, 3\}, \{38, 1\}, \{38, 2\}, \{39, 2\},
\{39, 5\}, \{40, 4\}, \{40, 2\}, \{41, 4\}, \{42, 4\}, \{43, 5\}, \{43, 4\},
\{44, 5\}, \{44, 4\}, \{44, 3\}, \{44, 2\}, \{44, 1\}, \{45, 1\}, \{45, 2\},
\{45, 3\}, \{45, 5\}, \{45, 4\}, \{46, 3\}, \{46, 4\}, \{47, 4\}, \{47, 5\},
\{47, 2\}, \{47, 3\}, \{48, 5\}, \{48, 3\}, \{48, 2\}, \{48, 1\}, \{48, 4\},
\{49, 4\}, \{49, 5\}, \{50, 4\}, \{50, 1\}
};

// Find frequent itemsets in x1 and x2.
Itemsets fis1 = Apriori.getFrequentItemsets(x1, numProducts, 4, 0.30);
Itemsets fis2 = Apriori.getFrequentItemsets(x2, numProducts, 4, 0.30);

// Get the union of fis1 and fis2.
Itemsets cis = Apriori.getUnion(fis1, fis2);

// Count the frequencies of the itemsets in the union in
// each of the data sets.
int[] freq1 = Apriori.countFrequency(cis, x1);
int[] freq2 = Apriori.countFrequency(cis, x2);
int[] freq = Apriori.sum(freq1, freq2);

// Get the frequent itemset of the union.
Itemsets itemsets = Apriori.updateFrequentItemsets(cis, freq);
itemsets.print();

// Generate and print the association rules.
AssociationRule.print(Apriori.getAssociationRules(itemsets, 0.80, 2.0));
}

Output

Frequent Itemsets (Out of 100 Transactions):
<table>
<thead>
<tr>
<th>Size</th>
<th>Support</th>
<th>Itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td>{1}</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>{2}</td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>{4}</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>{0 1}</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>{0 2}</td>
</tr>
</tbody>
</table>
Association Rules (itemset $X$ implies itemset $Y$):

- $X = \{0 \ 1\} \implies Y = \{2\}$
  - $\text{supp}(X)=37$, $\text{supp}(Y)=60$, $\text{supp}(X \text{ and } Y)=32$
  - $\text{conf}= 0.86$, $\text{lift}=1.44$

- $X = \{0 \ 2\} \implies Y = \{1\}$
  - $\text{supp}(X)=38$, $\text{supp}(Y)=63$, $\text{supp}(X \text{ and } Y)=32$
  - $\text{conf}= 0.84$, $\text{lift}=1.34$

- $X = \{1 \ 3\} \implies Y = \{2\}$
  - $\text{supp}(X)=38$, $\text{supp}(Y)=60$, $\text{supp}(X \text{ and } Y)=31$
  - $\text{conf}= 0.82$, $\text{lift}=1.36$

- $X = \{2 \ 3\} \implies Y = \{1\}$
  - $\text{supp}(X)=38$, $\text{supp}(Y)=63$, $\text{supp}(X \text{ and } Y)=31$
  - $\text{conf}= 0.82$, $\text{lift}=1.29$

KohonenSOM class

```java
public class com.imsl.datamining.KohonenSOM implements Serializable, Cloneable

A Kohonen self organizing map.

A self-organizing map (SOM), also known as a Kohonen map or Kohonen SOM, is a technique for gathering high-dimensional data into clusters that are constrained to lie in low dimensional space, usually two dimensions. A Kohonen map is a widely used technique for the purpose of feature extraction and visualization for very high dimensional data in situations where classifications are not known beforehand. The Kohonen SOM is equivalent to an artificial neural network having inputs linked to every node in the network. Self-organizing maps use a neighborhood function to preserve the topological properties of the input space.

In a Kohonen map, nodes are arranged in a rectangular or hexagonal grid or lattice. The input is connected to each node, and the output of the Kohonen map is the zero-based (i, j) index of the node that is closest to the input. A Kohonen map involves two steps: training and forecasting. Training builds the map using input examples (vectors), and forecasting classifies a new input.

During training, an input vector is fed to the network. The input’s Euclidean distance from all the nodes is calculated. The node with the shortest distance is identified and is called the Best Matching Unit, or BMU. After identifying the BMU, the weights of the BMU and the nodes closest to it in the SOM lattice are updated towards the input vector. The magnitude of the update decreases with time and with distance.
```
(within the lattice) from the BMU. The weights of the nodes surrounding the BMU are updated according to:

\[ W_{t+1} = W_t + \alpha(t) \ast h(d,t) \ast (D_t - W_t) \]

where \( W_t \) represents the node weights, \( \alpha(t) \) is the monotonically decreasing learning coefficient function, \( h(d,t) \) is the neighborhood function, \( d \) is the lattice distance between the node and the BMU, and \( D_t \) is the input vector.

The monotonically decreasing learning coefficient function \( \alpha(t) \) is a scalar factor that defines the size of the update correction. The value of \( \alpha(t) \) decreases with the step index \( t \).

The neighborhood function \( h(d,t) \) depends on the lattice distance \( d \) between the node and the BMU, and represents the strength of the coupling between the node and BMU. In the simplest form, the value of \( h(d,t) \) is 1 for all nodes closest to the BMU and 0 for others, but a Gaussian function is also commonly used. Regardless of the functional form, the neighborhood function shrinks with time (Hollmén, 15.2.1996). Early on, when the neighborhood is broad, the self-organizing takes place on the global scale. When the neighborhood has shrunk to just a couple of nodes, the weights converge to local estimates.

Note that in a rectangular grid, the BMU has four closest nodes for the Von Neumann neighborhood type, or eight closest nodes for the Moore neighborhood type. In a hexagonal grid, the BMU has six closest nodes.

During training, this process is repeated for a number of iterations on all input vectors.

During forecasting, the node with the shortest Euclidean distance is the winning node, and its \((i,j)\) index is the output.

---

**Fields**

---

**GRID_HEXAGONAL**

static final public int GRID_HEXAGONAL

Indicates a hexagonal grid.

**GRID_RECTANGULAR**

static final public int GRID_RECTANGULAR

Indicates a rectangular grid.

**TYPE_MOORE**

static final public int TYPE_MOORE

Indicates a Moore neighborhood type.

**TYPE_VON_NEUMANN**

static final public int TYPE_VON_NEUMANN

Indicates a Von Neumann neighborhood type.
Constructor

KohonenSOM
public KohonenSOM(int dim, int nrow, int ncol)

Description
Constructor for a KohonenSOM object.

Parameters
- dim – An int scalar containing the number of weights for each node in the node grid. dim must be greater than zero.
- nrow – An int scalar containing the number of rows in the node grid. nrow must be greater than zero.
- ncol – An int scalar containing the number of columns in the node grid. ncol must be greater than zero.

Methods

forecast
public int[] forecast(double[] input)

Description
Returns a forecast computed using the KohonenSOM object.

Parameter
- input – A double array containing the input data. input.length must be equal to dim.

Returns
An int array of length 2 containing the (i, j) index of the output node.

forecast
public int[][] forecast(double[][] input)

Description
Returns forecasts computed using the KohonenSOM object.

Parameter
- input – A double matrix containing input.length observations of data. input[i].length must be equal to dim.
Returns
An int matrix containing the output indices of the nodes. The \( i \)-th row contains the \((i, j)\) index of the output node for input \([i]\).

getDimension
public int getDimension()

Description
Returns the number of weights for each node.

Returns
An int scalar containing the number of weights for each node.

getGridType
public int getGridType()

Description
Returns the grid type.

Returns
An int scalar containing the grid type. The return value is either KohonenSOM.GRID_RECTANGULAR or KohonenSOM.GRID_HEXAGONAL

getNeighborhoodType
public int getNeighborhoodType()

Description
Returns the neighborhood type for the rectangular grid.

Returns
An int scalar containing the neighborhood type. The return value is either KohonenSOM.TYPE_VON_NEUMANN or KohonenSOM.TYPE_MOORE

getNumberOfColumns
public int getNumberOfColumns()

Description
Returns the number of columns of the node grid.

Returns
An int scalar containing the number of columns of the node grid.

getNumberOfRows
public int getNumberOfRows()

Description
Returns the number of rows of the node grid.
Returns
An int scalar containing the number of rows of the node grid.

getWeights
public double[][][] getWeights()

Description
Returns the weights of the nodes.

Returns
An nRow by nCol matrix of double arrays containing the weights of the nodes.

getWeights
public double[] getWeights(int i, int j)

Description
Returns the weights of the node at \((i, j)\) in the node grid.

Parameters
\(i\) – An int scalar containing the row index of the node in the node grid, where \(0 \leq i \leq nRow - 1\).
\(j\) – An int scalar containing the column index of the node in the node grid, where \(0 \leq j \leq nCol - 1\).

Returns
A double array containing the weights of the node at \((i, j)\) in the node grid.

isWrapAround
public boolean isWrapAround()

Description
Returns whether the opposite edges are connected or not.

Returns
A boolean indicating whether or not the opposite edges are connected. It is true if the opposite edges are connected. Otherwise, it is false.

setGridType
public void setGridType(int type)

Description
Sets the grid type.

Parameter
\(type\) – An int scalar containing the grid type, rectangular (KohonenSOM.GRID_RECTANGULAR) or hexagonal (KohonenSOM.GRID_HEXAGONAL).

Default: \(type = \text{GRID RECTANGULAR}\).

<table>
<thead>
<tr>
<th>type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID RECTANGULAR</td>
<td>Use a rectangular grid (type = 0).</td>
</tr>
<tr>
<td>GRID HEXAGONAL</td>
<td>Use a hexagonal grid (type = 1).</td>
</tr>
</tbody>
</table>
**setNeighborhoodType**

```java
public void setNeighborhoodType(int type)
```

**Description**

Sets the neighborhood type.

**Parameter**

- `type` – An `int` scalar containing the neighborhood type, Von Neumann (`KohonenSOM.TYPE_VON_NEUMANN`) or Moore (`KohonenSOM.TYPE_MOORE`). This method is ignored for a hexagonal grid.

  Default: `type = TYPE_VON_NEUMANN`.

<table>
<thead>
<tr>
<th>type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE_VON_NEUMANN</td>
<td>Use the Von Neumann (<code>type = 0</code>) neighborhood type.</td>
</tr>
<tr>
<td>TYPE_MOORE</td>
<td>Use the Moore (<code>type = 1</code>) neighborhood type.</td>
</tr>
</tbody>
</table>

**setWeights**

```java
public void setWeights()
```

**Description**

Sets the weights of the nodes using random numbers. The weights are in `[0.0, 1.0]`.

**setWeights**

```java
public void setWeights(Random random)
```

**Description**

Sets the weights of the nodes using a `Random` object. The weights are generated using the `Random.nextDouble` method.

**Parameter**

- `random` – A `Random` object used to generate random numbers for the nodes.

**setWeights**

```java
public void setWeights(double[][][] weights)
```

**Description**

Sets the weights of the nodes.

**Parameter**

- `weights` – An `nrow` by `ncol` matrix of double arrays containing the weights of the nodes. `weights[i][j].length` must be equal to `dim`.

**setWeights**

```java
public void setWeights(int i, int j, double[] weights)
```

**Description**

Sets the weights of the node at `(i, j)` in the node grid.
Parameters

- **i** – An int scalar containing the row index of the node in the node grid, where $0 \leq i \leq \text{nrow} - 1$.
- **j** – An int scalar containing the column index of the node in the node grid, where $0 \leq j \leq \text{ncol} - 1$.
- **weights** – A double array containing the weights. weights.length must be equal to dim.

---

### wrapAround

```java
public void wrapAround()
```

**Description**

Sets a flag to indicate the map should wrap around or connect opposite edges. A hexagonal grid must have an even number of rows to wrap around. By default, opposite edges are not connected.

---

### Example: Kohonen

This example creates a Kohonen network with 40 x 40 nodes. Each node has 3 weights, representing the RGB values of a color. This network is trained with 8 colors using 500 iterations. Then, the example prints out a forecast result.

Initially, the image of the nodes is:

![Initial Image](image1.jpg)

After the training, the image is:

![Training Result](image2.jpg)
import com.imsl.datamining.*;
import com.imsl.stat.*;

public class KohonenSOMEx1 extends KohonenSOMTrainer {
    private static int totalIter = 500, nrow = 40, ncol = 40;
    private double initialLearning = 0.07;

    public double getNeighborhoodValue(int t, double d) {
        double factor, c;

        // A Gaussian function.
        factor = Math.max(nrow, ncol) / 4.0;
        c = (double) (totalIter - t) / ((double) totalIter / factor);

        return Math.exp(-(d * d) / (2.0 * c * c));
    }

    public double getLearningCoefficient(int t) {
        return initialLearning * Math.exp(-(double) t / (double) totalIter);
    }

    public static void main(String args[]) {
        double[][] data = {
            {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0},
            {0.0, 0.0, 1.0}, {1.0, 1.0, 0.0},
            {1.0, 0.0, 1.0}, {0.0, 1.0, 1.0},
            {0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}
        };

        // Use a Random object to set the weights.
        Random rand = new Random(123457);
        rand.setMultiplier(16807);
// Train the Kohonen network.
KohonenSOM kohonen = new KohonenSOM(3, nrow, ncol);
kohonen.setWeights(rand);

KohonenSOMEx1 trainer = new KohonenSOMEx1();
trainer.setIterations(totalIter);
trainer.train(kohonen, data);

// Get a forecast after training.
double[] fdata = {0.25, 0.50, 0.75};
int[] indices = kohonen.forecast(fdata);

System.out.printf("The input (%.2f, %.2f, %.2f) has forecasted output (%d, %d) 
which corresponds to the pink area on the estimated map.\n", fdata[0], fdata[1], fdata[2],
indices[0], indices[1]);

Output
The input (0.25, 0.50, 0.75) has forecasted output (7, 9)
which corresponds to the pink area on the estimated map.

KohonenSOMTrainer class
abstract public class com.imsl.datamining.KohonenSOMTrainer implements Serializable
Trains a Kohonen network.
KohonenSOMTrainer is an abstract class with 2 abstract methods, getNeighborhoodValue and getLearningCoefficient. Therefore, a subclass of KohonenSOMTrainer needs to implement the getNeighborhoodValue and getLearningCoefficient methods.

Constructor
KohonenSOMTrainer
public KohonenSOMTrainer()
Methods

getIterations
public int getIterations()

Description
Returns the number of iterations used for training.

Returns
An int scalar containing the number of iterations used for training.

getLearningCoefficient
abstract public double getLearningCoefficient(int t)

Description
Returns the learning coefficient. The monotonically decreasing learning coefficient function $\alpha(t)$ is a scalar factor that defines the size of the update correction. The value of $\alpha(t)$ decreases with the step index $t$. Typical forms are linear, power, and inverse time/step. For example:

- **power**:
  \[
  \alpha(t) = \alpha_0 \left( \frac{\alpha_T}{\alpha_0} \right)^{t/T}
  \]

  where $t=t$, $T=$the number of iterations used for training, $\alpha_0 =$ initial learning coefficient, $\alpha_T =$ final learning coefficient

- **inverse time**:
  \[
  \alpha(t) = \frac{A}{t+B}
  \]

  where $A$ and $B$ are user determined constants

Parameter

- $t$ – An int scalar containing the current iteration of the training.

Returns
A double scalar containing the computed learning coefficient.

getNeighborhoodValue
abstract public double getNeighborhoodValue(int t, double d)

Description
Returns the neighborhood function value. In the simplest form, the neighborhood function $h(d,t)$ is 1 for all nodes closest to the BMU and 0 for others, but a Gaussian function is also commonly used. For example:

$h(d,t) = \exp(-d^2/2r^2)$ where $r$ represents the neighborhood radius at index $t$
Parameters

- **t** – An int scalar containing the current iteration of the training.
- **d** – A double scalar containing the lattice distance between the best matching node and the current node.

Returns

A double scalar containing the computed neighborhood function value.

**getNumberOfThreads**

`public int getNumberOfThreads()`  

**Description**

Returns the number of `java.lang.Thread` instances used for parallel processing.

**Returns**

an int containing the number of `java.lang.Thread` instances used for parallel processing.

**setIterations**

`public void setIterations(int iterations)`  

**Description**

Sets the number of iterations to be used for training.

**Parameter**

- **iterations** – An int scalar containing the number of iterations to be used for training.  
  iterations must be greater than zero.  
  Default: iterations = 100.

**setNumberOfThreads**

`public void setNumberOfThreads(int numberOfThreads)`  

**Description**

Sets the number of `java.lang.Thread` instances to be used for parallel processing.

**Parameter**

- **numberOfThreads** – an int specifying the number of `java.lang.Thread` instances to be used for parallel processing.  
  Default: numberOfThreads = 1.

**train**

`final public void train(KohonenSOM kohonen, double[][] data)`  

**Description**

Trains a Kohonen network.

**Parameters**

- **kohonen** – A KohonenSOM object to be trained.
- **data** – A double matrix containing the data to be used for training the Kohonen network.  
  data[1].length must be equal to dim, the number of weights for each node, in kohonen.
PredictiveModel class

abstract public class com.imsl.datamining.PredictiveModel implements Serializable, Cloneable

Specifies a predictive model. This class defines the members and methods common to predictive models in univariate prediction or classification problems.

Constructors

PredictiveModel
protected PredictiveModel(PredictiveModel pm)

Description
Constructs a PredictiveModel from an existing instance.

Parameter

pm – an instance of a PredictiveModel

PredictiveModel
protected PredictiveModel(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)

Description
Constructs a PredictiveModel object for a single response variable and multiple predictor variables. This constructor should be called by all classes extending PredictiveModel.

Parameters

xy – a double matrix containing the training data and associated response values
responseColumnIndex – an int specifying the column index in xy of the response variable
varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array of length equal to xy[0].length containing the type of each variable

Methods

fitModel
public void fitModel() throws PredictiveModel.PredictiveModelException
Description
Fits the predictive model to the training data (estimates the model using the training data and current configuration settings).

Subclasses of PredictiveModel, such as DecisionTrees, override this method with specific model fitting algorithms.

Exception
PredictiveModelException is thrown when an exception occurs in the common PredictiveModel methods. Implementing or overriding methods from this class may require throwing exceptions. Exceptions thrown from these methods will necessarily extend the PredictiveModelException.

getClassCounts
public double[] getClassCounts()

Description
Returns the counts of each class (level) of the categorical response variable.


Returns
a double array containing the summation of the case weights for each occurrence of a particular class found in the categorical response data.

getClassErrors
public int[][] getClassErrors(double[] knownValues, double[] predictedValues)

Description
Returns classification error information.

Parameters
knownValues – a double array containing the known target classifications
predictedValues – a double array containing the predicted classifications
Arrays knownValues and predictedValues must be the same length.

Returns
An int matrix of size (nClasses+1) by 2 containing the number of classification errors and the number of non-missing classifications for each target classification, plus the overall totals for these errors.

For i < nClasses, the i-th row contains the number of classification errors for the i-th class and the number of patterns with non-missing classifications for that class. The last row contains the number of classification errors totaled over all target classifications, and the total number of patterns with non-missing target classifications.

getClassLabels
public String[] getClassLabels()
Description
Returns the current class labels for a categorical response variable.

Note: The labels will be null unless they have been set using the method `setClassLabels`.

Returns
a string array containing the labels for each class level

```java
public double[][] getClassProbabilities()
```

Description
Returns a matrix containing the predicted class probabilities for each observation in the training data.

Returns
a double matrix containing the class probabilities

```java
public double[][] getCostMatrix()
```

Description
Returns the cost matrix for a categorical response variable.

The cost matrix has elements \( C(i, j) = \text{cost of misclassifying a response in class } j \text{ as in class } i \). The diagonal elements of the cost matrix must be 0. In the case that \( nClasses \) has not been determined (usually because `com.imsl.datamining.PredictiveModel.fitModel` has not been called), an array of length zero is returned.

Returns
a square double matrix of dimension \( nClasses \) by \( nClasses \) containing the cost matrix for a categorical response variable, where \( nClasses \) is the number of classes the response variable may assume.

```java
public int getMaxNumberOfCategories()
```

Description
Returns the maximum number of categorical variables allowed.

Returns
an int indicating the maximum number of categorical variables allowed.

```java
public int getMaxNumberOfIterations()
```

Description
Returns the maximum number of iterations allowed for the fitting procedure or training algorithm.
Returns
an int, the maximum number of iterations

getNumberOfClasses
public int getNumberOfClasses()

Description
Returns the number of unique classes found in the categorical response data.

Returns
an int indicating the number of unique classes found in the categorical response data

getNumberOfColumns
public int getNumberOfColumns()

Description
Returns the number of columns in the training data xy.

Returns
an int, the number of columns in xy. If xy is null, nCols=0.

getNumberOfMissing
public int getNumberOfMissing()

Description
Returns the number of missing values of the response variable found in the data xy.

Returns
an int, the number of missing values

getNumberOfPredictors
public int getNumberOfPredictors()

Description
Returns the number of predictors.

Returns
an int, the number of predictors

getNumberOfRows
public int getNumberOfRows()

Description
Returns the number of rows in xy (observations).

Returns
an int, the number of rows in xy (observations)

getNumberOfUniquePredictorValues
public int[] getNumberOfUniquePredictorValues()
**Description**

Returns an array containing the number of distinct values of each predictor found in the input data.

For continuous predictor variables, the value is set to 0 and is not meaningful.

**Returns**

an int array containing the number of distinct values for each predictor

---

**getPredictorIndexes**

`public int[] getPredictorIndexes()`

**Description**

Returns the column indices of `xy` in which the predictor variables reside.

**Returns**

an int array containing the column indices

---

**getPredictorTypes**

`public PredictiveModel.VariableType[] getPredictorTypes()`

**Description**

Returns an array of `VariableType` objects that correspond to the predictor data types in `xy`.

**Returns**

a `VariableType` array that corresponds to the predictor data types in `xy`

---

**getPrintLevel**

`public int getPrintLevel()`

**Description**

Returns the current print level.

**Returns**

an int, the current print level

<table>
<thead>
<tr>
<th><code>printLevel</code></th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printing.</td>
</tr>
<tr>
<td>1</td>
<td>Prints final results only.</td>
</tr>
<tr>
<td>2</td>
<td>Prints intermediate and final results.</td>
</tr>
</tbody>
</table>

Default: `printLevel = 0`.

---

**getPriorProbabilities**

`public double[] getPriorProbabilities()`

**Description**

Returns an array containing the prior probabilities.
Returns a double array containing the prior probabilities

g getRandomObject
public Random getRANDOMObject()

Description
Returns the random object being used in the permutation of the observations.

Returns
a Random object being used for permutations

g getRandomColumnIndex
public int getResponseColumnIndex()

Description
Returns the column index in xy containing the response variable.

Returns
an int, the column index for the response variable

g getResponseVariableAverage
public double getResponseVariableAverage()

Description
Returns the weighted average value of the response variable.

Returns
a double, the weighted average value of the response variable

g getResponseVariableMostFrequentClass
public int getResponseVariableMostFrequentClass()

Description
Returns the most frequent value of the response variable. Only meaningful for VariableType.CATEGORICAL or VariableType.ORDERED_DISCRETE.

Returns
an int, the level of the most frequent class

g getResponseVariableType
public PredictiveModel.VariableType getResponseVariableType()

Description
Returns the variable type of the response variable.
Returns
the VariableType of the response variable

**getTotalWeight**
public double getTotalWeight()

**Description**
Returns the sum of the active case weights.

**Returns**
a double, the sum of the active case weights

**getVariableType**
public PredictiveModel.VariableType[] getVariableType()

**Description**
Returns an array containing the variable types in xy.

**Returns**
a VariableType array containing the variable types in xy

**getWeights**
public double[] getWeights()

**Description**
Returns an array containing the case weights.

**Returns**
a double array containing the case weights

**getXY**
public double[][] getXY()

**Description**
Returns a copy of the xy data.

**Returns**
a double matrix containing the training data

**isMustFitModel**
public boolean isMustFitModel()

**Description**
Returns the current value of the mustFitModel flag.
When true, the com.imsl.datamining.PredictiveModel.fitModel (p. 1945) method should be called before doing any predictions or other analysis.
Returns
a boolean indicating the state of the flag

**isUserFixedNClasses**

```java
public boolean isUserFixedNClasses()
```

**Description**
Returns `true` if the number of classes was fixed by the user.

**Returns**
a boolean indicating the state of the flag

**predict**

```java
abstract public double[] predict() throws PredictiveModel.PredictiveModelException
```

**Description**
Predicts the response variable using the most recent fit.
Each `PredictiveModel` subclass must override this method.

**Returns**
a double array containing the predicted values.

**Exception**

`PredictiveModelException` is thrown when an exception occurs in the common
`PredictiveModel` methods. Implementing or overriding methods from this class may require
throwing exceptions. Exceptions thrown from these methods will necessarily extend the
`PredictiveModelException`.

**predict**

```java
abstract public double[] predict(double[][] testData) throws PredictiveModel.PredictiveModelException
```

**Description**
Predicts the response values using the most recent fit and the provided test data.
Each `PredictiveModel` subclass must override this method.

**Parameter**

`testData` – a double matrix containing data to be predicted. `testData` must have the same
number of columns in the same arrangement as `xy` (the observations).

**Returns**
a double array containing the predicted values.
**Exception**

`PredictiveModelException` is thrown when an exception occurs in the common `PredictiveModel` methods. Implementing or overriding methods from this class may require throwing exceptions. Exceptions thrown from these methods will necessarily extend the `PredictiveModelException`.

**predict**

```java
abstract public double[] predict(double[][] testData, double[] testDataWeights)
throws PredictiveModel.PredictiveModelException
```

**Description**

Predicts the response values using the most recent fit, the provided test data, and the test data case weights.

Each `PredictiveModel` subclass must override this method.

**Parameters**

- `testData` – double matrix containing data to be predicted. `testData` must have the same number of columns in the same arrangement as `xy` (the observations).
- `testDataWeights` – a double array containing weights for each row of `testData`.

**Returns**

a double array containing the predicted values.

**Exception**

`PredictiveModelException` is thrown when an exception occurs in the common `PredictiveModel` methods. Implementing or overriding methods from this class may require throwing exceptions. Exceptions thrown from these methods will necessarily extend the `PredictiveModelException`.

**setClassCounts**

```java
public void setClassCounts(double[] classCounts)
```

**Description**

Sets the counts of each class of the response variable.

Use this method to set the class counts, when one or more classes do not occur in the training data due to sampling, but are otherwise valid, or when the data is distributed and the global counts are available. Only applies when the response variable is of type `com.imsl.datamining.PredictiveModel.VariableType.CATEGORICAL` (p. 1961) or `com.imsl.datamining.PredictiveModel.VariableType.ORDERED_DISCRETE` (p. 1961).

**Parameter**

- `classCounts` – a double array containing the class counts of the response variable

The default is to use the class counts discovered in the input matrix, `xy`, weighted by the values in `weights`.

**setClassLabels**

```java
public void setClassLabels(String[] classLabels)
```

**Data Mining**

`PredictiveModel` • 1953
**Description**
Sets the class names or labels for a categorical response variable.

**Parameter**

classLabels – a string array containing class names or labels. The array classLabels must have length = nClasses.

Default: classLabels = {“1", “2", ..., “K"}, where K = nClasses

**setClassProbabilities**

public void setClassProbabilities(double[][] probs) throws PredictiveModel.SumOfProbabilitiesNotOneException

**Description**
Sets the class probabilities.

**Parameter**

probs – a double matrix specifying class probabilities for each pattern or observation in a data set. The probabilities must range between 0.0 and 1.0 inclusive, and sum to 1.0. The number of columns in probs should agree with the number of classes found in the data. Otherwise an exception is thrown. Calling this method overwrites any existing values.

Default: probs=null unless estimated by an overriding method or set by the user.

**Exception**

SumOfProbabilitiesNotOneException is thrown when class probabilities do not sum to 1.0.

**setConfiguration**

abstract protected void setConfiguration(PredictiveModel pm) throws PredictiveModel.PredictiveModelException

**Description**
Sets the configuration of PredictiveModel to that of the input model.

Each instance of a PredictiveModel must override this method. The implementation should use specific class methods to set the parameter settings to that of the input PredictiveModel instance, essentially creating a copy of the input model. This method is used for model parameter tuning such as is done in CrossValidation, where several variations of the same model are evaluated and in ensemble methods, such as com.imsl.datamining.BootstrapAggregation (p. 1962), where several identical instances are fit to random samples.

Each PredictiveModel subclass must override this method.

**Parameter**

pm – a PredictiveModel object

**Exception**

com.imsl.datamining.PredictiveModel.PredictiveModelException is thrown when exceptions occur in the enclosing class that extends PredictiveModel.

**setCostMatrix**

public void setCostMatrix(double[][] costMatrix)
Specifies the cost matrix for a categorical response variable.

Parameter
costMatrix – a square double matrix of dimension nClasses by nClasses containing elements $C(i, j)$, the cost of misclassifying a response in class $j$ as in class $i$. The diagonal elements of the cost matrix must be 0.
Both dimensions of costMatrix should agree with the number of classes found in the data. Otherwise an exception will be thrown.
Default: costMatrix[i][j]=1.0 where $i \neq j$ and costMatrix[i][i]=0.0.

setMaxNumberOfCategories
public void setMaxNumberOfCategories(int maxCategories)

Sets the maximum number of categories allowed within categorical predictor variables.

Parameter
maxCategories – an int specifying the maximum number of categories a predictor variable can have.
Default: maxCategories=10

setMaxNumberOfIterations
public void setMaxNumberOfIterations(int maxIterations)

Sets the maximum number of iterations allowed for the fitting procedure or training algorithm.
Most predictive models use iterative procedures to fit or train the model. Adjusting the maximum number of iterations up or down can assist in diagnosing problems.

Parameter
maxIterations – an int specifying the maximum number of iterations
Default: maxIterations=1000

setMustFitModel
public void setMustFitModel(boolean mustFitModel)

Sets the flag of whether or not the model needs to be fit or re-estimated because of a change in the data or configuration.

Parameter
mustFitModel – a boolean giving the value of the flag
Default: mustFitModel=true.

setNumberOfClasses
public void setNumberOfClasses(int nClasses)
**Description**


**Parameter**

- `nClasses` – an int representing the number of distinct classes or categories of the response variable. An error is generated if more than `nClasses` categories are discovered in the data. Default: `nClasses` is 0.

**setPredictorIndex**

`public void setPredictorIndex(int[] predIdx)`

**Description**

Sets the column indices of `xy` in which the predictor variables reside.

This may be used to subset the full set of predictor variables (`com.imsl.datamining.PredictiveModel.getPredictorTypes` (p. 1949)).

**Parameter**

- `predIdx` – an int array containing the column index for each predictor variable. Default: All columns other than the column containing the response variable are indicated.

**setPredictorTypes**

`public void setPredictorTypes(PredictiveModel.VariableType[] predVarType)`

**Description**

Sets the `VariableType` objects that correspond to the predictor data types in `xy`.

**Parameter**

- `predVarType` – a `VariableType` array of length equal to the number of predictors specifying the data type of each predictor.

**setPrintLevel**

`public void setPrintLevel(int printLevel)`

**Description**

Sets the print level for a `PredictiveModel`.

**Parameter**

- `printLevel` – an int specifying the level of printing to perform.

<table>
<thead>
<tr>
<th><code>printLevel</code></th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printing.</td>
</tr>
<tr>
<td>1</td>
<td>Prints final results only.</td>
</tr>
<tr>
<td>2</td>
<td>Prints intermediate and final results.</td>
</tr>
</tbody>
</table>

Default: `printLevel` = 0.
**setPriorProbabilities**

```java
public void setPriorProbabilities(double[] priors) throws PredictiveModel.SumOfProbabilitiesNotOneException
```

**Description**
Sets the prior probabilities for class membership.

**Parameter**
- `priors` – a double array specifying the prior probabilities
  The prior probabilities must range between 0.0 and 1.0 inclusive, and sum to 1.0. The length of
  `priors` should agree with the number of classes found in the data. Otherwise an exception is
  thrown. Calling this method overwrites any existing values.
  Default: Determined from the data.

**Exception**
- `SumOfProbabilitiesNotOneException` is thrown when prior probabilities do not sum to 1.0.

**setRandomObject**

```java
public void setRandomObject(Random r)
```

**Description**
Sets the random object to be used in the permutation of observation data.

**Parameter**
- `r` – a `Random` object to be used in the random permutation of observation data
  Specifying a seed for the `com.imsl.stat.Random` object can produce
  repeatable/deterministic output.

**setResponseColumnIndex**

```java
public void setResponseColumnIndex(int index)
```

**Description**
Sets the column index in `xy` containing the response variable.

**Parameter**
- `index` – an int, the column index for the response variable

**setTrainingData**

```java
public void setTrainingData(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)
```

**Description**
Sets up the training data for the predictive model.
By calling this method, the problem is either initialized or reset to use the data in the arguments.
Parameters

xy – a double matrix containing the training data and associated response values
responseColumnIndex – an int specifying the column index in xy of the response variable
varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array of
length equal to xy[0].length containing the type of each variable

setVariableType
public void setVariableType(PredictiveModel.VariableType[] varType)

Description
Sets the variable types for the data.

Parameter

varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array of
length equal to xy[0].length containing the type of each variable

setWeights
public void setWeights(double[] weights)

Description
Specifies the case weights.

Parameter

weights – a double array specifying case weights
Default: weights[i] = 1.0 for all i.

PredictiveModel.PredictiveModelException class

static public class
com.imsl.datamining.PredictiveModel.PredictiveModelException extends
com.imsl.IMSLException

An exception class intended to be the parent of all nested Exception classes where the enclosing class
extends PredictiveModel. The com.imsl.datamining.CrossValidation (p. 1969) and
com.imsl.datamining.BootstrapAggregation (p. 1962) classes operate on PredictiveModel
objects. These classes, in order to maintain generality, throw this parent Exception.

Constructors

PredictiveModel.PredictiveModelException
public PredictiveModel.PredictiveModelException(String message)
**Constructs a PredictiveModelException and issues the specified message.**

**Parameter**

- `message` – a String that contains a message to be issued when the exception occurs

### PredictiveModel.PredictiveModelException

```java
public PredictiveModel.PredictiveModelException(String packageName, String key, Object[] arguments)
```

### PredictiveModel.StateChangeException class

```java
static public class com.imsl.datamining.PredictiveModel.StateChangeException
extends com.imsl.datamining.PredictiveModel.PredictiveModelException
```

Exception thrown when an input parameter has changed that might affect the model estimates or predictions.

### Constructors

#### PredictiveModel.StateChangeException

```java
public PredictiveModel.StateChangeException(String message)
```

**Description**

Constructs a `StateChangeException` and issues the specified message.

**Parameter**

- `message` – a String that contains a message to be issued when the exception occurs

#### PredictiveModel.StateChangeException

```java
public PredictiveModel.StateChangeException(String key, Object[] arguments)
```

**Description**

Constructs a `StateChangeException` with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

**Parameters**

- `key` – a String that contains the key of an error message in the resource bundle
- `arguments` – an Object array containing arguments used within the error message specified by the key
**PredictiveModel.SumOfProbabilitiesNotOneException class**

static public class

Exception thrown when the sum of probabilities is not approximately one.

**Constructors**

**PredictiveModel.SumOfProbabilitiesNotOneException**

public PredictiveModel.SumOfProbabilitiesNotOneException(String message)

*Description*
Constructs a `SumOfProbabilitiesNotOneException` and issues the specified message

*Parameter*
- `message` – a String that contains a message to be issued when the exception occurs

**PredictiveModel.SumOfProbabilitiesNotOneException**

public PredictiveModel.SumOfProbabilitiesNotOneException(String key, Object[] arguments)

*Description*
Constructs a `SumOfProbabilitiesNotOneException` with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

*Parameters*
- `key` – a String that contains the key of an error message in the resource bundle
- `arguments` – an Object array containing arguments used within the error message specified by the key

**PredictiveModel.VariableType class**

static public final class com.imsl.datamining.PredictiveModel.VariableType
extends java.lang.Enum

Enumerates different variable types.

1960 • PredictiveModel

JMSL
<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical</td>
</tr>
<tr>
<td>Ordered Discrete (Low, Med., High)</td>
</tr>
<tr>
<td>Quantitative or Continuous</td>
</tr>
<tr>
<td>Ignore this variable</td>
</tr>
</tbody>
</table>

**Fields**

**CATEGORICAL**
static final public PredictiveModel.VariableType CATEGORICAL

The associated variable can assume one of a limited number of values (categories).

**IGNORE**
static final public PredictiveModel.VariableType IGNORE

The associated variable should be ignored.

**ONE_CLASS**
static final public PredictiveModel.VariableType ONE_CLASS

The associated variable takes a single value.

**ORDERED_DISCRETE**
static final public PredictiveModel.VariableType ORDERED_DISCRETE

The associated variable can assume a limited number of discrete, ordered values.

**QUANTITATIVE_CONTINUOUS**
static final public PredictiveModel.VariableType QUANTITATIVE_CONTINUOUS

The associated variable can assume any real value within a range of values.

**Methods**

**valueOf**
static public PredictiveModel.VariableType valueOf(String name)

**values**
static public PredictiveModel.VariableType[] values()
BootstrapAggregation class

public class com.imsl.datamining.BootstrapAggregation implements Serializable, Cloneable

Performs bootstrap aggregation to generate predictions using predictive models.

Bootstrap aggregation, also known as bagging, generates predictions using predictive models. In the procedure, $M$ bootstrap samples of size $N$ are drawn with replacement from an original training set of size $N$. Sampling with replacement means that when an example is randomly selected, it is replaced back into the training set before the next draw. Thus a bootstrap sample can have repeated examples or observations. Using each bootstrap sample as a separate training data set, the procedure fits a predictive model and then generates predictions. For a regression problem (continuous response variable), the $M$ predictions are combined into a single predicted value by averaging. For classification (categorical response variable), majority vote is used.

Originally proposed for decision trees, bagging leads to “improvements for unstable procedures,” such as neural networks, classification and regression trees, and subset selection in linear regression. On the other hand, it can mildly degrade the performance of stable methods such as K-nearest neighbors (Breiman, 1996).

Constructor

**BootstrapAggregation**

defined in com.imsl.datamining.

public BootstrapAggregation(PredictiveModel pm)

**Description**

Constructs a BootstrapAggregation class in order to generate predictions of a com.imsl.datamining.PredictiveModel (p. 1945) using bootstrap aggregation.

**Parameter**

- pm – a PredictiveModel for which the predictions are to be generated

Methods

**aggregate**

public void aggregate() throws PredictiveModel.PredictiveModelException, NoSuchMethodException, InstantiationException, IllegalAccessException, InvocationTargetException
**Description**

Performs the bootstrap aggregation.

**Exceptions**

`NoSuchMethodException` is thrown when the `PredictiveModel` subclass is missing a constructor with the expected signature (see `PredictiveModel (double[][][], int, com.imsl.datamining.PredictiveModel.VariableType[])`).

`java.lang.InstantiationException` is thrown when an application tries to create an instance of a class using the `newInstance` method in class `Class`, but the specified class object cannot be instantiated.

`java.lang.IllegalArgumentException` is thrown when an application tries to reflectively create an instance (other than an array), set or get a field, or invoke a method, but the currently executing method does not have access to the definition of the specified class, field, method or constructor.

`java.lang.reflect.InvocationTargetException` is thrown when a wrapped exception is thrown by an invoked method or constructor.

`com.imsl.datamining.PredictiveModel.PredictiveModelException` is thrown when an exception has occurred in the `com.imsl.datamining.PredictiveModel`. Superclass exceptions should be considered such as `com.imsl.datamining.PredictiveModel.StateChangeException` and `com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException`.

---

**getNumberOfSamples**

```java
public void getNumberOfSamples(int nSamples)
```

**Description**

Returns the number of bootstrap samples.

**Returns**

an `int`, the number of bootstrap samples

---

**getNumberOfThreads**

```java
public int getNumberOfThreads()
```

**Description**

Returns the maximum number of `java.lang.Thread` instances that may be used for parallel processing.

**Returns**

an `int` containing the maximum number of `java.lang.Thread` instances that may be used for parallel processing

The actual number of threads used in parallel processing will be the lesser of `numberOfThreads` and `nSamples`, the number of bootstrap samples set for bootstrap aggregation. This assessment is made to optimize use of resources.

---

**getOutOfBagPredictionError**

```java
public double getOutOfBagPredictionError()
```
**Description**
Returns the out-of-bag mean squared prediction error for regression problems, or the out-of-bag classification percentage error for classification problems.

**Returns**
a double, the out-of-bag prediction error
Note: An out-of-bag prediction for a particular example (observation or row) is generated from only those bootstrap training sets which exclude the example. The out-of-bag predictions are done on the training data.

---

**getOutOfBagPredictions**
public double[] getOutOfBagPredictions()

**Description**
Returns the out-of-bag predicted values.

**Returns**
a double array containing the out-of-bag predicted values of the response variable for the examples in the training data

---

**getPredictionError**
public double getPredictionError()

**Description**
Returns the mean squared prediction error for regression problems, or the classification percentage error for classification problems.

**Returns**
a double, the prediction error
Note: The error is the in-sample fitted error unless the user specifies the test data using setTestData().

---

**getPredictions**
public double[] getPredictions()

**Description**
Returns the predicted values.

**Returns**
a double array of predicted values of the response variable for the examples in the test data
To generate the predicted values, use the method aggregate. If testData is not specified, in-sample predictions are produced.

---

**getPrintLevel**
public int getPrintLevel()

**Description**
Returns the current print level.
Returns an int, the current print level

<table>
<thead>
<tr>
<th>printLevel</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printing.</td>
</tr>
<tr>
<td>1</td>
<td>Prints final results only.</td>
</tr>
<tr>
<td>2</td>
<td>Prints intermediate and final results.</td>
</tr>
</tbody>
</table>

**getVariableImportance**

```java
public double[] getVariableImportance()
```

**Description**

Returns the variable importance measure based on the out-of-bag prediction error. Variable importance for a predictor is obtained by randomly permuting the out-of-bag values of the predictor and calculating the difference in predictive accuracy, before and after the permutation. The measure is averaged over all the bootstrap samples.

**Returns**

a double array containing variable importance for each predictor

**isCalculateVariableImportance**

```java
public boolean isCalculateVariableImportance()
```

**Description**

Returns the boolean indicating whether or not to calculate variable importance during bootstrap aggregation.

**Returns**

a boolean, the flag indicating whether or not to calculate variable importance

**setCalculateVariableImportance**

```java
public void setCalculateVariableImportance(boolean calculate)
```

**Description**

Sets the boolean to calculate variable importance. When true, a permutation type variable importance measure is calculated during bootstrap aggregation.

**Parameter**

- calculate – a boolean indicating whether or not to calculate variable importance

  Default: calculate = false

**setNumberOfSamples**

```java
public void setNumberOfSamples(int nSamples)
```

**Description**

Sets the number of bootstrap samples.
Parameter

nSamples – an int specifying the number of bootstrap samples
Default: nSamples = 50.

setNumberOfThreads
public void setNumberOfThreads(int numberOfThreads)

Description
Sets the maximum number of java.lang.Thread instances that may be used for parallel processing.

Parameter

numberOfThreads – an int specifying the maximum number of java.lang.Thread instances that may be used for parallel processing
The actual number of threads used in parallel processing will be the lesser of numberOfThreads and nSamples, the number of bootstrap samples set for bootstrap aggregation. This assessment is made to optimize use of resources.
Default: numberOfThreads = 1.

setPrintLevel
public void setPrintLevel(int printLevel)

Description
Sets the print level for the predictive model.

Parameter

printLevel – An int specifying the level of printing to perform

<table>
<thead>
<tr>
<th>printLevel</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printing.</td>
</tr>
<tr>
<td>1</td>
<td>Prints final results only.</td>
</tr>
<tr>
<td>2</td>
<td>Prints intermediate and final results.</td>
</tr>
</tbody>
</table>

Default: printLevel = 0.

setRandomObject
public void setRandomObject(Random r)

Description
Sets a random object for the bootstrap random sampling scheme.

Parameter

r – a Random object
Default: r is created inside the code and the seed is set by the computer clock.
To obtain repeatable results, set the seed of the input r before calling this method. See com.imsl.stat.Random (p. 1324) for other options.

setTestData
public void setTestData(double[][] testData)
Description
Sets the test data to be predicted.

Parameter
testData – a double matrix containing test data for which predictions are to be made using bagging
testData must have the same number of columns in the same arrangement as xy. Missing response variable values should be indicated with Double.NaN().
Default: If testData is not specified, in-sample predictions are produced (i.e., the original training set serves as the test data).

setTestData
public void setTestData(double[][] testData, double[] testDataWeights)

Description
Sets the test data to be predicted along with weights for each row in the test data.

Parameters
testData – a double matrix containing test data for which predictions are to be made using bagging
testData must have the same number of columns in the same arrangement as xy. Missing response variable values should be indicated with Double.NaN().
testDataWeights – a double array containing observation weights for the test data
Default: If testData is not specified, in-sample predictions are produced (i.e., the original training set serves as the test data).

Example: Bootstrap Aggregation
This example illustrates bootstrap aggregation for a decision tree using a simulated data set.

```java
import com.imsl.datamining.*;
import com.imsl.datamining.decisionTree.QUEST;
import com.imsl.stat.Random;

public class BootstrapAggregationEx1 {

 public static void main(String[] args) throws Exception {
 PredictiveModel.VariableType[] varType = {
 PredictiveModel.VariableType.CATEGORICAL,
 PredictiveModel.VariableType.QUANTITATIVE_CONTINUOUS,
 PredictiveModel.VariableType.CATEGORICAL,
 PredictiveModel.VariableType.CATEGORICAL
 };

 double[][] XY = {
 {2, 25.92869, 0, 0}, {1, 51.63245, 1, 1}, {1, 25.78432, 0, 2},
 {0, 39.37948, 0, 3}, {2, 24.65058, 0, 2}, {2, 45.20084, 0, 2},
 {2, 52.67960, 1, 3}, {1, 44.28342, 1, 3}, {2, 40.63523, 1, 3},
 {2, 51.76094, 0, 3}, {2, 26.30368, 0, 1}, {2, 20.70230, 1, 0},
 };
```
double[][] XYTest = {
    {0, 44.28342, 0, 2}, {0, 38.63523, 1, 3}, {2, 20.30368, 0, 1}, {2, 25.70230, 1, 0}, {2, 19.47333, 1, 3},
    {2, 19.47333, 0, 0}, {1, 26.42211, 0, 0}, {2, 37.05986, 1, 0}, {1, 51.67043, 1, 3}, {0, 42.40156, 0, 3},
    {2, 33.90027, 1, 2}, {1, 35.43282, 0, 0}, {1, 44.30269, 0, 1}, {0, 46.73250, 0, 2}, {1, 46.99262, 0, 2}, {0, 36.05923, 0, 3},
    {2, 26.83197, 1, 1}, {1, 61.66257, 1, 2}, {0, 25.67714, 0, 3}, {1, 39.08567, 1, 0}, {0, 48.84341, 1, 1}, {1, 39.34391, 0, 3},
    {2, 24.73522, 0, 2}, {1, 50.55251, 1, 3}, {0, 31.34262, 1, 3}, {1, 27.15795, 1, 0}, {0, 31.72685, 0, 2}, {0, 25.00408, 0, 3},
    {1, 26.35457, 1, 3}, {2, 38.12343, 0, 1}, {0, 49.94030, 0, 2}, {1, 42.45779, 1, 3}, {0, 38.80948, 1, 1}, {0, 43.22799, 1, 1},
    {0, 41.87624, 0, 3}, {2, 48.07820, 0, 2}, {0, 43.23673, 1, 0}, {2, 39.41294, 0, 3}, {1, 23.93346, 0, 2}, {2, 42.84130, 1, 3},
    {2, 30.40669, 0, 1}, {0, 37.77389, 0, 2}
};

double[][] XYTest = {
    {0, 44.28342, 0, 2}, {0, 38.63523, 1, 3}, {2, 20.30368, 0, 1}, {2, 25.70230, 1, 0}, {2, 19.47333, 1, 3},
    {2, 19.47333, 0, 0}, {1, 26.42211, 0, 0}, {2, 37.05986, 1, 0}, {1, 51.67043, 1, 3}, {0, 42.40156, 0, 3},
    {2, 33.90027, 1, 2}, {1, 35.43282, 0, 0}, {1, 44.30269, 0, 1}, {0, 46.73250, 0, 2}, {1, 46.99262, 0, 2}, {0, 36.05923, 0, 3},
    {2, 26.83197, 1, 1}, {1, 61.66257, 1, 2}, {0, 25.67714, 0, 3}, {1, 39.08567, 1, 0}, {0, 48.84341, 1, 1}, {1, 39.34391, 0, 3},
    {2, 24.73522, 0, 2}, {1, 50.55251, 1, 3}, {0, 31.34262, 1, 3}, {1, 27.15795, 1, 0}, {0, 31.72685, 0, 2}, {0, 25.00408, 0, 3},
    {1, 26.35457, 1, 3}, {2, 38.12343, 0, 1}, {0, 49.94030, 0, 2}, {1, 42.45779, 1, 3}, {0, 38.80948, 1, 1}, {0, 43.22799, 1, 1},
    {0, 41.87624, 0, 3}, {2, 48.07820, 0, 2}, {0, 43.23673, 1, 0}, {2, 39.41294, 0, 3}, {1, 23.93346, 0, 2}, {2, 42.84130, 1, 3},
    {2, 30.40669, 0, 1}, {0, 37.77389, 0, 2}
};

Random r = new Random(123457);
r.setMultiplier(16807);
QUEST dt = new QUEST(XY, 3, varType);
dt.fitModel();
BootstrapAggregation ba = new BootstrapAggregation(dt);
ba.setTestDataSet(XYTest);    
ba.setRandomObject(r);    
ba.aggregate();

double[] predictions = ba.getPredictions();
double MSPE = ba.getPredictionError();

System.out.println("Actual value Predicted value ");
for (int k = 0; k < predictions.length; k++) {
    System.out.printf(" %3.2f \t\t %3.2f \n", 
    XYTest[k][3], predictions[k]);
}

System.out.printf("\n Mean squared prediction error: %3.2f \n", MSPE);

---

Output

<table>
<thead>
<tr>
<th>Actual value</th>
<th>Predicted value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>0.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Mean squared prediction error: 0.57
**CrossValidation class**

```java
public class com.imsl.datamining.CrossValidation implements Serializable,
Cloneable

Performs V-Fold cross-validation for predictive models. In V-fold cross validation, the data set is
partitioned randomly into V approximately equally sized sub-samples. The model is then trained V
different times with each of the sub-samples removed in turn to serve as a test set. A loss or risk function
is updated with the prediction errors on each fold. The total risk is averaged over the the folds and serves
as a measure of the model’s predictive performance. For categorical response variables (classification
problems), the data can be stratified to include roughly the same proportion of each class level that
occurs in the full training sample in each of the V sub-samples. See the method,
cross-validated estimate of the risk function is given by

\[
R_{CV}(d_k) = \frac{1}{N} \sum_{v=1}^{V} \sum_{(x_n, y_n) \in \eta_v} L(y_n, d_v^v(x_n))
\]

\(L(y, d(x))\) is the loss incurred when the prediction is \(d(x)\) for the actual \(y\). The inner summation is over
the examples in the test sample held out for each fold.

If the predictive model is an instance of a decision tree, cross-validation is performed on each optimal
sub-tree determined by cost-complexity pruning. Let the symbol \(\eta\) denote the full training data set, \(\eta_v\),
the \(v^{th}\) sub-sample. Then use \(d_v^v\) to indicate the set of predictions corresponding to the
\(k^{th}\) optimal
sub-tree fitted on the training sample \(\eta_v\). To select one sub-tree from among the configurations, two
criteria are the minimum

\[k^* = \arg\min_k R_{CV}(d_k) \]

and the least complicated (smallest sub-tree) which satisfies:

\[k^{**} = \max(k) : R_{CV}(d_k) \leq R_{CV}(d_{k^*}) + SE(R_{CV}(d_k)) \]

The standard error is approximated by

\[SE(R_{CV}(d_k)) \approx \sqrt{\frac{s^2}{n}} \]

with

\[s^2 = \frac{1}{N} \sum_{v=1}^{V} \sum_{(x_n, y_n) \in \eta_v} (L(Y_n, d_v^v(x_n) - R_{CV}(d_k)))^2 \]

The summation is over each fold and each learning sub-sample within each fold.

Data Mining CrossValidation • 1969
Constructor

CrossValidation
public CrossValidation(PredictiveModel pm) throws PredictiveModel.PredictiveModelException

Description
Creates a CrossValidation object.

Parameter
pm – an object of a class that extends PredictiveModel

Exception
com.imsl.datamining.PredictiveModel.PredictiveModelException is thrown when an exception has occurred in the com.imsl.datamining.PredictiveModel. Superclass exceptions should be considered such as com.imsl.datamining.PredictiveModel.StateChangeException and com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException.

Methods

crossValidate
public void crossValidate() throws PredictiveModel.PredictiveModelException, NoSuchMethodException, InstantiationException, IllegalAccessException, InvocationTargetException

Description
Performs V-Fold cross-validation.

Exceptions
PredictiveModelException is thrown when an exception occurs in the common PredictiveModel programming interface methods or an exception class that has extended the PredictiveModelException class.
NoSuchMethodException is thrown when the PredictiveModel subclass is missing a constructor with the expected signature (see com.imsl.datamining.PredictiveModel.PredictiveModel).
InstantiationException is thrown when an object fails to instantiate. This may occur if the PredictiveModel subclass is not concrete.
IllegalArgumentException is thrown when the currently executing method does not have access to the definition of the specified class, field, method or constructor.
java.lang.reflect.InvocationTargetException is thrown when a wrapped exception is thrown by an invoked method or constructor.

getcrossValidatedError
public double getCrossValidatedError() throws PredictiveModel.StateChangeException
Description
Returns the cross-validated error. If the response variable is categorical, the error is the misclassification rate, weighted by the misclassification costs and prior probabilities, attributes of the PredictiveModel object. If the response variable is quantitative/continuous, the error is the mean squared prediction error, also weighted if weights are set in the PredictiveModel object. If there are multiple model configurations, the minimum value is returned.

Returns
a double, the cross-validated prediction error

Exception
com.imsl.datamining.PredictiveModel.StateChangeException is thrown when an input parameter in the PredictiveModel has changed that might affect the model estimates or predictions.

getNumberOfSampleFolds
public int getNumberOfSampleFolds()

Description
Returns the number of folds set for the cross-validation.

Returns
an int, the number of folds

getNumberOfThreads
public int getNumberOfThreads()

Description
Returns the maximum number of java.lang.Thread instances that may be used for parallel processing.

Returns
an int containing the maximum number of java.lang.Thread instances that may be used for parallel processing.

The actual number of threads used in parallel processing will be the lesser of numberOfThreads and nFolds, the number of folds set for cross-validation. This assessment is made to optimize use of resources.

getRiskStandardErrors
public double[] getRiskStandardErrors()

Description
Returns the estimated standard errors for the risk values.

In most cases the length is 1. For com.imsl.datamining.decisionTree.DecisionTree (p. 2237), CrossValidation returns an array of length >= 1.
Returns a double array containing the estimated standard errors for the risk values.

getRiskValues
```java
public double[] getRiskValues()
```

Description

Returns the vector of risk values.

In most cases the length is 1. For DecisionTree, CrossValidation returns an array of length >= 1.

Returns a double array containing the estimated risk values.

isStratifiedCrossValidation
```java
public boolean isStratifiedCrossValidation()
```

Description

Returns the flag to perform stratified cross-validation for a categorical response variable.

When true, the method crossValidate creates the samples to have roughly the same proportion of each class level as occurs in the full training set. When false, regular V-fold cross-validation is performed. If the response variable is continuous, the flag has no effect.

Returns a boolean, the state of the flag

setNumberOfSampleFolds
```java
public void setNumberOfSampleFolds(int nFolds)
```

Description

Sets the number of folds to use in cross validation.

Parameter

nFolds – an int specifying the number of folds

nFolds must be between 1 and the number of observations (xy.length), inclusive. If nFolds = 1 the full data set is used once to generate the com.imsl.datamining.PredictiveModel (p. 1945). In other words, no cross-validation is performed. If 1 < xy.length/nFolds ≤ 3, leave-one-out cross validation is performed.

Default: nFolds = 10.

setNumberOfThreads
```java
public void setNumberOfThreads(int numberOfThreads)
```

Description

Sets the maximum number of java.lang.Thread instances that may be used for parallel processing.
Parameter

numberOfThreads – an int specifying the maximum number of java.lang.Thread instances that may be used for parallel processing.

The actual number of threads used in parallel processing will be the lesser of numberOfThreads and nFolds, the number of folds set for cross-validation. This assessment is made to optimize use of resources.

Default: numberOfThreads = 1.

setRandomObject

public void setRandomObject(Random r)

Description

Sets the random object to be used in the permutation of observation data.

Parameter

r – a Random object to be used in random permutation of observation data.

Specifying a seed for the com.imsl.stat.Random (p. 1324) object can produce repeatable/deterministic output.

setStratifiedCrossValidation

public void setStratifiedCrossValidation(boolean stratify)

Description

Sets the flag to perform stratified cross-validation.

When true, the method crossValidate creates the samples to have roughly the same proportion of each class level as occurs in the full training set. When false, regular V-fold cross-validation is performed. If the response variable is continuous, the flag has no effect.

Parameter

stratify – a boolean indicating whether or not stratified cross-validation should be performed for categorical response variables

Default: stratify=false

Example: CrossValidation

This example applies the QUEST method to a simulated data set with 50 cases and three predictors of mixed-type. A maximally grown tree under the default controls and the optimally pruned sub-tree obtained from cross-validation and minimal cost complexity pruning are produced. Notice that the optimally pruned tree consists of just the root node, whereas the maximal tree has five nodes and three levels.

```java
import com.imsl.datamining.*;
import com.imsl.datamining.decisionTree.*;
import com.imsl.stat.Random;

public class CrossValidationEx1 {
```

Data Mining CrossValidation • 1973
public static void main(String[] args) throws Exception {
 PredictiveModel.VariableType[] sim0VarType = {
 PredictiveModel.VariableType.CATEGORICAL,
 PredictiveModel.VariableType.QUANTITATIVE_CONTINUOUS,
 PredictiveModel.VariableType.CATEGORICAL,
 PredictiveModel.VariableType.CATEGORICAL
 };
 double[][] sim0XY = {
 {2, 25.92869, 0, 0}, {1, 51.63245, 1, 1}, {1, 25.78432, 0, 2},
 {2, 52.67960, 1, 3}, {1, 44.28342, 1, 3}, {2, 40.63523, 1, 3},
 {2, 51.76094, 0, 3}, {2, 26.30368, 0, 1}, {2, 20.70230, 1, 0},
 {2, 38.74273, 1, 3}, {2, 19.47333, 0, 0}, {1, 26.42211, 0, 0},
 {2, 37.05986, 1, 0}, {1, 51.67043, 1, 3}, {0, 42.40156, 0, 3},
 {2, 33.90027, 1, 2}, {1, 35.43282, 0, 0}, {1, 44.30369, 0, 1},
 {0, 46.72387, 0, 2}, {1, 46.99262, 0, 2}, {0, 36.05923, 0, 3},
 {2, 36.83197, 1, 1}, {1, 61.66257, 1, 2}, {0, 25.67714, 0, 3},
 {1, 39.08567, 1, 0}, {0, 48.84341, 1, 1}, {1, 39.34391, 0, 3},
 {2, 24.73522, 0, 2}, {1, 50.55251, 1, 3}, {0, 31.34263, 1, 3},
 {1, 27.15795, 1, 0}, {0, 31.72685, 0, 2}, {0, 25.00408, 0, 3},
 {1, 26.35457, 1, 3}, {2, 38.12343, 0, 1}, {0, 49.94030, 0, 2},
 {1, 42.54779, 1, 3}, {0, 38.80948, 1, 1}, {0, 43.22799, 1, 1},
 {0, 41.87624, 0, 3}, {2, 48.07820, 0, 2}, {0, 43.23673, 1, 0},
 {2, 39.41294, 0, 3}, {1, 23.93346, 0, 2}, {2, 42.84130, 1, 3},
 {2, 30.40669, 0, 1}, {0, 37.77389, 0, 2}
 };
 Random r = new Random(123457);
r.setMultiplier(16807);
 QUEST dt = new QUEST(sim0XY, 3, sim0VarType);
 dt.setAutoPruningFlag(true);
dt.fitModel();
 /* print the maximal tree */
dt.printDecisionTree(true);
 CrossValidation cv = new CrossValidation(dt);
cv.setRandomObject(r);
cv.crossValidate();
double[] cvError = cv.getCrossValidatedError();
double[] Rcv = cv.getRiskValues();
double[] SERcv = cv.getRiskStandardErrors();
 System.out.println("\nTree \t Complexity\t CV Risk \t SE of CV Risk ");
 for (int k = 0; k < Rcv.length; k++) {
 System.out.printf(" %d \t %3.2f \t %5.4f \t %5.4f\n",
 k, dt.getCostComplexityValues()[k], Rcv[k], SERcv[k]);
 }
 /* prune the tree using the selected complexity value */
dt.pruneTree(dt.getCostComplexityValues()[0]);
 System.out.printf("Minimum CV Risk Values: %5.4f\n", cvError);
 System.out.printf("Minimum CV Risk + Standard error: %5.4f\n",
 (cvError + SERcv[0]));
}
Output

Decision Tree:

Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes: 1 2
 P(Y=0)= 0.180
 P(Y=1)= 0.180
 P(Y=2)= 0.260
 P(Y=3)= 0.380
 Predicted Y: 3

Node 1: Cost = 0.220, N= 17, Level = 1
 Rule: X1 <= 35.031
 P(Y=0)= 0.294
 P(Y=1)= 0.118
 P(Y=2)= 0.353
 P(Y=3)= 0.235
 Predicted Y: 2

Node 2: Cost = 0.360, N= 33, Level = 1, Child nodes: 3 4
 Rule: X1 > 35.031
 P(Y=0)= 0.121
 P(Y=1)= 0.212
 P(Y=2)= 0.212
 P(Y=3)= 0.455
 Predicted Y: 3

Node 3: Cost = 0.180, N= 19, Level = 2
 Rule: X1 <= 43.265
 P(Y=0)= 0.211
 P(Y=1)= 0.211
 P(Y=2)= 0.053
 P(Y=3)= 0.526
 Predicted Y: 3

Node 4: Cost = 0.160, N= 14, Level = 2
 Rule: X1 > 43.265
 P(Y=0)= 0.000
 P(Y=1)= 0.214
 P(Y=2)= 0.429
 P(Y=3)= 0.357
 Predicted Y: 2

Tree Complexity CV Risk SE of CV Risk
 0 0.00 0.6829 0.0757
 1 0.02 0.7053 0.0807
 2 0.04 0.7281 0.0860
Minimum CV Risk Values: 0.6829
Minimum CV Risk + Standard error: 0.7586

Decision Tree:

Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes: 1 2
P(Y=0)= 0.180
P(Y=1)= 0.180
P(Y=2)= 0.260
P(Y=3)= 0.380
Predicted Y: 3

Node 1: Cost = 0.220, N= 17, Level = 1
Rule: X1 \leq 35.031
 P(Y=0)= 0.294
 P(Y=1)= 0.118
 P(Y=2)= 0.353
 P(Y=3)= 0.235
Predicted Y: 2

Node 2: Cost = 0.360, N= 33, Level = 1
Rule: X1 > 35.031
 P(Y=0)= 0.121
 P(Y=1)= 0.212
 P(Y=2)= 0.212
 P(Y=3)= 0.455
Predicted Y: 3
Pruned at Node id 2.

GradientBoosting class

```java
class GradientBoosting extends PredictiveModel implements Serializable, Cloneable
```

Performs stochastic gradient boosting for a single response variable and multiple predictor variables.

The idea behind boosting is to combine the outputs of relatively weak classifiers or predictive models to achieve iteratively better and better accuracy in either regression problems (the response variable is continuous) or classification problems (the response variable has two or more discrete values). This class implements the stochastic gradient tree boosting algorithm of Friedman, 1999. A sequence of decision trees is fit to random samples of the training data, iteratively re-weighted to minimize a specified loss function. In each iteration, pseudo-residuals are calculated based on a random sample from the original training set and the gradient of the loss function evaluated at values generated in the previous iteration. New base predictors are fit to the pseudo-residuals, and then a new prediction function is selected to minimize the loss-function, completing one iteration. The number of iterations is a parameter for the algorithm.

Gradient boosting is an ensemble method, but instead of using independent trees, gradient boosting...
forms a sequence of trees, iteratively and judiciously re-weighted to minimize prediction errors. In particular, the decision tree at iteration \(m+1 \) is estimated on pseudo-residuals generated using the decision tree at step \(m \). Hence, successive trees are dependent on previous trees. The algorithm in gradient boosting iterates for a fixed number of times and stops, rather than iterating until a convergence criteria is met. The number of iterations is therefore a parameter in the model. Using a randomly selected subset of the training data in each iteration has been shown to substantially improve efficiency and robustness. Thus, the method is called stochastic gradient boosting. For further discussion, see Hastie, et. al. (2008).

Constructors

GradientBoosting

```java
public GradientBoosting(PredictiveModel pm)
```

Description

Constructs a gradient boosting object.

Parameter

- **pm** – the `PredictiveModel` to serve as the base learner

 Note: Currently only regression trees are supported as base learners.

GradientBoosting

```java
public GradientBoosting(double[][] xy, int responseColumnIndex,
PredictiveModel.VariableType[] varType)
```

Description

Constructs a `GradientBoosting` object for a single response variable and multiple predictor variables.

Parameters

- **xy** – a `double` matrix containing the training data
- **responseColumnIndex** – an `int`, the column index for the response variable
- **varType** – a `com.imsl.datamining.PredictiveModel.VariableType` (p. 1960) array containing the type of each variable

Methods

fitModel

```java
public void fitModel() throws PredictiveModel.PredictiveModelException
```

Description

Performs the gradient boosting on the training data.
Exception

getClassFittedValues

public double[][] getClassFittedValues()

Description

Returns the fitted values \(f(x_i) \) for a categorical response variable with two or more levels.

The underlying loss function is the binomial or multinomial deviance.

Returns

a double matrix containing the fitted values on the training data

getClassProbabilities

public double[][] getClassProbabilities()

Description

Returns the predicted probabilities on the training data for a categorical response variable.

Returns

a double matrix containing the class probabilities fit on the training data. The \(i,k \)-th element of the matrix is the estimated probability that the observation at row index \(i \) belongs to the \(k+1 \)-st class, where \(k=0,\ldots,n\text{Classes}-1 \).

getFittedValues

public double[] getFittedValues()

Description

Returns the fitted values \(f(x_i) \) for a continuous response variable after gradient boosting.

Returns

a double array containing the fitted values on the training data

getIterationsArray

public int[] getIterationsArray()

Description

Returns the array of different values for the number of iterations.

Different values for the number of iterations can be set and used in cross validation. See com.imsl.datamining.GradientBoosting.setIterationsArray (p. 1982).

Returns

an int array, containing the values for the number of iterations parameter

getLossType

public GradientBoosting.LossFunctionType getLossType()
getLossValue

public double getLossValue()

Description

Returns the loss function value.

Returns

a double, the loss function value

getMissingTestYFlag

public boolean getMissingTestYFlag()

Description

Returns the flag that sets whether the test data is missing the response variable data.

Returns

a boolean, the flag setting whether the test data is missing the response variable values

getMultinomialResponse

public double[][] getMultinomialResponse()

Description

Returns the multinomial representation of the response variable.

Y^* is a matrix with the element at i,k, where $i=0,...,n\text{Observations}-1$ and $k=0,...,n\text{Classes}-1$

\[
y^*_{ik} = \begin{cases}
1 & \text{if } y_i = k \\
0 & \text{otherwise}
\end{cases}
\]

Note: This representation is not available if the response has only 2 classes (binomial).

Returns

a double matrix containing the response in multinomial representation

getNumberOfIterations

public int getNumberOfIterations()

Description

Returns the current setting for the number of iterations to use in the gradient boosting algorithm.

Different values for the number of iterations can be set and used in cross validation. See com.imsl.datamining.GradientBoosting.setIterationsArray (p. 1982).
Returns an int, the current setting for the number of iterations

getSampleSizeProportion

public double getSampleSizeProportion()

Description

Returns the current setting of the sample size proportion.

Returns

a double, the sample size proportion

getShrinkageParameter

public double getShrinkageParameter()

Description

Returns the current shrinkage parameter.

Returns

a double, the value of shrinkage parameter

getTestClassFittedValues

public double[][] getTestClassFittedValues()

Description

Returns the fitted values \(f(x_i) \) for a categorical response variable with two or more levels on the test data. The underlying loss function is the binomial or multinomial deviance.

Returns

a double matrix containing the fitted values on the test data

getTestClassProbabilities

public double[][] getTestClassProbabilities()

Description

Returns the predicted probabilities on the test data for a categorical response variable.

Returns

a double matrix containing the class probabilities fit on the training data. The \(i,k \) element is the estimated probability that the \(i \)-th pattern belongs to the \(k \)-th target class, where \(k=0,...,\text{nClasses}-1 \).

getTestFittedValues

public double[] getTestFittedValues()

Description

Returns the fitted values \(f(x_i) \) for a continuous response variable after gradient boosting on the test data.
Returns
a double array containing the fitted values on the test data

`getTestLossValue`
public double getTestLossValue()

Description
Returns the loss function value on the test data.

Returns
a double, the loss function value

`predict`
public double[] predict() throws PredictiveModel.PredictiveModelException

Description
Returns the predicted values on the training data.

Returns
a double array containing the predicted values on the training data, i.e., the fitted values

Exception

`predict`
predict(double[] testData) throws PredictiveModel.PredictiveModelException

Description
Returns the predicted values on the input test data.

Parameter
testData – a double matrix containing test data

Note: testData must have the same number of columns and the columns must be in the same arrangement as xy.

Returns
a double array containing the predicted values

Exception
predict
public double[] predict(double[][] testData, double[] testDataWeights) throws PredictiveModel.PredictiveModelException

Description
Runs the gradient boosting on the training data and returns the predicted values on the weighted test data.

Parameters
testData – a double matrix containing test data
 Note: testData must have the same number of columns and the columns must be in the same arrangement as xy.
testDataWeights – a double array containing weights for each row of testData

Returns
a double array containing the predicted values

Exception

setIterationsArray
public void setIterationsArray(int[] iterationsArray)

Description
Sets the array of different numbers of iterations.

The algorithm in gradient boosting iterates for a fixed number of times and stops, rather than iterating until a convergence criteria is met. The number of iterations is therefore a parameter in the model. After setting the iterationsArray to two or more values, cross-validation can be used to help determine the best choice among the values. By default, iterationsArray contains the single value {50}.

Parameter
iterationsArray – an int array containing the different numbers of iterations
 Default: iterationsArray = {50}.

setLossFunctionType
public void setLossFunctionType(GradientBoosting.LossFunctionType lossType)

Description
Sets the loss function type for the gradient boosting algorithm.
Parameter

- **lossType** – a `LossFunctionType`, the desired loss function type
 Default: `lossType=LossFunctionType.LEAST_SQUARES`

setMissingTestYFlag

`public void setMissingTestYFlag(boolean missingTestY)`

Description
Sets the flag determining whether the test data is missing the response variable data.

Parameter

- **missingTestY** – a boolean. When true, either the response variable data is all `Double.NaN` or will be treated as such.
 Default: `missingTestY=false`

setNumberOfIterations

`public void setNumberOfIterations(int numberOfIterations)`

Description
Sets the number of iterations.

Parameter

- **numberOfIterations** – an int, the number of iterations
 Default: `numberOfIterations = 50`. The `numberOfIterations` must be positive.
 Note: This method resets `iterationsArray` to an array of length 1 containing `numberOfIterations`.

setSampleSizeProportion

`public void setSampleSizeProportion(double sampleSizeProportion)`

Description
Sets the sample size proportion.

Parameter

- **sampleSizeProportion** – a double in the interval `[0, 1]` specifying the desired sampling proportion
 Default: `sampleSizeProportion = 0.50`. If `sampleSizeProportion = 1.0`, no sampling is performed.

setShrinkageParameter

`public void setShrinkageParameter(double shrinkageParameter)`

Description
Sets the value of the shrinkage parameter.

Parameter

- **shrinkageParameter** – a double in the interval `[0, 1]` specifying the shrinkage parameter
 Default: `shrinkageParameter=1.0` (no shrinkage)
Example 1: Gradient Boosting

This example uses stochastic gradient boosting to obtain fitted values for a regression variable on a small data set with 6 predictor variables.

```java
import com.imsl.datamining.GradientBoosting;
import com.imsl.stat.Random;

public class GradientBoostingEx1 {
    public static void main(String[] args) throws Exception {
        double[][] XY = {
            {4.45617685, 0.8587425048, 1.2705688183, 0.0, 0.0, 1.0, 0.836626959, 0.0, 0.0, 0.0, 0.0, 1.0, 0.836626959},
            {3.01895357, 0.8928761308, 1.3886538362, 2.0, 1.0, 2.0, 0.762200702, 0.0, 0.0, 0.0, 0.0, 1.0, 0.762200702},
            {5.16899757, 0.7385954093, 1.5773203815, 0.0, 4.0, 2.0, 0.075369922, 0.0, 0.0, 0.0, 0.0, 1.0, 0.075369922},
            {-0.23062048, 0.6227398487, 0.0228797458, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {2.43144968, 0.8519553537, 0.9185446175, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {5.51650903, 0.4178302658, 1.3686663737, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {5.42996967, 0.9829705667, 0.7817731784, 0.0, 5.0, 1.0, 0.865016054, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {0.99551212, 0.3859238869, 0.2746516233, 3.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {1.23525017, 0.4165328839, 1.2822537781, 3.0, 3.0, 1.0, 0.075369922, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {1.51599306, 0.2008399745, 0.9003028921, 3.0, 0.0, 2.0, 1.437125599, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {2.72854297, 0.2072261081, 1.2282209327, 2.0, 5.0, 2.0, 1.437125599, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {5.4178302658, 1.3686663737, 0.7817731784, 0.0, 5.0, 1.0, 0.865016054, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
            {5.51650903, 0.9829705667, 0.7817731784, 0.0, 5.0, 1.0, 0.865016054, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0},
        };
    }
}
```
GradientBoosting.VariableType[] VarType = {
 GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
 GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
 GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
 GradientBoosting.VariableType.CATEGORICAL,
 GradientBoosting.VariableType.CATEGORICAL,
 GradientBoosting.VariableType.CATEGORICAL,
 GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS
};

GradientBoosting gb = new GradientBoosting(XY, 0, VarType);
gb.setShrinkageParameter(0.05);
gb.setSampleSizeProportion(0.5);
gb.setRandomObject(new Random(123457));
gb.fitModel();
double[] fittedValues = gb.predict();

System.out.println("Fitted Values vs Actuals");
for (int i = 0; i < fittedValues.length; i++) {
 System.out.printf("%.5f, %.5f\n", fittedValues[i], XY[i][0]);
}
System.out.printf("Loss Value: %.5f\n", gb.getLossValue());

Output
Fitted Values vs Actuals
4.341, 4.456
2.865, 3.019
4.485, 5.169
1.217, -0.231
2.757, 2.431
2.263, 2.283
4.212, 4.517

Data Mining GradientBoosting • 1985
Loss Value: 0.35968
Example 2: Gradient Boosting

This example uses stochastic gradient boosting to obtain fitted probability estimates for a binary response variable and 4 predictor variables. The estimated probabilities are obtained for the training data and a small test data set. Probabilities less than or equal to 0.5 are associated with $Y=0$, while probabilities greater than 0.5 associate with $Y=1$ and would lead to these predictions on the test data.

