Internationalization Module User’s Guide : Chapter 8 Pattern Matching : Regular Expression String Searching : Unicode Regular Expressions
Unicode Regular Expressions
This section describes the extensions to the POSIX ERE standard that are part of the RWURegularExpression syntax allowing for basic and tailored regular expressions.
Basic Unicode Regular Expression Extensions
This section details the extensions to the POSIX ERE standard that support basic Unicode regular expressions in RWURegularExpression. Basic Unicode regular expression support corresponds to Level 1 Unicode regular expression support as described in Version 5.1 of UTR-18 (http://www.unicode.org/reports/tr18/tr18-5.1.html).
All regular expression pattern strings and search strings are treated as UTF-16 character sequences. UTF-16 is the only encoding supported through the pattern matching interface to RWURegularExpression. All pattern strings are accepted as RWUString objects, or are converted from a specified encoding to RWUString objects internally before being compiled. All search strings are taken as RWUString objects. Subexpression match strings are returned as RWUString objects.
Basic Unicode regular expressions do not recognize UTF-16 surrogate pairs (Unicode code points, or characters, represented as a sequence of two 16-bit code units). Each 16-bit code unit is treated as an individual character. Character properties are obtained from the Unicode character database. Characters are compared based on their bit patterns; no collation is performed. As such, basic Unicode regular expressions are useful for the majority of Unicode strings, and are more efficient than they would be if support for surrogates and collation were required. However, if support for surrogates or collation is required, then basic regular expression support may not meet these needs.
If support for canonical equivalence is required, normalize all strings before passing them to RWURegularExpression. For more information on normalization, see RWUNormalizer.
Basic Unicode regular expression syntax extensions
Hexadecimal notation
The \u syntax allows for the specification of 16-bit Unicode code units. For example, the range expression [\u0020-\u007f] matches any UTF-16 code unit with a numeric value from hexadecimal 20 through hexadecimal 7f.
Character categories
Character categories must appear within a bracket set, and are denoted by the text {Category}, where Category is the name of a category to be matched. For example, [{L}{Zs}]* matches zero or more occurrences of any character that is either a letter (L) or a space separator (Zs).
The following two tables list all of the character category names supported by RWURegularExpression. Table 3 includes character categories based on UTR-18. Table 4 includes Rogue Wave-specific character category extensions.
An exception is thrown if any other text appears as a category name.
Table 3 –  RWURegularExpression character categories based on UTR-18
Category
Description
Category
Description
L
All Letters
Pf
Final Quote Punctuation
Lu
Uppercase Letters
Po
Other Punctuation
Ll
Lowercase Letters
S
All Symbols
Lt
Titlecase Letters
Sm
Math Symbols
Lm
Modifier Letters
Sc
Currency Symbols
Lo
Other Letters
Sk
Modifier Symbols
M
All Marks
So
Other Symbols
Mn
Non-Spacing Marks
Z
All Separators
Mc
Spacing Combining Marks
Zs
Space Separators
Me
Enclosing Marks
Zl
Line Separator
N
All Numbers
Zp
Paragraph Separator
Nd
Number, Decimal Digit
C
“Other” Characters. Same as the union of Cc, Cf, Cs, Co, and Cn.
Nl
Number, Letter
Cc
Other, Control
No
Number, Other
Cf
Other, Format
P
All Punctuation Characters
Cs
Other, Surrogate
Pc
Connector Punctuation
Co
Other, Private Use
Pd
Dash Punctuation
ALL
Matches All Code Units
Ps
Open Punctuation
ASSIGNED1
Matches All Assigned Code Units
Pe
Close Punctuation
UNASSIGNED
Matches All Unassigned Code Units (the opposite of ASSIGNED)
Pi
Initial Quote Punctuation
 
 

1 A code point is “assigned” if it has a category other than RWUCharTraits::Unassigned. All code points assigned a category, as well as the blocks of code points allocated for private use, are "assigned."

The following table contains Rogue Wave-specific extensions to the set of character categories outlined in UTR-18.
Table 4 –  Rogue Wave-specific extensions to character categories
Character
Description
WB 1
Matches Word Breaks. Matches a word boundary, much like the \b construct in Perl.
CB
Matches Character Breaks
LB
Matches Line Breaks
SB
Matches Sentence Breaks
BOL1
Matches at the beginning of a line. Matches at the beginning of a string, or any of the following: \u2028, \u2029, \u000D\u000A, \u000A, \u000B, \u000C, \u000D, or \u0085.
EOL1
Matches at the end of a line. This matches at the end of a string, or any of the following: \u2028, \u2029, \u000D\u000A, \u000A, \u000B, \u000C, \u000D, or \u0085.

1 If this category appears in a bracket set, then that bracket set, or any enclosing subexpression without additional data, must not have + or * cardinality, or the pattern is flagged as an invalid pattern, and an exception of type InfiniteEmptyMatch is thrown.

