
1 Compiling Programs. Compile your pro-
grams using the –g option. For example:

gcc -g –o my_prog my_prog.c

2 Starting TotalView. Enter:
totalview my_prog –a arguments

Or, type totalview from the shell to open
the Sessions Manager to:
 Start a new program or parallel program
 Attach to a running process
 Open a core file
 Manage your debug sessions

3 Toolbar Buttons Defined

 Go: starts execution.
 Halt: stops execution, but you can restart

from where execution stopped.
 Kill: kills the executing program.
 Restart: does a Delete, then a Go.
 Next: executes all code on the current

line; program counter (PC) will be at the
next line.

 Step: executes line; if the line has a sub-
routine, PC moves into it.

 Out: executes remainder of current routine;
PC is on the line that called this routine.

 Run To: After selecting a line (click on the
line, not the line number), press this
button to execute all instructions from the
PC until this line.

4 Setting a Breakpoint
 Line: click on a line number.
 Function: select Action Point > At Loca-

tion, and type a function name.
 Function: Use the View > Lookup Func-

tion command, then click the line number.

TotalView® for HPC Cheat Sheet

 Search: Use the Edit > Find command,
then click on the line number.

5 Attaching to Already Running Programs
 Select the File > Attach to a Running Pro-

gram command from the Root or Process
windows to launch the Sessions Manager,
and browse to the program.

 If you don’t see the program, use the ps
command to find its PID (Program ID), and
then select the PID within the dialog box.

Always attach to a program’s main thread.

6 Stopping at a Line When a Variable
Equals (or Doesn’t Equal) a Value
a Set a breakpoint within the loop.
b. Right click on the breakpoint icon and

select Properties.
c. Select Evaluate in the dialog box.
d. Type a condition; for example:

if (my_variable == 0) $stop

7 Seeing Variable Values
 If it’s a local variable, it’ll be in the Stack

Frame Pane. For a local or global variable,
double-click it in the Source Pane to see
the value in a Variable Window, or hover
your cursor over it to see the value.

 If it is not a complex variable (that is, it is not
an array or a structure), right-click on the
variable and select Add to Expression
List.

 For arrays and structures, double-click to
see all values in a Variable Window.

8 Chasing Pointer Values. If a variable’s type
is a pointer, double-click to see the value
being pointed to.

9 Seeing Many Variables at the Same Time.
You can send as many variables as you want
to the Expression List window. The values in
this window update every time your program
stops executing.
You can also send individual structure and
array elements to this window.

10 Seeing Just Some of an Array’s
Elements. The Slice area within the Variable
Window lets you tell TotalView which array
elements it should display. For example, typing
(31:60) in Fortran or [30:59] in C or C++
restricts the display to just 30 elements.

Type a condition within the Filter area to restrict
the display to certain values. For example, typ-
ing > 64000 restricts the display to array ele-
ments with a value greater than 64,000.
You can combine slices and filters.

11 Graphing Arrays. Seeing array data visually
is an easy way to detect outliers and pat-
terns. Display the data graphically by select-
ing the Tools > Visualize command within a
Variable Window.

12 Casting. You can change the way TotalView
interprets and displays variable data by edit-
ing the Type field of a variable window.
For example, if you have a pointer to an
array, you’ll want to change the datatype
from something like int * to int[100] * to see
array or pointer elements.

13 Changing Variable Values
 In the Expression List and Variable Win-

dows, click a value and edit it.
 In the Stack Frame Pane, double-click a

boldface number, then edit it.

14 STL Variables. TotalView provides auto-
matic STL type transformations to more
clearly display STL data without the underly-
ing structure. This can be toggled in the
preferences as preferred.

15 Searching For Variables. Select View >
Lookup Variable from the Process Window.
The variable displays in a Variable Window.

16 Stopping Execution When a Variable’s
Value Changes. Use the Tools > Create
Watchpoint command.
If the Variable Window is displaying an array or
a structure, you’ll need to dive on an element
so that only one of the variable’s elements is
displayed.

17 Seeing One Element in an Array of Struc-
tures as its own Array
a Select one element.
b. Right-click and select Dive in All.

The window now displays an array contain-
ing just those elements.

18 Seeing a Variable’s Value in Multiple
Threads or Processes. From the Variable
Window menu, select:

 View > Show Across > Thread if the
program is multi-threaded, or

 View > Show Across > Process if the
program is multi-process.

In the Stack Frame or Source Pane, right-
click on the variable and select Across
Processes or Across Threads.

19 CLI Command Entry. Select the Tools >
Command Line command. You can now
type TotalView CLI commands within this
window. Type dhelp for help.

20 Debugging with fork() and Execve()
Programs. In most cases you must link
your program with the libdbfork library
that we provide. See our reference guide
for more information

21 Debugging with ReplayEngine. Replay-
Engine is an add-on for reverse debug-
ging in Linux x86 and x86-64. Start it
before a debugging session either from:
 the Debug Options dialog in the

Sessions Manager, by selecting Enable
ReplayEngine.

 the Process Window, by selecting menu
option Debug > Enable ReplayEngine.

The ReplayEngine buttons on the toolbar
are as follows:

 Record: Starts ReplayEngine before or
after a process has started.

 GoBack: Runs backwards to the nearest
stop event.

 Prev: Moves execution in reverse, over
function calls; PC moves to previous line.

 UnStep: Moves execution in reverse,
through functions; PC moves into func-
tion calls.

 Caller: PC returns to the point before the
function was called.

 Back To: When a line is selected, moves
execution in reverse to the most previous
execution of the line.

 Live: Execution and the PC are returned
to current live execution location.

 Save: Displays a dialog to save the cur-
rent recording session to a file to be
loaded in at a later time.