```java
import com.imsl.datamining.GradientBoosting;
import com.imsl.stat.Random;

public class GradientBoostingEx2 {
    public static void main(String[] args) throws Exception {
        GradientBoosting.VariableType[] VarType = {
            GradientBoosting.VariableType.CATEGORICAL,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
            GradientBoosting.VariableType.CATEGORICAL,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS
        };
        double[][] trainingData = {
            {0.0, 0.4223019897, 1.7540411302, 3.0, 0.763836258},
            {0.0, 0.0907259332, 0.8722643796, 2.0, 1.859006285},
            {0.0, 0.1384744535, 0.838324677, 1.0, 0.249729405},
            {1.0, 0.5435024537, 1.2359190206, 4.0, 0.831992314},
            {0.0, 0.8359154933, 1.8527500411, 1.0, 0.089201049},
            {1.0, 0.3577950741, 0.3652825342, 3.0, 2.0.204364956},
            {1.0, 0.679094002, 0.6610595905, 3.0, 1.44730419},
            {0.0, 0.5821297709, 1.6180879478, 1.0, 2.0.957652822},
            {1.0, 0.8229457375, 1.0201675948, 3.0, 2.0.872570117},
            {0.0, 0.0633462721, 0.4140600134, 1.0, 0.63906323},
            {1.0, 0.1019134156, 0.0677204356, 3.0, 1.49347664},
            {0.0, 0.155173238, 1.541201456, 3.0, 1.90219884},
            {1.0, 0.8273822817, 0.2114979578, 3.0, 2.0.855730173},
            {0.0, 0.795570114, 1.8757067556, 2.0, 2.0.930132627},
            {0.0, 0.653725917, 1.2139678737, 2.0, 1.535832433},
            {1.0, 0.1243124125, 1.5130919744, 4.0, 2.0.733670775},
            {0.0, 0.2163864174, 0.7051185896, 2.0, 2.0.755841087},
            {0.0, 0.2522670308, 1.2821007751, 2.0, 0.342119491},
            {0.0, 0.8677104027, 1.9003869346, 2.0, 2.0.454376481},
            {1.0, 0.8670932774, 0.7993045617, 4.0, 2.0.732812615},
            {0.0, 0.5384287981, 0.1869477178, 1.0, 2.0.837026385},
            {0.0, 0.7236269394, 0.4993310347, 1.0, 2.0.736099128},
            {0.0, 0.0789361731, 1.011216166, 1.0, 2.0.539607478},
            {1.0, 0.7631686032, 0.0536725423, 2.0, 2.0.401761686},
            {1.0, 0.115702077, 0.0123261618, 1.0, 2.0.983722925},
            {1.0, 0.1451248352, 1.9153961635, 3.0, 0.492650534},
            {1.0, 0.8497178114, 1.80941298, 4.0, 2.0.653985489},
            {0.0, 0.8027864883, 1.2631046517, 3.0, 2.0.716212491},
            {0.0, 0.798560373, 0.6872106791, 2.0, 2.0.763023936},
            {1.0, 0.1816879204, 0.4323868025, 4.0, 0.0.98090197},
            {1.0, 0.630129328, 0.3670980479, 3.0, 0.0.2313788},
            {1.0, 0.0411311248, 0.0173408454, 3.0, 1.0.994786958},
            {1.0, 0.042736099, 0.8114635572, 3.0, 2.0.966069741},
        };
    }
}
```
1.0, 0.4107826762, 0.1929467283, 4.0, 0.573832348	0.0, 0.9441903098, 0.0729868885, 1.0, 1.710923033
1.0, 0.3576549822, 0.279857073, 2.0, 0.969428934	0.0, 0.3741368004, 1.6052779425, 2.0, 1.866030486
0.0, 0.3515911179, 0.3383029872, 1.0, 2.639469598	0.0, 0.9184092905, 1.716801264, 1.0, 1.380178652
0.0, 0.77803064, 1.983028405, 3.0, 1.834021992	0.0, 0.57376814, 0.0265661023, 1.0, 1.52130144
1.0, 0.3279244492, 0.6977945678, 4.0, 1.322451157	0.0, 0.7924799048, 0.3694388509, 1.0, 2.369548656
0.0, 0.9787846403, 1.1470323382, 2.0, 0.037156113	1.0, 0.6910662795, 0.1019420708, 2.0, 2.58583334
0.0, 0.1367050812, 0.6635301332, 2.0, 3.682736383	0.0, 0.282630366, 1.4468787988, 1.0, 2.70511968
0.0, 0.4524727969, 0.7885378413, 2.0, 0.851228449	0.0, 0.511864701, 1.061143666, 1.0, 0.249325278
0.0, 0.9965170731, 0.2068265025, 2.0, 0.92160349	0.0, 0.7801500652, 1.565742691, 4.0, 1.827419217
0.0, 0.2906187973, 1.7036567871, 2.0, 2.842997725	0.0, 0.1753704017, 0.7124397112, 2.0, 1.262811961
0.0, 0.7796778064, 0.3478030777, 3.0, 0.90719801	0.0, 0.38853628, 1.1771452101, 4.0, 1.29438454
0.0, 0.9374473374, 1.187778663, 1.0, 1.85442331	0.0, 0.1939157653, 0.093336341, 4.0, 0.166025681
0.0, 0.2023756928, 0.0623724433, 3.0, 0.536441906	0.0, 0.1691352043, 1.1587338657, 2.0, 2.15490496
0.0, 0.0921623357, 0.224739461, 3.0, 0.300995301	0.0, 0.819186907, 0.0392292971, 1.0, 1.282159743
0.0, 0.9458126165, 1.5268264762, 1.0, 1.960050194	0.0, 0.1373939656, 1.8025095677, 2.0, 0.633624267
0.0, 0.0555424779, 0.5022063241, 2.0, 0.63945004	0.0, 0.3581428374, 1.4436954968, 3.0, 1.408938169
0.0, 0.1189418568, 0.8011626904, 4.0, 0.210266769	0.0, 0.5782070206, 1.58215921, 3.0, 2.648622607
0.0, 0.460689794, 0.0704823257, 1.0, 1.45671379	0.0, 0.695978858, 0.2245675903, 2.0, 1.849515461
0.0, 0.1930288749, 0.6296302159, 2.0, 2.597390946	0.0, 0.4912149447, 0.0713489084, 1.0, 0.426487798
0.0, 0.3496920248, 1.0135462089, 1.0, 2.962295362	0.0, 0.7716284667, 0.5387295927, 4.0, 0.736709363
0.0, 0.3463061263, 0.7819587522, 4.0, 1.597238498	0.0, 0.6897138762, 1.2793166582, 4.0, 2.376281484
0.0, 0.2818824656, 1.4379718141, 3.0, 2.627468417	0.0, 0.5659798421, 1.6243668249, 1.0, 1.624809581
0.0, 0.7965560518, 0.3935029529, 2.0, 0.415849269	0.0, 0.915692165, 0.0465683565, 1.0, 2.802914008
0.0, 0.8298979942, 1.2237155279, 2.0, 2.611676934	0.0, 0.024912066, 0.9213823564, 1.0, 0.659596571
0.0, 0.0948590154, 0.3609640412, 1.0, 1.287687748	0.0, 0.230467916, 1.9421709292, 3.0, 2.290064565
0.0, 0.2209760561, 0.4812708795, 1.0, 1.862393057	0.0, 0.4704503933, 0.2644400774, 1.0, 1.960189529
0.0, 0.1986645423, 0.48924731, 2.0, 0.337390415	0.0, 0.9201823308, 1.4247304946, 1.0, 0.367654009
0.0, 0.8118424334, 0.1017034058, 2.0, 0.201390385	0.0, 0.1347265388, 0.1362061207, 3.0, 1.151431168

1988 • GradientBoosting JMSL
double[][] testData = {
 {0.0, 0.0093314846, 0.0315045565, 1.0, 2.043737003},
 {0.0, 0.0663379349, 0.0822378928, 2.0, 1.202557951},
 {1.0, 0.9728333529, 0.8778284262, 4.0, 0.205940753},
 {1.0, 0.7655418115, 0.329853828, 4.0, 2.940793653},
 {1.0, 0.1610695978, 0.3832762009, 4.0, 1.96753633},
 {0.0, 0.0849638112, 1.4988451041, 2.0, 2.307902221},
 {0.0, 0.7932621511, 1.209839368, 1.0, 0.886761862},
 {0.0, 0.1336030525, 0.2794256401, 2.0, 2.672175208},
 {0.0, 0.4758480834, 0.044179522, 1.0, 0.399722177},
 {1.0, 0.1137434335, 0.922533263, 3.0, 1.927635631}};

GradientBoosting gb = new GradientBoosting(trainingData, 0, VarType);
gb.setShrinkageParameter(0.05);
gb.setSampleSizeProportion(0.5);
gb.setRandomObject(new Random(123457));
gb.fitModel();

/* Run gradient boosting, generating fitted values and predicted values on the test data. */
 gb.predict(testData);
/* Retrieve the fitted class probabilities on the training data. For binomial data, there will be only 1 column in the matrix. */
 double[][] probabilities = gb.getClassProbabilities();

System.out.println("Training Data Probabilities vs Actuals");
for (int i = 0; i < probabilities.length; i++) {
 System.out.printf("%.5f, %.5f\n", probabilities[i][0], trainingData[i][0]);
}
System.out.println("Training Data Loss Function Value: %.5f\n", gb.getLossValue());

/* Retrieve the predicted binomial probabilities on the test data. */
 double[][] testProbabilities = gb.getTestClassProbabilities();
System.out.println("Test Data Probabilities vs Actuals");
for (int i = 0; i < testProbabilities.length; i++) {
 System.out.printf("%.5f, %.5f\n", testProbabilities[i][0], testData[i][0]);
}
System.out.println("Test Data Loss Function Value: %.5f\n", gb.getTestLossValue());
Output

Training Data Probabilities vs Actuals

0.648, 0.000
0.173, 0.000
0.122, 0.000
0.784, 1.000
0.090, 0.000
0.766, 1.000
0.721, 1.000
0.090, 0.000
0.710, 1.000
0.129, 0.000
0.799, 1.000
0.660, 0.000
0.788, 1.000
0.136, 0.000
0.165, 0.000
0.763, 1.000
0.181, 0.000
0.149, 0.000
0.136, 0.000
0.802, 1.000
0.166, 0.000
0.122, 0.000
0.116, 0.000
0.253, 1.000
0.176, 0.000
0.648, 1.000
0.743, 1.000
0.673, 0.000
0.181, 0.000
0.812, 1.000
0.766, 1.000
0.799, 1.000
0.721, 1.000
0.853, 1.000
0.176, 0.000
0.240, 1.000
0.136, 0.000
0.150, 0.000
0.090, 0.000
0.648, 1.000
0.176, 0.000
0.802, 1.000
0.150, 0.000
0.173, 0.000
0.253, 1.000
0.181, 0.000
0.100, 0.000
0.181, 0.000
0.116, 0.000
Training Data Loss Function Value: 0.62967

Test Data Probabilities vs Actuals

Data Mining GradientBoosting • 1991
Example 3: Gradient Boosting

This example applies cross-validation to the number of iterations parameter in stochastic gradient boosting. The number of iterations with the minimum cross-validated risk estimate is 50.

```java
import com.imsl.datamining.CrossValidation;
import com.imsl.datamining.GradientBoosting;
import com.imsl.stat.Random;

public class GradientBoostingEx3 {

    public static void main(String[] args) throws Exception {
        GradientBoosting.VariableType[] VarType = {
            GradientBoosting.VariableType.CATEGORICAL,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
            GradientBoosting.VariableType.CATEGORICAL,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS
        };
        double[][] trainingData = {
            {0.0, 0.4223019897, 1.7540411302, 3.0, 0.763836258},
            {0.0, 0.0907259332, 0.8722643796, 2.0, 1.859006285},
            {0.0, 0.1384744535, 0.838324877, 1.0, 0.249729405},
            {1.0, 0.5435024537, 1.2359190206, 4.0, 0.831992314},
            {0.0, 0.8359154933, 1.8527500411, 1.0, 1.089201049},
            {1.0, 0.3577950741, 0.3652825342, 3.0, 2.04364955},
            {1.0, 0.6799094002, 0.6610595905, 3.0, 1.44730419},
            {0.0, 0.5821297709, 1.6180879478, 1.0, 2.957565282},
            {1.0, 0.8229457375, 1.0201675948, 3.0, 2.872570117},
            {0.0, 0.0633462721, 0.4140600134, 1.0, 0.63906323},
            {1.0, 0.1019134156, 0.0677204356, 3.0, 1.493447564},
            {0.0, 0.1551713238, 1.541201456, 3.0, 1.90219884},
            {1.0, 0.8273822817, 0.2114979578, 3.0, 2.855730173},
            {0.0, 0.7955570114, 1.8757067556, 2.0, 2.930132627},
            {0.0, 0.6537275917, 1.2139678737, 2.0, 1.535853243},
            {1.0, 0.1243124125, 1.5130919744, 4.0, 2.733670775},
            {0.0, 0.2163864174, 0.7051185896, 2.0, 2.755841087},
            {0.0, 0.2522670308, 1.2821007571, 2.0, 0.342119491},
            {0.0, 0.8677104027, 1.9003869346, 2.0, 2.454376481},
            {1.0, 0.8670932774, 0.7993045617, 4.0, 2.732812615},
            {0.0, 0.5384287981, 0.1856947718, 1.0, 1.83702635},
            {0.0, 0.7236269342, 0.4993310347, 1.0, 1.030699128},
            {0.0, 0.0789361731, 0.11212666, 1.0, 2.539607478},
            {1.0, 0.7631688032, 0.0536725423, 2.0, 1.401761686},
            {0.0, 0.1157020777, 0.0123261618, 1.0, 2.098372295},
```
GradientBoosting gb = new GradientBoosting(trainingData, 4, VarType);
int[] cvIterations = {10, 30, 50, 100, 500};
 gb.setIterationsArray(cvIterations);
 gb.setShrinkageParameter(0.05);
 gb.setSampleSizeProportion(0.5);
 gb.setRandomObject(new Random(123457));
 CrossValidation cv = new CrossValidation(gb);
 cv.setRandomObject(new Random(123457));
 cv.crossValidate();
 double cvError = cv.getCrossValidatedError();
 double[] Rcv = cv.getRiskValues();
 double[] SERcv = cv.getRiskStandardErrors();
 System.out.println(
 "Model Number Of Iterations CV Risk SE of CV Risk"
 + "SE of CV Risk ");
 for (int k = 0; k < Rcv.length; k++) {
 System.out.printf(" %d %6.2f %7.2f\n", k, cvIterations[k], Rcv[k], SERcv[k]);
 }
 System.out.printf("Minimum CV Risk Values: %5.4f\n", cvError);
 System.out.printf("Minimum CV Risk + Standard error: %5.4f\n",
 (cvError + SERcv[0]));
 }

Output

<table>
<thead>
<tr>
<th>Model</th>
<th>Number Of Iterations</th>
<th>CV Risk</th>
<th>SE of CV Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>106.89</td>
<td>926.69</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>102.32</td>
<td>850.83</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>98.43</td>
<td>785.00</td>
</tr>
</tbody>
</table>
Example 4: Gradient Boosting

This example illustrates using the alternative constructor for gradient boosting. This constructor accepts an instance of a regression tree to serve as the base learner and allows for more flexibility in controlling the base learner configuration.

```java
import com.imsl.datamining.GradientBoosting;
import com.imsl.datamining.decisionTree.ALACART;
import com.imsl.stat.Random;

public class GradientBoostingEx4 {
    public static void main(String[] args) throws Exception {
        GradientBoosting.VariableType[] VarType = {
            GradientBoosting.VariableType.CATEGORICAL,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS,
            GradientBoosting.VariableType.CATEGORICAL,
            GradientBoosting.VariableType.QUANTITATIVE_CONTINUOUS
        };
        double[][] trainingData = {
            {0.0, 0.4223019897, 1.7540411302, 3.0, 0.763836258},
            {0.0, 0.0907259332, 0.8722643796, 2.0, 1.859006285},
            {0.0, 0.1384744535, 0.838324877, 1.0, 0.249729405},
            {1.0, 0.5435024537, 1.2359190206, 4.0, 0.831992314},
            {0.0, 0.8359154933, 1.8527500411, 1.0, 1.089201049},
            {1.0, 0.3577950741, 0.3652825342, 3.0, 2.043649556},
            {1.0, 0.6799094002, 0.6610595905, 3.0, 1.44730419},
            {0.0, 0.5821297709, 1.6180879478, 1.0, 2.95765282},
            {1.0, 0.8229457375, 1.0201675948, 3.0, 2.872570117},
            {0.0, 0.0633462721, 0.4140600134, 1.0, 0.63906323},
            {1.0, 0.1019134156, 0.0677204356, 3.0, 1.493447564},
            {0.0, 0.1551713238, 1.541201456, 3.0, 1.90219884},
            {1.0, 0.8273822817, 0.2114979578, 3.0, 2.85730173},
            {0.0, 0.7955570114, 1.875067556, 2.0, 2.930132627},
            {0.0, 0.6537275917, 1.213967873, 2.0, 1.53583243},
            {1.0, 0.1243124125, 1.513091947, 4.0, 2.73360775},
            {0.0, 0.2163864174, 0.7051185896, 2.0, 2.75581087},
            {0.0, 0.2522670308, 0.2821007571, 2.0, 0.34219941},
            {0.0, 0.8677104027, 1.9003869346, 2.0, 2.45376481},
            {1.0, 0.8670932774, 0.7993045617, 4.0, 2.732812615},
            {0.0, 0.5384287881, 0.1856477718, 1.0, 1.838702635},
            {0.0, 0.7236269342, 0.4993310347, 1.0, 1.030699128},
            {0.0, 0.0789361731, 1.011216166, 1.0, 2.539607478},
            {1.0, 0.7631686032, 0.0536725423, 2.0, 1.401761686},
            {0.0, 0.1157020777, 0.0123261618, 1.0, 2.093722965},
            {1.0, 0.1451248352, 1.9153951635, 3.0, 0.492650534},
            {1.0, 0.8497178114, 1.80941298, 4.0, 2.653985489},
            {0.0, 0.8027864883, 1.2631045617, 3.0, 2.716214291}
        };
```
1996 • GradientBoosting JMSL
double[][] testData = {
 {0.0, 0.0093314846, 0.0315045565, 1.0, 2.043737003},
 {0.0, 0.0663379349, 0.0822378928, 2.0, 1.202557951},
 {1.0, 0.9728333529, 0.8778284262, 4.0, 0.205940753},
 {1.0, 0.7655418115, 0.3292853828, 4.0, 2.940793653},
 {1.0, 0.1610695978, 0.3832762009, 4.0, 1.96753633},
 {0.0, 0.0849463812, 1.4988451041, 2.0, 2.307922211},
 {0.0, 0.7932621511, 1.2098399368, 1.0, 0.886761862},
 {0.0, 0.1336030525, 0.2794256401, 2.0, 2.672175208},
 {0.0, 0.4758480834, 0.0441179522, 1.0, 0.399722717},
 {1.0, 0.1137434335, 0.922533263, 3.0, 1.927635631}};

ALACART dTree = new ALACART(trainingData, 0, VarType);

dTree.setMaxDepth(10);
dTree.setMinObsPerNode(10);
dTree.setMaxNodes(4);

GradientBoosting gb = new GradientBoosting(dTree);
gb.setShrinkageParameter(0.05);
gb.setSampleSizeProportion(0.5);
gb.setRandomObject(new Random(123457));
gb.fitModel();

/* Run gradient boosting, generating fitted values and predicted values on the test data. */
/* Retrieve the fitted binomial probabilities on the training data. */
double[][] probabilities = gb.getClassProbabilities();

System.out.println("Training Data Loss Function Value: ");
System.out.println("%5.5f", gb.getLossValue());
Retrieve the predicted binomial probabilities on the test data. */
double[][] testProbabilities = gb.getTestClassProbabilities();
System.out.println("Test Data Probabilities vs Actuals");
for (int i = 0; i < testProbabilities.length; i++) {
 System.out.printf("%.3f, %.3f\n", testProbabilities[i][0],
 testData[i][0]);
}
System.out.printf("Test Data Loss Function Value: %.5f\n",
 gb.getTestLossValue());

Output
Training Data Probabilities vs Actuals
0.648, 0.000
0.173, 0.000
0.122, 0.000
0.784, 1.000
0.090, 0.000
0.766, 1.000
0.721, 1.000
0.090, 0.000
0.710, 1.000
0.129, 0.000
0.799, 1.000
0.660, 0.000
0.788, 1.000
0.136, 0.000
0.165, 0.000
0.763, 1.000
0.181, 0.000
0.149, 0.000
0.136, 0.000
0.802, 1.000
0.166, 0.000
0.122, 0.000
0.116, 0.000
0.253, 1.000
0.176, 0.000
0.648, 1.000
0.743, 1.000
0.673, 0.000
0.181, 0.000
0.812, 1.000
0.766, 1.000
0.799, 1.000
0.721, 1.000
0.853, 1.000
0.176, 0.000
0.240, 1.000
0.136, 0.000
0.150, 0.000
0.090, 0.000
0.648, 1.000
Data Mining GradientBoosting • 1999
Training Data Loss Function Value: 0.62967
Test Data Probabilities vs Actuals
0.176, 0.000
0.253, 0.000
0.793, 1.000
0.845, 1.000
0.821, 1.000
0.149, 0.000
0.111, 0.000
0.240, 0.000
0.176, 0.000
0.710, 1.000
Test Data Loss Function Value: 0.48412

GradientBoosting.LossFunctionType class

static public final class com.imsl.datamining.GradientBoosting.LossFunctionType
extends java.lang.Enum

The loss function type as specified by the error measure.

Fields

ADABOOST

static final public GradientBoosting.LossFunctionType ADABOOST

The loss criteria is the AdaBoost.M1 criterion. The loss function

\[L(y_i, f(x_i)) = \sum \exp(-2y_i - 1)f(x_i) \]

BERNOULLI

static final public GradientBoosting.LossFunctionType BERNOULLI

The loss criteria is the binomial or Bernoulli negative log-likelihood, or deviance.

\[L(y_i, f(x_i)) = -2 \sum (y_i f(x_i) - \log(1 + \exp(f(x_i)))) \]

HUBER_M

static final public GradientBoosting.LossFunctionType HUBER_M

The loss criteria is the Huber-M weighted squared error and absolute deviation error with parameter \(\alpha \).

That is, the loss function
\[L(y_i, f(x_i)) = \sum \Psi(y_i, f(x_i)) \]

where

\[\Psi(y, f(x)) = \begin{cases}
(y - f(x))^2 & \text{for } |y - f(x)| \leq \delta \\
2\delta(|y - f(x)| - \delta/2) & \text{for } |y - f(x)| > \delta
\end{cases} \]

And where \(\delta \) is the \(\alpha \)-empirical quantile of the residuals, \(y_i - f(x_i), i = 1, \ldots, n \)

LEAST_ABSOLUTE_DEVIATION

`static final public GradientBoosting.LossFunctionType LEAST_ABSOLUTE_DEVIATION`

The loss criteria is least absolute deviation error. That is, the loss function

\[L(y_i, f(x_i)) = \sum |y_i - f(x_i)| \]

LEAST_SQUARES

`static final public GradientBoosting.LossFunctionType LEAST_SQUARES`

The loss criteria is least squared error. That is, the loss function

\[L(y_i, f(x_i)) = \sum (y_i - f(x_i))^2 \]

MULTINOMIAL_DEVIANCE

`static final public GradientBoosting.LossFunctionType MULTINOMIAL_DEVIANCE`

The loss criteria is the (K-class) multinomial negative log-likelihood, or multinomial deviance. The loss function

\[L(y_i, f(x_i)) = -2 \sum_i \sum_k y_{ik} \log(p_{ik}) \]

where

\[p_{ik} = \frac{\exp f_k(x_i)}{\sum_k \exp f_k(x_i)} \]

Methods

`valueOf`

`static public GradientBoosting.LossFunctionType valueOf(String name)`

`values`

`static public GradientBoosting.LossFunctionType[] values()`
Chapter 30: Support Vector Machines

Types

class SupportVectorMachine ... 2003
class SVClassification ... 2013
class SVOneClass ... 2025
class SVRegression ... 2029
class Kernel ... 2037
class LinearKernel ... 2039
class SigmoidKernel ... 2040
class RadialBasisKernel ... 2042
class PolynomialKernel ... 2044
class DataNode ... 2045

SupportVectorMachine class

abstract public class
com.ims1.datamining.supportvectormachine.SupportVectorMachine extends
com.ims1.datamining.PredictiveModel

Abstract class for generating a support vector machine.

Support vector machines are machine learning algorithms for classification, regression, and the so-called one class problem. This package contains SVCClassification, SVRegression, and SVOneClass for each of these problems, respectively. Each formulation uses a kernel based optimization to find support vectors that optimally separate clouds of high dimensional data for the purpose of making predictions. SupportVectorMachine and all of the classes in this package are based on the LIBSVM package of Chang, Chih-Chung; Lin, Chih-Jen (2011).
Constructors

SupportVectorMachine

public SupportVectorMachine(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)

Description
Constructs a support vector machine for a single response variable and multiple predictor variables.

Parameters
- xy – a double matrix containing the training data and associated response values
- responseColumnIndex – an int specifying the column index of the response variable
- varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable

SupportVectorMachine

public SupportVectorMachine(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k) throws CloneNotSupportedException

Description
Constructs a support vector machine for a single response variable and multiple predictor variables.

Parameters
- xy – a double matrix containing the training data and associated response values
- responseColumnIndex – an int specifying the column index of the response variable
- varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable
- k – a Kernel, the kernel function

Exception
java.lang.CloneNotSupportedException thrown to indicate that the clone method in class Object has been called to clone an object, but that the object’s class does not implement the Cloneable interface

Methods

fitModel

public void fitModel() throws PredictiveModel.PredictiveModelException

Description
Fits the model to the training data, i.e., trains the support vector machine.
Exception

getConvergenceTolerance
public double getConvergenceTolerance()

Description
Returns the convergence tolerance.

Returns
a double, the tolerance value

getKernel
protected Kernel getKernel()

Description
Returns the kernel object being used in the optimization.

Returns
a Kernel object

getKernelParameters
public double[] getKernelParameters()

Description
Returns the kernel parameters. See documentation for each Kernel class for specifications of the parameters.

Returns
a double array containing the kernel parameter values

getModel
protected SVModel getModel()

Description
Returns the model object.

Returns
an SVModel object

getNuParameter
public double getNuParameter()

Description
Returns the value of the \(\nu \) parameter.
Returns a double, the current value of the \(\nu \) parameter

getRegularizationParameter
public double getRegularizationParameter()

Description
Returns the value of the regularization parameter, \(C \).

Returns a double, the value of the regularization parameter

getWorkingArraySize
public double getWorkingArraySize()

Description
Returns the setting for the work array size.

Returns a double, the number of megabytes allocated to the work array used in the decomposition method

isNuFormulation
public boolean isNuFormulation()

Description
Returns the boolean to perform the \(\nu \)-formulation of the optimization problem. When true, the \(\nu \)-formulation of the optimization problem is solved. When false, the standard or default formulation is solved.

Returns a boolean, the current value of the flag

isProbability
public boolean isProbability()

Description
Returns the boolean to calculate probability estimates.

Returns a boolean, indicating whether or not probability estimates for each class level should be computed

isShrinking
public boolean isShrinking()

Description
Returns the boolean to perform shrinking during optimization. When true, the optimization performs shrinking.
Returns
a boolean, the value of the shrinking flag

optimize
abstract protected SVMModel optimize(DataNode[][] x, double[] y, double[] w, int len, Kernel kernel) throws NoSuchMethodException, InstantiationException, IllegalAccessException, InvocationTargetException

Description
Abstract method to perform the support vector machine optimization.

Parameters
x – a DataNode matrix containing the attribute data
y – a double array containing the response variable
len – an int, the total possible number of support vectors
w – a double array containing the observation weights
kernel – an Kernel object

Returns
an SVMModel structure containing the fitted model

Exceptions
java.lang.NoSuchMethodException thrown when a particular method cannot be found
java.langInstantiationException thrown when an application tries to create an instance of a class using the newInstance method in class Class, but the specified class object cannot be instantiated
java.langIllegalAccessException thrown when an application tries to reflectively create an instance (other than an array), set or get a field, or invoke a method, but the currently executing method does not have access to the definition of the specified class, field, method or constructor
java.lang.reflect.InvocationTargetException a checked exception that wraps an exception thrown by an invoked method or constructor

predict
public double[] predict() throws PredictiveModel.SumOfProbabilitiesNotOneException

Description
Returns the predicted values on the training data, i.e., returns the fitted values.

Returns
a double array containing the fitted values on the training data
Exception

SumOfProbabilitiesNotOneException the sum of probabilities is not approximately one

predict

```java
public double[] predict(double[][] testData) throws PredictiveModel.SumOfProbabilitiesNotOneException
```

Description

Returns the predicted values on the input test data.

Parameter

- `testData` – a double matrix containing test data
 Note: `testData` must have the same number of columns as `xy` and the columns must be in the same arrangement as in `xy`.

Returns

a double array containing the predicted values

Exception

SumOfProbabilitiesNotOneException the sum of probabilities is not approximately one

predictValues

```java
abstract protected double[] predictValues(SVModel model, double[][] attributeData) throws PredictiveModel.SumOfProbabilitiesNotOneException
```

Description

Abstract method for generating the predicted values using the fitted support vector machine model.

Parameters

- `model` – a fitted `SVModel` object
- `attributeData` – a double matrix containing the attribute (or predictor) data

Returns

a double array containing the predictions for each row in the input attribute data

Exception

com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException the sum of probabilities is not approximately one

setConfiguration

```java
protected void setConfiguration(PredictiveModel pm) throws SupportVectorMachine.CloneNotSupportedException
```

Description

Sets the configuration of `PredictiveModel` to that of the input model.

Note that the input `PredictiveModel` object must be the same subclass of `PredictiveModel` as is this instance.
Parameter

PM - A PredictiveModel object which is to have its attributes duplicated in this instance

Exception

CloneNotSupportedException a java.lang.CloneNotSupportedException has occurred. The original exception has been added to the SupportVectorMachine.CloneNotSupportedException as a suppressed exception. Default: The class uses its default configuration as described in the different methods.

setConvergenceTolerance

public void setConvergenceTolerance(double eps)

Description

Sets the convergence tolerance.

Parameter

eps - a double, the tolerance value

Default: eps=0.001

setKernel

public void setKernel(Kernel kernel)

Description

Sets the kernel to be used in the optimization.

See the class com.imsl.datamining.supportvectormachine.Kernel (p. 2037) for details.

Parameter

kernel - an instance of class Kernel

Default: kernel=RadialBasisKernel

setKernelParameters

public void setKernelParameters(double[] kParams)

Description

Sets the kernel parameters. See documentation for each Kernel class for specifications of the parameters.

Parameter

kParams - a double array containing the kernel parameter values

setNuFormulation

public void setNuFormulation(boolean nuFormulation)
Description
Sets the boolean to perform the ν-formulation of the optimization problem. When true, the ν-formulation of the optimization problem is solved. When false, the standard formulation is solved.

The ν-support vector classification (ν-SVC) algorithm presents a new parameter ν ∈ (0, 1] which acts as an upper bound on the fraction of training errors and a lower bound on the fraction of support vectors.

The primal optimization problem for the binary variable y ∈ {1, -1} is

\[
\min_{w,b,\xi,\rho} \frac{1}{2} w^T w - \nu \rho + \frac{1}{l} \sum_{i=1}^{l} \xi_i \\
\text{subject to } y_i (w^T \phi(x_i) + b) \geq \rho - \xi_i,
\]

\[\xi_i \geq 0, i = 1, \ldots, l, \rho \geq 0\]

Similar to ν-SVC, in ν-support vector regression (ν-SVR) the parameter ν ∈ (0, 1] controls the number of support vectors. The ν-SVR primal problem is

\[
\min_{w,b,\xi,\xi^*,\xi^*,\epsilon} \frac{1}{2} w^T w + C (\nu \epsilon + \frac{1}{l} \sum_{i=1}^{l} (\xi_i + \xi_i^*)) \\
\text{subject to } (w^T \phi(x_i) + b) - z_i \leq \epsilon + \xi_i,
\]

\[z_i - (w^T \phi(x_i) + b) \leq \epsilon + \xi_i^*,
\]

\[\xi_i, \xi_i^* \geq 0, i = 1, \ldots, l, \epsilon \geq 0\]

Parameter
nuFormulation – a boolean, giving the value for the flag
Default: nuFormulation=false

setNuParameter
public void setNuParameter(double nu)

Description
Sets the value of ν in the ν-formulation of the optimization problem.

Parameter
nu – a double in (0,1], the ν parameter
Default: nu=0.5

setProbability
public void setProbability(boolean probability)
Description
Sets the boolean to calculate probability estimates.

In classification problems, when the flag is `true`, class probabilities are estimated during the training procedure. For regression problems, when the flag is `true`, distributional parameters will be estimated that allow probability inferences for the response variable. When `false`, probability information is not calculated.

Parameter

- **probability** – a boolean, indicating whether or not to calculate probability estimates
 - Default: `probability=false`

setRegularizationParameter

```java
public void setRegularizationParameter(double C)
```

Description
Sets the regularization parameter, C.

Parameter

- **C** – a double, greater than 0.0
 - Default: `C=1.0`

setShrinking

```java
public void setShrinking(boolean shrinking)
```

Description
Sets the boolean to perform shrinking during optimization.

The shrinking technique tries to identify and remove some bounded elements during the application of the SMO (sequential minimal optimization) algorithm, so that a smaller optimization problem is solved.

Parameter

- **shrinking** – a boolean, indicating whether or not shrinking should be performed during the optimization algorithm
 - Default: `shrinking=true`

setWorkArraySize

```java
public void setWorkArraySize(double workSize)
```

Description
Sets the work array size.

A larger work array size can reduce the computational time of the decomposition method.

Parameter

- **workSize** – a double, the number of megabytes allocated for the array used during the decomposition method. `workSize` must be greater than 0.
 - Default: `workSize = 100.0`
SupportVectorMachine.ReflectiveOperationException class

static public class
extends com.imsl.datamining.PredictiveModel.PredictiveModelException
Class that wraps exceptions thrown by reflective operations in core reflection.

Constructors

SupportVectorMachine.ReflectiveOperationException
public SupportVectorMachine.ReflectiveOperationException(String message)

Description
Constructs a ReflectiveOperationException and issues the specified message.

Parameter
message – a String that contains a message to be issued when the exception occurs

SupportVectorMachine.ReflectiveOperationException
public SupportVectorMachine.ReflectiveOperationException(String key, Object[] arguments)

Description
Constructs a ReflectiveOperationException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters
key – a String that contains the key of an error message in the resource bundle
arguments – an Object array containing arguments used within the error message specified by the key

SupportVectorMachine(CloneNotSupportedException class

static public class
extends com.imsl.datamining.PredictiveModel.PredictiveModelException

Wraps the java.lang.CloneNotSupportedException to indicate that the clone method in class Object has been called to clone an object, but that the object’s class does not implement the Cloneable interface.

Constructors

SupportVectorMachine.CloneNotSupportedException

```java
public SupportVectorMachine.CloneNotSupportedException(String message)
```

Description

Constructs a CloneNotSupportedException and issues the specified message.

Parameter

message – a String that contains a message to be issued when the exception occurs

SupportVectorMachine.CloneNotSupportedException

```java
public SupportVectorMachine.CloneNotSupportedException(String key, Object[] arguments)
```

Description

Constructs a CloneNotSupportedException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

key – a String that contains the key of an error message in the resource bundle

arguments – an Object array containing arguments used within the error message specified by the key

SVClassification class

```java
public class com.imsl.datamining.supportvectormachine.SVClassification extends com.imsl.datamining.supportvectormachine.SupportVectorMachine
```

Specifies a support vector machine for classification (SVC).

The C-support vector classification (C-SVC) is the fundamental algorithm for the SVM optimization problem and its primal form is given as

$$\min_{w, b, \xi} \frac{1}{2} w^T w + C \sum_{i=1}^{l} \xi_i$$
subject to $y_i(w^T \phi(x_i) + b) \geq 1 - \xi_i,$

$\xi_i \geq 0, i = 1, \ldots, l$

The set $\{(x_i,y_i) : i = 1, \ldots, l\}$ is the set of instance-label pairs in the training data, with $x_i \in \mathbb{R}^n,$ $y_i \in \{1,-1\},$ and l equal to the number of training examples. The ξ_i are the slack variables in the optimization and represent an upper bound on the number of errors. The regularization parameter $C > 0$ acts as a tradeoff parameter between error and margin. This is the default algorithm for the classification problem.

Constructors

SVClassification

public SVClassification(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)

Description

Constructs a support vector machine for classification (SVC).

Parameters

- xy – a double matrix containing the training data and associated response values
- responseColumnIndex – an int, the column index of the response variable
- varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable

SVClassification

public SVClassification(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k) throws CloneNotSupportedException

Description

Constructs a support vector machine for classification (SVC).

Parameters

- xy – a double matrix containing the training data and associated response values
- responseColumnIndex – an int, the column index of the response variable
- varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable
- k – a Kernel, the kernel function

2014 • SVClassification

JMSL
Exception

java.lang.CloneNotSupportedException thrown to indicate that the clone method in class Object has been called to clone an object, but that the object’s class does not implement the Cloneable interface

Methods

getClassPenaltyWeights

public double[] getClassPenaltyWeights()

Description
Returns the class weights.

Returns
a double array containing the class weights

getClassWeightLabels

public int[] getClassWeightLabels()

Description
Returns the weight labels array.

Returns
an int array containing the class labels corresponding to the penalty weights

optimize

protected SVModel optimize(DataNode[][] x, double[] y, double[] w, int len, Kernel kernel) throws NoSuchMethodException, InstantiationException, IllegalAccessException, InvocationTargetException

Description
Performs the classification support vector machine optimization problem.

Parameters

x – a DataNode matrix containing the attribute data
y – a double array containing the response variable
w – a double array containing the observation weights
len – an int, the total possible number of support vectors
kernel – a Kernel object

Returns
an SVModel structure containing the fitted model
Exceptions

java.lang.NoSuchMethodException thrown when a particular method cannot be found

java.langInstantiationException thrown when an application tries to create an instance of a class using the newInstance method in class Class, but the specified class object cannot be instantiated

java.lang.IllegalAccessException thrown when an application tries to reflectively create an instance (other than an array), set or get a field, or invoke a method, but the currently executing method does not have access to the definition of the specified class, field, method or constructor

java.lang.reflect.InvocationTargetException a checked exception that wraps an exception thrown by an invoked method or constructor

predictValues

protected double[] predictValues(SVModel model, double[][] attributeData) throws PredictiveModel.SumOfProbabilitiesNotOneException

Description
Generates the predicted values on the attribute data using the given support vector machine model.

Parameters

model – a fitted SVModel object
attributeData – a double matrix containing the attribute (or predictor) data

Returns
a double array containing the predictions for each row in the input attribute data

Exception

com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException the sum of probabilities is not approximately one

setClassPenaltyWeights

public void setClassPenaltyWeights(int[] weightLabels, double[] weights)

Description
Sets the class penalty weights.

Parameters

weightLabels – an int array containing the class labels to which the weights should be applied
weights – a double array of length weightLabels.length containing the corresponding weights. The weight values must be non-negative.

Default: By default, the weight value is 1.0, leading to a penalty value of C for each class.

setConfiguration

protected void setConfiguration(PredictiveModel pm) throws SupportVectorMachine.CloneNotSupportedException
Description
Sets the configuration to that of the input `PredictiveModel`.
Note that the input `PredictiveModel` object must be the same subclass of `PredictiveModel` as is this instance.

Parameter

`pm` – an `SVClassification` instance

Exception

CloneNotSupportedException a java.lang.CloneNotSupportedException has occurred. The original exception has been added to the `SupportVectorMachine.CloneNotSupportedException` as a suppressed exception.
Default: The class uses its default configuration as described in the different methods.

Example 1: SVClassification

This example selects training data from Fisher’s Iris Data and fits a support vector machine using defaults. Then, predictions (fitted values) on the training data and predictions on the entire data set are produced and classification errors are shown.

```java
import com.imsl.datamining.neural.*;
import com.imsl.datamining.supportvectormachine.*;

public class SupportVectorMachineEx1 {
    public static void main(String[] args) throws Exception {

        SVClassification.VariableType[] irisVarType = {
            SVClassification.VariableType.CATEGORICAL,
            SVClassification.VariableType.QUANTITATIVE_CONTINUOUS,
            SVClassification.VariableType.QUANTITATIVE_CONTINUOUS,
            SVClassification.VariableType.QUANTITATIVE_CONTINUOUS
        };
        String dashes = "-----------------------------";

        double[][] irisFisherData = {
            {1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
            {1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
            {1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
            {1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
            {1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
            {1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
            {1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
            {1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
            {1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
            {1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
            {1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
            {1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
            {1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
        }
    }
}
```

Support Vector Machines SVClassification 2017
\{
3.0, 6.0, 3.0, 4.8, 1.8, \}
\{
3.0, 6.9, 3.1, 5.4, 2.1,
\}
\{
3.0, 6.7, 3.1, 5.6, 2.4,
\}
\{
3.0, 6.9, 3.1, 5.1, 2.3,
\}
\{
3.0, 5.8, 2.7, 5.1, 1.9,
\}
\{
3.0, 6.8, 3.2, 5.9, 2.3,
\}
\{
3.0, 6.7, 3.3, 5.7, 2.5,
\}
\{
3.0, 6.7, 3.0, 5.2, 2.3,
\}
\{
3.0, 6.3, 2.5, 5.0, 1.9,
\}
\{
3.0, 6.6, 3.0, 5.2, 2.0,
\}
\{
3.0, 6.2, 3.4, 5.4, 2.3,
\}
\{
3.0, 5.9, 3.0, 5.1, 1.8,
\}

// Create a scaled version of the Iris attribute data.
double[][] x = new double[150][4];
double[][] xx = new double[150][4];

// Get the data.
for (int i = 0; i < 150; i++) {
 for (int j = 0; j < 4; j++) {
 x[i][j] = irisFisherData[i][j + 1];
 }
}

// Scale the data.
double realMin = 0.0;
double realMax = 10.0;
double targetMin = 0.0;
double targetMax = 1.0;
ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.BOUNDED_SCALING);
scaleFilter.setBounds(realMin, realMax, targetMin, targetMax);
for (int i = 0; i < 150; i++) {
 xx[i] = scaleFilter.encode(x[i]);
}

// Build a training data set.
int nTrain = 30;
double[][] xy = new double[nTrain][5];
double[] knownClass = new double[nTrain];

int ii = 0;
// The response variable (Iris Species) is encoded starting in "1".
// Here, subtract 1 from the response because the class assumes
// 0 based categorical response variable.
for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 10; j++) {
 xy[ii][0] = irisFisherData[(i * 50) + j][0] - 1;
 knownClass[ii] = xy[ii][0];
 System.arraycopy(xx[(i * 50 + j)], 0, xy[ii], 1, 4);
 ii++;
 }
}
// Construct a Support Vector Machine.
SVClassification svm = new SVClassification(xy, 0, irisVarType);

// Train the model on the training sample.
svm.fitModel();
// Get the fitted values (classify the training data).
double[] fittedClass = svm.predict();
int[][] fittedClassErrors = svm.getClassErrors(knownClass, fittedClass);

System.out.println(\n Iris Classification Error Rates (fitted values)\n + (fitted values));
System.out.println(\n" Setosa Versicolour Virginica | TOTAL";
System.out.println(\n " + fittedClassErrors[0][0]
 + "/" + fittedClassErrors[0][1]
 + " + fittedClassErrors[1][0]
 + "/" + fittedClassErrors[1][1]
 + " + fittedClassErrors[2][0]
 + "/" + fittedClassErrors[2][1]
 + " + fittedClassErrors[3][0]
 + "/" + fittedClassErrors[3][1]);

System.out.println(dashes);

// Classify the entire data set.
xy = new double[150][5];
knownClass = new double[150];
for (int i = 0; i < 150; i++) {
 xy[i][0] = irisFisherData[i][0] - 1;
 knownClass[i] = xy[i][0];
 System.arraycopy(xx[i], 0, xy[i], 1, 4);
}

double[] predictedClass = svm.predict(xy);
int[][] classErrors = svm.getClassErrors(knownClass, predictedClass);

System.out.println(\n Iris Classification Error Rates (predicted values);
System.out.println(dashes);
System.out.println(\n" Setosa Versicolour Virginica | TOTAL";
System.out.println(\n " + classErrors[0][0] + "/" + classErrors[0][1]
 + " + classErrors[1][0] + "/" + classErrors[1][1]
 + " + classErrors[2][0] + "/" + classErrors[2][1]
 + " + classErrors[3][0] + "/" + classErrors[3][1]);

System.out.println(dashes);
}

 Output

Iris Classification Error Rates (fitted values)

<table>
<thead>
<tr>
<th>Setosa</th>
<th>Versicolour</th>
<th>Virginica</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/10</td>
<td>1/10</td>
<td>1/10</td>
<td>2/30</td>
</tr>
</tbody>
</table>

Iris Classification Error Rates (predicted values)
Example 2: SVClassification

This example uses stratified cross-validation to select parameter settings for C and γ using the minimum CV error criterion. Then, the fitted model using the “best” settings is used to classify the entire dataset. The classification errors are shown.

```java
import com.imsl.datamining.*;
import com.imsl.datamining.supportvectormachine.*;
import com.imsl.datamining.neural.*;
import com.imsl.stat.*;

public class SupportVectorMachineEx2 {
    public static void main(String[] args) throws Exception {
        SVClassification.VariableType[] irisVarType = {
            SVClassification.VariableType.CATEGORICAL,
            SVClassification.VariableType.QUANTITATIVE_CONTINUOUS,
            SVClassification.VariableType.QUANTITATIVE_CONTINUOUS,
            SVClassification.VariableType.QUANTITATIVE_CONTINUOUS,
            SVClassification.VariableType.QUANTITATIVE_CONTINUOUS
        };

        String dashes = "--------------------------------------------------------------";
        double[][] irisFisherData = {
            {1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
            {1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
            {1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
            {1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
            {1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
            {1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
            {1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
            {1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
            {1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
            {1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
            {1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
            {1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
            {1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
            {1.0, 5.0, 3.4, 1.6, .4}, {1.0, 5.2, 3.5, 1.5, .2},
            {1.0, 5.2, 3.4, 1.4, 2}, {1.0, 4.7, 3.2, 1.6, .2},
            {1.0, 4.8, 3.1, 1.6, .2}, {1.0, 5.4, 3.4, 1.5, .4},
            {1.0, 5.2, 4.1, 1.5, .1}, {1.0, 5.5, 4.2, 1.4, .2},
            {1.0, 4.9, 3.1, 1.5, .1}, {1.0, 5.0, 3.2, 1.2, .2},
            {1.0, 5.5, 3.5, 1.3, .2}, {1.0, 4.9, 3.1, 1.5, .1},
            {1.0, 4.4, 3.0, 1.3, .2}, {1.0, 5.1, 3.4, 1.5, .2},
            {1.0, 5.0, 3.5, 1.3, .3}, {1.0, 4.5, 2.3, 1.3, .3},
        };
    }
}
```
\[\{1.0, 4.4, 3.2, 1.3, .2\}, \{1.0, 5.0, 3.5, 1.6, .6\}, \{1.0, 5.1, 3.8, 1.9, .4\}, \{1.0, 4.8, 3.0, 1.4, .3\}, \{1.0, 5.1, 3.8, 1.6, .2\}, \{1.0, 4.6, 3.2, 1.4, .2\}, \{1.0, 5.3, 3.7, 1.5, .2\}, \{1.0, 5.0, 3.3, 1.4, .2\}, \{2.0, 7.0, 3.2, 4.7, 1.4\}, \{2.0, 6.4, 3.2, 4.5, 1.5\}, \{2.0, 6.9, 3.1, 4.9, 1.5\}, \{2.0, 5.5, 2.3, 4.0, 1.3\}, \{2.0, 6.5, 2.8, 4.6, 1.5\}, \{2.0, 5.7, 2.8, 4.5, 1.3\}, \{2.0, 6.3, 3.3, 4.7, 1.6\}, \{2.0, 4.9, 2.4, 3.3, 1.0\}, \{2.0, 6.6, 2.9, 4.6, 1.3\}, \{2.0, 5.2, 2.7, 3.9, 1.4\}, \{2.0, 5.0, 2.0, 3.5, 1.0\}, \{2.0, 5.9, 3.0, 4.2, 1.5\}, \{2.0, 6.0, 2.2, 4.0, 1.0\}, \{2.0, 6.1, 2.9, 4.7, 1.4\}, \{2.0, 5.6, 2.9, 3.6, 1.3\}, \{2.0, 6.7, 3.1, 4.4, 1.4\}, \{2.0, 5.6, 3.0, 4.5, 1.5\}, \{2.0, 5.8, 2.7, 4.1, 1.0\}, \{2.0, 6.2, 2.2, 4.5, 1.5\}, \{2.0, 5.6, 2.5, 3.9, 1.1\}, \{2.0, 5.9, 3.2, 4.8, 1.8\}, \{2.0, 6.1, 2.8, 4.0, 1.3\}, \{2.0, 6.3, 2.5, 4.9, 1.5\}, \{2.0, 6.1, 2.8, 4.7, 1.2\}, \{2.0, 6.4, 2.9, 4.3, 1.3\}, \{2.0, 6.6, 3.0, 4.4, 1.4\}, \{2.0, 6.8, 2.6, 4.8, 1.4\}, \{2.0, 6.7, 3.0, 5.0, 1.7\}, \{2.0, 6.0, 2.9, 4.5, 1.5\}, \{2.0, 5.7, 2.6, 3.5, 1.0\}, \{2.0, 5.5, 2.4, 3.8, 1.1\}, \{2.0, 5.5, 2.4, 3.7, 1.0\}, \{2.0, 5.8, 2.7, 3.9, 1.2\}, \{2.0, 6.0, 2.7, 3.1, 1.6\}, \{2.0, 5.4, 3.0, 4.5, 1.5\}, \{2.0, 6.0, 3.4, 4.5, 1.6\}, \{2.0, 6.7, 3.1, 4.7, 1.5\}, \{2.0, 6.3, 2.3, 4.4, 1.3\}, \{2.0, 5.6, 3.0, 4.1, 1.3\}, \{2.0, 5.5, 2.5, 4.0, 1.3\}, \{2.0, 5.5, 2.6, 4.4, 1.2\}, \{2.0, 6.1, 3.0, 4.6, 1.4\}, \{2.0, 5.8, 2.6, 4.0, 1.2\}, \{2.0, 5.0, 2.3, 3.3, 1.0\}, \{2.0, 5.6, 2.7, 4.2, 1.3\}, \{2.0, 5.7, 3.0, 4.2, 1.2\}, \{2.0, 5.7, 2.9, 4.2, 1.3\}, \{2.0, 6.2, 2.9, 4.3, 1.3\}, \{2.0, 5.1, 2.5, 3.0, 1.1\}, \{2.0, 5.7, 2.8, 4.1, 1.3\}, \{3.0, 6.3, 3.3, 6.0, 2.5\}, \{3.0, 5.8, 2.7, 5.1, 1.9\}, \{3.0, 7.1, 3.0, 5.9, 2.1\}, \{3.0, 6.3, 2.9, 5.6, 1.8\}, \{3.0, 6.5, 3.0, 5.8, 2.2\}, \{3.0, 7.6, 3.0, 6.6, 2.1\}, \{3.0, 4.9, 2.5, 4.5, 1.7\}, \{3.0, 7.3, 2.9, 6.3, 1.8\}, \{3.0, 6.7, 2.5, 5.8, 1.8\}, \{3.0, 7.2, 3.6, 6.1, 2.5\}, \{3.0, 6.5, 3.2, 5.1, 2.0\}, \{3.0, 6.4, 2.7, 5.3, 1.9\}, \{3.0, 6.8, 3.0, 5.5, 2.1\}, \{3.0, 5.7, 2.5, 5.0, 2.0\}, \{3.0, 5.8, 2.8, 5.1, 2.4\}, \{3.0, 6.4, 3.2, 5.3, 2.3\}, \{3.0, 6.5, 3.0, 5.5, 1.8\}, \{3.0, 7.7, 3.8, 6.7, 2.2\}, \{3.0, 7.7, 2.6, 6.9, 2.3\}, \{3.0, 6.0, 2.2, 5.0, 1.5\}, \{3.0, 6.9, 3.2, 5.7, 2.3\}, \{3.0, 5.6, 2.8, 4.9, 2.0\}, \{3.0, 7.7, 2.8, 6.7, 2.0\}, \{3.0, 6.3, 2.7, 4.9, 1.8\}, \{3.0, 6.7, 3.3, 5.7, 2.1\}, \{3.0, 7.2, 3.2, 6.0, 1.8\}, \{3.0, 6.2, 2.8, 4.8, 1.8\}, \{3.0, 6.1, 3.0, 4.9, 1.8\}, \{3.0, 6.4, 2.8, 5.6, 2.1\}, \{3.0, 7.2, 3.0, 5.8, 1.6\}, \{3.0, 7.4, 2.8, 6.1, 1.9\}, \{3.0, 7.9, 3.8, 6.4, 2.0\}, \{3.0, 6.4, 2.8, 5.6, 2.2\}, \{3.0, 6.3, 2.8, 5.1, 1.5\}, \{3.0, 6.1, 2.6, 5.6, 1.4\}, \{3.0, 7.7, 3.0, 6.1, 2.3\}, \{3.0, 6.3, 3.4, 5.6, 2.4\}, \{3.0, 6.4, 3.1, 5.5, 1.8\}, \{3.0, 6.0, 3.0, 4.8, 1.8\}, \{3.0, 6.9, 3.1, 5.4, 2.1\}, \{3.0, 6.7, 3.1, 5.6, 2.4\}, \{3.0, 6.9, 3.1, 5.1, 2.3\}, \{3.0, 5.8, 2.7, 5.1, 1.9\}, \{3.0, 6.8, 3.2, 5.9, 2.3\}, \{3.0, 6.7, 3.3, 5.7, 2.5\}, \{3.0, 6.7, 3.0, 5.2, 2.3\}, \{3.0, 6.3, 2.5, 5.0, 1.9\}, \{3.0, 6.5, 3.0, 5.2, 2.0\}, \{3.0, 6.2, 3.4, 5.4, 2.3\}, \{3.0, 5.9, 3.0, 5.1, 1.8\} \};
// Create a scaled version of the Iris attribute data.
double[][] x = new double[150][4];
double[][] xx = new double[150][4];

// Get the data.
for (int i = 0; i < 150; i++) {
 for (int j = 0; j < 4; j++) {
 x[i][j] = irisFisherData[i][j + 1];
 }
}

// Scale the data.
double realMin = 0.0, realMax = 10.0, targetMin = 0.0, targetMax = 1.0;
ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.BOUNDED_SCALING);
scaleFilter.setBounds(realMin, realMax, targetMin, targetMax);
for (int i = 0; i < 150; i++) {
 xx[i] = scaleFilter.encode(x[i]);
}

// Build a training data set.
int nTrain = 30;
double[][] xy = new double[nTrain][5];
int ii = 0;
// The response variable (Iris Species) is encoded starting in "1".
// Here, subtract 1 from the response because the class assumes
// 0 based categorical response variable.
for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 10; j++) {
 xy[ii][0] = irisFisherData[(i * 50) + j][0] - 1;
 System.arraycopy(xx[(i * 50 + j)], 0, xy[ii], 1, 4);
 ii++;
 }
}

// Construct a Support Vector Machine.
SVClassification svm = new SVClassification(xy, 0, irisVarType);

double[] gamma = {0.1};
double C = 2.0;
double result;
double minResult = 10000.0;
double bestGamma = 0.0;
double bestC = 0.0;
CrossValidation svmCV = new CrossValidation(svm);
svmCV.setNumberOfSampleFolds(5);
svmCV.setRandomObject(new Random(123457));
svmCV.setStratifiedCrossValidation(true);

for (int i = 0; i < 10; i++) {
 for (int j = 0; j < 5; j++) {
 svm.setRegularizationParameter(C);
 svm.setKernelParameters(gamma);
 svmCV.crossValidate();
 result = svmCV.getCrossValidatedError();
 }
}
if (result < minResult) {
 minResult = result;
 bestGamma = gamma[0];
 bestC = C;
}
gamma[0] = gamma[0] * 2.0;
}
gamma[0] = 0.1;
C = C * 2.0;
}
System.out.printf("Best C: %5.0f \n", bestC);
System.out.printf("Best gamma: %5.3f \n", bestGamma);
System.out.printf("Minimum CV error: %5.3f \n", minResult);

svm.setRegularizationParameter(bestC);
gamma[0] = bestGamma;
svm.setKernelParameters(gamma);
// Train the model on the training sample (30 observations).
svm.fitModel();

// Classify the entire data set with the fitted model
// using the "best" C and gamma parameter values.
xy = new double[150][5];
double[] knownClass = new double[150];
for (int i = 0; i < 150; i++) {
 xy[i][0] = irisFisherData[i][0] - 1;
 knownClass[i] = xy[i][0];
 System.arraycopy(xx[i], 0, xy[i], 1, 4);
}
double[] predictedClass = svm.predict(xy);
int[][] classErrors = svm.getClassErrors(knownClass, predictedClass);

System.out.println("\n Iris Classification Error Rates");
System.out.println("\n" + dashes);
System.out.println(" Setosa Versicolour Virginica | TOTAL");
System.out.println(" " + classErrors[0][0] + "/" + classErrors[0][1] + "+ " + classErrors[1][0] + "+/" + classErrors[1][1] + "+ " + classErrors[2][0] + "+/" + classErrors[2][1] + "+ " + classErrors[3][0] + "+/" + classErrors[3][1]);

System.out.println(dashes);
}

Output
Best C: 64
Best gamma: 1.600
Minimum CV error: 0.000

Iris Classification Error Rates

--
Setosa Versicolour Virginica | TOTAL
SVOneClass class

public class com.imsl.datamining.supportvectormachine.SVOneClass extends com.imsl.datamining.supportvectormachine.SupportVectorMachine

Specifies a support vector machine for the one class problem. The one class SVM estimates the support (the range of values with positive density) of a high-dimensional distribution.

The one-class SVM algorithm estimates the support of a high-dimensional distribution without any class information. The primal problem of one-class SVM is

$$
\min_{w, \xi, \rho} \frac{1}{2} w^T w - \rho + \frac{1}{l} \sum_{i=1}^{l} \xi_i \\
\text{subject to } (w^T \phi(x_i)) \geq \rho - \xi_i, \\
\xi_i \geq 0, i = 1, \ldots, l
$$

Constructors

SVOneClass

public SVOneClass(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)

Description

Constructs a one class support vector machine.

Parameters

- xy – a double matrix containing the training data and associated response values by the number of variables
- responseColumnIndex – an int, the column index of the response variable
- varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable
SVOneClass
public SVOneClass(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k) throws CloneNotSupportedException

Description
Constructs a one class support vector machine.

Parameters
xy – a double matrix containing the training data and associated response values
responseColumnIndex – an int, the column index of the response variable
varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable
k – a Kernel, the kernel function

Exception
java.lang.CloneNotSupportedException thrown to indicate that the clone method in class Object has been called to clone an object, but that the object’s class does not implement the Cloneable interface

Methods
optimize
protected SVMModel optimize(DataNode[][] x, double[] y, double[] w, int len, Kernel kernel) throws NoSuchMethodException, InstantiationException, IllegalAccessException, InvocationTargetException, IllegalAccessException, InvocationTargetException

Description
Performs the one class support vector machine optimization problem.

Parameters
x – a DataNode matrix containing the attribute data
y – a double array containing the response variable
len – an int, the total possible number of support vectors
w – a double array containing the observation weights
kernel – a Kernel object

Returns
an SVMModel structure containing the fitted model
Exceptions

java.lang.NoSuchMethodException thrown when a particular method cannot be found
java.lang.InstantiationException thrown when an application tries to create an instance of a class using the newInstance method in class Class, but the specified class object cannot be instantiated.
java.lang.IllegalAccessException thrown when an application tries to reflectively create an instance (other than an array), set or get a field, or invoke a method, but the currently executing method does not have access to the definition of the specified class, field, method or constructor
java.lang.reflect.InvocationTargetException a checked exception that wraps an exception thrown by an invoked method or constructor

predictValues

protected double[] predictValues(SVModel model, double[][] attributeData)
throws PredictiveModel.SumOfProbabilitiesNotOneException

Description

Generates the predicted values on the attribute data using the given support vector machine model.

Parameters

model – a fitted SVModel object
attributeData – a double matrix containing the attribute (or predictor) data

Returns

a double array containing the predictions for each row in the input attribute data

Exception

com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException the sum of probabilities is not approximately one

Example: SVOneClass

In this example, a one class support vector machine is used to detect examples in the test data that do not belong to the target population. The target population is the uniform distribution.

```java
import com.imsl.datamining.*;
import com.imsl.stat.*;

public class SupportVectorMachineEx3 {
    public static void main(String[] args) throws Exception {
        SVOneClass.VariableType[] ex3VarType = {
            SVOneClass.VariableType.ONE_CLASS,
            SVOneClass.VariableType.QUANTITATIVE_CONTINUOUS
        };
        // 1000 training patterns
        int nTrain = 1000;
    }
}
```
// 100 test patterns
int nTest = 100;
int nContaminated = 10;
int nAttributes = 1;

double[][] xyTrain = new double[nTrain][nAttributes + 1];
double[][] xyTest = new double[nTest][2];

// Create the training set from a uniform distribution.
Random r = new Random(123457);
r.setMultiplier(16807);
for (int i = 0; i < nTrain; i++) {
 xyTrain[i][1] = r.nextFloat();
 xyTrain[i][0] = 1;
}

// Construct an SVOneClass object.
SVOneClass svm1 = new SVOneClass(xyTrain, 0, ex3VarType);
svm1.setNuParameter(0.001);
// Train with the training data.
svm1.fitModel();

// Create a testing set from a uniform distribution.
for (int i = 0; i < nTest; i++) {
 xyTest[i][1] = r.nextFloat();
 xyTest[i][0] = 1;
}

// Contaminate the testing set with deviates from a normal distribution.
for (int i = 0; i < nContaminated; i++) {
 xyTest[i * 10][1] = r.nextNormal() * Math.sqrt(.2) + .1;
}

double[] predictedClass = svm1.predict(xyTest);
System.out.println("Classification Results\n");
for (int i = 0; i < nTest; i++) {
 if (predictedClass[i] != 1.0) {
 System.out.println("The " + i + "-th observation may not " + "belong to the target distribution.");
 }
}

Output

Classification Results

The 0-th observation may not belong to the target distribution.
The 20-th observation may not belong to the target distribution.
The 30-th observation may not belong to the target distribution.
The 40-th observation may not belong to the target distribution.

The 60-th observation may not belong to the target distribution.

The 70-th observation may not belong to the target distribution.

SVRegression class

public class com.imsl.datamining.supportvectormachine.SVRegression extends com.imsl.datamining.supportvectormachine.SupportVectorMachine**

Specifies a support vector machine for regression (SVR).

The standard form SVR is the so-called \(\varepsilon \)-support vector regression, or \(\varepsilon \)-SVR. If \(z_i \) is the target output, then given the parameters \(C > 0, \varepsilon > 0 \), the standard form SVR is

\[
\min_{w, b, \xi, \xi^*} \frac{1}{2} w^T w + C \sum_{i=1}^{l} \xi_i + C \sum_{i=1}^{l} \xi_i^*
\]

subject to

\[
w^T \phi(x_i) + b - z_i \leq \varepsilon + \xi_i,
\]

\[
z_i - w^T \phi(x_i) - b \leq \varepsilon + \xi_i^*,
\]

\[
\xi_i, \xi_i^* \geq 0, i = 1, \ldots, l
\]

The variables \(\xi_i \) and \(\xi_i^* \) are two slack variables, one for exceeding the target value by more than \(\varepsilon \) and the other for being more than \(\varepsilon \) below the target. \(\varepsilon \) is controlled through the use of the set method `setInsensitivityBand`.

Constructors

SVRegression

public SVRegression(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)

Description

Constructs a support vector machine for regression (SVR).
Parameters
xy – a double matrix containing the training data and associated response values
responseColumnIndex – an int specifying the column index of the response variable
varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable

SVRegression
public SVRegression(double[][] xy, int responseColumnIndex,
PredictiveModel.VariableType[] varType, Kernel k) throws
CloneNotSupportedException

Description
Constructs a support vector machine for regression (SVR).

Parameters
xy – a double matrix containing the training data and associated response values
responseColumnIndex – an int specifying the column index of the response variable
varType – a PredictiveModel.VariableType array of length equal to xy[0].length containing the type of each variable
k – a Kernel, the kernel function

Exception
java.lang.CloneNotSupportedException thrown to indicate that the clone method in class
Object has been called to clone an object, but that the object’s class does not implement the
Cloneable interface

Methods

getInsensitivityBand
public double getInsensitivityBand()

Description
Returns the insensitivity band parameter, \(\varepsilon \), in the standard formulation of the SVM regression problem.

Returns
a double, the value of the insensitivity band parameter

optimize
protected SVMModel optimize(DataNode[][] x, double[] y, double[] w, int len,
Kernel kernel) throws NoSuchMethodException, InstantiationException,
IllegalAccessException, InvocationTargetException, IllegalAccessException, InvocationTargetException
Description
Performs the regression support vector machine optimization problem.

Parameters
- x — a DataNode matrix containing the attribute data
- y — a double array containing the response variable
- len — an int, the total possible number of support vectors
- w — a double array containing the observation weights
- kernel — a Kernel object

Returns
an SVMModel structure containing the fitted model

Exceptions
- java.lang.NoSuchMethodException thrown when a particular method cannot be found
- java.lang.InstantiationException thrown when an application tries to create an instance
 of a class using the newInstance method in class Class, but the specified class object cannot be
 instantiated
- java.langIllegalAccessException thrown when an application tries to reflectively create
 an instance (other than an array), set or get a field, or invoke a method, but the currently executing
 method does not have access to the definition of the specified class, field, method or constructor
- java.lang.reflect.InvocationTargetException a checked exception that wraps an
 exception thrown by an invoked method or constructor

predictValues
protected double[] predictValues(SVMModel model, double[][] attributeData)
throws PredictiveModel.SumOfProbabilitiesNotOneException

Description
Generates the predicted values on the attribute data using the given support vector machine model.

Parameters
- model — a fitted SVMModel object
 attributeData — a double matrix containing the attribute (or predictor) data

Returns
a double array containing the predictions for each row in the input attribute data

Exception
com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException the
sum of probabilities is not approximately one

setConfiguration
protected void setConfiguration(PredictiveModel pm) throws
SupportVectorMachine.CloneNotSupportedException

Support Vector Machines

SVRegression • 2031
Description
Sets the configuration to that of the input PredictiveModel.
Note that the input PredictiveModel object must be the same subclass of PredictiveModel as is this instance.

Parameter
pm – a SVRegression instance

Exception
CloneNotSupportedException a java.lang.CloneNotSupportedException has occurred.
The original exception has been added to the SupportVectorMachine.CloneNotSupportedException as a suppressed exception.
Default: The class uses its default configuration as described in the different methods.

setInsensitivityBand
public void setInsensitivityBand(double epsilon)

Description
Sets the insensitivity band parameter, \(\varepsilon \), in the standard formulation of the SVM regression problem.

Parameter
epsilon – a double > 0.0, the value of the infeasibility band parameter
Default: epsilon=0.1

Example 1: SVRegression
In this example, support vector regression (\(\nu \)-SVR) is applied to a categorical response variable. The fitted values and prediction values are in the right tendency. Compare these to the results from support vector classification (\(\nu \)-SVC), which is more appropriate for a categorical response variable.

```java
import com.imsl.datamining.supportvectormachine.*;

public class SupportVectorMachineEx4 {
    public static void main(String[] args) throws Exception {
        SVRegression.VariableType[] ex4DataType = {
            SVRegression.VariableType.CATEGORICAL,
            SVRegression.VariableType.QUANTITATIVE_CONTINUOUS,
            SVRegression.VariableType.QUANTITATIVE_CONTINUOUS};

        String dashes = "--------------------------------------------------------------";

        double C = 50., nu = .01;
        double[][] xyTrain = {
            {1, 0.19, 0.61}, {1, 0.156, 0.564}, {1, 0.224, 0.528},
            {1, 0.178, 0.51}, {1, 0.234, 0.578}, {2, 0.394, 0.296},
            {2, 0.478, 0.254}, {2, 0.454, 0.294}, {2, 0.48, 0.358},
            {2, 0.454, 0.294}, {2, 0.48, 0.358}
        };
    }
}
```
double[][] xyTest = {
 {1, 0.316, 0.556}, {1, 0.278, 0.622},
 {2, 0.562, 0.336}, {2, 0.522, 0.412}
};

/* Construct an SVMRegression. */
SVRegression svm1 = new SVRegression(xyTrain, 0, ex4DataType);
svm1.setNuFormulation(true);
svm1.setNuParameter(nu);
svm1.setRegularizationParameter(C);
svm1.fitModel();
double[] fittedValues = svm1.predict();
System.out.println("\n" + dashes);
System.out.println(" NU SVR: Training data predicted (fitted) values");
System.out.println(" Actual Fitted value | Difference");
for (int i = 0; i < fittedValues.length; i++) {
 System.out.printf(" %2.1f %5.4f %5.4f\n", xyTrain[i][0],
 fittedValues[i], (fittedValues[i] - xyTrain[i][0]));
}
System.out.println("\n" + dashes);
double[] testPredictedValues = svm1.predict(xyTest);
System.out.println(" NU SVR: Test data predictions");
System.out.println(" Actual Prediction | Difference");
for (int i = 0; i < testPredictedValues.length; i++) {
 System.out.printf(" %2.1f %5.4f %5.4f\n", xyTest[i][0],
 testPredictedValues[i], (testPredictedValues[i] - xyTest[i][0]));
}

/* Now use the categorical version and compare results. */
SVClassification svm2 = new SVClassification(xyTrain, 0, ex4DataType);
svm2.setNuFormulation(true);
svm2.setNuParameter(nu);
svm2.setRegularizationParameter(C);
svm2.fitModel();
fittedValues = svm2.predict();
System.out.println("\n" + dashes);
System.out.println(" NU SVC: Training data predicted (fitted) values");
System.out.println(" Actual Fitted value | Difference");
for (int i = 0; i < fittedValues.length; i++) {
 System.out.printf(" %2.1f %5.4f %5.4f\n", xyTrain[i][0],
 fittedValues[i], (fittedValues[i] - xyTrain[i][0]));
}
System.out.println("\n" + dashes);
testPredictedValues = svm2.predict(xyTest);
System.out.println(" NU SVC: Test data predictions");
System.out.println(" Actual Prediction | Difference");
for (int i = 0; i < testPredictedValues.length; i++) {
 System.out.printf(" %2.1f %5.4f %5.4f\n", xyTest[i][0],
 testPredictedValues[i], (testPredictedValues[i] - xyTest[i][0]));
}
Output

<table>
<thead>
<tr>
<th>NU SVR: Training data predicted (fitted) values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NU SVR: Test data predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NU SVC: Training data predicted (fitted) values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NU SVC: Test data predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>
Example 2: SVRegression

This example is identical to Example 4 except that it also shows how to apply case weights to the training data. Compare the fitted values between the two examples (the predicted values do not change).