Subtraction
Subtraction allows a regular expression pattern to express the removal of a set of items from an existing bracket set. The syntax for such a construct is: [OriginalSet-[SubtractedSet]], where OriginalSet is a bracket set, and SubtractedSet is a bracket set of items to remove from the OriginalSet. For example, [{L}-[{Lu}]] matches all letters except for uppercase letters. Similarly, [{ASSIGNED}-[{C}]] matches all assigned Unicode characters, except for any characters that fall into the “Other” category.
Simple word boundaries
This feature of basic (Level 1) Unicode regular expressions is available through the use of the WB category, described in Table 4.
Simple loose matches
The only type of loose matches for basic Unicode regular expressions described in UTR-18 are caseless matches. Caseless matching is available in RWURegularExpression through the use of the IgnoreCase option to the constructor.
Line breaks
Line breaks can be matched using RWURegularExpression through the use of the {BOL} and {EOL} extended categories. ^ and $ are not used to denote the beginning and ending of lines, as this conflicts with the POSIX requirements for these characters. POSIX requires that these characters anchor only at the beginning and ending of an entire string.
Tailored Unicode Regular Expression Extensions
Tailored regular expression support extends basic regular expressions. Tailored regular expression support adds Level 2 and Level 3 regular expression support as described in UTF-18 Version 5.1. (http://www.unicode.org/reports/tr18/tr18-5.1.html)
Tailored regular expression support extends basic regular expression support in the following ways.
Tailored Unicode regular expression syntax extensions
Treating surrogate pairs as characters
Tailored support recognizes surrogate pairs during pattern compilation and during pattern matching. For example, consider the pattern, \uD800\uDC00*. With basic regular expressions, the pattern compiler does not recognize \uD800\uDC00 as a surrogate pair, and interprets the pattern as \uD800 followed by zero or more occurrences of \uDC00. However, with tailored support, \uD800\uDC00 is recognized as a single code point, and the pattern is interpreted as zero or more occurrences of the code point, \uD800\uDC00. During matching, full code points are extracted for testing against “.”, categories, bracket sets, and all other constructs. Further, during search operations, only code point boundaries are considered as potential match starting positions.
The use of the script property
Tailored regular expressions allow for testing a code point for a script property. The script property uses a syntax similar to that of general categories. The syntax is as follows:
[{Script}]
As with categories, a script specification must appear in a bracket set, and must be surrounded by curly braces. Within the curly braces is the name of a script, which is case-sensitive. The following table lists scripts that are supported by tailored regular expressions.
 
Table 5 –  Script properties supported by tailored regular expressions
Property
Property
Common
Inherited
Arabic
Armenian
Bengali
Bopomofo
Cherokee
Coptic
Cyrillic
Deseret
Devanagari
Ethiopic
Georgian
Gothic
Greek
Gujarati
Gurmukhi
Han
Hangul
Hebrew
Hiragana
Kannada
Katakana
Khmer
Lao
Latin
Malayalam
Mongolian
Myanmar
Ogham
OldItalic
Oriya
Runic
Sinhala
Syriac
Tamil
Telugu
Thaana
Thai
Tibetan
Ucas
Yi
For example, the following pattern matches one or more occurrences of a character in the Thai script: [{Thai}]+
The ability to specify code points using \v syntax
The \v syntax is given as \vXXXXXX, where each X is a valid hexadecimal digit. The \v must be followed by exactly six valid hexadecimal digits. For example, the surrogate pair, \uD800\uDC00 could be specified as \v010000. \v escape sequences can appear anywhere in a pattern, including bracket expressions. Recall that, as with any escape sequence, the \v must be double-escaped when specified in C++ source code, \\v010000. The first escape is for the C++ compiler.
Matching canonical equivalents
Tailored regular expressions match canonical equivalents. For example, the pattern, a\u0308 matches against botha\u0308and ä.
Specifying grapheme clusters
Tailored regular expressions allow for the specification of grapheme clusters using the \g syntax. The syntax for grapheme clusters is \g{grapheme}, where \g starts the grapheme cluster specification. The { and } must surround the grapheme cluster. Within the curly braces, the grapheme is specified. Grapheme clusters can appear anywhere in the pattern, including bracket sets. For example, the pattern, ab\g{ch}d, matches the string, abchd. With the traditional Spanish locale, the pattern, [\g{ch}-d], matches ch and d, but does not match c or e. Recall that, as with any escape sequence, the \v must be double-escaped when specified in C++ source code, \\v010000. The first escape is for the C++ compiler.
Performing all comparisons using collation
With tailored regular expressions, all comparisons are performed using Unicode collation. The type of collation can be specified using the setCollationStrength() method, and queried using the getCollationStrength() method. These methods may be used only with tailored regular expressions, and throw an unsupported error exception with basic regular expressions.
The collation support in RWURegularExpression is coarse-grained, meaning that it applies to the entire pattern. At this time, no fine-grained collation is supported.
If no collation strength is specified, then the default collation strength for the specified locale is used. For many locales, the default strength is Tertiary. For example in the en locale, the following pattern would use tertiary collation strength by default: résumé. At this default level, the string, résumé, would match. However, resume and Résumé would not match. On the other hand, if the collation strength for the pattern is changed to Primary, then all of the following would match: resume, résumé, and Résumé.
Tailored regular expressions, by default, do not recognize graphemes (other than those specified with \g) during pattern compilation, or when matching the “.” (or any other element).
As such, the pattern a\u0308+ would match an a followed by one or more occurrence of \u0308. Similarly, "." would match only the "a" in a\u0308. As an alternative, the InterpretGraphemes option can be used with tailored regular expressions. If this option is given as a constructor argument for a tailored regular expression, then the pattern a\u0308+ above would be interpreted as one or more occurrence of a\u0308, or ä, or any other equivalent.
Similarly, "." would match all of a\u0308.
NOTE >> The "InterpretGraphemes" option is ignored for basic regular expressions.
How to Use Tailored Regular Expressions
To allow RWURegularExpression to use the tailored regular expression features, you may pass RWURegularExpression::Tailored as the second argument of the constructor as follows:
 
RWURegularExpression re(SomeRWUString,RWURegularExpression::Tailored);
or you may construct first, then set the level:
 
re.setLevel(RWURegularExpression::Tailored);
For more information on creating a regular expression, see “How to Create an RWURegularExpression”.