```java
import com.imsl.datamining.supportvectormachine.*;

public class SupportVectorMachineEx5 {

    public static void main(String[] args) throws Exception {

        SVRegression.VariableType[] ex4DataType = {
            SVRegression.VariableType.CATEGORICAL,
            SVRegression.VariableType.QUANTITATIVE_CONTINUOUS,
            SVRegression.VariableType.QUANTITATIVE_CONTINUOUS
        };

        String dashes
            = "--------------------------------------------------------------";

        double C = 50., nu = .01;
        double[][] xyTrain = {
            {1, 0.19, 0.61}, {1, 0.156, 0.564}, {1, 0.224, 0.528},
            {1, 0.178, 0.51}, {1, 0.234, 0.578}, {2, 0.394, 0.296},
            {2, 0.478, 0.254}, {2, 0.454, 0.294}, {2, 0.48, 0.358},
            {2, 0.398, 0.336}
        };
        double[][] xyTest = {
            {1, 0.316, 0.556}, {1, 0.278, 0.622}, {2, 0.562, 0.336},
            {2, 0.522, 0.412}
        };

        double[] trainingWts = {10, 1, 1, 1, 1, 1, 1, 1, 1, 1};

        /* Construct a Support Vector Machine. */
        SVRegression svm1 = new SVRegression(xyTrain, 0, ex4DataType);
        svm1.setNuFormulation(true);
        svm1.setNuParameter(nu);
        svm1.setRegularizationParameter(C);
        svm1.setWeights(trainingWts);
        svm1.fitModel();

        double[] fittedValues = svm1.predict();

        System.out.println("\n" + dashes);
        System.out.println(" NU SVR: Training data predicted (fitted) values");
        System.out.println(" Actual  Fitted value | Difference");
        for (int i = 0; i < fittedValues.length; i++) {
            System.out.printf(" %2.1f %5.4f %5.4f\n", xyTrain[i][0],
                fittedValues[i], (fittedValues[i] - xyTrain[i][0]));
        }
        System.out.println("\n" + dashes);

        double[] testPredictedValues = svm1.predict(xyTest);

        System.out.println("\n NU SVR:  Test data predictions");

```
System.out.println(" Actual Prediction | Difference");
for (int i = 0; i < testPredictedValues.length; i++) {
 System.out.printf(" %2.1f %5.4f %5.4f
", xyTest[i][0],
 testPredictedValues[i],
 (testPredictedValues[i] - xyTest[i][0]));
}
/* Now use the categorical version and compare results. */
SVClassification svm2 = new SVClassification(xyTrain, 0, ex4DataType);
svm2.setNuFormulation(true);
svm2.setNuParameter(nu);
svm2.setRegularizationParameter(C);
svm2.setWeights(trainingWts);
svm2.fitModel();
fittedValues = svm2.predict();
System.out.println("\n" + dashes);
System.out.println(" NU SVC: Training data predicted (fitted) values");
for (int i = 0; i < fittedValues.length; i++) {
 System.out.printf(" %2.1f %5.4f %5.4f\n", xyTrain[i][0],
 fittedValues[i], (fittedValues[i] - xyTrain[i][0]));
}
System.out.println("\n" + dashes);
testPredictedValues = svm2.predict(xyTest);
System.out.println("\n NU SVC: Test data predictions");
System.out.println(" Actual Prediction | Difference");
for (int i = 0; i < testPredictedValues.length; i++) {
 System.out.printf(" %2.1f %5.4f %5.4f\n", xyTest[i][0],
 testPredictedValues[i], (testPredictedValues[i] - xyTest[i][0]));
}
}

Output

===
NU SVR: Training data predicted (fitted) values
Actual Fitted value | Difference
1.0 1.2458 0.2458
1.0 1.2586 0.2586
1.0 1.3432 0.3432
1.0 1.3226 0.3226
1.0 1.3075 0.3075
2.0 1.6886 -0.3114
2.0 1.7892 -0.2108
2.0 1.7373 -0.2627
2.0 1.7020 -0.2980
2.0 1.6568 -0.3432
==
Kernel class

abstract public class com.imsl.datamining.supportvectormachine.Kernel
implements Cloneable

Abstract class to specify a kernel function for support vector machines.

Constructor

Kernel

protected Kernel(int numberOfParameters)

Description

Creates a Kernel and specifies the number of kernel parameters for a specific Kernel.
Parameter
numberOfParameters – an int indicating the number of parameters this Kernel must have

Methods

clone
public Kernel clone() throws CloneNotSupportedException

Description
Returns a clone of this object.

Returns
a Kernel which is a clone of this object

Exception
CloneNotSupportedException Thrown to indicate that the clone method in class Object has been called to clone an object, but that the object’s class does not implement the Cloneable interface.

dot
protected double dot(DataNode[] x, DataNode[] y)

Description
Calculates the dot product between two DataNode arrays. The array lengths may be different.

Parameters
x – a DataNode array
y – a DataNode array

Returns
a double, the dot product between x and y

getParameters
public double[] getParameters()

Description
Returns the kernel parameters.

Returns
a double array containing the kernel parameters

kernelFunction
abstract public double kernelFunction(DataNode[] x, DataNode[] y)

Description
Abstract method to calculate the kernel function between two DataNode arrays.
Parameters
 x – a DataNode array
 y – a DataNode array

Returns
a double, the kernel function evaluated at x and y

abstractFunction
abstract public double kernelFunction(DataNode[][] x, int i, int j)

Description
Abstract method to calculate the kernel function between two DataNode arrays.

Parameters
 x – a DataNode matrix
 i – an int, the index of the first DataNode, x[i]
 j – an int, the index of the second DataNode, x[j]

Returns
a double, the kernel function evaluated at x[i] and x[j]

setParameters
public void setParameters(double[] kParams)

Description
Sets the kernel parameters.
Specific instances can override this method to test for proper values of the parameters.

Parameter
 kParams – a double array containing the parameters

LinearKernel class

public class com.imsl.datamining.supportvectormachine.LinearKernel extends
com.imsl.datamining.supportvectormachine.Kernel

Specifies the linear kernel for support vector machines.
The kernel function at two data nodes, x_i and x_j, is given by \(K(x_i, x_j) = x_i^T x_j \).
Constructor

LinearKernel

public LinearKernel()

Description

Constructs a LinearKernel with default parameters.

Methods

kernelFunction

public double kernelFunction(DataNode[] x, DataNode[] y)

Description

Calculates the kernel function between two DataNodes.

Parameters

- x – a DataNode array
- y – a DataNode array

Returns

a double, the kernel function evaluated at x and y

kernelFunction

public double kernelFunction(DataNode[][] x, int i, int j)

Description

Calculates the kernel function between two DataNodes.

Parameters

- x – a DataNode matrix
- i – an int, index to the first DataNode, x[i]
- j – an int, index to the second DataNode, x[j]

Returns

a double, the kernel function evaluated at x[i] and x[j]

SigmoidKernel class

Specifies the sigmoid kernel for support vector machines.

The kernel function at two data nodes, \(x_i \) and \(x_j \), is given by \(K(x_i, x_j) = \tanh(\gamma x_i^T x_j + r) \) where \(\gamma \) and \(r \) are configurable parameters.

Constructors

SigmoidKernel

public SigmoidKernel()

Description

Constructor for the sigmoid kernel.

The default values for the sigmoid kernel are \(\gamma = 1.0 \) and \(r = 0.0 \).

SigmoidKernel

public SigmoidKernel(double gamma, double r)

Description

Constructs a sigmoid kernel.

Parameters

- gamma – a double, the sigmoid kernel slope parameter
- r – a double, the function intercept parameter

Methods

kernelFunction

public double kernelFunction(DataNode[] x, DataNode[] y)

Description

Calculates the kernel function between two DataNodes.

Parameters

- x – a DataNode array
- y – a DataNode array

Returns

a double, the kernel function evaluated at \(x \) and \(y \)

kernelFunction

public double kernelFunction(DataNode[][] x, int i, int j)
Description
Calculates the kernel function between two DataNodes.

Parameters
- `x` – a DataNode matrix
- `i` – an int, index to the first DataNode, `x[i]`
- `j` – an int, index to the second DataNode, `x[j]`

Returns
a double, the kernel function evaluated at `x[i]` and `x[j]`

setParameters
public void setParameters(double[] kParams)

Description
Sets the parameters for the sigmoid kernel.

Parameter
- `kParams` – a double array of length 2 containing parameter values: `kParams[0] = γ` and `kParams[1] = r`
 - Default: `kParams[0] = γ = 1.0` and `kParams[1] = r = 0`

RadialBasisKernel class

Specifies the radial basis kernel for support vector machines.

The kernel function at two data nodes, `x_i` and `x_j`, is given by
\[K(x_i, x_j) = \exp(-\gamma \| x_i - x_j \|^2) \]
where `\gamma > 0` is a configurable parameter.

Constructors

RadialBasisKernel
public RadialBasisKernel()

Description
Constructs a radial basis kernel with a `γ` value of 1.0.

RadialBasisKernel
public RadialBasisKernel(double gamma)
Description
Constructs a radial basis kernel.

Parameter

gamma – a double, the radial basis kernel free parameter

Methods

kernelFunction
public double kernelFunction(DataNode[] x, DataNode[] y)

Description
Calculates the kernel function between two DataNodes.

Parameters

x – a DataNode array
y – a DataNode array

Returns
a double, the kernel function evaluated at x and y

kernelFunction
public double kernelFunction(DataNode[][] x, int i, int j)

Description
Calculates the kernel function between two DataNodes.

Parameters

x – a DataNode matrix
i – an int, index to the first DataNode, x[i]
j – an int, index to the second DataNode, x[j]

Returns
a double, the kernel function evaluated at x[i] and x[j]

setParameters
public void setParameters(double[] kParams)

Description
Sets the parameters for the radial basis kernel.

Parameter

kParams – a double array of length 1 containing the parameter value: kParams[0]=\gamma
Default: kParams[0]=\gamma=1.0
PolynomialKernel class

Specifies the polynomial kernel for support vector machines.

The kernel function at two data nodes, \(x_i \) and \(x_j \), is given by \(K(x_i, x_j) = (\gamma x_i^T x_j + r)^d \), where \(\gamma > 0 \), \(r \), and \(d > 0 \) are configurable parameters.

Constructors

PolynomialKernel

public PolynomialKernel()

Description
Constructor for the polynomial kernel.

The default values for the polynomial kernel are \(\gamma=1.0 \), \(r=0.0 \), and \(degree=1 \).

PolynomialKernel

public PolynomialKernel(double gamma, double r, int degree)

Description
Constructs a polynomial kernel.

Parameters

- gamma – a double, the polynomial kernel free parameter
- r – a double, the soft margin cost function parameter
- degree – a double, the degree of the polynomial kernel

Methods

kernelFunction

public double kernelFunction(DataNode[] x, DataNode[] y)

Description
Calculates the kernel function between two DataNodes.

Parameters

- x – a DataNode array
- y – a DataNode array
Returns
a double, the kernel function evaluated at \(x \) and \(y \)

kernelFunction
public double kernelFunction(DataNode[][] x, int i, int j)

Description
Calculates the kernel function between two DataNodes.

Parameters
\(x \) – a DataNode matrix
\(i \) – an int, the index of the first DataNode, \(x[i] \)
\(j \) – an int, the index of the second DataNode, \(x[j] \)

Returns
a double, the kernel function evaluated at \(x[i] \) and \(x[j] \)

setParameters
public void setParameters(double[] kParams)

Description
Sets the parameters for the polynomial kernel.

Parameter
\(kParams \) – a double array of length 3 containing parameter values: \(kParams[0]=\gamma \),
\(kParams[1]=r \), and \(kParams[2]=d \).
Default: \(kParams[0]=\gamma=1.0 \), \(kParams[1]=r=0 \), and \(kParams[2]=d=1 \).

DataNode class

public class com.imsl.datamining.supportvectormachine.DataNode

Specifies a data node for a support vector machine.

A node has two elements, an index and a value.

Constructor

DataNode
public DataNode()
Methods

getIndex
public int getIndex()

Description
Returns the index of the node.

Returns
an int, the index of the node

getValue
public double getValue()

Description
Returns the value of the node.

Returns
a double, the value of the node

setIndex
public void setIndex(int idx)

Description
Sets the index of the node.

Parameter
 idx – an int, the index of the node

setValue
public void setValue(double val)

Description
Sets the value of the node.

Parameter
 val – a double, the value of the node
Chapter 31: Neural Nets

Types

class Network ... 2090
class FeedForwardNetwork ... 2099
class Layer ... 2113
class InputLayer ... 2114
class HiddenLayer ... 2115
class OutputLayer ... 2116
class Node ... 2118
class InputNode .. 2118
class Perceptron ... 2119
class OutputPerceptron .. 2120
interface Activation .. 2121
class Link ... 2123
interface Trainer .. 2124
class QuasiNewtonTrainer ... 2125
class LeastSquaresTrainer ... 2134
class EpochTrainer .. 2138
class BinaryClassification .. 2144
class MultiClassification .. 2144
class ScaleFilter .. 2187
class UnsupervisedNominalFilter 2202
class UnsupervisedOrdinalFilter 2211
class TimeSeriesFilter .. 2215
class TimeSeriesClassFilter ... 2220
class TimeSeriesClassFilter ... 2222

Usage Notes

Neural Networks - An Overview

Today, neural networks are used to solve a wide variety of problems, some of which have been solved by existing statistical methods, and some of which have not. These applications fall into one of the following three categories:
- **Forecasting**: predicting one or more quantitative outcomes from both quantitative and categorical input data,
- **Classification**: classifying input data into one of two or more categories, or
- **Statistical pattern recognition**: uncovering patterns, typically spatial or temporal, among a set of variables.

Forecasting, pattern recognition and classification problems are not new. They existed years before the discovery of neural network solutions in the 1980’s. What is new is that neural networks provide a single framework for solving so many traditional problems and, in some cases, extend the range of problems that can be solved.

Traditionally, these problems have been solved using a variety of well known statistical methods:

- linear regression and general least squares,
- logistic regression and discrimination,
- principal component analysis,
- discriminant analysis,
- \(k \)-nearest neighbor classification, and
- ARMA and non-linear ARMA time series forecasts.

In many cases, simple neural network configurations yield the same solution as many traditional statistical applications. For example, a single-layer, feed-forward neural network with linear activation for its output perceptron is equivalent to a general linear regression fit. Neural networks can provide more accurate and robust solutions for problems where traditional methods do not completely apply.

Mandic and Chambers (2001) point out that traditional methods for time series forecasting are unsuitable when a time series:

- is non-stationary,
- has large amounts of noise, such as a biomedical series, or
- is too short.

ARIMA and other traditional time series approaches can produce poor forecasts when one or more of the above problems exist. The forecasts of ARMA and non-linear ARMA (NARMA) depend heavily upon key assumptions about the model or underlying relationship between the output of the series and its patterns.

Neural networks, on the other hand, adapt to changes in a non-stationary series and can produce reliable forecasts even when the series contains a good deal of noise or when only a short series is available for training. Neural networks provide a single tool for solving many problems traditionally solved using a wide variety of statistical tools and for solving problems when traditional methods fail to provide an acceptable solution.
Although neural network solutions to forecasting, pattern recognition, and classification problems can be very different, they are always the result of computations that proceed from the network inputs to the network outputs. The network inputs are referred to as **patterns**, and outputs are referred to as **classes**. Frequently the flow of these computations is in one direction, from the network input patterns to its outputs. Networks with forward-only flow are referred to as feed-forward networks.

Other networks, such as recurrent neural networks, allow data and information to flow in both directions, see Mandic and Chambers (2001).
A neural network is defined not only by its architecture and flow, or interconnections, but also by computations used to transmit information from one node or input to another node. These computations are determined by network weights. The process of fitting a network to existing data to determine these weights is referred to as training the network, and the data used in this process are referred to as patterns. Individual network inputs are referred to as attributes and outputs are referred to as classes. Many terms used to describe neural networks are synonymous to common statistical terminology.

Table 1. Synonyms between Neural Network and Common Statistical Terminology
Neural Networks – History and Terminology

The Threshold Neuron

McCulloch and Pitts (1943) wrote one of the first published works on neural networks. In their paper, they describe the threshold neuron as a model for how the human brain stores and processes information.

All inputs to a threshold neuron are combined into a single number, Z, using the following weighted sum: \(Z = \sum_{i=1}^{m} w_i x_i - \mu \) where \(w_i \) is the weight associated with the \(i \)-th input (attribute) \(x_i \). The term \(\mu \) in this calculation is referred to as the bias term. In traditional statistical terminology, it might be referred to as the intercept. The weights and bias terms in this calculation are estimated during network training.

In McCulloch and Pitt’s description of the threshold neuron, the neuron does not respond to its inputs unless \(Z \) is greater than zero. If \(Z \) is greater than zero then the output from this neuron is set equal to 1. If \(Z \) is less than zero the output is zero: \(Y = \begin{cases} 1 & \text{if} \ Z > 0 \\ 0 & \text{if} \ Z \leq 0 \end{cases} \) where \(Y \) is the neuron’s output.

<table>
<thead>
<tr>
<th>Neural Network Terminology</th>
<th>Traditional Statistical Terminology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Model Fitting</td>
<td>Estimating unknown parameters or coefficients in the analysis.</td>
</tr>
<tr>
<td>Patterns</td>
<td>Cases or Observations</td>
<td>A single observation of all input and output variables.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Independent variables</td>
<td>Inputs to the network or model.</td>
</tr>
<tr>
<td>Classes</td>
<td>Dependent variables</td>
<td>Outputs from the network or model calculations.</td>
</tr>
</tbody>
</table>
For years following their 1943 paper, interest in the McCulloch and Pitts neural network was limited to theoretical discussions, such as those of Hebb (1949), about learning, memory, and the brain’s structure.

The Perceptron

The McCulloch and Pitts neuron is also referred to as a threshold neuron since it abruptly changes its output from 0 to 1 when its potential, Z, crosses a threshold. Mathematically, this behavior can be viewed as a step function that maps the neuron’s potential, Z, to the neuron’s output, Y.

Rosenblatt (1958) extended the McCulloch and Pitts threshold neuron by replacing this step function with a continuous function that maps Z to Y. The Rosenblatt neuron is referred to as the perceptron, and the continuous function mapping Z to Y makes it easier to train a network of perceptrons than a network of threshold neurons.

Unlike the threshold neuron, the perceptron produces analog output rather than the threshold neuron’s purely binary output. Carefully selecting the analog function makes Rosenblatt’s perceptron differentiable, whereas the threshold neuron is not. This simplifies the training algorithm.

Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted sum of its inputs, $Z = \sum_{i=1}^{m} w_i x_i - \mu$. This is referred to as the perceptron’s potential.

Rosenblatt’s perceptron calculates its analog output from its potential. There are many choices for this calculation. The function used for this calculation is referred to as the activation function in Figure 4 below.

Figure 4. The Perceptron

As shown in Figure 4, perceptrons consist of the following five components:
<table>
<thead>
<tr>
<th>Component</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>X_1, X_2, X_3</td>
</tr>
<tr>
<td>Input Weights</td>
<td>W_1, W_2, W_3</td>
</tr>
<tr>
<td>Potential</td>
<td>$Z = \sum_{i=1}^{3} W_i X_i - \mu$, where μ is a bias correction.</td>
</tr>
<tr>
<td>Activation</td>
<td>$g()$</td>
</tr>
<tr>
<td>Output Function</td>
<td>$g(Z)$</td>
</tr>
</tbody>
</table>

Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the output from another perceptron. The primary purpose of the network training is to estimate the weights associated with each perceptron’s potential. The activation function maps this potential to the perceptron’s output.

The Activation Function

Although theoretically any differential function can be used as an activation function, the identity and sigmoid functions are the two most commonly used.

The *identity activation* function, also referred to as a *linear activation* function, is a flow-through mapping of the perceptron’s potential to its output: $g(Z) = Z$

Output perceptrons in a forecasting network often use the identity activation function.

![Identity Activation Function](image)

Figure 5. An Identity (Linear) Activation Function

If the identity activation function is used throughout the network, then it is easily shown that the network is equivalent to fitting a linear regression model of the form $Y_i = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$, where x_1, x_2, \cdots, x_k are the k network inputs, Y_i is the i-th network output and $\beta_0, \beta_1, \cdots, \beta_k$ are the coefficients in the regression equation. As a result, it is uncommon to find a neural network with identity activation used in all its perceptrons.

Sigmoid activation functions are differentiable functions that map the perceptron’s potential to a range of values, such as 0 to 1, i.e., $\mathbb{R}^K \rightarrow \mathbb{R}$ where K is the number of perceptron inputs.
In practice, the most common sigmoid activation function is the logistic function that maps the potential into the range 0 to 1: \(g(Z) = \frac{1}{1+e^{-Z}} \)

Since \(0 < g(Z) < 1 \), the logistic function is very popular for use in networks that output probabilities. Other popular sigmoid activation functions include:

1. the hyperbolic-tangent \(g(Z) = \tanh(Z) = \frac{e^{iZ} - e^{-iZ}}{e^{iZ} + e^{-iZ}} \)
2. the arc-tangent \(g(Z) = \frac{Z}{\pi} \arctan \left(\frac{Z}{\pi} \right) \), and
3. the squash activation function (Elliott (1993)) \(g(Z) = \frac{Z}{1+|Z|} \)

It is easy to show that the hyperbolic-tangent and logistic activation functions are linearly related. Consequently, forecasts produced using logistic activation should be close to those produced using hyperbolic-tangent activation. However, one function may be preferred over the other when training performance is a concern. Researchers report that the training time using the hyperbolic-tangent activation function is shorter than using the logistic activation function.

Network Applications

Forecasting using Neural Networks

There are many good statistical forecasting tools. Most require assumptions about the relationship between the variables being forecasted and the variables used to produce the forecast, as well as the
distribution of forecast errors. Such statistical tools are referred to as parametric methods. ARIMA time series models, for example, assume that the time series is stationary, that the errors in the forecasts follow a particular ARIMA model, and that the probability distribution for the residual errors is Gaussian, see Box and Jenkins (1970). If these assumptions are invalid, then ARIMA time series forecasts can be very poor.

Neural networks, on the other hand, require few assumptions. Since neural networks can approximate highly non-linear functions, they can be applied without an extensive analysis of underlying assumptions.

Another advantage of neural networks over ARIMA modeling is the number of observations needed to produce a reliable forecast. ARIMA models generally require 50 or more equally spaced, sequential observations in time. In many cases, neural networks can also provide adequate forecasts with fewer observations by incorporating exogenous, or external, variables in the network’s input.

For example, a company applying ARIMA time series analysis to forecast business expenses would normally require each of its departments, and each sub-group within each department to prepare its own forecast. For large corporations this can require fitting hundreds or even thousands of ARIMA models. With a neural network approach, the department and sub-group information could be incorporated into the network as exogenous variables. Although this can significantly increase the network’s training time, the result would be a single model for predicting expenses within all departments and sub-departments.

Linear least squares models are also popular statistical forecasting tools. These methods range from simple linear regression for predicting a single quantitative outcome to logistic regression for estimating probabilities associated with categorical outcomes. It is easy to show that simple linear least squares forecasts and logistic regression forecasts are equivalent to a feed-forward network with a single layer. For this reason, single-layer feed-forward networks are rarely used for forecasting. Instead multilayer networks are used.

Hutchinson (1994) and Masters (1995) describe using multilayer feed-forward neural networks for forecasting. Multilayer feed-forward networks are characterized by the forward-only flow of information in the network. The flow of information and computations in a feed-forward network is always in one direction, mapping an M-dimensional vector of inputs to a C-dimensional vector of outputs, i.e., \(\mathbb{R}^M \rightarrow \mathbb{R}^C \).

There are many other types of networks without this feed-forward requirement. Information and computations in a recurrent neural network, for example, flows in both directions. Output from one level of a recurrent neural network can be fed back, with some delay, as input into the same network, see Figure 2. Recurrent networks are very useful for time series prediction, see Mandic and Chambers (2001).

Pattern Recognition using Neural Networks

Neural networks are also extensively used in statistical pattern recognition. Pattern recognition applications that make wide use of neural networks include:

- natural language processing: Manning and Schütze (1999)
- speech and text recognition: Lippmann (1989)
- face recognition: Lawrence, et al. (1997)
- playing backgammon, Tesauro (1990)
• classifying financial news, Calvo (2001).

The interest in pattern recognition using neural networks has stimulated the development of important variations of feed-forward networks. Two of the most popular are:

• Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995),

Good mathematical descriptions of the neural network methods underlying these applications are given by Bishop (1995), Ripley (1996), Mandic and Chambers (2001), and Abe (2001). An excellent overview of neural networks, from a statistical viewpoint, is also found in Warner and Misra (1996).

Neural Networks for Classification

Classifying observations using prior concomitant information is a popular application of neural networks. Data classification problems abound in business and research. When decisions based upon data are needed, they can often be treated as a neural network data classification problem. Decisions to buy, sell, hold or do nothing with a stock, are decisions involving four choices. Classifying loan applicants as good or bad credit risks, based upon their application, is a classification problem involving two choices. Neural networks are powerful tools for making decisions or choices based upon data.

These same tools are ideally suitable for automatic selection or decision-making. Incoming email, for example, can be examined to separate spam from important email using a neural network trained for this task. A good overview of solving classification problems using multilayer feed-forward neural networks is found in Abe (2001) and Bishop (1995).

There are two popular methods for solving data classification problems using multilayer feed-forward neural networks, depending upon the number of choices (classes) in the classification problem. If the classification problem involves only two choices, then it can be solved using a neural network with one logistic output. This output estimates the probability that the input data belong to one of the two choices.

For example, a multilayer feed-forward network with a single logistic output can be used to determine whether a new customer is credit-worthy. The network’s input would consist of information on the applicants credit application, such as age, income, etc. If the network output probability is above some threshold value (such as 0.5 or higher) then the applicant’s credit application is approved. This is referred to as **binary classification** using a multilayer feed-forward neural network.

If more than two classes are involved then a different approach is needed. A popular approach is to assign one output perceptron to each class in the classification problem. Inputs to the network are associated with the class */ with the highest probability for that input pattern. However, this approach requires the output probabilities sum to one, which is a requirement for any valid multivariate probability distribution.

To ensure these probabilities sum to one, the softmax activation function, see Bridle (1990), is applied to the network outputs ensuring that the outputs conform to the mathematical requirements of multivariate classification probabilities. If the classification problem has C categories, or classes, then each category is modeled by one of the network outputs. If Z_i is the weighted sum of products between its weights and
inputs for the i-th output, i.e., $Z_i = \sum_j w_{ji} y_{ji}$, then

\[
\text{softmax}_i = \frac{e^{Z_i}}{\sum_{j=1}^{C} e^{Z_j}}
\]

The softmax activation function ensures that the outputs all conform to the requirements for multivariate probabilities. That is,

\[0 < \text{softmax}_i < 1, \text{ for all } i = 1, 2, \ldots, C\]

and

\[\sum_{i=1}^{C} \text{softmax}_i = 1\]

A pattern is assigned to the i-th classification when softmax_i is the largest among all C classes.

However, multilayer feed-forward neural networks are only one of several popular methods for solving classification problems. Others include:

- Support Vector Machines (SVM Neural Networks), Abe (2001),
- Classification and Regression Trees (CART), Breiman, et al. (1984),
- Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and
- Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997).

Support Vector Machines are simple modifications of traditional multilayer feed-forward neural networks (MLFF) configured for pattern classification.

Multilayer Feed-Forward Neural Networks

A multilayer feed-forward neural network is an interconnection of perceptrons in which data and calculations flow in a single direction, from the input data to the outputs. The number of layers in a neural network is the number of layers of perceptrons. The simplest neural network is one with a single input layer and an output layer of perceptrons. The network in Figure 7 illustrates this type of network. Technically this is referred to as a one-layer feed-forward network with two outputs because the output layer is the only layer with an activation calculation.
In this single-layer feed-forward neural network, the networks inputs are directly connected to the output layer perceptrons, \(Z_1\) and \(Z_2\).

The output perceptrons use activation functions, \(g_1\) and \(g_2\), to produce the outputs \(Y_1\) and \(Y_2\)

Since
\[
Z_1 = \sum_{i=1}^{3} W_{1,i}X_i - \mu_1
\]
and
\[
Z_2 = \sum_{i=1}^{3} W_{2,i}X_i - \mu_2
\]

\[
Y_1 = g_1(Z_1) = g_1(\sum_{i=1}^{3} W_{1,i}X_i - \mu_1)
\]
and
\[
Y_2 = g_2(Z_2) = g_2(\sum_{i=1}^{3} W_{2,i}X_i - \mu_2)
\]

When the activation functions \(g_1\) and \(g_2\) are identity activation functions, a single-layer neural net is equivalent to a linear regression model. Similarly, if \(g_1\) and \(g_2\) are logistic activation functions, then the single-layer neural net is equivalent to logistic regression. Because of this correspondence between single-layer neural networks and linear and logistic regression, single-layer neural networks are rarely used in place of linear and logistic regression.
The next most complicated neural network is one with two layers. This extra layer is referred to as a hidden layer. In general there is no restriction on the number of hidden layers. However, it has been shown mathematically that a two-layer neural network, such as shown in Figure 1, can accurately reproduce any differentiable function, provided the number of perceptrons in the hidden layer is unlimited.

However, increasing the number of neurons increases the number of weights that must be estimated in the network, which in turn increases the execution time for this network. Instead of increasing the number of perceptrons in the hidden layers to improve accuracy, it is sometimes better to add additional hidden layers, which typically reduces both the total number of network weights and the computational time. However, in practice, it is uncommon to see neural networks with more than two or three hidden layers.

Neural Network Error Calculations

Error Calculations for Forecasting

The error calculations used to train a neural network are very important. Many error calculations have been researched, trying to find a calculation with a short training time that is appropriate for the network’s application. Typically error calculations are very different depending primarily on the network’s application.

For forecasting, the most popular error function is the sum-of-squared errors, or one of its scaled versions. This is analogous to using the minimum least squares optimization criterion in linear regression. Like least squares, the sum-of-squared errors is calculated by looking at the squared difference between what the network predicts for each training pattern and the target value, or observed value, for that pattern. Formally, the equation is the same as one-half the traditional least squares error:

\[
E = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{C} (t_{ij} - \hat{t}_{ij})^2
\]

where \(N \) is the total number of training cases, \(C \) is equal to the number of network outputs, \(t_{ij} \) is the observed output for the \(i \)-th training case and the \(j \)-th network output, and \(\hat{t}_{ij} \) is the network’s forecast for that case.

Common practice recommends fitting a different network for each forecast variable. That is, the recommended practice is to use \(C=1 \) when using a multilayer feed-forward neural network for forecasting. For classification problems with more than two classes, it is common to associate one output with each classification category, i.e., \(C=\)number of classes.

Notice that in ordinary least squares, the sum-of-squared errors is not multiplied by one-half. Although this has no impact on the final solution, it significantly reduces the number of computations required during training.

Also note that as the number of training patterns increases, the sum-of-squared errors increases. As a result, it is often useful to use the root-mean-square (RMS) error instead of the unscaled sum-of-squared errors.
errors:

\[E^{\text{RMS}} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{C} (t_{ij} - \hat{t}_{ij})^2}{\sum_{i=1}^{N} \sum_{j=1}^{C} (t_{ij} - \bar{t})^2} \]

where \(\bar{t} \) is the average output:

\[\bar{t} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{C} t_{ij}}{N \cdot C} \]

Unlike the unscaled sum-of-squared errors, \(E^{\text{RMS}} \) does not increase as \(N \) increases. The smaller the value of \(E^{\text{RMS}} \) the closer the network is predicting its targets during training. A value of \(E^{\text{RMS}} = 0 \) indicates that the network is able to predict every pattern exactly. A value of \(E^{\text{RMS}} = 1 \) indicates that the network is predicting the training cases only as well as using the mean of the training cases for forecasting.

Notice that the root-mean-squared error is related to the sum-of-squared error by a simple scale factor:

\[E^{\text{RMS}} = \frac{2}{\bar{t}} \cdot E \]

Another popular error calculation for forecasting from a neural network is the Minkowski-R error. The sum-of-squared error, \(E \), and the root-mean-squared error, \(E^{\text{RMS}} \), are both theoretically motivated by assuming the noise in the target data is Gaussian. In many cases, this assumption is invalid. A generalization of the Gaussian distribution to other distributions gives the following error function, referred to as the Minkowski-R error:

\[E^{R} = \left(\sum_{i=1}^{N} \sum_{j=1}^{C} |t_{ij} - \hat{t}_{ij}|^{R} \right)^{\frac{1}{R}}. \]

Notice that \(E^{R} = 2E \) when \(R=2 \).

A good motivation for using \(E^{R} \) instead of \(E \) is to reduce the impact of outliers in the training data. The usual error measures, \(E \) and \(E^{\text{RMS}} \), emphasize larger differences between the training data and network forecasts since they square those differences. If outliers are expected, then it is better to de-emphasize larger differences. This can be done by using the Minkowski-R error with \(R=1 \). When \(R=1 \), the Minkowski-R error simplifies to the sum of absolute differences:

\[L = E^{1} = \sum_{i=1}^{N} \sum_{j=1}^{C} |t_{ij} - \hat{t}_{ij}|. \]

\(L \) is also referred to as the Laplacian error. Its name is derived from the fact that it can be theoretically justified by assuming the noise in the training data follows a Laplacian rather than Gaussian distribution.
Of course, similar to E, L generally increases when the number of training cases increases. Similar to E_{RMS}, a scaled version of the Laplacian error can be calculated using the following formula:

$$L_{RMS} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{C} |t_{ij} - \hat{t}_{ij}|}{\sum_{i=1}^{N} \sum_{j=1}^{C} |t_{ij} - \bar{t}|}$$

Cross-Entropy Error for Binary Classification

As previously mentioned, multilayer feed-forward neural networks can be used for both forecasting and classification applications. Training a forecasting network involves finding the network weights that minimize either the Gaussian or Laplacian distributions, E or L respectively, or equivalently their scaled versions, E_{RMS} or L_{RMS}. Although these error calculations can be adapted for use in classification by setting the target classification variable to zeros and ones, this is not recommended. Use of the sum-of-squared and Laplacian error calculations is based on the assumption that the target variable is continuous. In classification applications, the target variable is a discrete random variable with C possible values, where C=number of classes.

A multilayer feed-forward neural network for classifying patterns into one of only two categories is referred to as a binary classification network. It has a single output: the estimated probability that the input pattern belongs to one of the two categories. The probably that it belongs to the other category is equal to one minus this probability, i.e.,

$$P(C_2) = P(\text{not } C_1) = 1 - P(C_1)$$

Binary classification applications are very common. Any problem requiring yes/no classification is a binary classification application. For example, deciding to sell or buy a stock is a binary classification problem. Deciding to approve a loan application is also a binary classification problem. Deciding whether to approve a new drug or to provide one of two medical treatments are binary classification problems.

For binary classification problems, only a single output is used, $C=1$. This output represents the probability that the training case should be classified as yes. A common choice for the activation function of the output of a binary classification network is the logistic activation function, which always results in an output in the range 0 to 1, regardless of the perceptron’s potential.

One choice for training binary classification network is to use sum-of-squared errors with the class value of yes patterns coded as a 1 and the no classes coded as a 0, i.e.: $t_{ij} = \begin{cases} 1 \text{ if training pattern } i=\text{yes} \\ 0 \text{ if the training pattern } i=\text{no} \end{cases}$

However, using either the sum-of-squared or Laplacian errors for training a network with these target values assumes that the noise in the training data are Gaussian. In binary classification, the zeros and ones are not Gaussian. They follow the Bernoulli distribution:

$$P(t_i = t) = p^t (1-p)^{1-t}$$
where \(p \) is equal to the probability that a randomly selected case belongs to the yes class.

Modeling the binary classes as Bernoulli observations leads to the use of the cross-entropy error function described by Hopfield (1987) and Bishop (1995):

\[
E^C = -\sum_{i=1}^{N} \{t_i \ln(\hat{t}_i) + (1-t_i) \ln(1-\hat{t}_i)\}.
\]

where \(N \) is the number of training patterns, \(t_i \) is the target value for the \(i \)-th case (either 1 or 0), and \(\hat{t}_i \) is the network’s output for the \(i \)-th case. This is equal to the neural network’s estimate of the probability that the \(i \)-th case should be classified as yes.

For situations in which the target variable is a probability in the range \(0 < t_{ij} < 1 \), the value of the cross-entropy at the networks optimum is equal to:

\[
E_{\text{min}}^C = -\sum_{i=1}^{N} \{t_i \ln(t_i) + (1-t_i) \ln(1-t_i)\}
\]

Subtracting this from \(E^C \) gives an error term bounded below by zero, i.e., \(E^{CE} \geq 0 \) where:

\[
E^{CE} = E^C - E_{\text{min}}^C = -\sum_{i=1}^{N} \{t_i \ln \left(\frac{\hat{t}_i}{t_i} \right) + (1-t_i) \ln \left(\frac{1-\hat{t}_i}{1-t_i} \right) \}
\]

This adjusted cross-entropy is normally reported when training a binary classification network where \(0 < t_{ij} < 1 \). Otherwise \(E^C \), the non-adjusted cross-entropy error, is used. Small values, values near zero, would indicate that the training resulted in a network with a low error rate and that patterns are being classified correctly most of the time.

Cross-Entropy Error for Multi-Classification

Using a multilayer feedforward neural network for binary classification is relatively straightforward. A network for binary classification only has a single output that estimates the probability that an input pattern belongs to the yes class, i.e., \(t_i = 1 \). In classification problems with more than two mutually exclusive classes, the calculations and network configurations are not as simple.

One approach is to use multiple network outputs, one for each of the \(C \) classes. Using this approach, the \(j \)-th output for the \(i \)-th training pattern, \(t_{ij} = 1 \), is the estimated probability that the \(i \)-th pattern is the network’s \(j \)-th class, denoted by \(\hat{t}_{ij} \). An easy way to estimate these probabilities is to use logistic activation for each output. This ensures that each output satisfies the univariate probability requirements, i.e., \(0 \leq \hat{t}_{ij} \leq 1 \).

However, since the classification categories are mutually exclusive, each pattern can only be assigned to one of the \(C \) classes, which means that the sum of these individual probabilities should always equal 1.

However, if each output is the estimated probability for that class, it is very unlikely that

\[
\sum_{j=1}^{C} \hat{t}_{ij} = 1
\]

in fact, the sum of the individual probability estimates can easily exceed 1 if logistic activation is applied to every output.

Support Vector Machine (SVM) neural networks use this approach with one modification. An SVM network classifies a pattern as belonging to the \(i \)-th category if the activation calculation for that category
exceeds a threshold and the other calculations do not exceed this value. That is, the i-th pattern is assigned to the j-th category if and only if $\hat{t}_{ij} > \delta$ and $\hat{t}_{ik} \leq \delta$ for all $k \neq j$, where δ is the threshold. If this does not occur, then the pattern is marked as unclassified.

Another approach to multi-class classification problems is to use the softmax activation function developed by Bridle (1990) on the network outputs. This approach produces outputs that conform to the requirements of a multinomial distribution. That is

$$\sum_{j=1}^{C} \hat{t}_{ij} = 1$$

for all $i = 1, 2, \cdots, N$ and $0 \leq \hat{t}_{ij} \leq 1$ for all $i = 1, 2, \cdots, N$ and $j = 1, 2, \cdots, C$ The softmax activation function estimates classification probabilities using the following softmax activation function:

$$\hat{t}_{ij} = \frac{e^{Z_{ij}}}{\sum_{j=1}^{C} e^{Z_{ij}}}$$

where Z_{ij} is the potential for the j-th output perceptron, or category, using the i-th pattern.

For this activation function, it is clear that:

1. $0 \leq \hat{t}_{ij} \leq 1$ for all $i = 1, 2, \cdots, N$ and
2. $\sum_{j=1}^{C} \hat{t}_{ij} = 1$ for all $i = 1, 2, \cdots, N$

Modeling the C network outputs as multinomial observations leads to the cross-entropy error function described by Hopfield (1987) and Bishop (1995):

$$E^C = - \sum_{i=1}^{N} \sum_{j=1}^{C} t_{ij} \ln(\hat{t}_{ij})$$

where N is the number of training patterns, t_{ij} is the target value for the j-th class of i-th pattern (either 1 or 0), and \hat{t}_{ij} is the neural network’s estimate of the j-th output for the i-th pattern. \hat{t}_{ij} is equal to the neural network’s estimate of the probability that the i-th pattern should be classified into the j-th category.

For situations in which the target variable is a probability in the range $0 < t_{ij} < 1$, the value of the cross-entropy at the networks optimum is equal to:

$$E_{\text{min}}^C = - \sum_{i=1}^{N} \sum_{j=1}^{C} t_{ij} \ln(t_{ij})$$

Subtracting this from E^C gives an error term bounded below by zero, i.e., $E_{CE} \geq 0$ where:

$$E_{CE} = E^C - E_{\text{min}}^C = - \sum_{i=1}^{N} \sum_{j=1}^{C} t_{ij} \ln \left(\frac{\hat{t}_{ij}}{t_{ij}} \right)$$

Neural Nets
This adjusted cross-entropy is normally reported when training a binary classification network where \(0 < t_{ij} < 1\). Otherwise \(E_C\), the non-adjusted cross-entropy error, is used. That is, when 1-in-\(C\) encoding of the target variable is used,

\[
t_{ij} = \begin{cases}
1 & \text{if the } i\text{-th pattern belongs to the } j\text{-th category} \\
0 & \text{if the } i\text{-th pattern does not belong to the } j\text{-th category}
\end{cases}
\]

Small values, values near zero, indicate that the training resulted in a network with a low error rate and that patterns are being classified correctly most of the time.

Back-Propagation in Multilayer Feed-Forward Neural Network

Sometimes a multilayer feed-forward neural network is referred to incorrectly as a back-propagation network. The term back-propagation does not refer to the structure or architecture of a network. Back-propagation refers to the method used during network training. More specifically, back-propagation refers to a simple method for calculating the gradient of the network, that is the first derivative of the weights in the network.

The primary objective of network training is to estimate an appropriate set of network weights based upon a training dataset. There are many ways that have been researched for estimating these weights, but they all involve minimizing some error function. In forecasting, the most commonly used error function is the sum of squared errors:

\[
E = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{C} (t_{ij} - \hat{t}_{ij})^2
\]

Training uses one of several possible optimization methods to minimize this error term. Some of the more common are: steepest descent, quasi-Newton, conjugant gradient, and many various modifications of these optimization routines.

Back-propagation is a method for calculating the first derivative, or gradient, of the error function required by some optimization methods. It is certainly not the only method for estimating the gradient. However, it is the most efficient. In fact, some will argue that the development of this method by Werbos (1974), Parket (1985), and Rumelhart, Hinton and Williams (1986) contributed to the popularity of neural network methods by significantly reducing the network training time and making it possible to train networks consisting of a large number of inputs and perceptrons.

Simply stated, back-propagation is a method for calculating the first derivative of the error function with respect to each network weight. Bishop (1995) derives and describes these calculations for the two most common forecasting error functions, the sum of squared errors and Laplacian error functions. Abe (2001) gives the description for the classification error function, the cross-entropy error function. For all of these error functions, the basic formula for the first derivative of the network weight \(w_{ji}\) at the \(i\)-th perceptron applied to the output from the \(j\)-th perceptron

\[
\frac{\partial E}{\partial w_{ji}} = \delta_j Z_i,
\]

where \(Z_i = g(a_i)\) is the output from the \(i\)-th perceptron after activation, and

\[
\frac{\partial E}{\partial w_{ji}}
\]
is the derivative for a single output and a single training pattern. The overall estimate of the first
derivative of w_{ji} is obtained by summing this calculation over all N training patterns and C network
outputs.

The term back-propagation gets its name from the way the term δ_j in the back-propagation formula is
calculated:

$$\delta_j = g'(a_j) \cdot \sum_k w_{kj} \delta_k,$$

where the summation is over all perceptrons that use the activation from the j-th perceptron, $g(a_j)$.

The derivative of the activation functions, $g'(a)$, varies among these functions, see the following table:

<table>
<thead>
<tr>
<th>Activation Function</th>
<th>$g(a)$</th>
<th>$g'(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$g(a) = a$</td>
<td>$g'(a) = 1$ (where a is a constant)</td>
</tr>
<tr>
<td>Logistic</td>
<td>$g(a) = \frac{1}{1+e^{-a}}$</td>
<td>$g'(a) = g(a)(1 - g(a))$</td>
</tr>
<tr>
<td>Hyperbolic-tangent</td>
<td>$g(a) = \tanh(a)$</td>
<td>$g'(a) = \sech^2(a) = 1 - \tanh^2(a)$</td>
</tr>
<tr>
<td>Squash</td>
<td>$g(a) = \frac{a}{1+</td>
<td>a</td>
</tr>
</tbody>
</table>

Creating a Feed Forward Network

The following code fragment creates the feed forward neural network shown in the following figure:
Notice that this network is more complex than the typical feed-forward network in which all nodes from each layer are connected to every node in the next layer. This network has 6 input nodes, and they are not all connected to every node in the 1st hidden layer.

Note also that the 4 perceptrons in the 1st hidden layer are not connected to every node in the 2nd hidden layer, and the perceptrons in the 2nd hidden layer are not all connected to the two outputs.

```java
import com.imsl.datamining.neural.*;

FeedForwardNetwork network = new FeedForwardNetwork();
network.getInputLayer().createInputs(6);
```
network.createHiddenLayer().createPerceptrons(4);
network.createHiddenLayer().createPerceptrons(3);
network.getOutputLayer().createPerceptrons(2);
HiddenLayers[] hiddenLayer = network.getHiddenLayers();
Node[] inputNode = network.getInputLayer().getNodes();
Node[] layer1Node = hiddenLayer[0].getNodes();
Node[] layer2Node = hiddenLayer[1].getNodes();
Node[] outputNode = network.getOutputLayer().getNodes();

// Create links between input nodes and 1st hidden layer
network.link(inputNode[0], layer1Node[0]);
network.link(inputNode[0], layer1Node[1]);
network.link(inputNode[1], layer1Node[0]);
network.link(inputNode[1], layer1Node[1]);
network.link(inputNode[1], layer1Node[3]);
network.link(inputNode[2], layer1Node[1]);
network.link(inputNode[2], layer1Node[2]);
network.link(inputNode[3], layer1Node[3]);
network.link(inputNode[4], layer1Node[3]);
network.link(inputNode[5], layer1Node[3]);

// Create links between 1st and 2nd hidden layers
network.link(layer1Node[0], layer2Node[0]);
network.link(layer1Node[0], layer2Node[1]);
network.link(layer1Node[0], layer2Node[2]);
network.link(layer1Node[1], layer2Node[0]);
network.link(layer1Node[1], layer2Node[1]);
network.link(layer1Node[1], layer2Node[2]);
network.link(layer1Node[2], layer2Node[1]);
network.link(layer1Node[2], layer2Node[2]);

// Create links between 2nd hidden layer and output layer
network.link(layer2Node[0], outputNode[0]);
network.link(layer2Node[0], outputNode[1]);
network.link(layer2Node[1], outputNode[0]);
network.link(layer2Node[1], outputNode[1]);

// Create link between input node[0] and output node[0]
network.link(inputNode[0], outputNode[0]);

By default, the FeedForwardNetwork constructor creates a feed forward network with an empty input layer, no hidden layers and an empty output layer. Input nodes are created by accessing the empty input layer and creating 6 nodes within it. Two hidden layers are then created within the network using the FeedForwardNetwork.createHiddenLayer().createPerceptrons() method. Four perceptrons are created within the first hidden layer and three within the second. Output perceptrons are created by accessing the empty output layer and creating the Perceptrons within it: FeedForwardNetwork.getOutputLayer().createPerceptrons().

Links among the input nodes and perceptrons can be created using one of several approaches. If all inputs are connected to every perceptron in the first hidden layer, and if all perceptrons are connected to every perceptron in the following layer, which is a standard architecture for feed forward networks, then a call to the FeedForwardNetwork.linkAll() method can be used to create these links.
However, this example does not use that standard configuration. Some links are missing. In this case, the approach used is to construct individual links using the `FeedForwardNetwork.link()` method. This requires one call for every link.

An alternate approach is to first create all links and then to remove those that are not needed. The following code illustrates this approach:

```java
// **************************************************************
// EXAMPLE CODE FOR REMOVING LINKS AMONG NETWORK NODES
// **************************************************************
import com.imsl.datamining.neural.*;
FeedForwardNetwork network = new FeedForwardNetwork();
InputNode[] inputNode = network.getInputLayer().createInputs(6);
Perceptron[] hiddenLayer1 = network.createHiddenLayer().createPerceptrons(4);
Perceptron[] hiddenLayer2 = network.createHiddenLayer().createPerceptrons(3);
Perceptron[] outputLayer = network.getOutputLayer().createPerceptrons(2);
network.linkAll(); // Creates standard feed forward configuration

// Remove links between input nodes and 1st hidden layer
network.remove(network.findLink(inputNode[0],hiddenLayer1[2]));
network.remove(network.findLink(inputNode[0],hiddenLayer1[3]));
network.remove(network.findLink(inputNode[1],hiddenLayer1[3]));
network.remove(network.findLink(inputNode[2],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[2],hiddenLayer1[3]));
network.remove(network.findLink(inputNode[3],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[3],hiddenLayer1[1]));
network.remove(network.findLink(inputNode[3],hiddenLayer1[2]));
network.remove(network.findLink(inputNode[4],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[4],hiddenLayer1[1]));
network.remove(network.findLink(inputNode[4],hiddenLayer1[2]));
network.remove(network.findLink(inputNode[5],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[5],hiddenLayer1[1]));
network.remove(network.findLink(inputNode[5],hiddenLayer1[2]));

// Remove links between 1st and 2nd hidden layers
network.remove(network.findLink(hiddenLayer1[2],hiddenLayer2[1]));
network.remove(network.findLink(hiddenLayer1[3],hiddenLayer2[0]));

// Remove links between 2nd hidden layer and the output layer
network.remove(network.findLink(hiddenLayer2[0],outputLayer[1]));

// Add link from input node[0] to output node[0]
network.link(inputNode[0], outputNode[0]);

// **************************************************************
```

In the above fragment, all links are created using the `FeedForwardNetwork.linkAll()` method. This creates a total of $6*4+4*3+3*2=42$ links, not including the link between the first input node and the first output node. Links that skip layers are not created by the `linkAll()` method.

Links are then selectively removed starting with the first input node and proceeding to links between the last hidden layer and the output layers. In this case, there are $6*4=24$ possible links between the input nodes and first hidden layer. Fourteen of them had to be removed. Between the first hidden layer and second, there are $4*3=12$ possible links. Two of them were removed. Between the second hidden layer and output layer there are $3*2=6$ possible links, and only one needed to be removed. Finally the skip-layer link between the first input node and first output node is added.
After creating and removing links among layers, the activation function used with each perceptron can be selected. By default, every perceptron in the hidden layers use the logistic activation function and every perceptron in the output layers uses the linear activation function. The following fragment shows how to change the activation function in the hidden layer perceptrons from logistic to hyperbolic-tangent and the output layer from linear to logistic. It also creates a connection directly from the first input node to the output node.

```java
// ***************************************************************
// EXAMPLE CODE FOR SETTING NON-DEFAULT ACTIVATION FUNCTIONS
// ***************************************************************
import com.imsl.datamining.neural.*;

FeedForwardNetwork network = new FeedForwardNetwork();
InputNode[] inputNode = network.getInputLayer().createInputs(6);
Perceptron[] hiddenLayer1 = network.createHiddenLayer().createPerceptrons(4);
Perceptron[] hiddenLayer2 = network.createHiddenLayer().createPerceptrons(3);
Perceptron[] outputLayer = network.getOutputLayer().createPerceptrons(2);
for (int k = 0; k < hiddenLayer1.length; k++) {
    hiddenLayer1[k].setActivation(Activation.TANH);
}
for (int k = 0; k < hiddenLayer2.length; k++) {
    hiddenLayer2[k].setActivation(Activation.TANH);
}
for (int k = 0; k < outputLayer.length; k++) {
    outputLayer[k].setActivation(Activation.LOGISTIC);
}
```

Training

Trainers are used to find the network weights that produce network outputs matching a set of training targets. The training targets together with their associated network inputs are referred to as training patterns. Training patterns can be historical data relating network inputs to its outputs, or they can be developed from expert opinion or theoretical analysis. In the end, each training pattern relates specific network inputs to its real or desired target outputs.

In JMSL, all trainers implement the `com.imsl.datamining.neural.Trainer` interface. The number of training input attributes must equal the number of input nodes, and the number of training outputs, sometimes called training targets, must equal the number of output perceptrons created for the network.

Single Stage Trainers

QuasiNewtonTrainer and LeastSquaresTrainer are single stage trainers. They use all available training patterns and a specific optimization method to find optimum network weights. The best set of weights is a set that minimizes the error between the network output and its training targets. The following code fragment illustrates how to use the quasi-Newton method for single stage network training.

```java
// ***************************************************************
// EXAMPLE CODE FOR ONE-STAGE TRAINER
```

Neural Nets ▶ 2069
In this example, `xData` and `yData` are two-dimensional arrays containing the input attributes and output targets respectively. The number of rows in these arrays is equal to the number of training patterns. The number of columns in `xData` is equal to the number of input attributes, after applying any necessary preprocessing. The number of columns in `yData` is equal to the number of network outputs. The `setGradientTolerance()` method is one of several optional settings for tailoring the convergence criteria used with the training optimizer.

LeastSquaresTrainer is another single stage trainer. There are two principal differences between this trainer and the quasi-Newton trainer. First their optimization algorithms are different. The least squares trainer uses the Levenberg-Marquardt algorithm to optimize the network. As the name implies, the quasi-Newton trainer uses a modified Newton algorithm for optimization. In some applications, depending upon the data and the network architecture, one method may train the network faster than the other.

Another key difference between these single stage trainers is that the least squares trainer only uses one error function, the sum of squared errors. The quasi-Newton trainer, by default, uses the same error function. However, it also has an interface that accepts a user-supplied error function. For this reason, the quasi-Newton trainer is used to solve classification problems.

Multistage Trainers

When there are a large number of training patterns, single stage trainers will often take too long to complete network training. For these applications, a multistage trainer could be used to reduce training time. Multistage trainers provide considerably more flexibility in designing an optimum training scheme. All of these trainers break network training into two stages. Stage II is optional. That is, a multistage trainer can be requested to only conduct Stage I training, or it can be requested to conduct both Stage I and II training.

The main difference between Stage I and II training is that Stage I training is conducted multiple times using randomly selected subsets of all available training patterns. Each training session is referred to as an epoch. Although each epoch uses a different set of randomly selected training patterns, the number of patterns is the same for every epoch. Typically, because they are using different data, the solutions vary among epochs.

Stage II training is conducted following the Stage I training using the best set of weights obtained during Stage I. This ensures that the weights developed during Stage II training will always be as good as or better than those determined during Stage I training. The entire set of original training patterns is used during Stage II training, and only one training session is completed.

There is no requirement to use the same trainer for both stages, although there is nothing wrong with that approach. The least squares trainer might be used for Stage I training and the quasi-Newton trainer.
might be used for Stage II training. In addition, the optimization settings for each trainer can be different. In JMSL, the multistage trainer is implemented using the EpochTrainer class.

The following code fragment illustrates the use of the epoch multistage trainer:

```java
// ***************************************************************
// EXAMPLE CODE FOR MULTISTAGE EPOCH TRAINER
// ***************************************************************

double xData[][] = ...
double yData[][] = ...
QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();
LeastSquaresTrainer stageIITrainer = new LeastSquaresTrainer();
EpochTrainer trainer = new EpochTrainer(stageITrainer, stageIITrainer);
trainer.setNumberOfEpochs(20);
trainer.setEpochSize(3000);

// ***************************************************************
```

In this example, a quasi-Newton trainer is selected for the Stage I trainer, and the least squares trainers is used for Stage II. Stage I will consists of 20 training epochs. The training of each epoch uses 3,000 randomly selected training patterns with the quasi-Newton trainer. The epoch with the smallest training error supplies the starting values for the Stage II trainer.

Data Preprocessing

Data preprocessing, or filtering, is the term used to describe the process of scaling or transforming input attributes into numerical values suitable for network training. In general it is important to scale all input attributes to a common range, either [0, 1] or [-1, 1]. The algorithm used for obtaining values for the network weights assumes that the inputs are scaled to one of these ranges. If some network inputs have values that cover a much broader range, then the initial weights can be far from optimum causing network training to fail or take an excessively long time.

Network input data are classified into three general categories: continuous, ordinal and nominal. JMSL provides methods for preprocessing all three data types. Continuous data are scaled using the ScaleFilter class. In addition, lagged versions of continuous time series data can be created using the TimeSeriesFilter or TimeSeriesClassFilter class.

Categorical data, such as color or preference ratings, are either ordinal and nominal data. JMSL provides methods UnsupervisedOrdinalFilter and UnsupervisedNominalFilter to preprocess ordinal and nominal data respectively. UnsupervisedOrdinalFilter transforms ordinal data into values between 0 and 1, which allows them to be treated as continuous data.

Nominal data, on the other hand, can be transformed using several methods. UnsupervisedNominalFilter converts a single nominal variable with m classes into m columns containing the values 0 and 1. This is referred to as binary encoding of nominal classification information.

The following code fragment illustrates the use of some of these preprocessing methods:

```java
// ***************************************************************
```

Neural Nets

• 2071
In the above example, one nominal variable consisting of values representing 3 different classes, or categories, is encoded into 3 binary columns using UnsupervisedNominalFilter class. Two continuous variables are scaled using the ScaleFilter class, and these five columns are then loaded into xData in preparation for network training.

Serialization

Neural network training can require a substantial amount of time, so it is often desirable to save a trained network for later use in forecasting. Java serialization can be used to save the results of network training.

When an object is serialized, its state is saved. However, the code implementing the class (the class file) is not saved with the serialized file. Hence when the object is deserialized, the code that created the serialized object should be in the classpath. Otherwise deserialization will fail.

For an object to be serialized, it must implement the java.io.Serializable interface. The following code fragment serializes key network and training information into four files. One contains the network weights, another contains the training statistics, and two additional files contain the training patterns. This is done using a write(Object,String) method that takes a file name and writes the serialized object to that file.
SAVE A TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECTS
// ***
// Saving network weights and structural information
write(network, "MyNetwork.ser");
// Saving training information available from computeStatistics()
write(trainer, "MyNetworkTrainer.ser");
// Saving xData training targets
write(xData, "MyNetworkxData.ser");
// Saving yData training targets
write(yData, "MyNetworkyData.ser");
// // WRITE SERIALIZED OBJECT TO A FILE
// ***
static public void write(Object obj, String filename)
 throws IOException {
 FileOutputStream fos = new FileOutputStream(filename);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(obj);
 oos.close();
 fos.close();
}
// ***
Notice that not only is the network object serialized and saved, the trainer and training patterns, xData
and yData, are also saved. This was only done to allow someone to calculate the additional network
statistics. If these are not needed, then these training patterns need not be saved. However, for
forecasting, it is essential to remember the specific order and nature of the network inputs used during
training. This information is not saved in the network serialized file.

When an object is deserialized, the object is reconstructed using the saved serialization file. The
following code deserializes the previously saved network information.

// ***
// EXAMPLE CODE FOR READING TRAINED NETWORK FROM SERIALIZED FILES
// ***
// READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT
Network network = (Network)read("MyNetwork.ser");
// READ THE SERIALIZED XDATA[] and YDATA[] Arrays of Training
// Patterns.
xData = (double[][])read("MyNetworkxData.ser");
yData = (double[][])read("MyNetworkyData.ser");
// READ THE SERIALIZED TRAINER OBJECT
Trainer trainer = (Trainer)read("MyNetworkTrainer.ser");
// DISPLAY TRAINING STATISTICS
double stats[] = network.computeStatistics(xData, yData);

// READ SERIALIZED NETWORK FROM A FILE

static public Object read(String filename)
 throws IOException, ClassNotFoundException {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream ois = new ObjectInputStream(fis);
 Object obj = ois.readObject();
 ois.close();
 fis.close();
 return obj;
}

The training classes support logging using the standard Java classes. The following code fragment enables logging for an epoch trainer. The log is stored into a file with the name MyNetworkTraining.log

try {
 Handler handler = new FileHandler("MyNetworkTraining.log");
 Logger logger = Logger.getLogger("com.imsl.datamining.neural");
 logger.setLevel(Level.FINEST);
 logger.addHandler(handler);
 handler.setFormatter(EpochTrainer.getFormatter());
} catch (Exception e) {
 e.printStackTrace();
}

The standard Java logging classes are in the package java.util.logging. A FileHandler is used to write the logging information to the log file. Each of the training classes has a static method that returns a special Formatter designed to work with the logging statements in the trainers. All of the trainers use the same Formatter.

The name of the logger in each of the trainers is the fully qualified name of the trainer. Because the Java logger is hierarchical, the name com.imsl.datamining.neural can be used to log all of the JMSL
training classes. More specific names can be used to set trainer specific logging levels. For example, setting the logging level in com.imsl.datamining.neural.EpochTrainer to Level.FINEST, while setting the level in com.imsl.datamining.neural.QuasiNewtonTrainer to Level.FINE. The trainers support logging the Level.FINE, Level.FINER and Level.FINEST.

Example: Neural Network Forecasting Application

This application illustrates one common approach to time series prediction using a neural network. In this case, the output target for this network is a single time series. In general, the inputs to this network consist of lagged values of the time series together with other concomitant variables, both continuous and categorical. In this application, however, only the first three lags of the time series are used as network inputs.

The objective is to train a neural network for forecasting the series \(Y_t, t = 0, 1, 2, \ldots \), from the first three lags of \(Y_t \), i.e.

\[
Y_t = f(Y_{t-1}, Y_{t-2}, Y_{t-3})
\]

Since this series consists of data from several company departments, lagging of the series must be done within departments. This creates many missing values. The original data contains 118,519 training patterns. After lagging, 16,507 are identified as missing and are removed, leaving a total of 102,012 usable training patterns. Missing values are denoted using a number not in the training patterns, the value -9,999,999,999.0.

The structure of the network consists of three input nodes and two layers, with three perceptrons in the hidden layer and one in the output layer. The following figure depicts this structure:

Figure 9. An example 2-layer Feed Forward Neural Network
There are a total of 16 weights in this network, including the 4 bias weights. All perceptrons in the
hidden layer use logistic activation, and the output perceptron uses linear activation. Because of the large
number of training patterns, the Activation.LOGISTIC_TABLE activation function is used instead of
Activation.LOGISTIC. Activation.LOGISTIC_TABLE uses a table lookup for calculating the
logistic activation function, which significantly reduces training time. However, these are not completely
interchangeable. If a network is trained using Activation.LOGISTIC_TABLE, then it is important to use
the same activation function for forecasting.

All input nodes are linked to every perceptron in the hidden layer, which are in turn linked to the output
perceptron. Then all inputs and the output target are scaled using the ScaleFilter class to ensure that
all input values and outputs are in the range [0, 1]. This requires forecasts to be unscaled using the
decode() method of the ScaleFilter class.

Training is conducted using the epoch trainer. This trainer allows users to customize training into two
stages. Typically this is necessary when training using a large number of training patterns. Stage I
training uses randomly selected subsets of training patterns to search for network solutions. Stage II
training is optional, and uses the entire set of training patterns. For larger sets of training patterns,
training could take many hours, or even days. In that case, Stage II training might be bypassed.

In this example, Stage I training is conducted using the Quasi-Newton trainer applied to 20 epochs, each
consisting of 5,000 randomly selected observations. Stage II training also uses the Quasi-Newton trainer.
The training results for each Stage I epoch and for the final Stage II solution are stored in a training log
file NeuralNetworkEx1.log.

The training patterns are contained in two data files: continuous.txt and output.txt. The formats
of these files are identical. The first line of the file contains the number of columns or variables in that
file. The second contains a line of tab-delimited integer values. These are the column indices associated
with the incoming data. The remaining lines contain tab-delimited, floating point values, one for each of
the incoming variables.

For example, the first four lines of the continuous.txt file consists of the following lines:

3
1 2 3
0 0 0
0 0 0

There are 3 continuous input variables which are numbered, or labeled, as 1, 2, and 3.

Source Code
import com.imsl.datamining.neural.*;
import com.imsl.math.*;
import java.io.*;
import java.util.*;
import java.util.logging.*;

//***
// NeuralNetworkEx1.java
// Two Layer Feed-Forward Network Complete Example for Simple Time Series
//***
// Synopsis: This example illustrates how to use a Feed-Forward Neural
Network to forecast time series data. The network target is a time series and the three inputs are the 1st, 2nd, and 3rd lag for the target series.

Activation: Logistic_Table in Hidden Layer, Linear in Output Layer

Trainer: Epoch Trainer: Stage I - Quasi-Newton, Stage II - Quasi-Newton

Inputs: Lags 1-3 of the time series

Output: A Time Series sorted chronologically in descending order, i.e., the most recent observations occur before the earliest, within each department

public class NeuralNetworkEx1 implements Serializable {

private static String QuasiNewton = "quasi-newton";
private static String LeastSquares = "least-squares";

Network Architecture

private static int nObs = 118519; // number of training patterns
private static int nInputs = 3; // four inputs
private static int nCategorical = 0; // three categorical attributes
private static int nContinuous = 3; // one continuous input attribute
private static int nOutputs = 1; // one continuous output
private static int nLayers = 2; // number of perceptron layers
private static int nPerceptrons = 3; // perceptrons in hidden layer
private static int perceptrons[] = {3}; // number of perceptrons in each hidden layer

PERCEPTRON ACTIVATION

private static Activation hiddenLayerActivation
 = Activation.LOGISTIC_TABLE;
private static Activation outputLayerActivation = Activation.LINEAR;

Epoch Training Optimization Settings

private static boolean trace = true; //trainer logging
private static int nEpochs = 20; //number of epochs
private static int epochSize = 5000; //samples per epoch

// Stage I Trainer - Quasi-Newton Trainer
private static int stage1Iterations = 5000; //max. iterations
private static double stage1MaxStepsize = 50.0; //max. stepsize
private static double stage1StepTolerance = 1e-09; //step tolerance
private static double stage1RelativeTolerance = 1e-11; //rel. tolerance

// Stage II Trainer - Quasi-Newton Trainer
private static int stage2Iterations = 5000; //max. iterations
private static double stage2MaxStepsize = 50.0; //max. stepsize
private static double stage2StepTolerance = 1e-09; //step tolerance
private static double stage2RelativeTolerance = 1e-11; //rel. tolerance

FILE NAMES AND FILE READER DEFINITIONS

READERS

private static BufferedReader contFileInputStream;
private static BufferedReader outputFileInputStream;

OUTPUT FILES

// File Name for training log produced when trace = true
private static String trainingLogFile = "NeuralNetworkEx1.log";

Neural Nets 2077
private static String networkFileName = "NeuralNetworkEx1.ser";
// File Name for Serialized Trainer
private static String trainerFileName = "NeuralNetworkTrainerEx1.ser";
// File Name for Serialized xData File (training input attributes)
private static String xDataFileName = "NeuralNetworkxDataEx1.ser";
// File Name for Serialized yData File (training output targets)
private static String yDataFileName = "NeuralNetworkyDataEx1.ser";
// INPUT FILES
// Continuous input attributes file. File contains Lags 1-3 of series
private static String contFileName = "continuous.txt";
// Continuous network targets file. File contains the original series
private static String outputFileName = "output.txt";
// **
// Data Preprocessing Settings
// **
private static double lowerDataLimit = -105000; // lower scale limit
private static double upperDataLimit = 25000000; // upper scale limit
private static double missingValue = -9999999999.0; // missing values
// indicator
// **
// Time Parameters for Tracking Training Time
// **
private static Calendar startTime;
// **
// Error Message Encoding for Stage II Trainer - Quasi-Newton Trainer
// **
// Note: For the Epoch Trainer, the error status returned is the status
// for the Stage II trainer, unless Stage II training is not used.
// **
private static String errorMsg = "";
// Error Status Messages for the Quasi-Newton Trainer
private static String errorMsg0 = "---> Network Training";
private static String errorMsg1 = "---> The last global step failed to locate a lower point " + "than the current error value. The current solution may " + "be an approximate solution and no more accuracy is " + "possible, or the step tolerance may be too large.";
private static String errorMsg2 = "---> Relative function convergence; both both the actual " + "and unpredicted relative reductions in the error function " + "are less than the relative function convergence tolerance.";
private static String errorMsg3 = "---> Scaled step tolerance satisfied; the current solution is " + "approximate local solution, or the algorithm is " + "making very slow progress and is not near a solution, or the step tolerance is too big.";
private static String errorMsg4 = "---> Quasi-Newton Trainer threw a MinUnconMultiVar.FalseConvergenceException.";
private static String errorMsg5 = "---> Quasi-Newton Trainer threw a MinUnconMultiVar.MaxIterationsException.";
private static String errorMsg6 = "";

2078 JMSL
public static void main(String[] args) throws Exception {
 double weight[]; // Network weights
 double gradient[]; // Network gradient after training
 double xData[]; // Training Patterns Input Attributes
 double yData[]; // Training Targets Output Attributes
 double contAtt[]; // A 2D matrix for the continuous training attributes
 double outs[]; // A matrix containing the training output targets
 int i, j, m = 0; // Array indices
 int nWeights = 0; // Number of network weights
 int nCol = 0; // Number of data columns in input file
 int ignore[]; // Array of 0's and 1's (0=missing value)
 int cont_col[], outs_col[], isMissing[] = {0};
 startTime = Calendar.getInstance();
 System.out.println("--> Starting Data Preprocessing at:
 + startTime.getTime());
 nCol = readFirstLine(contFileInputStream);
 nContinuous = nCol;
 System.out.println("--> Number of continuous variables:
 + nContinuous);
 if (nContinuous > 0) {
 // contFile contains continuous attribute data
 contAtt = new double[nObs][nContinuous];
 cont_col = readColumnLabels(contFileInputStream, nContinuous);
 for (i = 0; i < nObs; i++) {
 isMissing[0] = -1;
 contAtt[i] = readDataLine(contFileInputStream,
 nContinuous, isMissing);
 ignore[i] = isMissing[0];
 if (isMissing[0] >= 0) {
 m++;
 }
 }
 } else {
 nContinuous = 0;
 contAtt = new double[1][1];
contAtt[0][0] = 0;
}
closeFile(contFileInputStream);
// **
// Read continuous output targets
// **
nCol = readFirstLine(outputFileInputStream);
nOutputs = nCol;
System.out.println("---> Number of output variables: "+nOutputs);
outs = new double[nObs][nOutputs];
// Read numeric labels for continuous input attributes
outs_col = readColumnLabels(outputFileInputStream, nOutputs);
m = 0;
for (i = 0; i < nObs; i++) {
 isMissing[0] = ignore[i];
 outs[i] = readDataLine(outputFileInputStream, nOutputs, isMissing);
 ignore[i] = isMissing[0];
 if (isMissing[0] >= 0) {
 m++;
 }
}
System.out.println("---> Number of Missing Observations: "+m);
closeFile(outputFileInputStream);
// Remove missing observations using the ignore[] array
m = removeMissingData(nObs, nContinuous, ignore, contAtt);
m = removeMissingData(nObs, nOutputs, ignore, outs);
System.out.println("---> Total Number of Training Patterns: "+nObs);
nObs = nObs - m;
System.out.println("---> Number of Usable Training Patterns: "+nObs);

// **
// Setup Method and Bounds for Scale Filter
// **
ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.BOUNDED_SCALING);
scaleFilter.setBounds(lowerDataLimit, upperDataLimit, 0, 1);
// **
// PREPROCESS TRAINING PATTERNS
// **
System.out.println("---> Starting Preprocessing of Training Patterns");
xData = new double[nObs][nContinuous];
yData = new double[nObs][nOutputs];
for (i = 0; i < nObs; i++) {
 for (j = 0; j < nContinuous; j++) {
 xData[i][j] = contAtt[i][j];
 }
 yData[i][0] = outs[i][0];
}
scaleFilter.encode(0, xData);
scaleFilter.encode(1, xData);
scaleFilter.encode(2, xData);
scaleFilter.encode(0, yData);
// **
// CREATE FEEDFORWARD NETWORK
// **
System.out.println("--> Creating Feed Forward Network Object");
FeedForwardNetwork network = new FeedForwardNetwork();
// setup input layer with number of inputs = nInputs = 3
network.getInputLayer().createInputs(nInputs);
// create a hidden layer with nPerceptrons=3 perceptrons
network.createHiddenLayer().createPerceptrons(nPerceptrons);
// create output layer with nOutputs=1 output perceptron
network.getOutputLayer().createPerceptrons(nOutputs);
// link all inputs and perceptrons to all perceptrons in the next layer
network.linkAll();
// Get Network Perceptrons for Setting Their Activation Functions
Perceptron perceptrons[] = network.getPerceptrons();
// Set all hidden layer perceptrons to logistic_table activation
for (i = 0; i < perceptrons.length - 1; i++) {
 perceptrons[i].setActivation(hiddenLayerActivation);
}

perceptrons[perceptrons.length - 1].
 setActivation(outputLayerActivation);
System.out.println("--> Feed Forward Network Created with 2 Layers");
// **
// TRAIN NETWORK USING EPOCH TRAINER
// **
System.out.println("--> Training Network using Epoch Trainer");
Trainer trainer = createTrainer(QuasiNewton, QuasiNewton);
Calendar startTime = Calendar.getInstance();
// Train Network
trainer.train(network, xData, yData);
// Check Training Error Status
switch (trainer.getErrorStatus()) {
 case 0:
 errorMsg = errorMsg0;
 break;
 case 1:
 errorMsg = errorMsg1;
 break;
 case 2:
 errorMsg = errorMsg2;
 break;
 case 3:
 errorMsg = errorMsg3;
 break;
 case 4:
 errorMsg = errorMsg4;
 break;
 case 5:
 errorMsg = errorMsg5;
 break;
 case 6:
 errorMsg = errorMsg6;
 break;
 default:
 errorMsg = "--> Unknown Error Status Returned from Trainer";
}
System.out.println(errorMsg);
Calendar currentTimeNow = Calendar.getInstance();
System.out.println("--> Network Training Completed at: "
+ currentTimeNow.getTime());
double duration = (double) (currentTimeNow.getTimeInMillis()
- startTime.getTimeInMillis()) / 1000.0;
System.out.println("--> Training Time: " + duration + " seconds");

// **
// DISPLAY TRAINING STATISTICS
// **
double stats[] = network.computeStatistics(xData, yData);
System.out.println("***
--> SSE: " + (float) stats[0]);
System.out.println("--> RMS: " + (float) stats[1]);
System.out.println("--> Laplacian Error: " + (float) stats[2]);
System.out.println("--> Scaled Laplacian Error: " + (float) stats[3]);
System.out.println("--> Largest Absolute Residual: " + (float) stats[4]);
System.out.println("***
// **
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **
System.out.println("--> Getting Network Weights and Gradients");
// Get weights
weight = network.getWeights();
// Get number of weights = number of gradients
nWeights = network.getNumberOfWeights();
// Obtain Gradient Vector
gradient = trainer.getErrorGradient();
// Print Network Weights and Gradients
System.out.println(" ");
System.out.println("--> Network Weights and Gradients:");
System.out.println("***
double[][] printMatrix = new double[nWeights][2];
for (i = 0; i < nWeights; i++) {
 printMatrix[i][0] = weight[i];
 printMatrix[i][1] = gradient[i];
}
// Print result without row/column labels.
String[] colLabels = {"Weight", "Gradient"};
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setColumnLabels(colLabels);
pm.setTitle("Weights and Gradients");
pm.print(mf, printMatrix);
System.out.println("***

2082 • JMSL
System.out.println("--> Saving Trained Network into " + networkFileName);
write(network, networkFileName);
System.out.println("--> Saving Network Trainer into " + trainerFileName);
write(trainer, trainerFileName);
System.out.println("--> Saving xData into " + xDataFileName);
write(xData, xDataFileName);
System.out.println("--> Saving yData into " + yDataFileName);
write(yData, yDataFileName);

try {
 // Continuous Input Attributes
 InputStream contInputStream = new FileInputStream(contFileName);
 contFileInputStream = new BufferedReader(
 new InputStreamReader(contInputStream));
 // Continuous Output Targets
 InputStream outputInputStream = new FileInputStream(outputFileName);
 outputFileInputStream = new BufferedReader(
 new InputStreamReader(outputInputStream));
 } catch (Exception e) {
 System.out.println("--> ERROR: " + e);
 System.exit(0);
 }

static public void openInputFiles() {
 try {
 // Continuous Input Attributes
 InputStream contInputStream = new FileInputStream(contFileName);
 contFileInputStream = new BufferedReader(
 new InputStreamReader(contInputStream));
 // Continuous Output Targets
 InputStream outputInputStream = new FileInputStream(outputFileName);
 outputFileInputStream = new BufferedReader(
 new InputStreamReader(outputInputStream));
 } catch (Exception e) {
 System.out.println("--> ERROR: " + e);
 System.exit(0);
 }
}

static public int readFirstLine(BufferedReader inputFile) {
 String inputLine = "", temp;
 int nCol = 0;
 try {
 temp = inputFile.readLine();
 inputLine = temp.trim();
 nCol = Integer.parseInt(inputLine);
 } catch (Exception e) {
 System.out.println("--> ERROR READING 1st LINE OF File" + e);
 System.exit(0);
 }
 return nCol;
}
// READ COLUMN LABELS (2ND LINE IN FILE)
// **
static public int[] readColumnLabels(BufferedReader inputFile, int nCol) {
 int contCol[] = new int[nCol];
 String inputLine = "", temp;
 String dataElement[];
 // Read numeric labels for continuous input attributes
 try {
 temp = inputFile.readLine();
 inputLine = temp.trim();
 } catch (Exception e) {
 System.out.println("--> ERROR READING 2nd LINE OF FILE: " + e);
 System.exit(0);
 }
 dataElement = inputLine.split(" ");
 for (int i = 0; i < nCol; i++) {
 contCol[i] = Integer.parseInt(dataElement[i]);
 }
 return contCol;
}

// READ DATA ROW
// **
static public double[] readDataLine(BufferedReader inputFile, int nCol, int[] isMissing) {
 double missingValueIndicator = -9999999999.0;
 double dataLine[] = new double[nCol];
 String inputLine = "", temp;
 String dataElement[];
 try {
 temp = inputFile.readLine();
 inputLine = temp.trim();
 } catch (Exception e) {
 System.out.println("-->ERROR READING LINE: " + e);
 System.exit(0);
 }
 dataElement = inputLine.split(" ");
 for (int j = 0; j < nCol; j++) {
 dataLine[j] = Double.parseDouble(dataElement[j]);
 if (dataLine[j] == missingValueIndicator) {
 isMissing[0] = 1;
 }
 }
 return dataLine;
}

// CLOSE FILE
// **
static public void closeFile(BufferedReader inputFile) {
 try {
 inputFile.close();
 } catch (Exception e) {
 System.out.println("ERROR: Unable to close file: " + e);
 }
}
// **
// REMOVE MISSING DATA
// **
// Now remove all missing data using the ignore[] array
// and recalculate the number of usable observations, nObs
// This method is inefficient, but it works. It removes one case at a
// time, starting from the bottom. As a case (row) is removed, the cases
// below are pushed up to take it's place.
// **
static public int removeMissingData(int nObs, int nCol, int ignore[],
 double[][] inputArray) {
 int m = 0;
 for (int i = nObs - 1; i >= 0; i--) {
 if (ignore[i] >= 0) {
 // the ith row contains a missing value
 // remove the ith row by shifting all rows below the
 // ith row up by one position, e.g. row i+1 -> row i
 m++;
 if (nCol > 0) {
 for (int j = i; j < nObs - m; j++) {
 for (int k = 0; k < nCol; k++) {
 inputArray[j][k] = inputArray[j + 1][k];
 }
 }
 }
 }
 }
 return m;
}

// **
// Create Stage I/Stage II Trainer
// **
static public Trainer createTrainer(String s1, String s2) {
 EpochTrainer epoch = null; // Epoch Trainer (returned by this method)
 QuasiNewtonTrainer stage1Trainer; // Stage I Quasi-Newton Trainer
 QuasiNewtonTrainer stage2Trainer; // Stage II Quasi-Newton Trainer
 LeastSquaresTrainer stage1LS; // Stage I Least Squares Trainer
 LeastSquaresTrainer stage2LS; // Stage II Least Squares Trainer
 Calendar currentTimeNow; // Calendar time tracker

 System.out.println(" --> Creating Epoch Trainer");
 if (s1.equals(QuasiNewton)) {
 // Setup stage I quasi-newton trainer
 stage1Trainer = new QuasiNewtonTrainer();
 //stage1Trainer.setMaximumStepsize(maxStepSize);
 stage1Trainer.setMaximumTrainingIterations(stage1Iterations);
 stage1Trainer.setStepTolerance(stage1StepTolerance);
 if (s2.equals(QuasiNewton)) {
 stage2Trainer = new QuasiNewtonTrainer();
 //stage2Trainer.setMaximumStepsize(maxStepSize);

 }
stage2Trainer.setMaximumTrainingIterations(stage2Iterations);
epoch = new EpochTrainer(stage1Trainer, stage2Trainer);
} else {
 if (s2.equals(LeastSquares)) {
 stage2LS = new LeastSquaresTrainer();
 stage2LS.setInitialTrustRegion(1.0e-3);
 stage2LS.setMaximumStepsize(maxStepSize);
 stage2LS.setMaximumTrainingIterations(stage2Iterations);
 epoch = new EpochTrainer(stage1Trainer, stage2LS);
 } else {
 epoch = new EpochTrainer(stage1Trainer);
 }
}

// Setup stage I least squares trainer
stage1LS = new LeastSquaresTrainer();
stage1LS.setInitialTrustRegion(1.0e-3);
stage1LS.setMaximumTrainingIterations(stage1Iterations);
//stage1LS.setMaximumStepsize(maxStepSize);
if (s2.equals(QuasiNewton)) {
 stage2Trainer = new QuasiNewtonTrainer();
 //stage2Trainer.setMaximumStepsize(maxStepSize);
 stage2Trainer.setMaximumTrainingIterations(stage2Iterations);
 epoch = new EpochTrainer(stage1LS, stage2Trainer);
} else {
 if (s2.equals(LeastSquares)) {
 stage2LS = new LeastSquaresTrainer();
 stage2LS.setInitialTrustRegion(1.0e-3);
 stage2LS.setMaximumStepsize(maxStepSize);
 stage2LS.setMaximumTrainingIterations(stage2Iterations);
 epoch = new EpochTrainer(stage1LS, stage2LS);
 } else {
 epoch = new EpochTrainer(stage1LS);
 }
}

epoch.setNumberOfEpochs(nEpochs);
epoch.setEpochSize(epochSize);
epoch.setRandom(new com.imsl.stat.Random(1234567));
epoch.setRandomSamples(new com.imsl.stat.Random(12345),
 new com.imsl.stat.Random(67891));
System.out.println(" --> Trainer: Stage I - " + s1 + " Stage II " + s2);
System.out.println(" --> Number of Epochs: " + nEpochs);
System.out.println(" --> Epoch Size: " + epochSize);
// Describe optimization setup for Stage I training
System.out.println(" --> Creating Stage I Trainer");
System.out.println(" --> Stage I Iterations: " + stage1Iterations);
System.out.println(" --> Stage I Step Tolerance: " + stage1StepTolerance);
System.out.println(" --> Stage I Relative Tolerance: " + stage1RelativeTolerance);
System.out.println(" --> Stage I Step Size: " + DEFAULT);
System.out.println(" --> Stage I Trace: " + trace);
if (s2.equals(QuasiNewton) || s2.equals(LeastSquares)) {
 // Describe optimization setup for Stage II training
 System.out.println("--> Creating Stage II Trainer");
 System.out.println("--> Stage II Iterations: " + stage2Iterations);
 System.out.println("--> Stage II Step Tolerance: " + stage2StepTolerance);
 System.out.println("--> Stage II Relative Tolerance: " + stage2RelativeTolerance);
 System.out.println("--> Stage II Step Size: " + "DEFAULT");
 System.out.println("--> Stage II Trace: " + trace);
}
if (trace) {
 try {
 Handler handler = new FileHandler(trainingLogFile);
 Logger logger = Logger.getLogger("com.imsl.datamining.neural");
 logger.setLevel(Level.FINEST);
 logger.addHandler(handler);
 handler.setFormatter(EpochTrainer.getFormatter());
 System.out.println("--> Training Log Stored in " + trainingLogFile);
 } catch (Exception e) {
 e.printStackTrace();
 }
}
currentTimeNow = Calendar.getInstance();
System.out.println("--> Starting Network Training at " + currentTimeNow.getTime());
// Return Stage I/Stage II trainer
return epoch;

// **
// WRITE SERIALIZED OBJECT TO A FILE
// **
static public void write(Object obj, String filename)
 throws IOException {
 FileOutputStream fos = new FileOutputStream(filename);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(obj);
 oos.close();
 fos.close();
}

Output
--> Starting Data Preprocessing at: Thu Oct 14 17:27:04 CDT 2004
--> Number of continuous variables: 3
--> Number of output variables: 1
--> Number of Missing Observations: 16507
--> Total Number of Training Patterns: 118519
--> Number of Usable Training Patterns: 102012

Neural Nets 2087
Starting Preprocessing of Training Patterns
Creating Feed Forward Network Object
Feed Forward Network Created with 2 Layers
Training Network using Epoch Trainer
Creating Epoch Trainer
--- Trainer: Stage I - quasi-newton Stage II quasi-newton
--- Number of Epochs: 20
--- Epoch Size: 5000
Creating Stage I Trainer
--- Stage I Iterations: 5000
--- Stage I Step Tolerance: 1.0E-9
--- Stage I Relative Tolerance: 1.0E-11
--- Stage I Step Size: DEFAULT
--- Stage I Trace: true
Creating Stage II Trainer
--- Stage II Iterations: 5000
--- Stage II Step Tolerance: 1.0E-9
--- Stage II Relative Tolerance: 1.0E-11
--- Stage II Step Size: DEFAULT
--- Stage II Trace: true
Training Log Stored in NeuralNetworkEx1.log
Starting Network Training at Thu Oct 14 17:32:33 CDT 2004
The last global step failed to locate a lower point than the current error value. The current solution may be an approximate solution and no more accuracy is possible, or the step tolerance may be too larger.
Network Training Completed at: Thu Oct 14 18:18:08 CDT 2004
Training Time: 2735.341 seconds
*SSE: 3.88076
*RMS: 0.12284768
*Laplacian Error: 125.36781
*Scaled Laplacian Error: 0.20686063
*Largest Absolute Residual: 0.500993

Getting Network Weights and Gradients
Network Weights and Gradients:
Weights and Gradients
Weight Gradient
1.921 -0
1.569 0
-199.709 0
-0.065 -0
-0.003 0
105.62 0
1.221 -0
0.787 0
119.169 0
-129.8 0
146.822 0
-0.076 0
-6.022 -0
-5.257 0.001
Results

The above output indicates that the network successfully completed its training. The final sum of squared errors was 3.88, and the RMS (the scaled version of the sum of squared errors) was 0.12. All of the gradients at this solution are nearly zero, which is expected if network training found a local or global optima. Non-zero gradients usually indicate there was a problem with network training.

Examining the training log for this application, NeuralNetworkEx1.log, illustrates the importance of Stage II training.

Portions of the Training Log - NeuralNetworkEx1.log

```
End EpochTrainer Stage 1
  Best Epoch 15
  Error Status 17
  Best Error 0.03979299031789641
  Best Residual 0.03979299031789641
  SSE 1072.1281419136983
  RMS 33.93882798404427
  Laplacian 429.30253410528974
  Scaled Laplacian 0.7083620086220087
  Max Residual 11.837166167929052
Exiting com.imsl.datamining.neural.EpochTrainer.train Stage 1
Beginning com.imsl.datamining.neural.EpochTrainer.train Stage 2
  Summary
  Error Status 1
  Best Error 3.88076005209094
  SSE 3.88076005209094
  RMS 0.12284767343218107
  Laplacian 125.3678136373788
  Scaled Laplacian 0.20686063843020083
  Max Residual 0.5009930332151435
Exiting com.imsl.datamining.neural.EpochTrainer.train Stage 2
```

The training log indicates that the best Stage I epoch occurred at iteration 15, and that 17 of the 20 Stage I epochs detected a problem with training optimization. Other parts of the log indicate that these problems included: possible local minima, and maximum number of iterations exceeded. Although these
problems are warning messages and not true errors, they do indicate that convergence to a global optima is uncertain for 17 of the 20 epochs. Possibly increasing the epoch size might have provided more stable Stage I training.

More disturbing is the fact that for the best epoch=15, the sum of squared errors totaled over all training patterns is 1072.13. Epoch 15 was used as the starting point for the Stage II training which was able to reduce this sum of squared errors to 3.88. This suggests that although the epoch size, epochSize=5000, was too small for effective Stage I training, the Stage II trainer was able to locate a better solution.

However, even the Stage II trainer returned a non-zero error status, errorStatus=1. This was a warning that the Stage II trainer may have found a local optima. Further attempts were made to determine whether a better network could be found, but these alternate solutions only marginally lowered the sum of squared errors.

The trained network was serialized and stored into four files:

the network file - NeuralNetworkEx1.ser,
the trainer file - NeuralNetworkTrainerEx1.ser,
the xData file - NeuralNetworkxDataEx1.ser, and
the yData file - NeuralNetworkyDataEx1.ser.

Link to Java source.

Links to Input Data Files Used in this Example and the Training Log:

continuous.txt - Input attributes file.
output.txt - Network targets file.
NeuralNetworkEx1.log - Training Log.

Network class

abstract public class com.imsldatamining.neural.Network implements Serializable
Neural network base class.

Constructor

Network
public Network()
Description
Default constructor for Network. Since this class is abstract, it cannot be instantiated directly; this constructor is used by constructors in classes derived from Network.

Methods

computeStatistics

```java
public double[] computeStatistics(double[][] xData, double[][] yData)
```

Description
Computes error statistics.

This is a static method that can be used to compute the statistics regardless of the training class used to train the Network.

Computes statistics related to the error. In this table, the observed values are \(y_i \). The forecasted values are \(\hat{y}_i \). The mean observed value is \(\bar{y} = \frac{\sum y_i}{N} \), where \(N \) is the number of observations and \(C \) is the number of classes per observation.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SSE</td>
<td>(\frac{1}{2} \sum_i (y_i - \hat{y}_i)^2)</td>
</tr>
<tr>
<td>1</td>
<td>RMS</td>
<td>(\frac{\sum (y_i - \bar{y})^2}{\sum (y_i - \bar{y})})</td>
</tr>
<tr>
<td>2</td>
<td>Laplacian</td>
<td>(\sum_i</td>
</tr>
<tr>
<td>3</td>
<td>Scaled Laplacian</td>
<td>(\frac{\sum</td>
</tr>
<tr>
<td>4</td>
<td>Max residual</td>
<td>(\max_i</td>
</tr>
</tbody>
</table>

Parameters
- `xData` – A double matrix containing the input values.
- `yData` – A double array containing the observed values.

Returns
A double array containing the above described statistics.

createHiddenLayer

```java
abstract public HiddenLayer createHiddenLayer()
```

Description
Creates the next HiddenLayer in the Network.

Returns
The new HiddenLayer.

forecast

```java
abstract public double[] forecast(double[] x)
```
Description
Returns a forecast for each of the Network's outputs computed from the trained Network.

Parameter
\(x\) – A double array of values with the same length and order as the training patterns used to train the Network.

Returns
A double array containing the forecasts for the output Perceptrons. Its length is equal to the number of output Perceptrons.

\(\text{getForecastGradient}\)
abstract public double[][] getForecastGradient(double[] x)

Description
Returns the derivatives of the outputs with respect to the weights.

Parameter
\(x\) – A double array which specifies the input values at which the gradient is to be evaluated.

Returns
A double array containing the gradient values. The value of \(\text{gradient}[i][j]\) is \(\frac{dy_i}{dw_j}\), where \(y_i\) is the \(i\)-th output and \(w_j\) is the \(j\)-th weight.

\(\text{getInputLayer}\)
abstract public InputLayer getInputLayer()

Description
Returns the InputLayer object.

Returns
The Network InputLayer.

\(\text{getLinks}\)
abstract public Link[] getLinks()

Description
Returns an array containing the Link objects in the Network.

Returns
An array of Links associated with this Network.

\(\text{getNumberOfInputs}\)
abstract public int getNumberOfInputs()

Description
Returns the number of Network inputs.
Returns
An int which contains the number of inputs.

getNumberOfLinks
abstract public int getNumberOfLinks()

Description
Returns the number of Network Links among the nodes.

Returns
An int which contains the number of Links in the Network.

getNumberOfOutputs
abstract public int getNumberOfOutputs()

Description
Returns the number of Network output Perceptrons.

Returns
An int which contains the number of outputs.

getNumberOfWeights
abstract public int getNumberOfWeights()

Description
Returns the number of weights in the Network.

Returns
An int which contains the number of weights associated with this Network.

getOutputLayer
abstract public OutputLayer getOutputLayer()

Description
Returns the OutputLayer.

Returns
The Network OutputLayer.

getPerceptrons
abstract public Perceptron[] getPerceptrons()

Description
Returns an array containing the Perceptrons in the Network.

Returns
An array of Perceptrons associated with this Network.

getWeights
abstract public double[] getWeights()
Description
Returns the weights.

Returns
A double array containing the weights associated with Network Links.

setWeights
abstract public void setWeights(double[] weights)

Description
Sets the weights.

Parameter
weights – A double array which specifies the weights to be associated with Network Links.

Example: Network
This example uses a network previously trained and serialized into four files to obtain information about the network and forecasts. Training was done using the code for the FeedForwardNetwork Example 1.

The network training targets were generated using the relationship:
\[y = 10 \times X_1 + 20 \times X_2 + 30 \times X_3 + 2.0 \times X_4, \]
where

X1 to X3 are the three binary columns, corresponding to categories 1 to 3 of the nominal attribute, and X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons in the hidden layer and one in the output layer. The following figure illustrates this structure:
Figure 10. An example 2-layer Feed Forward Neural Network with 4 Inputs

All perceptrons were trained using a Linear Activation Function. Forecasts are generated for 9 conditions, corresponding to the following conditions:
Nominal Class 1-3 with the Continuous Input Attribute = 0
Nominal Class 1-3 with the Continuous Input Attribute = 5.0
Nominal Class 1-3 with the Continuous Input Attribute = 10.0

Note that the network training statistics retrieved from the serialized network confirm that this is the same network used in the previous example. Obtaining these statistics requires retrieval of the training patterns which were serialized and stored into separate files. This information is not serialized with the network, nor with the trainer.

```java
import com.imsl.datamining.neural.*;
import java.io.*;
//***************************************************************************
// Two Layer Feed-Forward Network with 4 inputs: 1 categorical with 3 classes
// encoded using binary encoding and 1 continuous input, and 1 output
// target (continuous). There is a perfect linear relationship between
// the input and output variables:
//
// MODEL:  Y = 10*X1 + 20*X2 + 30*X3 + 2*X4
//
// Variables X1-X3 are the binary encoded nominal variable and X4 is the
// continuous variable.
//```
This example uses Linear Activation in both the hidden and output layers. The network uses a 2-layer configuration, one hidden layer and one output layer. The hidden layer consists of 3 perceptrons. The output layer consists of a single output perceptron. The input from the continuous variable is scaled to [0,1] before training the network. Training is done using the Quasi-Newton Trainer. The network has a total of 19 weights. Since the network target is a linear combination of the network inputs, and since all perceptrons use linear activation, the network is able to forecast the every training target exactly. The largest residual is 2.78E-08.

```java
public class NetworkEx1 implements Serializable {
 // MAIN
 public static void main(String[] args) throws Exception {
 double xData[][]; // Input Attributes for Training Patterns
 double yData[][]; // Output Attributes for Training Patterns
 double weight[]; // network weights
 double gradient[]; // network gradient after training
 // Input Attributes for Forecasting
 double x[] = {
 {1, 0, 0, 0.0}, {0, 1, 0, 0.0}, {0, 0, 1, 0.0},
 {1, 0, 0, 5.0}, {0, 1, 0, 5.0}, {0, 0, 1, 5.0},
 {1, 0, 0, 10.0}, {0, 1, 0, 10.0}, {0, 0, 1, 10.0}
 };
 double xTemp[], y[]; // Temporary areas for storing forecasts
 int i, j; // loop counters
 // Names of Serialized Files
 String networkFileName = "FeedForwardNetworkEx1.ser"; // the network
 String trainerFileName = "FeedForwardTrainerEx1.ser"; // the trainer
 String xDataFileName = "FeedForwardxDataEx1.ser"; // xData
 String yDataFileName = "FeedForwardyDataEx1.ser"; // yData
 // READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT
 System.out.println("-->
```
Trainer trainer = (Trainer) read(trainerFileName);

// DISPLAY TRAINING STATISTICS
double stats[] = network.computeStatistics(xData, yData);

System.out.println("***********************************************");
System.out.println("--> SSE: "+ (float) stats[0]);
System.out.println("--> RMS: "+ (float) stats[1]);
System.out.println("--> Laplacian Error: "+ (float) stats[2]);
System.out.println("--> Scaled Laplacian Error: "+ (float) stats[3]);
System.out.println("--> Largest Absolute Residual: "+ (float) stats[4]);
System.out.println("***********************************************");
System.out.println(");

// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
System.out.println("--> Getting Network Information");
int nWeights = network.getNumberOfWeights();
System.out.print("w[" + i + "]=" + (float) weight[i] + " g[" + i + "]=" + (float) gradient[i]);

System.out.println("w[" + i + "]=" + (float) weight[i] + " g[" + i + "]=" + (float) gradient[i]);

// OBTAIN AND DISPLAY FORECASTS FOR THE LAST 10 TRAINING TARGETS
int nInputs = network.getNumberOfInputs();
int nOutputs = network.getNumberOfOutputs();
xTemp = new double[nInputs]; // temporary x space for forecast inputs
x = new double[nOutputs]; // temporary y space for forecast output

for (i = 0; i < 9; i++) {
    for (j = 0; j < nInputs; j++) {
        xTemp[j] = x[i][j];
    }
    xTemp[nInputs - 1] = xTemp[nInputs - 1] / 10.0;
    y = network.forecast(xTemp);
```java
System.out.print("--> X1=" + (int) x[i][0]
+ " X2=" + (int) x[i][1] + " X3=" + (int) x[i][2]
+ " | X4=" + x[i][3]);
System.out.println(" | y="
+ (float) (10.0 * x[i][0] + 20.0 * x[i][1]
+ 30.0 * x[i][2] + 2.0 * x[i][3])
+ " | Forecast=" + (float) y[i]);
}

// **
// READ SERIALIZED NETWORK FROM A FILE
// **
static public Object read(String filename)
 throws IOException, ClassNotFoundException {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream ois = new ObjectInputStream(fis);
 Object obj = ois.readObject();
 ois.close();
 fis.close();
 return obj;
}

Output

--> Reading Trained Network from FeedForwardNetworkEx1.ser
--> Reading xData from FeedForwardxDataEx1.ser
--> Reading yData from FeedForwardyDataEx1.ser
--> Reading Network Trainer from FeedForwardTrainerEx1.ser
**
--> SSE: 1.0134443E-15
--> RMS: 2.0074636E-19
--> Laplacian Error: 3.0058038E-7
--> Scaled Laplacian Error: 3.5352343E-10
--> Largest Absolute Residual: 2.784276E-8
**

--> Getting Network Information

--> Network Weights and Gradients:
w[0]=-1.4917853 g[0]=-2.6110852E-8
w[1]=-1.4917853 g[1]=-2.6110852E-8
w[8]=4.725622 g[8]=-5.273859E-8
w[12]=1.0722584 g[12]=-1.6909877E-7
```
FeedForwardNetwork class

public class com.imsl.datamining.neural.FeedForwardNetwork extends
com.imsl.datamining.neural.Network

A representation of a feed forward neural network.

A Network contains an InputLayer, an OutputLayer and zero or more HiddenLayers. The null
InputLayer and OutputLayer are automatically created by the
com.imsl.datamining.neural.Network (p. 2090) constructor. The InputNodes are added using
the getLayer().createInputs(nInputs) method. Output Perceptrons are added using the
getLayer().createPerceptrons(nOutputs), and HiddenLayers can be created using the
createLayer().createPerceptrons(nPerceptrons) method.

The InputLayer contains InputNodes. The HiddenLayers and OutputLayers contain Perceptron
nodes. These Nodes are created using factory methods in the Layers.

The Network also contains Links between Nodes. Links are created by methods in this class.

Each Link has a weight and gradient value. Each Perceptron node has a bias value. When the
Network is trained, the weight and bias values are used as initial guesses. After the Network is trained
the weight, gradient and bias values are set to the values computed by the training.

A feed forward network is a network in which links are only allowed from one layer to a following layer.
Constructor

**FeedForwardNetwork**

```java
public FeedForwardNetwork()
```

**Description**

Creates a new instance of FeedForwardNetwork.

Methods

**createHiddenLayer**

```java
public HiddenLayer createHiddenLayer()
```

**Description**

Creates a HiddenLayer.

**Returns**

A HiddenLayer object which specifies a neural network hidden layer.

**findLink**

```java
public Link findLink(Node from, Node to)
```

**Description**

Returns the Link between two Nodes.

**Parameters**

- `from` – The origination Node.
- `to` – The destination Node.

**Returns**

A Link between the two Nodes, or null if no such Link exists.

**findLinks**

```java
public Link[] findLinks(Node to)
```

**Description**

Returns all of the Links to a given Node.

**Parameter**

- `to` – A Node who's Links are to be determined.

**Returns**

An array of Links containing all of the Links to the given Node.

**forecast**

```java
public double[] forecast(double[] x)
```
**Description**
Computes a forecast using the Network.

**Parameter**
- \( x \) – A double array of values to which the Nodes in the InputLayer are to be set.

**Returns**
A double array containing the values of the Nodes in the OutputLayer.

---

**getForecastGradient**
```java
public double[][] getForecastGradient(double[] xData)
```

**Description**
Returns the derivatives of the outputs with respect to the weights.

**Parameter**
- \( xData \) – A double array which specifies the input values at which the gradient is to be evaluated.

**Returns**
A double array containing the gradient values. The value of gradient[1][j] is \( dy_i/dw_j \), where \( y_i \) is the \( i \)-th output and \( w_j \) is the \( j \)-th weight.

---

**getHiddenLayers**
```java
public HiddenLayer[] getHiddenLayers()
```

**Description**
Returns the HiddenLayers in this network.

**Returns**
An array of HiddenLayers in this network.

---

**getInputLayer**
```java
public InputLayer getInputLayer()
```

**Description**
Returns the InputLayer.

**Returns**
The neural network InputLayer.

---

**getLinks**
```java
public Link[] getLinks()
```

**Description**
Return all of the Links in this Network.
Returns
An array of Links containing all of the Links in this Network.

**getNumberOfInputs**
```java
public int getNumberOfInputs()
```

**Description**
Returns the number of inputs to the Network.

**Returns**
An int containing the number of inputs to the Network.

**getNumberOfLinks**
```java
public int getNumberOfLinks()
```

**Description**
Returns the number of Links in the Network.

**Returns**
An int which contains the number of Links in the Network.

**getNumberOfOutputs**
```java
public int getNumberOfOutputs()
```

**Description**
Returns the number of outputs from the Network.

**Returns**
An int containing the number of outputs from the Network.

**getNumberOfWeights**
```java
public int getNumberOfWeights()
```

**Description**
Returns the number of weights in the Network.

**Returns**
An int which contains the number of weights in the Network.

**getOutputLayer**
```java
public OutputLayer getOutputLayer()
```

**Description**
Returns the OutputLayer.

**Returns**
The neural network OutputLayer.

**getPerceptrons**
```java
public Perceptron[] getPerceptrons()
```
Description
Returns the Perceptrons in this Network.

Returns
An array of Perceptrons in this network.

getWeights
public double[] getWeights()

Description
Returns the weights for the Links in this network.

Returns
An array of doubles containing the weights. The array contains the weights for each Link followed by the Perceptron bias values. The Link weights are in the order in which the Links were created. The weight values are first, followed by the bias values in the HiddenLayers and then the bias values in the OutputLayer, and then by the order in which the Perceptrons were created.

link
public Link link(Node from, Node to)

Description
Establishes a Link between two Nodes. Any existing Link between these Nodes is removed.

Parameters
from – The origination Node.
to – The destination Node.

Returns
A Link between the two Nodes.

link
public Link link(Node from, Node to, double weight)

Description
Establishes a Link between two Nodes with a specified weight.

Parameters
from – The origination Node.
to – The destination Node.
weight – A double which specifies the weight to be given the Link.

Returns
A Link between the two Nodes.

linkAll
public void linkAll()
Description
For each Layer in the Network, link each Node in the Layer to each Node in the next Layer.

linkAll
public void linkAll(Layer from, Layer to)

Description
Link all of the Nodes in one Layer to all of the Nodes in another Layer.

Parameters
- from – The origination Layer.
- to – The destination Layer.

remove
public void remove(Link link)

Description
Removes a Link from the network.

Parameter
- link – The Link deleted from the network.

setEqualWeights
public void setEqualWeights(double[][] xData)

Description
Initializes network weights using equal weighting.

The equal weights approach starts by assigning equal values to the inputs of each Perceptron. If a Perceptron has 4 inputs, then this method starts by assigning the value 1/4 to each of the perceptron’s input weights. The bias weight is initially assigned a value of zero.

The weights for the first Layer of Perceptrons, either the first HiddenLayer if the number of Layers is greater than 1 or the OutputLayer, are scaled using the training patterns. Scaling is accomplished by dividing the initial weights for the first Layer by the standard deviation, s, of the potential for that Perceptron. The bias weight is set to -avg/s, where avg is the average potential for that Perceptron. This makes the average potential for the Perceptrons in this first Layer approximately 0 and its standard deviation equal to 1.

This reduces the possibility of saturation during network training resulting from very large or small values for the Perceptron’s potential. During training random noise is added to these initial values at each training stage. If the EpochTrainer is used, noise is added to these initial values at the start of each epoch.

Parameter
- xData – An input double matrix containing training patterns. The number of columns in xData must equal the number of Perceptrons in the InputLayer.

setRandomWeights
public void setRandomWeights(double[][] xData, Random random)
Description
Initializes network weights using random weights.

The RandomWeights algorithm assigns equal weights to all Perceptrons, except those in the first Layer connected to the InputLayer. Like the EqualWeights algorithm, Perceptrons not in the first Layer are assigned weights $1/k$, where $k$ is the number of inputs connected to that Perceptron.

For the first Layer Perceptron weights, they are initially assigned values from the uniform random distribution on the interval $[-0.5, +0.5]$. These are then scaled using the training patterns. The random weights for a Perceptron are divided by $s$, the standard deviation of the potential for that Perceptron calculated using the initial random values. Its bias value is set to $-\text{avg}/s$, where $\text{avg}$ is the average potential for that Perceptron potential for the Perceptrons in this first Layer approximately 0 and its standard deviation equal to 1.

This reduces the possibility of saturation during network training resulting from very large or small values for the Perceptron’s potential. During training random noise is added to these initial values at each training stage. If the EpochTrainer is used, noise is added to these initial values at the start of each epoch.

Parameters
- xData – An input double matrix containing training patterns. The number of columns in xData must equal the number of Perceptrons in the InputLayer.
- random – A Random object.

setWeights
public void setWeights(double[] weights)

Description
Sets the weights for the Links in this Network.

Parameter
- weights – A double array containing the weights in the same order as com.imsl.datamining.neural.FeedForwardNetwork.getWeights (p. 2103).

validateLink
protected void validateLink(Node from, Node to) throws IllegalArgumentException

Description
Checks that a Link between two Nodes is valid.

In a FeedForwardNetwork a Link must be from a node in one Layer to a Node in a later Layer. Intermediate Layers can be skipped, but a Link cannot go backward.

Parameters
- from – The origination Node.
- to – The destination Node.

Exception
IllegalArgumentException is thrown if the Link is not valid.
**Example: FeedForwardNetwork**

This example trains a 2-layer network using 100 training patterns from one nominal and one continuous input attribute. The nominal attribute has three classifications which are encoded using binary encoding. This results in three binary network input columns. The continuous input attribute is scaled to fall in the interval [0, 1].

The network training targets were generated using the relationship:

\[ y = 10 \times X_1 + 20 \times X_2 + 30 \times X_3 + 2.0 \times X_4, \]

where

\[ X_1, X_2, X_3 \] are the three binary columns, corresponding to categories 1-3 of the nominal attribute, and \( X_4 \) is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons in the hidden layer and one in the output layer. The following figure illustrates this structure:

There are a total of 19 weights in this network. The activations functions are all linear. Since the target output is a linear function of the input attributes, linear activation functions guarantee that the network
forecasts will exactly match their targets. Of course, this same result could have been obtained using linear multiple regression. Training is conducted using the quasi-newton trainer.

```java
import com.imsl.datamining.neural.*;
import java.io.*;
import java.util.logging.*;

//***
// Two Layer Feed-Forward Network with 4 inputs: 1 nominal with 3 categories, //
// encoded using binary encoding, 1 continuous input attribute, and 1 output
// target (continuous).
// There is a perfect linear relationship between the input and output
// variables:
//
// MODEL: Y = 10*X1+20*X2+30*X3+2*X4
//
// Variables X1-X3 are the binary encoded nominal variable and X4 is the
// continuous variable.
//***
public class FeedForwardNetworkEx1 implements Serializable {

 // Network Settings
 private static int nObs = 100; // number of training patterns
 private static int nInputs = 4; // four inputs
 private static int nCategorical = 3; // three categorical attributes
 private static int nContinuous = 1; // one continuous input attribute
 private static int nOutputs = 1; // one continuous output
 private static int nLayers = 2; // number of perceptron layers
 private static int nPerceptrons = 3; // perceptrons in hidden layer
 private static boolean trace = true; // Turns on/off training log
 private static Activation hiddenLayerActivation = Activation.LINEAR;
 private static Activation outputLayerActivation = Activation.LINEAR;
 private static String errorMsg = "";
 // Error Status Messages for the Least Squares Trainer
 private static String errorMsg0 = "--> Least Squares Training Completed Successfully";
 private static String errorMsg1 = "--> Scaled step tolerance was satisfied. The current"
 + " solution \may be an approximate local solution, or the"
 + " algorithm is making\nslow progress and is not near a"
 + " solution, or the Step Tolerance\nis too big";
 private static String errorMsg2 = "--> Scaled actual and predicted reductions in the function"
 + " are\nless than or equal to the relative function"
 + " convergence\ntolerance RelativeTolerance";
 private static String errorMsg3 = "--> Iterates appear to be converging to a noncritical point."
 + "Incorrect gradient information, a discontinuous function,\n"
 + "or stopping tolerances being too tight may be the cause.";
 private static String errorMsg4 = "--> Five consecutive steps with the maximum stepsize have"
 + " been taken. Either the function is unbounded below, or has\n"
 + "a finite asymptote in some direction, or the maximum stepsize\n"
 + " is too small.";
 private static String errorMsg5
```

---

**Neural Nets**

**FeedForwardNetwork • 2107**
= "---> Too many iterations required"

// categoricalAtt[]: A 2D matrix of values for the categorical training attribute. In this example, the single categorical attribute has 3 categories that are encoded using binary encoding for input into the network.
// \{1,0,0\} = category 1, \{0,1,0\} = category 2, and \{0,0,1\} = category 3.
private static double categoricalAtt[][] = {
    \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\},
    \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\}, \{1, 0, 0\},
    \{1, 0, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\},
    \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\},
    \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\},
    \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\}, \{0, 1, 0\},
    \{0, 1, 0\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\},
    \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\},
    \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}, \{0, 0, 1\}
};

// contAtt[]: A matrix of values for the continuous training attribute
private static double contAtt[] = {
    4.007054658, 7.10028447, 4.740350984, 5.714553211, 6.205437459,
    2.598930065, 8.65089967, 5.705787357, 2.513348184, 2.723795955,
    4.1829356, 1.93280416, 0.332941608, 6.745567628, 5.938588463,
    7.273544478, 3.162117939, 4.205381208, 0.16417475, 2.883418275,
    0.629342241, 1.082223406, 8.180324708, 0.004894314, 7.856215418,
    7.97143157, 8.350033996, 3.778254431, 6.964837082, 6.13938006,
    0.48610387, 5.686627923, 8.146173848, 5.879852653, 4.587492779,
    0.714028533, 7.56324211, 8.406012623, 4.225264144, 6.369220241,
    4.43277228, 9.52166984, 7.935791508, 4.557155333, 7.97601508,
    4.913538616, 1.473658514, 2.59238905, 1.386872932, 7.04651685,
    1.432128376, 1.15358908, 5.656149, 3.31163251, 4.648324851,
    5.042514515, 0.657054195, 7.958308093, 7.557807384, 7.901990083,
    5.236088, 6.95582150, 8.362167045, 4.875903563, 1.72923971,
    4.380370223, 8.527875685, 2.489198107, 3.711472959, 1.47692681,
    3.84482801, 4.825754155, 5.642267843, 5.33937786, 4.404813223,
    1.61543829, 7.542969339, 8.10054268, 0.98625265, 4.744819569,
    8.926039258, 8.613441887, 7.749389991, 6.551841576, 8.637046989,
    4.560281415, 1.386055807, 0.778869034, 3.883379045, 2.364501589,
    6.648737525, 1.21754765, 3.90889368, 4.253313879, 9.3118696,
    3.811593836, 5.78471629, 3.414486462, 9.345413015, 1.024053777
};

// outs[]: A 2D matrix containing the training outputs for this network
// In this case there is an exact linear relationship between these outputs and the inputs: outs = 10*X1+20*X2+30*X3+2*X4, where X1-X3 are the categorical variables and X4=contAtt
private static double outs[] = {
18.01410932, 24.20056894, 19.48070197, 21.42910642, 22.41087492,
15.19786013, 27.30067993, 21.41157471, 15.02669637, 15.44759191,
24.54708896, 16.32423588, 18.41076242, 10.3282949, 15.76683655,
11.25868488, 12.16446811, 26.36064942, 26.00978863, 25.71243084,
25.59428631, 26.70006799, 17.55650886, 23.92967416, 22.2786012,
21.42805707, 35.12648422, 36.81202525, 28.45052291, 32.73844048,
28.8654444, 39.04333968, 52.87158302, 29.11431067, 35.95203012,
28.22797723, 22.94731703, 25.18467781, 22.77345886, 34.09210337,
22.86425675, 22.30716197, 31.3122982, 26.62326502, 29.2966497,
30.80502903, 21.3140839, 35.91671619, 35.11574077, 35.80398017,
30.4726176, 33.91164302, 36.72433409, 29.75180713, 23.45845894,
38.76074045, 47.05575137, 34.97839621, 37.42294592, 38.35385362,
41.6895676, 39.65108381, 41.28453669, 40.67987557, 38.88162645,
33.23028766, 45.08593868, 46.20108537, 31.9725053, 39.48963914,
47.85207852, 47.62668377, 45.49876798, 43.10368315, 47.274094,
39.1205262, 32.77211017, 31.55773807, 37.76675809, 34.7290318,
49.2974505, 32.4350953, 37.81775874, 38.50662776, 48.623739392,
37.62390767, 41.56943258, 36.8289729, 48.69082603, 32.04810755
};

// ************************************************************************
// MAIN
// ************************************************************************

public static void main(String[] args) throws Exception {

double weight[]; // network weights
double gradient[];// network gradient after training
double xData[][]; // Input Attributes for Trainer
double yData[][]; // Output Attributes for Trainer
int nWeights = 0; // Number of weights obtained from network
String networkFileName = "FeedForwardNetworkEx1.ser";
String trainerFileName = "FeedForwardTrainerEx1.ser";
String xDataFileName = "FeedForwardxDataEx1.ser";
String yDataFileName = "FeedForwardyDataEx1.ser";
String trainLogName = "FeedForwardTraining.log";

// ******************************************************************
// PREPROCESS TRAINING PATTERNS
// ******************************************************************
System.out.println("---> Starting Preprocessing of Training Patterns");

xData = new double[nObs][nInputs];
yData = new double[nObs][nOutputs];
for (i = 0; i < nObs; i++) {
    for (j = 0; j < nCategorical; j++) {
        xData[i][j] = categoricalAtt[i][j];
    }
    // Scale continuous input
    xData[i][nCategorical] = contAtt[i] / 10.0;
    // outputs are unscaled
    yData[i][0] = outs[i];
}

// ************************************************************************

// CREATE FEEDFORWARD NETWORK
// ******************************************************************
System.out.println("--> Creating Feed Forward Network Object");
FeedForwardNetwork network = new FeedForwardNetwork();
// setup input layer with number of inputs = nInputs = 4
network.getInputLayer().createInputs(nInputs);
// create a hidden layer with nPerceptrons=3 perceptrons
network.createHiddenLayer().createPerceptrons(nPerceptrons);
// create output layer with nOutputs=1 output perceptron
network.getOutputLayer().createPerceptrons(nOutputs);
// link all inputs and perceptrons to all perceptrons in the next layer
network.linkAll();
// Get Network Perceptrons for Setting Their Activation Functions
Perceptron perceptrons[] = network.getPerceptrons();
// Set all perceptrons to linear activation
for (i = 0; i < perceptrons.length - 1; i++) {
  perceptrons[i].setActivation(hiddenLayerActivation);
}
perceptrons[perceptrons.length - 1].
  setActivation(outputLayerActivation);
System.out.println("--> Feed Forward Network Created with 2 Layers");
// ******************************************************************
// TRAIN NETWORK USING QUASI-NEWTON TRAINER
// ******************************************************************
System.out.println("--> Training Network using Quasi-Newton Trainer");
// Create Trainer
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
// Set Training Parameters
trainer.setMaximumTrainingIterations(1000);
// If tracing is requested setup training logger
if (trace) {
  try {
    Handler handler = new FileHandler(trainLogName);
    Logger logger = Logger.getLogger("com.imsl.datamining.neural");
    logger.setLevel(Level.FINEST);
    logger.addHandler(handler);
    handler.setFormatter(QuasiNewtonTrainer.getFormatter());
    System.out.println("--> Training Log Created in "+ trainLogName);
  } catch (Exception e) {
    System.out.println("--> Cannot Create Training Log.");
  }
}
// Train Network
trainer.train(network, xData, yData);
// Check Training Error Status
switch (trainer.getErrorStatus()) {
  case 0:
    errorMsg = errorMsg0;
    break;
  case 1:
    errorMsg = errorMsg1;
    break;
  case 2:
    errorMsg = errorMsg2;
    break;
case 3:
    errorMsg = errorMsg3;
    break;
case 4:
    errorMsg = errorMsg4;
    break;
case 5:
    errorMsg = errorMsg5;
    break;
default:
    errorMsg = errorMsg0;
}
System.out.println(errorMsg);
// ******************************************************************
// DISPLAY TRAINING STATISTICS
// ******************************************************************
double stats[] = network.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("*******************");
System.out.println("--> SSE: " + (float) stats[0]);
System.out.println("--> RMS: " + (float) stats[1]);
System.out.println("--> Laplacian Error: " + (float) stats[2]);
System.out.println("--> Scaled Laplacian Error: " + (float) stats[3]);
System.out.println("--> Largest Absolute Residual: " + (float) stats[4]);
System.out.println("*******************");
// ******************************************************************
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// ******************************************************************
System.out.println("--> Getting Network Weights and Gradients");
// Get weights
weight = network.getWeights();
// Get number of weights = number of gradients
nWeights = network.getNumberOfWeights();
// Obtain Gradient Vector
gradient = trainer.getErrorGradient();
// Print Network Weights and Gradients
System.out.println(" ");
System.out.println("--> Network Weights and Gradients:");
System.out.println(" ");
for (i = 0; i < nWeights; i++) {
    System.out.println("w[" + i + "]=" + (float) weight[i] + ", g[" + i + "]=" + (float) gradient[i]);
}
System.out.println(" ");
System.out.println(" ");
System.out.println(" ");
System.out.println(" ");
// SAVE THE TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECT
// ******************************************************************
System.out.println("\n--> Saving Trained Network into "+ networkFileName);
write(network, networkFileName);
System.out.println("---> Saving xData into " + xDataFileName);
write(xData, xDataFileName);
System.out.println("---> Saving yData into " + yDataFileName);
write(yData, yDataFileName);
System.out.println("---> Saving Network Trainer into " + trainerFileName);
write(trainer, trainerFileName);
}

// **********************************************************************
// WRITE SERIALIZED NETWORK TO A FILE
// **********************************************************************
static public void write(Object obj, String filename)
throws IOException {
    FileOutputStream fos = new FileOutputStream(filename);
    ObjectOutputStream oos = new ObjectOutputStream(fos);
    oos.writeObject(obj);
    oos.close();
    fos.close();
}

Output

--> Starting Preprocessing of Training Patterns
--> Creating Feed Forward Network Object
--> Feed Forward Network Created with 2 Layers
--> Training Network using Quasi-Newton Trainer
--> Training Log Created in FeedForwardTraining.log
--> Least Squares Training Completed Successfully
******************************************************************************
--> SSE: 1.013444E-15
--> RMS: 2.007463E-19
--> Laplacian Error: 3.0058033E-7
--> Scaled Laplacian Error: 3.5352335E-10
--> Largest Absolute Residual: 2.784276E-8
******************************************************************************

--> Getting Network Weights and Gradients

--> Network Weights and Gradients:
******************************************************************************
  w[0]=-1.4917853 g[0]=-2.6110781E-8
  w[1]=-1.4917853 g[1]=-2.6110781E-8
  w[8]=4.725622 g[8]=-5.2738493E-8

2112 • FeedForwardNetwork JMSL
Layer class

abstract public class com.imsl.datamining.neural.Layer implements Serializable

The base class for Layers in a neural network.

Constructor

Layer
protected Layer(FeedForwardNetwork network)

Description
Constructs a Layer.

Parameter

    network – The FeedForwardNetwork to which this Layer is to be associated.

Methods

addNode
protected void addNode(Node node)

Description
Associates a Perceptron with this Layer.
Parameter

node – A Node to associate with this Layer.

getIndex
public int getIndex()

Description
Returns the index of this Layer.

Returns
An int which contains the value of property index.

getNodes
public Node[] getNodes()

Description
Return a list of the Perceptrons in this Layer.

Returns
An array containing the Nodes associated with this Layer.

InputLayer class

Input layer in a neural network. An InputLayer is automatically created by Network.

Methods

createInput
public InputNode createInput()

Description
Creates an InputNode in the InputLayer of the neural network.

createInputs
public InputNode[] createInputs(int n)

Description
Creates a number of InputNodes in this Layer of the neural network.
**Parameter**

- n – An int which specifies the number of InputNodes to be created in this Layer.

**Returns**

An array containing the created InputNodes.

---

**getNodes**

```java
public Node[] getNodes()
```

**Description**

Return the Perceptrons in the InputLayer.

**Returns**

An InputNode array containing the Nodes in the InputLayer.

---

### HiddenLayer class

```java
```

Hidden layer in a neural network. This is created by a factory method in Network.

---

### Methods

**createPerceptron**

```java
public Perceptron createPerceptron()
```

**Description**

Creates a Perceptron in this Layer of the neural network. The created Perceptron uses the logistic activation function and has an initial bias value of zero.

**createPerceptron**

```java
public Perceptron createPerceptron(Activation activation, double bias)
```

**Description**

Creates a Perceptron in this Layer with a specified activation function and bias.

**Parameters**

- activation – The Activation object which specifies the activation function to be used.
- bias – A double which specifies the initial value for the bias weight.
createPerceptrons
public Perceptron[] createPerceptrons(int n)

Description
Creates a number of Perceptrons in this Layer of the neural network. The created Perceptrons use the logistic activation function and have an initial bias value of zero.

Parameter
n – An int which specifies the number of Perceptrons to be created.

Returns
An array containing the created Perceptrons.

createPerceptrons
public Perceptron[] createPerceptrons(int n, Activation activation, double bias)

Description
Creates a number of Perceptrons in this Layer with the specified bias.

Parameters
n – An int which specifies the number of Perceptrons to be created.
activation – The Activation object which specifies the action function to be used.
bias – A double containing the initial value to be applied as the bias values for the Perceptrons.

Returns
An array containing the created Perceptrons.

OutputLayer class
Output layer in a neural network. An empty OutputLayer is automatically created by FeedForwardNetwork.

Methods
createPerceptron
public Perceptron createPerceptron()
**Description**

Creates a Perceptron in this Layer of the neural network. By default, the created Perceptron uses the linear activation function and has an initial bias value of zero.

**createPerceptron**

```java
public Perceptron createPerceptron(Activation activation, double bias)
```

**Description**

Creates a Perceptron in this Layer with a specified Activation and bias.

**Parameters**

- `activation` – The Activation object which specifies the action function to be used.
- `bias` – A double which specifies the initial value for the bias for this Perceptron.

**createPerceptrons**

```java
public Perceptron[] createPerceptrons(int n)
```

**Description**

Creates a number of Perceptrons in this Layer of the neural network. By default, they will use linear activation and a zero initial bias.

**Parameter**

- `n` – An int which specifies the number of Perceptrons to be created in this layer.

**Returns**

An array containing the created Perceptrons.

**createPerceptrons**

```java
public Perceptron[] createPerceptrons(int n, Activation activation, double bias)
```

**Description**

Creates a number of Perceptrons in this Layer with specified activation and bias.

**Parameters**

- `n` – An int which specifies the number of Perceptrons to be created.
- `activation` – The Activation object which indicates the action function to be used.
- `bias` – A double which specifies the initial bias for the Perceptrons.

**Returns**

An array containing the created Perceptrons.

**getNodes**

```java
public Node[] getNodes()
```
**Description**

Return the Perceptrons in the OutputLayer.

This method overrides the method in `com.imsl.datamining.neural.Layer` (p. 2113) to return the Perceptrons in an `OutputPerceptron` array.

**Returns**

An `OutputPerceptron[]` array containing the Nodes in the OutputLayer.

---

**Node class**

```java
abstract public class com.imsl.datamining.neural.Node implements Serializable
```

A Node in a neural network.

Node is an abstract class that serves as the base class for the concrete classes `InputNode` and `Perceptron`.

---

**Method**

**getLayer**

```java
public Layer getLayer()
```

**Description**

Returns the Layer in which this Node exists.

**Returns**

The Layer associated with this Node.

---

**InputNode class**

```java
```

A Node in the InputLayer.

InputNodes are not created directly. Instead factory methods in `InputLayer` are used to create InputNodes within the InputLayer. For example, `InputLayer.createInput()` creates a single `InputNode`.

---

2118 • Node  JMSL
Methods

getValue
public double getValue()

Description
Returns the value of this node.

Returns
A double which contains the value of this InputNode.

setValue
public void setValue(double value)

Description
Sets the value of this Node.

Parameter
value – A double which specifies the new value of this InputNode.

Perceptron class


A Perceptron node in a neural network. Perceptrons are created by factory methods in a Network Layer.

Each Perceptron has an activation function ($g$) and a bias ($\mu$). The value of a Perceptron is given by $g(\sum w_i X_i + \mu)$, where $X_i$ are the values of nodes input to this Perceptron with weights $w_i$.

Network training will use existing bias values for the starting values for the trainer. Upon completion of network training, the bias values are set to the values computed by the trainer.

Methods

getActivation
public Activation getActivation()

Description
Returns the activation function.
Returns
An Activation object indicating the activation function.

**getBias**
public double getBias()

Description
Returns the bias for this Perceptron.

Returns
A double representing the bias for this Perceptron.

**setActivation**
public void setActivation(Activation activation)

Description
Sets the activation function.

Parameter
activation – An Activation object which represents the activation $g$ to be used by this Perceptron.

**setBias**
public void setBias(double bias)

Description
Sets the bias for this Perceptron.

Parameter
bias – A double scalar value to which the bias is to be set. The bias has a default value of 0.

---

**OutputPerceptron class**


A Perceptron in the OutputLayer. OutputPerceptrons are created by factory methods in OutputLayer.

OutputPerceptrons are not created directly. Instead factory methods in OutputLayer are used to create OutputPerceptrons within the OutputLayer. For example, OutputLayer.createPerceptron() creates a single OutputPerceptron.
Method

**getValue**

```java
public double getValue()
```

**Description**
Returns the value of the OutputPerceptron determined using the current network state and inputs.

**Returns**
A double value of the OutputPerceptron determined using the current network state and inputs.

Activation interface

```java
public interface com.imsl.datamining.neural.Activation implements Serializable
```

Interface implemented by perceptron activation functions.

Standard activation functions are defined as static members of this interface. New activation functions can be defined by implementing a method, `g(double x)`, returning the value and a method, `derivative(double x, double y)`, returning the derivative of `g` evaluated at `x` where `y = g(x)`.

**Fields**

**LINEAR**

```java
static final public Activation LINEAR
```

The identity activation function, `g(x) = x`.

**LOGISTIC**

```java
static final public Activation LOGISTIC
```

The logistic activation function, `g(x) = \frac{1}{1+e^{-x}}`.

**LOGISTIC_TABLE**

```java
static final public Activation LOGISTIC_TABLE
```

The logistic activation function computed using a table. This is an approximation to the logistic function that is faster to compute.

This version of the logistic function differs from the exact version by at most 4.0e-9.

Networks trained using this activation should not use `Activation.LOGISTIC` for forecasting. Forecasting should be done using the specific function supplied during training.
SOFTMAX
static final public Activation SOFTMAX
The softmax activation function.
\[
\text{softmax}_i = \frac{e^{Z_i}}{\sum_{j=1}^{C} e^{Z_j}}
\]

SQUASH
static final public Activation SQUASH
The squash activation function, \( g(x) = \frac{x}{1+|x|} \)

TANH
static final public Activation TANH
The hyperbolic tangent activation function, \( g(x) = \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \).

Methods

derivative
public double derivative(double x, double y)
Description
Returns the value of the derivative of the activation function.
Parameters

x – A double which specifies the point at which the activation function is to be evaluated.
y – A double which specifies \( y = g(x) \), the value of the activation function at \( x \). This parameter is not mathematically required, but can sometimes be used to more quickly compute the derivative.

Returns
A double containing the value of the derivative of the activation function at \( x \).

\text{g}
public double g(double x)
Description
Returns the value of the activation function.
Parameter

x – A double is the point at which the activation function is to be evaluated.

Returns
A double containing the value of the activation function at \( x \).
public class com.imsl.datamining.neural.Link implements Serializable

A link in a neural network.

Link objects are not created directly. Instead, they are created by factory methods in FeedForwardNetwork.

The most useful method is FeedForwardNetwork.linkAll which creates Link objects connecting every Node in each Layer to every Node in the next Layer.

The method FeedForwardNetwork.link(Node, Node) creates a Link from a Node to any Node in a later Layer.

The method FeedForwardNetwork.findLink(Node, Node) returns the Link connecting two Nodes in the Network.

The method FeedForwardNetwork.remove(Link) removes a Link from the Network.

Each Link object contains a weight. Weights are used in computing Perceptron values.

Methods

getFrom
public Node getFrom()

Description
Returns the origination Node for this Link.

Returns
A Node which is the origination Node for this Link.

geto
public Node getTo()

Description
Returns the destination Node for this Link.

Returns
A Node which is the destination Node for this Link.

getWeight
public double getWeight()

Description
Returns the weight for this Link.
Returns
A double which contains the weight attributed to this Node.

setWeight
public void setWeight(double weight)

Description
Sets the weight for this Link.

Parameter
weight – A double which specifies the weight to attribute to this Link.

Trainer interface

public interface com.imsl.datamining.neural.Trainer implements Serializable

Interface implemented by classes used to train a network. The method train is used to adjust the weights in a network to best fit a set of observed data. After a network is trained, the other methods in this interface can be used to check the quality of the fit.

Methods

gLErrorGradient
public double[] getErrorGradient()

Description
Returns the value of the gradient of the error function with respect to the weights.

Returns
A double array, the length of the number of weights, containing the value of the gradient of the error function with respect to the weights at the computed optimal point. Before training, null is returned.

gLErrorStatus
public int getErrorStatus()

Description
Returns the error status.

Returns
An int specifying the error. If there was no error, zero is returned. A non-zero return indicates a potential problem with the trainer.
**getErrorValue**

public double getErrorValue()

**Description**

Returns the value of the error function minimized by the trainer.

**Returns**

A double indicating the final value of the error function from the last training. Before training, NaN is returned.

---

**train**

public void train(Network network, double[][] xData, double[][] yData)

**Description**

Trains the neural network using supplied training patterns.

**Parameters**

- network – A Network object, which is the Network to be trained.
- xData – A double matrix containing the input training patterns. The number of columns in xData must equal the number of nodes in the InputLayer. Each row of xData contains a training pattern.
- yData – A double matrix containing the output training patterns. The number of columns in yData must equal the number of Perceptrons in the OutputLayer. Each row of yData contains a training pattern.

---

**QuasiNewtonTrainer class**

```java

Trains a network using the quasi-Newton method, MinUnconMultiVar.

The Java Logging API can be used to trace the performance training. The name of this logger is com.imsl.datamining.QuasiNewtonTrainer. Accumulated levels of detail correspond to Java's FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of information and FINEST yielding the most. The levels of output yield the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE</td>
<td>A message on entering and exiting method train, and any exceptions from and the exit status of MinUnconMultiVar</td>
</tr>
<tr>
<td>FINER</td>
<td>All of the messages in FINE, the input settings, and a summary report with the statistics from Network.computeStatistics(), the number of function evaluations and the elapsed time.</td>
</tr>
<tr>
<td>FINEST</td>
<td>All of the messages in FINER, and a table of the computed weights and their gradient values.</td>
</tr>
</tbody>
</table>
```

Neural Nets  QuasiNewtonTrainer • 2125
Field

**SUM_OF_SQUARES**
static final public QuasiNewtonTrainer.Error SUM_OF_SQUARES

Compute the sum of squares error. The sum of squares error term is \( e(y, \hat{y}) = (y - \hat{y})^2 / 2 \).
This is the default Error object used by QuasiNewtonTrainer.

Constructor

**QuasiNewtonTrainer**
public QuasiNewtonTrainer()

**Description**
Constructs a QuasiNewtonTrainer object.

Methods

**clone**
protected Object clone()

**Description**
Clones a copy of the trainer.

**getError**
public QuasiNewtonTrainer.Error getError()

**Description**
Returns the function used to compute the error to be minimized.

**Returns**
The Error object containing the function to be minimized.

**getErrorGradient**
public double[] getErrorGradient()

**Description**
Returns the value of the gradient of the error function with respect to the weights.
Returns
A double array whose length is equal to the number of network weights, containing the value of the gradient of the error function with respect to the weights. Before training, null is returned.

getErrorStatus
public int getErrorStatus()

Description
Returns the error status from the trainer.

Returns
An int representing the error status from the trainer. Zero indicates that no errors were encountered during training. Any non-zero value indicates that some error condition arose during training. In many cases the trainer is able to recover from these conditions and produce a well-trained network.

<table>
<thead>
<tr>
<th>Error Status</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error occurred during training.</td>
</tr>
<tr>
<td>1</td>
<td>The last global step failed to locate a lower point than the current error value. The current solution may be an approximate solution and no more accuracy is possible, or the step tolerance may be too large.</td>
</tr>
<tr>
<td>2</td>
<td>Relative function convergence; both the actual and predicted relative reductions in the error function are less than or equal to the relative function convergence tolerance.</td>
</tr>
<tr>
<td>3</td>
<td>Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or the step tolerance is too big.</td>
</tr>
<tr>
<td>4</td>
<td>MinUnconMultiVar.FalseConvergenceException thrown by optimizer.</td>
</tr>
<tr>
<td>5</td>
<td>MinUnconMultiVar.MaxIterationsException thrown by optimizer.</td>
</tr>
<tr>
<td>6</td>
<td>MinUnconMultiVar.UnboundedBelowException thrown by optimizer.</td>
</tr>
</tbody>
</table>

getErrorValue
public double getErrorValue()

Description
Returns the final value of the error function.

Returns
A double representing the final value of the error function from the last training. Before training, NaN is returned.

getFormatter
static public Formatter getFormatter()
**Description**
Returns the logging formatter object. Logger support requires JDK1.4. Use with earlier versions returns null.

The returned Formatter is used as input to java.util.logging.Handler.setFormatter to format the output log.

**Returns**
The Formatter object, if present, or null.

**getLogger**
static public Logger getLogger()

**Description**
Returns the Logger object. This is the Logger used to trace this class. It is named com.imsl.datamining.neural.QuasiNewtonTrainer.

**Returns**
The Logger object, if present, or null.

**getTrainingIterations**
public int getTrainingIterations()

**Description**
Returns the number of iterations used during training.

**Returns**
An int representing the number of iterations used during training.

**getUseBackPropagation**
public boolean getUseBackPropagation()

**Description**
Returns the use back propagation setting.

**Returns**
a boolean specifying whether or not back propagation is being used for gradient calculations.

**setEpochNumber**
protected void setEpochNumber(int num)

**Description**
Sets the epoch number for the trainer.

**Parameter**
  num – An int array containing the epoch number.

**setError**
public void setError(QuasiNewtonTrainer.Error error)
Description
Sets the function used to compute the network error.

Parameter
- **error** – The Error object containing the function to be used to compute the network error. The default is to compute the sum of squares error, **SUM_OF_SQUARES**.

**setGradientTolerance**
public void setGradientTolerance(double gradientTolerance)

Description
Set the gradient tolerance.

Parameter
- **gradientTolerance** – A double specifying the gradient tolerance. Default: cube root of machine precision.

**setMaximumStepsize**
public void setMaximumStepsize(double maximumStepsize)

Description
Sets the maximum step size.

Parameter
- **maximumStepsize** – A nonnegative double value specifying the maximum allowable step size in the optimizer.

**setMaximumTrainingIterations**
public void setMaximumTrainingIterations(int maximumTrainingIterations)

Description
Sets the maximum number of iterations to use in a training.

Parameter
- **maximumTrainingIterations** – An int representing the maximum number of training iterations. Default: 100.

**setParallelMode**
protected void setParallelMode(ArrayList[] allLogRecords)

Description
Sets the trainer to be used in multi-threaded EpochTainer.

Parameter
- **allLogRecords** – An ArrayList array containing the log records.

**setStepTolerance**
public void setStepTolerance(double stepTolerance)
Description
Sets the scaled step tolerance. The second stopping criterion for com.imsl.math.MinUnconMultiVar (p. 357), the optimizer used by this Trainer, is that the scaled distance between the last two steps be less than the step tolerance.

Parameter

**stepTolerance** – A double which is the step tolerance. Default: 3.66685e-11.

**setUseBackPropagation**

```java
public void setUseBackPropagation(boolean flag)
```

Description
Sets whether or not to use the back propagation algorithm for gradient calculations during network training.

By default, the quasi-newton algorithm optimizes the network using numerical gradients. This method directs the quasi-newton trainer to use the back propagation algorithm for gradient calculations during network training. Depending upon the data and network architecture, one approach is typically faster than the other, or is less sensitive to finding local network optima.

Parameter

**flag** – boolean specifies whether or not to use the back propagation algorithm for gradient calculations. Default value is true.

**train**

```java
public void train(Network network, double[][] xData, double[][] yData)
```

Description
Trains the neural network using supplied training patterns.

Each row of `xData` and `yData` contains a training pattern. The number of rows in these two arrays must be at least equal to the number of weights in the network.

Parameters

**network** – The Network to be trained.
**xData** – An input double matrix containing training patterns. The number of columns in `xData` must equal the number of nodes in the input layer.
**yData** – An output double matrix containing output training patterns. The number of columns in `yData` must equal the number of perceptrons in the output layer.

---

QuasiNewtonTrainer.Error interface

```java
```

---
Error function to be minimized by trainer. This trainer attempts to solve the problem

$$\min_w \sum_{i=0}^{n-1} e(y_i, \hat{y}_i)$$

where \(w\) are the weights, \(n\) is the number of training patterns, \(y_i\) is a training target output and \(\hat{y}_i\) is its forecast value.

This interface defines the function \(e(y, \hat{y})\) and its derivative with respect to its computed value, \(de/d\hat{y}\).

**Methods**

---

**error**

```java
public double error(double[] computed, double[] expected)
```

**Description**

Returns the contribution to the error from a single training output target. This is the function \(e(y_i, \hat{y}_i)\).

**Parameters**

- `computed` – A double representing the computed value.
- `expected` – A double representing the expected value.

**Returns**

A double representing the contribution to the error from a single training output target.

---

**errorGradient**

```java
public double[] errorGradient(double[] computed, double[] expected)
```

**Description**

Returns the derivative of the error function with respect to the forecast output.

**Parameters**

- `computed` – A double representing the computed value.
- `expected` – A double representing the expected value.

**Returns**

A double representing the derivative of the error function with respect to the forecast output.

---

**QuasiNewtonTrainer.Objective class**

```java
```

The Objective class is passed to the optimizer.
Fields

nFunctionEvaluations
protected int nFunctionEvaluations

nObs
protected int nObs

nY
protected int nY

Method

f
public double f(double[] weights)

QuasiNewtonTrainer.GradObjective class

protected class com.ims1.datamining.neural.QuasiNewtonTrainer.GradObjective
extends com.ims1.datamining.neural.QuasiNewtonTrainer.Objective implements
com.ims1.math.MinUnconMultiVar.Gradient

The Objective class is passed to the optimizer.

Fields

nFunctionEvaluations
protected int nFunctionEvaluations

nObs
protected int nObs

nY
protected int nY
Method

gradient
public void gradient(double[] weights, double[] gradient)

QuasiNewtonTrainer.BlockObjective class

protected class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockObjective
extends com.imsl.datamining.neural.QuasiNewtonTrainer.Objective

Constructor

QuasiNewtonTrainer.BlockObjective
protected QuasiNewtonTrainer.BlockObjective()

Method

f
public double f(double[] weights)

QuasiNewtonTrainer.BlockGradObjective class

protected class
com.imsl.datamining.neural.QuasiNewtonTrainer.BlockGradObjective
extends com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective

Constructor

QuasiNewtonTrainer.BlockGradObjective
protected QuasiNewtonTrainer.BlockGradObjective()
Methods

\[ f \]
\[
\text{public double } f(\text{double}[] \text{ weights})
\]

\[ \text{gradient} \]
\[
\text{public void } \text{gradient}(\text{double}[] \text{ weights}, \text{double}[] \text{ gradient})
\]

LeastSquaresTrainer class

\[
\text{public class com.imsl.datamining.neural.LeastSquaresTrainer implements com.imsl.datamining.neural.Trainer, Serializable}
\]

Trains a FeedForwardNetwork using a Levenberg-Marquardt algorithm for minimizing a sum of squares error.

The Java Logging API can be used to trace the performance training. The name of this Logger is com.imsl.datamining.LeatSquaresTrainer. Accumulated levels of detail correspond to Java's FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of information and FINEST yielding the most. The levels of output yield the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE</td>
<td>A message on entering and exiting method train, and any exceptions from and the exit status of NonlinLeastSquares</td>
</tr>
<tr>
<td>FINER</td>
<td>All of the messages in FINE, the input settings, and a summary report with the statistics from Network.computeStatistics() and the elapsed time.</td>
</tr>
<tr>
<td>FINEST</td>
<td>All of the messages in FINER, and a table of the computed weights and their gradient values.</td>
</tr>
</tbody>
</table>

Constructor

LeastSquaresTrainer
\[
\text{public LeastSquaresTrainer()}
\]

Description

Creates a LeastSquaresTrainer.
Methods

clone
protected Object clone()

Description
Clones a copy of the trainer.

gerErrorGradient
public double[] getErrorGradient()

Description
Returns the value of the gradient of the error function with respect to the weights.

Returns
A double array whose length is equal to the number of network weights, containing the value of the gradient of the error function with respect to the weights. Before training, null is returned.

gerErrorStatus
public int getErrorStatus()

Description
Returns the error status from the trainer.

Returns
An int which contains the error status. Zero indicates that no errors were encountered during training. Any non-zero value indicates that some error condition arose during training.

In many cases the trainer is able to recover from these conditions and produce a well-trained network.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All convergence tests were met.</td>
</tr>
<tr>
<td>1</td>
<td>Scaled step tolerance was satisfied. The current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or StepTolerance is too big.</td>
</tr>
<tr>
<td>2</td>
<td>Scaled actual and predicted reductions in the function are less than or equal to the relative function convergence tolerance RelativeTolerance.</td>
</tr>
<tr>
<td>3</td>
<td>Iterates appear to be converging to a noncritical point. Incorrect gradient information, a discontinuous function, or stopping tolerances being too tight may be the cause.</td>
</tr>
<tr>
<td>4</td>
<td>Five consecutive steps with the maximum stepsize have been taken. Either the function is unbounded below, or has a finite asymptote in some direction, or the maximum stepsize is too small.</td>
</tr>
<tr>
<td>5</td>
<td>Too many iterations required</td>
</tr>
</tbody>
</table>
**getErrorValue**

```java
public double getErrorValue()
```

**Description**

Returns the final value of the error function.

**Returns**

A `double` containing the final value of the error function from the last training. Before training, `NaN` is returned.

**getFormatter**

```java
static public Formatter getFormatter()
```

**Description**

Returns the logging `Formatter` object. Logger support requires JDK1.4. Use with earlier versions returns `null`.

The returned `Formatter` is used as input to `java.util.logging.Handler.setFormatter` to format the output log.

**Returns**

A `Formatter` object, if present, or `null`.

**getLogger**

```java
static public Logger getLogger()
```

**Description**

Returns the `Logger` object. This is the `Logger` used to trace this class. It is named `com.imsl.datamining.neural.QuasiNewtonTrainer`.

**Returns**

The `Logger` object, if present, or `null`.

**setEpochNumber**

```java
protected void setEpochNumber(int num)
```

**Description**

Sets the epoch number for the trainer.

**Parameter**

- `num` – An `int` array containing the epoch number.

**setFalseConvergenceTolerance**

```java
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)
```

**Description**

Set the false convergence tolerance.
Parameter

falseConvergenceTolerance – a double specifying the false convergence tolerance. Default: 1.0e-14.

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Description
Set the gradient tolerance.

Parameter

gradientTolerance – A double specifying the gradient tolerance. Default: 2.0e-5.

setInitialTrustRegion
public void setInitialTrustRegion(double initialTrustRegion)

Description
Sets the intial trust region.

Parameter

initialTrustRegion – A double which specifies the initial trust region radius. Default: unlimited trust region.

setMaximumStepsize
public void setMaximumStepsize(double maximumStepsize)

Description
Sets the maximum step size.

Parameter

maximumStepsize – A nonnegative double value specifying the maximum allowable stepsize in the optimizer. Default: $10^3\|w\|_2$, where $w$ are the values of the weights in the network when training starts.

setMaximumTrainingIterations
public void setMaximumTrainingIterations(int maximumSolverIterations)

Description
Sets the maximum number of iterations used by the nonlinear least squares solver.

Parameter

maximumSolverIterations – An int which specifies the maximum number of iterations to be used by the nonlinear least squares solver. Its default value is 1000.

setParallelMode
protected void setParallelMode(ArrayList[] allLogRecords)
Description
Sets the trainer to be used in multi-threaded EpochTainer.

Parameter
allLogRecords – An ArrayList array containing the log records.

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Description
Sets the relative tolerance.

Parameter
relativeTolerance – A double which specifies the relative error tolerance. It must be in the interval [0,1]. Its default value is 1.0e-20.

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description
Set the step tolerance used to step between weights.

Parameter
stepTolerance – A double which specifies the scaled step tolerance to use when changing the weights. Default: 1.0e-5.

train
public void train(Network network, double[][] xData, double[][] yData)

Description
Trains the neural network using supplied training patterns.
Each row of xData and yData contains a training pattern. These number of rows in two arrays must be equal.

Parameters
network – The Network to be trained.
xData – A double matrix which contains the input training patterns. The number of columns in xData must equal the number of Nodes in the InputLayer.
yData – A double matrix which contains the output training patterns. The number of columns in yData must equal the number of Perceptrons in the OutputLayer.

EpochTrainer class

Two-stage training using randomly selected training patterns in stage I. The EpochTrainer, is a meta-trainer that combines two trainers. The first trainer is used on a series of randomly selected subsets of the training patterns. For each subset, the weights are initialized to their initial values plus a random offset.

Stage II then refines the result found in stage 1. The best result from the stage 1 trainings is used as the initial guess with the second trainer operating on the full set of training patterns. Stage II is optional, if the second trainer is null then the best stage 1 result is returned as the epoch trainer’s result.

The Java Logging API can be used to trace the performance training. The name of this logger is com.imsl.datamining.EpochTrainer. Accumulated levels of detail correspond to Java’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of information and FINEST yielding the most. The levels of output yield the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE</td>
<td>A message on entering and exiting method train, a message entering and exiting both stages 1 and 2, and a summary report (based on Network.computeStatistics upon completion of training.</td>
</tr>
<tr>
<td>FINER</td>
<td>All of the messages in FINE, a message entering and exiting each epoch in stage 1, the input settings, the value of the function being minimized in stage 1 for each epoch, a time stamp at the start of each iteration in stage 1 and at the beginning and end of stage 2, and (if there is a stage 2) a summary at the end of stage 1.</td>
</tr>
<tr>
<td>FINEST</td>
<td>All of the messages in FINER and a table of the computed weights and their gradient values.</td>
</tr>
</tbody>
</table>

**Constructors**

**EpochTrainer**

public EpochTrainer(Trainer stage1Trainer)

**Description**

Creates a single stage EpochTrainer. Stage 2 training is bypassed.

**Parameter**

stage1Trainer – The Trainer used in stage I.

**EpochTrainer**

public EpochTrainer(Trainer stage1Trainer, Trainer stage2Trainer)

**Description**

Creates an two-stage EpochTrainer.
Parameters

stage1Trainer – The stage I Trainer.

stage2Trainer – The stage II Trainer, or null if stage II is to be bypassed.

Methods

getEpochSize
public int getEpochSize()

Description
Returns the number of sample training patterns in each stage I epoch.

Returns
An int which contains the number of sample training patterns in each stage I epoch.

getAddressGradient
public double[] getErrorGradient()

Description
Returns the value of the gradient of the error function with respect to the weights.

Returns
A double array whose length is equal to the number of Network weights, containing the value of the gradient of the error function with respect to the weights. Before training, null is returned.

getAddressStatus
public int getErrorStatus()

Description
Returns the training error status.

Returns
An int containing the error status from stage 2. If there is no stage 2 then the number of stage 1 epochs that returned a non-zero error status is returned.

getAddressValue
public double getErrorValue()

Description
Returns the value of the error function.

Returns
A double containing final value of the error function from the last training. Before training, NaN is returned.

getFormatter
static public Formatter getFormatter()
Description
Returns the logging Formatter object. Logger support requires JDK1.4. Use with earlier versions returns null.

The returned Formatter is used as input to java.util.logging.Handler.setFormatter to format the output log.

Returns
The Formatter object, if present, or null otherwise.

getLogger
static public Logger getLogger()

Description
Returns the Logger object. This is the Logger used to trace this class. It is named com.imsl.datamining.neural.QuasiNewtonTrainer (p. 2125).

Returns
The Logger object, if present, or null otherwise.

getNumberOfEpochs
public int getNumberOfEpochs()

Description
Returns the number of epochs used during stage I training.

Returns
An int which contains the number of epochs used during stage I training.

getNumberOfThreads
public int getNumberOfThreads()

Description
Gets the number of java.lang.Thread instances to use during stage I training.

Returns
An int which contains the number of java.lang.Thread instances to use.

generate
public Random getRandom()

Description
Returns the random number generator used to perturb the stage 1 guesses.

Returns
The Random object used to generate stage 1 perturbations.

generateSampleIndicies
protected RandomSampleIndicies getRandomSampleIndicies()
**Description**
Gets the random number generators used to select random training patterns in stage 1.

**Returns**
A RandomSampleIndicies containing the random number generators.

---

**getStage1Trainer**
protected Trainer getStage1Trainer()

**Description**
Returns the stage 1 trainer.

**Returns**
A Trainer containing the stage 1 trainer.

---

**getStage2Trainer**
protected Trainer getStage2Trainer()

**Description**
Returns the stage 1 trainer.

**Returns**
A Trainer containing the stage 2 trainer.

---

**incrementEpochCount**
protected int incrementEpochCount()

**Description**
Increments the epoch counter.

---

**setEpochSize**
public void setEpochSize(int epochSize)

**Description**
Sets the number of randomly selected training patterns in stage 1 epoch.

**Parameter**

- epochSize – An int which specifies the number of sample training patterns in each stage I epoch. The default value is the number of observations in the training data.

---

**setNumberOfEpochs**
public void setNumberOfEpochs(int numberOfEpochs)

**Description**
Sets the number of epochs.
Parameter

    numberOfEpochs – An int which specifies the number of epochs to be used during stage I training. The default value is 10.

setNumberOfThreads
public void setNumberOfThreads(int numberOfThreads)

Description
Sets the number of java.lang.Thread instances to be used for parallel processing.

Parameter

    numberOfThreads – an int specifying the number of java.lang.Thread instances to be used for parallel processing.
    Default: numberOfThreads = 1.

setRandom
public void setRandom(Random random)

Description
Sets the random number generator used to perturb the initial stage 1 guesses.

Parameter

    random – The Random object used to set the random number generator.

setRandomSamples
public void setRandomSamples(Random randomA, Random randomB)

Description
Sets the random number generators used to select random training patterns in stage 1. The two random number generators should be independent.

Parameters

    randomA – A Random object which is the first random number generator.
    randomB – A Random object which is the second random number generator, independent of randomA.

train
public void train(Network network, double[][] xData, double[][] yData)

Description
Trains the neural network using supplied training patterns.

Parameters

    network – The Network to be trained.
    xData – A double matrix specifying the input training patterns. The number of columns in xData must equal the number of Nodes in the InputLayer.
yData – A double containing the output training patterns. The number of columns in yData must equal the number of Perceptrons in the OutputLayer.
Each row of xData and yData contains a training pattern. These number of rows in two arrays must be equal.

---

**BinaryClassification class**

```java
public class com.imsl.datamining.neural.BinaryClassification implements Serializable
```

Classifies patterns into two classes.

Uses a FeedForwardNetwork to solve binary classification problems. In these problems, the target output for the network is the probability that the pattern falls into one of two classes. The first class, \( P(C_1) \), is usually equal to one and the second class, \( P(C_2) \) equal to zero. These probabilities are then used to assign patterns to one of the two classes. Typical applications include determining whether a credit applicant is a good or bad credit risk, and determining whether a person should or should not receive a particular treatment based upon their physical, clinical and laboratory information. This class signals that network training will minimize the binary cross-entropy error, and that network output is the probability that the pattern belongs to the first class, \( P(C_1) \). Which is calculated by applying the logistic activation function to the potential of the single output. The probability for the second class is calculated by \( P(C_2) = 1 - P(C_1) \).

**Constructor**

```java
public BinaryClassification(Network network)
```

**Description**

Creates a binary classifier.

**Parameter**

- `network` – is the neural network used for classification. Its OutputPerceptrons should use the logistic activation function, `Activation.LOGISTIC`.

**Methods**

```java
public double[] computeStatistics(double[][] xData, int[] yData)
```

---
Description
Computes the classification error statistics for the supplied network patterns and their associated classifications.

The first element returned is the binary cross-entropy error; the second is the classification error rate.
The classification error rate is calculated by comparing the estimated classification probabilities to the target classifications. If the estimated probability for the target class is less than 0.5, then this is tallied as a classification error.

Parameters
- **xData** – A double matrix specifying the input training patterns. The number of columns in xData must equal the number of Nodes in the InputLayer.
- **yData** – An int containing the output classification patterns. The values in yData must be 0 or 1.

Returns
A two-element double array containing the binary cross-entropy error and the classification error rate.

**getError**
public QuasiNewtonTrainer.Error getError()

Description
Returns the error function for use by QuasiNewtonTrainer for training a binary classification network.

Returns
an implementation of the binary-entropy error function.

**getNetwork**
public Network getNetwork()

Description
Returns the network being used for classification.

Returns
the network set by the constructor.

**predictedClass**
public int predictedClass(double[] x)

Description
Calculates the classification probabilities for the input pattern x, and returns either 0 or 1 identifying the class with the highest probability.

This method is used to classify patterns into one of the two target classes based upon the pattern’s values. The predicted classification is the class with the largest probability, i.e. greater than 0.5.

Parameter
- **x** – the double array containing the network input patterns to classify. The length of x should be equal to the number of inputs in the network.
Returns
The classification predicted by the trained network for x. This will be either 0 or 1.

probabilities
public double[] probabilities(double[] x)

Description
Returns classification probabilities for the input pattern x.
Calculates the two probabilities for the pattern supplied: \( P(C_1) \) and \( P(C_2) \). The probability that the pattern belongs to the first class, \( P(C_1) \), is estimated using the logistic function of the OutputPerceptron’s potential. The probability for the second class is calculated as \( P(C_2) = 1 - P(C_1) \). The predicted classification is the class with the largest probability, i.e. greater than 0.5.

Parameter
x – a double array containing the network input pattern to classify. The length of x must equal the number of nodes in the input layer.

Returns
the probability of x being in class \( C_1 \), followed by the probability of x being in class \( C_2 \).

train
public void train(Trainer trainer, double[][] xData, int[] yData)

Description
Trains the classification neural network using supplied trainer and patterns.

Parameters
trainer – A Trainer object, which is used to train the network. The error function in any QuasiNewton trainer included in trainer should be set to the error function from this class using the getError method provided by this class.
xData – A double matrix containing the input training patterns. The number of columns in xData must equal the number of nodes in the input layer. Each row of xData contains a training pattern.
yData – An int array containing the output classification values. These values must be 0 or 1.

Example 1: Binary Classification
This example trains a 3-layer network using 48 training patterns from four nominal input attributes. The first two nominal attributes have two classifications. The third and fourth nominal attributes have three and four classifications respectively. All four attributes are encoded using binary encoding. This results in eleven binary network input columns. The output class is 1 if the first two nominal attributes sum to 1, and 0 otherwise.

The structure of the network consists of eleven input nodes and three layers, with three perceptrons in the first hidden layer, two perceptrons in the second hidden layer, and one perceptron in the output layer.

There are a total of 47 weights in this network, including the six bias weights. The linear activations function is used for both hidden layers. Since the target output is binary classification the logistic activation function is used in the output layer. Training is conducted using the quasi-newton trainer with the binary-entropy error function provided by the BinaryClassification class.
import com.imsl.datamining.neural.*;
import java.io.*;
import java.util.logging.*;
import com.imsl.math.*;
import java.util.Random;

//***************************************************************************
// Two Layer Feed-Forward Network with 11 inputs: 4 nominal with 2,2,3,4
// categories, encoded using binary encoding, and 1 output target (class).
// new classification training_ex1.c
//***************************************************************************
public class BinaryClassificationEx1 implements Serializable {

    // Network Settings
    private static int nObs = 48; // number of training patterns
    private static int nInputs = 11; // four nominal with 2,2,3,4 categories
    private static int nCategorical = 11; // three categorical attributes
    private static int nOutputs = 1; // one continuous output (nClasses=2)
    private static int nPerceptrons1 = 3; // perceptrons in 1st hidden layer
    private static int nPerceptrons2 = 2; // perceptrons in 2nd hidden layer
    private static boolean trace = true; // Turns on/off training log
    private static Activation hiddenLayerActivation = Activation.LINEAR;
    private static Activation outputLayerActivation = Activation.LOGISTIC;

    /* 2 classifications */
    private static int[] x1 = {
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
    };

    /* 2 classifications */
    private static int[] x2 = {
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
    };

    /* 3 classifications */
    private static int[] x3 = {
        1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1,
        2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2,
        3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3
    };

    /* 4 classifications */
    private static int[] x4 = {
        1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4,
        1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4,
        1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4
    };

    // **********************************************************************
    // MAIN
public static void main(String[] args) throws Exception {
    double xData[]; // Input Attributes for Trainer
    int yData[]; // Output Attributes for Trainer
    int i, j; // array indices
    String trainLogName = "BinaryClassificationExample.log";

    // Binary encode 4 categorical variables.
    // Var x1 contains 2 classes
    // Var x2 contains 2 classes
    // Var x3 contains 3 classes
    // Var x4 contains 4 classes

    UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(2);
    int[][] z1 = filter.encode(x1);
    int[][] z2 = filter.encode(x2);
    filter = new UnsupervisedNominalFilter(3);
    int[][] z3 = filter.encode(x3);
    filter = new UnsupervisedNominalFilter(4);
    int[][] z4 = filter.encode(x4);

    /* Concatenate binary encoded z's */
    xData = new double[nObs][nInputs];
    yData = new int[nObs];
    for (i = 0; i < (nObs); i++) {
        for (j = 0; j < nCategorical; j++) {
            xData[i][j] = 0;
            if (j < 2) {
                xData[i][j] = (double) z1[i][j];
            }
            if (j > 1 && j < 4) {
                xData[i][j] = (double) z2[i][j - 2];
            }
            if (j > 3 && j < 7) {
                xData[i][j] = (double) z3[i][j - 4];
            }
            if (j > 6) {
                xData[i][j] = (double) z4[i][j - 7];
            }
        }
        yData[i] = ((x1[i] + x2[i] == 2) ? 1 : 0);
    }

    // CREATE FEEDFORWARD NETWORK
    long t0 = System.currentTimeMillis();
    FeedForwardNetwork network = new FeedForwardNetwork();
    network.getInputLayer().createInputs(nInputs);
    network.createHiddenLayer().createPerceptrons(nPerceptrons1);
    network.createHiddenLayer().createPerceptrons(nPerceptrons2);
    network.getOutputLayer().createPerceptrons(nOutputs);
    BinaryClassification classification

2148 • BinaryClassification JMSL
new BinaryClassification(network);

network.linkAll();
Random r = new Random(123457L);
network.setRandomWeights(xData, r);
Perceptron perceptrons[] = network.getPerceptrons();
for (i = 0; i < perceptrons.length - 1; i++) {
    perceptrons[i].setActivation(hiddenLayerActivation);
}
perceptrons[perceptrons.length - 1].
    setActivation(outputLayerActivation);

// TRAIN NETWORK USING QUASI-NEWTON TRAINER
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.setError(classification.getError());
trainer.setMaximumTrainingIterations(1000);
trainer.setGradientTolerance(1.0e-20);
trainer.setFalseConvergenceTolerance(1.0e-20);
trainer.setStepTolerance(1.0e-20);
trainer.setRelativeTolerance(1.0e-20);
if (trace) {
    try {
        Handler handler = new FileHandler(trainLogName);
        Logger logger = Logger.getLogger("com.imsl.datamining.neural");
        logger.setLevel(Level.FINEST);
        logger.addHandler(handler);
        handler.setFormatter(QuasiNewtonTrainer.getFormatter());
        System.out.println("--> Training Log Created in "
            + trainLogName);
    } catch (Exception e) {
        System.out.println("--> Cannot Create Training Log.");
    } 
}

classification.train(trainer, xData, yData);

/* DISPLAY TRAINING STATISTICS */
double stats[] = classification.computeStatistics(xData, yData);
System.out.println("Cross-entropy error: " + (float) stats[0]);
System.out.println("Classification error rate: " + (float) stats[1]);

/* OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS */
double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[] = new double[weight.length][2];
for (i = 0; i < weight.length; i++) {
    // calculations..."
wg[i][0] = weight[i];
wg[i][1] = gradient[i];
}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(new java.text.DecimalFormat("0.000000"));
pmf.setColumnLabels(new String[] {"Weights", "Gradients"});
new PrintMatrix().print(pmf, wg);

// **************************************************************
// forecast the network
// **************************************************************
double report[][] = new double[nObs][6];
for (i = 0; i < nObs; i++) {
    report[i][0] = x1[i];
    report[i][1] = x2[i];
    report[i][2] = x3[i];
    report[i][3] = x4[i];
    report[i][4] = yData[i];
    report[i][5] = classification.predictedClass(xData[i]);
}

pmf = new PrintMatrixFormat();
pmf.setColumnLabels(new String[] {
    "X1", "X2", "X3", "X4",
    "Expected", "Predicted"
});
new PrintMatrix("Forecast").print(pmf, report);

// **********************************************
// DISPLAY CLASSIFICATION STATISTICS
// **********************************************
double statsClass[] = classification.computeStatistics(xData, yData);

System.out.println("--\nCross-Entropy Error: " + (float) statsClass[0]);
System.out.println("--\nClassification Error: " + (float) statsClass[1]);
System.out.println("" + time);
long t1 = System.currentTimeMillis();
double time = t1 - t0;
time = time / 1000;
System.out.println("***************Time: " + time);
System.out.println("trainer.getErrorValue = " + trainer.getErrorValue());
} 

--- Training Log Created in BinaryClassificationExample.log
**********************************************
-- Cross-entropy error: 1.8296475E-13
-- Classification error rate: 0.0
Weights  Gradients
0  2.575599 -0.000000
1  1.770546 -0.000000
2  1.675687 -0.000000
3 -5.859796  0.000000
4 -1.794721  0.000000
5 -4.925026  0.000000
6  3.654187  0.000000
7  2.089872  0.000000
8  2.485173  0.000000
9 -5.238608  0.000000
10 -1.396975  0.000000
11 -4.730949  0.000000
12  0.143083  0.000000
13  0.777367  0.000000
14  0.316769  0.000000
15 -3.270781 -0.000000
16  0.283153 -0.000000
17 -0.162338 -0.000000
18  1.153316  0.000000
19  0.782549  0.000000
20 -0.387279  0.000000
21 -2.010958 -0.000000
22  0.273662 -0.000000
23 -0.670019 -0.000000
24  2.096144  0.000000
25 -0.264374  0.000000
26  0.351305  0.000000
27  1.190361  0.000000
28 -0.053966  0.000000
29  0.555192  0.000000
30 -2.001125 -0.000000
31  0.735950 -0.000000
32 -0.829534 -0.000000
33 -4.824521  0.000000
34 -4.824521  0.000000
35 -0.652606  0.000000
36 -0.652606  0.000000
37 -2.921224  0.000000
38 -2.921224  0.000000
39 -1.621591  0.000000
40 -1.621591  0.000000
41 -1.621591  0.000000
42  1.534864  0.000000
43  0.907830  0.000000
44  1.594078 -0.000000
45  1.594078 -0.000000
46 -0.169361  0.000000

Forecast
 X1  X2  X3  X4  Expected  Predicted
 0  1  1  1  1  1
 1  1  1  2  1  1
 2  1  1  3  1  1
3 1 1 1 4 1 1
4 1 1 2 1 1 1
5 1 1 2 2 1 1
6 1 1 2 3 1 1
7 1 1 2 4 1 1
8 1 1 3 1 1 1
9 1 1 3 2 1 1
10 1 1 3 3 1 1
11 1 1 3 4 1 1
12 1 2 1 1 0 0
13 1 2 1 2 0 0
14 1 2 1 3 0 0
15 1 2 1 4 0 0
16 1 2 2 1 0 0
17 1 2 2 2 0 0
18 1 2 2 3 0 0
19 1 2 2 4 0 0
20 1 2 3 1 0 0
21 1 2 3 2 0 0
22 1 2 3 3 0 0
23 1 2 3 4 0 0
24 2 1 1 1 0 0
25 2 1 1 2 0 0
26 2 1 1 3 0 0
27 2 1 1 4 0 0
28 2 1 2 1 0 0
29 2 1 2 2 0 0
30 2 1 2 3 0 0
31 2 1 2 4 0 0
32 2 1 3 1 0 0
33 2 1 3 2 0 0
34 2 1 3 3 0 0
35 2 1 3 4 0 0
36 2 2 1 1 0 0
37 2 2 1 2 0 0
38 2 2 1 3 0 0
39 2 2 1 4 0 0
40 2 2 2 1 0 0
41 2 2 2 2 0 0
42 2 2 2 3 0 0
43 2 2 2 4 0 0
44 2 2 3 1 0 0
45 2 2 3 2 0 0
46 2 2 3 3 0 0
47 2 2 3 4 0 0

******************************************************************************
--> Cross-Entropy Error: 1.8296475E-13
--> Classification Error: 0.0
******************************************************************************

***************Time: 0.062
trainer.getErrorValue = 1.8296475445823478E-13
Example 2: Binary Classification Network

This example uses a database of a complete set of possible board configurations at the end of tic-tac-toe games, where “x” is assumed to have played first. The target concept is “win for x” (i.e., true when “x” has one of 8 possible ways to create a “three-in-a-row”).

There are nine nominal input attributes for each square on the tic-tac-toe board and are encoded such that 0=player x has taken, 1=player o has taken, 2=blank.

Input attributes

1. top-left-square: \{x, o, b\}
2. top-middle-square: \{x, o, b\}
3. top-right-square: \{x, o, b\}
4. middle-left-square: \{x, o, b\}
5. middle-middle-square: \{x, o, b\}
6. middle-right-square: \{x, o, b\}
7. bottom-left-square: \{x, o, b\}
8. bottom-middle-square: \{x, o, b\}
9. bottom-right-square: \{x, o, b\}

The predicted attribute is a win or loose at tic-tac-toe. For this example the first 626 observations are a win and the next 332 are loss.

The structure of the network consists of 27 input nodes and three layers, with five perceptrons in the first hidden layer, three perceptrons in the second hidden layer, and one perceptron in the output layer.

There are a total of 162 weights in this network. The activations functions are logistic for all layers. Since the target output is binary classification the logistic activation function must be used in the output layer. Training is conducted using the quasi-newton trainer using the binary entropy error function provided by the BinaryClassification class.

```java
import com.imsl.datamining.neural.*;
import java.io.*;
import java.util.logging.*;
import com.imsl.math.*;
import com.imsl.stat.Random;

/***
 * Three Layer Feed-Forward Network with 4 inputs, all continuous, and 2 classification categories.
 * new classification training_ex4.c
 */
```

Neural Nets  BinaryClassification • 2153
This database encodes the complete set of possible board configurations at the end of tic-tac-toe games, where "x" is assumed to have played first. The target concept is "win for x" (i.e., true when "x" has one of 8 possible ways to create a "three-in-a-row").

Predicted attribute: win or loose at tic-tac-toe
First 626 obs are positive (win) and the next 332 are negative (loss)

Input Attributes (10 categorical Attributes)

Attribute Information:
(0=player x has taken, 1=player o has taken, 2=blank)

1. top-left-square: {x,o,b}
2. top-middle-square: {x,o,b}
3. top-right-square: {x,o,b}
4. middle-left-square: {x,o,b}
5. middle-middle-square: {x,o,b}
6. middle-right-square: {x,o,b}
7. bottom-left-square: {x,o,b}
8. bottom-middle-square: {x,o,b}
9. bottom-right-square: {x,o,b}
10. Class: {positive,negative}

public class BinaryClassificationEx2 implements Serializable {

    private static int nObs = 958; // number of training patterns
    private static int nInputs = 27; // 9 nominal coded as 0=x, 1=0, 2=blank
    private static int nCategorical = 27; // seven categorical attributes
    private static int nContinuous = 0; // two continuous input attribute
    private static int nOutputs = 1; // one continuous output (nClasses=2)
    private static int nLayers = 3; // number of perceptron layers
    private static int nPerceptrons1 = 5; // perceptrons in 1st hidden layer
    private static int nPerceptrons2 = 3; // perceptrons in 2nd hidden layer
    private static boolean trace = true; // Turns on/off training log

    private static Activation hiddenLayerActivation = Activation.LOGISTIC;
    private static Activation outputLayerActivation = Activation.LOGISTIC;

    private static int[][] data = {
        {0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1},
        {0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2},
        {0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2},
        {0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 2},
        {0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 2},
        {0, 0, 0, 0, 2, 1, 1, 2, 1, 1, 1},
        {0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1},
        {0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2},
        {0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 2},
        {0, 0, 0, 0, 1, 0, 0, 1, 2, 2, 1},
        {0, 0, 0, 0, 1, 0, 1, 2, 2, 1, 1},
        {0, 0, 0, 0, 2, 1, 1, 1, 1, 1},
    };
<table>
<thead>
<tr>
<th>0, 0, 0, 1, 1, 2, 2, 1, 0</th>
<th>0, 0, 0, 1, 1, 2, 2, 2, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0, 1, 2, 0, 1, 1, 2</td>
<td>0, 0, 0, 1, 2, 0, 1, 2, 1</td>
</tr>
<tr>
<td>0, 0, 0, 1, 2, 1, 0, 1, 2</td>
<td>0, 0, 0, 1, 2, 1, 0, 2, 1</td>
</tr>
<tr>
<td>0, 0, 0, 1, 2, 1, 1, 0, 2</td>
<td>0, 0, 0, 1, 2, 1, 1, 2, 0</td>
</tr>
<tr>
<td>0, 0, 0, 1, 2, 2, 1, 0, 1</td>
<td>0, 0, 0, 1, 2, 2, 1, 2, 2</td>
</tr>
<tr>
<td>0, 0, 0, 1, 2, 2, 2, 1, 1</td>
<td>0, 0, 0, 1, 2, 2, 2, 2, 2</td>
</tr>
<tr>
<td>0, 0, 0, 1, 3, 0, 1, 1, 1</td>
<td>0, 0, 0, 1, 3, 0, 1, 2, 0</td>
</tr>
<tr>
<td>0, 0, 0, 1, 3, 1, 0, 1, 2</td>
<td>0, 0, 0, 1, 3, 1, 0, 2, 1</td>
</tr>
<tr>
<td>0, 0, 0, 1, 3, 2, 0, 1, 1</td>
<td>0, 0, 0, 1, 3, 2, 0, 2, 2</td>
</tr>
<tr>
<td>0, 0, 0, 1, 3, 2, 1, 0, 1</td>
<td>0, 0, 0, 1, 3, 2, 1, 2, 0</td>
</tr>
<tr>
<td>0, 0, 0, 1, 3, 2, 2, 0, 1</td>
<td>0, 0, 0, 1, 3, 2, 2, 1, 2</td>
</tr>
<tr>
<td>0, 0, 0, 1, 3, 2, 2, 1, 1</td>
<td>0, 0, 0, 1, 3, 2, 2, 2, 0</td>
</tr>
<tr>
<td>0, 0, 0, 1, 3, 2, 2, 2, 1</td>
<td>0, 0, 0, 1, 3, 2, 2, 2, 2</td>
</tr>
</tbody>
</table>

**Neural Nets**

**Binary Classification** • 2155
\{0, 1, 1, 0, 0, 0, 0, 1, 1\}, \{0, 1, 1, 0, 0, 0, 1, 2\},
\{0, 1, 1, 0, 0, 0, 2, 1\}, \{0, 1, 1, 0, 0, 0, 2, 2\},
\{0, 1, 1, 0, 0, 1, 0, 0, 0\}, \{0, 1, 1, 0, 0, 1, 0, 1, 2\},
\{0, 1, 1, 0, 0, 1, 0, 2, 1\}, \{0, 1, 1, 0, 0, 1, 1, 0, 2\},
\{0, 1, 1, 0, 0, 2, 0, 0, 2\}, \{0, 1, 1, 0, 0, 2, 1, 0, 2\},
\{0, 1, 1, 0, 0, 2, 1, 1, 0\}, \{0, 1, 1, 0, 1, 0, 0, 0, 1\},
\{0, 1, 1, 0, 1, 0, 0, 1, 2\}, \{0, 1, 1, 0, 1, 0, 0, 2, 1\},
\{0, 1, 1, 0, 1, 0, 0, 2, 2\}, \{0, 1, 1, 0, 1, 0, 1, 0, 0\},
\{0, 1, 1, 0, 1, 0, 1, 0, 1\}, \{0, 1, 1, 0, 1, 0, 1, 0, 2\},
\{0, 1, 1, 0, 1, 0, 1, 1, 0\}, \{0, 1, 1, 0, 1, 0, 2, 0, 0\},
\{0, 1, 1, 0, 1, 0, 2, 0, 1\}, \{0, 1, 1, 0, 1, 0, 2, 0, 2\},
\{0, 1, 1, 0, 1, 0, 2, 1, 0\}, \{0, 1, 1, 0, 1, 0, 2, 1, 1\},
\{0, 1, 1, 0, 1, 0, 2, 1, 2\}, \{0, 1, 1, 0, 1, 0, 2, 2, 0\},
\{0, 1, 1, 0, 1, 1, 0, 0, 0\}, \{0, 1, 1, 0, 1, 0, 2, 0, 0\},
\{0, 1, 1, 0, 1, 0, 2, 0, 1\}, \{0, 1, 1, 0, 1, 0, 2, 0, 2\},
\{0, 1, 1, 0, 1, 1, 0, 0, 0\}, \{0, 1, 1, 0, 1, 0, 2, 0, 0\},
\{0, 1, 1, 0, 1, 0, 2, 0, 1\}, \{0, 1, 1, 0, 1, 0, 2, 0, 2\},
\{0, 1, 1, 0, 1, 1, 0, 0, 0\}, \{0, 1, 1, 0, 1, 0, 2, 0, 0\},
\{0, 1, 1, 0, 1, 0, 2, 0, 1\}, \{0, 1, 1, 0, 1, 0, 2, 0, 2\},
\{0, 1, 1, 0, 1, 1, 0, 0, 0\}, \{0, 1, 1, 0, 1, 0, 2, 0, 0\},
\{0, 1, 1, 0, 1, 0, 2, 0, 1\}, \{0, 1, 1, 0, 1, 0, 2, 0, 2\},
\{0, 1, 1, 0, 1, 1, 0, 0, 0\}, \{0, 1, 1, 0, 1, 0, 2, 0, 0\},
\{0, 1, 1, 0, 1, 0, 2, 0, 1\}, \{0, 1, 1, 0, 1, 0, 2, 0, 2\},
\{0, 1, 1, 0, 1, 1, 0, 0, 0\}, \{0, 1, 1, 0, 1, 0, 2, 0, 0\},
\{0, 1, 1, 0, 1, 0, 2, 0, 1\}, \{0, 1, 1, 0, 1, 0, 2, 0, 2\},
2156 • BinaryClassification JMSL
Neural Nets BinaryClassification • 2157
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,

1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
2,
2,
2,
2,
2,
2,
2,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,

0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
0,
0,
0,
0,
0,
1,
2,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
0,
0,
0,
0,
0,
1,
2,
0,
0,
0,
0,

0,
0,
0,
0,
1,
1,
2,
0,
0,
0,
1,
2,
0,
0,
0,
0,
0,
1,
2,
2,
0,
0,
0,
0,
2,
2,
1,
0,
0,
0,
1,
2,
0,
0,
0,
0,
1,
2,
2,
0,
0,
0,
1,
1,
2,
0,
0,
0,
0,
2,
2,
1,
0,
0,
0,
1,

0,
0,
1,
2,
0,
1,
0,
0,
0,
2,
0,
0,
0,
0,
1,
2,
2,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
1,
2,
2,
0,
0,
1,
0,
1,
2,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
0,
0,
1,

1,
2,
0,
0,
1,
0,
2,
0,
2,
0,
0,
2,
0,
1,
0,
0,
0,
2,
0,
2,
0,
1,
2,
2,
0,
0,
0,
1,
2,
0,
1,
1,
0,
0,
0,
0,
2,
0,
0,
1,
0,
0,
0,
2,
1,
0,
1,
2,
2,
0,
0,
0,
0,
1,
2,
0,

2158 • BinaryClassification

2,
2,
1,
1,
0,
0,
1,
1,
2,
0,
0,
0,
1,
2,
0,
0,
2,
0,
1,
2,
1,
0,
0,
2,
0,
0,
0,
1,
1,
2,
2,
1,
2,
0,
0,
2,
0,
1,
0,
1,
1,
1,
1,
2,
2,
1,
0,
0,
2,
0,
0,
0,
1,
1,
1,
0,

2},
1},
0},
2},
0},
0},
0},
0},
0},
2},
0},
0},
2},
0},
2},
1},
2},
0},
0},
0},
2},
2},
1},
2},
0},
0},
0},
2},
1},
1},
0},
0},
1},
2},
1},
2},
0},
0},
0},
0},
0},
2},
0},
0},
0},
2},
2},
1},
2},
0},
0},
0},
1},
0},
2},
0},

{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,

1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
2,
2,
2,
2,
2,
2,
2,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,

0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
0,
0,
0,
0,
1,
2,
2,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
0,
0,
0,
0,
1,
2,
2,
0,
0,
0,
1,

0,
0,
0,
0,
1,
2,
0,
0,
0,
0,
2,
2,
0,
0,
0,
0,
1,
1,
2,
2,
0,
0,
0,
1,
0,
0,
2,
0,
0,
0,
1,
0,
0,
0,
0,
1,
1,
2,
0,
0,
0,
0,
1,
1,
2,
0,
0,
0,
1,
0,
0,
2,
0,
0,
0,
0,

0,
1,
1,
2,
0,
0,
0,
0,
1,
2,
0,
2,
0,
0,
1,
2,
0,
2,
0,
1,
0,
0,
0,
2,
2,
1,
2,
0,
1,
2,
0,
0,
0,
1,
2,
0,
2,
0,
0,
1,
1,
2,
0,
1,
0,
0,
0,
0,
2,
2,
1,
2,
0,
0,
0,
1,

2,
0,
0,
0,
2,
1,
0,
0,
0,
0,
0,
0,
0,
2,
0,
0,
0,
0,
1,
0,
0,
1,
2,
0,
0,
0,
0,
1,
0,
0,
2,
0,
2,
0,
0,
0,
0,
2,
0,
0,
0,
0,
1,
0,
2,
0,
1,
2,
0,
0,
0,
0,
1,
1,
2,
0,

1,
0,
2,
2,
2,
2,
0,
2,
0,
2,
2,
0,
2,
1,
2,
1,
2,
0,
0,
0,
2,
2,
1,
0,
0,
0,
0,
2,
1,
1,
1,
1,
1,
2,
1,
2,
0,
2,
1,
0,
2,
2,
0,
0,
1,
2,
2,
1,
0,
0,
0,
0,
0,
2,
2,
0,

2},
1},
2},
1},
0},
0},
1},
2},
0},
0},
0},
0},
1},
0},
0},
0},
0},
0},
0},
0},
1},
0},
0},
0},
0},
0},
0},
1},
2},
1},
0},
2},
0},
0},
0},
0},
0},
0},
1},
1},
2},
1},
0},
0},
0},
1},
0},
0},
0},
0},
0},
0},
1},
2},
1},
0},

JMSL


private static double weights[] = {
    -0.00000000000000063401, 0.00000000000000055700, 0.00000000000000012769,
    -0.52573653474162341000, 0.43427498705107342000, 0.09146154769055023200,
    0.00000000000000138130, -0.00000000000000118053, -0.00000000000000050631,
    0.52573653474162607000, -0.43427498705107603000, -0.09146154769055155100,
    -0.00000000000000057743, 0.00000000000000037314, -0.00000000000000023441,
    0.52573653474162763000, 0.43427498705107587000, -0.09146154769055155100,
    -0.00000000000000164999, 0.00000000000000011196, 0.00000000000000004464,
    0.59181480684449950000, -0.48167039139742855000, -0.10564415450756450000,
    0.33659693927260390000, -0.28023189914604213000, -0.05636504012656110000,
    -0.000000000000000339401, 0.000000000000000312093, 0.000000000000000057542,
    0.33659693927260292000, -0.28023189914604213000, -0.05636504012656078000,
    0.0000000000000000099480, -0.000000000000000067295, -0.00000000000000003901,
    -0.33659693927260537000, 0.28023189914604435000, 0.05636504012656118300,
    -0.0000000000000000284785, 0.00000000000000000269180, 0.0000000000000000026089,
    -0.33659693927260426000, 0.28023189914604435000, 0.05636504012656121800,
    -0.59181480684449039000, 0.48167039139734140000, 0.10564415450756909000,
    0.0000000000000000098567, -0.0000000000000000095474, -0.0000000000000000021207,
    -0.33659693927260969000, 0.28023189914604579000, 0.05636504012656142600,
    -0.59181480684449372000, 0.48167039139737740000, 0.10564415450756450000,
    0.33659693927260514000, -0.28023189914604435000, -0.05636504012656100000,
    -0.00000000000000000010012, 0.0000000000000000001702, 0.0000000000000000012437,
    -0.33659693927260204000, 0.28023189914604152000, 0.05636504012656010100,
    0.59181480684449428000, -0.48167039139738130000, -0.10564415450756380000,
    0.33659693927260810000, -0.28023189914603991000, -0.05636504012656746000,
    0.000000000000000000216976, -0.000000000000000000195478, -0.00000000000000000023527,
    0.39961448116107120000, -0.35764834341824100000, -0.04226613769922734000,
    -0.33634249141448920000, 0.28239332896420155000, 0.05394916247694748030,
    0.39961448116106396000, -0.35764834341873769000, -0.04226613769922734000,
    -0.33634249141441703000, 0.28239332896420027000, 0.05394916247694724100,
    -0.21667948075941170000, 0.12935693076722185000, 0.08732254999210288000,
    -0.33634249141441398000, 0.28239332896419722000, 0.05394916247694887000,
    0.39961448116106157000, -0.35764834341834530000, -0.04226613769922710200,
    -0.33634249141441919000, 0.28239332896420105000, 0.05394916247694810100,
    0.39961448116107307000, -0.35764834341844850000, -0.04226613769922842700,
    -0.54188833749531480000, 0.49465653203118319200, 0.04732301718348544000,
    0.000000000000000000042643, -0.000000000000000000052416, -0.000000000000000000028161,
    0.54188833749532672000, -0.49465653203118414700, -0.04732301718348516700,
};
public static void main(String[] args) throws Exception {
    double xData[]; // Input Attributes for Trainer
    int yData[]; // Output Attributes for Trainer
    int i, j; // array indicies
    String trainLogName = "BinaryClassificationNetworkEx2.log";
    int[] z;

    // ****************************************************************
    // PREPROCESS TRAINING PATTERNS
    // ****************************************************************
    long t0 = System.currentTimeMillis();
    xData = new double[nObs][nInputs];
    yData = new int[nObs];

    /* Perform Binary Filtering. */
    for (i = 0; i < data.length; i++) {
        for (j = 0; j < data[0].length; j++) {
            data[i][j]++;
        }
    }
    int xx[] = new int[nObs];
    UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(3);
    for (i = 0; i < 9; i++) {
        // Copy each variable to a temp var
        for (j = 0; j < nObs; j++) {
            xx[j] = data[j][i];
        }
        // Perform binary filter on temp var
        z = filter.encode(xx);
        // Copy binary encoded var to xData
        for (j = 0; j < nObs; j++) {
            for (int k = 0; k < 3; k++) {
                xData[j][k + (i * 3)] = (double) z[j][k];
            }
        }
    }
}

2164 • BinaryClassification

JMSL
for (i = 0; i < nObs; i++) {
    yData[i] = (i >= 626 ? 0 : 1);
}

// ******************************************************************
// CREATE FEEDFORWARD NETWORK
// ******************************************************************
FeedForwardNetwork network = new FeedForwardNetwork();
network.getInputLayer().createInputs(nInputs);
network.createHiddenLayer().createPerceptrons(nPerceptrons1);
network.createHiddenLayer().createPerceptrons(nPerceptrons2);
network.getOutputLayer().createPerceptrons(nOutputs);
network.linkAll();
network.setWeights(weights);
Perceptron perceptrons[] = network.getPerceptrons();
for (i = 0; i < perceptrons.length - 1; i++) {
    perceptrons[i].setActivation(hiddenLayerActivation);
}

// ******************************************************************
// SET OUTPUT LAYER ACTIVATION FUNCTION TO LOGISTIC
// FOR BINARY CLASSIFICATION
// ******************************************************************
perceptrons[perceptrons.length - 1].
    setActivation(outputLayerActivation);

BinaryClassification classification = new BinaryClassification(network);

QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();
QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();
stageITrainer.setError(classification.getError());
stageITrainer.setMaximumTrainingIterations(8000);
stageITrainer.setMaximumStepsize(10.0);
stageITrainer.setRelativeTolerance(10e-20);
stageITrainer.setMaximumTrainingIterations(8000);
EpochTrainer trainer = new EpochTrainer(stageITrainer, stageITrainer);

// Set Training Parameters
trainer.setNumberOfEpochs(20);
trainer.setEpochSize(nObs);

// Set random number seeds to produce repeatable output
trainer.setRandom(new Random(5555));
trainer.setRandomSamples(new Random(5555), new Random(5555));

// If tracing is requested setup training logger
if (trace) {
    try {
        Handler handler = new FileHandler(trainLogName);
        Logger logger = Logger.getLogger("com.imsl.datamining.neural");
        logger.setLevel(Level.FINEST);
    }
}
logger.addHandler(handler);
handler.setFormatter(QuasiNewtonTrainer.getFormatter());
System.out.println("--> Training Log Created in "+trainLogName);
} catch (Exception e) {
    System.out.println("--> Cannot Create Training Log.");
}

classification.train(trainer, xData, yData);
System.out.println("trainer.getErrorValue = "+trainer.getErrorValue());
System.out.println("StageITrainer.getErrorValue = "+stageITrainer.getErrorValue());
System.out.println("StageIITrainer.getErrorValue = "+stageIITrainer.getErrorValue());

// DISPLAY TRAINING STATISTICS
// ******************************************************************
double stats[] = classification.computeStatistics(xData, yData);
System.out.println("*************");
System.out.println("--> Cross-entropy error: "+(float)stats[0]);
System.out.println("--> Classification error rate: "+(float)stats[1]);
System.out.println("*************");
System.out.println("\n");

// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// ******************************************************************
double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[][] = new double[weight.length][2];
for (i = 0; i < weight.length; i++) {
    wg[i][0] = weight[i];
    wg[i][1] = gradient[i];
}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setHorizontalAlignment(new java.text.DecimalFormat("0.000000"));
pmf.setColumnLabels(new String[]{"Weights", "Gradients"});
new PrintMatrix().print(pmf, wg);

// forecast the network
// ******************************************************************
double report[][] = new double[nObs][2];
for (i = 0; i < 50; i++) {
    report[i][0] = yData[i];
    report[i][1] = classification.predictedClass(xData[i]);
}

pmf = new PrintMatrixFormat();
pmf.setHorizontalAlignment(new String[]{"Expected", "Predicted"});
new PrintMatrix("Forecast").print(pmf, report);
long t1 = System.currentTimeMillis();
double time = t1 - t0;
time = time / 1000;
System.out.println("***************Time: " + time);
System.out.println("trainer.getErrorValue = "+ trainer.getErrorValue());
System.out.println("StageITrainer.getErrorValue = "+ stageITrainer.getErrorValue());
System.out.println("StageIITrainer.getErrorValue = "+ stageIITrainer.getErrorValue());
}

Output
--> Training Log Created in BinaryClassificationNetworkEx2.log
trainer.getErrorValue = 1.4521421559936876
StageITrainer.getErrorValue = 482.27809835973795
StageIITrainer.getErrorValue = 1.4521421559936876

*******************************
--> Cross-entropy error: 1.4521421
--> Classification error rate: 0.0020876827
*******************************

Weights Gradients
0 2.794812 -0.000037
1 11.881356 -0.000066
2 -11.053385 0.002202
3 19.260234 0.359990
4 28.373581 -0.000341
5 -13.253239 -0.027393
6 -7.082690 0.015784
7 13.221642 0.003962
8 -23.283604 -1.405288
9 -30.615046 -0.000000
10 11.737416 0.000001
11 3.299586 -0.000000
12 -10.950633 0.000203
13 2.016166 -0.000140
14 -20.363654 -0.000000
15 -8.839290 -0.027421
16 -12.499779 0.000510
17 -6.608869 0.006352
18 17.698999 -1.106129
19 28.843672 -0.000341
20 8.045185 -0.000000
21 10.177528 0.000000
22 -0.954535 0.000000
23 -23.413666 -0.000000
24 -39.003675 0.000000
25 3.247172 -0.000000
26 9.765645 0.015208
27 0.018801 0.000000
28 4.576900 0.000000
29 -12.150770 0.000000

Neural Nets BinaryClassification • 2167
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-11.276935</td>
<td>-0.000000</td>
</tr>
<tr>
<td>31</td>
<td>18.142833</td>
<td>0.015712</td>
</tr>
<tr>
<td>32</td>
<td>-4.480160</td>
<td>0.001997</td>
</tr>
<tr>
<td>33</td>
<td>21.404600</td>
<td>-1.312999</td>
</tr>
<tr>
<td>34</td>
<td>-43.192160</td>
<td>-0.000379</td>
</tr>
<tr>
<td>35</td>
<td>12.501761</td>
<td>-0.027452</td>
</tr>
<tr>
<td>36</td>
<td>-14.572506</td>
<td>0.000006</td>
</tr>
<tr>
<td>37</td>
<td>-13.945651</td>
<td>0.004362</td>
</tr>
<tr>
<td>38</td>
<td>-25.733512</td>
<td>0.267603</td>
</tr>
<tr>
<td>39</td>
<td>30.022170</td>
<td>0.000038</td>
</tr>
<tr>
<td>40</td>
<td>0.869418</td>
<td>0.000023</td>
</tr>
<tr>
<td>41</td>
<td>4.846458</td>
<td>-0.000000</td>
</tr>
<tr>
<td>42</td>
<td>7.585565</td>
<td>0.000018</td>
</tr>
<tr>
<td>43</td>
<td>3.099542</td>
<td>-0.000042</td>
</tr>
<tr>
<td>44</td>
<td>-9.807495</td>
<td>-0.000000</td>
</tr>
<tr>
<td>45</td>
<td>-18.722817</td>
<td>-0.000026</td>
</tr>
<tr>
<td>46</td>
<td>7.144900</td>
<td>0.015791</td>
</tr>
<tr>
<td>47</td>
<td>-10.414587</td>
<td>0.003950</td>
</tr>
<tr>
<td>48</td>
<td>18.917071</td>
<td>-2.248996</td>
</tr>
<tr>
<td>49</td>
<td>1.892356</td>
<td>0.000000</td>
</tr>
<tr>
<td>50</td>
<td>12.926283</td>
<td>-0.027369</td>
</tr>
<tr>
<td>51</td>
<td>-2.409699</td>
<td>-0.000072</td>
</tr>
<tr>
<td>52</td>
<td>5.131728</td>
<td>0.002344</td>
</tr>
<tr>
<td>53</td>
<td>-23.509053</td>
<td>1.200103</td>
</tr>
<tr>
<td>54</td>
<td>-11.747324</td>
<td>-0.000341</td>
</tr>
<tr>
<td>55</td>
<td>6.533518</td>
<td>-0.000034</td>
</tr>
<tr>
<td>56</td>
<td>3.184332</td>
<td>0.000000</td>
</tr>
<tr>
<td>57</td>
<td>-4.375824</td>
<td>0.000073</td>
</tr>
<tr>
<td>58</td>
<td>2.806478</td>
<td>0.003465</td>
</tr>
<tr>
<td>59</td>
<td>-12.541222</td>
<td>0.000000</td>
</tr>
<tr>
<td>60</td>
<td>28.572629</td>
<td>-0.027369</td>
</tr>
<tr>
<td>61</td>
<td>58.391713</td>
<td>-0.000000</td>
</tr>
<tr>
<td>62</td>
<td>-1.683803</td>
<td>0.004585</td>
</tr>
<tr>
<td>63</td>
<td>21.994267</td>
<td>0.417573</td>
</tr>
<tr>
<td>64</td>
<td>-8.148093</td>
<td>-0.000000</td>
</tr>
<tr>
<td>65</td>
<td>-28.281093</td>
<td>-0.000060</td>
</tr>
<tr>
<td>66</td>
<td>-42.698239</td>
<td>0.015791</td>
</tr>
<tr>
<td>67</td>
<td>-5.212427</td>
<td>0.001782</td>
</tr>
<tr>
<td>68</td>
<td>-24.822189</td>
<td>-1.463011</td>
</tr>
<tr>
<td>69</td>
<td>3.390353</td>
<td>-0.000341</td>
</tr>
<tr>
<td>70</td>
<td>1.738623</td>
<td>-0.000000</td>
</tr>
<tr>
<td>71</td>
<td>-6.313312</td>
<td>-0.000072</td>
</tr>
<tr>
<td>72</td>
<td>-1.223654</td>
<td>0.000000</td>
</tr>
<tr>
<td>73</td>
<td>0.774095</td>
<td>-0.000000</td>
</tr>
<tr>
<td>74</td>
<td>-18.669978</td>
<td>-0.000000</td>
</tr>
<tr>
<td>75</td>
<td>-26.851295</td>
<td>-0.027369</td>
</tr>
<tr>
<td>76</td>
<td>-12.628134</td>
<td>0.015201</td>
</tr>
<tr>
<td>77</td>
<td>-6.891812</td>
<td>0.002198</td>
</tr>
<tr>
<td>78</td>
<td>20.327156</td>
<td>1.260888</td>
</tr>
<tr>
<td>79</td>
<td>-24.811981</td>
<td>-0.000341</td>
</tr>
<tr>
<td>80</td>
<td>21.850027</td>
<td>-0.000022</td>
</tr>
<tr>
<td>81</td>
<td>-0.353371</td>
<td>0.000051</td>
</tr>
<tr>
<td>82</td>
<td>4.425916</td>
<td>0.004020</td>
</tr>
<tr>
<td>83</td>
<td>-23.040663</td>
<td>-2.306232</td>
</tr>
<tr>
<td>84</td>
<td>5.876584</td>
<td>0.000000</td>
</tr>
<tr>
<td>85</td>
<td>8.143971</td>
<td>-0.000038</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>21.663435</td>
<td>0.000007</td>
</tr>
<tr>
<td>86</td>
<td>-6.285839</td>
<td>0.000148</td>
</tr>
<tr>
<td>87</td>
<td>-0.352297</td>
<td>-0.000094</td>
</tr>
<tr>
<td>88</td>
<td>-4.267329</td>
<td>-0.000000</td>
</tr>
<tr>
<td>89</td>
<td>-7.707898</td>
<td>-0.027393</td>
</tr>
<tr>
<td>90</td>
<td>10.756301</td>
<td>0.000583</td>
</tr>
<tr>
<td>91</td>
<td>-42.148634</td>
<td>-0.000000</td>
</tr>
<tr>
<td>92</td>
<td>19.13975</td>
<td>-0.673146</td>
</tr>
<tr>
<td>93</td>
<td>10.182175</td>
<td>0.000000</td>
</tr>
<tr>
<td>94</td>
<td>4.003089</td>
<td>-0.000036</td>
</tr>
<tr>
<td>95</td>
<td>-22.043461</td>
<td>-0.000066</td>
</tr>
<tr>
<td>96</td>
<td>33.052701</td>
<td>0.006367</td>
</tr>
<tr>
<td>97</td>
<td>-23.321219</td>
<td>-0.429493</td>
</tr>
<tr>
<td>98</td>
<td>8.738982</td>
<td>-0.000341</td>
</tr>
<tr>
<td>99</td>
<td>5.451673</td>
<td>-0.000000</td>
</tr>
<tr>
<td>100</td>
<td>20.219032</td>
<td>0.015201</td>
</tr>
<tr>
<td>101</td>
<td>0.676988</td>
<td>-0.000000</td>
</tr>
<tr>
<td>102</td>
<td>2.691869</td>
<td>0.057201</td>
</tr>
<tr>
<td>103</td>
<td>-41.170953</td>
<td>0.000000</td>
</tr>
<tr>
<td>104</td>
<td>-8.584660</td>
<td>-0.000363</td>
</tr>
<tr>
<td>105</td>
<td>1.630423</td>
<td>0.000006</td>
</tr>
<tr>
<td>106</td>
<td>-3.854815</td>
<td>0.006352</td>
</tr>
<tr>
<td>107</td>
<td>16.548650</td>
<td>-0.579643</td>
</tr>
<tr>
<td>108</td>
<td>45.844790</td>
<td>-0.000379</td>
</tr>
<tr>
<td>109</td>
<td>2.217830</td>
<td>-0.027393</td>
</tr>
<tr>
<td>110</td>
<td>4.890955</td>
<td>0.000583</td>
</tr>
<tr>
<td>111</td>
<td>2.642988</td>
<td>0.000015</td>
</tr>
<tr>
<td>112</td>
<td>-23.801442</td>
<td>-0.526478</td>
</tr>
<tr>
<td>113</td>
<td>-38.698959</td>
<td>0.000000</td>
</tr>
<tr>
<td>114</td>
<td>8.331494</td>
<td>-0.000000</td>
</tr>
<tr>
<td>115</td>
<td>1.005177</td>
<td>0.015129</td>
</tr>
<tr>
<td>116</td>
<td>-8.016478</td>
<td>0.000000</td>
</tr>
<tr>
<td>117</td>
<td>5.529196</td>
<td>0.060684</td>
</tr>
<tr>
<td>118</td>
<td>-28.818014</td>
<td>0.000038</td>
</tr>
<tr>
<td>119</td>
<td>3.604061</td>
<td>-0.027419</td>
</tr>
<tr>
<td>120</td>
<td>4.143800</td>
<td>0.000511</td>
</tr>
<tr>
<td>121</td>
<td>-10.174349</td>
<td>0.003961</td>
</tr>
<tr>
<td>122</td>
<td>20.432096</td>
<td>-1.465940</td>
</tr>
<tr>
<td>123</td>
<td>-3.479734</td>
<td>0.000038</td>
</tr>
<tr>
<td>124</td>
<td>-5.448064</td>
<td>0.000023</td>
</tr>
<tr>
<td>125</td>
<td>-3.779805</td>
<td>0.015201</td>
</tr>
<tr>
<td>126</td>
<td>10.354714</td>
<td>0.002390</td>
</tr>
<tr>
<td>127</td>
<td>-23.042045</td>
<td>0.420524</td>
</tr>
<tr>
<td>128</td>
<td>-8.400539</td>
<td>-0.000379</td>
</tr>
<tr>
<td>129</td>
<td>2.973240</td>
<td>-0.000334</td>
</tr>
<tr>
<td>130</td>
<td>8.433972</td>
<td>0.000007</td>
</tr>
<tr>
<td>131</td>
<td>-11.045431</td>
<td>0.000016</td>
</tr>
<tr>
<td>132</td>
<td>1.312826</td>
<td>0.000023</td>
</tr>
<tr>
<td>133</td>
<td>-10.385525</td>
<td>-0.000000</td>
</tr>
<tr>
<td>134</td>
<td>-54.999964</td>
<td>-0.019621</td>
</tr>
<tr>
<td>135</td>
<td>5.476551</td>
<td>-0.000000</td>
</tr>
<tr>
<td>136</td>
<td>-7.417770</td>
<td>0.000000</td>
</tr>
<tr>
<td>137</td>
<td>42.092030</td>
<td>-0.018658</td>
</tr>
<tr>
<td>138</td>
<td>13.732960</td>
<td>0.000000</td>
</tr>
<tr>
<td>139</td>
<td>23.967486</td>
<td>0.000000</td>
</tr>
<tr>
<td>140</td>
<td>-21.369439</td>
<td>-0.031979</td>
</tr>
<tr>
<td></td>
<td>3.040890</td>
<td>0.000000</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>142</td>
<td>-3.357516</td>
<td>-0.000000</td>
</tr>
<tr>
<td>143</td>
<td>97.218390</td>
<td>-0.039325</td>
</tr>
<tr>
<td>144</td>
<td>4.920216</td>
<td>0.000000</td>
</tr>
<tr>
<td>145</td>
<td>34.621988</td>
<td>-0.000112</td>
</tr>
<tr>
<td>146</td>
<td>62.555082</td>
<td>-0.907987</td>
</tr>
<tr>
<td>147</td>
<td>3.421771</td>
<td>0.000000</td>
</tr>
<tr>
<td>148</td>
<td>4.222951</td>
<td>-0.006693</td>
</tr>
<tr>
<td>149</td>
<td>183.127735</td>
<td>-0.011089</td>
</tr>
<tr>
<td>150</td>
<td>-48.952878</td>
<td>-0.020804</td>
</tr>
<tr>
<td>151</td>
<td>13.720097</td>
<td>-0.020303</td>
</tr>
<tr>
<td>152</td>
<td>1.395545</td>
<td>-0.027429</td>
</tr>
<tr>
<td>153</td>
<td>8.430987</td>
<td>0.015718</td>
</tr>
<tr>
<td>154</td>
<td>-9.235164</td>
<td>0.006367</td>
</tr>
<tr>
<td>155</td>
<td>-2.045833</td>
<td>-1.045438</td>
</tr>
<tr>
<td>156</td>
<td>-22.715138</td>
<td>-0.000341</td>
</tr>
<tr>
<td>157</td>
<td>-62.659356</td>
<td>-0.949897</td>
</tr>
<tr>
<td>158</td>
<td>13.949309</td>
<td>0.000000</td>
</tr>
<tr>
<td>159</td>
<td>-0.675295</td>
<td>-0.006693</td>
</tr>
<tr>
<td>160</td>
<td>-60.351363</td>
<td>-0.020804</td>
</tr>
</tbody>
</table>

Forecast

<table>
<thead>
<tr>
<th>Expected</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>0</td>
</tr>
<tr>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>86</td>
<td>0</td>
</tr>
<tr>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>201</td>
<td>0</td>
</tr>
<tr>
<td>202</td>
<td>0</td>
</tr>
<tr>
<td>203</td>
<td>0</td>
</tr>
<tr>
<td>204</td>
<td>0</td>
</tr>
<tr>
<td>205</td>
<td>0</td>
</tr>
<tr>
<td>206</td>
<td>0</td>
</tr>
<tr>
<td>207</td>
<td>0</td>
</tr>
<tr>
<td>208</td>
<td>0</td>
</tr>
<tr>
<td>209</td>
<td>0</td>
</tr>
<tr>
<td>210</td>
<td>0</td>
</tr>
<tr>
<td>211</td>
<td>0</td>
</tr>
<tr>
<td>212</td>
<td>0</td>
</tr>
<tr>
<td>213</td>
<td>0</td>
</tr>
<tr>
<td>214</td>
<td>0</td>
</tr>
<tr>
<td>215</td>
<td>0</td>
</tr>
<tr>
<td>216</td>
<td>0</td>
</tr>
<tr>
<td>217</td>
<td>0</td>
</tr>
<tr>
<td>218</td>
<td>0</td>
</tr>
<tr>
<td>219</td>
<td>0</td>
</tr>
<tr>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>221</td>
<td>0</td>
</tr>
<tr>
<td>222</td>
<td>0</td>
</tr>
<tr>
<td>223</td>
<td>0</td>
</tr>
<tr>
<td>224</td>
<td>0</td>
</tr>
<tr>
<td>225</td>
<td>0</td>
</tr>
<tr>
<td>226</td>
<td>0</td>
</tr>
<tr>
<td>227</td>
<td>0</td>
</tr>
<tr>
<td>228</td>
<td>0</td>
</tr>
<tr>
<td>229</td>
<td>0</td>
</tr>
<tr>
<td>230</td>
<td>0</td>
</tr>
<tr>
<td>231</td>
<td>0</td>
</tr>
<tr>
<td>232</td>
<td>0</td>
</tr>
<tr>
<td>233</td>
<td>0</td>
</tr>
<tr>
<td>234</td>
<td>0</td>
</tr>
<tr>
<td>235</td>
<td>0</td>
</tr>
<tr>
<td>236</td>
<td>0</td>
</tr>
<tr>
<td>237</td>
<td>0</td>
</tr>
<tr>
<td>238</td>
<td>0</td>
</tr>
<tr>
<td>239</td>
<td>0</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>241</td>
<td>0</td>
</tr>
<tr>
<td>242</td>
<td>0</td>
</tr>
<tr>
<td>243</td>
<td>0</td>
</tr>
<tr>
<td>244</td>
<td>0</td>
</tr>
<tr>
<td>245</td>
<td>0</td>
</tr>
<tr>
<td>246</td>
<td>0</td>
</tr>
<tr>
<td>247</td>
<td>0</td>
</tr>
<tr>
<td>248</td>
<td>0</td>
</tr>
<tr>
<td>249</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>251</td>
<td>0</td>
</tr>
<tr>
<td>252</td>
<td>0</td>
</tr>
<tr>
<td>253</td>
<td>0</td>
</tr>
<tr>
<td>254</td>
<td>0</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>256</td>
<td>0</td>
</tr>
</tbody>
</table>
Neural Nets  BinaryClassification  •  2175
Neural Nets

Binary Classification • 2177
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>705</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>706</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>707</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>708</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>709</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>710</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>711</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>712</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>713</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>714</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>715</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>716</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>717</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>718</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>719</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>720</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>721</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>722</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>723</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>724</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>725</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>726</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>727</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>728</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>729</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>730</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>731</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>732</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>733</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>734</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>735</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>736</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>737</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>738</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>739</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>740</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>741</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>742</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>743</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>744</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>745</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>746</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>747</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>748</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>749</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>751</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>752</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>753</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>754</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>755</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>756</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>757</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>758</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>759</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>760</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>873</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>874</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>875</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>876</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>877</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>878</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>879</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>880</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>881</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>882</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>883</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>884</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>885</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>886</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>887</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>888</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>889</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>890</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>891</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>892</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>893</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>894</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>895</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>896</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>897</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>898</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>899</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>900</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>901</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>902</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>903</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>904</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>905</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>906</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>907</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>908</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>909</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>910</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>911</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>912</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>913</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>914</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>915</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>916</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>917</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>918</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>919</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>920</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>921</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>922</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>923</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>924</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>925</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>926</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>927</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>928</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
MultiClassification class

public class com.imsl.datamining.neural.MultiClassification implements Serializable

Classifies patterns into three or more classes.

Extends neural network analysis to solving multi-classification problems. In these problems, the target output for the network is the probability that the pattern falls into each of several classes, where the number of classes is 3 or greater. These probabilities are then used to assign patterns to one of the target classes. Typical applications include determining the credit classification for a business (excellent, good, fair or poor), and determining which of three or more treatments a patient should receive based upon their physical, clinical and laboratory information. This class signals that network training will minimize
the multi-classification cross-entropy error, and that network outputs are the probabilities that the pattern belongs to each of the target classes. These probabilities are scaled to sum to 1.0 using softmax activation.

**Constructor**

**MultiClassification**

```java
public MultiClassification(Network network)
```

**Description**

Creates a classifier.

**Parameter**

- `network` – is the neural network used for classification. Its `OutputPerceptrons` should use linear activation functions, `Activation.LINEAR`. The number of `OutputPerceptrons` should equal the number of classes.

**Methods**

**computeStatistics**

```java
public double[] computeStatistics(double[][] xData, int[] yData)
```

**Description**

Computes classification statistics for the supplied network patterns and their associated classifications. Method `computeStatistics` returns a two element array where the first element returned is the cross-entropy error; the second is the classification error rate. The classification error rate is calculated by comparing the estimated classification probabilities to the target classifications. If the estimated probability for the target class is not the largest for among the target classes, then the pattern is tallied as a classification error.

**Parameters**

- `xData` – A `double` matrix specifying the input training patterns. The number of columns in `xData` must equal the number of `Nodes` in the `InputLayer`.
- `yData` – An `int` containing the output classification patterns. The values in `yData` must be in the range of one to the number of `OutputPerceptrons` in the network.

**Returns**

A `double` array containing the two statistics described above.

**getError**

```java
public QuasiNewtonTrainer.Error getError()
```
Description
Returns the error function for use by QuasiNewtonTrainer for training a classification network. This error function combines the softmax activation function and the cross-entropy error function.

Returns
an implementation of the multi-classification cross-entropy error function.

getNetwork
public Network getNetwork()

Description
Returns the network being used for classification.

Returns
the network set by the constructor.

predictedClass
public int predictedClass(double[] x)

Description
Calculates the classification probabilities for the input pattern x, and returns the class with the highest probability.
This method classifies patterns into one of the target classes based upon the patterns values.

Parameter
x – The double array containing the network input patterns to classify. The length of x should equal the number of inputs in the network.

Returns
The classification predicted by the trained network for x. This will be one of the integers 1, 2, ..., nClasses, where nClasses is equal to nOutputs. nOutputs is the number of outputs in the network representing the number classes.

probabilities
public double[] probabilities(double[] x)

Description
Returns classification probabilities for the input pattern x.
The number of probabilities is equal to the number of target classes, which is the number of outputs in the FeedForwardNetwork. Each are calculated using the softmax activation for each of the OutputPerceptrons. The softmax function transforms the outputs potential z to the probability y by

\[ y_i = \text{softmax}_i = \frac{e^{z_i}}{\sum_{j=1}^{C} e^{z_j}} \]
Parameter

\( x \) – a double array containing the input patterns to classify. The length of \( x \) must be equal to the number of InputNodes.

Returns

A double containing the scaled probabilities.

\textbf{train}

\begin{verbatim}
public void train(Trainer trainer, double[][] xData, int[] yData)
\end{verbatim}

Description

Trains the classification neural network using supplied training patterns.

Parameters

- \texttt{trainer} – A Trainer object, which is used to train the network. The error function in any QuasiNewtonTrainer included in \texttt{trainer} should be set to the error function from this class using the \texttt{getError} method.
- \texttt{xData} – A double matrix containing the input training patterns. The number of columns in \texttt{xData} must equal the number of Nodes in the InputLayer. Each row of \texttt{xData} contains a training pattern.
- \texttt{yData} – An int array containing the output classification patterns. These values must be in the range of one to the number of OutputPerceptrons in the network.

Example 1: MultiClassification

This example trains a 3-layer network using Fisher’s Iris data with four continuous input attributes and three output classifications. This is perhaps the best known database to be found in the pattern recognition literature. Fisher’s paper is a classic in the field. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.

The structure of the network consists of four input nodes and three layers, with four perceptrons in the first hidden layer, three perceptrons in the second hidden layer and three in the output layer.

The four input attributes represent

1. Sepal length
2. Sepal width
3. Petal length
4. Petal width

The output attribute represents the class of the iris plant and are encoded using binary encoding.

1. Iris Setosa
2. Iris Versicolour

2190 • MultiClassification  JMSL
3. Iris Virginica

There are a total of 46 weights in this network, including the bias weights. All hidden layers use the logistic activation function. Since the target output is multi-classification the softmax activation function is used in the output layer and the MultiClassification error function class is used by the trainer. The error class MultiClassification combines the cross-entropy error calculations and the softmax function.

```java
import com.imsl.datamining.neural.*;
import com.imsl.math.*;
import java.io.*;
import java.util.logging.*;

//***
// Three Layer Feed-Forward Network with 4 inputs, all
// continuous, and 3 classification categories.
//
// new classification training_ex5.c
//
// This is perhaps the best known database to be found in the pattern
// recognition literature. Fisher's paper is a classic in the field.
// The data set contains 3 classes of 50 instances each,
// where each class refers to a type of iris plant. One class is
// linearly separable from the other 2; the latter are NOT linearly
// separable from each other.
//
// Predicted attribute: class of iris plant.
// 1=Iris Setosa, 2=Iris Versicolour, and 3=Iris Virginica
//
// Input Attributes (4 Continuous Attributes)
// X1: Sepal length, X2: Sepal width, X3: Petal length,
// and X4: Petal width
//***
public class MultiClassificationEx1 implements Serializable {
 private static int nObs = 150; // number of training patterns
 private static int nInputs = 4; // 9 nominal coded as 0=x, 1=o, 2=blank
 private static int nOutputs = 3; // one continuous output (nClasses=2)
 private static boolean trace = true; // Turns on/off training log

 // irisData[]: The raw data matrix. This is a 2-D matrix with 150 rows
 // and 5 columns. The first 4 columns are the continuous
 // input attributes and the 5th column is the
 // classification category (1-3). These data contain no
 // categorical input attributes.
 private static double[][] irisData = {
 {5.1, 3.5, 1.4, 0.2, 1}, {4.9, 3.0, 1.4, 0.2, 1},
 {4.7, 3.2, 1.3, 0.2, 1}, {4.6, 3.1, 1.5, 0.2, 1},
 {5.0, 3.6, 1.4, 0.2, 1}, {5.4, 3.9, 1.7, 0.4, 1},
 {4.6, 3.4, 1.4, 0.3, 1}, {5.0, 3.4, 1.5, 0.2, 1},
 {4.4, 2.9, 1.4, 0.2, 1}, {4.9, 3.1, 1.5, 0.1, 1},
 {5.4, 3.7, 1.5, 0.2, 1}, {4.8, 3.4, 1.6, 0.2, 1},
 {4.8, 3.0, 1.4, 0.1, 1}, {4.3, 3.0, 1.1, 0.1, 1},
 {5.8, 4.0, 1.2, 0.2, 1}, {5.7, 4.4, 1.5, 0.4, 1},
 };
```
\{(5.4, 3.9, 1.3, 0.4, 1), (5.1, 3.5, 1.4, 0.3, 1),
(5.7, 3.8, 1.7, 0.3, 1), (5.1, 3.8, 1.5, 0.3, 1),
(5.4, 3.4, 1.7, 0.2, 1), (5.1, 3.7, 1.5, 0.4, 1),
(4.8, 3.6, 1.0, 0.2, 1), (5.1, 3.3, 1.7, 0.5, 1),
(4.8, 3.4, 1.9, 0.2, 1), (5.0, 3.0, 1.6, 0.2, 1),
(5.0, 3.4, 1.6, 0.4, 1), (5.2, 3.5, 1.5, 0.2, 1),
(5.2, 3.4, 1.4, 0.2, 1), (4.7, 3.2, 1.6, 0.2, 1),
(4.8, 3.1, 1.6, 0.2, 1), (5.4, 3.4, 1.5, 0.4, 1),
(5.2, 4.1, 1.5, 0.1, 1), (5.5, 4.2, 1.4, 0.2, 1),
(4.9, 3.1, 1.5, 0.1, 1), (5.0, 3.2, 1.2, 0.2, 1),
(5.5, 3.5, 1.3, 0.2, 1), (4.9, 3.1, 1.5, 0.1, 1),
(4.4, 3.0, 1.3, 0.2, 1), (5.1, 3.4, 1.5, 0.2, 1),
(5.0, 3.5, 1.3, 0.3, 1), (4.5, 2.3, 1.3, 0.3, 1),
(4.4, 3.2, 1.3, 0.2, 1), (5.0, 3.5, 1.6, 0.6, 1),
(5.1, 3.8, 1.9, 0.4, 1), (4.8, 3.0, 1.4, 0.3, 1),
(5.1, 3.8, 1.6, 0.2, 1), (4.6, 3.2, 1.4, 0.2, 1),
(5.3, 3.7, 1.5, 0.2, 1), (5.0, 3.3, 1.4, 0.2, 1),
(7.0, 3.2, 4.7, 1.4, 2), (6.4, 3.2, 4.5, 1.5, 2),
(6.9, 3.1, 4.9, 1.5, 2), (5.5, 2.3, 4.0, 1.3, 2),
(6.5, 2.8, 4.6, 1.5, 2), (5.7, 2.8, 4.5, 1.3, 2),
(6.3, 3.3, 4.7, 1.6, 2), (4.9, 2.4, 3.3, 1.0, 2),
(6.6, 2.9, 4.6, 1.3, 2), (5.2, 2.7, 3.9, 1.4, 2),
(5.0, 2.0, 3.5, 1.0, 2), (5.9, 3.0, 4.2, 1.5, 2),
(6.0, 2.2, 4.0, 1.0, 2), (6.1, 2.9, 4.7, 1.4, 2),
(5.6, 2.9, 3.6, 1.3, 2), (6.7, 3.1, 4.4, 1.4, 2),
(5.6, 3.0, 4.5, 1.5, 2), (5.8, 2.7, 4.1, 1.0, 2),
(6.2, 2.2, 4.5, 1.5, 2), (5.6, 2.5, 3.9, 1.1, 2),
(5.9, 3.2, 4.8, 1.8, 2), (6.1, 2.8, 4.0, 1.3, 2),
(6.3, 2.5, 4.9, 1.5, 2), (6.1, 2.8, 4.7, 1.2, 2),
(6.4, 2.9, 4.3, 1.3, 2), (6.6, 3.0, 4.4, 1.4, 2),
(6.8, 2.8, 4.8, 1.4, 2), (6.7, 3.0, 5.0, 1.7, 2),
(6.0, 2.9, 4.5, 1.5, 2), (5.7, 2.6, 3.5, 1.0, 2),
(5.5, 2.4, 3.8, 1.1, 2), (5.5, 2.4, 3.7, 1.0, 2),
(5.8, 2.7, 3.9, 1.2, 2), (6.0, 2.7, 5.1, 1.6, 2),
(5.4, 3.0, 4.5, 1.5, 2), (6.0, 3.4, 4.5, 1.6, 2),
(6.7, 3.1, 4.7, 1.5, 2), (6.3, 2.3, 4.4, 1.3, 2),
(5.6, 3.0, 4.1, 1.3, 2), (5.5, 2.5, 4.0, 1.3, 2),
(5.5, 2.6, 4.4, 1.2, 2), (6.1, 3.0, 4.6, 1.4, 2),
(5.8, 2.6, 4.0, 1.2, 2), (5.0, 2.3, 3.3, 1.0, 2),
(5.6, 2.7, 4.2, 1.3, 2), (5.7, 3.0, 4.2, 1.2, 2),
(5.7, 2.9, 4.2, 1.3, 2), (6.2, 2.9, 4.3, 1.3, 2),
(5.1, 2.5, 3.0, 1.1, 2), (5.7, 2.8, 4.1, 1.3, 2),
(6.3, 3.3, 6.0, 2.5, 3), (5.8, 2.7, 5.1, 1.9, 3),
(7.1, 3.0, 5.9, 2.1, 3), (6.3, 2.9, 5.6, 1.8, 3),
(6.5, 3.0, 5.8, 2.2, 3), (7.6, 3.0, 6.6, 2.1, 3),
(4.9, 2.5, 4.5, 1.7, 3), (7.3, 2.9, 6.3, 1.8, 3),
(6.7, 2.5, 5.8, 1.8, 3), (7.2, 3.6, 6.1, 2.5, 3),
(6.5, 3.2, 5.1, 2.0, 3), (6.4, 2.7, 5.3, 1.9, 3),
(6.8, 3.0, 5.5, 2.1, 3), (5.7, 2.5, 5.0, 2.0, 3),
(5.8, 2.8, 5.1, 2.4, 3), (6.4, 3.2, 5.3, 2.3, 3),
(6.5, 3.0, 5.5, 1.8, 3), (7.7, 3.8, 6.7, 2.2, 3),
(7.7, 2.6, 6.9, 2.3, 3), (6.0, 2.2, 5.0, 1.5, 3),
(6.9, 3.2, 5.7, 2.3, 3), (5.6, 2.8, 4.9, 2.0, 3),
(7.7, 2.8, 6.7, 2.0, 3), (6.3, 2.7, 4.9, 1.8, 3),
(6.7, 3.3, 5.7, 2.1, 3), (7.2, 3.2, 6.0, 1.8, 3),
(6.2, 2.8, 4.8, 1.8, 3), (6.1, 3.0, 4.9, 1.8, 3),
public static void main(String[] args) throws Exception {
    double xData[][] = new double[nObs][nInputs];
    int yData[] = new int[nObs];
    for (int i = 0; i < nObs; i++) {
        for (int j = 0; j < nInputs; j++) {
            xData[i][j] = irisData[i][j];
        }
        yData[i] = (int) irisData[i][4];
    }

    // Create network
    FeedForwardNetwork network = new FeedForwardNetwork();
    network.getInputLayer().createInputs(nInputs);
    network.createHiddenLayer().
        createPerceptrons(4, Activation.LOGISTIC, 0.0);
    network.createHiddenLayer().
        createPerceptrons(3, Activation.LOGISTIC, 0.0);
    network.getOutputLayer().
        createPerceptrons(nOutputs, Activation.SOFTMAX, 0.0);
    network.linkAll();

    MultiClassification classification = new MultiClassification(network);

    // Create trainer
    QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
    trainer.setError(classification.getError());
    trainer.setMaximumTrainingIterations(1000);

    // If tracing is requested setup training logger
    if (trace) {
        Handler handler = new FileHandler("ClassificationNetworkTraining.log");
        Logger logger = Logger.getLogger("com.imsl.datamining.neural");
        logger.setLevel(Level.FINEST);
        logger.addHandler(handler);
        handler.setFormatter(QuasiNewtonTrainer.getFormatter());
    }

    // Train Network
    long t0 = System.currentTimeMillis();
    classification.train(trainer, xData, yData);

    // Display Network Errors
double stats[] = classification.computeStatistics(xData, yData);
System.out.println("********************************************************************************");
System.out.println("--> Cross-entropy error: " + (float) stats[0]);
System.out.println("--> Classification error rate: " + (float) stats[1]);
System.out.println("********************************************************************************");
System.out.println("");

double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[][] = new double[weight.length][2];
for (int i = 0; i < weight.length; i++) {
    wg[i][0] = weight[i];
    wg[i][1] = gradient[i];
}

PrintMatrixFormat pmf = new PrintMatrixFormat();
  pmf.setNumberFormat(new java.text.DecimalFormat("0.000000");
  pmf.setColumnLabels(new String[]{"Weights", "Gradients"});
new PrintMatrix().print(pmf, wg);

double report[][] = new double[nObs][nInputs + 2];
for (int i = 0; i < nObs; i++) {
    for (int j = 0; j < nInputs; j++) {
        report[i][j] = xData[i][j];
    }
    report[i][nInputs] = irisData[i][4];
    report[i][nInputs + 1] = classification.predictedClass(xData[i]);
}

pmf = new PrintMatrixFormat();
new PrintMatrix("Forecast").print(pmf, report);

// ********************************************************************************
// DISPLAY CLASSIFICATION STATISTICS
// ********************************************************************************

double statsClass[] = classification.computeStatistics(xData, yData);

System.out.println("********************************************************************************");
System.out.println("--> Cross-Entropy Error: " + (float) statsClass[0]);
System.out.println("--> Classification Error: " + (float) statsClass[1]);
System.out.println("********************************************************************************");
System.out.println("");

long t1 = System.currentTimeMillis();
double time = t1 - t0;
time = time / 1000;
System.out.println("*************Time: " + time);
System.out.println("Cross-Entropy Error Value = "
+ trainer.getErrorValue());

Output

*******************************************************
--> Cross-entropy error: 4.653512
--> Classification error rate: 0.006666667
*******************************************************

Weights Gradients
0  -42.381828  0.030801
1   193.055878  0.000000
2   -30.384656  0.000000
3    95.352605  0.000000
4   -33.692976  0.012782
5   -282.844912  0.000000
6    -422.581218  0.000000
7   -317.896968  0.000000
8    60.505928  0.023458
9   -94.286590  0.000000
10   109.828939  0.000000
11  -168.351914  0.000000
12   42.250439  0.008464
13   691.012987  0.000000
14    602.474794  0.000000
15    694.122349  0.000000
16   -3.036409  -1.035514
17   -151.673802  -5.466157
18    75.471899  0.000000
19     3.479083  -1.035303
20   -46.614896  -5.466182
21    56.347637  0.032349
22   -153.010906  -1.035303
23    204.597137  -5.466182
24    21.557752  0.032349
25    64.075577  -1.035303
26    67.599168  -5.466182
27    78.904088  0.032349
28   -5672.118029  0.000000
29    1244.905099  0.010077
30    4428.212930  -0.010077
31   -5600.671740  0.000000
32    1746.525173  0.004710
33    3855.146566  -0.004710
34   -5562.390356  0.000000
35    1230.760279  0.010431
36    328.841061  0.000000
37    323.847338  0.000000
38    306.946067  0.000000
<table>
<thead>
<tr>
<th></th>
<th>Sepal Length</th>
<th>Sepal Width</th>
<th>Petal Length</th>
<th>Petal Width</th>
<th>Expected</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>5.4</td>
<td>3.7</td>
<td>1.5</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>4.8</td>
<td>3</td>
<td>1.4</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>4.3</td>
<td>3</td>
<td>1.1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>5.8</td>
<td>4</td>
<td>1.2</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>5.7</td>
<td>4.4</td>
<td>1.5</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>5.4</td>
<td>3.9</td>
<td>1.3</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>5.7</td>
<td>3.8</td>
<td>1.7</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>5.1</td>
<td>3.8</td>
<td>1.5</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>5.4</td>
<td>3.4</td>
<td>1.7</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>5.1</td>
<td>3.7</td>
<td>1.5</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>4.6</td>
<td>3.6</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>5.1</td>
<td>3.3</td>
<td>1.7</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>4.8</td>
<td>3.4</td>
<td>1.9</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>3</td>
<td>1.6</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>3.4</td>
<td>1.6</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>5.2</td>
<td>3.5</td>
<td>1.5</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>5.2</td>
<td>3.4</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>4.7</td>
<td>3.2</td>
<td>1.6</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>4.8</td>
<td>3.1</td>
<td>1.6</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>5.4</td>
<td>3.4</td>
<td>1.5</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>5.2</td>
<td>4.1</td>
<td>1.5</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>5.5</td>
<td>4.2</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
<td>3.2</td>
<td>1.2</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>5.5</td>
<td>3.5</td>
<td>1.3</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>4.4</td>
<td>3</td>
<td>1.3</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>5.1</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>3.5</td>
<td>1.3</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>4.5</td>
<td>2.3</td>
<td>1.3</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>4.4</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>5</td>
<td>3.5</td>
<td>1.6</td>
<td>0.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>5.1</td>
<td>3.8</td>
<td>1.9</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>4.8</td>
<td>3</td>
<td>1.4</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>5.1</td>
<td>3.8</td>
<td>1.6</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>47</td>
<td>4.6</td>
<td>3.2</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>5.3</td>
<td>3.7</td>
<td>1.5</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>5</td>
<td>3.3</td>
<td>1.4</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>3.2</td>
<td>4.7</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>6.4</td>
<td>3.2</td>
<td>4.5</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>6.9</td>
<td>3.1</td>
<td>4.9</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>5.5</td>
<td>2.3</td>
<td>4</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>54</td>
<td>6.5</td>
<td>2.8</td>
<td>4.6</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>5.7</td>
<td>2.8</td>
<td>4.5</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>6.3</td>
<td>3.3</td>
<td>4.7</td>
<td>1.6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>4.9</td>
<td>2.4</td>
<td>3.3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>6.6</td>
<td>2.9</td>
<td>4.6</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>5.2</td>
<td>2.7</td>
<td>3.9</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>2</td>
<td>3.5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td>5.9</td>
<td>3</td>
<td>4.2</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>6</td>
<td>2.2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>6.1</td>
<td>2.9</td>
<td>4.7</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>5.6</td>
<td>2.9</td>
<td>3.6</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>6.7</td>
<td>3.1</td>
<td>4.4</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>66</td>
<td>5.6</td>
<td>3</td>
<td>4.5</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>5.8</td>
<td>2.7</td>
<td>4.1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>68</td>
<td>6.2</td>
<td>2.2</td>
<td>4.5</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>69</td>
<td>5.6</td>
<td>2.5</td>
<td>3.9</td>
<td>1.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>5.9</td>
<td>3.2</td>
<td>4.8</td>
<td>1.8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>71</td>
<td>6.1</td>
<td>2.8</td>
<td>4</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>6.3</td>
<td>2.5</td>
<td>4.9</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>73</td>
<td>6.1</td>
<td>2.8</td>
<td>4.7</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>74</td>
<td>6.4</td>
<td>2.9</td>
<td>4.3</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>6.6</td>
<td>3</td>
<td>4.4</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>76</td>
<td>6.8</td>
<td>2.8</td>
<td>4.8</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>77</td>
<td>6.7</td>
<td>3</td>
<td>5</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td>6</td>
<td>2.9</td>
<td>4.5</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td>5.7</td>
<td>2.6</td>
<td>3.5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td>5.5</td>
<td>2.4</td>
<td>3.8</td>
<td>1.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>81</td>
<td>5.5</td>
<td>2.4</td>
<td>3.7</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>82</td>
<td>5.8</td>
<td>2.7</td>
<td>3.9</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>83</td>
<td>6</td>
<td>2.7</td>
<td>5.1</td>
<td>1.6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>84</td>
<td>5.4</td>
<td>3</td>
<td>4.5</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>85</td>
<td>6</td>
<td>3.4</td>
<td>4.5</td>
<td>1.6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>86</td>
<td>6.7</td>
<td>3.1</td>
<td>4.7</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>87</td>
<td>6.3</td>
<td>2.3</td>
<td>4.4</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88</td>
<td>5.6</td>
<td>3</td>
<td>4.1</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>89</td>
<td>5.5</td>
<td>2.5</td>
<td>4</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>90</td>
<td>5.5</td>
<td>2.6</td>
<td>4.4</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>91</td>
<td>6.1</td>
<td>3</td>
<td>4.6</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>92</td>
<td>5.8</td>
<td>2.6</td>
<td>4</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>93</td>
<td>5</td>
<td>2.3</td>
<td>3.3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>94</td>
<td>5.6</td>
<td>2.7</td>
<td>4.2</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>95</td>
<td>5.7</td>
<td>3</td>
<td>4.2</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>96</td>
<td>5.7</td>
<td>2.9</td>
<td>4.2</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>97</td>
<td>6.2</td>
<td>2.9</td>
<td>4.3</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>98</td>
<td>5.1</td>
<td>2.5</td>
<td>3</td>
<td>1.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>99</td>
<td>5.7</td>
<td>2.8</td>
<td>4.1</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>6.3</td>
<td>3.3</td>
<td>6</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>102</td>
<td>7.1</td>
<td>3</td>
<td>5.9</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>103</td>
<td>6.3</td>
<td>2.9</td>
<td>5.6</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>104</td>
<td>6.5</td>
<td>3</td>
<td>5.8</td>
<td>2.2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>105</td>
<td>7.6</td>
<td>2.5</td>
<td>4.5</td>
<td>1.7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>106</td>
<td>7.3</td>
<td>2.9</td>
<td>6.3</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>107</td>
<td>6.7</td>
<td>2.5</td>
<td>5.8</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>108</td>
<td>7.2</td>
<td>3.6</td>
<td>6.1</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>109</td>
<td>6.5</td>
<td>3.2</td>
<td>5.1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>110</td>
<td>6.4</td>
<td>2.7</td>
<td>5.3</td>
<td>1.9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>111</td>
<td>6.8</td>
<td>3</td>
<td>5.5</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>112</td>
<td>5.7</td>
<td>2.5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>113</td>
<td>5.8</td>
<td>2.8</td>
<td>5.1</td>
<td>2.4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>114</td>
<td>6.4</td>
<td>3.2</td>
<td>5.3</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>115</td>
<td>6.5</td>
<td>3</td>
<td>5.5</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>116</td>
<td>7.7</td>
<td>3.8</td>
<td>6.7</td>
<td>2.2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>117</td>
<td>7.7</td>
<td>2.6</td>
<td>6.9</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>118</td>
<td>6</td>
<td>2.2</td>
<td>5</td>
<td>1.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>119</td>
<td>6.9</td>
<td>3.2</td>
<td>5.7</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>120</td>
<td>5.6</td>
<td>2.8</td>
<td>4.9</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>121</td>
<td>7.7</td>
<td>2.8</td>
<td>6.7</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>122</td>
<td>6.3</td>
<td>2.7</td>
<td>4.9</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>123</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>124</td>
<td>7.2</td>
<td>3.2</td>
<td>6</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>125</td>
<td>6.2</td>
<td>2.8</td>
<td>4.8</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>126</td>
<td>6.1</td>
<td>3</td>
<td>4.9</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>127</td>
<td>6.4</td>
<td>2.8</td>
<td>5.6</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>128</td>
<td>7.2</td>
<td>3</td>
<td>5.8</td>
<td>1.6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>129</td>
<td>7.4</td>
<td>2.8</td>
<td>6.1</td>
<td>1.9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>130</td>
<td>7.9</td>
<td>3.8</td>
<td>6.4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>131</td>
<td>6.4</td>
<td>2.8</td>
<td>5.6</td>
<td>2.2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>132</td>
<td>6.3</td>
<td>2.8</td>
<td>5.1</td>
<td>1.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>133</td>
<td>6.1</td>
<td>2.6</td>
<td>5.6</td>
<td>1.4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>134</td>
<td>7.7</td>
<td>3</td>
<td>6.1</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>135</td>
<td>6.3</td>
<td>3.4</td>
<td>5.6</td>
<td>2.4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>136</td>
<td>6.4</td>
<td>3.1</td>
<td>5.5</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>137</td>
<td>6</td>
<td>3</td>
<td>4.8</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>138</td>
<td>6.9</td>
<td>3.1</td>
<td>5.4</td>
<td>2.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>139</td>
<td>6.7</td>
<td>3.1</td>
<td>5.6</td>
<td>2.4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>140</td>
<td>6.9</td>
<td>3.1</td>
<td>5.1</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>141</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>142</td>
<td>6.8</td>
<td>3.2</td>
<td>5.9</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>143</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>144</td>
<td>6.7</td>
<td>3</td>
<td>5.2</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>145</td>
<td>6.3</td>
<td>2.5</td>
<td>5</td>
<td>1.9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>146</td>
<td>6.5</td>
<td>3</td>
<td>5.2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>147</td>
<td>6.2</td>
<td>3.4</td>
<td>5.4</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>148</td>
<td>5.9</td>
<td>3</td>
<td>5.1</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>149</td>
<td>5.9</td>
<td>3</td>
<td>5.1</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

*******************************************************************************

--> Cross-Entropy Error: 4.653512
--> Classification Error: 0.006666667
*******************************************************************************

*******************************************************************************

Cross-Entropy Error Value = 4.653511831588219
Example 2: MultiClassification

This example trains a 2-layer network using three binary inputs (X0, X1, X2) and one three-level classification (Y). Where

\[ Y = 0 \text{ if } X1 = 1 \]
\[ Y = 1 \text{ if } X2 = 1 \]
\[ Y = 2 \text{ if } X3 = 1 \]

```java
import com.imsl.datamining.neural.*;
import com.imsl.math.*;
import java.io.*;
import java.util.logging.*;

//***
// Two-Layer FFN with 3 binary inputs (X0, X1, X2) and one three-level
// classification variable (Y)
// Y = 0 if X1 = 1
// Y = 1 if X2 = 1
// Y = 2 if X3 = 1
// (training_ex6)
//***
public class MultiClassificationEx2 implements Serializable {

 private static int nObs = 6; // number of training patterns
 private static int nInputs = 3; // 3 inputs, all categorical
 private static int nOutputs = 3; // output
 private static boolean trace = true; // Turns on/off training log
 private static double xData[][] = {
 {1, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 1}
 };
 private static int yData[] = {1, 1, 2, 2, 3, 3};

 private static double weights[] = {
 1.29099444873580580000, -0.64549722436790280000, -0.64549722436790291000,
 0.00000000000000000000, 1.11803398874989490000, -1.11803398874989470000,
 0.57735026918962584000, 0.57735026918962584000, 0.57735026918962584000,
 0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
 0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
 0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
 0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
 -0.00000000000000000000, -0.00000000000000000000, -0.00000000000000000000
 };

 public static void main(String[] args) throws Exception {
 FeedForwardNetwork network = new FeedForwardNetwork();
 network.getInputLayer().createInputs(nInputs);
 network.createHiddenLayer().
 createPerceptrons(3, Activation.LINEAR, 0.0);
 network.getOutputLayer().
 createPerceptrons(nOutputs, Activation.SOFTMAX, 0.0);
 network.linkAll();
 network.setWeights(weights);
 }
}
```
MultiClassification classification = new MultiClassification(network);
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.setError(classification.getError());
trainer.setMaximumTrainingIterations(1000);
trainer.setFalseConvergenceTolerance(1.0e-20);
trainer.setGradientTolerance(1.0e-20);
trainer.setRelativeTolerance(1.0e-20);
trainer.setStepTolerance(1.0e-20);

// If tracing is requested setup training logger
if (trace) {
    Handler handler = new FileHandler("ClassificationNetworkEx2.log");
    Logger logger = Logger.getLogger("com.imsl.datamining.neural");
    logger.setLevel(Level.FINEST);
    logger.addHandler(handler);
    handler.setFormatter(QuasiNewtonTrainer.getFormatter());
}

// Train Network
classification.train(trainer, xData, yData);

// Display Network Errors
double stats[] = classification.computeStatistics(xData, yData);
System.out.println("***********************************************");
System.out.println("--> Cross-Entropy Error: " + (float) stats[0]);
System.out.println("--> Classification Error: " + (float) stats[1]);
System.out.println("***********************************************");
System.out.println();

double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[][] = new double[weight.length][2];
for (int i = 0; i < weight.length; i++) {
    wg[i][0] = weight[i];
    wg[i][1] = gradient[i];
}

PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setHorizontalAlignment(new java.text.DecimalFormat("0.000000"));
pmf.setColumnLabels(new String[] {"Weights", "Gradients"});
new PrintMatrix().print(pmf, wg);

double report[][] = new double[nObs][nInputs + nOutputs + 2];
for (int i = 0; i < nObs; i++) {
    for (int j = 0; j < nInputs; j++) {
        report[i][j] = xData[i][j];
    }

    report[i][nInputs] = yData[i];
    double p[] = classification.probabilities(xData[i]);
    for (int j = 0; j < nOutputs; j++) {
        report[i][nInputs + 1 + j] = p[j];
    }

    report[i][nInputs + nOutputs + 1] = classification.predictedClass(xData[i]);
}
pmf = new PrintMatrixFormat();
pmf.setColumnLabels(new String[]{"X1", "X2", "X3", "Y", "P(C1)",
"P(C2)", "P(C3)", "Predicted"});
new PrintMatrix("Forecast").print(pmf, report);
System.out.println("Cross-Entropy Error Value = "
+ trainer.getErrorValue());
// ******************************************************************
// DISPLAY CLASSIFICATION STATISTICS
// ******************************************************************
double statsClass[] = classification.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("***********************************************");
System.out.println("--> Cross-Entropy Error:
"
+ (float) statsClass[0]);
System.out.println("--> Classification Error:
"
+ (float) statsClass[1]);
System.out.println("***********************************************");
System.out.println("");
}
}

Output
***********************************************
--> Cross-Entropy Error:
0.0
--> Classification Error:
0.0
***********************************************

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Weights
3.401208
-4.126657
-2.201606
-2.009527
3.173323
-4.200377
0.028736
2.657051
4.868134
3.711295
-2.723536
0.012241
-4.996359
4.296983
1.699376
-1.993114
-4.048833
7.041948
-0.447927
0.653830
-0.925019
-0.078963
0.247835
-0.168872

Neural Nets

Gradients
-0.000000
0.000000
-0.000000
0.000000
-0.000000
-0.000000
-0.000000
0.000000
-0.000000
-0.000000
-0.000000
0.000000
0.000000
0.000000
-0.000000
0.000000
0.000000
-0.000000
-0.000000
0.000000
-0.000000
0.000000
0.000000
-0.000000

MultiClassification • 2201


### ScaleFilter class

public class com.imsl.datamining.neural.ScaleFilter implements Serializable

Scales or unscales continuous data prior to its use in neural network training, testing, or forecasting. Bounded scaling is used to ensure that the values in the scaled array fall between a lower and upper bound. The scale limits have the following interpretation:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>realMin</td>
<td>The lowest value expected in x.</td>
</tr>
<tr>
<td>realMax</td>
<td>The largest value expected in x.</td>
</tr>
<tr>
<td>targetMin</td>
<td>The lower bound for the values in the scaled data.</td>
</tr>
<tr>
<td>targetMax</td>
<td>The upper bound for the values in the scaled data.</td>
</tr>
</tbody>
</table>

The scale limits are set using the method `setBounds`.

The specific scaling used is controlled by the argument `scalingMethod` used when constructing the filter object. If `scalingMethod` is **NO_SCALING**, then no scaling is performed on the data.

If the `scalingMethod` is **BOUNDED_SCALING** then the bounded method of scaling and unscaling is applied to x. The scaling operation is conducted using the scale limits set in method `setBounds`, using the following calculation:

\[
    z = r(x - \text{realMin}) + \text{targetMin},
\]

where

\[
    r = \frac{\text{targetMax} - \text{targetMin}}{\text{realMax} - \text{realMin}}.
\]

If `scalingMethod` is one of **UNBOUNDED_Z_SCORE_SCALING_MEAN_STDEV**, **UNBOUNDED_Z_SCORE_SCALING_MEDIAN_MAD**, **BOUNDED_Z_SCORE_SCALING_MEAN_STDEV**, or

<table>
<thead>
<tr>
<th>Forecast</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>Y</th>
<th>P(C1)</th>
<th>P(C2)</th>
<th>P(C3)</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Cross-Entropy Error Value = 0.0

**********************************************

--> Cross-Entropy Error: 0.0
--> Classification Error: 0.0

**********************************************
BOUNDED_Z_SCORE_SCALING_Median_MAD, then the z-score method of scaling is used. These calculations are based upon the following scaling calculation:

\[ z = \frac{x - a}{b}, \]

where \( a \) is a measure of center for \( x \), and \( b \) is a measure of the spread of \( x \).

If `scalingMethod` is `UNBOUNDED_Z_SCORE_SCALING_MEAN_STDEV`, or `BOUNDED_Z_SCORE_SCALING_MEAN_STDEV`, then \( a \) and \( b \) are the arithmetic average and sample standard deviation of the training data.

If `scalingMethod` is `UNBOUNDED_Z_SCORE_SCALING_Median_MAD` or `BOUNDED_Z_SCORE_SCALING_Median_MAD`, then \( a \) and \( b \) are the median and \( \tilde{s} \), where \( \tilde{s} \) is a robust estimate of the population standard deviation:

\[ \tilde{s} = \frac{\text{MAD}}{0.6745} \]

where MAD is the Mean Absolute Deviation

\[ \text{MAD} = \text{median}\{|x - \text{median}\{x\}|\} \]

The Mean Absolute Deviation is a robust measure of spread calculated by finding the median of the absolute value of differences between each non-missing value for the \( i \)th variable and the median of those values.

If the method `decode` is called then an unscaling operation is conducted by inverting using:

\[ x = \frac{(z - \text{targetMin})}{r} + \text{realMin}. \]

**Unbounded z-score Scaling**

If `scalingMethod` is `UNBOUNDED_Z_SCORE_SCALING_MEAN_STDEV` or `UNBOUNDED_Z_SCORE_SCALING_Median_MAD`, then a scaling operation is conducted using the z-score calculation:

\[ z = \frac{(x - \text{center})}{\text{spread}}, \]

If `scalingMethod` is `UNBOUNDED_Z_SCORE_SCALING_MEAN_STDEV` then `center` is set equal to the arithmetic average \( \bar{x} \) of \( x \), and `spread` is set equal to the sample standard deviation of \( x \). If `scalingMethod` is `UNBOUNDED_Z_SCORE_SCALING_Median_MAD` then `center` is set equal to the median \( \tilde{m} \) of \( x \), and `spread` is set equal to the Mean Absolute Difference (MAD).

The method `decode` can be used to unfilter data using the the inverse calculation for the above equation:

\[ x = \text{spread} \cdot z + \text{center}. \]

**Bounded z-score Scaling**

This method is essentially the same as the z-score calculation described above with additional scaling or unscaling using the scale limits set in method `setBounds`. The scaling operation is conducted using the
well known z-score calculation:

\[
    z = \frac{r \cdot (x - \text{center})}{\text{spread}} - r \cdot \text{realMin} + \text{targetMin}.
\]

If \text{scalingMethod} is \text{UNBOUNDED} \_ \text{Z} \_ \text{SCORE} \_ \text{SCALING} \_ \text{MEAN} \_ \text{STDEV} then \text{center} is set equal to the arithmetic average \( \bar{x} \) of \( x \), and \text{spread} is set equal to the sample standard deviation of \( x \). If \text{scalingMethod} is \text{UNBOUNDED} \_ \text{Z} \_ \text{SCORE} \_ \text{SCALING} \_ \text{MEDIAN} \_ \text{MAD} then \text{center} is set equal to the median \( \tilde{m} \) of \( x \), and \text{spread} is set equal to the Mean Absolute Difference (MAD). The method \text{decode} can be used to unfilter data using the the inverse calculation for the above equation:

\[
    x = \frac{\text{spread} \cdot (z - \text{targetMin})}{r} + \text{spread} \cdot \text{realMin} + \text{center}
\]

\section*{Fields}

\textbf{BOUNDED\_SCALING}

\text{static final public int BOUNDED\_SCALING}

Flag to indicate bounded scaling.

\textbf{BOUNDED\_Z\_SCORE\_SCALING\_MEAN\_STDEV}

\text{static final public int BOUNDED\_Z\_SCORE\_SCALING\_MEAN\_STDEV}

Flag to indicate bounded z-score scaling using the mean and standard deviation.

\textbf{BOUNDED\_Z\_SCORE\_SCALING\_MEDIAN\_MAD}

\text{static final public int BOUNDED\_Z\_SCORE\_SCALING\_MEDIAN\_MAD}

Flag to indicate bounded z-score scaling using the median and mean absolute difference.

\textbf{NO\_SCALING}

\text{static final public int NO\_SCALING}

Flag to indicate no scaling.

\textbf{UNBOUNDED\_Z\_SCORE\_SCALING\_MEAN\_STDEV}

\text{static final public int UNBOUNDED\_Z\_SCORE\_SCALING\_MEAN\_STDEV}

Flag to indicate unbounded z-score scaling using the mean and standard deviation.

\textbf{UNBOUNDED\_Z\_SCORE\_SCALING\_MEDIAN\_MAD}

\text{static final public int UNBOUNDED\_Z\_SCORE\_SCALING\_MEDIAN\_MAD}

Flag to indicate unbounded z-score scaling using the median and mean absolute difference.
**Constructor**

**ScaleFilter**

public ScaleFilter(int scalingMethod)

**Description**

Constructor for ScaleFilter.

**Parameter**

scalingMethod – An int specifying the scaling method to be applied. scalingMethod is specified by: NO_SCALING, BOUNDED_SCALING, UNBOUNDED_Z_SCORE_SCALING_MEAN_STDEV, UNBOUNDED_Z_SCORE_SCALING_MEDIAN_MAD, BOUNDED_Z_SCORE_SCALING_MEAN_STDEV, or BOUNDED_Z_SCORE_SCALING_MEDIAN_MAD.

**Methods**

**decode**

public double decode(double z)

**Description**

Unscales a value.

**Parameter**

z – A double containing the value to be unscaled.

**Returns**

A double containing the filtered data.

**decode**

public double[] decode(double[] z)

**Description**

Unscales an array of values.

**Parameter**

z – A double array of values to be unscaled.

**Returns**

A double array containing the filtered data.

**decode**

public void decode(int columnIndex, double[][] z)

**Description**

Unscales a single column of a two dimensional array of values.
**Parameters**

- `columnIndex` – An `int` specifying the index of the column of `z` to unscale. Indexing is zero-based.
- `z` – A `double` matrix containing the values to be unscaled. Its `columnIndex`-th column is modified in place.

**encode**

```java
public double encode(double x)
```

**Description**

Scales a value.

**Parameter**

- `x` – A double containing the value to be scaled.

**Returns**

A double containing the scaled value.

```java
public double[] encode(double[] x)
```

**Description**

Scales an array of values.

**Parameter**

- `x` – A double array containing the data to be scaled.

**Returns**

A double array containing the scaled data.

```java
public void encode(int columnIndex, double[][] x)
```

**Description**

Scales a single column of a two dimensional array of values.

**Parameters**

- `columnIndex` – An `int` specifying the index of the column of `x` to scale. Indexing is zero-based.
- `x` – A `double` matrix containing the value to be scaled. Its `columnIndex`-th column is modified in place.

**getBounds**

```java
public double[] getBounds()
```

**Description**

Retrieves bounds used during bounded scaling.
Returns
A double array of length 4 containing the values

<table>
<thead>
<tr>
<th>i</th>
<th>result[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>realMin. Lowest expected value in the data to be filtered.</td>
</tr>
<tr>
<td>1</td>
<td>realMax. Largest expected value in the data to be filtered.</td>
</tr>
<tr>
<td>2</td>
<td>targetMin. Lowest allowed value in the filtered data.</td>
</tr>
<tr>
<td>3</td>
<td>targetMax. Largest allowed value in the filtered data.</td>
</tr>
</tbody>
</table>

**getCenter**

```java
public double getCenter()
```

**Description**
Retrieves the measure of center to be used during z-score scaling.

**Returns**
A double containing the measure of center to be used during z-score scaling.

**getSpread**

```java
public double getSpread()
```

**Description**
Retrieves the measure of spread to be used during scaling.

**Returns**
a double containing the measure of spread to be used during scaling.

**setBounds**

```java
public void setBounds(double realMin, double realMax, double targetMin, double targetMax)
```

**Description**
Sets bounds to be used during bounded scaling and unscaling. This method is normally called prior to calls to encode or decode. Otherwise the default bounds are realMin = 0, realMax = 1, targetMin = 0, and targetMax = 1. These bounds are ignored for unbounded scaling.

**Parameters**
- realMin – A double containing the lowest expected value in the data to be filtered.
- realMax – A double containing the largest expected value in the data to be filtered.
- targetMin – A double containing the lowest allowed value in the filtered data.
- targetMax – A double containing the largest allowed value in the filtered data.

**setCenter**

```java
public void setCenter(double center)
```
Description
Set the measure of center to be used during z-score scaling.

Parameter
center – A double containing the measure of center to be used during scaling. If this method is not called then the measure of center is computed from the data.

setSpread
public void setSpread(double spread)

Description
Set the measure of spread to be used during z-score scaling.

Parameter
spread – A double containing the measure of spread to be used during z-score scaling. If this method is not called then the measure of spread is computed from the data.

Example: ScaleFilter
In this example three sets of data, X0, X1, and X2 are scaled using the methods described in the following table:

Variables and Scaling Methods

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0</td>
<td>0</td>
<td>No Scaling</td>
</tr>
<tr>
<td>X1</td>
<td>4</td>
<td>Bounded Z-score scaling using the mean and standard deviation of X1</td>
</tr>
<tr>
<td>X2</td>
<td>5</td>
<td>Bounded Z-score scaling using the median and MAD of X2</td>
</tr>
</tbody>
</table>

The bounds, measures of center and spread for X1 and X2 are:

Scaling Limits and Measures of Center and Spread

<table>
<thead>
<tr>
<th>Variable</th>
<th>Real Limits</th>
<th>Target Limits</th>
<th>Measure of Center</th>
<th>Measure of Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>(-6, +6)</td>
<td>(-3, +3)</td>
<td>3.4 (Mean)</td>
<td>1.7421 (Std. Dev.)</td>
</tr>
<tr>
<td>X2</td>
<td>(-3, +3)</td>
<td>(-3, +3)</td>
<td>2.4 (Median)</td>
<td>1.3343 (MAD/0.6745)</td>
</tr>
</tbody>
</table>

The real and target limits are used for bounded scaling. The measures of center and spread are used to calculate z-scores. Using these values for \( x1[0]=3.5 \) yields the following calculations:

For \( x1[0] \), the scale factor is calculated using the real and target limits in the above table:

\[ r = (3-(-3))/(6-(-6)) = 0.5 \]

The z-score for \( x1[0] \) is calculated using the measures of center and spread:

\[ z1[0] = (3.5 - 3.4)/1.7421 = 0.057402 \]

Since method=4 is used for \( x1 \), this z-score is bounded (scaled) using the real and target limits:
\[ z_1(\text{bounded}) = r(z_1[0]) - r(\text{realMin}) + (\text{targetMin}) = 0.5(0.057402) - 0.5(-6) + (-3) = 0.029 \]

The calculations for \( x_2[0] \) are nearly identical, except that since method=5 for \( x_2 \), the median and MAD replace the mean and standard deviation used to calculate \( z_1(\text{bounded}) \):

\[ r = (3-(-3))/(3-(-3)) = 1, \]

\[ z_2[0] = (3.1 - 2.4)/1.3343 = 0.525, \text{ and} \]

\[ z_2(\text{bounded}) = r(z_2[0]) - r(\text{realMin}) + (\text{targetMin}) = 1(0.525) - 1(-3) + (-3) = 0.525 \]

```java
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class ScaleFilterEx1 {

 public static void main(String args[]) {
 ScaleFilter[] scaleFilter = new ScaleFilter[3];
 scaleFilter[0] = new ScaleFilter(ScaleFilter.NO_SCALING);
 scaleFilter[1] = new ScaleFilter(
 ScaleFilter.BOUNDED_Z_SCORE_SCALING_MEAN_STDEV);
 scaleFilter[1].setBounds(-6.0, 6.0, -3.0, 3.0);
 scaleFilter[2] = new ScaleFilter(
 ScaleFilter.BOUNDED_Z_SCORE_SCALING_MEDIAN_MAD);
 scaleFilter[2].setBounds(-3.0, 3.0, -3.0, 3.0);
 double[] y0, y1, y2;
 double[] x0 = {1.2, 0.0, -1.4, 1.5, 3.2};
 double[] x1 = {3.5, 2.4, 4.4, 5.6, 1.1};
 double[] x2 = {3.1, 1.5, -1.5, 2.4, 4.2};

 // Perform forward filtering
 y0 = scaleFilter[0].encode(x0);
 y1 = scaleFilter[1].encode(x1);
 y2 = scaleFilter[2].encode(x2);
 // Display x0
 System.out.print("X0 = {");
 for (int i = 0; i < 4; i++) {
 System.out.print(x0[i] + ", ");
 }
 System.out.println(x0[4] + "}");
 // Display summary statistics for X1
 System.out.println("X1 = ");
 for (int i = 0; i < 4; i++) {
 System.out.print(x1[i] + "");
 }
 System.out.println("\nX1 Mean: "+ scaleFilter[1].getCenter());
 System.out.println("X1 Std. Dev.: "+ scaleFilter[1].getSpread());
 // Display summary statistics for X2
 System.out.println("\nX2 = ");
 for (int i = 0; i < 4; i++) {
 System.out.print(x2[i] + "");
 }
 System.out.println("\nX2 Mean: "+ scaleFilter[2].getCenter());
 System.out.println("X2 Std. Dev.: "+ scaleFilter[2].getSpread());
 }

 Neural Nets
 ScaleFilter • 2209
```
System.out.println("X2 Median: " + scaleFilter[2].getCenter());
System.out.println("X2 MAD/0.6745: " + scaleFilter[2].getSpread());
System.out.println(" ");
PrintMatrix pm = new PrintMatrix();
pm.setTitle("Filtered X0 Using Method=0 (no scaling)");
pm.print(y0);
pm.setTitle("Filtered X1 Using Bounded Z-score Scaling
  + "with Center=Mean and Spread=Std. Dev.");
pm.print(y1);
pm.setTitle("Filtered X2 Using Bounded Z-score Scaling
  + "with Center=Median and Spread=MAD/0.6745");
pm.print(y2);

// Perform inverse filtering
double[] z0, z1, z2;
z0 = scaleFilter[0].decode(y0);
z1 = scaleFilter[1].decode(y1);
z2 = scaleFilter[2].decode(y2);
pm.setTitle("Decoded Z0");
pm.print(z0);
pm.setTitle("Decoded Z1");
pm.print(z1);
pm.setTitle("Decoded Z2");
pm.print(z2);
}

Output

X0 = {1.2, 0.0, -1.4, 1.5, 3.2}

X1 = {3.5, 2.4, 4.4, 5.6, 1.1}
X1 Mean: 3.4
X1 Std. Dev.: 1.7421251390184345

X2 = {3.1, 1.5, -1.5, 2.4, 4.2}
X2 Median: 2.4
X2 MAD/0.6745: 1.3343419966550414

Filtered X0 Using Method=0 (no scaling)
  0
  0 1.2
  1 0
  2 -1.4
  3 1.5
  4 3.2

Filtered X1 Using Bounded Z-score Scaling
with Center=Mean and Spread=Std. Dev.
  0
  0 0.029
  1 -0.287
  2 0.287
  3 0.631
  4 -0.66
Filtered X2 Using Bounded Z-score Scaling
with Center=Median and Spread=MAD/0.6745

|     | 0  | 0.525 | 1  | -0.674 | 2  | -2.923 | 3  | 0  | 4  | 1.349 |

Decoded Z0

|     | 0  | 1.2  | 1  | 0     | 2  | -1.4   | 3  | 1.5 | 4  | 3.2   |

Decoded Z1

|     | 0  | 3.5  | 1  | 2.4   | 2  | 4.4    | 3  | 5.6 | 4  | 1.1   |

Decoded Z2

|     | 0  | 3.1  | 1  | 1.5   | 2  | -1.5   | 3  | 2.4 | 4  | 4.2   |

---

**UnsupervisedNominalFilter class**

```java
public class com.ims1.datamining.neural.UnsupervisedNominalFilter implements Serializable
```

Converts nominal data into a series of binary encoded columns for input to a neural network. It also
reverses the aforementioned encoding, accepting binary encoded data and returns an array of integers
representing the classes for a nominal variable.

**Binary Encoding**

Method `encode` can be used to apply binary encoding. Referring to the result as `z`, binary encoding takes
each category in the nominal variable `x[]`, and creates a column in `z` containing all zeros and ones. A
value of zero indicates that this category was not present and a value of one indicates that it is present.
For example, if \( x[] = \{2, 1, 3, 4, 2, 4\} \) then \( n\text{Classes} = 4 \), and

\[
\begin{align*}
\text{z} &= \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\end{align*}
\]

Notice that the number of columns in the result, \( z \), is equal to the number of distinct classes in \( x \). The number of rows in \( z \) is equal to the length of \( x \).

**Binary Decoding**

Unfiltering can be performed using the method \( \text{decode} \). In this case, \( z \) is the input, and we refer to \( x \) as the output. Binary unfiltering takes binary representation in \( z \), and returns the appropriate class in \( x \).

For example, if a row in \( z \) equals \( \{0, 1, 0, 0\} \), then the return value from \( \text{decode} \) would be 2 for that row. If a row in \( z \) equals \( \{1, 0, 0, 0\} \), then the return value from \( \text{decode} \) would be 1 for that row. Notice these are the same values as the first two elements of the original \( x[] \) because classes are numbered sequentially from 1 to \( n\text{Classes} \). This ensures that the results of \( \text{decode} \) are associated with the \( i \)-th class in \( x[] \).

**Constructor**

**UnsupervisedNominalFilter**

```java
public UnsupervisedNominalFilter(int nClasses)
```

**Description**

Constructor for \( \text{UnsupervisedNominalFilter} \).

**Parameter**

\( n\text{Classes} \) – An int specifying the number of categories in the nominal variable to be filtered.

**Methods**

**decode**

```java
public int decode(int[] z)
```

**Description**

Decodes a binary encoded array into its nominal category. This is the inverse of the \( \text{encode(int)} \) method.

**Parameter**

\( z \) – An int array containing the data to be decoded.
Returns
An int containing the number associated with the category encoded in z.

decode
public int[] decode(int[][] z)

Description
Decodes a matrix representing the binary encoded columns of the nominal variable. This is the inverse of the encode(int[]) method.

Parameter
z – An int matrix containing the data to be decoded.

Returns
An int array containing the decoded data.

code
public int[] code(int x)

Description
Apply forward encoding to a value.

Parameter
x – An int containing the value to be encoding. Class number must be in the range 1 to nClasses.

Returns
An int array containing the encoded data.

code
public int[][] code(int[] x)

Description
Encodes class data prior to its use in neural network training.

Parameter
x – An int array containing the data to be encoded. Class number must be in the range 1 to nClasses.

Returns
An int matrix containing the encoded data.

getNumberOfClasses
public int getNumberOfClasses()

Description
Retrieves the number of classes in the nominal variable.
Returns
An int containing the number of classes in the nominal variable.

Example: UnsupervisedNominalFilter

In this example a data set with 7 observations and 3 classes is filtered.

```java
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class UnsupervisedNominalFilterEx1 {

 public static void main(String args[]) {
 int nClasses = 3;
 UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(nClasses);
 int nObs = 7;
 int[] x = {3, 3, 1, 2, 2, 1, 2};
 int[] xBack = new int[nObs];
 int[][] z;

 /* Perform Binary Filtering. */
 z = filter.encode(x);
 PrintMatrix pm = new PrintMatrix();
 pm.setTitle("Filtered x");
 pm.print(z);

 /* Perform Binary Un-filtering. */
 for (int i = 0; i < nObs; i++) {
 xBack[i] = filter.decode(z[i]);
 }
 pm.setTitle("Result of inverse filtering");
 pm.print(xBack);
 }
}
```

Output

Filtered x

<table>
<thead>
<tr>
<th>Filtered x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>0 0 0 1</td>
</tr>
<tr>
<td>1 0 0 1</td>
</tr>
<tr>
<td>2 1 0 0</td>
</tr>
<tr>
<td>3 0 1 0</td>
</tr>
<tr>
<td>4 0 1 0</td>
</tr>
<tr>
<td>5 1 0 0</td>
</tr>
<tr>
<td>6 0 1 0</td>
</tr>
</tbody>
</table>

Result of inverse filtering

| 0 |
UnsupervisedOrdinalFilter class

public class com.imsl.datamining.neural.UnsupervisedOrdinalFilter implements Serializable

Encodes ordinal data into percentages for input to a neural network. It also allows decoding, accepting a percentage and converting it into an ordinal value.

Class UnsupervisedOrdinalFilter is designed to either encode or decode ordinal variables. Encoding consists of transforming the ordinal classes into percentages, with each percentage being equal to the percentage of the data at or below this class.

Ordinal Encoding

In this case, \(x\) is input to the method `encode` and is filtered by converting each ordinal class value into a cumulative percentage.

For example, if \(x = \{2, 1, 3, 4, 2, 4, 1, 1, 3, 3\}\) then \(n\text{Classes}=4\), and `encode` returns the ordinal class designation with the cumulative percentages displayed in the following table. Cumulative percentages are equal to the percent of the data in this class or a lower class.

<table>
<thead>
<tr>
<th>Ordinal Class</th>
<th>Frequency</th>
<th>Cumulative Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>100%</td>
</tr>
</tbody>
</table>

Classes in \(x\) must be numbered from 1 to \(n\text{Classes}\).

The values returned from encoding or decoding depend upon the setting of `transform`. In this example, if the filter was constructed with `transform = TRANSFORM_NONE`, then the method `encode` will return \(z[] = \{50, 30, 80, 100, 50, 100, 30, 30, 80, 80\}\).

If the filter was constructed with `transform = TRANSFORM_SQRT`, then the square root of these values
is returned, i.e.,

\[ z[i] = \sqrt{\frac{z[i]}{100}} \]

\[ \{0.71, 0.55, 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89\}; \]

If the filter was constructed with \texttt{transform = TRANSFORM\_ASIN\_SQRT}, then the arcsin square root of these values is returned using the following calculation:

\[ z[i] = \arcsin\left(\sqrt{\frac{z[i]}{100}}\right) \]

**Ordinal Decoding**

Ordinal decoding takes a transformed cumulative proportion and converts it into an ordinal class value.

**Fields**

**TRANSFORM\_ASIN\_SQRT**

static final public int TRANSFORM\_ASIN\_SQRT

Flag to indicate the arcsine square root transform will be applied to the percentages.

**TRANSFORM\_NONE**

static final public int TRANSFORM\_NONE

Flag to indicate no transformation of percentages.

**TRANSFORM\_SQRT**

static final public int TRANSFORM\_SQRT

Flag to indicate the square root transform will be applied to the percentages.

**Constructor**

**UnsupervisedOrdinalFilter**

public UnsupervisedOrdinalFilter(int nClasses, int transform)


**Description**

Constructor for UnsupervisedOrdinalFilter.
Parameters

nClasses – An int specifying the number of classes in the data to be filtered.
transform – An int specifying the transform to be applied to the percentages. Values for transform are:
com.imsl.datamining.neural.UnsupervisedOrdinalFilter.TRANSFORM_NONE (p. 2216),
com.imsl.datamining.neural.UnsupervisedOrdinalFilter.TRANSFORM_SQRT (p. 2216),
com.imsl.datamining.neural.UnsupervisedOrdinalFilter.TRANSFORM_ASIN_SQRT (p. 2216)

Methods

decode
public int decode(double z)

Description
Decodes an encoded ordinal variable.
Parameter
z – A double containing the encoded value to be decoded.

Returns
An int containing the ordinal category associated with y.

decode
public int[] decode(double[] z)

Description
Decodes an array of encoded ordinal values.
Parameter
z – A double array containing the encoded ordinal data to be decoded.

Returns
An int array containing the decoded ordinal classifications.

encode
public double encode(int x)

Description
Encodes an ordinal category.
Parameter
x – An int containing the ordinal category. Must be an integer between 1 and nClasses.
Returns
A double containing the encoded value, a transformed cumulative percentage.

encode
public double[] encode(int[] x)

Description
Encodes an array of ordinal categories into an array of transformed percentages.

Parameter
x – An int array containing the categories for the ordinal variable. Categories must be numbered from 1 to nClasses.

Returns
A double array of the transformed percentages.

getNumberOfClasses
public int getNumberOfClasses()

Description
Retrieves the number of categories associated with this ordinal variable.

Returns
An int containing the number of categories associated with this ordinal variable.

getPercentages
public double[] getPercentages()

Description
Retrieves the cumulative percentages used for encoding and decoding. If a transform has been applied to the percentages then the transformed percentages are returned.

Returns
A double array of length nClasses containing the cumulative transformed percentages associated with the ordinal categories.

getTransform
public int getTransform()

Description
Retrieves the transform flag used for encoding and decoding.

Returns
An int containing the transform flag used for encoding and decoding.

setPercentages
public void setPercentages(double[] percentages)
Description
Set the untransformed cumulative percentages used during encoding and decoding. Setting percentages with this method bypasses calculating cumulative percentages based on the data being encoded. The percentages must be nondecreasing in the interval [0, 100], with the last element equal to 100. If this method is used it must be called prior to any calls to the encoding and decoding methods.

Parameter
percentages – A double array of length nClasses containing the cumulative percentages to use during encoding and decoding.

Example: UnsupervisedOrdinalFilter

In this example a data set with 10 observations and 4 classes is filtered.

```java
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class UnsupervisedOrdinalFilterEx1 {
 public static void main(String args[]) {
 int nClasses = 4;
 UnsupervisedOrdinalFilter filter = new UnsupervisedOrdinalFilter(nClasses,
 UnsupervisedOrdinalFilter.TRANSFORM_ASIN_SQRT);
 int[] x = {2, 1, 3, 4, 2, 4, 1, 1, 3, 3};
 int[] xBack;
 double[] z;
 /* Ordinal Filtering. */
 z = filter.encode(x);
 // Print result without row/column labels.
 PrintMatrix pm = new PrintMatrix();
 PrintMatrixFormat mf;
 mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 pm.setTitle("Filtered data");
 pm.print(mf, z);

 /* Ordinal Un-filtering. */
 pm.setTitle("Un-filtered data");
 xBack = filter.decode(z);
 // Print results of Un-filtering.
 pm.print(mf, xBack);
 }
}
```

Output
Filtered data
TimeSeriesFilter class

public class com.imsl.datamining.neural.TimeSeriesFilter implements Serializable

Converts time series data to a lagged format used as input to a neural network.

Class TimeSeriesFilter can be used to operate on a data matrix and lags every column to form a new data matrix. Using the method computeLags, each column of the input matrix, \( x \), is transformed into \((nLags+1)\) columns by creating a column for lags \(= 0, 1, \ldots nLags\).

The output data array, \( z \), can be symbolically represented as:

\[
z = [x(0) : x(1) : x(2) : \ldots : x(nLags − 1)],
\]

where \( x(i) \) is a lagged column of the incoming data matrix, \( x \).

Consider, an example in which \( x \) has five rows and two columns with all variables continuous input
attributes. Using \( n_{Obs} \) and \( n_{Var} \) to represent the number of rows and columns in \( x \), let

\[
x = \begin{bmatrix}
1 & 6 \\
2 & 7 \\
3 & 8 \\
4 & 9 \\
5 & 10
\end{bmatrix}
\]

If \( n_{Lags} = 1 \), then the number of columns in \( z[][] \) is \( n_{Var} \ast (n_{Lags}+1) = 2 \ast 2 = 4 \), and the number of rows is \( (n_{Obs} - n_{Lags}) = 5 - 1 = 4 \):

\[
z = \begin{bmatrix}
1 & 6 & 2 & 7 \\
2 & 7 & 3 & 8 \\
3 & 8 & 4 & 9 \\
4 & 9 & 5 & 10
\end{bmatrix}
\]

If \( n_{Lags} = 2 \), then the number of rows in \( z \) will be \( (n_{Obs} - n_{Lags}) = (5 - 2) = 3 \) and the number of columns will be \( n_{Var} \ast (n_{Lags}+1) = 2 \ast 3 = 6 \):

\[
z = \begin{bmatrix}
1 & 6 & 2 & 7 & 3 & 8 \\
2 & 7 & 3 & 8 & 4 & 9 \\
3 & 8 & 4 & 9 & 5 & 10
\end{bmatrix}
\]

### Constructor

**TimeSeriesFilter**

public TimeSeriesFilter()

**Description**

Constructor for TimeSeriesClassFilter.

### Method

**computeLags**

public double[][] computeLags(int nLags, double[][] x)

**Description**

Lags time series data to a format used for input to a neural network.

**Parameters**

- \( n_{Lags} \) – An int containing the requested number of lags. \( n_{Lags} \) must be greater than 0.
- \( x \) – A double matrix, \( n_{Obs} \) by \( n_{Var} \), containing the time series data to be lagged. It is assumed that \( x \) is sorted in descending chronological order.
Returns
A double matrix with \((nObs-nLags)\) rows and \((nVar(nLags+1))\) columns. The columns 0 through \((nVar-1)\) contain the columns of \(x\). The next \(nVar\) columns contain the first lag of the columns in \(x\), etc.

Example: TimeSeriesFilter
In this example a matrix with 5 rows and 2 columns is lagged twice. This produces a two-dimensional matrix with 5 rows, but \(2*3=6\) columns. The first two columns correspond to lag=0, which just places the original data into these columns. The 3rd and 4th columns contain the first lags of the original 2 columns and the 5th and 6th columns contain the second lags.

```java
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class TimeSeriesFilterEx1 {
 public static void main(String args[]) {
 TimeSeriesFilter filter = new TimeSeriesFilter();
 int nLag = 2;
 double[][] x = {
 {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}
 };
 double[][] z = filter.computeLags(nLag, x);
 // Print result without row/column labels.
 PrintMatrix pm = new PrintMatrix();
 PrintMatrixFormat mf;
 mf = new PrintMatrixFormat();
 mf.setNoRowLabels();
 mf.setNoColumnLabels();
 pm.setTitle("Lagged data");
 pm.print(mf, z);
 }
}
```

Output
```
Lagged data
1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10
```

TimeSeriesClassFilter class

```java
public class com.imsl.datamining.neural.TimeSeriesClassFilter implements Serializable
```
Converts time series data contained within nominal categories to a lagged format for processing by a neural network. Lagging is done within the nominal categories associated with the time series.

Class `TimeSeriesClassFilter` can be used with a data array, `x[]` to compute a new data array, `z[]`, containing lagged columns of `x[]`.

When using the method `computeLags`, the output array, `z[]`, of lagged columns, can be symbolically represented as:

\[ z = [x(0) : x(1) : x(2) : \ldots : x(nLags - 1)], \]

where \( x(i) \) is a lagged column of the incoming data array \( x \), and \( nLags \) is the number of computed lags. The lag associated with \( x(i) \) is equal to the value in \( \text{lag}[i] \), and lagging is done within the nominal categories given in \( \text{iClass}[] \). This requires the time series data in \( x[] \) be sorted in time order within each category \( \text{iClass} \).

Consider an example in which the number of observations in \( x[] \) is 10. There are two lags requested in \( \text{lag}[] \). If

\[
\begin{align*}
\text{lag}^T &= \{0, 2\}, \\
iClass^T &= \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\}, \\
x^T &= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\},
\end{align*}
\]

then, all the time series data fall into a single category, i.e. \( nClasses = 1 \), and \( z \) would contain 2 columns and 10 rows. The first column reproduces the values in \( x[] \) because \( \text{lags}[0] = 0 \), and the second column is the 2nd lag because \( \text{lags}[1] = 2 \).

\[
z = \begin{bmatrix}
1 & 3 \\
2 & 4 \\
3 & 5 \\
4 & 6 \\
5 & 7 \\
6 & 8 \\
7 & 9 \\
8 & 10 \\
9 & NaN \\
10 & NaN
\end{bmatrix}
\]

On the other hand, if the data were organized into two classes with

\[
iClass^T = \{1, 1, 1, 1, 2, 2, 2, 2\},
\]

\[
x^T = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\},
\]

\[
iClass^T = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\},
\]

\[
\text{lag}^T = \{0, 2\}
\]

\[
z = \begin{bmatrix}
1 & 3 \\
2 & 4 \\
3 & 5 \\
4 & 6 \\
5 & 7 \\
6 & 8 \\
7 & 9 \\
8 & 10 \\
9 & NaN \\
10 & NaN
\end{bmatrix}
\]
then nClasses is 2, and \( z \) is still a 2 by 10 matrix, but with the following values:

\[
\begin{bmatrix}
1 & 3 \\
2 & 4 \\
3 & 5 \\
4 & NaN \\
5 & NaN \\
6 & 8 \\
7 & 9 \\
8 & 10 \\
9 & NaN \\
10 & NaN
\end{bmatrix}
\]

The first 5 rows of \( z \) are the lagged columns for the first category, and the last five are the lagged columns for the second category.

**Constructor**

**TimeSeriesClassFilter**

public TimeSeriesClassFilter(int nClasses)

**Description**

Constructor for TimeSeriesClassFilter.

**Parameter**

nClasses – An int specifying the number of nominal categories associated with the time series.

**Method**

**computeLags**

public double[][] computeLags(int[] lags, int[] iClass, double[] x)

**Description**

Computes lags of an array sorted first by class designations and then descending chronological order.

**Parameters**

lags – An int array containing the requested lags. Every lag must be non-negative.

iClass – An int array containing class number associated with each element of \( x \), sorted in ascending order. The \( i \)-th element is equal to the class associated with the \( i \)-th element of \( x \). \( iClass \) and \( x \) must be the same length.

x – A double array containing the time series data to be lagged. This array is assumed to be sorted first by class designations and then descending chronological order, i.e., most recent observations appear first within a class.
Returns

A double matrix containing the lagged data. The \(i\)-th column of this array is the lagged values of \(x\) for a lag equal to \(\text{lags}[i]\). The number of rows is equal to the length of \(x\).

Example: TimeSeriesClassFilter

For illustration purposes, the time series in this example consists of the integers 1, 2, ..., 10, organized into two classes. Of course, it is assumed that these data are sorted in chronologically descending order. That is, for each class, the first number is the latest value and the last number in that class is the earliest.

The values 1-4 are in class 1, and the values 5-10 are in class 2. These values represent two separate time series, one for each class. If you were to list them in chronologically ascending order, starting with time \(= T_0\), the values would be:

Class 1: \(T_0=4, T_1=3, T_2=2, T_3=1\)
Class 2: \(T_0=10, T_1=9, T_2=8, T_3=7, T_4=6, T_5=5\)

This example requests lag calculations for lags 0, 1, 2, 3. For lag=0, no lagging is performed. For lag=1, the value at time \(= t\) replaced with the value at time \(= t-1\), the previous value in that class. If \(t−1 < 0\), then a missing value is placed in that position.

For example, the first lag of a time series at time=\(t\) are the values at time=\(t-1\). For the time series values of Class 1 (lag=1), these values are:

Class 1, lag 1: \(T_0=\text{NaN}, T_1=4, T_2=3, T_3=2\)

The second lag for time=\(t\) consists of the values at time=\(t-2\):

Class 1, lag 2: \(T_0=\text{NaN}, T_1=\text{NaN}, T_2=4, T_3=3\)

Notice that the second lag now has two missing observations. In general, lag=\(n\) will have \(n\) missing values. In some cases this can result in all missing values for classes with few observations. A class will have all missing values in any of its lag columns that have a lag value larger than or equal to the number of observations in that class.

```java
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class TimeSeriesClassFilterEx1 {
 private static int nClasses = 2;
 private static int nObs = 10;
 private static int nLags = 4;

 public static void main(String args[]) {
 double[] x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 double[] time = {3, 2, 1, 0, 5, 4, 3, 2, 1, 0};
 int[] iClass = {1, 1, 1, 1, 2, 2, 2, 2, 2, 2};
 int[] lag = {0, 1, 2, 3};
 String[] colLabels = {
 "Class", "Time", "Lag=0", "Lag=1", "Lag=2", "Lag=3"
 };
 }
}
```
// Filter Classified Time Series Data
TimeSeriesClassFilter filter = new TimeSeriesClassFilter(nClasses);
double[][] y = filter.computeLags(lag, iClass, x);
double[][] z = new double[nObs][nLags + 2];
for (int i = 0; i < nObs; i++) {
    z[i][0] = (double) iClass[i];
    z[i][1] = time[i];
    for (int j = 0; j < nLags; j++) {
        z[i][j + 2] = y[i][j];
    }
}

// Print result without row/column labels.
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setColumnLabels(colLabels);
pm.setTitle("Lagged data");

pm.print(mf, z);

Output

Lagged data

<table>
<thead>
<tr>
<th>Class</th>
<th>Time</th>
<th>Lag=0</th>
<th>Lag=1</th>
<th>Lag=2</th>
<th>Lag=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Chapter 32: Decision Trees

Types

class TreeNode ................................................................. 2229
class Tree ........................................................................... 2234
class DecisionTree ............................................................ 2237
class DecisionTreeInfoGain ............................................... 2265
class ALACART ................................................................. 2269
class C45 ............................................................................ 2275
class CHAID ......................................................................... 2283
class QUEST ......................................................................... 2289
class RandomTrees ............................................................. 2298

Usage Notes

Decision Trees - An Overview

Decision trees are data mining methods for predicting a single response variable based on multiple predictor variables. If the response variable is categorical or discrete, the data mining problem is a classification problem, whereas if the response is continuous, the problem is a type of regression problem. Decision trees are generally applicable in both situations.

A simple example involves the decision to play golf or not, depending on the weather. The training data, from Quinlan (1993), is given in Table 30.1 and a decision tree fit to the data is shown in Figure 30.1. Other examples include predicting the chance of survival for heart attack patients based on age, blood pressure and other vital signs; scoring loan applications based on credit history, income, and education; classifying an email as spam based on its characteristics, and so on.

Tree-growing algorithms have similar steps: starting with all observations in a root node, a predictor variable is selected to split the dataset into two or more child nodes or branches. The form of the split depends on the type of predictor and on specifics of the algorithm. If the predictor is categorical, taking discrete values \{A, B, C, D\} for example, the split may consist of two or more proper subsets, such as \{A\}, \{B, C\}, and \{D\}. If the predictor is continuous, a split will consist of two or more intervals, such as \(X \leq 2, X > 2\). The splitting procedure is then repeated for each child node and continued in such manner until one of several possible stopping conditions is met. The result of the decision tree algorithm...
is a tree structure with a root and a certain number of branches (or nodes). Each branch defines a subset or partition of the data and, conditional on that subset of data, a predicted value for the response variable. A traversal of a branch of the tree thus leads to a prediction, or decision about the response variable. To predict a new observation, out-of-sample, we find the terminal node to which the observation belongs by traversing the tree and finding the data subset (branch) that contains the observation.

For example, the decision tree in Figure 30.1 can be expressed as a set of rules: If the weather is sunny, don’t play golf. If the weather is overcast, play golf. If the weather is rainy and there is no wind, play golf. On the other hand, if it is rainy and windy, don’t play golf.

Decision trees are intuitive and can be very effective predictive tools. As with any predictive model, a decision tree should be tested on hold-out datasets or refined using K-fold cross-validation to prevent over-fitting.

Figure 30.1 - Play Golf? This tree has size=6 nodes, 4 of them terminal nodes, and a height or depth of 2.
<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>85</td>
<td>85</td>
<td>false</td>
<td>don’t play</td>
</tr>
<tr>
<td>sunny</td>
<td>80</td>
<td>90</td>
<td>true</td>
<td>don’t play</td>
</tr>
<tr>
<td>overcast</td>
<td>83</td>
<td>78</td>
<td>false</td>
<td>play</td>
</tr>
<tr>
<td>rainy</td>
<td>70</td>
<td>96</td>
<td>false</td>
<td>play</td>
</tr>
<tr>
<td>rainy</td>
<td>68</td>
<td>80</td>
<td>false</td>
<td>play</td>
</tr>
<tr>
<td>rainy</td>
<td>65</td>
<td>70</td>
<td>true</td>
<td>don’t play</td>
</tr>
<tr>
<td>overcast</td>
<td>64</td>
<td>65</td>
<td>true</td>
<td>play</td>
</tr>
<tr>
<td>sunny</td>
<td>72</td>
<td>95</td>
<td>false</td>
<td>don’t play</td>
</tr>
<tr>
<td>sunny</td>
<td>69</td>
<td>70</td>
<td>false</td>
<td>play</td>
</tr>
<tr>
<td>rainy</td>
<td>75</td>
<td>80</td>
<td>false</td>
<td>play</td>
</tr>
<tr>
<td>sunny</td>
<td>75</td>
<td>70</td>
<td>true</td>
<td>play</td>
</tr>
<tr>
<td>overcast</td>
<td>72</td>
<td>90</td>
<td>true</td>
<td>play</td>
</tr>
<tr>
<td>overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>play</td>
</tr>
<tr>
<td>rainy</td>
<td>71</td>
<td>80</td>
<td>true</td>
<td>don’t play</td>
</tr>
<tr>
<td>overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>play</td>
</tr>
<tr>
<td>rainy</td>
<td>71</td>
<td>80</td>
<td>true</td>
<td>don’t play</td>
</tr>
</tbody>
</table>

Table 30.1 - Golf training data

**TreeNode class**

```java
public class com.imsl.datamining.decisionTree.TreeNode implements Serializable, Cloneable
```

A `com.imsl.datamining.decisionTree.DecisionTree` node that is a child node of `com.imsl.datamining.decisionTree.Tree` (p. 2234).

**Constructor**

**TreeNode**

```java
public TreeNode()
```

**Description**

Constructs a `DecisionTreeNode` object.
Methods

cloneprotected TreeNode clone()

Description
Returns a clone of a TreeNode.

Returns
a TreeNode object that is a clone of the node

c getChildId
public int getChildId(int i)

Description
Returns the id of a child node.

Parameter
i – an int specifying the index of the child node

Returns
an int, the id of the child node at index i

c getChildrenIds
public int[] getChildrenIds()

Description
Returns the array of child node id's.
Note that the length of this array may exceed the actual number of child nodes. Use
com.imsl.datamining.decisionTree.TreeNode.getNumberOfChildren (p. 2232) to determine
the actual number of children.

Returns
an int array containing id's of the child nodes

c getCost
public double getCost()

Description
Returns the misclassification cost of a node (in-sample cost measure at the current node).

Returns
a double, the misclassification cost of a node

c getNodeId
public int getNodeId()
**getNodeId()**

Description

Returns the id of the current node.

The root node has \texttt{nodeId} = 0.

Returns

an int, the node id

**getNodeSplitCriteriaValue()**

Description

Returns the value of the split criteria at the node.

Returns

a double, the value of the split criteria at the node

**getNodeSplitValue()**

Description

Returns the value around which the node may be split, if the split variable is of a continuous type.

Returns

a double, the value around which the node may be split

**getNodeValueIndicator()**

Description

Returns the indicator value for the \texttt{i}-th value of the split variable in the current node, if the split variable is categorical.

Returns

an int, that if 0, the value is not in the node; if 1, it is in the node, meaning that it is in the subset that defines the data partition of the node

**getNodeValuesIndicator()**

Description

Returns the array indicating which values of the split variable apply in the current node, if the split variable is of discrete type.

The array at index \texttt{i} will be 1 if the \texttt{i}-th value of the discrete variable belongs in the node. If it does not belong to the node, the array has value 0.
Returns an int array containing the indicators

getNodeVariableId
public int getNodeVariableId()

Description
Returns the id of the variable that defines the split in the current node.

Returns
an int, the variable that defines the split in the current node

getNumberOfCases
public double getNumberOfCases()

Description
Returns the number of cases in the training data that fall into the current node.

Returns
a double, the number of cases (or total case weight) in the training data that fall into the current node

getNumberOfChildren
public int getNumberOfChildren()

Description
Returns the number of child nodes associated with the current node.

Returns
an int, the number of child nodes associated with this TreeNode instance

getParentId
public int getParentId()

Description
Returns the id of the parent node of the current node.

Returns
an int, the id of the parent node

getPredictedClass
public int getPredictedClass()

Description
Returns the predicted class at the current node, for response variables of categorical type.

Returns
an int, the predicted class

getPredictedVal
public double getPredictedVal()
**getSurrogateInfo**

`public double[] getSurrogateInfo()`

**Description**

Returns the surrogate split information array.

**getSurrogateInfo**

`public double getSurrogateInfo(int i)`

**Description**

Returns a value from the surrogate split information array.

**Parameter**

- `i` – an int specifying which value to return

**getYProb**

`public double getYProb(int i)`

**Description**

Returns a class probability at the current node, if the response variable is of categorical type.

**Parameter**

- `i` – an int specifying the index of the class

**getYProbs**

`public double[] getYProbs()`

**Description**

Returns the class probabilities at the current node, if the response variable is of categorical type.
Tree class

public class com.imsl.datamining.decisionTree.Tree implements Serializable, Cloneable

Serves as the root node of a decision tree and contains information about the relationship of child nodes.

Constructor

public Tree(int nRows, int minObsAllowedInChild, int maxNumberOfCategories, int maxNumberOfNodes, int nClasses, int nPreds, PredictiveModel.VariableType varType, int[] predNValues, PredictiveModel.VariableType[] predType, int nyMissing)

Description

Creates the root node of a decision tree and contains information about the relationship of child nodes.

Parameters

nRows – an int, the number of observations (rows) in the input data

minObsAllowedInChild – an int, the number of observations necessary in all potential child nodes before a node may be split

maxNumberOfCategories – an int, the maximum number of categories allowed for categorical predictor variables

maxNumberOfNodes – an int, the maximum number of nodes allowed in the tree

nClasses – an int, the number of classes assumed by the response variable, if the response variable is categorical

nPreds – an int, the number of predictors used in the model

varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array of length equal to the number of variables active in the model, which is less than or equal to the available columns in the data, (xy[i].length)

predNValues – an int array containing the number of values of each predictor variable

predType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array of length equal to the number of predictors containing the type of each predictor variable

nyMissing – an int equal to the number of missing values in the response variable
Methods

**clone**

```java
protected Tree clone()
```

**Description**

Returns a clone of this object.

**Returns**

a Tree that is a copy of this object

---

**getNode**

```java
public TreeNode getNode(int i)
```

**Description**

Returns a copy of the specified node of the decision tree.

**Parameter**

- `i` – an int that specifies the index of a TreeNode to be returned

**Returns**

a TreeNode corresponding to the specified index

---

**getNodes**

```java
public TreeNode[] getNodes()
```

**Description**

Returns nodes within a decision tree.

**Returns**

a TreeNode array containing a copy of the TreeNodes within the decision tree

---

**getNumberOfClasses**

```java
public int getNumberOfClasses()
```

**Description**

Returns the number of classes assumed by the response variable, if the response variable is categorical.

**Returns**

an int, the number of classes assumed by the response variable, if the response variable is categorical

---

**getNumberOfLevels**

```java
public int getNumberOfLevels()
```

**Description**

Returns the number of levels or depth of a tree.
Returns
an int specifying the number of levels or depth of a tree

**getNumberOfNodes**
public int getNumberOfNodes()

**Description**
Returns the number of nodes (size of a tree).

**Returns**
an int, the number of nodes or size of the tree

**getNumberOfPredictors**
public int getNumberOfPredictors()

**Description**
Returns the number of predictors used in the model.

**Returns**
an int, the number of predictors used in the model

**getNumberOfSurrogateSplits**
public int getNumberOfSurrogateSplits()

**Description**
Returns the number of surrogate splits searched for at each tree node. Surrogate splits are relevant only for classes that implement the com.imsl.datamining.decisionTree.DecisionTreeSurrogateMethod interface.

**Returns**
an int, the number of surrogate splits searched for at each node

**getPredictorNumberOfValues**
public int[] getPredictorNumberOfValues()

**Description**
Returns the number of distinct values of each predictor variable. For continuous predictor variables, the value is set to 0 and is not meaningful.

**Returns**
an int array containing the number of values of each predictor variable

**getPredictorType**
public PredictiveModel.VariableType getPredictorType(int i)

**Description**
Parameter

i – an int, the index of the predictor

Returns

a VariableType, the variable type of the predictor at index i

getResponseType

public PredictiveModel.VariableType getResponseType()

Description


Returns

a PredictiveModel.VariableType, indicates the response variable type

getTerminalNodeIndicators

public boolean[] getTerminalNodeIndicators()

Description

Returns the terminal node indicator array.

Returns

a boolean array indicating which nodes are terminal nodes and which are not. If true at index i, then the node at index i is a terminal node.

isTerminalNode

public boolean isTerminalNode(int i)

Description

Returns the terminal node indicator of the node at the given index.

Parameter

i – an int specifying the index of the node

Returns

a boolean, that if true, then the node at index i is a terminal node

---

**DecisionTree class**

abstract public class com.imsl.datamining.decisionTree.DecisionTree extends com.imsl.datamining.PredictiveModel implements Serializable, Cloneable

Abstract class for generating a decision tree for a single response variable and one or more predictor variables.
Tree Generation Methods

This package contains four of the most widely used algorithms for decision trees (com.imsl.datamining.decisionTree.C45 (p. 2275), com.imsl.datamining.decisionTree.ALACART (p. 2269), com.imsl.datamining.decisionTree.CHAID (p. 2283), and com.imsl.datamining.decisionTree.QUEST (p. 2289)). The user may also provide an alternate algorithm by extending the com.imsl.datamining.decisionTree.DecisionTree (p. 2237) or com.imsl.datamining.decisionTree.DecisionTreeInfoGain (p. 2265) abstract class and implementing the abstract method com.imsl.datamining.decisionTree.DecisionTree (p. 2237).

Optimal Tree Size

Minimum Cost-complexity Pruning

A strategy to address overfitting is to grow the tree as large as possible, and then use some logic to prune it back. Let $T$ represent a decision tree generated by any of the methods above. The idea (from Breiman, et. al.) is to find the smallest sub-tree of $T$ that minimizes the cost-complexity measure:

$$R_\delta(T) = R(T) + \delta |\tilde{T}|,$$

$\tilde{T}$ denotes the set of terminal nodes. $|\tilde{T}|$ represents the number of terminal nodes, and $\delta \geq 0$ is a cost-complexity parameter. For a categorical target variable

$$R(T) = \sum_{t \in \tilde{T}} R(t) = \sum_{t \in T} r(t)p(t)$$

$$r(t) = \min_i \sum_j C(i|j)p(j|t)$$

$$p(t) = Pr[x \in t]$$

and

$$p(j|t) = Pr[y = j | x \in t],$$

and $C(i|j)$ is the cost for misclassifying the actual class $j$ as $i$. Note that $C(j|j) = 0$ and $C(i|j) > 0$, for $i \neq j$.

When the target is continuous (and the problem is a regression problem), the metric is instead the mean squared error

$$R(T) = \sum_{t \in \tilde{T}} R(t) = \frac{1}{N} \sum_{t \in T} \sum_{y \in t} (y_n - \hat{y}(t))^2$$

This class implements the optimal pruning algorithm 10.1, page 294 in Breiman, et. al (1984). The result of the algorithm is a sequence of sub-trees $T_{\text{max}} \succ T_1 \succ T_2 \succ T_{M-1} \succ \{t_0\}$ obtained by pruning the fully generated tree, $T_{\text{max}}$, until the sub-tree consists of the single root node, $\{t_0\}$. Corresponding to the sequence of sub-trees is the sequence of complexity values, $0 \leq \delta_{\text{min}} < \delta_1 < \delta_2 < \ldots < \delta_{M-1} < \delta_M$ where $M$ is the number of steps it takes in the algorithm to reach the root node. The sub-trees represent the optimally-pruned sub-trees for the sequence of complexity values. The minimum complexity $\delta_{\text{min}}$ can be set via an optional argument.
V-Fold Cross-Validation

The com.imsl.datamining.CrossValidation (p. 1969) class can be used for model validation.

Prediction

Ensemble Methods

The com.imsl.datamining.BootstrapAggregation (p. 1962) class provides predictions through an ensemble of fitted trees, where the training is done on bootstrap samples.

The GradientBoosting (p. ??) class provides predictions through an ensemble of trees trained on random subsets of the data and iteratively refined using the stochastic gradient boosting algorithm.

The com.imsl.datamining.decisionTree.RandomTrees (p. 2298) class provides predictions through an ensemble of fitted trees, where the training is done on bootstrap samples and random subsets of predictors.

Missing Values

Any observation or case with a missing response variable is eliminated from the analysis. If a predictor has a missing value, each algorithm skips that case when evaluating the given predictor. When making a prediction for a new case, if the split variable is missing, the prediction function applies surrogate split-variables and splitting rules in turn, if they are estimated with the decision tree. Otherwise, the prediction function returns the prediction from the most recent non-terminal node. In this implementation, only com.imsl.datamining.decisionTree.ALACART (p. 2269) estimates surrogate split variables when requested.

Constructor

DecisionTree

public DecisionTree(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)

Description

Constructs a DecisionTree object for a single response variable and multiple predictor variables.

Parameters

- xy – a double matrix containing the training data and associated response values
- responseColumnIndex – an int specifying the column index of the response variable
- varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array containing the type of each variable
Methods

**fitModel**
public void fitModel() throws PredictiveModel.PredictiveModelException,
DecisionTree.PruningFailedToConvergeException,
PredictiveModel.StateChangeException, DecisionTree.PureNodeException,
PredictiveModel.SumOfProbabilitiesNotOneException,
DecisionTree.MaxTreeSizeExceededExeception

Description
Fits the decision tree. Implements the abstract method.

Exceptions
PredictiveModel.PredictiveModelException is thrown when an exception occurs in the
com.imsl.datamining.PredictiveModel. Superclass exceptions should be considered such as
com.imsl.datamining.PredictiveModel.StateChangeException and
PruningFailedToConvergeException is thrown when pruning fails to converge.
PredictiveModel.StateChangeException is thrown when an input parameter changes that
might affect the model estimates or predictions.
PureNodeException is thrown when attempting to split a node that is already pure.
PredictiveModel.SumOfProbabilitiesNotOneException is thrown when the sum of
probabilities is not approximately one.
MaxTreeSizeExceededException is thrown when the maximum tree size has been exceeded.

**getCostComplexityValues**
public double[] getCostComplexityValues() throws
DecisionTree.PruningFailedToConvergeException,
PredictiveModel.StateChangeException

Description
Returns an array containing cost-complexity values.

Returns
a double array containing the cost-complexity values
The cost-complexity values are found via the optimal pruning algorithm of Breiman, et. al.

Exceptions
PruningFailedToConvergeException pruning has failed to converge.
PredictiveModel.StateChangeException an input parameter has changed that might affect
the model estimates or predictions.

**getDecisionTree**
public Tree getDecisionTree() throws PredictiveModel.StateChangeException
**Description**

Returns a Tree object.

**Returns**

a Tree object containing the tree structure information

**Exception**

`PredictiveModel.StateChangeException` an input parameter has changed that might affect the model estimates or predictions.

**getFittedMeanSquaredError**

`public double getFittedMeanSquaredError() throws PredictiveModel.StateChangeException`

**Description**

Returns the mean squared error on the training data.

**Returns**

a double equal to the mean squared error between the fitted value and the actual value of the response variable in the training data

**Exception**

`PredictiveModel.StateChangeException` an input parameter has changed that might affect the model estimates or predictions.

**getMaxDepth**

`public int getMaxDepth()`

**Description**

Returns the maximum depth a tree is allowed to have.

**Returns**

an int, the maximum depth a tree is allowed to have

**getMaxNodes**

`public int getMaxNodes()`

**Description**

Returns the maximum number of `com.imsl.datamining.decisionTree.TreeNode` instances allowed in a tree.

**Returns**

an int, the maximum number of nodes allowed in a tree

**getMeanSquaredPredictionError**

`public double getMeanSquaredPredictionError() throws PredictiveModel.StateChangeException`

---

**Decision Trees**

- **DecisionTree** 2241
Description
Returns the mean squared error.

Returns
a double equal to the mean squared error between the predicted value and the actual value of the response variable. The error is the in-sample fitted error if predict is first called with no arguments. Otherwise, the error is relative to the test data provided in the call to predict.

Exception
PredictiveModel.StateChangeException an input parameter has changed that might affect the model estimates or predictions.

getMinObsPerChildNode
public int getMinObsPerChildNode()

Description
Returns the minimum number of observations that are required for any child node before performing a split.

Returns
an int, the minimum number of observations that are required for any child node before performing a split.

getMinObsPerNode
public int getMinObsPerNode()

Description
Returns the minimum number of observations that are required in a node before performing a split.

Returns
an int indicating the minimum number of observations that are required in a node before performing a split.

getNodeAssignments
public int[] getNodeAssignments(double[][] testData)

Description
Returns the terminal node assignments for each row of the test data.

Parameter
testData – a double matrix containing the test data
testData must have the same column structure and type as the training data.

Returns
an int array containing the (0-based) terminal node id’s for each observation in testData

getNumberOfComplexityValues
public int getNumberOfComplexityValues()
**Description**
Returns the number of cost complexity values determined by the pruning algorithm.

**Returns**
an int, the number of cost complexity values

**getNumberOfRandomFeatures**
public int getNumberOfRandomFeatures()

**Description**
Returns the number of random features used in the splitting rules when randomFeatureSelection=true.

**Returns**
an int, the number of random features

**isAutoPruningFlag**
public boolean isAutoPruningFlag()

**Description**
Returns the current setting of the boolean to automatically prune the decision tree.

**Returns**
a boolean, the value of the auto-pruning flag. If true, the model is configured to automatically prune the decision tree. If the flag is false, no pruning is performed.

**isRandomFeatureSelection**
public boolean isRandomFeatureSelection()

**Description**
Returns the current setting of the boolean to perform random feature selection.

**Returns**
a boolean, the value of the flag. If true, the set of variables considered at each node is randomly selected. If the flag is false, all variables are considered at each node.

**predict**
public double[] predict() throws PredictiveModel.StateChangeException

**Description**
Predicts the training examples (in-sample predictions) using the most recently grown tree.

**Returns**
a double array containing fitted values of the response variable using the most recently grown decision tree. To populate fitted values, use the predict method without arguments.
Exception

`PredictiveModel.StateChangeException` is thrown when an input parameter changes that might affect the model estimates or predictions.

**predict**

```java
public double[] predict(double[][] testData) throws PredictiveModel.StateChangeException
```

**Description**

Predicts new data using the most recently grown decision tree.

**Parameter**

- `testData` – a `double` matrix containing test data for which predictions are to be made using the current tree. `testData` must have the same number of columns in the same arrangement as `xy`.

**Returns**

- a `double` array containing predicted values

**Exception**

`PredictiveModel.StateChangeException` is thrown when an input parameter changes that might affect the model estimates or predictions.

**predict**

```java
public double[] predict(double[][] testData, double[] testDataWeights) throws PredictiveModel.StateChangeException
```

**Description**

Predicts new weighted data using the most recently grown decision tree.

**Parameters**

- `testData` – a `double` matrix containing test data for which predictions are to be made using the current tree. `testData` must have the same number of columns in the same arrangement as `xy`.
- `testDataWeights` – a `double` array containing weights for each row of `testData`

**Returns**

- a `double` array containing predicted values

**Exception**

`PredictiveModel.StateChangeException` is thrown when an input parameter changes that might affect the model estimates or predictions.

**printDecisionTree**

```java
public void printDecisionTree(boolean printMaxTree)
```

**Description**

Prints the contents of the decision tree using distinct but general labels.

This method uses default values for the variable labels when printing (see `printDecisionTree` (String, String[], String[], boolean) for these values.)
Parameter

printMaxTree – a boolean indicating that the maximal tree should be printed. When true, the maximal tree is printed. Otherwise, the pruned tree is printed.

description

printDecisionTree

public void printDecisionTree(String responseName, String[] predictorNames, String[] classNames, String[] categoryNames, boolean printMaxTree)

Description

Prints the contents of the decision tree using labels.

Parameters

responseName – a String specifying a name for the response variable
If null, the default value is used.
Default: responseName = Y

predictorNames – a String array specifying names for the predictor variables
If null, the default value is used.
Default: predictorNames = X0, X1, ...

classNames – a String array specifying names for the class levels
If null, the default value is used.
Default: classNames = 0, 1, 2, ...

categoryNames – a String array specifying names for the categories of the predictor variables
If null, the default value is used.
Default: categoryNames = 0, 1, 2, ...

printMaxTree – a boolean indicating that the maximal tree should be printed. When true, the maximal tree is printed. Otherwise, the pruned tree is printed.

pruneTree

public void pruneTree(double gamma)

Description

Finds the minimum cost-complexity decision tree for the cost-complexity value, gamma.

The method implements the optimal pruning algorithm 10.1, page 294 in Breiman, et. al (1984). The result of the algorithm is a sequence of sub-trees $T_{max} > T_1 > T_2 > T_{M-1} > \{t_0\}$ obtained by pruning the fully generated tree, $T_{max}$, until the sub-tree consists of the single root node, $\{t_0\}$. Corresponding to the sequence of sub-trees is the sequence of complexity values, $0 \leq \delta_{min} < \delta_1 < \delta_2 < ... < \delta_{M-1} < \delta_M$ where $M$ is the number of steps it takes in the algorithm to reach the root node. The sub-trees represent the optimally pruned sub-trees for the sequence of complexity values.

The effect of the pruning is stored in the tree’s terminal node array. That is, when the algorithm determines that the tree should be pruned at a particular node, it sets that node to be a terminal node using the method com.imsl.datamining.decisionTree.Tree.setTerminalNode(p. ??).

No other changes are made to the tree structure so that the maximal tree can still be printed and reviewed. However, once a tree is pruned, all the predictions will use the pruned tree.
Parameter

\textit{gamma} – a double giving the value of the cost-complexity parameter

\textbf{selectSplitVariable}

\texttt{abstract protected int selectSplitVariable(double[][] xy, double[] classCounts, double[] parentFreq, double[] splitValue, double[] splitCriterionValue, int[] splitPartition)}

\textbf{Description}

Abstract method for selecting the next split variable and split definition for the node.

\textbf{Parameters}

- \textit{xy} – a double matrix containing the data
- \textit{classCounts} – a double array containing the counts for each class of the response variable, when it is categorical
- \textit{parentFreq} – a double array used to indicate which subset of the observations belong in the current node
- \textit{splitValue} – a double array representing the resulting split point if the selected variable is quantitative
- \textit{splitCriterionValue} – a double, the value of the criterion used to determine the splitting variable
- \textit{splitPartition} – an int array indicating the resulting split partition if the selected variable is categorical

\textbf{Returns}

an int specifying the index of the split variable in this.getPredictorIndexes()

\textbf{setAutoPruningFlag}

\texttt{public void setAutoPruningFlag(boolean autoPruningFlag)}

\textbf{Description}

Sets the flag to automatically prune the tree during the fitting procedure.

The default value is false. Set to true before calling \texttt{com.imsl.datamining.decisionTree.DecisionTree.fitModel(p. 2240)} in order to prune the tree automatically. The pruning will use the cost-complexity value equal to minCostComplexityValue. See also \texttt{com.imsl.datamining.decisionTree.DecisionTree.pruneTree(p. 2245)} which prunes the tree using a given cost-complexity value.

\textbf{Parameter}

- \textit{autoPruningFlag} – a boolean, specifying the value of the flag. If true, the maximally grown tree should be automatically pruned in \texttt{com.imsl.datamining.decisionTree.DecisionTree.fitModel(p. 2240)}

Default: autoPruningFlag=false.
**setConfiguration**

```java
protected void setConfiguration(PredictiveModel pm) throws DecisionTree.PruningFailedToConvergeException,
PredictiveModel.StateChangeException,
PredictiveModel.SumOfProbabilitiesNotOneException
```

**Description**
Sets the configuration of PredictiveModel to that of the input model.

**Parameter**
- **pm** – a PredictiveModel object

**Exceptions**
- PruningFailedToConvergeException is thrown when pruning fails to converge.
- PredictiveModel.StateChangeException is thrown when an input parameter has changed that might affect the model estimates or predictions.
- com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException is thrown when the sum of the probabilities does not equal 1.

**setCostComplexityValues**

```java
public void setCostComplexityValues(double[] gammas)
```

**Description**
Sets the cost-complexity values. For the original tree, the values are generated in `com.imsl.datamining.decisionTree.DecisionTree.fitModel (p. 2240)` when `com.imsl.datamining.decisionTree.DecisionTree.isAutoPruningFlag (p. 2243)` returns true.

**Parameter**
- **gammas** – double array containing cost-complexity values. This method is used when copying the configuration of one tree to another.

**setMaxDepth**

```java
public void setMaxDepth(int nLevels)
```

**Description**
Sets the maximum tree depth allowed.

**Parameter**
- **nLevels** – an int specifying the maximum depth that the DecisionTree is allowed to have.
  - nLevels should be strictly positive.
  - Default: nLevels = 10.

**setMaxNodes**

```java
public void setMaxNodes(int maxNodes)
```

**Decision Trees**

| DecisionTree | 2247 |
**Description**
Sets the maximum number of nodes allowed in a tree.

**Parameter**
- `maxNodes` – an `int` specifying the maximum number of nodes allowed in a tree
  - Default: `maxNodes = 100`.

**setMinCostComplexityValue**
public void setMinCostComplexityValue(double minCostComplexity)

**Description**
Sets the value of the minimum cost-complexity value.

**Parameter**
- `minCostComplexity` – a `double` indicating the smallest value to use in cost-complexity pruning.
  - The value must be in `[0.0, 1.0]`.
  - Default: `minCostComplexity = 0`.

**setMinObsPerChildNode**
public void setMinObsPerChildNode(int nObs)

**Description**
Sets the minimum number of observations that a child node must have in order to split.

**Parameter**
- `nObs` – an `int` specifying the minimum number of observations that a child node must have in order to split the current node. `nObs` must be strictly positive. `nObs` must also be greater than the minimum number of observations required before a node can split
  - `com.imsl.datamining.decisionTree.DecisionTree.setMinObsPerNode` (p. 2248).
  - Default: `nObs = 7`.

**setMinObsPerNode**
public void setMinObsPerNode(int nObs)

**Description**
Sets the minimum number of observations a node must have to allow a split.

**Parameter**
- `nObs` – an `int` specifying the number of observations the current node must have before considering a split. `nObs` should be greater than 1 but less than or equal to the number of observations in `xy`.
  - Default: `nObs = 21`.

**setNumberOfRandomFeatures**
public void setNumberOfRandomFeatures(int numberOfRandomFeatures)

**Description**
Sets the number of predictors in the random subset to select from at each node.
Parameter

numberOfRandomFeatures – an int, the number of predictors in the random subset

Default: numberOfFeatures=\sqrt{p} for classification problems, and \frac{p}{3} for regression problems, where \( p \) is the number of predictors in the training data

**setRandomFeatureSelection**

public void setRandomFeatureSelection(boolean selectRandomFeatures)

Description

Sets the flag to select split variables from a random subset of the features.

Parameter

selectRandomFeatures – a boolean, indicating whether or not to select random features

Default: selectRandomFeatures=false

Example: ALACART and C45

In this example, we use a small data set with response variable, Play, which indicates whether a golfer plays (1) or does not play (0) golf under weather conditions measured by Temperature, Humidity, Outlook (Sunny (0), Overcast (1), Rainy (2)), and Wind (True (0), False (1)). A decision tree is generated by C45 and the ALACART class. The control parameters are adjusted because of the small data size and no cross-validation or pruning is performed. The maximal trees are printed out using DecisionTree.printDecisionTree. Notice that C45 splits on Outlook, then Humidity and Wind, while ALACART splits on Outlook, then Temperature.

```java
import com.imsl.datamining.decisionTree.*;

public class C45ALACART {
 public static void main(String[] args) throws Exception {
 int golfResponseIdx = 4;
 double[][] golfXY = {
 {0, 85, 85, 0, 0}, {0, 80, 90, 1, 0}, {1, 83, 78, 0, 1},
 {2, 70, 96, 0, 1}, {2, 68, 80, 0, 1}, {2, 65, 70, 1, 0},
 {1, 64, 65, 1, 1}, {0, 72, 95, 0, 0}, {0, 69, 70, 0, 1},
 {2, 75, 80, 0, 1}, {0, 75, 70, 1, 1}, {1, 72, 90, 1, 1},
 {1, 81, 75, 0, 1}, {2, 71, 80, 1, 0}
 };

 DecisionTree.VariableType[] golfVarType = {
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.CATEGORICAL
 };

 String[] names = {
 "Outlook", "Temperature", "Humidity", "Wind", "Play"
 };
```

import com.imsl.datamining.decisionTree.*;

public class C45ALACART {
    public static void main(String[] args) throws Exception {
        int golfResponseIdx = 4;
        double[][] golfXY = {
            {0, 85, 85, 0, 0}, {0, 80, 90, 1, 0}, {1, 83, 78, 0, 1},
            {2, 70, 96, 0, 1}, {2, 68, 80, 0, 1}, {2, 65, 70, 1, 0},
            {1, 64, 65, 1, 1}, {0, 72, 95, 0, 0}, {0, 69, 70, 0, 1},
            {2, 75, 80, 0, 1}, {0, 75, 70, 1, 1}, {1, 72, 90, 1, 1},
            {1, 81, 75, 0, 1}, {2, 71, 80, 1, 0}
        };

        DecisionTree.VariableType[] golfVarType = {
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
            DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
            DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.CATEGORICAL
        };

        String[] names = {
            "Outlook", "Temperature", "Humidity", "Wind", "Play"
        };
```
String[] classNames = {"Don't Play", "Play"};
String[] varLevels = {"Sunny", "Overcast", "Rainy", "False", "True"};

C45 dt = new C45(golfXY, golfResponseIdx, golfVarType);
dt.setMinObsPerChildNode(2);
dt.setMinObsPerNode(3);
dt.setMaxNodes(50);
dt.fitModel();

System.out.println("\n\nDecision Tree using Method C4.5:");
dt.printDecisionTree(null, names, classNames,
varLevels, true);

ALACART adt = new ALACART(golfXY, golfResponseIdx, golfVarType);
adt.setMinObsPerChildNode(2);
adt.setMinObsPerNode(3);
adt.setMaxNodes(50);
adt.fitModel();

System.out.println("\n\nDecision Tree using Method ALACART:");
adt.printDecisionTree(null, names, classNames,
varLevels, true);

Output

Decision Tree using Method C4.5:

Decision Tree:

Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes: 1 4 5
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y: Play

Node 1: Cost = 0.143, N= 5, Level = 1, Child nodes: 2 3
Rule: Outlook in: { Sunny }
P(Y=0)= 0.600
P(Y=1)= 0.400
Predicted Y: Don't Play

Node 2: Cost = 0.000, N= 2, Level = 2
Rule: Humidity <= 77.500
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

Node 3: Cost = 0.000, N= 3, Level = 2
Rule: Humidity > 77.500
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Y: Don't Play

Node 4: Cost = 0.000, N = 4, Level = 1
Rule: Outlook in: { Overcast }
P(Y=0) = 0.000
P(Y=1) = 1.000
Predicted Y: Play

Node 5: Cost = 0.143, N = 5, Level = 1, Child nodes: 6 7
Rule: Outlook in: { Rainy }
P(Y=0) = 0.400
P(Y=1) = 0.600
Predicted Y: Play

Node 6: Cost = 0.000, N = 3, Level = 2
Rule: Wind in: { False }
P(Y=0) = 0.000
P(Y=1) = 1.000
Predicted Y: Play

Node 7: Cost = 0.000, N = 2, Level = 2
Rule: Wind in: { True }
P(Y=0) = 1.000
P(Y=1) = 0.000
Predicted Y: Don't Play

Decision Tree using Method ALACART:

Decision Tree:

Node 0: Cost = 0.357, N = 14, Level = 0, Child nodes: 1 8
P(Y=0) = 0.357
P(Y=1) = 0.643
Predicted Y: Play

Node 1: Cost = 0.357, N = 10, Level = 1, Child nodes: 2 7
Rule: Outlook in: { Sunny Rainy }
P(Y=0) = 0.500
P(Y=1) = 0.500
Predicted Y: Don't Play

Node 2: Cost = 0.214, N = 8, Level = 2, Child nodes: 3 6
Rule: Temperature <= 77.500
P(Y=0) = 0.375
P(Y=1) = 0.625
Predicted Y: Play

Node 3: Cost = 0.214, N = 6, Level = 3, Child nodes: 4 5
Rule: Temperature <= 73.500
P(Y=0) = 0.500
P(Y=1) = 0.500
Predicted Y: Don't Play

Node 4: Cost = 0.071, N = 4, Level = 4

Decision Trees
Example: C45 Simulated Categorical Data

This example uses the C45 method on simulated categorical data and demonstrates printing the tree structure with and without custom labels.

```java
import com.imsl.datamining.decisionTree.*;

public class C45SimulatedCategoricalData {

    public static void main(String[] args) throws Exception {
        double[][] xy = {
            {2, 0, 2}, {1, 0, 0}, {2, 1, 3}, {0, 1, 0}, {1, 2, 0}, {2, 2, 3},
            {2, 2, 3}, {0, 1, 0}, {0, 0, 0}, {0, 1, 0}, {1, 2, 0}, {2, 0, 2},
            {0, 2, 0}, {2, 0, 1}, {0, 0, 0}, {2, 0, 1}, {1, 0, 0}, {0, 2, 0},
            {2, 0, 1}, {1, 2, 0}, {0, 2, 2}, {2, 1, 3}, {1, 1, 0}, {2, 2, 3},
            {1, 2, 0}, {2, 2, 3}, {2, 0, 1}, {2, 1, 3}, {1, 2, 0}, {1, 1, 0}
        };
        DecisionTree.VariableType[] varType = {
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.CATEGORICAL
        };
```
String responseName = "Response";
String[] names = {"Var1", "Var2"};
String[] classNames = {"c1", "c2", "c3", "c4"};
String[] varLabels = {"L1", "L2", "L3", "A", "B", "C"};

C45 dt = new C45(xy, 2, varType);
dt.setMinObsPerChildNode(5);
dt.setMinObsPerNode(10);
dt.setMaxNodes(50);
dt.fitModel();

System.out.println("Generated labels:");
dt.printDecisionTree(true);
System.out.println("Custom labels:");
dt.printDecisionTree(responseName, names, classNames, varLabels, false);

Output

Generated labels:

Decision Tree:

Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2 3
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
Predicted Y: 0

Node 1: Cost = 0.033, N= 8, Level = 1
Rule: X0 in: { 0 }
P(Y=0)= 0.875
P(Y=1)= 0.000
P(Y=2)= 0.125
P(Y=3)= 0.000
Predicted Y: 0

Node 2: Cost = 0.000, N= 9, Level = 1
Rule: X0 in: { 1 }
P(Y=0)= 1.000
P(Y=1)= 0.000
P(Y=2)= 0.000
P(Y=3)= 0.000
Predicted Y: 0

Node 3: Cost = 0.200, N= 13, Level = 1
Rule: X0 in: { 2 }
P(Y=0)= 0.000
P(Y=1)= 0.308
P(Y=2)= 0.154
Example: CHAID Simulated Categorical Data

This example uses the CHAID method on simulated categorical data and demonstrates printing the tree structure with and without custom labels.

```java
import com.imsl.datamining.decisionTree.*;

public class CHAIDSimulatedCategoricalData {
    public static void main(String[] args) throws Exception {
        double[][] xy = {
            {2, 0, 2}, {1, 0, 0}, {2, 1, 3}, {0, 1, 0}, {1, 2, 0}, {2, 2, 3},
            {2, 2, 3}, {0, 1, 0}, {0, 0, 0}, {0, 1, 0}, {1, 2, 0}, {2, 0, 2},
            {0, 2, 0}, {2, 0, 1}, {0, 0, 0}, {2, 0, 1}, {1, 0, 0}, {0, 2, 0},
        }
    }
}
```
DecisionTree.VariableType[] varType = {
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.CATEGORICAL
};

String responseName = "Response";
String[] names = {"Var1", "Var2"};
String[] classNames = {"c1", "c2", "c3", "c4"};
String[] varLabels = {"L1", "L2", "L3", "A", "B", "C"};

CHAID dt = new CHAID(xy, 2, varType);
dt.setMinObsPerChildNode(5);
dt.setMinObsPerNode(10);
dt.setMaxNodes(50);
dt.fitModel();

System.out.println("Generated labels:");
dt.printDecisionTree(true);
System.out.println("Custom labels:");
dt.printDecisionTree(responseName, names, classNames, varLabels, false);
}

Output

Generated labels:

Decision Tree:

Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
Predicted Y: 0

Node 1: Cost = 0.033, N= 17, Level = 1
 Rule: X0 in: { 0 1 }
 P(Y=0)= 0.941
 P(Y=1)= 0.000
 P(Y=2)= 0.059
 P(Y=3)= 0.000
 Predicted Y: 0

Node 2: Cost = 0.200, N= 13, Level = 1, Child nodes: 3 4
 Rule: X0 in: { 2 }
 P(Y=0)= 0.000
P(Y=1) = 0.308
P(Y=2) = 0.154
P(Y=3) = 0.538
Predicted Y: 3

Node 3: Cost = 0.067, N= 6, Level = 2
Rule: Var1 in: { 0 }
P(Y=0) = 0.000
P(Y=1) = 0.667
P(Y=2) = 0.333
P(Y=3) = 0.000
Predicted Y: 1

Node 4: Cost = 0.000, N= 7, Level = 2
Rule: Var1 in: { 1 2 }
P(Y=0) = 0.000
P(Y=1) = 0.000
P(Y=2) = 0.000
P(Y=3) = 1.000
Predicted Y: 3

Custom labels:

Decision Tree:

Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2
P(Y=0) = 0.533
P(Y=1) = 0.133
P(Y=2) = 0.100
P(Y=3) = 0.233
Predicted Response: c1

Node 1: Cost = 0.033, N= 17, Level = 1
Rule: Var1 in: { L1 L2 }
P(Y=0) = 0.941
P(Y=1) = 0.000
P(Y=2) = 0.059
P(Y=3) = 0.000
Predicted Response: c1

Node 2: Cost = 0.200, N= 13, Level = 1, Child nodes: 3 4
Rule: Var1 in: { L3 }
P(Y=0) = 0.000
P(Y=1) = 0.308
P(Y=2) = 0.154
P(Y=3) = 0.538
Predicted Response: c4

Node 3: Cost = 0.067, N= 6, Level = 2
Rule: Var2 in: { A }
P(Y=0) = 0.000
P(Y=1) = 0.667
P(Y=2) = 0.333
P(Y=3) = 0.000
Predicted Response: c2
Example: QUEST Simulated Categorical Data

This example applies the QUEST method to a simulated data set with 50 cases and three predictors of mixed-type. Shown are the maximum-sized tree under default controls and the subtree resulting from pruning with a cost-complexity value of 0.0.

```java
import com.imsl.datamining.decisionTree.*;

public class QUESTSimulatedCategoricalData {

    public static void main(String[] args) throws Exception {

        double[][] xy = {
            {2, 25.928690, 0, 0}, {1, 51.632450, 1, 1}, {1, 25.784321, 0, 2},
            {0, 39.379478, 0, 3}, {2, 24.650579, 0, 2}, {2, 45.200840, 0, 2},
            {2, 52.679600, 1, 3}, {1, 44.283421, 1, 3}, {2, 40.635231, 1, 3},
            {2, 51.760941, 0, 3}, {2, 26.303680, 0, 1}, {2, 20.702299, 1, 0},
            {2, 38.742729, 1, 3}, {2, 19.473330, 0, 0}, {1, 26.422110, 0, 0},
            {2, 37.059860, 1, 0}, {1, 51.670429, 1, 3}, {0, 42.401562, 0, 3},
            {2, 33.900059, 1, 2}, {1, 35.432819, 0, 0}, {1, 44.303692, 0, 1},
            {0, 46.723869, 0, 2}, {1, 46.992619, 0, 2}, {0, 36.059231, 0, 3},

            {2, 36.381970, 1, 1}, {1, 61.662571, 1, 2}, {0, 25.677139, 0, 3},
            {1, 39.085670, 1, 0}, {0, 48.843410, 1, 1}, {1, 39.343910, 0, 3},
            {2, 24.735220, 0, 2}, {1, 50.552509, 1, 3}, {0, 31.342630, 1, 3},
            {1, 27.157949, 1, 0}, {0, 31.726851, 0, 2}, {0, 25.004080, 0, 3},
            {1, 26.354570, 1, 3}, {2, 38.123428, 0, 1}, {0, 49.940300, 0, 2},
            {1, 42.457790, 1, 3}, {0, 38.809479, 1, 1}, {0, 43.227989, 1, 1},
            {0, 41.876240, 0, 3}, {2, 48.078201, 0, 2}, {0, 43.236729, 1, 0},
            {2, 39.412941, 0, 3}, {1, 23.934650, 0, 2}, {2, 42.841301, 1, 3},
            {2, 30.406691, 0, 1}, {0, 37.773891, 0, 2}
        };

        DecisionTree.VariableType[] varType = {
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.CATEGORICAL
        };

        QUEST dt = new QUEST(xy, 3, varType);
        dt.setPrintLevel(1);
        dt.fitModel();
        dt.pruneTree(0.0);
        System.out.println("\nMaximal tree: \n");
    }
}
```
dt.printDecisionTree(true);
System.out.println("\nPruned subtree (cost-complexity = 0): \n");
dt.printDecisionTree(false);
}

Output
Growing the maximal tree using method QUEST:

Maximal tree:

Decision Tree:

Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes: 1 2
P(Y=0)= 0.180
P(Y=1)= 0.180
P(Y=2)= 0.260
P(Y=3)= 0.380
Predicted Y: 3

Node 1: Cost = 0.220, N= 17, Level = 1
 Rule: X1 <= 35.031
 P(Y=0)= 0.294
 P(Y=1)= 0.118
 P(Y=2)= 0.353
 P(Y=3)= 0.235
 Predicted Y: 2

Node 2: Cost = 0.360, N= 33, Level = 1, Child nodes: 3 4
 Rule: X1 > 35.031
 P(Y=0)= 0.121
 P(Y=1)= 0.212
 P(Y=2)= 0.212
 P(Y=3)= 0.455
 Predicted Y: 3

Node 3: Cost = 0.180, N= 19, Level = 2
 Rule: X1 <= 43.265
 P(Y=0)= 0.211
 P(Y=1)= 0.211
 P(Y=2)= 0.053
 P(Y=3)= 0.526
 Predicted Y: 3

Node 4: Cost = 0.160, N= 14, Level = 2
 Rule: X1 > 43.265
 P(Y=0)= 0.000
 P(Y=1)= 0.214
 P(Y=2)= 0.429
 P(Y=3)= 0.357
Predicted Y: 2

Pruned subtree (cost-complexity = 0):

Decision Tree:

Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes: 1 2
P(Y=0)= 0.180
P(Y=1)= 0.180
P(Y=2)= 0.260
P(Y=3)= 0.380
Predicted Y: 3

Node 1: Cost = 0.220, N= 17, Level = 1
Rule: X1 <= 35.031
P(Y=0)= 0.294
P(Y=1)= 0.118
P(Y=2)= 0.353
P(Y=3)= 0.235
Predicted Y: 2

Node 2: Cost = 0.360, N= 33, Level = 1
Rule: X1 > 35.031
P(Y=0)= 0.121
P(Y=1)= 0.212
P(Y=2)= 0.212
P(Y=3)= 0.455
Predicted Y: 3

Example: QUEST Kyphosis Data

This example uses the dataset Kyphosis. The 81 cases represent 81 children who have undergone surgery to correct a type of spinal deformity known as Kyphosis. The response variable is the presence or absence of Kyphosis after the surgery. Three predictors are Age of the patient in months, Start, the number of the vertebra where the surgery started, and Number, the number of vertebra involved in the surgery. This example uses the method QUEST to produce a maximal tree. It also requests predictions for a test-data set consisting of 10 “new” cases.

```java
import com.imsl.datamining.decisionTree.*;

public class QUESTKyphosisData {
    public static void main(String[] args) throws Exception {
        double[][] xy = {
            {0, 71, 3, 5}, {0, 158, 3, 14}, {1, 128, 4, 5}, {0, 2, 5, 1},
            {0, 1, 4, 15}, {0, 1, 2, 16}, {0, 61, 2, 17}, {0, 37, 3, 16},
            {0, 113, 2, 16}, {1, 59, 6, 12}, {1, 82, 5, 14}, {0, 148, 3, 16},
            {0, 18, 5, 2}, {0, 1, 4, 12}, {0, 168, 3, 18}, {0, 1, 3, 16},
            {0, 78, 6, 15}, {0, 175, 5, 13}, {0, 80, 5, 16},
        };
    }
}
```
double[][] xyTest = {
 {0, 71, 3, 5}, {1, 128, 4, 5}, {0, 61, 6, 10},
 {0, 113, 2, 16}, {1, 82, 5, 14}, {0, 148, 3, 16}, {0, 1, 4, 12},
 {0, 1, 3, 16}, {0, 175, 5, 13}
};

DecisionTree.VariableType[] varType = {
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS
};

String[] names = {"Age", "Number", "Start"};
String[] classNames = {"Absent", "Present"};
String responseName = "Kyphosis";

QUEST dt = new QUEST(xy, 0, varType);
dt.setMinObsPerChildNode(5);
dt.setMinObsPerNode(10);
dt.setMaxNodes(50);
dt.setPrintLevel(2);
dt.fitModel();
double[] predictions = dt.predict(xyTest);
double predErrSS = dt.getMeanSquaredPredictionError();
dt.printDecisionTree(responseName, names, classNames, null, true);

System.out.println("Predictions for test data:");
System.out.printf("%s%8s%7s%10s\n", names[0], names[1], names[2], responseName);
for (int i = 0; i < xyTest.length; i++) {
 System.out.printf("%8.0f%8.0f%7.0f", xyTest[i][1], xyTest[i][2],
 predictions[i]);
 int idx = (int) predictions[i];
}
Output
Growing the maximal tree using method QUEST:

Node 0 has split variable 2
Node 1 has split variable 0
Node 2 is a terminal node. It has 7.0 cases--too few cases to split.
Node 3 is a terminal node. It has 6.0 cases--too few cases to split.
Node 4 has split variable 2
Node 5 is a terminal node. It has 6.0 cases--too few cases to split.
Node 6 has split variable 2
Node 7 has split variable 0
Node 8 has split variable 0
Node 8 is a terminal node. The split is too thin having count 2.0.
Node 9 has split variable 1
Node 10 is a terminal node. It has 6.0 cases--too few cases to split.
Node 11 is a terminal node, because it is pure.
Node 11 is a terminal node. It has 7.0 cases--too few cases to split.
Node 12 is a terminal node. Could not find a splitting variable.

Decision Tree:

Node 0: Cost = 0.210, N= 81, Level = 0, Child nodes: 1 4
 P(Y=0)= 0.790
 P(Y=1)= 0.210
 Predicted Kyphosis: Absent

Node 1: Cost = 0.074, N= 13, Level = 1, Child nodes: 2 3
 Rule: Start <= 5.155
 P(Y=0)= 0.538
 P(Y=1)= 0.462
 Predicted Kyphosis: Absent

Node 2: Cost = 0.025, N= 7, Level = 2
 Rule: Age <= 84.030
 P(Y=0)= 0.714
 P(Y=1)= 0.286
 Predicted Kyphosis: Absent

Node 3: Cost = 0.025, N= 6, Level = 2
 Rule: Age > 84.030
 P(Y=0)= 0.333
 P(Y=1)= 0.667
 Predicted Kyphosis: Present

Node 4: Cost = 0.136, N= 68, Level = 1, Child nodes: 5 6
 Rule: Start > 5.155
 P(Y=0)= 0.838
P(\(Y=1\)) = 0.162
Predicted Kyphosis: Absent

Node 5: Cost = 0.012, N= 6, Level = 2
Rule: Start \(\leq\) 8.862
P(\(Y=0\)) = 0.167
P(\(Y=1\)) = 0.833
Predicted Kyphosis: Present

Node 6: Cost = 0.074, N= 62, Level = 2, Child nodes: 7 12
Rule: Start > 8.862
P(\(Y=0\)) = 0.903
P(\(Y=1\)) = 0.097
Predicted Kyphosis: Absent

Node 7: Cost = 0.062, N= 28, Level = 3, Child nodes: 8 9
Rule: Start \(\leq\) 13.092
P(\(Y=0\)) = 0.821
P(\(Y=1\)) = 0.179
Predicted Kyphosis: Absent

Node 8: Cost = 0.025, N= 15, Level = 4
Rule: Age \(\leq\) 91.722
P(\(Y=0\)) = 0.867
P(\(Y=1\)) = 0.133
Predicted Kyphosis: Absent

Node 9: Cost = 0.037, N= 13, Level = 4, Child nodes: 10 11
Rule: Age > 91.722
P(\(Y=0\)) = 0.769
P(\(Y=1\)) = 0.231
Predicted Kyphosis: Absent

Node 10: Cost = 0.037, N= 6, Level = 5
Rule: Number \(\leq\) 3.450
P(\(Y=0\)) = 0.500
P(\(Y=1\)) = 0.500
Predicted Kyphosis: Absent

Node 11: Cost = 0.000, N= 7, Level = 5
Rule: Number > 3.450
P(\(Y=0\)) = 1.000
P(\(Y=1\)) = 0.000
Predicted Kyphosis: Absent

Node 12: Cost = 0.012, N= 34, Level = 3
Rule: Start > 13.092
P(\(Y=0\)) = 0.971
P(\(Y=1\)) = 0.029
Predicted Kyphosis: Absent

Predictions for test data:

<table>
<thead>
<tr>
<th>Age</th>
<th>Number</th>
<th>Start</th>
<th>Kyphosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>3</td>
<td>5</td>
<td>Absent</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>5</td>
<td>Present</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>15</td>
<td>Absent</td>
</tr>
</tbody>
</table>
DecisionTree.PureNodeException class

static public class
com.imsl.datamining.decisionTree.DecisionTree.PureNodeException extends
com.imsl.datamining.PredictiveModel.PredictiveModelException

Exception thrown when attempting to split a node that is already pure (response variable is constant).

Constructor

DecisionTree.PureNodeException
public DecisionTree.PureNodeException(String message)

Description
Constructs a PureNodeException with the specified detail message. The error message string is in a
resource bundle, ErrorMessages.

Parameter
message – a String that contains the key of an error message in the resource bundle

DecisionTree.PruningFailedToConvergeException class

static public class
com.imsl.datamining.decisionTree.DecisionTree.PruningFailedToConvergeException
extends com.imsl.datamining.PredictiveModel.PredictiveModelException

Exception thrown when pruning fails to converge.

Mean squared prediction error: 0.10000

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>6</td>
<td>10</td>
<td>Absent</td>
</tr>
<tr>
<td>113</td>
<td>2</td>
<td>16</td>
<td>Absent</td>
</tr>
<tr>
<td>82</td>
<td>5</td>
<td>14</td>
<td>Absent</td>
</tr>
<tr>
<td>148</td>
<td>3</td>
<td>16</td>
<td>Absent</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>12</td>
<td>Absent</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>16</td>
<td>Absent</td>
</tr>
<tr>
<td>175</td>
<td>5</td>
<td>13</td>
<td>Absent</td>
</tr>
</tbody>
</table>
Constructor

DecisionTree.PruningFailedToConvergeException

```java
public DecisionTree.PruningFailedToConvergeException(String message)
```

Description

Constructs a `PruningFailedToConvergeException` with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameter

- `message` – a `String` that contains the key of an error message in the resource bundle

DecisionTree.MaxTreeSizeExceededException

class

```java
```

Exception thrown when the maximum tree size has been exceeded.

Constructors

DecisionTree.MaxTreeSizeExceededException

```java
public DecisionTree.MaxTreeSizeExceededException(String message)
```

Description

Constructs a `MaxTreeSizeExceededException` and issues the specified message.

Parameter

- `message` – a `String` that contains a message to be issued when the exception occurs

```java
public DecisionTree.MaxTreeSizeExceededException(String key, Object[] arguments)
```

Description

Constructs a `MaxTreeSizeExceededException` with the specified detail message. The error message string is in a resource bundle, ErrorMessages.
Parameters

key – a String that contains the key of an error message in the resource bundle
arguments – an Object array containing arguments used within the error message specified by the key

DecisionTreeInfoGain class

abstract public class com.imsl.datamining.decisionTree.DecisionTreeInfoGain
extends com.imsl.datamining.decisionTree.DecisionTree implements Serializable, Cloneable

Abstract class that extends com.imsl.datamining.decisionTree.DecisionTree (p. 2237) for classes that use an information gain criteria.

Constructor

DecisionTreeInfoGain
public DecisionTreeInfoGain(double[][] xy, int responseColumnIndex,
PredictiveModel.VariableType[] varType)

Description
Constructs a DecisionTree object for a single response variable and multiple predictor variables.

Parameters

xy – a double matrix with rows containing the observations on the predictor variables and one response variable
responseColumnIndex – an int specifying the column index of the response variable
varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array containing the type of each variable

Methods

information
protected double information(int[] x, int[] y, double[] classCounts, double[] weights, boolean xInfo)
Description
Returns the expected information of a variable \(y \) over a partition determined by the variable \(x \).
Given a data subset \(S \) containing both variables \(x \) and \(y \), let
\[
S_1, S_2, \ldots, S_k, \cup S_i = S, S_i \cap S_j = 0
\]
be a partition of \(S \) determined by the values in \(x \). Then the expected information is
\[
\sum_j Pr(S_j) I(S_j)
\]
where \(I(S_j) \) is either the Shannon entropy or the Gini index, according to
\texttt{com.imsl.datamining.decisionTree.DecisionTreeInfoGain.GainCriteria} (p. 2268). Note:
if \(x \) is constant, the return value is the Shannon Entropy (or Gini index) of \(Y \).

Parameters
\(x \) – an \texttt{int} array of length \(xy.length \) containing values of a predictor or an indicator vector defining the partition of the observations.
\(y \) – \texttt{int} array of length \(xy.length \) containing the values of the response variable.
\(\text{classCounts} \) – a \texttt{double} array containing the counts for each class of the response variable, when it is categorical.
\(\text{weights} \) – a \texttt{double} array used to indicate which subset of the observations belong in the current node.
\(\text{xInfo} \) – a \texttt{boolean} indicating that we are getting information about \(x \) using a simple frequency estimate.

<table>
<thead>
<tr>
<th>Value</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>simple frequency estimate</td>
</tr>
<tr>
<td>false</td>
<td>prior probabilities</td>
</tr>
</tbody>
</table>

Returns
\texttt{a double} indicating the information uncertainty.

selectSplitVariable
\texttt{abstract protected int selectSplitVariable(double[][] xy, double[] classCounts, double[] parentFreq, double[] splitValue, double[] splitCriterionValue, int[] splitPartition)}

Description
Abstract method for selecting the next split variable and split definition for the node.

Parameters
\(xy \) – a \texttt{double} matrix containing the data
\(\text{classCounts} \) – a \texttt{double} array containing the counts for each class of the response variable, when it is categorical
\(\text{parentFreq} \) – a \texttt{double} array used to indicate which subset of the observations belong in the current node
splitValue – a double array representing the resulting split point if the selected variable is quantitative
splitCriterionValue – a double, the value of the criterion used to determine the splitting variable
splitPartition – an int array indicating the resulting split partition if the selected variable is categorical

Returns

an int specifying the column index of the split variable in this.getPredictorIndexes

setGainCriteria

public void setGainCriteria(DecisionTreeInfoGain.GainCriteria gainCriteria)

Description

Specifies which criteria to use in gain calculations in order to determine the best split at each node.

Parameter

gainCriteria – a com.imsl.datamining.decisionTree.DecisionTreeInfoGain.GainCriteria (p. 2268)
specifying which criteria to use in gain calculations in order to determine the best split at each node
Default: gainCriteria = com.imsl.datamining.decisionTree.DecisionTreeInfoGain.GainCriteria.SHANNON_ENTROPY (p. 2268)

setUseRatio

public void setUseRatio(boolean ratio)

Description

Sets the flag to use or not use the gain ratio instead of the gain to determine the best split.

Parameter

ratio – a boolean indicating if the gain ratio is to be used
true uses the gain ratio; false uses the gain.
Default: useRatio=false

useGainRatio

public boolean useGainRatio()

Description

Returns whether or not the gain ratio is to be used instead of the gain to determine the best split.

Returns

a boolean indicating if the gain ratio is to be used
true, uses the gain ratio; false uses the gain.
DecisionTreeInfoGain.GainCriteria class

static public final class com.imsl.datamining.decisionTree.DecisionTreeInfoGain.GainCriteria extends java.lang.Enum

Specifies which information gain criteria to use in determining the best split at each node.

Fields

DEVIANE
static final public DecisionTreeInfoGain.GainCriteria DEVIANE

A measure of the quality of fit.
For a categorical variable having C distinct values over a data set S, the Deviance measure is
\[\sum_{i=1}^{C} n_{i} \log(p_{i}) \]
where
\[p_{i} = Pr(Y = i) \]
and
\[n_{i} \]
is the number of cases with \(Y = i \) on the node.

GINI_INDEX
static final public DecisionTreeInfoGain.GainCriteria GINI_INDEX

A measure of statistical dispersion.
For a categorical variable having C distinct values over a data set S, the Gini index is defined as
\[I(S) = \sum_{i,j=1}^{C} p(i|S) = 1 - \sum_{i=1}^{C} p^2(i|S) \]
where \(p(i|S) \) denotes the probability that the variable is equal to the state \(i \) on the data set, \(S \).

SHANNON_ENTROPY
static final public DecisionTreeInfoGain.GainCriteria SHANNON_ENTROPY

A measure of randomness or uncertainty.
For a categorical variable having C distinct values over a data set S, the Shannon Entropy is defined as

$$\sum_{i=1}^{C} p_i \log(p_i)$$

where

$$p_i = Pr(Y = i)$$

and where

$$p_i \log(p_i) := 0$$

if $p_i = 0$.

Methods

```java
valueOf
static public DecisionTreeInfoGain.GainCriteria valueOf(String name)
```

```java
values
static public DecisionTreeInfoGain.GainCriteria[] values()
```

ALACART class

```java
public class com.imsl.datamining.decisionTree.ALACART extends com.imsl.datamining.decisionTree.DecisionTreeInfoGain implements com.imsl.datamining.decisionTree.DecisionTreeSurrogateMethod, Serializable, Cloneable
```

Generates a decision tree using the CARTTM method of Breiman, Friedman, Olshen and Stone (1984). CARTTM stands for Classification and Regression Trees and applies to categorical or quantitative type variables.

Only binary splits are considered for categorical variables. That is, if X has values $\{A, B, C, D\}$, splits into only two subsets are considered, e.g., $\{A\}$ and $\{B, C, D\}$, or $\{A, B\}$ and $\{C, D\}$, are allowed, but a three-way split defined by $\{A\}$, $\{B\}$ and $\{C,D\}$ is not.

For classification problems, ALACART uses a similar criterion to information gain called impurity. The method searches for a split that reduces the node impurity the most. For a given set of data S at a node, the node impurity for a C-class categorical response is a function of the class probabilities.

$$I(S) = \phi(p(1|S), p(2|S), \ldots, p(C|S))$$
The measure function \(\phi(\cdot) \) should be 0 for “pure” nodes, where all \(Y \) are in the same class, and maximum when \(Y \) is uniformly distributed across the classes.

As only binary splits of a subset \(S \) are considered (\(S_1, S_2 \) such that \(S = S_1 \cup S_2 \) and \(S_1 \cap S_2 = \emptyset \)), the reduction in impurity when splitting \(S \) into \(S_1, S_2 \) is

\[
\Delta I = I(S) - q_1 I(S_1) - q_2 I(S_2)
\]

where

\[
q_j = \Pr[S_j], j = 1, 2
\]

is the node probability.

The gain criteria and the reduction in impurity \(\Delta I \) are similar concepts and equivalent when \(I \) is entropy and when only binary splits are considered. Another popular measure for the impurity at a node is the Gini index, given by

\[
I(S) = \sum_{i=1}^{C} p(i|S) = 1 - \sum_{i=1}^{C} p^2(i|S)
\]

If \(Y \) is an ordered response or continuous, the problem is a regression problem. ALACART generates the tree using the same steps, except that node-level measures or loss-functions are the mean squared error (MSE) or mean absolute error (MAD) rather than node impurity measures.

Missing Values

Any observation or case with a missing response variable is eliminated from the analysis. If a predictor has a missing value, each algorithm skips that case when evaluating the given predictor. When making a prediction for a new case, if the split variable is missing, the prediction function applies surrogate split-variables and splitting rules in turn, if they are estimated with the decision tree. Otherwise, the prediction function returns the prediction from the most recent non-terminal node. In this implementation, only ALACART estimates surrogate split variables when requested.

Constructor

ALACART

```java
public ALACART(double[][] xy, int responseColumnIndex,
                 PredictiveModel.VariableType[] varType)
```

Description

Constructs an ALACART decision tree for a single response variable and multiple predictor variables.

Parameters

- \(xy \) – a double matrix containing the training data and associated response values
- \(responseColumnIndex \) – an int specifying the column index in \(xy \) of the response variable
- \(varType \) – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array containing the type of each variable
Methods

addSurrogates
public void addSurrogates(Tree tree, double[] surrogateInfo)

Description
Adds the surrogate information to the tree.

Parameters
 tree – a Tree containing the decision tree structure
 surrogateInfo – a double array containing the surrogate split information

getNumberOfSurrogateSplits
public int getNumberOfSurrogateSplits()

Description
Returns the number of surrogate splits.

Returns
an int, the number of surrogate splits

getSurrogateInfo
public double[] getSurrogateInfo()

Description
Returns the surrogate split information.

Returns
a double array containing the surrogate split information

selectSplitVariable
protected int selectSplitVariable(double[][] xy, double[] classCounts, double[]
parentFreq, double[] splitValue, double[] splitCriterionValue, int[]
splitPartition)

Description
Selects the split variable for the present node using the CART™ method.

Parameters
 xy – a double matrix containing the data
 classCounts – a double array containing the counts for each class of the response variable, when
 it is categorical
 parentFreq – a double array used to determine the subset of the observations that belong to the
 current node
 splitValue – a double array representing the resulting split point if the selected variable is
 quantitative

Decision Trees
splitCriterionValue – a double, the value of the criterion used to determine the splitting variable
splitPartition – an int array indicating the resulting split partition if the selected variable is categorical

Returns
an int specifying the index of the split variable in this.getPredictorIndexes()

setNumberOfSurrogateSplits
public void setNumberOfSurrogateSplits(int nSplits)

Description
Sets the number of surrogate splits.

Parameter
nSplits – an int specifying the number of predictors to consider as surrogate splitting variables
Default: nSplits = 0

Example: ALACART and C45
In this example, we use a small data set with response variable, Play, which indicates whether a golfer plays (1) or does not play (0) golf under weather conditions measured by Temperature, Humidity, Outlook (Sunny (0), Overcast (1), Rainy (2)), and Wind (True (0), False (1)). A decision tree is generated by C45 and the ALACART class. The control parameters are adjusted because of the small data size and no cross-validation or pruning is performed. The maximal trees are printed out using DecisionTree.printDecisionTree. Notice that C45 splits on Outlook, then Humidity and Wind, while ALACART splits on Outlook, then Temperature.

```java
import com.imsl.datamining.decisionTree.*;

public class C45ALACART {
    public static void main(String[] args) throws Exception {
        int golfResponseIdx = 4;
        double[][] golfXY = {
            {0, 85, 85, 0, 0}, {0, 80, 90, 1, 0}, {1, 83, 78, 0, 1},
            {2, 70, 96, 0, 1}, {2, 68, 80, 0, 1}, {2, 65, 70, 1, 0},
            {1, 64, 65, 1, 1}, {0, 72, 95, 0, 0}, {0, 69, 70, 0, 1},
            {2, 75, 80, 0, 1}, {0, 75, 70, 1, 1}, {1, 72, 90, 1, 1},
            {1, 81, 75, 0, 1}, {2, 71, 80, 1, 0}
        };
        DecisionTree.VariableType[] golfVarType = {
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
            DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.CATEGORICAL
        };
    }
}
```
String[] names = {
 "Outlook", "Temperature", "Humidity", "Wind", "Play"
};
String[] classNames = {"Don't Play", "Play"};
String[] varLevels = {"Sunny", "Overcast", "Rainy", "False", "True"};

C45 dt = new C45(golfXY, golfResponseIdx, golfVarType);
dt.setMinObsPerChildNode(2);
dt.setMinObsPerNode(3);
dt.setMaxNodes(50);
dt.fitModel();

System.out.println("\n\nDecision Tree using Method C4.5: ");
dt.printDecisionTree(null, names, classNames,
 varLevels, true);

ALACART adt = new ALACART(golfXY, golfResponseIdx, golfVarType);
adt.setMinObsPerChildNode(2);
adt.setMinObsPerNode(3);
adt.setMaxNodes(50);
adt.fitModel();

System.out.println("\n\nDecision Tree using Method ALACART: ");
adt.printDecisionTree(null, names, classNames,
 varLevels, true);

Output

Decision Tree using Method C4.5:

Decision Tree:

Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes: 1 4 5
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y: Play

Node 1: Cost = 0.143, N= 5, Level = 1, Child nodes: 2 3
 Rule: Outlook in: { Sunny }
 P(Y=0)= 0.600
 P(Y=1)= 0.400
 Predicted Y: Don't Play

Node 2: Cost = 0.000, N= 2, Level = 2
 Rule: Humidity <= 77.500
 P(Y=0)= 0.000
 P(Y=1)= 1.000
 Predicted Y: Play
Node 3: Cost = 0.000, N= 3, Level = 2
Rule: Humidity > 77.500
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Y: Don't Play

Node 4: Cost = 0.000, N= 4, Level = 1
Rule: Outlook in: { Overcast }
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

Node 5: Cost = 0.143, N= 5, Level = 1, Child nodes: 6 7
Rule: Outlook in: { Rainy }
P(Y=0)= 0.400
P(Y=1)= 0.600
Predicted Y: Play

Node 6: Cost = 0.000, N= 3, Level = 2
Rule: Wind in: { False }
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

Node 7: Cost = 0.000, N= 2, Level = 2
Rule: Wind in: { True }
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Y: Don't Play

Decision Tree using Method ALACART:

Decision Tree:

Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes: 1 8
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y: Play

Node 1: Cost = 0.357, N= 10, Level = 1, Child nodes: 2 7
Rule: Outlook in: { Sunny Rainy }
P(Y=0)= 0.500
P(Y=1)= 0.500
Predicted Y: Don't Play

Node 2: Cost = 0.214, N= 8, Level = 2, Child nodes: 3 6
Rule: Temperature <= 77.500
P(Y=0)= 0.375
P(Y=1)= 0.625
Predicted Y: Play

Node 3: Cost = 0.214, N= 6, Level = 3, Child nodes: 4 5
Rule: Temperature <= 73.500
P(Y=0)= 0.500
P(Y=1) = 0.500
Predicted Y: Don't Play

Node 4: Cost = 0.071, N= 4, Level = 4
Rule: Temperature <= 70.500
P(Y=0)= 0.250
P(Y=1)= 0.750
Predicted Y: Play

Node 5: Cost = 0.000, N= 2, Level = 4
Rule: Temperature > 70.500
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Y: Don't Play

Node 6: Cost = 0.000, N= 2, Level = 3
Rule: Temperature > 73.500
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

Node 7: Cost = 0.000, N= 2, Level = 2
Rule: Temperature > 77.500
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Y: Don't Play

Node 8: Cost = 0.000, N= 4, Level = 1
Rule: Outlook in: { Overcast }
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

C45 class

```java
public class com.imsl.datamining.decisionTree.C45 extends 
com.imsl.datamining.decisionTree.DecisionTreeInfoGain implements Serializable, 
Cloneable
```

Generates a decision tree using the C4.5 algorithm for a categorical response variable and categorical or quantitative predictor variables. The C4.5 procedure (Quinlan, 1995) partitions the sample space using an information gain or a gain ratio as the splitting criterion. Specifically, the *entropy* or *uncertainty* in the response variable with C categories over the full training sample S is defined as

$$E(S) = - \sum_{i=1}^{C} p_i \log(p_i)$$

Decision Trees
Where \(p_i = \Pr[Y = i|S] \) is the probability that the response takes on category \(i \) on the dataset \(S \). This measure is widely known as the Shannon Entropy. Splitting the dataset further may either increase or decrease the entropy in the response variable. For example, the entropy of \(Y \) over a partitioning of \(S \) by \(X \), a variable with \(K \) categories, is given by

\[
E(S,X) = - \sum_{k=1}^{K} \sum_{i=1}^{C_k} p(S_k) E(S_k)
\]

If any split defined by the values of a categorical predictor decreases the entropy in \(Y \), then it is said to yield information gain:

\[
g(S,X) = E(S) - E(S,X)
\]

The best splitting variable according to the information gain criterion is the variable yielding the largest information gain, calculated in this manner. A modified criterion is the gain ratio:

\[
gR(S,X) = \frac{E(S) - E(S,X)}{E_X(S)}
\]

where

\[
E_X(S) = - \sum_{k=1}^{K} \nu_k \log(\nu_k)
\]

with

\[
\nu_k = \Pr[X = k|S]
\]

Note that \(E_X(S) \) is just the entropy of the variable \(X \) over \(S \). The gain ratio is thought to be less biased toward predictors with many categories. C4.5 treats the continuous variable similarly, except that only binary splits of the form \(X \leq d \) and \(X > d \) are considered, where \(d \) is a value in the range of \(X \) on \(S \). The best split is determined by the split variable and split point that gives the largest criterion value. It is possible that no variable meets the threshold for further splitting at the current node, in which case growing stops and the node becomes a terminal node. Otherwise, the node is split creating two or more child nodes. Then, using the dataset partition defined by the splitting variable and split value, the very same procedure is repeated for each child node. Thus a collection of nodes and child nodes are generated, or, in other words, the tree is grown. The growth stops after one or more different conditions are met.

Constructor

```java
public C45(double[][] xy, int responseColumnIndex,
PredictiveModel.VariableType[] varType)
```

Description

Constructs a C45 object for a single response variable and multiple predictor variables.
Parameters

- **xy** – a double matrix containing the training data and associated response values
- **responseColumnIndex** – an int specifying the column index of the response variable
- **varType** – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array containing the type of each variable

Method

selectSplitVariable

```java
protected int selectSplitVariable(double[][] xy, double[] classCounts, double[] parentFreq, double[] splitValue, double[] splitCriterionValue, int[] splitPartition)
```

Description

Selects the split variable for the present node using the C45 method.

Parameters

- **xy** – a double matrix containing the data
- **classCounts** – a double array containing the counts for each class of the response variable, when it is categorical
- **parentFreq** – a double array used to indicate which subset of the observations belong in the current node
- **splitValue** – a double array representing the resulting split point if the selected variable is quantitative
- **splitCriterionValue** – a double, the value of the criterion used to determine the splitting variable
- **splitPartition** – an int array indicating the resulting split partition if the selected variable is categorical

Returns

an int specifying the column index of the split variable in this.getPredictorIndexes()

Example: ALACART and C45

In this example, we use a small data set with response variable, Play, which indicates whether a golfer plays (1) or does not play (0) golf under weather conditions measured by Temperature, Humidity, Outlook (Sunny (0), Overcast (1), Rainy (2)), and Wind (True (0), False (1)). A decision tree is generated by C45 and the ALACART class. The control parameters are adjusted because of the small data size and no cross-validation or pruning is performed. The maximal trees are printed out using DecisionTree.printDecisionTree. Notice that C45 splits on Outlook, then Humidity and Wind, while ALACART splits on Outlook, then Temperature.
import com.imsl.datamining.decisionTree.*;

public class C45ALACART {
 public static void main(String[] args) throws Exception {
 int golfResponseIdx = 4;
 double[][] golfXY = {
 {0, 85, 85, 0, 0}, {0, 80, 90, 1, 0}, {1, 83, 78, 0, 1},
 {2, 70, 96, 0, 1}, {2, 68, 80, 0, 1}, {2, 65, 70, 1, 0},
 {1, 64, 65, 1, 1}, {0, 72, 95, 0, 0}, {0, 69, 70, 0, 1},
 {2, 75, 80, 0, 1}, {0, 75, 70, 1, 0}, {1, 72, 90, 1, 1},
 {0, 81, 75, 0, 1}, {2, 71, 80, 1, 0}
 };
 DecisionTree.VariableType[] golfVarType = {
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.CATEGORICAL
 };
 String[] names = {
 "Outlook", "Temperature", "Humidity", "Wind", "Play"
 };
 String[] classNames = {"Don't Play", "Play"};
 String[] varLevels = {
 "Sunny", "Overcast", "Rainy", "False", "True"
 };
 C45 dt = new C45(golfXY, golfResponseIdx, golfVarType);
 dt.setMinObsPerChildNode(2);
 dt.setMinObsPerNode(3);
 dt.setMaxNodes(50);
 dt.fitModel();
 System.out.println("\n\nDecision Tree using Method C4.5:"");
 dt.printDecisionTree(null, names, classNames,
 varLevels, true);
 ALACART adt = new ALACART(golfXY, golfResponseIdx, golfVarType);
 adt.setMinObsPerChildNode(2);
 adt.setMinObsPerNode(3);
 adt.setMaxNodes(50);
 adt.fitModel();
 System.out.println("\n\nDecision Tree using Method ALACART:"");
 adt.printDecisionTree(null, names, classNames,
 varLevels, true);
 }
}

Output
Decision Tree using Method C4.5:

Decision Tree:

Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes: 1 4 5
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y: Play

Node 1: Cost = 0.143, N= 5, Level = 1, Child nodes: 2 3
Rule: Outlook in: { Sunny }
P(Y=0)= 0.600
P(Y=1)= 0.400
Predicted Y: Don't Play

Node 2: Cost = 0.000, N= 2, Level = 2
Rule: Humidity <= 77.500
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

Node 3: Cost = 0.000, N= 3, Level = 2
Rule: Humidity > 77.500
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Y: Don't Play

Node 4: Cost = 0.000, N= 4, Level = 1
Rule: Outlook in: { Overcast }
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

Node 5: Cost = 0.143, N= 5, Level = 1, Child nodes: 6 7
Rule: Outlook in: { Rainy }
P(Y=0)= 0.400
P(Y=1)= 0.600
Predicted Y: Play

Node 6: Cost = 0.000, N= 3, Level = 2
Rule: Wind in: { False }
P(Y=0)= 0.000
P(Y=1)= 1.000
Predicted Y: Play

Node 7: Cost = 0.000, N= 2, Level = 2
Rule: Wind in: { True }
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Y: Don't Play

Decision Tree using Method ALACART:

Decision Tree:
Example: C45 Simulated Categorical Data

This example uses the C45 method on simulated categorical data and demonstrates printing the tree structure with and without custom labels.

```java
import com.imsl.datamining.decisionTree.*;

public class C45SimulatedCategoricalData {
    public static void main(String[] args) throws Exception {
        double[][] xy = {
            {2, 0, 2}, {1, 0, 0}, {2, 1, 3}, {0, 1, 0}, {1, 2, 0}, {2, 2, 3},
            {2, 2, 3}, {0, 1, 0}, {0, 0, 0}, {0, 1, 0}, {1, 2, 0}, {2, 0, 2},
            {0, 2, 0}, {2, 0, 1}, {0, 0, 0}, {2, 0, 1}, {1, 0, 0}, {0, 2, 0},
            {2, 0, 1}, {1, 2, 0}, {0, 2, 2}, {2, 1, 3}, {1, 1, 0}, {2, 2, 3},
            {1, 2, 0}, {2, 2, 3}, {2, 0, 1}, {2, 1, 3}, {1, 2, 0}, {1, 1, 0}
        };

        DecisionTree.VariableType[] varType = {
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.CATEGORICAL,
            DecisionTree.VariableType.CATEGORICAL
        };

        String responseName = "Response";
        String[] names = {"Var1", "Var2"};
        String[]classNames = {"c1", "c2", "c3", "c4"};
        String[] varLabels = {"L1", "L2", "L3", "A", "B", "C"};

        C45 dt = new C45(xy, 2, varType);
        dt.setMinObsPerChildNode(5);
        dt.setMinObsPerNode(10);
        dt.setMaxNodes(50);
        dt.fitModel();

        System.out.println("\nGenerated labels:");
        dt.printDecisionTree(true);
        System.out.println("\nCustom labels:");
        dt.printDecisionTree(responseName, names,
                            classNames, varLabels, false);
    }
}
```

Output

Generated labels:

Decision Tree:

Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2 3
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2) = 0.100
P(Y=3) = 0.233
Predicted Y: 0

Node 1: Cost = 0.033, N= 8, Level = 1
 Rule: X0 in: { 0 }
P(Y=0)= 0.875
P(Y=1)= 0.000
P(Y=2)= 0.125
P(Y=3)= 0.000
 Predicted Y: 0

Node 2: Cost = 0.000, N= 9, Level = 1
 Rule: X0 in: { 1 }
P(Y=0)= 1.000
P(Y=1)= 0.000
P(Y=2)= 0.000
P(Y=3)= 0.000
 Predicted Y: 0

Node 3: Cost = 0.200, N= 13, Level = 1
 Rule: X0 in: { 2 }
P(Y=0)= 0.000
P(Y=1)= 0.308
P(Y=2)= 0.154
P(Y=3)= 0.538
 Predicted Y: 3

Custom labels:

Decision Tree:

Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2 3
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
 Predicted Response: c1

Node 1: Cost = 0.033, N= 8, Level = 1
 Rule: Var1 in: { L1 }
P(Y=0)= 0.875
P(Y=1)= 0.000
P(Y=2)= 0.125
P(Y=3)= 0.000
 Predicted Response: c1

Node 2: Cost = 0.000, N= 9, Level = 1
 Rule: Var1 in: { L2 }
P(Y=0)= 1.000
P(Y=1)= 0.000
P(Y=2)= 0.000
P(Y=3)= 0.000
 Predicted Response: c1
Node 3: Cost = 0.200, N= 13, Level = 1
Rule: Var1 in: { L3 }
P(Y=0)= 0.000
P(Y=1)= 0.308
P(Y=2)= 0.154
P(Y=3)= 0.538
Predicted Response: c4

CHAID class

```java
public class com.imsl.datamining.decisionTree.CHAID extends com.imsl.datamining.decisionTree.DecisionTree implements Serializable, Cloneable

Generates a decision tree using CHAID for categorical or discrete ordered predictor variables. Due to Kass (1980), CHAID is an acronym for chi-square automatic interaction detection. At each node, CHAID looks for the best splitting variable using the following steps: given a predictor variable \( X \), perform a 2-way chi-squared test of association between each possible pair of categories of \( X \) with the categories of \( Y \). The least significant result is noted and, if a threshold is met, the two categories of \( X \) are merged.

Next, treating this merged category as a single category, CHAID repeats the series of tests to determine if there is further merging possible. If a merged category consists of three or more of the original categories of \( X \), CHAID calls for a step to test whether the merged categories should be split. This is done by forming all binary partitions of the merged category and testing each one against \( Y \) in a 2-way test of association. If the most significant result meets a threshold, then the merged category is split accordingly. As long as the threshold in this step is smaller than the threshold in the merge step, the splitting step and the merge step will not cycle back and forth.

Once each predictor is processed in this manner, the predictor with the most significant qualifying 2-way test with \( Y \) is selected as the splitting variable, and its last state of merged categories defines the split at the given node. If none of the tests qualify (by having an adjusted p-value smaller than a threshold), then the node is not split. This growing procedure continues until one or more stopping conditions are met.

---

**Constructor**

```java
CHAID
public CHAID(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)
```

**Description**

Constructs a CHAID object for a single response variable and multiple predictor variables.
Parameters

- xy – a double matrix containing the training data and associated response values
- responseColumnIndex – an int specifying the column index of the response variable
- varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array containing the type of each variable

Methods

**getMergeCategoriesSigLevel**
```
public double getMergeCategoriesSigLevel()
```

Description
Returns the significance level for merging categories.

Returns
a double, the significance level for merging categories

**getSplitMergedCategoriesSigLevel**
```
public double getSplitMergedCategoriesSigLevel()
```

Description
Returns the significance level for splitting previously merged categories.

Returns
a double, the significance level for splitting merged categories

**getSplitVariableSignificanceLevel**
```
public double getSplitVariableSignificanceLevel()
```

Description
Returns the significance level for split variable selection.

Returns
a double, the significance level for split variable selection

**selectSplitVariable**
```
protected int selectSplitVariable(double[][] xy, double[] classCounts, double[] parentFreq, double[] splitValue, double[] splitCriterionValue, int[] splitPartition)
```

Description
Selects the split variable for the current node using CHAID (chi-square automatic interaction detection).
Parameters

- `xy` – a `double` matrix containing the data
- `classCounts` – a `double` array containing the counts for each class of the response variable, when it is categorical
- `parentFreq` – a `double` array used to indicate which subset of the observations belong in the current node
- `splitValue` – a `double` array representing the resulting split point if the selected variable is quantitative
- `splitCriterionValue` – a `double`, the value of the criterion used to determine the splitting variable
- `splitPartition` – an `int` array indicating the resulting split partition if the selected variable is categorical

Returns

an `int` specifying the column index of the split variable in `this.getPredictorIndexes()`

setConfiguration

```java
protected void setConfiguration(PredictiveModel pm) throws
DecisionTree.PruningFailedToConvergeException,
PredictiveModel.StateChangeException,
PredictiveModel.SumOfProbabilitiesNotOneException
```

Description

Sets the configuration of `PredictiveModel` to that of the input model.

Parameter

- `pm` – a `PredictiveModel` object which is to have its attributes duplicated in this instance

Exceptions

- `PruningFailedToConvergeException` is thrown when pruning fails to converge.
- `PredictiveModel.StateChangeException` is thrown when an input parameter has changed that might affect the model estimates or predictions.
- `com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException` is thrown when the sum of the probabilities does not equal 1.

setMergeCategoriesSignificanceLevel

```java
public void setMergeCategoriesSignificanceLevel(double mergeAlpha)
```

Description

Sets the significance level for merging categories.
Parameter

mergeAlpha – a double, specifying the significance level for merging categories
mergeAlpha must be between 0.0 and 1.0. In addition, if splitMergeAlpha is set to enable
splitting of previously merged categories, then mergeAlpha ≤ splitMergeAlpha.
Default: mergeAlpha = 0.05.

setErrorMerges

public void setErrorMerges(boolean errorMerges)

Description

Sets the significance level for merging previously split categories.

Parameter

errorMerges – a boolean, specifying whether to enable merging previously split categories
errorMerges must be true.
Default: false.

Example: CHAID Simulated Categorical Data

This example uses the CHAID method on simulated categorical data and demonstrates printing the tree
structure with and without custom labels.

import com.imsl.datamining.decisionTree.*;

public class CHAIDSimulatedCategoricalData {

    public static void main(String[] args) throws Exception {

        double[][] xy = {
            {2, 1, 0}, {2, 1, 0}, {1, 0, 1}, {2, 1, 3},
            {0, 1, 0}, {2, 0, 2}, {0, 1, 0}, {2, 2, 3},
            {2, 2, 3}, {0, 0, 0}, {0, 1, 0}, {1, 2, 0}, {2, 0, 2},
            {0, 0, 0}, {2, 0, 1}, {0, 0, 0}, {2, 0, 1}, {0, 0, 0},
            {2, 0, 1}, {2, 0, 1}, {0, 2, 2}, {2, 1, 3}, {1, 1, 0}, {2, 2, 3},
        };

    }

}
{1, 2, 0}, {2, 2, 3}, {2, 0, 1}, {2, 1, 3}, {1, 2, 0}, {1, 1, 0}

DecisionTree.VariableType[] varType = {
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.CATEGORICAL
};

String responseName = "Response";
String[] names = {"Var1", "Var2"};
String[] classNames = {"c1", "c2", "c3", "c4"};
String[] varLabels = {"L1", "L2", "L3", "A", "B", "C"};

CHAID dt = new CHAID(xy, 2, varType);
dt.setMinObsPerChildNode(5);
dt.setMinObsPerNode(10);
dt.setMaxNodes(50);
dt.fitModel();

System.out.println("\nGenerated labels:");
dt.printDecisionTree(true);
System.out.println("\nCustom labels:");
dt.printDecisionTree(responseName, names,
        classNames, varLabels, false);

Output

Generated labels:

Decision Tree:

Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes:  1  2
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
Predicted Y:  0

Node 1: Cost = 0.033, N= 17, Level = 1
Rule: X0 in: { 0  1 }
P(Y=0)= 0.941
P(Y=1)= 0.000
P(Y=2)= 0.059
P(Y=3)= 0.000
Predicted Y:  0

Node 2: Cost = 0.200, N= 13, Level = 1, Child nodes:  3  4
Rule: X0 in: { 2 }
P(Y=0)= 0.000
P(Y=1)= 0.308
P(Y=2) = 0.154
P(Y=3) = 0.538
Predicted Y: 3

Node 3: Cost = 0.067, N= 6, Level = 2
Rule: X1 in: { 0 }
P(Y=0) = 0.000
P(Y=1) = 0.667
P(Y=2) = 0.333
P(Y=3) = 0.000
Predicted Y: 1

Node 4: Cost = 0.000, N= 7, Level = 2
Rule: X1 in: { 1 2 }
P(Y=0) = 0.000
P(Y=1) = 0.000
P(Y=2) = 0.000
P(Y=3) = 1.000
Predicted Y: 3

Custom labels:

Decision Tree:

Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2
P(Y=0) = 0.533
P(Y=1) = 0.133
P(Y=2) = 0.100
P(Y=3) = 0.233
Predicted Response: c1

Node 1: Cost = 0.033, N= 17, Level = 1
Rule: Var1 in: { L1 L2 }
P(Y=0) = 0.941
P(Y=1) = 0.000
P(Y=2) = 0.059
P(Y=3) = 0.000
Predicted Response: c1

Node 2: Cost = 0.200, N= 13, Level = 1, Child nodes: 3 4
Rule: Var1 in: { L3 }
P(Y=0) = 0.000
P(Y=1) = 0.308
P(Y=2) = 0.154
P(Y=3) = 0.538
Predicted Response: c4

Node 3: Cost = 0.067, N= 6, Level = 2
Rule: Var2 in: { A }
P(Y=0) = 0.000
P(Y=1) = 0.667
P(Y=2) = 0.333
P(Y=3) = 0.000
Predicted Response: c2
Node 4: Cost = 0.000, N= 7, Level = 2
Rule: Var2 in: { B  C }
P(Y=0)= 0.000
P(Y=1)= 0.000
P(Y=2)= 0.000
P(Y=3)= 1.000
Predicted Response: c4

QUEST class

public class com.imsl.datamining.decisionTree.QUEST extends
com.imsl.datamining.decisionTree.DecisionTree implements Serializable,
Cloneable

Generates a decision tree using the QUEST algorithm for a categorical response variable and categorical
or quantitative predictor variables. The procedure (Loh and Shih, 1997) is as follows: For each
categorical predictor, QUEST performs a multi-way chi-square test of association between the predictor
and Y. For every continuous predictor, QUEST performs an ANOVA test to see if the means of the
predictor vary among the groups of Y. Among these tests, the variable with the most significant result is
selected as a potential splitting variable, say, $X_j$. If the p-value (adjusted for multiple tests) is less than
the specified splitting threshold, then $X_j$ is the splitting variable for the current node. If not, QUEST
performs for each continuous variable $X$ a Levene’s test of homogeneity to see if the variance of $X$ varies
within the different groups of $Y$. Among these tests, we again find the predictor with the most significant
result, say $X_i$. If its p-value (adjusted for multiple tests) is less than the splitting threshold, $X_i$ is the
splitting variable. Otherwise, the node is not split.

Assuming a splitting variable is found, the next step is to determine how the variable should be split. If
the selected variable $X_j$ is continuous, a split point $d$ is determined by quadratic discriminant analysis
(QDA) of $X_j$ into two populations determined by a binary partition of the response $Y$. The goal of this
step is to group the classes of $Y$ into two subsets or super classes, $A$ and $B$. If there are only two classes in
the response $Y$, the super classes are obvious. Otherwise, calculate the means and variances of $X_j$ in each
of the classes of $Y$. If the means are all equal, put the largest-sized class into group $A$ and combine the
rest to form group $B$. If they are not all equal, use a $k$-means clustering method ($k = 2$) on the class means
to determine $A$ and $B$.

$X_j$ in $A$ and in $B$ is assumed to be normally distributed with estimated means $\bar{x}_jA$, $\bar{x}_jB$, and variances
$S^2_jA$, $S^2_jB$, respectively. The quadratic discriminant is the partition $X_j \leq d$ and $X_j > d$ such that
Pr($X_j, A$) = Pr($X_j, B$). The discriminant rule assigns an observation to $A$ if $x_{ij} \leq d$ and to $B$ if $x_{ij} > d$.
For $d$ to maximally discriminate, the probabilities must be equal.

If the selected variable $X_j$ is categorical, it is first transformed using the method outlined in Loh and Shih
(1997) and then QDA is performed as above. The transformation is related to the discriminant
coordinate (CRIMCOORD) approach due to Gnanadesikan (1977).
Constructor

**QUEST**

```java
public QUEST(double[][] xy, int responseColumnIndex,
PredictiveModel.VariableType[] varType)
```

**Description**

Instantiates a QUEST object for a single response variable and multiple predictor variables.

**Parameters**

- `xy` – a double matrix with rows containing the observations on the predictor variables and one response variable
- `responseColumnIndex` – an int specifying the column index of the response variable
- `varType` – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array containing the type of each variable

Methods

**getSplitVariableSelectionCriterion**

```java
public double getSplitVariableSelectionCriterion()
```

**Description**

Returns the significance level for split variable selection.

**Returns**

da double, the significance criterion for split variable selection

**selectSplitVariable**

```java
protected int selectSplitVariable(double[][] xy, double[] classCounts, double[]
parentFreq, double[] splitValue, double[] splitCriterionValue, int[]
splitPartition)
```

**Description**

Selects the split variable for the present node using the QUEST method.

**Parameters**

- `xy` – a double matrix containing the data
- `classCounts` – a double array containing the counts for each class of the response variable, when it is categorical
- `parentFreq` – a double array used to determine which subset of the observations belong in the current node
- `splitValue` – a double array representing the resulting split point if the selected variable is quantitative
splitCriterionValue – a double, the value of the criterion used to determine the splitting variable
splitPartition – an int array indicating the resulting split partition if the selected variable is categorical

Returns

an int specifying the column index of the split variable in xy

setConfiguration

protected void setConfiguration(PredictiveModel pm) throws
DecisionTree.PruningFailedToConvergeException,
PredictiveModel.StateChangeException,
PredictiveModel.SumOfProbabilitiesNotOneException

Description

Sets the configuration of PredictiveModel to that of the input model.

Parameter

pm – a PredictiveModel object which is to have its attributes duplicated in this instance

Exceptions

PruningFailedToConvergeException is thrown when pruning fails to converge.
PredictiveModel.StateChangeException is thrown when an input parameter has changed that might affect the model estimates or predictions.
com.imsl.datamining.PredictiveModel.SumOfProbabilitiesNotOneException is thrown when the sum of the probabilities does not equal 1.

setSplitVariableSelectionCriterion

public void setSplitVariableSelectionCriterion(double criterion)

Description

Sets the significance level for split variable selection.

Parameter

criterion – a double specifying the criterion for split variable selection. criterion must be between 0.0 and 1.0.
Default: criterion = 0.05

Example: QUEST Simulated Categorical Data

This example applies the QUEST method to a simulated data set with 50 cases and three predictors of mixed-type. Shown are the maximum-sized tree under default controls and the subtree resulting from pruning with a cost-complexity value of 0.0.

import com.imsl.datamining.decisionTree.*;

public class QUESTSimulatedCategoricalData {

Decision Trees

QUEST • 2291
public static void main(String[] args) throws Exception {

double[][] xy = {
    {2, 25.928690, 0, 0}, {1, 51.632450, 1, 1}, {1, 25.784321, 0, 2},
    {0, 39.379478, 0, 3}, {2, 24.650579, 0, 2}, {2, 45.200840, 0, 2},
    {2, 52.679600, 1, 3}, {1, 44.283421, 1, 3}, {2, 40.635231, 1, 3},
    {2, 51.760941, 0, 3}, {2, 26.303680, 0, 1}, {2, 20.702299, 1, 0},
    {2, 38.742729, 1, 3}, {2, 19.473330, 0, 0}, {1, 26.422110, 0, 0},
    {2, 37.059860, 1, 0}, {1, 51.670429, 1, 3}, {0, 42.401562, 0, 3},
    {2, 33.900269, 1, 2}, {1, 35.432819, 0, 0}, {1, 44.303692, 0, 1},
    {0, 46.723869, 0, 2}, {1, 46.992619, 0, 2}, {0, 36.059231, 0, 3},
    {2, 36.831970, 1, 1}, {1, 61.662571, 1, 2}, {0, 25.677139, 0, 3},
    {1, 39.085670, 1, 0}, {0, 48.843410, 1, 1}, {1, 39.343910, 0, 3},
    {2, 24.735220, 0, 2}, {1, 50.552509, 1, 3}, {0, 31.342630, 1, 3},
    {1, 27.157949, 1, 0}, {0, 31.726851, 0, 2}, {0, 25.004080, 0, 3},
    {1, 26.354570, 1, 3}, {2, 38.123428, 0, 1}, {0, 49.940300, 0, 2},
    {1, 42.457790, 1, 3}, {0, 38.809479, 1, 1}, {0, 43.227988, 1, 1},
    {0, 41.875240, 0, 3}, {2, 48.078201, 0, 2}, {0, 43.236729, 1, 0},
    {2, 39.412941, 0, 3}, {1, 23.933460, 0, 2}, {2, 42.641301, 1, 3},
    {2, 30.406691, 0, 1}, {0, 37.773891, 0, 2}};

DecisionTree.VariableType[] varType = {
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.CATEGORICAL
};

QUEST dt = new QUEST(xy, 3, varType);
dt.setPrintLevel(1);
dt.fitModel();
dt.pruneTree(0.0);

System.out.println("Maximal tree: 
");
dt.printDecisionTree(true);
System.out.println("Pruned subtree (cost-complexity = 0): 
");
dt.printDecisionTree(false);
}

Output
Growing the maximal tree using method QUEST:

Maximal tree:

Decision Tree:

Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes: 1 2
P(Y=0) = 0.180
P(Y=1) = 0.180
P(Y=2) = 0.260
P(Y=3) = 0.380
Predicted Y: 3

Node 1: Cost = 0.220, N= 17, Level = 1
Rule: X1 <= 35.031
P(Y=0) = 0.294
P(Y=1) = 0.118
P(Y=2) = 0.353
P(Y=3) = 0.235
Predicted Y: 2

Node 2: Cost = 0.360, N= 33, Level = 1, Child nodes: 3 4
Rule: X1 > 35.031
P(Y=0) = 0.121
P(Y=1) = 0.212
P(Y=2) = 0.212
P(Y=3) = 0.455
Predicted Y: 3

Node 3: Cost = 0.180, N= 19, Level = 2
Rule: X1 <= 43.265
P(Y=0) = 0.211
P(Y=1) = 0.211
P(Y=2) = 0.053
P(Y=3) = 0.526
Predicted Y: 3

Node 4: Cost = 0.160, N= 14, Level = 2
Rule: X1 > 43.265
P(Y=0) = 0.000
P(Y=1) = 0.214
P(Y=2) = 0.429
P(Y=3) = 0.357
Predicted Y: 2

Pruned subtree (cost-complexity = 0):

Decision Tree:

Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes: 1 2
P(Y=0) = 0.180
P(Y=1) = 0.180
P(Y=2) = 0.260
P(Y=3) = 0.380
Predicted Y: 3

Node 1: Cost = 0.220, N= 17, Level = 1
Rule: X1 <= 35.031
P(Y=0) = 0.294
P(Y=1) = 0.118
P(Y=2) = 0.353

Decision Trees QUEST • 2293
P(Y=3) = 0.235
Predicted Y: 2

Node 2: Cost = 0.360, N= 33, Level = 1
Rule: X1 > 35.031
P(Y=0) = 0.121
P(Y=1) = 0.212
P(Y=2) = 0.212
P(Y=3) = 0.455
Predicted Y: 3
Pruned at Node id 2.

Example: QUEST Kyphosis Data

This example uses the dataset Kyphosis. The 81 cases represent 81 children who have undergone surgery to correct a type of spinal deformity known as Kyphosis. The response variable is the presence or absence of Kyphosis after the surgery. Three predictors are Age of the patient in months, Start, the number of the vertebra where the surgery started, and Number, the number of vertebra involved in the surgery. This example uses the method QUEST to produce a maximal tree. It also requests predictions for a test-data set consisting of 10 “new” cases.

import com.imsl.datamining.decisionTree.*;
public class QUESTKyphosisData {
    public static void main(String[] args) throws Exception {
        double[][] xy = {
            {0, 71, 3, 5}, {0, 158, 3, 14}, {1, 128, 4, 5}, {0, 2, 5, 1},
            {0, 1, 4, 15}, {0, 2, 16}, {0, 61, 2, 17}, {0, 37, 3, 16},
            {0, 113, 2, 16}, {1, 59, 6, 12}, {1, 128, 4, 13}, {0, 148, 3, 16},
            {0, 18, 5, 2}, {0, 1, 4, 12}, {0, 168, 3, 18}, {0, 1, 3, 16},
            {0, 78, 6, 16}, {0, 175, 5, 13}, {0, 80, 5, 16},
            {0, 27, 4, 9}, {0, 22, 2, 16}, {1, 105, 6, 5}, {1, 96, 3, 12},
            {0, 131, 2, 3}, {1, 15, 7, 2}, {0, 9, 5, 13}, {0, 8, 3, 6},
            {0, 100, 3, 14}, {0, 4, 3, 16}, {0, 151, 2, 16}, {0, 31, 3, 16},
            {0, 125, 2, 11}, {0, 130, 5, 13}, {0, 112, 3, 16}, {0, 140, 5, 11},
            {0, 93, 3, 16}, {0, 1, 3, 9}, {1, 52, 5, 6}, {0, 20, 6, 9},
            {1, 91, 5, 12}, {1, 73, 5, 1}, {0, 35, 3, 13}, {0, 143, 9, 3},
            {0, 61, 4, 1}, {0, 97, 3, 16}, {1, 139, 3, 10}, {0, 136, 4, 15},
            {0, 131, 5, 13}, {1, 121, 3, 3}, {0, 177, 2, 14}, {0, 68, 5, 10},
            {0, 9, 2, 17}, {1, 139, 10, 6}, {0, 2, 2, 17}, {0, 140, 4, 15},
            {0, 72, 5, 16}, {0, 2, 3, 13}, {1, 120, 5, 8}, {0, 51, 7, 9},
            {0, 102, 3, 13}, {1, 130, 4, 1}, {1, 114, 7, 8}, {0, 81, 4, 1},
            {0, 118, 3, 16}, {0, 118, 4, 16}, {0, 17, 4, 10}, {0, 196, 2, 17},
            {0, 159, 4, 13}, {0, 18, 4, 11}, {0, 15, 5, 16}, {0, 158, 5, 14},
            {0, 127, 4, 12}, {0, 87, 4, 16}, {0, 206, 4, 10}, {0, 11, 3, 15},
            {0, 178, 4, 15}, {1, 157, 3, 13}, {0, 26, 7, 13}, {0, 120, 2, 13},
            {1, 42, 7, 6}, {0, 36, 4, 13}
        };
        double[][] xyTest = {
            {0, 71, 3, 5}, {1, 128, 4, 5}, {0, 1, 4, 15}, {0, 61, 6, 10},
            {1, 157, 3, 13}, {0, 26, 7, 13}, {0, 120, 2, 13},
            {1, 42, 7, 6}, {0, 36, 4, 13}
        };
    }
}
DecisionTree.VariableType[] varType = {
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS
};

String[] names = {"Age", "Number", "Start"};
String[] classNames = {"Absent", "Present"};
String responseName = "Kyphosis";

QUEST dt = new QUEST(xy, 0, varType);
dt.setMinObsPerChildNode(5);
dt.setMinObsPerNode(10);
dt.setMaxNodes(50);
dt.setPrintLevel(2);
dt.fitModel();

double[] predictions = dt.predict(xyTest);
double predErrSS = dt.getMeanSquaredPredictionError();
dt.printDecisionTree(responseName, names,
    classNames, null, true);

System.out.println("\nPredictions for test data:");
System.out.printf("%5s%8s%7s%10s\n", names[0], names[1], names[2], responseName);
for (int i = 0; i < xyTest.length; i++) {
    System.out.printf("%5.0f%8.0f%7.0f%10s\n", xyTest[i][1], xyTest[i][2],
        xyTest[i][3]);
    int idx = (int) predictions[i];
    System.out.printf("%10s\n", classNames[idx]);
}
System.out.printf("\nMean squared prediction error: %f\n", predErrSS);

Output
Growing the maximal tree using method QUEST:

Node 0 has split variable 2
Node 1 has split variable 0
Node 2 is a terminal node. It has 7.0 cases--too few cases to split.
Node 3 is a terminal node. It has 6.0 cases--too few cases to split.
Node 4 has split variable 2
Node 5 is a terminal node. It has 6.0 cases--too few cases to split.
Node 6 has split variable 2
Node 7 has split variable 0
Node 8 has split variable 0
Node 8 is a terminal node. The split is too thin having count 2.0.
Node 9 has split variable 1
Node 10 is a terminal node. It has 6.0 cases--too few cases to split.
Node 11 is a terminal node, because it is pure.
Node 11 is a terminal node. It has 7.0 cases--too few cases to split.
Node 12 is a terminal node. Could not find a splitting variable.

Decision Tree:

Node 0: Cost = 0.210, N= 81, Level = 0, Child nodes:  1  4
P(Y=0)= 0.790
P(Y=1)= 0.210
Predicted Kyphosis: Absent

Node 1: Cost = 0.074, N= 13, Level = 1, Child nodes:  2  3
Rule: Start <= 5.155
P(Y=0)= 0.538
P(Y=1)= 0.462
Predicted Kyphosis: Absent

Node 2: Cost = 0.025, N= 7, Level = 2
Rule: Age <= 84.030
P(Y=0)= 0.714
P(Y=1)= 0.286
Predicted Kyphosis: Absent

Node 3: Cost = 0.025, N= 6, Level = 2
Rule: Age > 84.030
P(Y=0)= 0.333
P(Y=1)= 0.667
Predicted Kyphosis: Present

Node 4: Cost = 0.136, N= 68, Level = 1, Child nodes:  5  6
Rule: Start > 5.155
P(Y=0)= 0.838
P(Y=1)= 0.162
Predicted Kyphosis: Absent

Node 5: Cost = 0.012, N= 6, Level = 2
Rule: Start <= 8.862
P(Y=0)= 0.167
P(Y=1)= 0.833
Predicted Kyphosis: Present

Node 6: Cost = 0.074, N= 62, Level = 2, Child nodes:  7  12
Rule: Start > 8.862
P(Y=0)= 0.903
P(Y=1)= 0.097
Predicted Kyphosis: Absent

Node 7: Cost = 0.062, N= 28, Level = 3, Child nodes:  8  9
Rule: Start <= 13.092
P(Y=0)= 0.821
P(Y=1)= 0.179
Predicted Kyphosis: Absent
Node 8: Cost = 0.025, N= 15, Level = 4
Rule: Age <= 91.722
P(Y=0)= 0.867
P(Y=1)= 0.133
Predicted Kyphosis: Absent

Node 9: Cost = 0.037, N= 13, Level = 4, Child nodes: 10 11
Rule: Age > 91.722
P(Y=0)= 0.769
P(Y=1)= 0.231
Predicted Kyphosis: Absent

Node 10: Cost = 0.037, N= 6, Level = 5
Rule: Number <= 3.450
P(Y=0)= 0.500
P(Y=1)= 0.500
Predicted Kyphosis: Absent

Node 11: Cost = 0.000, N= 7, Level = 5
Rule: Number > 3.450
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Kyphosis: Absent

Node 12: Cost = 0.012, N= 34, Level = 3
Rule: Start > 13.092
P(Y=0)= 0.971
P(Y=1)= 0.029
Predicted Kyphosis: Absent

Predictions for test data:

<table>
<thead>
<tr>
<th>Age</th>
<th>Number</th>
<th>Start</th>
<th>Kyphosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>3</td>
<td>5</td>
<td>Absent</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>5</td>
<td>Present</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>15</td>
<td>Absent</td>
</tr>
<tr>
<td>61</td>
<td>6</td>
<td>10</td>
<td>Absent</td>
</tr>
<tr>
<td>113</td>
<td>2</td>
<td>16</td>
<td>Absent</td>
</tr>
<tr>
<td>82</td>
<td>5</td>
<td>14</td>
<td>Absent</td>
</tr>
<tr>
<td>148</td>
<td>3</td>
<td>16</td>
<td>Absent</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>12</td>
<td>Absent</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>16</td>
<td>Absent</td>
</tr>
<tr>
<td>175</td>
<td>5</td>
<td>13</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Mean squared prediction error: 0.100000
RandomTrees class

public class com.imsl.datamining.decisionTree.RandomTrees extends
com.imsl.datamining.PredictiveModel implements Serializable, Cloneable

Generates predictions using a random forest of decision trees.

A random forest is an ensemble of decision trees. Like bootstrap aggregation, a tree is fit to each of $M$
bootstrap samples from the training data. Each tree is then used to generate predictions. For a regression
problem (continuous response variable), the $M$ predictions are combined into a single predicted value by
averaging. For classification (categorical response variable), majority vote is used. A random forest also
randomizes the predictors. That is, in every tree, the splitting variable at every node is selected from a
random subset of the predictors. Randomization of the predictors reduces correlation among individual
trees. The random forest was invented by Leo Breiman in 2001 (Breiman, 2001). Random Forests$^\text{TM}$ is
the trademark term for this approach. Also see Hastie, Tibshirani, and Friedman, 2008, for further
discussion.

Constructors

RandomTrees

public RandomTrees(DecisionTree dt)

Description

Constructs a RandomTrees random forest of the input decision tree.

Parameter

dt – a DecisionTree object

RandomTrees

public RandomTrees(double[][] xy, int responseColumnIndex,
PredictiveModel.VariableType[] varType)

Description

Constructs a RandomTrees random forest of ALACART decision trees.

Parameters

xy – a double matrix containing the training data
responseColumnIndex – an int, the column index for the response variable
varType – a com.imsl.datamining.PredictiveModel.VariableType (p. 1960) array
containing the type of each variable
Methods

fitModel

public void fitModel() throws PredictiveModel.PredictiveModelException

Description
Fits the random forest to the training data.

Exception

getNumberOfRandomFeatures

public int getNumberOfRandomFeatures()

Description
Returns the number of random features used in the splitting rules.

Returns
an int, the number of random features

getNumberOfTrees

public int getNumberOfTrees()

Description
Returns the number of trees.

Returns
an int, the number of trees

getOutOfBagPredictionError

public double getOutOfBagPredictionError()

Description
Returns the out-of-bag prediction error.

Returns
a double, the out-of-bag prediction error

getOutOfBagPredictions

public double[] getOutOfBagPredictions()

Description
Returns the out-of-bag predicted values for the examples in the training data.
Returns a double array containing the out-of-bag predictions.

**getVariableImportance**

```java
public double[] getVariableImportance()
```

**Description**

Returns the variable importance measure based on the out-of-bag prediction error. Variable importance for a predictor is obtained by randomly permuting the out-of-bag values of the predictor and calculating the difference in predictive accuracy, before and after the permutation. The measure is averaged over all the trees.

**Returns**

a double array containing variable importance for each predictor

**isCalculateVariableImportance**

```java
public boolean isCalculateVariableImportance()
```

**Description**

Returns the current setting of the boolean to calculate variable importance.

**Returns**

a boolean, the current setting of the flag

**predict**

```java
public double[] predict() throws PredictiveModel.PredictiveModelException
```

**Description**

Returns the predicted values generated by the random forest on the training data.

**Returns**

a double array containing the fitted values

**Exception**


```java
public double[] predict(double[] testData) throws PredictiveModel.PredictiveModelException
```

**Description**

Returns the predicted values on the input test data.
Parameter
testData – a double matrix containing test data

Note: testData must have the same number of columns as xy and the columns must be in the same arrangement as in xy.

Returns
a double array containing the predicted values

Exception

predict
public double[] predict(double[][] testData, double[] testDataWeights) throws PredictiveModel.PredictiveModelException

Description
Returns the predicted values on the input test data and the test data weights.

Parameters
testData – a double matrix containing test data
testDataWeights – a double array containing weight values for each row of testData

Note: testData must have the same number of columns as xy and the columns must be in the same arrangement as in xy.

Returns
a double array containing the predicted values

Exception

setCalculateVariableImportance
public void setCalculateVariableImportance(boolean calculate)

Description
Sets the boolean to calculate variable importance.

When true, a permutation type variable importance measure is calculated during bootstrap aggregation.
Parameter

 calculate – a boolean indicating whether or not to calculate variable importance
 Default: calculate = false

setConfiguration

protected void setConfiguration(PredictiveModel pm) throws
PredictiveModel.PredictiveModelException

Description
Sets the configuration of RandomTrees to that of the input model.

Parameter

 pm – a RandomTrees object

Exception
com.imsl.datamining.PredictiveModel.PredictiveModelException is thrown when an
exception occurs in the com.imsl.datamining.PredictiveModel. Superclass exceptions should be
considered such as com.imsl.datamining.PredictiveModel.StateChangeException and

setNumberOfRandomFeatures

public void setNumberOfRandomFeatures(int numberOfRandomFeatures)

Description
Sets the number of random features used in the splitting rules.

Parameter

 numberOfRandomFeatures – an int, the number of predictors in the random subset
 Default: numberOfRandomFeatures = \sqrt{p} for classification problems, \frac{p}{3} for regression problems,
where p is the number of predictors in the training data.

setNumberOfThreads

public void setNumberOfThreads(int numberOfThreads)

Description
Sets the maximum number of java.lang.Thread instances that may be used for parallel processing.

Parameter

 numberOfThreads – an int specifying the maximum number of java.lang.Thread instances
that may be used for parallel processing.
 The actual number of threads used in parallel processing will be the lesser of numberOfThreads
and numberOfTrees, the number of trees in the random forest. This assessment is made to
optimize use of resources.
 Default: numberOfThreads = 1.

setNumberOfTrees

public void setNumberOfTrees(int numberOfTrees)
Description
Sets the number of trees to generate in the random forest.
The number of trees is equivalent to the number of bootstrap samples.

Parameter

numberOfTrees – an int, the number of trees to generate
Default: numberOfTrees=50

Example 1: RandomTrees
This example builds a random forest with ALACART decision trees. A single tree and the random forest are fit to the Kyphosis data and predictions for a test-data set consisting of 10 “new” cases are generated.

The Kyphosis data 81 cases represent 81 children who have undergone surgery to correct a type of spinal deformity known as Kyphosis. The response variable is the presence or absence of Kyphosis after the surgery. The three predictors are:

- Age of the patient in months
- Start, the number of the vertebra where the surgery started
- Number, the number of vertebra involved in the surgery

```java
import com.imsl.math.*;
import com.imsl.stat.*;
import com.imsl.datamining.decisionTree.*;

public class RandomTreesEx1 {
 public static void main(String[] args) throws Exception {
 DecisionTree.VariableType[] kyphosisVarType = {
 DecisionTree.VariableType.CATEGORICAL,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
 DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS
 };
 int kyphosisResponseIdx = 0;
 double[][] kyphosisXY = {
 {0, 71, 3, 5}, {0, 158, 3, 14}, {1, 128, 4, 5}, {0, 2, 5, 1},
 {0, 1, 4, 15}, {0, 1, 2, 16}, {0, 61, 2, 17}, {0, 37, 3, 16},
 {0, 113, 2, 16}, {1, 59, 6, 12}, {1, 82, 5, 14}, {0, 148, 3, 16},
 {0, 18, 5, 2}, {0, 1, 4, 12}, {0, 168, 3, 18}, {0, 1, 3, 16},
 {0, 78, 6, 15}, {0, 175, 5, 13}, {0, 80, 5, 16}, {0, 27, 4, 9},
 {0, 22, 2, 16}, {1, 105, 6, 5}, {1, 96, 3, 12}, {0, 131, 2, 3},
 {1, 15, 7, 2}, {0, 9, 5, 13}, {0, 8, 3, 6}, {0, 100, 3, 14},
 {0, 4, 3, 16}, {0, 151, 2, 16}, {0, 31, 3, 16}, {0, 125, 2, 11},
 {0, 130, 5, 13}, {0, 112, 3, 16}, {0, 140, 5, 11}, {0, 93, 3, 16},
 {0, 1, 3, 9}, {1, 52, 5, 6}, {0, 20, 6, 9}, {1, 91, 5, 12},
 {1, 73, 5, 1}, {0, 35, 3, 13}, {0, 143, 9, 3}, {0, 61, 4, 1},
 {0, 97, 3, 16}, {1, 139, 3, 10}, {0, 136, 4, 15}, {0, 131, 5, 13},
 {1, 121, 3, 3}, {0, 177, 2, 14}, {0, 68, 5, 10}, {0, 9, 2, 17},
 {1, 139, 10, 6}, {0, 2, 2, 17}, {0, 140, 4, 15}, {0, 72, 5, 15},
 };
 }
}
```
double[][] kyphosisXYTest = {
    {0, 71, 3, 5}, {1, 128, 4, 5}, {0, 1, 4, 15}, {0, 61, 6, 10},
    {0, 113, 2, 16}, {1, 82, 5, 14}, {0, 148, 3, 16}, {0, 1, 4, 12},
    {0, 1, 3, 16}, {0, 175, 5, 13}
};
ALACART dt
    = new ALACART(kyphosisXY, kyphosisResponseIdx, kyphosisVarType);
dt.fitModel();
double[] singlePredictions = dt.predict(kyphosisXYTest);
RandomTrees rf = new RandomTrees(dt);
rf.setRandomObject(new Random(123457));
rf.setNumberOfRandomFeatures(2);
double[] rfPredictions = rf.predict(kyphosisXYTest);
new PrintMatrix("Kyphosis test data single tree predictions" + " on the test data:").print(singlePredictions);
new PrintMatrix("Kyphosis test data random forest predictions" + " on the test data:").print(rfPredictions);
}
}

Output

Kyphosis test data single tree predictions on the test data:
    0
    0 0
    1 0
    2 0
    3 1
    4 0
    5 0
    6 0
    7 0
    8 0
    9 0

Kyphosis test data random forest predictions on the test data:
    0
    0 0
    1 1
    2 0
    3 0

2304 • RandomTrees
Example 2: RandomTrees

This example builds a random forest with ALACART decision trees. Classification errors for the Iris data are shown using the out-of-bag predictions. An out-of-bag prediction for an observation is generated by models fitted to bootstrap samples that do not include the observation.

```java
import com.imsl.math.*;
import com.imsl.stat.*;
import com.imsl.datamining.decisionTree.*;

public class RandomTreesEx2 {
 public static void main(String[] args) throws Exception {
 double[][] irisFisherData = {
 {1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
 {1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
 {1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
 {1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
 {1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
 {1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
 {1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
 {1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
 {1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
 {1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
 {1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
 {1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
 {1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
 {1.0, 5.0, 3.4, 1.6, .4}, {1.0, 5.2, 3.5, 1.5, .2},
 {1.0, 5.2, 3.4, 1.4, .2}, {1.0, 4.7, 3.2, 1.6, .2},
 {1.0, 4.8, 3.1, 1.6, .2}, {1.0, 5.4, 3.4, 1.5, .4},
 {1.0, 5.2, 4.1, 1.5, .1}, {1.0, 5.5, 4.2, 1.4, .2},
 {1.0, 4.9, 3.1, 1.5, .1}, {1.0, 5.0, 3.2, 1.2, .2},
 {1.0, 5.5, 3.5, 1.3, .2}, {1.0, 4.9, 3.1, 1.5, .1},
 {1.0, 4.4, 3.0, 1.3, .2}, {1.0, 5.1, 3.4, 1.5, .2},
 {1.0, 5.0, 3.5, 1.3, .3}, {1.0, 4.5, 2.3, 1.3, .3},
 {1.0, 4.4, 3.2, 1.3, .2}, {1.0, 5.0, 3.5, 1.6, .6},
 {1.0, 5.1, 3.8, 1.9, .4}, {1.0, 4.8, 3.0, 1.4, .3},
 {1.0, 5.1, 3.8, 1.6, .2}, {1.0, 4.6, 3.2, 1.4, .2},
 {1.0, 5.3, 3.7, 1.5, .2}, {1.0, 5.0, 3.3, 1.4, .2},
 {2.0, 7.0, 3.2, 4.7, 1.4}, {2.0, 6.4, 3.2, 4.5, 1.5},
 {2.0, 6.9, 3.1, 4.9, 1.5}, {2.0, 5.5, 2.3, 4.0, 1.3},
 {2.0, 6.5, 2.8, 4.6, 1.5}, {2.0, 5.7, 2.8, 4.5, 1.3},
 {2.0, 6.3, 3.3, 4.7, 1.6}, {2.0, 4.9, 2.4, 3.3, 1.0},
 {2.0, 6.6, 2.9, 4.6, 1.3}, {2.0, 5.2, 2.7, 3.9, 1.4},
 {2.0, 5.0, 2.0, 3.5, 1.0}, {2.0, 5.9, 3.0, 4.2, 1.5},
 {2.0, 6.0, 2.2, 4.0, 1.0}, {2.0, 6.1, 2.9, 4.7, 1.4},
 }
 }
}
```
\{2.0, 5.6, 2.9, 3.6, 1.3\}, \{2.0, 6.7, 3.1, 4.4, 1.4\},
\{2.0, 5.6, 3.0, 4.5, 1.5\}, \{2.0, 5.8, 2.7, 4.1, 1.0\},
\{2.0, 6.2, 2.2, 4.5, 1.5\}, \{2.0, 5.6, 2.5, 3.9, 1.1\},
\{2.0, 5.9, 3.2, 4.8, 1.8\}, \{2.0, 6.1, 2.8, 4.0, 1.3\},
\{2.0, 6.3, 2.5, 4.9, 1.5\}, \{2.0, 6.1, 2.8, 4.7, 1.2\},
\{2.0, 6.4, 2.9, 4.3, 1.3\}, \{2.0, 6.6, 3.0, 4.4, 1.4\},
\{2.0, 6.8, 2.8, 4.8, 1.4\}, \{2.0, 6.7, 3.0, 5.0, 1.7\},
\{2.0, 6.0, 2.9, 4.5, 1.5\}, \{2.0, 5.7, 2.6, 3.5, 1.0\},
\{2.0, 5.5, 2.4, 3.8, 1.1\}, \{2.0, 5.5, 2.4, 3.7, 1.0\},
\{2.0, 5.8, 2.7, 3.9, 1.2\}, \{2.0, 6.0, 2.7, 5.1, 1.6\},
\{2.0, 5.4, 3.0, 4.5, 1.5\}, \{2.0, 6.0, 3.4, 4.5, 1.6\},
\{2.0, 6.7, 3.1, 4.7, 1.5\}, \{2.0, 6.3, 2.3, 4.4, 1.3\},
\{2.0, 5.6, 3.0, 4.1, 1.3\}, \{2.0, 5.5, 2.5, 4.0, 1.3\},
\{2.0, 5.5, 2.6, 4.4, 1.2\}, \{2.0, 6.1, 3.0, 4.6, 1.4\},
\{2.0, 5.8, 2.6, 4.0, 1.2\}, \{2.0, 5.0, 2.3, 3.3, 1.0\},
\{2.0, 5.6, 2.7, 4.2, 1.3\}, \{2.0, 5.7, 3.0, 4.2, 1.2\},
\{2.0, 5.7, 2.9, 4.2, 1.3\}, \{2.0, 6.2, 2.9, 4.3, 1.3\},
\{2.0, 5.1, 2.5, 3.0, 1.1\}, \{2.0, 5.7, 2.8, 4.1, 1.3\},
\{3.0, 6.3, 3.3, 6.0, 2.5\}, \{3.0, 5.8, 2.7, 5.1, 1.9\},
\{3.0, 7.1, 3.0, 5.9, 2.1\}, \{3.0, 6.3, 2.9, 5.6, 1.8\},
\{3.0, 6.5, 3.0, 5.8, 2.2\}, \{3.0, 7.6, 3.0, 6.6, 2.1\},
\{3.0, 4.9, 2.5, 4.5, 1.7\}, \{3.0, 7.3, 2.9, 6.3, 1.8\},
\{3.0, 6.7, 2.5, 5.8, 1.8\}, \{3.0, 7.2, 3.6, 6.1, 2.5\},
\{3.0, 6.5, 3.2, 5.1, 2.0\}, \{3.0, 6.4, 2.7, 5.3, 1.9\},
\{3.0, 6.8, 3.0, 5.5, 2.1\}, \{3.0, 5.7, 2.5, 5.0, 2.0\},
\{3.0, 5.8, 2.8, 5.1, 2.4\}, \{3.0, 6.4, 3.2, 5.3, 2.3\},
\{3.0, 6.5, 3.0, 5.5, 1.8\}, \{3.0, 7.7, 3.8, 6.7, 2.2\},
\{3.0, 7.7, 2.6, 6.9, 2.3\}, \{3.0, 6.0, 2.2, 5.0, 1.5\},
\{3.0, 6.9, 3.2, 5.7, 2.3\}, \{3.0, 5.6, 2.8, 4.9, 2.0\},
\{3.0, 7.7, 2.8, 6.7, 2.0\}, \{3.0, 6.3, 2.7, 4.9, 1.8\},
\{3.0, 6.7, 3.3, 5.7, 2.1\}, \{3.0, 7.2, 3.2, 6.0, 1.8\},
\{3.0, 6.2, 2.8, 4.8, 1.8\}, \{3.0, 6.1, 3.0, 4.9, 1.8\},
\{3.0, 6.4, 2.8, 5.6, 2.1\}, \{3.0, 7.2, 3.0, 5.8, 1.6\},
\{3.0, 7.4, 2.8, 6.1, 1.9\}, \{3.0, 7.9, 3.8, 6.4, 2.0\},
\{3.0, 6.4, 2.8, 5.6, 2.2\}, \{3.0, 6.3, 2.8, 5.1, 1.5\},
\{3.0, 6.1, 2.6, 5.6, 1.4\}, \{3.0, 7.7, 3.0, 6.1, 2.3\},
\{3.0, 6.3, 3.4, 5.6, 2.4\}, \{3.0, 6.4, 3.1, 5.5, 1.8\},
\{3.0, 6.0, 3.0, 4.8, 1.8\}, \{3.0, 6.9, 3.1, 5.4, 2.1\},
\{3.0, 6.7, 3.1, 5.6, 2.4\}, \{3.0, 6.9, 3.1, 5.1, 2.3\},
\{3.0, 5.8, 2.7, 5.1, 1.9\}, \{3.0, 6.8, 3.2, 5.9, 2.3\},
\{3.0, 6.7, 3.3, 5.7, 2.5\}, \{3.0, 6.7, 3.0, 5.2, 2.3\},
\{3.0, 6.3, 2.5, 5.0, 1.9\}, \{3.0, 6.5, 3.0, 5.2, 2.0\},
\{3.0, 6.2, 3.4, 5.4, 2.3\}, \{3.0, 5.9, 3.0, 5.1, 1.8\}
};

int irisResponseIdx = 0;
DecisionTree.VariableType[] irisVarType = {
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS
};
int n = irisFisherData.length, m = irisFisherData[0].length;
double[][] irisXY = new double[n][m];
double[] irisY = new double[n];
for (int i = 0; i < n; i++) {
    System.arraycopy(irisFisherData[i], 0, irisXY[i], 0, m);
    irisXY[i][0]--;
    irisY[i] = irisXY[i][0];
}

RandomTrees rf = new RandomTrees(irisXY, irisResponseIdx, irisVarType);
rf.setRandomObject(new Random(123457));
rf.fitModel();

double outOfBagError = rf.getOutOfBagPredictionError();
double[] outOfBagPredictions = rf.getOutOfBagPredictions();
int[][] rfClassErrors = rf.getClassErrors(irisY, outOfBagPredictions);

System.out.println("RandomTrees ALACART out of bag error rate: " + outOfBagError + "\n");
new PrintMatrix("RandomTrees ALACART out of bag errors: ").
    print(rfClassErrors);
}

Output
RandomTrees ALACART out of bag error rate: 0.04666666666666667
RandomTrees ALACART out of bag errors:
   0 1
0 0 50
1 4 50
2 3 50
3 7 150

Example 3: RandomTrees
This example builds a random forest with C45 decision trees on simulated categorical data. A variable
importance measure based on the change in predictive accuracy is highest for variable 0.
import com.imsl.math.*;
import com.imsl.stat.*;
import com.imsl.datamining.decisionTree.*;

public class RandomTreesEx3 {
    public static void main(String[] args) throws Exception {
        double[][] simXY = {
            {2, 25.92869, 0, 0}, {1, 51.63245, 1, 1}, {1, 25.78432, 0, 2},
            {0, 39.37948, 0, 3}, {2, 24.65058, 0, 2}, {2, 45.20084, 0, 2},
            {2, 52.67960, 1, 3}, {1, 44.28342, 1, 3}, {2, 40.63523, 1, 3},
        },
DecisionTree.VariableType[] sim0VarType = {
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.QUANTITATIVE_CONTINUOUS,
    DecisionTree.VariableType.CATEGORICAL,
    DecisionTree.VariableType.CATEGORICAL
};

int sim0ResponseIdx = 0, n = sim0XY.length;

double[] knownY = new double[n];
for (int i = 0; i < n; i++) {
    knownY[i] = sim0XY[i][sim0ResponseIdx];
}

C45 dt = new C45(sim0XY, sim0ResponseIdx, sim0VarType);
RandomTrees rf = new RandomTrees(dt);
rf.setRandomObject(new Random(123457));
rf.setCalculateVariableImportance(true);
rf.fitModel();

double[] outOfBagPredictions = rf.getOutOfBagPredictions();
int[][] classErrors = rf.getClassErrors(knownY, outOfBagPredictions);
double[] variableImportance = rf.getVariableImportance();

new PrintMatrix("C45 Random Forest class errors:").
    print(classErrors);

new PrintMatrix("C45 Random Forest variable importance:").
    print(variableImportance);
}

Output
C45 Random Forest class errors:
    0 1
    0 13 15
    1 16 16
    2 13 19
RandomTrees.ReflectiveOperationException class

static public class
com.imsl.datamining.decisionTree.RandomTrees.ReflectiveOperationException
extends com.imsl.datamining.PredictiveModel.PredictiveModelException

Class that wraps exceptions thrown by reflective operations in core reflection.

Constructors

RandomTrees.ReflectiveOperationException
public RandomTrees.ReflectiveOperationException(String message)

Description
Constructs a ReflectiveOperationException and issues the specified message.

Parameter
message – a String that contains a message to be issued when the exception occurs

RandomTrees.ReflectiveOperationException
public RandomTrees.ReflectiveOperationException(String key, Object[] arguments)

Description
Constructs a ReflectiveOperationException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters
key – a String that contains the key of an error message in the resource bundle
arguments – an Object array containing arguments used within the error message specified by the key
Chapter 33: Maximum Likelihood Estimation

Types

class MaximumLikelihoodEstimation ................................................................. 2312
class ProbabilityDistribution ................................................................. 2321
interface PDFGradientInterface ................................................................. 2324
interface PDFHessianInterface ................................................................. 2324
interface ClosedFormMaximumLikelihoodInterface ................................... 2325
interface MethodOfMomentsInterface ......................................................... 2326
class BetaPD ................................................................. 2326
class ContinuousUniformPD ................................................................. 2329
class ExponentialPD ................................................................. 2333
class GammaPD ................................................................. 2336
class NormalPD ................................................................. 2339

Usage Notes

The classes and methods in this chapter are for modeling and estimating univariate probability distributions.

Maximum Likelihood Estimation

Suppose we have the random sample
\[ \{x_i, i = 1, 2, \ldots, N\} \]

from a probability distribution having a density function \( f(x; \theta) \) which depends on a vector of unknown parameters, \( \theta \). The likelihood function given the sample is the product of probability densities evaluated at the sample points
\[ L(\theta, \{x_i, i = 1, 2, \ldots, N\}) = \prod_{i=1,\ldots,N} f(x_i; \theta) \]

The estimator
\[ \hat{\theta} = \arg\max_{\theta} L(\theta, \{x_i\}) \]
is the maximum likelihood estimator (MLE) for $\theta$. The problem is usually expressed in terms of the log-likelihood:

$$\hat{\theta} = \arg\max_\theta \log(L(\theta, \{x_i\}))$$

$$= \arg\max_\theta \sum_i \log(f(x_i; \theta))$$

Or, equivalently, the problem is often expressed as a minimization problem:

$$\hat{\theta} = \arg\min_\theta - \sum_i \log(f(x_i; \theta))$$

The likelihood problem is a constrained non-linear optimization problem, where the constraints are determined by the domain of $\theta$. Numerical optimization is usually successful in solving the likelihood problem for densities having first and second partial derivatives with respect to $\theta$. Furthermore, under some general regularity conditions, the maximum likelihood estimator is consistent and asymptotically normally distributed with mean equal to the true value of the parameter $\theta_0$ and variance-covariance matrix equal to the inverse Fisher’s Information matrix evaluated at the true value of the parameter:

$$\text{Var}(\hat{\theta}) = I(\theta_0)^{-1} = -E_{\theta_0} \left[ \frac{\partial^2 \log L}{\partial \theta^2} \right]^{-1}$$

The variance is approximated by the negative inverse hessian of the log-likelihood evaluated at the maximum likelihood estimate.

$$\text{Var}(\hat{\theta}) \approx - \left[ \frac{\partial^2 \log L}{\partial \theta^2} \right]^{-1}_{\hat{\theta}}$$

See Kendall and Stuart (1979) for further details on the theory of the maximum likelihood.

---

**MaximumLikelihoodEstimation class**

```java
public class com.imsl.stat.distributions.MaximumLikelihoodEstimation implements Serializable, Cloneable

Maximum likelihood parameter estimation

Constructor

```java
MaximumLikelihoodEstimation
public MaximumLikelihoodEstimation(double[] x, ProbabilityDistribution pd, double[] guess)
```
Description
Constructor for maximum likelihood estimation

Parameters

- `x` – a double array containing the sample observations
- `pd` – an instance of `ProbabilityDistribution`
- `guess` – a double array or a comma-separated list of doubles giving the starting values for the parameters

Note: The argument `guess` is a variable length argument list (varargs).

Methods

compute

```
public void compute() throws MinConNLP.ConstraintEvaluationException,
MinConNLP.ObjectiveEvaluationException, MinConNLP.WorkingSetSingularException,
MinConNLP.QPInfeasibleException,
MinConNLP.PenaltyFunctionPointInfeasibleException,
MinConNLP.LimitingAccuracyException, MinConNLP.TooManyIterationsException,
MinConNLP.BadInitialGuessException, MinConNLP.IllConditionedException,
MinConNLP.SingularException, MinConNLP.LinearlyDependentGradientsException,
MinConNLP.NoAcceptableStepsizeException,
MinConNLP.TerminationCriteriaNotSatisfiedException
```

Description
Computes the maximum likelihood estimates.

Exceptions

- `com.ims1.math.MinConNLP.ConstraintEvaluationException` Constraint evaluation returns an error with current point.
- `com.ims1.math.MinConNLP.ObjectiveEvaluationException` Objective evaluation returns an error with current point.
- `com.ims1.math.MinConNLP.WorkingSetSingularException` Working set is singular in dual extended QP.
- `com.ims1.math.MinConNLP.PenaltyFunctionPointInfeasibleException` Penalty function point infeasible.
- `com.ims1.math.MinConNLP.TooManyIterationsException` Maximum number of iterations exceeded.
- `com.ims1.math.MinConNLP.BadInitialGuessException` Penalty function point infeasible for original problem. Try new initial guess.
com.imsl.math.MinConNLP.IllConditionedException Problem is singular or ill-conditioned.
com.imsl.math.MinConNLP.SingularException Problem is singular.
com.imsl.math.MinConNLP.LinearlyDependentGradientsException Working set gradients are linearly dependent.
com.imsl.math.MinConNLP.NoAcceptableStepsizeException No acceptable stepsize in [SIGMA,SIGLA].
com.imsl.math.MinConNLP.TerminationCriteriaNotSatisfiedException Termination criteria are not satisfied.

getEstimates
public double[] getEstimates()

Description
Returns the parameter estimates.

Returns
a double array containing the parameter estimates

getHessian
public double[][] getHessian()

Description
Returns the Hessian of the log-likelihood function evaluated at the current parameter estimates.

Returns
a double matrix containing the Hessian matrix

gETCHLOGLIKE
public double getLogLikelihood(double[] x, double[] params)

Description
Returns the log-likelihood.
Note that this method is for convenience and does not use any of the member data or parameters. The user supplies the arguments.

Parameters
 x – a double array containing sample data
 params – a double array or comma separated list of doubles containing the parameter values

Returns
a double, the log-likelihood evaluated at the given data and parameter values

getMinimizeLogLikelihood
public double getMinusLogLikelihood()
Description
Returns minus the log-likelihood evaluated at the parameter estimates.
This method returns the value of the objective function, the minimum of minus the log-likelihood.

Returns
a double, minus the log-likelihood

getStandardErrors
public double[] getStandardErrors() throws SingularMatrixException

Description
Returns the approximate standard errors of the maximum likelihood estimates.

Returns
a double array containing the standard errors

Exception
SingularMatrixException The matrix is singular.

getVarCov
public double[][] getVarCov() throws SingularMatrixException

Description
Returns the approximate variance-covariance matrix of the maximum likelihood estimates. The approximation is the negative inverse Hessian of the log-likelihood.

Returns
a double matrix containing the approximate variance-covariance matrix

Exception
SingularMatrixException The matrix is singular.

setClosedForm
public void setClosedForm(boolean cf)

Description
Sets the flag indicating whether or not the closed form solution should be used.

Parameter
cf – a boolean. When true, the com.imsl.stat.distributions.MaximumLikelihoodEstimation.compute (p. 2313) method returns the closed form solution if the ProbabilityDistribution is a ClosedFormMaximumLikelihoodInterface object. The option is ignored if that is not the case.
Default: cf = false.

setExact
public void setExact(boolean exact)
Description
Sets the flag indicating whether or not the PDF supplies the exact gradient and Hessian.

Parameter
exact – a boolean. When true, the function expects the pdf to supply the analytic gradient and Hessian calculation.
Default: exact = false.

setGuess
public void setGuess(double[] guess)

Description
Sets the guess or starting values of the parameters.

Parameter
guess – a double array of the same length as the parameters containing proper starting values for the optimization. guess may also be a comma separated list of doubles giving the parameter values.
Note: The argument guess is a variable length argument list (varargs).

setSample
public void setSample(double[] x)

Description
Sets the sample data to use in the estimation procedure.

Parameter
x – a double array containing sample observations of the random variable

Example 1: Maximum Likelihood Estimation
This example obtains maximum likelihood estimates for the parameters of a beta distribution.

```java
import com.imsl.math.*;
import com.imsl.stat.distributions.*;
import java.text.DecimalFormat;

public class MaximumLikelihoodEstimationEx1 {

    public static void main(String[] args) throws Exception {
        double[] x = {
            0.12396e0, 0.58037e0, 0.28837e0, 0.38195e0,
            0.44387e0, 0.17680e0, 0.22661e0, 0.55939e0,
            0.41646e0, 0.33781e0, 0.63768e0, 0.81501e0,
            0.55952e0, 0.50559e0, 0.39315e0, 0.67901e0,
            0.66032e0, 0.52279e0, 0.53164e0, 0.19165e0,
            0.83432e0, 0.16578e0, 0.30614e0, 0.57622e0,
            0.24793e0, 0.55212e0, 0.32037e0, 0.62443e0,
            0.54663e0, 0.56399e0, 0.61369e0, 0.62853e0,
            0.47957e0, 0.57208e0, 0.44813e0, 0.69026e0,
```
BetaPD beta = new BetaPD();

MaximumLikelihoodEstimation mle = new MaximumLikelihoodEstimation(x, beta, 1, 1);

mle.compute();

double[] parameterEstimates = mle.getEstimates();
double[][] hessian = mle.getHessian();
double[] stdErrs = mle.getStandardErrors();
double mLogLikelihood = mle.getMinusLogLikelihood();

PrintMatrixFormat pmf = new PrintMatrixFormat();

pmf.setNumberFormat(new DecimalFormat("0.00000000"));

PrintMatrix pm = new PrintMatrix("MLEs");

pm.print(pmf, parameterEstimates);

pm.setTitle("hessian");

pm.print(pmf, hessian);

pm.setTitle("standard errors");

pm.print(pmf, stdErrs);

System.out.printf("Minus log likelihood: %5.2f\n", mLogLikelihood);

Output

MLEs

0 3.67112042
1 3.73274034

hessian

0 1

Maximum Likelihood Estimation
Example 2: Maximum Likelihood Estimation

This example obtains maximum likelihood estimates for the parameters of a gamma distribution.

```java
import com.imsl.math.*;
import com.imsl.stat.distributions.*;
import java.text.DecimalFormat;

public class MaximumLikelihoodEstimationEx2 {

    public static void main(String[] args) throws Exception {
        double x[] = {
                1.015998e0, 0.2677489e0, 2.198958e0, 1.784697e0, 0.691063e0,
                0.992409e0, 0.5466309e0, 1.154601e0, 2.613015e0, 1.219826e0,
                1.158957e0, 3.933280e0, 0.2462264e0, 3.946624e0, 4.184852e0,
                1.148567e0, 1.798003e0, 1.437205e0, 2.383511e0, 2.030147e0,
                0.7575e0, 0.903873e0, 0.5005532e0, 0.296348e0, 1.564283e0,
                2.787072e0, 0.3472966e0, 2.228984e0, 2.328759e0, 4.634677e0,
                1.41974e0, 0.5815979e0, 2.654966e0, 1.719702e0, 1.668744e0,
                2.203117e0, 0.7410172e0, 0.5147782e0, 0.4841398e0, 2.745041e0,
                1.455526e0, 0.7109387e0, 0.967477e0, 0.876192e0, 0.4505406e0,
                0.3986173e0, 0.4707685e0, 0.301807e0, 0.624848e0, 4.325418e0,
                1.410972e0, 2.630923e0, 0.4841873e0, 0.1835388e0, 0.2373447e0,
                0.5298828e0, 1.323294e0, 1.672188e0, 0.009495691e0, 1.832066e0,
                1.210357e0, 1.133037e0, 1.23147e0, 0.379497e0, 2.001283e0,
                0.5448404e0, 0.1165402e0, 1.834957e0, 1.503035e0, 2.550148e0,
                1.240445e0, 1.058339e0, 1.613384e0, 1.708352e0, 1.134821e0,
                0.6249367e0, 0.8273115e0, 0.9793533e0, 0.05378025e0,
                0.6824538e0, 0.9259066e0, 0.8168141e0, 3.910878e0, 1.88685e0,
                2.836617e0, 1.644921e0, 0.863347e0, 2.128436e0, 2.710456e0,
                4.747736e0, 0.823015e0, 1.279859e0, 2.991689e0, 2.483813e0,
                0.0610894e0, 0.5572344e0, 0.07148165e0, 0.3847188e0,
                1.322698e0, 0.358647e0
            };

            GammaPD gamma = new GammaPD();

            MaximumLikelihoodEstimation mle
                = new MaximumLikelihoodEstimation(x, gamma, 3, 1);

            mle.compute();

            double[] parameterEstimates = mle.getEstimates();
            double[] hessian = mle.getHessian();
        }
    }
```
Example 3: Maximum Likelihood Estimation

The MLEs for the normal distribution can be derived analytically and are well known to be the sample mean and the sample standard deviation (biased version). This example compares the numerical solution to the analytical solution.

```java
import com.imsl.math.*;
import com.imsl.stat.Random;
import com.imsl.stat.distributions.);

public class MaximumLikelihoodEstimationEx3 {
    public static void main(String[] args) throws Exception {
        int n = 100;
        double[] sample = new double[n];
```
double mean = 25;
double stdev = 1.5;
Random rand = new Random(123457);

for (int i = 0; i < n; i++) {
 sample[i] = stdev * rand.nextNormal() + mean;
}

NormalPD norm = new NormalPD();
double[] exactMLEs = norm.getMLEs(sample);

MaximumLikelihoodEstimation mle
 = new MaximumLikelihoodEstimation(sample, norm, 2, 1);

mle.compute();

double[] parameterEstimates = mle.getEstimates();
double[][] hessian = mle.getHessian();
double[] stdErrs = mle.getStandardErrors();
double mLogLikelihood = mle.getMinusLogLikelihood();

PrintMatrixFormat pmf = new PrintMatrixFormat();
 pmf.setNumberFormat(new java.text.DecimalFormat("0.0000000"));

PrintMatrix pm = new PrintMatrix("Analytic MLEs");
 pm.print(pmf, exactMLEs);
 pm.setTitle("Numerical MLEs");
 pm.print(pmf, parameterEstimates);
 pm.setTitle("hessian");
 pm.print(pmf, hessian);
 pm.setTitle("standard errors");
 pm.print(pmf, stdErrs);

System.out.printf("Minus log likelihood: %5.2f\n", mLogLikelihood);
standard errors
0
0 0.1647232
1 0.1164768

Minus log likelihood: 191.80

ProbabilityDistribution class

abstract public class com.imsl.stat.distributions.ProbabilityDistribution
implements Serializable, Cloneable

The ProbabilityDistribution abstract class defines members and methods common to univariate probability distributions and useful in parameter estimation.

Constructor

ProbabilityDistribution
protected ProbabilityDistribution(int numberOfParameters)

Description
Constructor for the probability distribution

Parameter

numberOfParameters – an int specifying the number of parameters
Every subclass (specific probability distribution) must set the number of parameters.

Methods

getNumberOfParameters
public int getNumberOfParameters()

Description
Returns the number of parameters of the probability distribution.
Returns an int, the number of parameters

getPDFGradientApproximation
public double[] getPDFGradientApproximation(double x, double[] params)

Description
Returns the approximate gradient of the probability density function, pdf.

Parameters
 x – a double value
 params – a double array or a comma-separated list of doubles giving the values for the parameters
 Note: The argument params is a variable length argument list (varargs).

Returns
a double array containing the gradient approximation given the parameter values and evaluated at X=x

getPDFHessianApproximation
public double[][] getPDFHessianApproximation(double x, double[] params)

Description
Returns the approximate hessian of the probability density function, pdf.

Parameters
 x – a double value
 params – a double array or a comma-separated list of doubles giving the values for the parameters
 Note: The argument params is a variable length argument list (varargs).

Returns
a double matrix equal to the second partial derivatives of the probability density function with respect to
the parameters evaluated at X=x

getParameterLowerBounds
abstract public double[] getParameterLowerBounds()

Description
Returns the lower bounds of the parameters.
Each ProbabilityDistribution subclass must override this method.

Returns
a double array containing the lower bounds of the parameters

getParameterUpperBounds
abstract public double[] getParameterUpperBounds()
Description
Returns the upper bounds of the parameters.
Each ProbabilityDistribution subclass must override this method.

Returns
a double array containing the upper bounds of the parameters

getRangeOfX
public double[] getRangeOfX()

Description
Returns the proper range of the random variable having the current probability distribution.

Returns
a double array containing the lower bound (at index 0) and upper bound (at index 1) for the random variable X

pdf
abstract public double pdf(double x, double[] params)

Description
Returns the value of the probability density function.
Each ProbabilityDistribution subclass must override this method.

Parameters
 x – a double value
 params – a double array or a comma-separated list of doubles giving the values for the parameters
 Note: The argument params is a variable length argument list (varargs).

Returns
a double value equal to the probability density function given the parameters evaluated at $X=x$

setRangeOfX
public void setRangeOfX(double[] range)

Description
Sets the proper range of the random variable having the current probability distribution.

Parameter
 range – a double array containing the lower bound (at index 0) and the upper bound (at index 1) for the random variable
 Default: range[0]=Double.NEGATIVE_INFINITY and range[1]=Double.POSITIVE_INFINITY.
PDFGradientInterface interface

public interface com.imsl.stat.distributions.PDFGradientInterface

A public interface for probability distributions that provide a method to calculate the gradient of the density function

Method

getPDFGradient
public double[] getPDFGradient(double x, double[] params)

Description
Returns the gradient of the probability density function.

Parameters
x – a double value
params – a double array or a comma-separated list of doubles giving the values of the parameters

Note: The argument params is a variable length argument list (varargs).

Returns
a double array equal to the first partial derivatives of the probability density function with respect to the parameters evaluated at \(X=x \)

PDFHessianInterface interface

public interface com.imsl.stat.distributions.PDFHessianInterface implements com.imsl.stat.distributions.PDFGradientInterface

A public interface for probability distributions that provide methods to calculate the gradient and hessian of the density function

Method

getPDFHessian
public double[][] getPDFHessian(double x, double[] params)
Description
Returns the hessian of the probability density function.

Parameters

- `x` – a double value in the range of the random variable
- `params` – a double array or a comma-separated list of doubles giving the values of the parameters

Note: The argument `params` is a variable length argument list (varargs).

Returns

a double matrix equal to the second partial derivatives of the probability density function with respect to the parameters evaluated at \(X=x \)

ClosedFormMaximumLikelihoodInterface interface

public interface
com.imsl.stat.distributions.ClosedFormMaximumLikelihoodInterface

A public interface for probability distributions that provide a method for a closed form solution of the maximum likelihood function

Methods

getClosedFormMLE

public double[] getClosedFormMLE(double[] x)

Description

Returns the maximum likelihood estimates (MLEs).

Parameter

- `x` – a double array containing the data

Returns

a double array containing distribution parameters

getClosedFormMlStandardError

public double[] getClosedFormMlStandardError(double[] x)

Description

Returns the standard error based on the closed form solution of the maximum likelihood for the sample data.
Parameter
 x – a double array containing the data

Returns
 a double array containing the standard errors

MethodOfMomentsInterface interface

public interface com.imsl.stat.distributions.MethodOfMomentsInterface

A public interface for probability distributions that provide a method for calculating the method of moments for the density function

Method

getMethodOfMomentsEstimates

class MethodOfMomentsEstimates

public double[] getMethodOfMomentsEstimates(double[] x)

Description
 Returns the method-of-moments estimates given the sample data.

Parameter
 x – a double array containing the data

Returns
 a double array containing method-of-moments estimates for the parameters of the distribution

BetaPD class

The beta probability distribution
Constructor

BetaPD

class BetaPD()

Description
Constructor for the beta probability distribution

Methods

getParameterLowerBounds

class public double[] getParameterLowerBounds()

Description
Returns the lower bounds for the two shape parameters of the beta distribution.

Returns
a double array containing the lower bounds

getParameterUpperBounds

class public double[] getParameterUpperBounds()

Description
Returns the upper bounds for the two shape parameters of the beta distribution.

Returns
a double array containing the upper bounds

pdf

public double pdf(double x, double[] params)

Description
Returns the value of the beta probability density function. The probability density function of the beta distribution is

\[f(x; a, b) = x^{a-1}(1-x)^{b-1} \frac{1}{B(a,b)} \]

where \(a > 0 \) and \(b > 0 \) are shape parameters and the beta function is

\[B(a, b) = \frac{\Gamma(a,b)}{\Gamma(a)\Gamma(b)} \]
Parameters

x – a double value in the range of X

params – a double array containing values of the parameters, with \(\text{params}[0] = \text{"a"} \) and
\(\text{params}[1] = \text{"b"} \). The argument can also be a comma-delimited list \"a\", \"b\" or
\(\text{params}[0],\text{params}[1] \).

Note: The argument params is a variable length argument list (varargs).

Returns

a double value equal to the probability density at x given the parameter values

Example: beta probability distribution

This example evaluates the beta density, gradient, and hessian for a small sample of data.

```java
import com.imsl.math.*;
import com.imsl.stat.distributions.BetaPD;
import java.text.DecimalFormat;

public class BetaPDEx1 {
    public static void main(String[] args) throws Exception {
        double[] x = {
            0.12396e0, 0.58037e0, 0.28837e0, 0.38195e0,
            0.44387e0, 0.17680e0, 0.22661e0, 0.55939e0
        };
        double[] values = new double[x.length];
        double a = 1.2;
        double b = 2.0;
        BetaPD beta = new BetaPD();
        for (int i = 0; i < x.length; i++) {
            values[i] = beta.pdf(x[i], a, b);
        }
        PrintMatrixFormat pmf = new PrintMatrixFormat();
        pmf.setNumberFormat(new DecimalFormat("0.00000000"));
        PrintMatrix pm = new PrintMatrix("Beta(1.2,2.0) pdf values at x=");
        pm.print(x);
        pm.setTitle("f(x;a,b)=");
        pm.print(values);
        double[] gradient = beta.getPDFGradientApproximation(x[0], a, b);
        pm.setTitle("Gradient f(x;a,b) at x[0]=");
        pm.print(gradient);
        double[][] hessian = beta.getPDFHessianApproximation(x[0], a, b);
```
pm.setTitle("Hessian of f(x;a,b) at x[0]");

pm.print(pmf, hessian);

Output

Beta(1.2,2.0) pdf values at x=

0 0 0.124
1 0 0.58
2 0 0.288
3 0 0.382
4 0 0.444
5 0 0.177
6 0 0.227
7 0 0.559

f(x;a,b)=

0 0 1.523
1 0 0.994
2 0 1.465
3 0 1.346
4 0 1.248
5 0 1.537
6 0 1.517
7 0 1.036

Gradient f(x;a,b) at x[0]

0 0 -1.219
1 0 0.676

Hessian of f(x;a,b) at x[0]

0 1
0 -0.39787363 0.01734585
1 0.01734585 -0.12450620

ContinuousUniformPD class

The continuous uniform probability distribution.

Constructor

ContinuousUniformPD

```java
public ContinuousUniformPD()
```

Description

Constructs a continuous uniform probability distribution.

Methods

getClosedFormMLE

```java
public double[] getClosedFormMLE(double[] x)
```

Description

Returns the closed form determination of the maximum likelihood values for the continuous uniform distribution. These are the maximum likelihood estimates for the sample minimum and maximum of the continuous uniform distribution, given the data.

Parameter

- `x` – a double array containing the data

Returns

a double array containing distribution parameters

getClosedFormMlStandardError

```java
public double[] getClosedFormMlStandardError(double[] x)
```

Description

Returns the standard error based on the closed form solution of the maximum likelihood for the sample data.

Parameter

- `x` – a double array containing the data

Returns

a double array containing the standard errors

getPDFGradient

```java
public double[] getPDFGradient(double x, double[] params)
```
Description
Returns the analytic gradient of the continuous uniform PDF evaluated at a point, x.

Parameters
x – a double value. The function is undefined when x = a or x = b.
params – a double array containing values of the parameters. params[0] (a) must be less than params[1] (b).

Returns
a double array containing the first partial derivative of the parameters

getPDFHessian
def getPDFHessian(double x, double[] params)

Description
Returns the analytic Hessian matrix of the continuous uniform pdf evaluated at a point, x.

Parameters
x – a double value
params – a double array containing values of the parameters

Returns
a double matrix containing the second partial derivatives of the parameters

getParameterLowerBounds
def getParameterLowerBounds()

Description
Returns the lower bounds of the continuous uniform distribution.

Returns
a double array of length 2 containing the lower bounds. a and b can be any real number.

getParameterUpperBounds
def getParameterUpperBounds()

Description
Returns the upper bounds of the continuous uniform distribution.

Returns
a double array of length 2 containing the upper bounds. a and b can be any real number.

pdf
def pdf(double x, double[] params)
Description

Returns the value of the continuous uniform probability density function.

The probability density function of the continuous uniform distribution is

\[f(x|a,b) = \begin{cases} \frac{1}{b-a}, & \text{for } a \leq x \leq b \\ 0, & \text{for } x < a \text{ or } x > b \end{cases} \]

Parameters

- \(x \) – a double indicating where the pdf is to be evaluated
- \(\text{params} \) – a double specifying the probability of success. \(\text{params}[0] \) (\(a \)) must be less than \(\text{param}[1] \) (\(b \)) or a probability of 0.0 is returned.

Returns

A double value equal to the probability density at \(x \) given the parameter value

Example: Continuous Uniform Probability Distribution

This example obtains the Continuous Uniform probability density, gradient and Hessian values at a point.

```java
import com.imsl.stat.distributions.ContinuousUniformPD;

public class ContinuousUniformPDEx1 {
    public static void main(String[] args) {
        double x = 0.5;
        ContinuousUniformPD cupd = new ContinuousUniformPD();

        double pdf = cupd.pdf(x, 0.0, 1.0);
        double[] gradient = cupd.getPDFGradient(x, 0.0, 1.0);
        double[][] hessian = cupd.getPDFHessian(x, 0.0, 1.0);

        System.out.printf("Probability density at %.3f with a=0.0 and b=1.0 =" + " %.3f\n", x, pdf);
        System.out.printf("Probability density gradient at %.3f with a=0.0 and" + " b=1.0 = {%.3f, %.3f}\n", x, gradient[0], gradient[1]);
        System.out.printf("Probability density Hessian at %.3f with a=0.0\nand" + " b=1.0 = {{%.3f, %.3f}, {%.3f, %.3f}}\n", x, hessian[0][0], hessian[0][1], hessian[1][0], hessian[1][1]);
    }
}
```

Output

Probability density at 0.500 with a=0.0 and b=1.0 = 1.000

Probability density gradient at 0.500 with a=0.0 and b=1.0 = {1.000, -1.000}

Probability density Hessian at 0.500 with a=0.0
and \(b=1.0 = \{2.000, -2.000\}, \{-2.000, 2.000\}\)

ExponentialPD class

```java
```

The exponential probability distribution.

Constructor

ExponentialPD

```java
public ExponentialPD()
```

Description

Constructs an exponential probability distribution.

Methods

getClosedFormMLE

```java
public double[] getClosedFormMLE(double[] x)
```

Description

Returns the closed form determination of the maximum likelihood values for the exponential distribution.

Parameter

- \(x \) – a double array containing the data

Returns

a double array containing maximum likelihood values

getClosedFormMLStandardError

```java
public double[] getClosedFormMLStandardError(double[] x)
```
Description
Returns the standard error based on the closed form solution of the maximum likelihood for the sample data.

Parameter
 x – a double array containing the data

Returns
a double array containing the standard errors

getPDFGradient
public double[] getPDFGradient(double x, double[] params)

Description
Returns the analytic gradient of the exponential pdf evaluated at a point, x.

Parameters
 x – a double value. x must be non negative.
 params – a double array containing values of the parameters. params (b) is strictly positive.

Returns
a double array containing the first partial derivative of the parameters

getPDFHessian
public double[][] getPDFHessian(double x, double[] params)

Description
Returns the analytic Hessian matrix of the exponential pdf evaluated at a point, x.

Parameters
 x – a double value. x must be non negative.
 params – a double array containing values of the parameters. params (b) is strictly positive.

Returns
a double matrix containing the second partial derivatives of the parameters

getParameterLowerBounds
public double[] getParameterLowerBounds()

Description
Returns the lower bounds for the scale parameter of the exponential distribution.

Returns
a double array of length 1 containing the lower bound. b is strictly positive.

getParameterUpperBounds
public double[] getParameterUpperBounds()
Description
Returns the upper bounds for the scale parameter of the exponential distribution.

Returns
a double array of length 1 containing the upper bound. b is strictly positive.

description
public double pdf(double x, double[] params)

Description
Returns the value of the exponential probability density function.
The probability density function of the exponential distribution is
\[
f(x|b) = \Gamma(x|1,b) = \frac{1}{b} e^{-\frac{x}{b}}
\]
where b is a scale parameter.

Parameters
x – a double indicating where the pdf is to be evaluated. x must be non negative.
params – a double specifying the scale parameter. params (b) is strictly positive.

Returns
a double value equal to the probability density at x given the parameter value

Example: Exponential Probability Distribution
This example obtains the Exponential probability density, gradient and Hessian values at a point.

import com.imsl.stat.distributions.ExponentialPD;

public class ExponentialPDEx1 {
 public static void main(String[] args) {
 double x = 2.0 / (5.0 + 1.0);
 double scale = 3.0;
 ExponentialPD epd = new ExponentialPD();
 double pdf = epd.pdf(x, scale);
 double[] gradient = epd.getPDFGradient(x, scale);
 double[][] hessian = epd.getPDFHessian(x, scale);
 System.out.printf("Probability density at %.3f with scale value of 3.0" + " = %.3f\n\n", x, pdf);
 System.out.printf("Probability density gradient at %.3f with scale" + " value of 3.0 = {%.3f}\n\n", x, gradient[0]);
 System.out.printf("Probability density Hessian at %.3f with scale" + " value of 3.0 = {{%.3f}}\n\n", x, hessian[0][0]);
 }
}
Output
Probability density at 0.333 with scale value of 3.0 = 1.104
Probability density gradient at 0.333 with scale value of 3.0 = {0.000}
Probability density Hessian at 0.333 with scale value of 3.0 = {{-0.123}}

GammaPD class

public class com.imsl.stat.distributions.GammaPD extends
com.imsl.stat.distributions.ProbabilityDistribution implements Serializable,
Cloneable

The gamma probability distribution

Constructor

GammaPD
public GammaPD()

Description
Constructor for the gamma probability distribution

Methods

getParameterLowerBounds
public double[] getParameterLowerBounds()

Description
Returns the lower bounds for the shape and scale parameters of the gamma distribution.

Returns
da double array containing the lower bounds

gParameterUpperBounds
public double[] getParameterUpperBounds()
Description

Returns the upper bounds for the shape and scale parameters of the gamma distribution.

Returns

A double array containing the upper bounds

pdf

`public double pdf(double x, double[] params)`

Description

Returns the value of the gamma probability density function.

The probability density function of the gamma distribution is

\[
 f(x; a, b) = \frac{x^{a-1}}{b^a \Gamma(a)} e^{-x/b}
\]

where \(a\) is the shape parameter and \(b\) is the scale parameter.

Parameters

- `x` – a double value in the range of \(X\)
- `params` – a double array containing values of the parameters, with `params[0]` = “\(a\)” and `params[1]` = “\(b\)”. The argument can also be a comma-delimited list “\(a\)”, “\(b\)” or `params[0],params[1]`.

 Note: The argument `params` is a variable length argument list (varargs).

Returns

A double value equal to the probability density at \(x\) given the parameter values

Example: gamma probability distribution

This example evaluates the gamma density, gradient, and hessian for a small sample of data.

```java
import com.imsl.math.*;
import com.imsl.stat.distributions.*;
import java.text.DecimalFormat;

public class GammaPDEx1 {
    public static void main(String[] args) throws Exception {
        double x[] = {
            1.015998e0, 0.2677489e0, 2.198958e0, 1.784697e0, 0.691063e0,
            0.992409e0, 0.5466309e0, 1.154601e0, 2.613015e0, 1.219826e0
        };

        double[] values = new double[x.length];
        double a = 3.0;
        double b = 2.0;

        GammaPD gamma = new GammaPD();
```
for (int i = 0; i < x.length; i++) {
 values[i] = gamma.pdf(x[i], a, b);
}

PrintMatrixFormat pmf = new PrintMatrixFormat();
 pmf.setNumberFormat(new DecimalFormat("0.00000000"));

PrintMatrix pm = new PrintMatrix("Gamma(3.0,2.0) pdf values at x=");
 pm.print(x);
 pm.setTitle("f(x;a,b)=");
 pm.print(values);

double[] gradient = gamma.getPDFGradientApproximation(x[0], a, b);
 pm.setTitle("Gradient f(x;a,b) at x[0]");
 pm.print(gradient);

double[][] hessian = gamma.getPDFHessianApproximation(x[0], a, b);
 pm.setTitle("Hessian of f(x;a,b) at x[0]");
 pm.print(pmf, hessian);
}

Output

Gamma(3.0,2.0) pdf values at x=

0
1 1.016
2 0.268
3 2.199
4 0.691
5 0.992
6 0.547
7 1.155
8 2.613
9 1.22

f(x;a,b)=

0
1 0.039
2 0.004
3 0.101
4 0.082
5 0.021
6 0.037
7 0.014
8 0.047
9 0.116

Gradient f(x;a,b) at x[0]
NormalPD class

public class com.imsl.stat.distributions.NormalPD extends
com.imsl.stat.distributions.ProbabilityDistribution implements
com.imsl.stat.distributions.PDFHessianInterface, Serializable, Cloneable

The normal (Gaussian) probability distribution

Constructor

NormalPD
public NormalPD()

Description
Constructor for the normal probability distribution

Methods

getMLEs
public double[] getMLEs(double[] x)

Description
Returns the mean and standard deviation of the sample data.
These are the maximum likelihood estimates for the mean and standard deviation of the Normal
distribution, given the data.

Parameter
x – a double array containing the data
Returns a double array containing the mean and standard deviation

getPDFGradient
public double[] getPDFGradient(double x, double[] params)

Description
Returns the analytic gradient of the normal pdf.

Parameters
 x – a double value
 params – a double array containing values of the parameters, params[0]="µ" and
 params[1]="σ". The argument can also be a comma-delimited list "µ", "σ" or params[0],
 params[1].
 Note: The argument params is a variable length argument list (varargs).

Returns a double array containing the partial derivatives of the pdf with respect to the parameters evaluated at x
and the given parameter values

getPDFHessian
public double[][] getPDFHessian(double x, double[] params)

Description
Returns the analytic hessian matrix of the normal pdf evaluated at a point, x.

Parameters
 x – a double value
 params – a double array containing values of the parameters, params[0]="µ" and
 params[1]="σ". The argument can also be a comma-delimited list "µ", "σ" or params[0],
 params[1].
 Note: The argument params is a variable length argument list (varargs).

Returns a double matrix containing the second partial derivatives of the pdf with respect to the parameters evaluated at x and the given parameter values

getParameterLowerBounds
public double[] getParameterLowerBounds()

Description
Returns the lower bounds for the mean µ and standard deviation σ.

Returns a double array containing the lower bounds

getParameterUpperBounds
public double[] getParameterUpperBounds()
Description
Returns the upper bounds for the mean μ and standard deviation σ.

Returns
a double array containing the upper bounds

pdf
public double pdf(double x, double[] params)

Description
Returns the value of the normal probability density function.

The probability density function for a normal distribution is given by

$$ f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) $$

where μ and $\sigma > 0$ are the mean and standard deviation of the random variable.

Parameters
- x – a double value
- params – a double array containing values of the parameters, params[0] = "μ" and params[1] = "σ". The argument can also be a comma-delimited list "μ", "σ" or params[0], params[1].

 Note: The argument params is a variable length argument list (varargs).

Returns
a double value equal to the probability density at x given the parameter values

Example Normal Probability Distribution
This example evaluates the normal density, approximate gradient and hessian, and analytic gradient and hessian for a small sample of data.

```java
import com.imsl.math.*;
import com.imsl.stat.distributions.*;
import java.text.DecimalFormat;

public class NormalPDEx1 {

    public static void main(String[] args) throws Exception {
        double x[] = {
            24.67074744935116, 23.452437146719504, 23.508058666655124,
            24.085805009837582, 26.387706562892493, 26.244756646592872
        };

        double[] values = new double[x.length];
        double mean = 25.0;
        double stdDev = 1.0;
```
NormalPD normal = new NormalPD();

for (int i = 0; i < x.length; i++) {
 values[i] = normal.pdf(x[i], mean, stdDev);
}

PrintMatrixFormat pmf = new PrintMatrixFormat();
 pmf.setNumberFormat(new DecimalFormat("0.00000000"));

PrintMatrix pm = new PrintMatrix("Normal(25.0,1.0) pdf values at x=");
 pm.print(x);
 pm.setTitle("f(x;a,b)=");
 pm.print(values);

double[] gradientApprox
 = normal.getPDFGradientApproximation(x[0], mean, stdDev);

 pm.setTitle("Gradient approximation f(x;a,b) at x[0]");
 pm.print(gradientApprox);

double[] gradient = normal.getPDFGradient(x[0], mean, stdDev);

 pm.setTitle("Gradient f(x;a,b) at x[0]"");
 pm.print(gradient);

double[] [] hessianApprox
 = normal.getPDFHessianApproximation(x[0], mean, stdDev);

 pm.setTitle("Hessian approximation of f(x;a,b) at x[0]");
 pm.print(pmf, hessianApprox);

double[] [] hessian = normal.getPDFHessian(x[0], mean, stdDev);

 pm.setTitle("Hessian of f(x;a,b) at x[0]"");
 pm.print(pmf, hessian);
}

Output
Normal(25.0,1.0) pdf values at x=

0 24.671
1 23.452
2 23.508
3 24.086
4 26.388
5 26.245

f(x;a,b)=

0 0.378
1 0.12
2 0.131
Gradient approximation $f(x; a, b)$ at $x[0]$

0
0 -0.124
1 -0.337

Gradient $f(x; a, b)$ at $x[0]$

0
0 -0.124
1 -0.337

Hessian approximation of $f(x; a, b)$ at $x[0]$

0 1
0 -0.33692738 0.35977953
1 0.35977953 0.55539644

Hessian of $f(x; a, b)$ at $x[0]$

0 1
0 -0.33692735 0.35977916
1 0.35977916 0.55539649
Chapter 34: Error Handling

Types

- class Messages .. 2345
- class Version ... 2347
- class IMSLFormatter ... 2347
- class Warning ... 2348
- class WarningObject ... 2351
- exception IMSLException .. 2352
- exception IMSLRuntimeException .. 2353
- exception IMSLUnexpectedErrorException 2354
- exception LicenseManagerException 2354

Messages class

public class com.imsl.Messages

Retrieve and format message strings.

Constructor

Messages

public Messages()
Methods

formatMessage

static public String formatMessage(String bundleName, String key)

Description

A message is formatted, without arguments, using a MessageFormat string retrieved from the named resource bundle using the given key.

Parameters

- `bundleName` – is the resource bundle name.
- `key` – is the key of the MessageFormat string in the resource bundle.

Returns

the formatted message

formatMessage

static public String formatMessage(String bundleName, String key, Object[] arg)

Description

A message is formatted using a MessageFormat string retrieved from the named resource bundle using the given key.

Parameters

- `bundleName` – is the resource bundle name.
- `key` – is the key of the MessageFormat string in the resource bundle.
- `arg` – is an array of arguments passed to the MessageFormat.format method.

Returns

the formatted message

throwIllegalArgumentException

static public void throwIllegalArgumentException(String packageName, String key, Object[] args)

Description

Throws an IllegalArgumentException with a formatted String argument.

Parameters

- `packageName` – is the package from which the error is thrown. The resource bundle “ErrorMessages” in this package contains the error MessageFormat string.
- `key` – is the key of the MessageFormat string in the resource bundle.
- `args` – is an array of arguments passed to the MessageFormat.format method.

throwIllegalStateException

static public void throwIllegalStateException(String packageName, String key, Object[] args)
Description
Throws an IllegalStateException with a formatted String argument.

Parameters
- **packageName** – is the package from which the error is thrown. The resource bundle “ErrorMessages” in this package contains the error MessageFormat string.
- **key** – is the key of the MessageFormat string in the resource bundle.
- **args** – is an array of arguments passed to the MessageFormat.format method.

Version class

```java
public class com.imsl.Version
Print the version information.
```

Constructor

```java
public Version()
```

Method

```java
static public void main(String[] args) throws ParseException
Description
Print the version information about the environment and this library.
```

IMSLFormatter class

```java
public class com.imsl.IMSLFormatter extends java.util.logging.Formatter
Simple formatter for classes that implement logging.
```

Error Handling | Version • 2347
Constructor

IMSLFormatter

```java
public IMSLFormatter()
```

Method

format

```java
public String format(LogRecord record)
```

Description
Format the given log record and return the formatted string.

The `LogRecord`'s message field must contain a reference to one of the resource files in the JMSL Library.

Parameter
- `record` – the log record to be formatted.

Returns
the formatted log record.

Warning class

```java
public final class com.imsl.Warning
```

Handle warning messages. This class maintains a single, private, `WarningObject` that actually displays the warning messages.

Constructor

Warning

```java
public Warning()
```
Methods

getWarning
static public WarningObject getWarning()

Description
Gets the WarningObject.

Returns
The current warning object.

print
static public void print(Object source, String bundleName, String key, Object[] arg)

Description
Issue a warning message. Warning messages are stored as MessageFormat patterns in a ResourceBundle. This method retrieves the pattern from the bundle, formats the message with the supplied arguments, and prints the message to the warning stream.

Parameters
source – is the object that is the source of the warning.
bundleName – is the prefix of the ResourceBundle name. The actual name is formed by appending “.ErrorMessages”.
key – identifies the warning message in the bundle.
arg – are the arguments used to format the message.

setOut
static public void setOut(PrintStream out)

Description
Reassigns the output stream. The default warning stream is java.lang.System.err.

Parameter
out – is the new warning output stream. It may be null, in which case warnings are not printed.

setWarning
static public void setWarning(WarningObject warningObject)

Description
Sets a new WarningObject. Replacing the WarningObject allows warning errors to be handled in a more custom fashion.

Parameter
warningObject – is the new WarningObject. It may be null, in which case error messages will be ignored.

Error Handling

Warning • 2349
Example: Warning and WarningObject classes

This example shows how to redirect warning messages, instead of using the default `System.err`. In this example, a warning message is captured, using methods in `Warning` and `WarningObject` classes, and re-printed later.

```java
import com.imsl.*;
import com.imsl.stat.*;
import java.io.*;

public class WarningEx1 {
    public static void main(String args[]) throws Exception {
        // Capture warning message.
        WarningObject w = Warning.getWarning();

        ByteArrayOutputStream os = new ByteArrayOutputStream();
        PrintStream ps = new PrintStream(os);

        WarningObject newWarning = new WarningObject();
        newWarning.setOut(ps);
        Warning.setWarning(newWarning);

        // Seed the random number generator
        Random rn = new Random();
        rn.setSeed(123457);
        rn.setMultiplier(16807);

        // Construct a ChiSquaredTest object
        CdfFunction bindf = new CdfFunction() {
            public double cdf(double x) {
                return Cdf.binomial((int) x, 5, 0.3);
            }
        };
        double cutp[] = {0.5, 1.5, 2.5, 3.5, 4.5};
        int nParameters = 0;
        ChiSquaredTest cst = new ChiSquaredTest(bindf, cutp, nParameters);
        for (int i = 0; i < 1000; i++) {
            cst.update(rn.nextBinomial(5, 0.3), 1.0);
        }

        // Print goodness-of-fit test statistics
        System.out.println("The Chi-squared statistic is " + cst.getChiSquared());
        System.out.println("The P-value is " + cst.getP());
        System.out.println("The Degrees of freedom are " + cst.getDegreesOfFreedom());

        // Print warning message.
        System.out.println(os.toString());

        // Restore Warning.
        Warning.setWarning(w);
        ps.close();
    }
}
```
The Chi-squared statistic is 4.79629666357389
The P-value is 0.44124295720552553
The Degrees of freedom are 5.0
com.imsl.stat.ChiSquaredTest: An expected value is less than five.

WarningObject class

public class com.imsl.WarningObject

Handle warning messages.

Field

out
protected PrintStream out

The warning stream. Its default value is System.err.

Constructor

WarningObject
public WarningObject()

Methods

print
public void print(Object source, String bundleName, String key, Object[] arg)
Description
Issue a warning message. Warning messages are stored as MessageFormat patterns in a ResourceBundle. This method retrieves the pattern from the bundle, formats the message with the supplied arguments, and prints the message to the warning stream.

Parameters
- source – is the object that is the source of the warning. It source is a String then it is assumed to be name of the class raising the warning.
- bundleName – is the prefix of the ResourceBundle name. The actual name is formed by appending “.ErrorMessages”.
- key – identifies the warning message in the bundle.
- arg – are the arguments used to format the message.

setOut
public void setOut(PrintStream out)

Description
Reassigns the output stream. The default warning stream is java.lang.System.err.

Parameter
- out – is the new warning output stream. It may be null, in which case warnings are not printed.

IMSLException class

abstract public class com.imsl.IMSLException extends java.lang.Exception

Signals that a mathematical exception has occurred.

Constructors

IMSLException
public IMSLException()

Description
Constructs an IMSLException with no detail message. A detail message is a String that describes this particular exception.

IMSLException
public IMSLException(String s)
Constructs an IMSLException with the specified detail message. A detail message is a String that describes this particular exception.

Parameter

- s – the detail message

IMSLException
public IMSLException(String packageName, String key, Object[] arguments)

Description
Constructs an IMSLException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

- packageName – is the name of the package containing the ErrorMessages resource bundle.
- key – is the key of the error message in the resource bundle.
- arguments – is an array containing arguments used within the error message string.

IMSLRuntimeException class

abstract public class com.imsl.IMSLRuntimeException extends java.lang.RuntimeException

Signals that an error has occurred. This is used for programming mistake type of errors. Since IMSLRuntimeException is a subclass of RuntimeException, this exception does not have to be caught.

Constructors

IMSLRuntimeException
public IMSLRuntimeException()

Description
Constructs an IMSLRuntimeException with no detail message. A detail message is a String that describes this particular exception.

IMSLRuntimeException
public IMSLRuntimeException(String s)

Description
Constructs an IMSLRuntimeException with the specified detail message. A detail message is a String that describes this particular exception.
IMSLRuntimeException

```java
public IMSLRuntimeException(String packageName, String key, Object[] arguments)
```

Description

Constructs an IMSLRuntimeException with the specified detail message. The error message string is in a resource bundle, ErrorMessages.

Parameters

- `packageName` – is the name of the package containing the ErrorMessages resource bundle.
- `key` – is the key of the error message in the resource bundle.
- `arguments` – is an array containing arguments used within the error message string.

IMSLUnexpectedErrorException class

```java
public class com.imsl.IMSLUnexpectedErrorException extends com.imsl.IMSLRuntimeException
```

Signals that an unexpected error has occurred. Please contact your IMSL technical support representative to report this problem. Since IMSLUnexpectedErrorException is a subclass of RuntimeException, this exception does not have to be caught.

Constructor

```java
IMSLUnexpectedErrorException
public IMSLUnexpectedErrorException()
```

Description

Constructs an IMSLUnexpectedErrorException.

LicenseManagerException class

```java
public class com.imsl.LicenseManagerException extends com.imsl.IMSLRuntimeException
```

2354 • IMSLUnexpectedErrorException

JMSL
A LicenseManagerException exception is thrown if a license to use the product cannot be obtained. Either a LicenseManagerException exception will be thrown or a ExceptionInInitializerError exception will be thrown with LicenseManagerException as the cause.

The behavior of the license manager is controlled by the following system properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>com.imsl.license.path</td>
<td>License file path</td>
<td>A location in your installation hierarchy which indicates the expected license file location. Default is imsl_eval.dat.</td>
</tr>
<tr>
<td>com.imsl.license.popup</td>
<td><code>'true'</code> or <code>false</code></td>
<td>If <code>'true'</code>, use a dialog box to show any license manager errors. If <code>false</code>, errors only result in this exception being thrown. Default is to use a popup.</td>
</tr>
</tbody>
</table>

Methods

getErrorNumber

public int getErrorNumber()

Description

Returns the error number for this exception.

getFeature

public String getFeature()

Description

Returns the name of the feature that could not be licensed.

getLicensePath

public String getLicensePath()

Description

Returns the license file path for this exception.

getLocalizedMessage

public String getLocalizedMessage()

Description

Returns the localized error message for this exception.
References

Abe

Abramowitz and Stegun

Afifi and Azen

Agrawal and Srikant

Agresti, Wackerly, and Boyette
Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional tests for cross-classifications: Approximation of attained significance levels, Psychometrika, 44, 75-83.

Ahrens and Dieter

Akaike

Akaike et al

Akima

Altman and Gondzio

Anderberg

Anderson

Anderson and Bancroft

Ashcraft

Ashcraft et al.

Atkinson (1979)

Atkinson (1978)

Barrodale and Roberts

Bartlett, M. S.
Bartlett, M. S. (1937), Some examples of statistical methods of research in agriculture and applied biology, *Supplement to the Journal of the Royal Statistical Society*, 4, 137-183.

Barnett

Barrett and Heal

Bays and Durham

Bendel and Mickey

Beckers

Bentley and Sedgewick

Berry and Linoff

Best and Fisher

Bishop
Bishop et al

Bjorck and Golub

Blom

Blom and Zegeling

Boisvert

Bosten and Battiste

Box and Jenkins

Box and Pierce

Boyette

Bradley

Breiman, Leo

Breiman, et al.

Brenan, Campbell, and Petzold

Brent

Breslow

Bridle

Brigham

Brown

Brown and Benedetti

Burgoyne

Calvo

Carlson

Carlson and Notis

Carlson and Foley

References

Chang and Lin

Chen and Liu

Cheng

Chiang

Clarkson and Jenrich

Cohen and Taylor

Cooley and Tukey

Cooper

Conover

Cook and Weisberg

Cortes and Vapnik

Courant and Hilbert

Cox

Cox and Oakes

Craven and Wahba

Crowe et al.

Davis and Rabinowitz

Davis et al.

de Boor

Deming

Demmel et al.

Dennis and Schnabel

Dongarra et al.

Doornik

Draper and Smith

DuCroz et al.

Duff et al.

Duff and Reid

Elant-Johnson et al.

Elman

Eisenstat et al.

Emmett

Enright and Pryce

Farebrother and Berry

Fisher

Fishman and Moore

Forsythe

Franke

Friedman

Furnival and Wilson

Garbow et al.

Gautschi

Gear

Gear and Petzold

Gentleman

George and Liu

Gill and Murray

Gill et al.

Giudici

Goldfarb and Idnani

Golub

Golub and Van Loan

Golub and Welsch

Gondzio (1994)

Gondzio (1995)

Gregory and Karney

Griffin and Redfish

Gross and Clark

Grosse

Guerra and Tapia

Hageman and Young

Hanson

Hardy

Harman

Hart et al.

Hastie et al.

Hayter

References

Healy

Hebb

Herraman

Higham

Hill

Hindmarsh

Hinkley

Hocking

Hopfield

Huber

Hutchinson

Hull et al.

Hwang and Ding

Irvine et al.

Jackson et al.

Jacobs et al.

Jenkins

Jenkins and Traub

Jöhnk

Johnson and Kotz

Jöreskog

References

Juran and Godfrey

Kachitvichyanukul

Kaiser

Kaiser and Caffrey

Kalbfleisch and Prentice

Kendall and Stuart

Kennedy and Gentle

Kernighan and Richtie

Kim and Jennrich

Kinnucan and Kuki

Kirk

Kochanek and Bartels
Kochanek, Doris H. U., and Bartels, Richard H (1984), Interpolating Splines with Local Tension, Continuity, and Bias Control, ACM SIGGRAPH, vol. 18, no. 3, pp. 33-41

Kohonen

Knuth

Krogh

Lachenbruch

Lawless

Lawrence et al

Lawson and Hanson

Lawson and Hanson

Learmonth and Lewis

Leavenworth

Lee

Lehmann

References

Levenberg

Lentini and Pereyra

Lewis et al.

Li

Li

Liepman

Lippmann

Liu

Ljung and Box

Loh and Shih

Lyness and Giunta

Madsen and Sincovec

Maindonald

Mandic and Chambers

Manning and Schütze

Marquardt

Marsaglia

Martin and Wilkinson

Mayle

McCulloch and Pitts

Michelli

References

Michelli et al.

Microsoft Excel User Education Team

Miller

Milliken and Johnson

Moler and Stewart

Montgomery

Moré et al.

Müller

Murtagh

Murty

Neter and Wasserman

Neter et al.

NIST Engineering Statistics Handbook

Østerby and Zlatev

Owen

Pao

Parlett

Pennington and Berzins

Petro

Petzold

Piesens et al.

Platt

Poli and Jones
Powell

Pregibon

Quinlan

Ralston

Reed and Marks

Reinsch

Rice

Ripley

Rosenblatt

Rumelhart et al

Saad and Schultz

Sallas and Lionti

Savage

Schittkowski

Schmeiser

Schmeiser and Babu

Schmeiser and Kachitvichyanukul
Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random Variate Generation, Research Memorandum 81–4, School of Industrial Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser and Lal

References
Seidler and Carmichael

Shampine

Shampine and Gear

Shewhart

Sincovec and Madsen

Singleton

Smirnov

Smith et al.

Smith

Smith

Spellucci, Peter

Spurrier and Isham

Stewart

Stoer

Stoline

Strecok

Stroud and Secrest

Studenmund

Swingler

Taguchi

Temme

Tesauro

Tezuka

Thompson and Barnett

Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions \(I_n(z) \) and \(K_n(z) \) of real order and complex argument, *Computer Physics Communication*, 47, 245-257.
Tukey

Velleman and Hoaglin

Verwer et al

Walker

Warner and Misra

Watkins

Weeks

Werbos

Western Electric

Williams and Zipser

Wilmott et al

Witten and Frank

Woodfield

Wu

AbstractChartNode, 1567
AbstractFlatFile, 1373
 FlatFileSQLException, 1422
 FlatFileSQLFeatureNotSupportedException, 1422
Activation, 2121
ALACART, 2269
AmbientLight, 1857
ANCOVA, 791
Annotation, 1610
ANOVA, 771
ANOVAFactorial, 781
Apriori, 1926
ARAutoUnivariate, 890
 Formatter, 915
 TriangularMatrixSingularException, 914
ARMA, 928
 IllConditionedException, 953
 IncreaseErrRelException, 948
 MatrixSingularException, 950
 NewInitialGuessException, 949
 TooManyCallsException, 948
 TooManyFcnEvalException, 951
 TooManyITNException, 951
 TooManyJacobianEvalException, 952
ARMAEstimateMissing, 954
ARMAXmaxLikelihood, 964
 NonInvertibleException, 979
 NonStationaryException, 980
ARMAOutlierIdentification, 981
ARSeasonalFit, 915
AssociationRule, 1925
AutoARIMA, 1000
 NoAcceptableModelFoundException, 1023
AutoCorrelation, 880
 NonPosVariancesException, 889
Axis, 1613
Axis1D, 1617
Axis2D, 1863
AxisLabel, 1622, 1868
AxisLine, 1623, 1869
AxisR, 1628
AxisRLabel, 1630
AxisRLine, 1631
AxisRMajorTick, 1631
AxisTheta, 1632
AxisTitle, 1623, 1869
AxisUnit, 1624
AxisXY, 1615
AxisXYZ, 1861
Background, 1608, 1852
Bar, 1720
BarItem, 1726
BarSet, 1727
BasisPart, 1472
Bessel, 528
BetaPD, 2326
BinaryClassification, 2144
Bond, 1473
BootstrapAggregation, 1962
BoundedLeastSquares, 441
 FalseConvergenceException, 451
 Function, 449
 Jacobian, 450
BoundedVariableLeastSquares, 451
 TooManyIterException, 455
BoxPlot, 1685
 Statistics, 1692
BsInterpolate, 180
BsLeastSquares, 182
BSpline, 176
Heatmap, 1745
Legend, 1754
HiddenLayer, 2115
HighLowClose, 1708
HoltWintersExponentialSmoothing, 1079
Hyperbolic, 544
HyperRectangleQuadrature, 225
Function, 227
IEEE, 542
IMSLException, 2352
IMSLFormatter, 2347
IMSLRuntimeException, 2353
InputLayer, 2114
InputNode, 2118
InvCdf, 1296
InverseCdf, 1308
DidNotConvergeException, 1310
Itemsets, 1923
JFrameChart, 1664
JFrameChart3D, 1840
JMath, 534
JPanelChart, 1665
JspBean, 1675
KalmanFilter, 1050
KaplanMeierECDF, 1199
KaplanMeierEstimates, 1203
Kernel, 2037
KohonenSOM, 1934
KohonenSOMTrainer, 1942
KolmogorovOneSample, 869
KolmogorovTwoSample, 872
LackOfFit, 1076
Layer, 2113
LeastSquaresTrainer, 2134
Legend, 1609
LicenseManagerException, 2354
LifeTables, 1231
LinearKernel, 2039
LinearRegression, 708
CaseStatistics, 717
CoefficientTTests, 716
Link, 2123
LogNormalDistribution, 1317
LU, 40
MajorTick, 1625, 1870
Matrix, 9
MaximumLikelihoodEstimation, 2312
MersenneTwister, 1353
MersenneTwister64, 1357
Messages, 2345
MethodOfMomentsInterface, 2326
MinConGenLin, 429
ConstraintsInconsistentException, 438
ConstraintsNotSatisfiedException, 439
EqualityConstraintsException, 440
Function, 437
Gradient, 437
VarBoundsInconsistentException, 439
MinConNLP, 461
BadInitialGuessException, 486
ConstraintEvaluationException, 479
Formatter, 489
Function, 478
Gradient, 478
IllConditionedException, 486
LimitingAccuracyException, 484
LinearlyDependentGradientsException, 488
NoAcceptableStepsizeException, 481
ObjectiveEvaluationException, 480
PenaltyFunctionPointInfeasibleException, 483
QPInfeasibleException, 482
SingularException, 487
TerminationCriteriaNotSatisfiedException, 489
TooManyIterationsException, 484
TooMuchTimeException, 485
WorkingSetSingularException, 481
MinorTick, 1625
MinUncon, 351
Derivative, 357
Function, 356
MinUnconMultiVar, 357
ApproximateMinimumException, 366
FalseConvergenceException, 367
Function, 365
Gradient, 365
Hessian, 366
MaxIterationsException, 368
UnboundedBelowException, 369
MPSReader, 1457
 Element, 1469
 InvalidMPSFileException, 1468
 Row, 1468
MultiClassification, 2187
MultiCrossCorrelation, 1062
 NonPosVariancesException, 1075
MultipleComparisons, 803
NaiveBayesClassifier, 1902
Network, 2090
Node, 2118
NonlinearRegression, 720
 Derivative, 735
 Function, 734
 NegativeFreqException, 733
 NegativeWeightException, 733
 TooManyIterationsException, 734
NonlinLeastSquares, 369
 Function, 378
 Jacobian, 379
 TooManyIterationsException, 378
NonNegativeLeastSquares, 456
 TooManyIterException, 460
 TooMuchTimeException, 461
NormalDistribution, 1313
NormalityTest, 864
 NoVariationInputException, 868
NormalPD, 2339
NormOneSample, 632
NormTwoSample, 638
NpChart, 1802
NumericalDerivatives, 490
 Function, 509
 Jacobian, 509
ODE, 230
OdeAdamsGear, 240
 DidNotConvergeException, 249
 Function, 247
 Jacobian, 247
 MaxFcnEvalsExceededException, 249
 SingularMatrixException, 250
 ToleranceTooSmallException, 248
OdeRungeKutta, 236
DidNotConvergeException, 240
 Function, 238
 ToleranceTooSmallException, 239
OutputLayer, 2116
OutputPerceptron, 2120
ParetoChart, 1830
PartialCovariances, 617
 InvalidMatrixException, 622
 InvalidPartialCorrelationException, 623
PChart, 1805
Pdf, 1280
 AltSeriesAccuracyLossException, 1295
PDFGradientInterface, 2324
PDFHessianInterface, 2324
Perceptron, 2119
Physical, 569
PickEvent, 1673
PickListener, 1674
Pie, 1728
PieSlice, 1732
PointLight, 1860
PoissonDistribution, 1319
Polar, 1741
PolynomialKernel, 2044
PooledCovariances, 623
PredictiveModel, 1945
 PredictiveModelException, 1958
 StateChangeException, 1959
 SumOfProbabilitiesNotOneException, 1960
 VariableType, 1960
PrintMatrix, 583
PrintMatrixFormat, 588
ProbabilityDistribution, 1311, 2321
ProportionalHazards, 1211
 ClassificationVariableLimitException, 1230
QR, 99
QuadraticProgramming, 421
 InconsistentSystemException, 427
 NoLPSolutionException, 428
 ProblemUnboundedException, 427
 SolutionNotFoundException, 429
Quadrature, 218
 Function, 224
QuasiNewtonTrainer, 2125
 BlockGradObjective, 2133
BlockObjective, 2133
Error, 2130
GradObjective, 2132
Objective, 2131

QUEST, 2289

RadialBasis, 202
Function, 212
Gaussian, 214
HardyMultiquadric, 213
RadialBasisKernel, 2042
Random, 1324
BaseGenerator, 1349
RandomSamples, 1362
RandomSequence, 1361
RandomTrees, 2298
ReflectiveOperationException, 2309

Ranks, 659
RChart, 1785
RegressionBasis, 741
RegressorsForGLM, 698

ScaleFilter, 2202
SChart, 1796
SelectionRegression, 741
Sfun, 511
ShewhartControlChart, 1771
SigmoidKernel, 2040
SignTest, 845
SingularMatrixException, 141
Sort, 650
SparseCholesky, 85
NotSPDException, 91
NumericFactor, 92
SymbolicFactor, 91
SparseLP, 380
CholeskyFactorizationAccuracyException, 397
DiagonalWeightMatrixException, 396
DualInfeasibleException, 399
IllegalBoundsException, 405
IncorrectlyActiveException, 404
IncorrectlyEliminatedException, 404
InitialSolutionInfeasibleException, 400
PrimalInfeasibleException, 398
PrimalUnboundedException, 398
ProblemUnboundedException, 401
TooManyIterationsException, 401
ZeroColumnException, 402
ZeroRowException, 403

SparseMatrix, 19
SparseArray, 29
Spline, 155
Spline2D, 184
Spline2DInterpolate, 188
Spline2DLeastSquares, 197
SplineData, 1717
StepwiseRegression, 756
CoefficientTTests, 768
CyclingIsOccurringException, 767
NoVariablesEnteredException, 767

Summary, 595
SuperLU, 45
SupportVectorMachine, 2003
CloneNotSupportedException, 2012
ReflectiveOperationException, 2012
Surface, 1870
ZFunction, 1880
SVClassification, 2013
SVD, 103
SVOneClass, 2025
SVRegression, 2029
SymEigen, 148

TableMultiWay, 682
BalancedTable, 688
UnbalancedTable, 690
TableOneWay, 671
TableTwoWay, 676
Text, 1646
TimeSeries, 1088
TimeSeriesClassFilter, 2222
TimeSeriesFilter, 2220
TimeSeriesOperations, 1096
CombineMethod, 1107
Function, 1105
MergeRule, 1106
Tokenizer, 1456
ToolTip, 1648
Trainer, 2124
Transform, 1626
TransformDate, 1627
Tree, 2234
Treemap, 1755
 Legend, 1763
TreeNode, 2229
UChart, 1812
UnsupervisedNominalFilter, 2211
UnsupervisedOrdinalFilter, 2215
UserBasisRegression, 736
VectorAutoregression, 1108
Version, 2347
Warning, 2348
WarningObject, 2351
WilcoxonRankSum, 849
XbarR, 1779
XbarS, 1789
XmR, 1799
ZeroPolynomial, 328
 DidNotConvergeException, 332
ZerosFunction, 333
 Function, 338
ZeroSystem, 339
 DidNotConvergeException, 345
 Function, 346
 Jacobian, 346
 ToleranceTooSmallException, 347
 TooManyIterationsException, 347